BiLO-CPDP: Bi-Level Programming for Automated Model Discovery in Cross-Project Defect Prediction
Cross-Project Defect Prediction (CPDP), which borrows data from similar projects by combining a transfer learner with a classifier, have emerged as a promising way to predict software defects when the available data about the target project is insufficient. However, developing such a model is challenge because it is difficult to determine the right combination of transfer learner and classifier along with their optimal hyper-parameter settings. In this paper, we propose a tool, dubbed BiLO-CPDP, which is the first of its kind to formulate the automated CPDP model discovery from the perspective of bi-level programming. In particular, the bi-level programming proceeds the optimization with two nested levels in a hierarchical manner. Specifically, the upper-level optimization routine is designed to search for the right combination of transfer learner and classifier while the nested lower-level optimization routine aims to optimize the corresponding hyper-parameter settings. To evaluate BiLO-CPDP, we conduct experiments on 20 projects to compare it with a total of 21 existing CPDP techniques, along with its single-level optimization variant and Auto-Sklearn, a state-of-the-art automated machine learning tool. Empirical results show that BiLO-CPDP champions better prediction performance than all other 21 existing CPDP techniques on 70% of the projects, while being overwhelmingly superior to Auto-Sklearn and its single-level optimization variant on all cases. Furthermore, the unique bi-level formalization in BiLO-CPDP also permits to allocate more budget to the upper-level, which significantly boosts the performance.
Wed 23 Sep Times are displayed in time zone: (UTC) Coordinated Universal Time
09:10 - 10:10: AI for Software Engineering (3)Research Papers at Wombat Chair(s): Artur AndrzejakHeidelberg University | |||
09:10 - 09:30 Talk | Automatic Extraction of Cause-Effect-Relations from Requirements Artifacts Research Papers Julian FrattiniBlekinge Institute of Technology, Maximilian JunkerTechnische Universität Muenchen, Michael UnterkalmsteinerBlekinge Institute of Technology, Daniel MendezBlekinge Institute of Technology | ||
09:30 - 09:50 Talk | BiLO-CPDP: Bi-Level Programming for Automated Model Discovery in Cross-Project Defect Prediction Research Papers Ke LiUniversity of Exeter, Zilin XiangUniversity of Electronic Science and Technology of China, Tao ChenLoughborough University, Kay Chen TanCity University of Hong Kong Pre-print | ||
09:50 - 10:10 Talk | Automating Just-In-Time Comment Updating![]() Research Papers Zhongxin LiuZhejiang University, Xin XiaMonash University, Meng YanChongqing University, Shanping LiZhejiang University Pre-print |