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A B S T R A C T

Software developers rely heavily on code documentation and comments to understand
source code, with program comprehension tasks consuming a significant portion of mainte-
nance time. Despite their importance, the impact of comments on program comprehension
remains debated. Our study addresses this gap by investigating the influence of comments
on program comprehension.

Employing a mixed-methods approach, we conducted an eye-tracking study involving 20

computer science students to explore the impact of code comments on program compre-
hension. By analyzing both quantitative and qualitative data, we aimed to comprehensively
assess the influence of comments on various aspects of program comprehension. The quan-
titative data collected consisted of behavioral metrics assessing program comprehension
in terms of correctness and response time, along with gaze data providing insights into
visual attention, linearity of reading order, and gaze strategies. This was complemented by
participants’ subjective ratings on the perceived difficulty and contribution of comments.
Additionally, participants’ experiences were gathered through a post-questionnaire, enrich-
ing the analysis with qualitative insights into the effectiveness of comments, navigation
strategies, and overall experiences with comments.

Findings revealed that the effect of comments on enhancing comprehension varied sub-
stantially across different code snippets, with effects ranging from a decrease of 30% to
an increase of 34%. While comments were observed to significantly guide visual attention,
accounting for up to 23% of all fixations, and promote a more linear reading approach,
participants predominantly adhered to a "code-first" strategy, prioritizing code before con-
sidering comments. Moreover, comments were consistently rated positively for clarifying
complex segments of code and contributing to program comprehension. However, this
favorable perception did not consistently translate into improved performance or reduced
perceived difficulty across snippets. This discrepancy between perceived and actual contri-
bution highlights the necessity of prioritizing quantitative metrics over subjective viewpoints
when considering strategic commenting practices.

We propose avenues for future research, including comparative studies on automated
versus human-generated comments and the development of predictive models for assessing
comment usefulness. Additionally, we highlight the potential for generative commenting
systems within development environments, capable of generating tailored comments based
on individual programmer needs, such as their task context, historical interaction patterns,
and code complexity.
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1
I N T R O D U C T I O N

Software developers spend a considerable amount of time reading and comprehending
source code. According to Dunsmore and Wood [32], program comprehension tasks have
been reported to take up as much as 60% of the total maintenance time. During that process,
developers frequently rely on code documentation and comments, which inform about the
code by clarifying its purpose, functionality, and design reasons.

Comments can play a crucial role in maintaining code quality and readability, and are
suggested to also serve as "beacons" (i. e., guiding signals highlighting and drawing attention
to specific elements) thus aiding in comprehension and analysis of complex code. However,
their impact on program comprehension, linearity and gaze strategy still remains a subject
of debate. As suggested by several studies, comments can help programmers understand
complex code more easily while decreasing their cognitive load [60]. On the other hand,
comments can also be a source of distraction, especially if they are excessive, irrelevant, or
obsolete, as previous studies have found that extensive commenting can negatively affect
program comprehension, leading to longer reading times and potentially reducing the
programmer’s productivity [67].

Despite the importance of documentation in software development, limited empirical re-
search has been conducted to establish how software developers utilise code documentation,
especially comments, for program comprehension. Analysing how programmers commonly
approach information exploration during software development and maintenance is needed,
if such comprehension is to be facilitated by tool developments or adjustments to the
software development process (e. g., guidelines on writing comments).

Our study contributes to the discourse on program comprehension by utilizing eye
tracking to investigate the influence of comments on program comprehension, linearity and
gaze strategy. Through analysis of participants’ visual attention patterns, we aim to provide
valuable insights into the role of comments in shaping cognitive processes.

The utilization of eye tracking enables us to collect data on participants’ eye movements,
fixations, and gaze patterns, providing objective measurements of visual attention. This
data facilitates a quantitative assessment of how comments impact participants’ visual
attention and cognitive load during program comprehension. Our rigorous analysis seeks to
improve understanding of whether comments facilitate or hinder program comprehension,
as well as potential variations in reading order resulting from the presence or absence of
comments. These findings have practical implications for software developers, educators,
and researchers, informing code commenting practices and programming guidelines.
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2 introduction

The thesis is structured as follows:

background. This section provides a theoretical foundation for our study. It explores
relevant literature and theories related to program comprehension and discusses different
types of comments, their structure, content, and their relationship with programming lan-
guage and program size. Additionally, this section introduces the application of eye tracking
in software engineering research, highlighting its potential for gathering insights into partic-
ipants’ cognitive processes. The foundations of eye tracking, including its principles and
methodologies, are discussed, along with the metrics used to analyze visual attention and
cognitive effort. By examining these topics, the background section establishes the necessary
groundwork for the subsequent research analysis.

related work . This section provides an overview of the existing research on the role
of comments in program comprehension. Prior studies have demonstrated the significance
of comments in enhancing program comprehension by offering explanations, clarifications,
and insights into program functionality. The literature review highlights the gaps and
limitations in the current understanding and identifies the need for further investigation.
By exploring the previous research, we set the foundation for our study to examine the
effects of comments on program comprehension, aiming to contribute to the existing body
of knowledge and provide valuable insights for software development practices.

study design. This section describes the study’s design and execution, focusing on
outlining the research questions, variables, code snippets, participant selection, use of
eye-tracking technology, and ethical considerations.

data analysis methodology. In this section, we outline the data analysis procedures
for addressing each research question and explore the appropriate statistical tests we used
to analyze the collected data.

discussion. This section interprets the findings of the study in light of the thematic
analysis of the qualitative data, situating them within the broader context of software
engineering research and previous literature. It discusses the implications of the results
for both theory and practice, considering how comments can be more effectively used to
support program comprehension.

threats to validity. This chapter critically examines the potential limitations and
biases inherent in the study’s design and methodology, with a focus on construct, internal,
and external validity.

conclusion. The final section summarizes the key contributions of the thesis to the
fields of software engineering and cognitive research. It reiterates the importance of under-
standing the role of comments in programming and how this knowledge can be applied to
improve software development practices. The conclusion additionally outlines directions for
future research and emphasizes the ongoing need for research that bridges the gap between
theoretical insights and practical applications in software development.



2
B A C K G R O U N D

The objective of the current chapter is to provide the fundamental contextual and back-
ground information required to thoroughly understand the significance of our proposed
study on the effect of comments on program comprehension, linearity and gaze strategy.
Following a discussion of program comprehension, the significance of comments in soft-
ware development is examined. Furthermore, a review of the incorporation of eye-tracking
technology in research related to software development is presented.

2.1 program comprehension

Software development and maintenance rely largely on program comprehension, which
includes activities such as software reuse, inspection, evolution, migration, reverse engineer-
ing, and reengineering of existing software systems [53]. Considerable research has been
focused on investigating the cognitive processes involved in programmers’ comprehension
of software programs, leading up to the establishment of program comprehension as a dis-
tinct field of study within the domain of software engineering. It involves the understanding
and interpretation of high-level programming code, which presents challenges due to its
intricacies, abstractions, and interdependencies.

The concept of cognitive load, denoting the cognitive effort that is necessary for the pro-
cessing and comprehension of information, is considered an important aspect of program
comprehension. Within this particular context, it is necessary for programmers to identify
and extract the relevant parts of the source code, thereby requiring an attentive screen-
ing procedure. The program comprehension process, as described by Peitek’s work [74],
describes the internal cognitive processes that occur when programmers are engaged in
reading and comprehending source code.

Programmers use a variety of cognitive strategies to comprehend programs, depending
on factors related to the programmer, the program, and the task [89]. The skills, knowledge,
and familiarity of the programmer with the program and the domain serve as important
maintainer factors. Program factors include the program’s domain, size, complexity, quality,
and documentation availability. Task factors include the type, size, complexity, time con-
straints, and environment of the comprehension task. Each of these aspects plays a role in
deciding which comprehension method to choose, and can change from one context to the
next.

However, there are challenges associated with program comprehension. Programmers
frequently struggle with linking different conceptual areas, such as connecting the problem
or application domain to the solution, navigating different levels of abstraction, reconciling
the system’s design or description with its actual implementation, and reconciling the
associative nature of human cognition with the formal world of software [85]. Due to these
difficulties, an increasing amount of research is being conducted to offer explanations and
insights into the cognitive processes involved in program comprehension.

3



4 background

In the following sections, the literature review will explore some of the research topics
associated with program comprehension, such as mental models, knowledge domains, and
cognitive processes.

2.1.1 Mental Model

The notion of the mental model in program comprehension was initially put forward by
Storey et al. [113]. They defined it as the maintainer’s mental representation of the program.
This representation is constructed through observation, inference, or interaction with the
program [89]. The accuracy and comprehensiveness of a mental model’s development can
fluctuate based on variables such as the programmer’s level of expertise and the complexity
of the program. According to von Mayrhauser and Vans [62], a mental model is composed
of static and dynamic elements. These components serve as a framework for organizing and
categorizing program information within the model. Program comprehension is further
aided by cognitive enablers, such as strategies and techniques that facilitate the formation
and manipulation of mental models.

Static Elements

Although the structure of a mental model may differ among individual programmers,
certain entities always appear in each mental model. These entities, referred to as static
elements, include text structures, chunks, plans, and hypotheses. The following subsections
describe these static elements in more detail.

text structures According to von Mayrhauser and Vans [62], the concept of "Text
Structures" refers to both the textual representation and structural organization of a program.
This involves the enumeration, sorting, and ordering of the instructions that make up the
organization of the program [12].

chunks The concept of "chunks" has been introduced by several researchers [25, 56].
These are textual structures that represent varying levels of abstraction. A hierarchical
structure can be formed by lower-level chunks composing a larger chunk. Each chunk
comprises a microstructure formed by statements and instructions that can be abstracted by
a macrostructure represented by a label. For instance, a chunk labeled "sort" could represent
a text structure associated with a sorting algorithm.

plans "Plans" are knowledge elements used to construct and validate expectations, inter-
pretations, and inferences during program comprehension [62]. They can help programmers
in inferring or identifying common scenarios within the program. Plans can be classified as
either programming or domain plans. Plans for programming include generic objects and
particular programming-related procedures or operations. On the contrary, domain plans
are related to the problem or application domain of the program and encompass objects
and operations that are specific to that domain.
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hypotheses Introduced by Letovsky [57], hypotheses are the programmer’s educated
guesses or reasonable deductions about how the code will behave. The hypotheses can
be broadly categorized into three major types: "why" hypotheses, which offer conjectures
regarding the purpose of program entities; "how" hypotheses, which suggest means by
which objectives are achieved in the program; and "what" hypotheses, which relate to the
categorization of program entities, such as variables and functions.

Dynamic Elements

The mental model’s dynamic elements are linked to the strategies used by programmers to
make sense of the code. Strategies refer to the systematic sequence of actions and procedures
that are employed to reach the desired level of comprehension. Littman et al. [59] distin-
guished between two broad categories of strategies: systematic and as-needed. In systematic
approaches, programmers strive to comprehend the entire program prior to performing
maintenance tasks. As-needed strategies, on the other hand, focus on comprehending only
the specific program parts that need maintenance. A second classification of strategies
includes shallow and deep reasoning. In shallow reasoning, important lines of code are
rapidly scanned and beacons are utilized to identify mental model plans. On the other hand,
deep reasoning requires a comprehensive program synthesis and the development of causal
links between functions and objects. This method is generally used when the programmer
has little to no experience with the program. Chunking and cross-referencing, two of the
mental model’s dynamic components, are essential to the comprehension process.

chunking "Chunking", which builds upon the concept of "chunks", is the process of
grouping and aggregating lower-level chunks to form higher-level abstractions. By employ-
ing chunking, programmers can represent a program in a more abstract way, simplifying
its complexity. Instead of dealing with the intricate details of individual statements and
instructions, they can focus on the larger chunks that encapsulate multiple operations or
functionalities allowing for a more efficient and intuitive understanding of the program’s
structure and behavior.

cross-referencing The process of connecting multiple levels of abstraction within
a program, such as linking distinct parts of the program to their respective functional
descriptions, is known as "cross-referencing". This procedure also facilitates establishing
relationships and gaining a comprehensive understanding of the program.

Cognitive Enablers

Elements that aid in comprehension are known as cognitive enablers. Beacons and rules
of discourse are two types of cognitive enablers. Beacons [20, 125] are indicative markers
embedded within a program that serve as cues for specific structures or operations. They
might be useful for finding code patterns or specific functions that developers need. The
rules of discourse, as defined by Soloway and Ehrlich [108], specify programming conven-
tions such as standard algorithms, data structure implementations, and coding standards.
These rules direct programmers in their interpretation and comprehension of the program.
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In general, a programmer’s comprehension of a program is represented by their mental
model. It includes both static elements, such as text structures, chunks, plans, and hypothe-
ses, and dynamic elements, such as chunking, cross-referencing, and strategies. Cognitive
enablers, such as beacons and rules of discourse, play a significant role in enhancing the
comprehension process by providing supplementary guidance and information.

2.1.2 Knowledge Domains

The comprehension of programs is significantly influenced by knowledge domains, which
function as fundamental units for comprehending programs. A knowledge domain is a finite
collection of primitive objects, the interactions between them, and the operators that can
change those relationships or attributes [20]. Program comprehension requires bridging and
mapping between different knowledge domains, especially between the problem domain
(the real-world problem the program is intended to solve) and the program domain [124].

The problem domain, also known as the application domain [19, 91], refers to the specific
part of the real world that a program aims to address and solve problems within [86]. It is
characterised by a shared vocabulary, common assumptions, solution approaches, and an
existing body of literature independent of the programs that tackle these problems.

The program domain [19], focuses on the knowledge domain associated with program-
ming and the source code level. It encompasses both general programming concepts and
language-specific concepts, reflecting the chosen programming paradigm (object-oriented,
imperative, functional, etc.). Understanding the program domain is crucial for comprehend-
ing programs and their underlying code structures.

2.1.3 Cognitive Models

Cognitive models, like mental models, play a vital role in understanding program compre-
hension processes. While mental models specifically focus on the maintainer’s representation
of the program, cognitive models delve into the broader cognitive aspects involved in com-
prehending software. These models offer valuable insights into how programmers acquire,
organize, and apply knowledge about programs, highlighting the underlying thought pro-
cesses at work. By examining different cognitive frameworks within the discipline, we can
gain a deeper understanding of the cognitive mechanisms and strategies employed during
program comprehension. The following sections outline a number of notable cognitive
frameworks within the discipline.

brooks model : The Brooks model [20], suggests that program comprehension involves
mapping between the problem domain (the real-world problem the program aims to solve)
and the program domain (the program’s code). The model emphasises the iterative con-
struction and reconstruction of knowledge through mappings across various domains.
The programmer’s expertise in the problem domain is crucial in defining initial hypothe-
ses, which are then refined using a top-down approach. The refinement process involves
validating these hypotheses, often aided by beacons present in the source code.
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soloway and ehrlich model : The Soloway and Ehrlich model [108] focuses on the
impact of rules of discourse and plans on program comprehension, considering both experi-
enced and novice programmers. The model posits that programmers expect programs to
consist of plans tailored to the problem domain. Comprehension is influenced by adherence
to the rules of discourse. The study conducted by Soloway and Ehrlich demonstrated that
expert programmers, with more experience in rules of discourse, exhibited faster compre-
hension. However, comprehension times were similar to novice programmers when dealing
with programs that violated the expected discourse rules.

shneiderman and mayer model : The Shneiderman and Mayer model [101] views
program comprehension as a bottom-up task. It suggests that programmers begin by
reading individual code statements and gradually group them into higher-level structures.
Comprehension is influenced by two types of programming knowledge: syntactic and
semantic. Syntactic knowledge encompasses language-specific details such as keywords,
syntax, and library routines, while semantic knowledge includes language-independent
programming knowledge and understanding of the problem domain. By employing a
bottom-up approach, programmers reconstruct the problem domain by leveraging both
types of knowledge.

pennington model : Pennington’s model [77] also adopts a bottom-up approach
to program comprehension. It involves the construction of two mental structures: the
program model and the situation model. The program model is built first by extracting the
sequence of operations and procedures from the program, creating an abstract control-flow
representation. This process includes chunking microstructures and establishing cross-
references to form higher-level programming plans and macrostructures. The situation
model is then constructed bottom-up by mapping the program model to high-level domain
plans that describe the program’s goals within the problem domain.

letovsky model : Letovsky’s model [57] considers program comprehension as a set
of three elements: a knowledge base, a mental model, and an assimilation process. The
knowledge base, unique to each programmer, contains information about the problem
domain, program domain, rules of discourse, and plans. The mental model comprises three
layers: the specification layer (problem domain and high-level goals), the implementation
layer (program domain), and the annotation layer (links established by the programmer).
Comprehension involves an assimilation process that can be either top-down or bottom-up,
depending on the programmer’s perceived knowledge source at a given moment.

soloway, adelson, and ehrlich model : The Soloway, Adelson, and Ehrlich
model [107] presents comprehension as a top-down task that involves external repre-
sentations (documents, requirements, etc.), internal representations (mental model), rules
of discourse, and plans. The model emphasises the role of plans in comprehension, distin-
guishing between three types: strategic, tactical, and implementation plans. Starting with an
overall understanding of the program’s goals, programmers consider the problem domain,
external representations, and their expertise. The strategic plan defines the global strategy
or algorithm, the tactical plan outlines the general steps of the chosen algorithm, and the
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implementation plan specifies the data structures, functions, and operations mapped to the
source code. Comprehension involves mapping between these plan types, supported by
rules of discourse and beacons.

von mayrhauser and vans model : The von Mayrhauser and Vans model [63]
incorporates elements from both the Pennington model (top-down) and the Letovsky model
(knowledge base). It suggests that programmers switch between top-down and bottom-
up approaches based on the program’s familiarity. When the program and beacons are
recognised, programmers tend to use a top-down approach. If the code remains unfamiliar,
they invoke the program model to obtain a control-flow abstraction. As the program model
is built, programmers map it into higher-level structures to form the situation model,
completing the comprehension process.

These models offer diverse viewpoints on program comprehension, highlighting various
aspects such as expertise, adherence to discourse rules, syntax, semantics, top-down or
bottom-up strategies, and the interdependence between the problem domain and program
domain. The various models presented in this study provide significant contributions
towards comprehending the cognitive processes involved in program comprehension. These
insights are of great benefit to both researchers and practitioners, as they facilitate a better
understanding of this crucial aspect of programming and pave the way for its improvement.

2.1.4 Summary

Program Comprehension is a field of study in software engineering that focuses on how
programmers understand programs. It is particularly important in the context of Software
Maintenance, where efficient program comprehension is crucial. Programmers employ
different cognitive strategies based on factors such as their own expertise, the program
being understood, and the specific task at hand. The process of program comprehension
involves building and updating a mental model, which is a mental representation of the
program. This mental model is constructed using static and dynamic elements, as well as
cognitive enablers.

Programmers also bring their own personal knowledge, which is represented in the
form of a knowledge domain. The problem domain represents knowledge related to the
problems the program aims to solve, while the program domain represents knowledge
about programming in general and the programming language used in the program.

Cognitive models are proposed to explain the cognitive processes involved in program
comprehension. These models can be classified into top-down, bottom-up, and hybrid
models, each with its own characteristics and approaches.

Overall, program comprehension is a complex process that has been extensively studied
in order to enhance the understanding of programs and improve software maintenance
practices.
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2.2 comments in software development

Comments within source code are a crucial component for developers to effectively compre-
hend code, facilitating its modification and maintenance. The comprehension of source code
holds significant importance for developers, as highlighted by Knuth [52], Standish [112],
Tiarks [120], and Siegmund [102], despite its primary function of being executed by com-
puters. The inclusion of comments in code has been shown to enhance the comprehension
of said code, as shown by studies conducted by Elshoff and Marcotty [34] and Corazza et
al. [24]. Nevertheless, in practical application, comments frequently prove to be inadequate.
It has been observed that the practice of leaving new code without comments and neglecting
to update existing comments in tandem with code modifications is prevalent [38, 48, 109]. In
order to tackle this matter, scholars have put forth methodologies for identifying outdated
comments, as seen by the works of Tan et al. [117], Sridhara [110], and Ratol [81]. However,
the impact of comments on program comprehension remains uncertain and therefore re-
quires empirical scrutiny. Some argue for self-explanatory code, emphasizing the creation
of code that is easily understandable without relying heavily on comments, as advocated by
Extreme Programming (XP).

Despite the importance of comments in understanding programs, their study and analysis
in the literature have been relatively limited. In this chapter, we provide an extensive explo-
ration of comment characteristics as fundamental elements of source code documentation,
drawing from existing literature.

2.2.1 Types and Structure of Comments

Comments in source code can be classified into two types: inline comments and block
comments. Inline comments consist of a single line, while block comments can span one or
more lines. Each programming language may support one or both types of comments [122].
The structure of comments consists of three elements: comment extent, comment target, and
comment category [100].

Comment Extent

The extent of a comment refers to a part of the source code that is considered as a single
"chunk" of explanatory text. Although a single explanatory text can span multiple comment
tags, the extent of a comment is defined as a sequence of consecutive comment tags that
form a continuous text. It represents the entire comment as a whole rather than individual
comment tags.

Comment Target

Comments are directed at specific subjects within the code. Comment targets can be
specified relative to surrounding syntax elements. There are four types of comment targets
identified [100]:
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Table 2.1: Types of comment targets.

Target Description

Left The comment targets the syntax element that ends immediately before the
comment. If there are overlapping elements ending at the same point, the one
with the longest span is chosen.

Right The comment targets the syntax element that starts immediately after the com-
ment. If there are overlapping elements starting at the same point, the longest
element is chosen.

Parent The comment targets the parent element, which is the syntax element containing
the comment. This type of target is commonly seen in if statements, where the
comment targets the entire then-block.

In-Place The comment does not describe any code and is considered to have the comment
itself as its target, such as metadata of author or copyright notices.

Comment Category

The comment category represents the type of relationship between a comment and its target.
Eleven comment categories were identified based on existing comments, providing a way of
classifying the types of relationships between comments and their targets [100]:

Table 2.2: Types of comment categories.

Category Description

Postcondition Conditions that hold after execution explaining "what" the code does.

Precondition Conditions that hold before execution, including statements that hold
regardless of code execution, explaining "why" the code is needed.

Value Description Phrases that can be equated with variables, constants, or expressions.

Instruction Instructions for code maintainers, often denoted as TODO comments.

Guide Guides for code users, distinct from instructions.

Interface Descriptions of functions, types, classes, or interfaces.

Meta Information Meta information such as author, date, or copyright.

Comment Out Code that has been commented out, lacking a specific target.

Directive Compiler directives not intended for human readers.

Visual Cue Text inserted for ease of reading, such as indentation or section headers.

Uncategorized All other comments that do not fit into the above categories.
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2.2.2 Content

The content of comments has been a subject of debate and scrutiny within the software
development community. Determining what constitutes a good or bad comment can be
subjective, but there are certain characteristics that can help differentiate them. A bad
comment is one that is inconsistent with the code it is commenting on, leading to confusion
or misleading information for the reader [116]. Researchers have proposed taxonomies
to classify comments based on their content [72]. Some of the relevant categories and
subcategories identified in their taxonomy are:

Table 2.3: Types of comment contents.

Content Description

Type This category includes subcategories such as Unit and IntRange, which
provide information about the type of functionality or range of values
associated with the code.

Interface This category includes subcategories like ErrorReturn, which describes
how errors are handled in the code.

Code Relationship This category includes subcategories like DataFlow and ControlFlow,
which describe the relationship and flow of data or control within the
code.

PastFuture This category includes subcategories like TODO or FIXME, indicating
tasks or issues that need attention or further work.

Meta This category includes comments that provide meta-information, such
as copyright notices, authors, dates, and other relevant details.

Explanation This category includes comments that do not fit into the previous
categories and provide additional explanations or clarifications about
the code.

2.2.3 Comments and Language

Comments in source code use a sublanguage that consists of a limited vocabulary and
specific syntactic and semantic constructions. The sublanguage of comments tends to be
repetitive and has certain characteristics, such as the use of the present tense, indicative or
imperative mood, and a limited set of verbs [35]. The terms used in comments have also
been studied extensively. In a study by researchers [42], they examined the presence of
problem domain terms in comments and identifiers of various programs. The study involved
creating a list of problem domain terms relevant to the programs under investigation and
measuring the percentage of terms appearing in comments versus identifiers. The results
showed that approximately 23% of the problem domain terms appeared in comments alone,
while only 11% appeared in identifiers.
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2.2.4 Comments and Program Size

Maintaining and updating comments throughout the evolution of source code can be
challenging. Studies have shown that comments and source code rarely co-evolve over time,
and comment changes are primarily triggered by changes in the corresponding source
code [38]. However, another study found that the percentage of commented functions
remained consistent throughout the evolution [48].

2.2.5 Comment Density and Practice

The use and amount of comments in source code have been subjects of ongoing debate,
with different software communities and organizations adopting varying practices. While
some developers prefer extensive commenting to document their code comprehensively,
others opt for self-explanatory code with minimal comments. One study [37] investigated
comment density, which refers to the ratio of comment lines to total lines of code, across
multiple software projects. The research found that comment density varied significantly
among projects, ranging from less than 1% to over 50%.

Additionally, coding style guides and conventions often play a role in influencing com-
menting practices within development teams. These guidelines provide recommendations
and standards for writing comments, aiming to improve code readability and maintainabil-
ity. The Google Java Style Guide and the Oracle Java Code Conventions are examples of
widely adopted coding style guides that provide recommendations on comment usage.

Overall, the content, language, size, and practices related to comments in software de-
velopment play an important role in program comprehension and maintainability. While
there are differing opinions on the ideal amount and style of commenting, it is gener-
ally agreed that well-written and informative comments can enhance the readability and
comprehensibility of source code.
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2.3 eye tracking in software engineering research

Eye tracking is a method for gathering information about a participant’s visual attention by
observing eye gaze patterns [31, 82]. Visual attention is essential to the cognitive processes
of understanding and problem-solving, and these same cognitive processes direct visual
attention to particular regions. As a result, eye tracking is useful in analyzing participants’
cognitive processes and effort during software engineering activities [31]. By understanding
how eye tracking provides insights into cognitive processes, we can explore its applications
in software engineering research and how it contributes to understanding various aspects of
software development, such as source code reading, debugging, comprehension of software
artifacts, and software traceability [94].

Eye trackers have undergone significant advancements, transforming from intrusive, costly,
and challenging-to-use tools into versatile devices with widespread applications across
diverse research domains [11]. These applications span various fields, including software
development [94], driver-vehicle interfaces [131], airplane cockpits [30], and gaming [114].

By capturing and analyzing the visual information interactions of participants, eye trackers
enable researchers to gather substantial and meaningful data, facilitating the examination
of reading patterns [83], identification of visual indicators during search tasks [28], and
exploration of interactions and engagement during spoken dialogue [8].

In the field of software engineering, eye tracking finds application in tasks such as source
code reading, debugging, comprehension of software artifacts, and software traceability [94].
Recent studies have also combined eye tracking with other neuroimaging and biometric
techniques, such as Electroencephalography (EEG), Functional Magnetic Resonance Imag-
ing (fMRI), and Functional Near-Infrared Spectroscopy (fNIRS), to assess task difficulty
and cognitive burden [36, 39, 55, 76]. However, the wide variety of eye-tracking devices,
techniques, metrics, and analyses employed by researchers presents a major challenge, as it
complicates the comparability and replication of study approaches, thereby impeding the
progress of eye tracking and software engineering research.

To provide a coherent overview of eye tracking in software engineering research, this
section will first introduce the foundations of eye tracking. Understanding the basics of eye
tracking is crucial for comprehending how it can provide valuable insights into participants’
cognitive processes and effort during software engineering activities [31]. We will then
delve into the different types of data collected by eye trackers and examine how these data
points are aggregated and utilized in research. This will enable us to gain a comprehensive
understanding of the valuable information eye tracking can provide in the context of
software engineering activities.

2.3.1 Foundations of Eye Tracking

A visual stimulus is any object, such as a fragment of source code, that is necessary for
carrying out a task. This stimulus activates the cognitive processes of participants, leading to
subsequent actions (e. g., altering a statement in the source code). Eye gaze data is analyzed
in relation to Areas of Interest (AOIs), which are specific stimulus regions. An AOI’s
significance depends on the question and participant. In a code editor, for instance, the class
annotation may be an irrelevant AOI, whereas the class name may be a relevant AOI.
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The analysis of eye gaze data involves the utilization of an event detection algorithm
to process the raw data. This processed data can then be classified according to various
indicators of ocular behavior, as outlined by Rayner [82] and Duchowski [31].

• Fixation: In the context of visual perception, a fixation denotes a spatially-stable eye
gaze that endures for a duration ranging from 100 to 300 milliseconds. During
a fixation, the participant’s visual attention becomes focused on a particular region of
the stimulus, thereby initiating cognitive processes [50]. The duration of fixations can
vary based on the given task and characteristics of the participant.

• Saccade: These are rapid, continuous eye movements that occur between fixations and
last between 40 and 50 milliseconds. However, they only allow for a restricted visual
perception.

• Pupil dilation and constriction: The fluctuation in pupil size, which is regulated by
the iris muscle, can serve as an indicator of cognitive effort [79]. An augmented size of
the pupil may serve as an indicator of elevated cognitive effort.

• Scan path: The eyes make a series of saccadic movements to fixate successive regions
of a stimulus, creating a linear chronological sequence of fixations or visited AOIs.

According to psychological research, the acquisition and processing of information pre-
dominantly take place during fixations. It has been observed that participants can effectively
comprehend a complex visual stimulus with only a limited number of fixations [80]. Context
is crucial when attempting to make sense of fixations. A higher fixation rate on a specific
AOI may suggest an increased degree of engagement with its content. Nevertheless, it is
worth noting that an accumulation of fixations may also indicate increased effort or difficulty
with comprehending the stimulus [79].

Eye Tracker Operation

There exists a wide range of commercially accessible eye trackers that cater to the needs
of both the business and scientific communities [94]. The eye trackers under considera-
tion vary in their physical forms and the techniques employed for tracking eye gaze [17].
An eye tracker typically comprises a set of hardware and software components, which
collectively enable the measurement and analysis of ocular movements.

• One or more cameras, typically utilizing infrared technology

• One or more light sources, typically emitting infrared radiation

• Image-processing software that detects and locates the eyes and pupils and maps eye
motion and stimulus

• Data collection software for eye gaze data collection and storage in real time

• Live visual feedback of where the observer’s gaze is currently fixed
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The prevailing eye-tracking systems currently in use predominantly employ the corneal-
reflection / pupil-center methodology. In this methodology, an emitter releases invisible
infrared radiation that is precisely directed towards the eyes, thereby penetrating the pupils.
A substantial amount of the incident light is reflected back, resulting in the pupils exhibiting
a luminous appearance. Glints may also be seen on the surface of the eyes due to the light
that is reflected off them.

The reflections are detected and tracked by cameras, in addition to other notable attributes
like the center of the pupil. The image-processing program then determines the eye gaze
independent of head location and motion by using calibration, trigonometric calculations,
and other modeling approaches [31, 45, 79].

Eye Tracking Assumptions

The correlation between eye gaze and cognitive processing depends on two fundamental
assumptions originating from the theory of reading: the immediacy assumption and the
eye-mind assumption [50]. The immediacy assumption asserts that as soon as participants
encounter a stimulus, such as when a reader reads a word, interpretation of the stimu-
lus starts immediately. The eye-mind assumption postulates that participants focus their
attention solely on the stimulus element that is currently being processed.

The aforementioned assumptions serve as the foundation for the representation of partici-
pants’ cognitive processes through eye gaze data. The analysis of eye gaze data provides
valuable insights into participants’ focus, cognitive effort, and temporal dynamics involved
in processing a given stimulus. Furthermore, based on physiological investigations, psychol-
ogists hypothesize that individuals do not have conscious control over many features of
their eye gaze, such as pupil size, except for the position of their focus.

Eye Tracking Limitations

Eye trackers possess inherent limitations. Here are a few of the most significant ones at the
time of composing this paper, although many of these limitations may decrease or diminish
as new technologies and algorithms are developed:

• Accuracy: The concept of accuracy in the context of gaze data analysis pertains to the
extent of disparity between the actual gaze data and the recorded gaze data, typically
quantified in terms of visual angle degrees [44]. Accuracy ratings for popular eye
trackers range from 0.5 to 1 degree. For instance, if the distance between the participant
and the stimulus is 50 cm, an eye tracker with an accuracy of 1 degree could locate
the participant’s eye gaze within a radius of approx. 1 cm of its actual position.

• Precision: Precision refers to an eye tracker’s ability to reliably deliver the same data
for several, consecutive eye gazes at the same spot. The precision values of commonly
used eye trackers span from 0.01 degree to 1 degree.

• Drift: The phenomenon of drift refers to the gradual decline in the accuracy of eye-
tracking measurements as they deviate from the actual positions of the fixation. The
phenomenon arises as a result of the degradation of calibration caused by various
factors, including fluctuations in moisture levels and other physiological characteristics
of the eye [66].
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• Extrafoveal Vision: Eye trackers generally record fixations at the fovea, which cor-
responds to the center of vision with the highest sharpness of vision. However,
individuals have the ability to perceive and interpret visual stimuli in peripheral
regions, despite their gaze not being directly focused on those areas. Nevertheless,
extrafoveal vision, which accounts for around 98% of the human visual field, is not
recorded by eye trackers.

2.3.2 Metrics

Analysis of eye-tracking data presents difficulties in numerous disciplines [45], including
software engineering research, especially with regard to program comprehension [7]. In
this section, we give definitions and metrics for analyzing eye-tracking data in software
engineering research.

First Order Data

The term "first-order data" refers to the raw and unprocessed information obtained from
eye-tracking devices [45]. Typically, the following metrics are used:

• X,Y position: The X and Y positions refer to the spatial coordinates of each gaze point,
which provide insight into the participants’ focal point of attention on the stimulus.
Nevertheless, the participants’ comprehension of the stimulus remains unknown.

• Pupil diameter: This metric represents the physical measurement of the pupil in
millimeters. Pupil size variations are more important than absolute sizes since they
change across individuals. Pupil size is correlated with cognitive load and task
complexity [6].

• Eye blinks: One indicator of cognitive load is the quantity of blinks per interval of
time, such as per minute. Lower blink rates are associated with greater focus [6,
79]. Nevertheless, the inclusion of blink rates in eye-tracking data is not consistently
present. Certain eye-tracking devices, such as the Smart Eye trackers, offer the ca-
pability to gather blink data. However, in order to achieve real-time blink detection,
supplementary techniques such as video-based eye tracking may be necessary [29].

Prior to analysis, it is imperative to perform a thorough cleaning of the X and Y positions,
pupil diameters, and eye blinks data. This crucial step is essential due to the presence of
various sources of interference, such as noise, outliers, and invalid entries, as highlighted
by Soh et al. [104]. Researchers may either visually clean the data by reviewing fixations
and saccades and erasing plainly wrong entries, or statistically clean the data by deleting
outliers and abnormally extended fixations. Several variables can impact the accuracy and
reliability of these metrics, including ambient light levels, the emotional and cognitive states
of participants, the distance between the eye tracker and the individual, and the quality of
the camera image.
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Second Order Data

Fixations and saccades are examples of second-order data, which are derived from first-
order data using physiological thresholds. Spatial and temporal criteria are used by eye
trackers’ event detection algorithms to distinguish between fixations (periods of steady
gaze) and saccades (fast eye movements) [88]. However, it is important to recognize that the
selection of event detection algorithms can affect the outcomes of data analysis.

Fixations may be either voluntary or involuntary. While involuntary fixations are caused
by reflexes, such as the optokinetic reflex, which focuses attention on moving things,
voluntary fixations are the deliberate concentration on certain elements. Within the field of
software engineering, the primary area of interest for researchers lies in the examination of
voluntary fixations. However, it is worth noting that involuntary fixations may also occur,
particularly in instances where a window unexpectedly appears to notify the participant of
something.

Third Order Data

By analyzing fixations and saccades captured by eye-tracking software, these third-order
metrics are derived. Among them are:

• Fixation count: The number of fixations that occurred within a specific AOI or the
entire stimulus.

• Fixation duration: Also referred to as fixation time, denotes the aggregate duration
including all fixations made on a specific AOI or the stimulus under examination.

• Percentage of fixations or fixation rate: Refers to the proportion of total fixations on a
AOI or stimulus in relation to another.

• Time to the first fixation in an AOI: The duration from the start of an experiment until
the participant fixates on a given AOI.

• All fixations within a selected time: Includes all AOI and stimuli fixations occurring
within a certain time window.

Prior research in the field of eye tracking has employed various metrics such as fixation
count, fixation duration, and fixation rate to identify AOIs that cause more attention from in-
dividuals [27, 28, 121]. Additionally, these metrics have been utilized to evaluate the efficacy
of participants’ problem-solving approaches [105]. A lower fixation rate suggests decreased
efficacy in search tasks, indicating that participants exert more effort to identify relevant
regions [79]. On the contrary, elevated rates of fixation serve as an indication of higher effort
necessary for completing different tasks, including finding bugs [8, 96], debugging [97],
comprehending source code [14], recalling identifier names [98], or examining various
stimulus layouts [41, 130].
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In order to make appropriate comparisons between two AOIs or stimuli, it is essential
to modify the values based on their proportions. In the context of textual analysis, it is
necessary to normalize fixation counts by dividing it by the word count of each AOI. This
normalization technique allows for fair and accurate comparisons between AOIs that may
have varying word counts.

There is no correlation between fixation counts and durations, as demonstrated by [93].
Prior research has utilized a combination of fixation counts and durations in order to
accurately evaluate the level of engagement shown by participants. These include the
following metrics:

• Average Fixation Duration (AFD) or Mean Fixation Duration (MFD): the average
duration of fixations within an AOI in comparison to fixation counts across all AOIs
or the stimulus.

• Ratio of On-target to All-target Fixations (ROAF): the sum of fixation durations within
an AOI divided by the total number of fixations across all AOIs or the stimulus.
Higher ROAF values indicate increased efficacy and reduced effort.

In order to ensure suitable comparison between stimuli, it is necessary to consider the
size of each stimulus. The Normalized Rate of Relevant Fixations (NRRF) was introduced by
Jeanmart et al. [46] as a method to compare multiple stimuli. Higher NRRF levels suggest
that the related stimulus required more effort to understand.

The third-order metrics provided by saccades are comparable to those provided by
fixations and include:

• Saccade count: Total number of saccades within an AOI or in response to the stimulus.

• Saccade duration or saccade time: the duration of all saccades within an AOI or the
stimulus.

• Regression rate: the proportion of backward or regressive saccades relative to the total
number of saccades (e. g., leftward in left-to-right source code reading) [23, 79].

Research suggests that increased regression rates correspond to an increase in the difficulty
of executing and finishing a task [40, 79]. Source code reading has been shown to have
greater regression rates than natural language text [23]. Saccades were also used by Fritz et
al. [39] to study how stimulus difficulty affected participants.
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Fourth Order Data

Scan paths refer to sequences of fixations or AOIs. The analysis of scan paths provides
valuable insights into the temporal and spatial characteristics of eye fixations, thereby
serving as reliable indicators of search efficiency. Longer scan paths show that participants
spend more time and effort studying a stimulus to find relevant AOIs, suggesting less
efficient scanning and searching.

Longer experiment sessions result in longer scan paths, which are more difficult to
evaluate and compare. Number, position, timing, and length of fixations are all factors that
must be taken into account. There are several algorithmic methods that can be employed to
analyze scan paths:

• Transition matrix: a tabular representation of the transition frequencies between AOIs.
It is possible to compare two transition matrices by dividing the number of nonzero
cells by the total number of cells to obtain the matrix density. Increased spatial density
indicates a thorough search with ineffective scanning [93].

• Scan path recall, precision, and F-measure: measurements that indicate the relationship
between AOIs and scan paths. Scan path recall is determined by dividing the number
of fixated relevant AOIs by the total number of relevant AOIs. The precision of the
scan path is calculated by dividing the number of fixated relevant AOIs by the total
number of AOIs. The F-measure of a scan path is the weighted average of its precision
and recall [78].

• Edit distance: the minimal editing cost necessary to turn one scan path into an-
other using simple operations like insertion, deletion, and replacement (Levenshtein’s
algorithm [58]).

• Sequential Pattern Mining (SPAM): a depth-first algorithm that contrasts scan paths
according to fixation locations and durations [4].

• ScanMatch: ScanMatch uses temporal binning to manipulate the length of two or more
scan paths depending on fixation durations, and then generates a similarity score
for the compared scan paths. It is based on the Needleman-Wunsch (N-W) method,
which is used in bioinformatics to compare DNA sequences [26].

Several studies [22, 43, 92, 103] have used scan paths to detect and evaluate the visual
processing approaches that participants used while exploring stimuli and completing tasks.
They found that individuals with lower edit distance and SPAM levels were more likely to
use similar reading approaches.

Other fourth-order data include the following:

• Attention switching: the overall count of attention shifts between AOIs per unit time.

• Fixation Spatial Density (SD): measures the uniformity with which participants’ fixa-
tions are distributed over the stimuli [40]. When a stimulus is divided into a grid of
equal cells, the number of cells that are visited (showing at least one fixation) is used
to calculate SD. The less coverage there is, the lower the spatial density rating.
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• Convex-hull area: the smallest convex collection of fixations that includes all partici-
pants’ fixations [40]. A lower score suggests that fixations are concentrated in a narrow
region and that participants made less effort to locate significant regions in a stimulus.

• Linearity: the concept of linearity is closely linked to the search strategies employed
by participants [79]. In this context, linearity refers to the eye gaze patterns observed
during reading, specifically the tendency to move from left to right and top to bottom,
which is commonly observed among readers of Latin-based natural languages.

Researchers have used SD and convex-hull area to analyze the areas of interest inside par-
ticipants’ fixations [92, 95, 106], which provides insight into the effectiveness of participants’
search techniques and reveals their favored aspects of visual stimuli.

Spatial distribution-based metrics are susceptible to invalid data. For instance, a little
shift in the position of a single fixation may have a major impact on the size and contours
of the resulting convex hull. As a result, when using fourth-order data, noise reduction and
data cleaning are essential [93].
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R E L AT E D W O R K

3.1 existing studies

The role of comments in program comprehension has been studied extensively, and various
experiments have been conducted to explore their importance and impact [22, 67, 69, 100,
118, 119, 128]. One early experiment conducted by Woodfield et al. aimed to measure the
effect of comments and modularization on program understanding [128]. The experiment
involved dividing experienced programmers into groups and providing them with different
versions of a Fortran program, some with comments and others without. The results showed
that the groups given commented versions were more successful in answering a larger
quantity of questions correctly. This indicated that comments alone provided significant
help for program comprehension, independent of modularization.

Further experiments were conducted in 1985 by different authors to study the effect of
comments and modularization on the readability of the Banker’s Algorithm [119]. These
experiments followed similar patterns as the previous one, and the results consistently
showed that comments improved readability.

A recent experiment focused on understanding the differences between class and method
comments [69]. Multiple versions of the same program were created, including versions
with both types of comments, only one type of comment, and no comments. Participants
had to answer a test quiz about the program. The results supported the findings of previous
experiments, showing that the versions with comments were better understood than those
without comments. Additionally, regarding the differences between class and method com-
ment understanding, the experiment found that participants who had a method-commented
version performed better on the quiz compared to those with a class-commented version [69].
Kernighan and Plauger [51] suggested that the best documentation for a computer program
includes enlightening comments. Brooks [19] emphasized the importance of comments as a
means of establishing a bridge between different knowledge domains, particularly between
the program and problem domain. According to Brooks, programmers should be aware of
this and incorporate information in comments that facilitate the establishment of this bridge
between the two domains [19].

Several other works have investigated comments for different purposes and examined the
effects of various factors on program comprehension. Wong et al. [127] and McBurney and
Mcmillan [65] proposed approaches for automatically generating helpful comments to aid in
understanding source code. McBurney and McMillan [64] also conducted an experiment to
determine the characteristics of "good" comments and found that author-written comments
often use keywords from the source code. Buse and Weimer [21] investigated the readability
of code comments and developed a corresponding measure that correlates with other quality
measures such as code changes and defect reports. Ying et al. [129] found that programmers
use comments for internal communication, such as applying TODO-comments.

21
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Ali et al. [2] investigated the impact of comments on requirements traceability and found
significant effects. Ji et al. [47], Seiler and Paech [90], and Krüger et al. [54] utilized comment-
like annotations to integrate feature traceability in the source code and emphasized their
benefits. Antoniol et al. [3] described a technique for automatically recovering traceability
links between code and documentation by analyzing identifier names. Sridhara et al. [111]
proposed a technique for automatically generating summary comments for Java methods to
provide up-to-date documentation in natural language.

A recent eye-tracking study [9] revealed interesting insights into the reading patterns of
novices and experts when it comes to source code. Novices tend to read method signatures
with less attention compared to code lines within the method body. They also show a
tendency to transition between all lines of code without recognizing the relevance of each
line. In contrast, experts demonstrate the ability to disregard irrelevant lines and focus on
the current line being read. Furthermore, novices have a tendency to repeatedly read each
line within a loop, while experts concentrate on lines with higher computational complexity
in successive iterations.

A study by Adeli et al. [1] explored how providing the right information at the right
time and place enhances program comprehension. Using a non-traditional IDE, annotations
were implemented to facilitate access to relevant information. A user study with 22 novices
showed that this approach improved accuracy and reduced cognitive load during program
comprehension tasks without compromising tool usability.

In their study, Shinyama et al. [100] developed a method to identify explanatory code
comments that enhance program comprehension. They proposed eleven categories of code
comments and used a decision-tree-based classifier to achieve 60% precision and 80% recall.
The researchers analyzed 2,000 GitHub projects and found two dominant comment types:
preconditional and postconditional. Their findings also revealed consistent grammatical
structures in English code comments across different projects.

In an exploratory study by Parkin [73], experienced C programmers performed mainte-
nance tasks on a C program. Contrary to previous research, programmers implementing
corrections utilized program documentation and header information more than those work-
ing on enhancements. Enhancers made specific use of task documentation to map out
extensions and verify code modifications. This study sheds light on the program compre-
hension strategies employed during different maintenance tasks.

Blinman and Cockburn [16] focused on the effects of naming style and documentation
on the comprehensibility of source code. It examines software development frameworks
and their impact on developers’ usage at the source code level. The research finds that
using a descriptive interface naming style positively influences developers’ comprehension.
Additionally, documentation is shown to be important but increases the time spent studying
the source code.

In their study on program comprehension, Busjahn et al. [22] investigated the linearity
of reading source code compared to natural language text. They found that novices read
source code less linearly than natural language text, and experts read code even less linearly
than novices. These results highlight the specific differences in reading approaches between
source code and natural language text, suggesting that non-linear reading skills increase
with expertise.
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Lastly, Nielebock et al. [67] investigated the effectiveness of comments in program com-
prehension for small programming tasks. They conducted an experiment involving 277 par-
ticipants, mainly professional software developers, who performed programming tasks
on differently commented code. The study aimed to replicate previous findings, examine
the performance of participants with varying levels of experience, and explore developers’
opinions on comments. The results indicate that comments were considered less important
for small programming tasks compared to other mechanisms such as proper identifiers.
However, participants acknowledged the necessity of comments in specific situations. The
study adds to the existing body of research on the uncertain impact of comments on software
development.

3.2 rationale for our study

The existing experiments and discussions in the literature support the notion that comments
play a crucial role in program comprehension [16, 67, 69, 118, 119, 128]. They aid pro-
grammers in understanding code by providing additional explanations, clarifications, and
insights into the program’s functionality, which can significantly improve readability and
comprehension. However, despite the existing body of research, there are several reasons
that justify the need for this study.

3.2.1 Addressing Research Gaps

To address existing research gaps, our study explores three key aspects. First, we employ
eye tracking, which allows us to collect precise data on how programmers visually process
and comprehend code. This approach offers valuable insights into the cognitive processes
involved in program comprehension and the role of comments in guiding attention and
facilitating comprehension. Second, we examine the linearity of code reading order and
investigate how the presence of comments affects the sequential and orderly reading
of code elements. Lastly, we also investigate the employed gaze strategies during code
comprehension, specifically focusing on how participants transition their visual attention
between code and comments. By focusing on these issues, our study aims to provide a more
thorough analysis of the effects of comments on program comprehension, linearity, and
gaze strategies. This will contribute to the existing body of knowledge and offer valuable
insights for software development practices.

Another critical aspect our study addresses is the isolation of the effect of comments. Pre-
vious studies have often considered additional aspects of programs, such as modularity [128]
or identifier names [87], which makes isolating the effect of comments challenging. This
poses a threat to the internal validity of those studies. Moreover, the measurements used in
prior research are often subjective, resulting in limited quantitative results. The potential
presence of confounding factors, which may affect program comprehension, linearity, and
gaze strategies, makes it difficult to analyze the isolated effect of comments. Therefore, our
study fills this gap by conducting research that controls for potential confounding factors,
providing a clearer understanding of their influence.
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3.2.2 Enhancing External Validity

Previous studies were conducted with older programming languages and paradigms [33, 68,
99, 115, 118, 119, 128], which may compromise the applicability of their results in modern
software development practices. To enhance the external validity and relevance of the find-
ings, our study investigates the effects of comments on program comprehension and reading
order using a contemporary programming language and environment. Consequently, we
aim to provide insights directly applicable to present-day software development, improving
the generalizability of the findings.

Lastly, replication studies in empirical software engineering are crucial for validating and
consolidating existing knowledge [5, 13, 49]. Therefore, we emphasize the importance of
conducting further replications to gain a deeper understanding of the effects of comments
on program comprehension, linearity, and gaze strategies. By replicating and consolidating
previous findings, we can establish a more robust foundation of knowledge regarding the
impact of comments, addressing varying and sometimes contradictory results from prior
studies. Such replication efforts contribute significantly to the advancement of the field and
help establish more reliable and generalizable conclusions about the role of comments in
program comprehension and reading strategies.
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S T U D Y D E S I G N

4.1 aim

Our study aims to explore the impact of comments on program comprehension, visual
attention, linearity of reading order, gaze strategies, and participants’ perceptions of the role
of comments in program comprehension using a combination of quantitative and qualitative
methods. The following sections provide an overview of the research questions, study
design, variables and measures, code snippets, participant details, materials, procedures,
and ethical considerations. By examining these aspects in detail, this research intends to
enhance our understanding of how comments influence program comprehension, reading
strategies, and the sequential and orderly reading of code elements.

4.2 research questions

1. How do comments affect program comprehension?
This research question aims to investigate the impact of comments on program
comprehension. It examines how the presence or absence of comments influences
participants’ understanding and interpretation of the code snippets presented in the
study. The effects of comments on program comprehension were assessed through a
combination of quantitative and qualitative analyses.

2. How do comments affect visual attention during program comprehension?
This research question aims to examine the influence of comments on the allocation
and distribution of visual attention during program comprehension. It investigates
whether comments attract or redirect participants’ gaze within the code snippets
and how they impact participants’ eye gaze patterns and fixations. Visual attention,
in the context of our study, refers to participants’ focus and allocation of attention
while observing the code snippets. The effects of comments on visual attention were
analyzed using eye-tracking data, providing insights into the role of comments in
shaping participants’ visual attention during program comprehension.

3. How do comments affect the linearity of reading order?
This research question aims to explore the impact of comments on the linearity of
reading order. Linearity refers to the sequential and orderly reading of code elements
and can play a significant role in program comprehension [75]. The question seeks
to investigate how the presence of comments influences the flow and organization of
reading code snippets. By examining participants’ reading patterns and comparing
the linearity of reading order for snippets with and without comments, this research
aims to gain insights into the effects of comments on the structured and sequential
understanding of code.
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4. How do comments affect participants’ gaze strategies during program comprehension?
Gaze strategies refer to the intentional patterns and decisions participants make
when directing their visual attention while observing code elements, including code
and comments. In this study, we define and categorize gaze strategies into "code-
first," and "comment-first" strategies based on participants’ initial area of interest and
their subsequent gaze transitions. The research question aims to explore how the
presence of comments influences participants’ gaze strategies, potentially affecting the
prioritization and skipping of certain code elements. By comparing gaze strategies
with and without comments, we seek to understand how comments guide attention,
impact gaze transitions, and influence the cognitive processes involved in program
comprehension.

5. How do participants perceive the role of comments in facilitating program comprehension?
Understanding participants’ subjective perceptions of code snippet difficulty and the
role of comments in program comprehension is crucial to gaining a comprehensive
understanding of the impact of comments. This research question aims to investi-
gate participants’ subjective perspectives on the difficulty of code snippets and the
contribution of comments to program comprehension.

These research questions will guide our study methodology and serve as the basis for ana-
lyzing the collected eye-tracking data. Further elaboration on the operationalization of these
variables are provided in the variables section of this study (4.4), where specific measures
and methods for assessing program comprehension, visual attention, reading order, and
participants’ perceptions are detailed. The research questions provide a clear framework for
investigation, allowing for a systematic examination of the effects of comments on program
comprehension. However, it is important to acknowledge that limitations or challenges may
arise during our study, such as a small sample size or limited generalizability of the results.
These potential limitations are discussed in Chapter 8.

4.3 experimental design

The study employs a mixed-methods design, integrating quantitative and qualitative ap-
proaches to comprehensively investigate the impact of comments on program comprehen-
sion, linearity, and gaze strategies. The quantitative aspect involves presenting participants
with pre-randomized Java code snippets in two conditions: Comments Missing (CM) and
Comments Present (CP). Eye movements were tracked using an eye-tracking device to
capture participants’ visual attention and gaze data during comprehension, along with
recording completion time and correctness. The qualitative component includes a post-
questionnaire to rate snippet difficulty and provide subjective views on the role of comments
in comprehension.

The study adopts a within-subjects design, which allows for a comprehensive exploration
of the effects of comments on each of the dependent variables. Each participant was
presented with a set of Java code snippets, with each snippet representing a Java class that
compiles and writes to the console. The code snippets were carefully selected to ensure a
similar level of code complexity and comment relevance. Further details regarding the code
snippet selection process and any necessary modifications are provided in Section 4.5.
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The snippet order was randomly assigned to each participant to minimize order effects.
A script was used to create a predefined assignment of code snippets, ensuring that each
participant encounters a balanced mix of snippets with and without comments. This script
also guarantees that each code snippet appears an equal number of times throughout the
study (cf. Table A.1).

In a fully crossover design, each participant would experience all conditions with the
same set of code snippets, providing a direct comparison of the conditions on the same
data points. However, in this partially crossover design, participants may encounter dif-
ferent code snippets under each condition. For example, Participant 1 may encounter
"Snippet 3 CP" (Comments Present) but not "Snippet 3 CM" (Comments Missing).

This design choice was made to mitigate potential carryover effects or learning biases that
could occur if participants encounter the same code snippets in both conditions. However,
it introduces additional challenges in the analysis, as the data points are not fully matched
between conditions for each participant. The use of a Linear Mixed-Effects Model (LME)
was appropriate for handling the within-subject variability in this partially crossover design.
This model allows for the inclusion of both fixed effects (such as the presence or absence of
comments) and random effects (to account for individual differences between participants)
in the analysis (see Section 5.3).

The experimental layout allows for controlled manipulation of the independent variable
(presence or absence of comments) and facilitates the assessment of dependent variables
(program comprehension, visual attention, linearity of reading order, and gaze strategies).
However, certain limitations apply to the experimental design. As our study was conducted
in a controlled setting, generalizing the results to other contexts may be restricted. The
design does not account for all factors that can influence program comprehension, such
as software design techniques, domain-specific languages, visual code highlighting, static
typing, code repetition, identifier names, or developers’ memory. However, the selected
tasks offer valuable insights. Maintenance tasks often involve understanding and modifying
small code sections, and bug fixes typically require minor code modifications. By focusing
on simple programs, this investigation provides preliminary information on whether and
which comments aid comprehension of such basic code components, specifically single
methods with approximately 20 lines of code. This approach serves as an appropriate
foundation for determining the role of comments in understanding and working with these
code snippets.
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4.4 variables

This study was structured around a single independent variable, namely the presence
of comments within code snippets, which was manipulated across two distinct levels:
Comments Missing (CM) and Comments Present (CP). This manipulation aimed to explore
how the inclusion or exclusion of comments affects program comprehension and navigation
among participants. The impact of the independent variable on participants’ program
comprehension and navigation was assessed through four latent dependent variables, which
are outlined as follows:

1. Program comprehension:
This variable was operationalized by measuring participants’ completion time and
error rates for each code snippet. After reading a code snippet, participants were asked
to write the output it produces. Their responses were scored based on the completion
time and correctness of their answers, providing an indication of their level of program
comprehension.

2. Visual attention:
Visual attention refers to participants’ focus and allocation of attention during program
comprehension. The eye-tracking data provided insights into participants’ fixation
duration and frequency, indicating their visual attention on different code elements.
The code snippets were divided into code AOIs and comment AOIs, allowing for an
analysis of the number and duration of fixations on specific elements, such as code
lines and comments.

3. Linearity:
Linearity refers to the sequential and orderly reading of code elements. The founda-
tional work by Busjahn et al. [22] as well as subsequent research by Peitek et al. [75]
provide many eye-gaze metrics to assess the linearity of reading order. These include
local measures, such as vertical next text, vertical later text, horizontal later text,
regression rate, line regression rate, and saccade length, as well as global measures
such as the N-W Scores of the line reading order compared to the story and execution
order. These measures were used to assess the linearity of the participants’ reading
order and the extent to which their gaze patterns align with the linear text reading
order and the source code’s execution order.

4. Gaze Strategies:
Gaze strategies refer to the different approaches participants take when directing their
gaze during the study. Two variations of gaze strategies were considered based on
participants’ initial area of interest and their subsequent gaze transitions: code-first,
and comment-first.

In the code-first strategy (Figure 4.1a), participants predominantly focus their gaze
on the code elements of the given snippet, with the initial fixation often landing on
a specific code line. Their visual attention is directed towards lines of code, variable
names, and control structures, seeking to understand the logic and functionality of
the program. Comments, if present, may receive occasional glances, but the primary
emphasis is on the code itself.
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Contrary to the code-first strategy, the comment-first gaze strategy (Figure 4.1b) places
a higher priority on comments rather than code lines. Participants’ initial fixation
often lands on a specific comment, seeking to gain context, explanations, and insights
about the code’s purpose and functionality. Code elements are still observed but may
receive less attention compared to the comments.

(a) Code-First Gaze Strategy (b) Comment-First Gaze Strategy

Figure 4.1: Illustration of code-first and comment-first gaze strategies.

To compare the measured reading order with the proposed reading orders, two types
of measures were used: Locally, code-to-comment and comment-to-code saccades
were compared to examine the order in which participants fixate on code elements
and comments. Globally, we defined AOI sequences for each of the reading strategies
and compared them to the actual reading order using the same N-W algorithm to
determine the closest match.

5. Participant’s Perception:
The subjective perception of each participant on the snippets and the role of comments
in facilitating program comprehension was captured through their likert-scale ratings
of the snippet difficulty and comment contribution as well as through evaluating their
responses from the post-questionnaire.

The measures used in our study have been previously validated in similar research
studies and have demonstrated good reliability and validity. Tasks assessing program
comprehension have been widely employed in previous studies on program understanding
and have been found to be reliable indicators of participants’ comprehension levels. The
eye-tracking measures, including fixation duration and frequency, have been extensively
used in research on visual attention and reading patterns.
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4.5 code snipppets

The code snippets employed in our study were carefully selected to meet specific criteria
concerning complexity and suitability for investigating the effect of comments on program
comprehension, visual attention, linearity and gaze strategy. Instead of relying solely on
one study, we curated appropriate code snippets from various studies, creating a diverse set
of 12 code snippets.

Our selection process involved evaluating the snippets based on their potential to accom-
modate meaningful comments. We considered both the presence of comments and their
quality. Additionally, the code snippets should encompass more complex programming
concepts, such as recursion and pointers, to further add complexity to the comprehension
task.

To align the code snippets with the objectives of our study, several adaptations were made.
These adaptations included standardizing the task type, removing code documentation
(JavaDocs), obfuscating obvious function and variable names, and adopting conventions and
writing styles from the most recent Java version (at the time Java 18). These modifications
ensured consistency and optimized the suitability of the code snippets for our study.

The final selection of code snippets is presented in Table 4.1. For the actual snippets,
along with any modifications made, and the randomized order assigned to participants
refer to the Appendix A.

Table 4.1: Final snippet selection with descriptions and lines of code.

Snippet Description LOC (+ Comments)

1 Identifies a peak element in an array. 18 (+7)

2 Finds two elements that sum to a target. 19 (+8)

3 Computes maximum zero-sum subarray length. 19 (+10)

4 Longest consecutive sequence in array. 24 (+9)

5 Longest common subsequence between strings. 21 (+10)

6 Longest increasing subsequence length. 22 (+10)

7 Efficient power calculation. 17 (+7)

8 Fibonacci number at given position. 18 (+8)

9 Lists primes up to a number (Sieve of Eratosthenes). 18 (+6)

10 Binary search in sorted array. 21 (+7)

11 Counts palindromic substrings. 19 (+10)

12 Anagram check for two strings. 16 (+5)
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4.6 post-questionnaire

Aligned with the research questions of our study, the post-questionnaire was designed to
gather in-depth insights into the participants’ experiences and perspectives on the influence
of comments on program comprehension. This alignment ensured that the questions directly
correlated with the core themes of our study, namely understanding the impact of comments
on program comprehension, visual attention, linearity of reading order, gaze strategies, and
overall comment contribution in programming tasks.

To provide a structured and consistent framework for participant responses, the question-
naire was divided into sections, each targeting specific aspects of the study’s focus. This
organization helped in correlating the responses with the quantitative data gathered during
the experiment’s first phase, thereby enriching the thematic analysis with interesting, quali-
tative insights. The detailed list of questions asked in the post-questionnaire is presented in
Table 4.2.

Table 4.2: Post-questionnaire questions

Research Question Questions

RQ1: Program Comprehension How did the presence of comments impact your under-
standing of the code? Please describe your experience
with the code snippets that contained comments.

RQ2: Visual Attention Were there any instances where your visual attention
was drawn to comments within the code snippets?
How did the presence of comments influence your
gaze patterns while comprehending the code?

RQ3: Linearity of Reading Order Did the presence of comments affect the order in which
you read and interpret the code elements? Please ex-
plain how comments may have influenced the flow of
your reading.

RQ4: Gaze Strategies Did you adopt a specific gaze strategy while navigating
through code snippets containing comments? How did
the presence of comments influence your choices in
directing visual attention between code and comments?

RQ5: Role of Comments From your perspective, how do comments contribute
to your overall understanding of the code snippets? Do
you find comments helpful in clarifying complex code
segments or guiding your comprehension?

General Impressions Please share any additional observations, insights, or
thoughts you have regarding the role of comments in
program comprehension.
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4.7 participants and sampling strategy

Our study aimed to recruit computer science students with a solid foundation in program-
ming, encompassing both Java syntax and fundamental programming concepts, such as
recursion, data structures, and algorithms. To ensure homogeneity in participants’ experi-
ence level, we targeted students enrolled in the computer science program at our university.
This setting offers an ideal opportunity to approach students directly, inviting them to
participate in our research.

We employed a convenience sampling method to enlist 20 participants who meet the
following inclusion criteria: (1) Currently enrolled in a computer science or similar program.
(2) Successfully completed the Programming 2 course. 1 (3) Possess a solid understanding
of Java and general programming concepts.

Participants were asked to complete a questionnaire at the beginning of the study to collect
information on their personal information experience and proficiency with programming.
The purpose of this questionnaire is to ensure that all participants have a sufficient level of
programming experience.

The group comprised 18 males and 2 females, reflecting a gender distribution that aligns
with typical patterns in the field of computer science. The mean age of the participants was
25.8 ± 4.20 years, suggesting a predominantly young cohort. Their educational background
varied, with the majority (11 participants) holding a High School Diploma (Abitur). This was
followed by 7 participants with a Bachelor’s degree, and 2 with a Master’s degree, reflecting a
range of educational experiences. Regarding Java programming experience, the participants
displayed a spectrum of expertise. A significant portion (12 participants) had practical
project experience in Java, while 5 had basic knowledge of the language. Additionally, 2

participants regularly used Java for coding tasks, and 1 participant categorized himself as
an expert, showcasing a range of proficiency levels within the group. Figure 4.2 depicts the
age distribution, Java programming experience, and overall programming experience in
years among the participants.
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Figure 4.2: Participants’ age, Java programming experience, and overall programming experience in
years.

1 This lecture deals with the basics of imperative/object-oriented programming and primarily uses Java.



4.8 eye-tracking equipment and data collection 33

4.8 eye-tracking equipment and data collection

In our study, the Tobii EyeX 2 eye tracker was used to collect gaze data. The Tobii EyeX
is a portable eye tracker that utilizes near-infrared light to track the position of the eyes.
It has a compact size, measuring approximately 20 x 15 x 318 mm and weighing 91

grams. With a frequency of 70Hz and backlight-assisted near-infrared (NIR) illuminators
operating at 850nm, along with red light at 650nm, the Tobii EyeX offers high accuracy and
reliability in capturing eye movements. It has a tracking population of 95%, ensuring precise
measurements.

The Tobii EyeX is compatible with screens up to 27 inches and has an operating distance
range of 50 - 90 cm. The track box dimensions, representing the area where eye movements
can be accurately captured, are approximately 40 x 30 cm at a distance of 75 cm.

To ensure accurate eye-tracking measurements, participants were instructed to position
themselves at the right distance and position to the Tobii EyeX according to the manu-
facturer’s instructions. Prior to the study, participants completed a calibration procedure,
during which they looked at a series of points displayed on the screen. This calibration
process allowed the eye tracker to accurately track their gaze data during the study.

A custom C# program, adapted from the study by Peitek et al. [75], was used to operate
the Tobii EyeX eye tracker. The program guided participants through the study, including
the calibration process and the presentation of code snippets. Throughout the study, the
program collected participants’ responses, completion times, and gaze data, which were
stored for later analysis. These measures provided valuable insights into participants’
reading behavior, gaze strategies, and linearity of reading order.

4.9 ethical considerations and data handling

Ethical considerations are an important aspect of any study involving human subjects. In
our study, informed consent was obtained from all participants prior to their participation.
They were provided with detailed information about the nature of our study, the procedures
involved, and their right to withdraw from the study at any time without any negative
consequences.

To ensure participant anonymity and protect their privacy, each participant was assigned
a unique identifier. This was used to link their data to their responses and ensure confiden-
tiality. All personal identifying information is kept confidential and accessible only to the
research team. Data collected during the study is securely stored and reported in aggregate
form, ensuring that no individual participant can be identified.

These measures are in place to uphold the ethical standards of participant privacy
and confidentiality, and to ensure that participants’ rights and well-being are protected
throughout the study.

2 https://help.tobii.com/hc/en-us/articles/212818309-Specifications-for-EyeX
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D ATA A N A LY S I S M E T H O D O L O G Y

This section outlines the methodologies and procedures employed in managing and refining
the data gathered from study participants. It is dedicated to describing the process of
handling both behavioral and eye-tracking data, from the collection of raw data to its
preparation for analysis.

5.1 behavioral data analysis

For the behavioral data analysis, each response was manually evaluated to determine its
semantic correctness. Minor formatting inaccuracies, such as variations in decimal places,
were considered semantically correct. This evaluation ensured the accuracy of the behavioral
data for further analysis.

To quantify the combined influence of correctness and time, we devised a scoring system
for each snippet. The score was calculated using a formula that equally weighs the accuracy
of the participants’ responses and the normalized completion time. Specifically, the score
was determined by the following expression.

Score = 0.5× correctness + 0.5×
(
1−

time − min_time
max_time − min_time

)
× 100

In this formula, ’correctness’ represents the correctness of the snippet responses, and ’time’
is normalized against the common minimum and maximum completion times for each
snippet, considering both CM and CP conditions. This normalization ensures that the time
scores for CM and CP conditions of the same snippet are comparable. Lower time results in
a higher score. This approach allowed to create a balanced metric that encapsulates both
the accuracy of responses and the efficiency of snippet completion under each condition.

5.2 eye-tracking data analysis

The eye-tracking data underwent several preprocessing steps to ensure data quality and
reliability. The data analysis pipeline employed in our study is based on the scripts used by
Peitek et al. in their recent eye-tracking study [75]. The pipeline encompasses various stages,
including preprocessing, analysis of general metrics, analysis of AOI metrics, statistical
analysis, data export, and data visualization. Each step in the pipeline is designed to extract
valuable information from the collected eye-tracking data and facilitate its interpretation.
The subsequent subsections detail each stage of the pipeline, providing a comprehensive
overview of the data analysis process and its significance for our study.
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5.2.1 Data Processing

The first stage of the pipeline involved preprocessing the raw data, which is essential for
ensuring data quality, reducing noise, and preparing the data for subsequent analyses. In
this stage, the raw eye-tracking data was processed and refined using various techniques.
The preprocessing pipeline class encapsulates the functionality for preprocessing the raw
data. It consists of several methods that handle different aspects of the preprocessing
pipeline. Next, we delve into each step of the data preparation process:

Step I: Reading and Cleaning Data
First, the raw eye-tracking data is read and essential data cleaning operations are performed.
The gaze data frames are collected and loaded from the specified directory, and subsequent
cleaning steps are executed to ensure data quality and reliability. These cleaning operations
include removing unnecessary columns, dropping rows related to fixation cross conditions,
and renaming columns with more meaningful labels. Moreover, timestamps, gaze positions,
and experiment time values are adjusted and rounded to facilitate further analysis. Addi-
tionally, the pipeline reads the general information data, which contains participant-specific
information such as the actual screen height and eye tracker resolution. This information is
crucial for scaling the eye tracker data to match the actual screen resolution if necessary.
The cleaned and scaled data frames are then ready for subsequent stages.

Step II: Preprocessing Data
In this step, a series of operations to enhance data quality and extract additional features
are performed. These operations include dropping duplicate timestamps, scaling the gaze
data based on screen height, smoothing the gaze positions using a Savitzky-Golay filter
(window length of 5, polynomial order of 3) [70], calculating the velocity of eye movements,
and detecting gaze events (fixations and saccades) based on a specified velocity threshold.

Step III: Classifying Data
Once the gaze data frames are preprocessed, the data frames can be classified into fixations
and saccades based on the detected gaze events from the previous step. We classified fixa-
tions and saccades using a velocity-based algorithm with a velocity threshold of 150 pixels
per 100 milliseconds. If the velocity was below the threshold, it was interpreted as a fixation;
if it exceeded the threshold, it was interpreted as a saccade. Furthermore, relevant statistics
for each fixation and saccade are computed, including average position, time duration,
frame count, average velocity, and distance traveled. The resulting fixations and saccades
are stored for further analysis.

Step IV: Reducing Gaze Dataframes
The final step in the preprocessing stage involves reducing the size of the gaze data frames
to include only the necessary columns for subsequent analysis. The reduced gaze data
frames are rounded to an appropriate decimal precision and stored for further analysis.
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5.2.2 Analysis of General Metrics

Following the preprocessing stage, the pipeline proceeds to analyze general metrics obtained
from the eye-tracking data. The analysis of general metrics involved computing various
metrics that provide insights into participants’ eye gaze behavior and eye movement patterns.
The key steps involved in the analysis of these general metrics are outlined below:

Step I: Fixation and Saccade Analysis
The first step focuses on analyzing fixations and saccades. Various statistics related to
fixations and saccades are computed, including the number of fixations and saccades,
fixation and saccade rates per second, and average fixation length and saccade distance.
These statistics provide valuable insights into the temporal aspects and spatial characteristics
of participants’ eye movements.

Step II: Snippet-Level Metrics
The analysis pipeline also considers snippet-level metrics by examining the eye gaze behavior
within specific snippets. Fixation and saccade data for each snippet are collected, and metrics
such as fixations per second, saccades per second, fixation length, and saccade distance
are computed. This analysis allows for a more detailed understanding of participants’ eye
movements during different snippets.

Step III: Results Collection
Throughout the analysis pipeline, the computed metrics are stored in a results dictionary.
The dictionary organizes the metrics based on their categories, including fixation metrics
(e. g., fixations per second, fixation length) and saccade metrics (e. g., saccades per second,
saccade distance). For snippet-level metrics, the results are further grouped by snippet,
allowing for easy comparison and exploration of participants’ eye gaze behavior across
different snippets.

At the end of the analysis pipeline, the participant data frames and the collected results
are returned. These results provide a comprehensive overview of the general metrics for each
participant, including aggregated metrics across the entire experiment and snippet-specific
metrics.

5.2.3 Analysis of AOI Metrics

In addition to general metrics, the pipeline also includes the analysis of AOI metrics. By
evaluating participants’ gaze behavior within these AOIs, insights into the specific areas or
elements that attract visual attention can be gained. The analysis of AOI metrics involved
computing various metrics within the eye gaze data. The following details the steps involved
in this process:

Step I: Fixation and Saccade Data Extraction
The analysis begins by extracting fixation and saccade data for each participant and snippet.
Fixations and saccades associated with the specified snippet are retrieved and stored for
further analysis.
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Step II: Creating Areas of Interest (AOIs)
For addressing RQ.3, each line within the snippet is considered as an individual AOI. This
approach enables the computation of metrics that characterize the linearity of reading order,
following the methodology proposed by Busjahn et al. [22]. Additionally, by distinguishing
between code and comment AOIs, the study aims to examine the reading flow between these
elements and identify the employed gaze strategies. For a better visualization of the AOIs,
Figure 5.1 shows an example snippet with AOI overlays, where each line is represented
as an individual AOI. Additionally, Figure 5.2 illustrates AOI overlays with a distinction
between code and comment elements.

Figure 5.1: AOI Overlays with each code line as AOI for analyzing the linearity of reading order.

Figure 5.2: AOI Overlays with distinction between code and comment AOIs.
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Step III: Matching Fixations to AOIs
The next step involves matching the extracted fixations to the appropriate AOIs. Fixations
falling within the boundaries of an AOI are considered hits, and relevant information such
as the AOI name, line number, and fixation duration are recorded. For all subsequent
analyses based on AOIs, we filtered out all fixations outside of defined AOIs. Following
Busjahn et al. [22], we included fixations with a maximum of a 100 pixel horizontal deviation
(ca. 7–8 characters), as small AOIs can otherwise be easily missed (e. g., a closing bracket)
and may distort the results.

Step IV: Computing AOI Metrics
Once the fixations are matched to the AOIs, various AOI metrics are calculated based on
the matched fixations. These metrics provide insights into participants’ eye gaze behavior
within specific AOIs.

a) Visual Attention Metrics:
Through analyzing and filtering the fixation hits for the different AOIs - Code and
Comments - we aggregated detailed data on where and how long participants focused
their gaze while comprehending code snippets. This approach allows us to gain
invaluable insights into the cognitive processes involved in code comprehension,
particularly in terms of how comments either guide or distract visual attention. The
data is segmented into various categories: All Fixations, AOI Fixations, Code Fixations,
and Comment Fixations, each quantified in terms of count and duration. A breakdown
of these metrics is presented in Table 5.1.

Table 5.1: Description of visual attention metrics.

Metric Description

All Fixations Total number of fixations within the entire snippet.

AOI Fixations Total number of fixations within AOIs.

Code Fixations Total number of fixations on code AOIs.

Comment Fixations Total number of fixations on comment AOIs.
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b) Linearity Metrics:
This builds directly on the insights gained from the work of Busjahn et al. [22] and
Peitek et al. [75]. The papers highlight the distinction between natural language text
reading and source code reading, emphasizing that while natural language is typically
read linearly, source code reading often deviates from this linear pattern. To measure
this, both local and global gaze-based measures are used to assess the degree of linear-
ity in reading behavior. Our study replicates and extends this approach by employing
five fixation-based local metrics: Vertical Next Fixations, Vertical Later Fixations, Re-
gression Fixations, Horizontal Later Fixations, and Line Regression Fixations. These
metrics reflect the immediate gaze patterns of participants during reading snippets.
Additionally, we incorporate the global metrics established by the referenced studies.
It utilizes the N-W algorithm for analyzing reading patterns in programming. This
algorithm is employed in two forms: a naïve and a dynamic calculation for both story
and execution order of the code. The naïve calculation compares the participant’s
reading order directly with the expected linear sequence of the code, while the dy-
namic calculation allows the sequence to be repeated multiple times accounting for the
iterative nature of reading complex code. Details of these metrics are catalogued in
Table 5.2.

Table 5.2: Description of linearity metrics.

Metric Description

Lo
ca

l

Vertical Next Text % of forward saccades that either stay on the same
line or move one line down.

Vertical Later Text % of forward saccades that either stay on the same
line or move down any number of lines.

Horizontal Later Text % of forward saccades within a line.

Regression Rate % of backward saccades of any length.

Line Regression Rate % of backward saccades within a line.

SaccadeLength Average Euclidean distance between every successive
pair of fixations.

G
lo

ba
l Story Order N-W alignment score of fixation order with linear text

reading order.

Execution Order N-W alignment score of fixation order with the pro-
gram’s control flow order.
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c) Gaze Strategy Metrics:
Our study extends this framework by adopting a similar approach for investigating
Gaze Strategies within CP snippets, where we aim to examine how participants shift
their focus between code and comments during comprehension tasks. Local metrics,
such as code-to-comment and comment-to-code ratios, provide insights into immediate
gaze patterns and reveal how participants navigate between code and accompanying
comments. For a broader perspective, we applied the N-W algorithm once more. This
time, it was used to assess the alignment of participants’ gaze patterns with pre-defined
AOI sequences for Code-First and Comment-First reading orders. This global measure
will help us understand the overarching gaze strategies adopted by participants in
the context of different reading approaches. Details of these metrics are catalogued in
Table 5.3.

Table 5.3: Description of gaze strategy metrics.

Metric Description

Lo
ca

l

CodeToComment % of saccades that move from code to comment.

CommentToCode % of saccades that move from comment to code.

G
lo

ba
l Code-First N-W alignment score of fixation order with code-first

reading order.

Comment-First N-W alignment score of fixation order with comment-
first reading order.

Step V: Results Collection
The computed AOI metrics are collected into a results dataframe. Each row of the dataframe
represents a participant’s metrics for a specific snippet, including the participant ID, snippet
name, CP flag, and all the computed metrics mentioned above. The results dataframe allows
for easy comparison and statistical analysis of AOI metrics across participants and snippets.

5.2.4 Data Exports

To facilitate further analysis, the pipeline also includes data export functionalities. Specifi-
cally, two types of data exports are performed: OpenGazeAndMouseAnalyzer (OGAMA) [123]
and Radial Transition Graph Comparison Tool (RTGCT) [15] data exports.

1. OGAMA

The eye-tracking data is exported in a format suitable for analysis and visualization in
the OGAMA software tool. OGAMA is an open-source software designed to analyze eye and
mouse movements in slideshow study designs. It provides features such as creation of
attention maps, definition of areas of interest, and calculation of saliency. The exported
data includes gaze positions, timestamps, trial sequence, and trial images, which are
saved as individual CSV files for each participant.
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Figure 5.3: OGAMA [123] interface displaying AOIs for eye movement analysis.

2. RTGCT

Eye-tracking data is exported in a format that works with the RTGCT tool 1, enabling
the comparison of participant eye movements through graphs. This data shows which
AOIs participants focused on and for how long. Each AOI has a unique color, and
transitions between AOIs are represented by arcs – the thicker the arc, the more
frequent the transition. Small circles at the start and end of each arc indicate the
direction of movement: black circles for outgoing transitions and white for incoming.
For analysis, the data is split into individual CSV files for each participant and code
snippet, along with a combined file for overarching analysis. This setup simplifies
understanding how participants navigate and interact with different parts of the
content visually.

Figure 5.4: Example of radial transition graph generated by the RTGCT [15].

1 http://www.rtgct.fbeck.com
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5.2.5 Data Visualization

Finally, the pipeline incorporates various data visualization techniques to enhance the
interpretation and communication of the findings. Data visualizations also provide intuitive
and illustrative insights into participants’ eye movements, aiding the exploration and
presentation of the study’s findings. The visualization process involves iterating through
the preprocessed eye-tracking data for each participant. Relevant data, such as fixations and
snippet information, are extracted. The necessary visualizations are then generated based
on the study configuration settings. The available visualizations include:

1. XY Velocity Plots:
These plots visualize eye movement velocities in the XY plane, providing information
about speed and direction.

2. Heatmaps:
Heatmaps display the fixation density on a snippet, providing a visual representation
of where participants focused their gaze. The color intensity indicates the frequency
and duration of fixations on different areas of the code snippet.

Figure 5.5: Example heatmap of eye fixations on a code snippet. The color intensity represents the
fixation density, with warmer colors indicating higher fixation frequency.

3. Reveal Images:
Reveal Images highlight areas with high fixation density, emphasizing the most
visually attended regions on the code snippet. By revealing these high-density areas,
Reveal Images offer a more focused view of participants’ gaze behaviors.
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Figure 5.6: Example reveal image of eye fixations on a code snippet. High-density areas are high-
lighted to emphasize the most visually attended regions.

4. Scan Paths:
Scan Paths visualize the sequential eye movements made by participants while exam-
ining the code snippet. The path shows the order and duration of fixations, revealing
the gaze flow and exploration patterns during program comprehension.

Figure 5.7: Example scan path of eye movements on a code snippet. The path shows the sequential
eye movements made by a participant during program comprehension.
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5.3 statistical analysis

Our study employs a partially crossover within-subject design, exposing participants to
both Comments Missing (CM) and Comments Present (CP) conditions across varied code
snippets. This approach introduces challenges related to data imbalance and the necessity
to manage within-subject variability. In our analysis, we take a holistic statistical approach
to assess the impact of CM and CP conditions on code snippet performance and behavior,
capturing both overall trends and individual variations.

5.3.1 Wilcoxon Signed-Rank Test

Initially, the Wilcoxon Signed-Rank Test [126] was employed for the analysis of aggregated
data, focusing on the median differences between CM and CP conditions without the need
to account for individual participant variations. This non-parametric test was appropriate
for datasets not conforming to the normal distribution assumptions required by parametric
tests. It allowed for a direct comparison of paired observations, such as the performance or
behavior under CM and CP conditions, to discern statistically significant median differences
across these conditions. This method was instrumental in identifying general trends and
overarching effects of comments on code comprehension across the entire participant pool.
The analysis typically adopted a two-sided approach to assess median differences between
snippet conditions, ensuring an unbiased investigation. However, when a specific effect
direction was hypothesized, a one-sided test was applied, tailoring the analysis to align
with anticipated outcomes and theoretical predictions.

5.3.2 Linear Mixed-Effects Models (LMEs)

Following the broader insights gained from the Wilcoxon Signed-Rank Test, separate
LMEs were fitted in cases where a more in-depth analysis was needed on snippet-level,
allowing for a more detailed analysis of various performance and eye-tracking metrics
across the snippets. In these models, the snippet type was treated as a fixed effect, directly
evaluating its influence on the measured outcomes. Importantly, individual differences
among participants were modeled as random effects. This approach acknowledged and
controlled for the individual differences in baseline performance levels across snippets. The
models were defined as:

Predictionij = β0 +β1 × isCPij + uj + ϵij

where Predictionij represents the metric entry for the i-th observation from the j-th
participant, β0 represents the intercept, β1 is the coefficient assessing the effect of the CP
condition (relative to the CM condition, which serves as the reference category), uj denotes
the random effect to capture individual participant differences, and ϵij is the residual error.
For instance, regarding correctness, the models predicted the binary outcome (correct or
incorrect) based on the snippet type, and for time, they predicted the duration taken to
complete each snippet. The significance of the CP condition’s effect was then evaluated
using p-values for the coefficient β1, with lower values indicating a more significant impact
of the condition on the respective response variable.
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To further refine the analysis, False Discovery Rate (FDR) [84] correction was applied
whenever several metrics were tested on the same dataset. The Benjamini-Hochberg [10]
procedure was used for this purpose, adjusting p-values to reflect a more accurate signifi-
cance level of the observed effects. This correction aimed to control for the increased risk of
Type I errors associated with multiple comparisons, thereby ensuring the statistical integrity
of the findings.

This combination of LMEs and the Wilcoxon Signed-Rank Test provided a comprehensive
methodological framework for the study. By employing the Wilcoxon test, the study could
ascertain broad, overarching trends, establishing a baseline understanding of the effects of
snippet conditions. Subsequently, LMEs offered a deeper dive into these effects across the
snippets while accommodating individual participant strategies.

5.4 qualitative analysis of ratings

Following the quantitative phase of our study, we conducted a lightweight thematic analysis
of the responses collected from the post-questionnaire (cf. Section 4.6) to discern the broader
implications of our findings. This analysis was guided by Braun and Clarke’s six-phase
framework, providing a systematic approach to understanding the nuanced insights of how
comments influence program comprehension from a programmer’s perspective [61]. The
steps included:

1. Familiarization with the Data:
Engaging with the data through repeated reading and note-taking to grasp the depth
of responses.

2. Generating Initial Codes:
Systematically coding the data to identify significant phrases, patterns, or concepts
emerging directly from the responses.

3. Searching for Themes:
Organizing the codes into potential themes that encapsulate the core insights from the
data.

4. Reviewing Themes:
Refining these themes to ensure they accurately reflect the coded data and the entire
dataset.

5. Defining and Naming Themes:
Clarifying the essence of each theme and how they interrelate, offering a coherent
narrative of the data.

6. Integration and Reporting:
Relating the thematic findings back to the study’s research questions and the broader
context, illustrating how these qualitative insights enrich our quantitative analysis.

This structured thematic analysis enabled a comprehensive exploration of the quali-
tative data, enhancing our understanding of the implications of comments on program
comprehension.
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R E S U LT S

In this section, we offer a detailed presentation of our study’s findings. Initially, we delve
into the behavioral data to explore the impact of comments on program comprehension.
Subsequently, our analysis shifts to eye-tracking data, focusing on aspects such as visual
attention, the linearity of reading order, and gaze strategies. By combining eye tracking
with behavioral data, we explore how comments affect the understanding, cognitive load,
and eye movement patterns of computer science students during program comprehension.
The structure aligns with the five research questions outlined in Section 4.2, with each
addressing a specific aspect of the study:

RQ1: Program Comprehension: Analysis of correctness rates, and completion times to
understand the effect of comments on program comprehension.

RQ2: Visual Attention: Assessment of eye-tracking data, including fixation counts and
duration, providing insights into the allocation of visual attention in the presence and
absence of comments.

RQ3: Linearity of Reading Order: Investigation of the reading patterns and their linearity,
as influenced by the presence of comments, using eye-tracking measures and an
adapted version of the N-W algorithm.

RQ4: Gaze Strategies: Exploration of gaze strategies, focusing on how programmers navi-
gate between code and comments. The study uses both local and global metrics to
assess these strategies.

RQ5: Participants’ Perceptions: Analysis of participants’ subjective views on the difficulty of
code snippets and the perceived contribution of comments to program comprehension.

This section focuses on presenting key results that are most relevant to the overarching
objectives of our study. A thorough discussion of these results, including their implications
and potential interpretations, are presented in Chapter 7.

47
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6.1 effect of comments on program comprehension

In our study, we conducted a comprehensive evaluation of the effect of comments on
program comprehension. This was achieved by analyzing the correctness and completion
time of participants’ responses to the 12 code snippets under two distinct conditions:
Comments Missing (CM) and Comments Present (CP).

Our study highlights a complex and varied impact of comments on the comprehension of
different code snippets, as evidenced by changes in correctness rates, completion times, and
overall scores. To illustrate this point, we provide four distinct examples, each representing
a unique combination of outcomes:

• Snippet 1, which involved identifying a peak element in an array, showed a decrease in
performance with comments present (CP). The correctness rate dropped from 70% to
30%, and the completion time increased from 190.9 to 271.7 seconds. Correspondingly,
the overall score decreased by 30% in the CP condition, indicating a negative impact
of comments.

• Conversely, Snippet 9, focused on listing primes up to a given number, exhibited a
substantial improvement with comments. The correctness rate rose from 60% under
CM to 100% under CP, and the completion time decreased from 339.2 to 189.4 seconds.
This positive effect was further reflected in the overall score, which increased by 34.1%
under CP.

• Snippet 5, dealing with finding the longest common subsequence between strings,
showed an increase in correctness from 50% in CM to 70% in CP. However, this was
offset by a longer completion time. Despite this, the overall score increased by 7% in
the CP condition, suggesting a net positive effect of comments.

• Snippet 11, involving the count of palindromic substrings, showed no variation in
correctness (10%) between the two conditions. Nonetheless, there was a notable
decrease in completion time under CP, and the overall score increased by 8.2%,
highlighting the efficiency gains due to comments.

The detailed results are presented in Table 6.1, contrasting the effects of Comments Missing
(CM) and Comments Present (CP) snippets on correctness rates and completion times.
Additionally, Figure 6.1 visually complements these findings by graphically illustrating
the effects captured in the table. By examining the distance of each snippet from the
neutral benchmark line in the plots, we can visually deduce the overall effect of comments.
This visual analysis parallels the numerical scores from the table, providing an intuitive
understanding of how comments influence correctness and time efficiency.
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Table 6.1: Comparative analysis of correctness and completion time of CM and CP snippets. The
overall effect was determined by equally weighting correctness and normalized time (cf.
Section 5.1).

Snippet Description LOC (+ Comments) Type Correctness Time (in sec.) Overall Effect

1 Identifies a peak element in an array. 18 (+7)
CM 70.0% 190.9 ± 87.6

-30.0%
CP 30.0% 271.7 ± 74.1

2 Finds two elements that sum to a target. 19 (+8)
CM 60.0% 206.4 ± 100.4

-10.2%
CP 50.0% 241.4 ± 81.3

3 Computes maximum zero-sum subarray length. 19 (+10)
CM 50.0% 238.0 ± 71.1

-18.7%
CP 30.0% 291.0 ± 86.4

4 Longest consecutive sequence in array. 24 (+9)
CM 50.0% 203.0 ± 90.3

-11.4%
CP 40.0% 244.3 ± 90.2

5 Longest common subsequence between strings. 21 (+10)
CM 50.0% 295.5 ± 156.8

7.0%
CP 70.0% 331.3 ± 151.5

6 Longest increasing subsequence length. 22 (+10)
CM 40.0% 333.4 ± 240.1

-2.3%
CP 30.0% 285.3 ± 93.0

7 Efficient power calculation. 17 (+7)
CM 40.0% 229.1 ± 85.2

-1.1%
CP 40.0% 238.9 ± 121.9

8 Fibonacci number at given position. 18 (+8)
CM 60.0% 230.1 ± 71.8

11.3%
CP 60.0% 167.3 ± 80.8

9 Lists primes up to a number (Sieve of Eratosthenes). 18 (+6)
CM 60.0% 339.2 ± 107.9

34.1%
CP 100.0% 189.4 ± 97.1

10 Binary search in sorted array. 21 (+7)
CM 80.0% 169.5 ± 65.0

9.4%
CP 90.0% 144.6 ± 92.4

11 Counts palindromic substrings. 19 (+10)
CM 10.0% 276.5 ± 101.6

8.2%
CP 10.0% 198.8 ± 103.4

12 Anagram check for two strings. 16 (+5)
CM 90.0% 62.9 ± 20.8

2.4%
CP 100.0% 69.7 ± 44.7
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Figure 6.1: Effect of comments on mean correctness and time across snippets. Green signifies positive
impacts, orange denotes negative impacts, and black indicates a neutral effect.
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When considering the snippets collectively, a nuanced picture emerges:

• Positive Impact of Comments: Snippets 5, 8, 9, 10, and 11 showed a beneficial effect
of comments, as evidenced by their net positive scores and distances to the neutral
benchmark in both plots. These snippets showed notable improvements in correctness
and/or efficiency, suggesting that comments can significantly enhance understanding
and performance in specific contexts.

• Negative Impact of Comments: Snippets 1, 2, 3, and 4 demonstrate a negative impact
of comments, characterized by lower correctness and longer completion times, as seen
through their negative overall scores and relative positions to the neutral line.

• Neutral/Mixed Effect of Comments: Snippets 6, 7, and 12 present a more ambiguous
effect, with slight variations in performance that do not strongly trend towards positive
or negative outcomes.

Furthermore, we conducted a statistical analysis to examine the effects of comments on
the correctness and time taken to complete snippets. To account for both within-subject and
between-subject variations, we employed a Linear Mixed-Effects Model for each snippet
individually (cf. Section 5.3.2). This approach allowed us to consider the fixed effects
of snippet type (CM and CP) while incorporating random effects to accommodate inter-
participant variability.

The analysis revealed varying effects of comments on correctness, and time across dif-
ferent snippets. In some snippets, the CP condition showed a significant difference in
performance metrics compared to the CM condition, whereas, in others, the differences
were not statistically significant. These results further indicate that the influence of snippet
type on performance is snippet-dependent. The results from these models are presented in
Table 6.2.

RQ1

The collective insights reveal that the presence of comments can exert diverse
effects on programming task outcomes. While some snippets like Snippet 9

benefit extremely from comments in terms of both time and correctness,
others such as Snippet 1 suffer from longer completion times without a
corresponding rise in correctness. These variations highlight a complex and
snippet-specific interplay between comments and task execution, suggesting
that the efficacy of comments is highly contextual, enhancing comprehension
and efficiency in some scenarios while potentially hindering them in others.
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Table 6.2: LME results for correctness and time of each snippet. The cell shading highlights a
significant effect of comments ( positive or negative ).

Correctness Time

Snippet Intercept Effect of CP p-Value Intercept Effect of CP p-Value

1 0.7 -0.4 0.059 190.87 80.87 0.002

2 0.6 -0.1 0.544 206.43 34.98 0.173

3 0.5 -0.2 0.211 238.03 52.96 0.008

4 0.5 -0.1 0.544 203.01 41.26 0.148

5 0.5 0.2 0.211 295.52 35.80 0.017

6 0.4 -0.1 0.651 333.44 -48.15 0.439

7 0.4 0.0 1.000 229.06 9.79 0.662

8 0.6 0.0 1.000 230.08 -62.76 <0.001

9 0.6 0.4 <0.001 339.24 -149.85 <0.001

10 0.8 0.1 0.514 169.47 -24.88 0.204

11 0.1 0.0 1.000 276.46 -77.70 0.002

12 0.9 0.1 0.157 62.92 6.75 0.637

6.2 effect of comments on visual attention

Building on the behavioral results observed in the previous section, we now turn our
focus to a more detailed investigation of how these behaviors manifest during program
comprehension. Specifically, this section delves into the effect of comments on visual
attention, a pivotal aspect of understanding how programmers interact with commented
code.

Our study reveals a significant shift in visual attention when comments are present. In
snippets where comments are absent, all AOI fixations are focused on the code. However,
with the introduction of comments, about 23% of visual attention is captured by these
comments, reducing the focus on code to around 77%. This significant diversion of attention
highlights that comments play a critical role in shaping programmers’ visual engagement
with code. In snippets where comments are present, participants are dedicating a substantial
portion of their attention to them.

To illustrate these findings more concretely, Table 6.3 encapsulates the aggregated results
of our study. It compares the metrics of visual attention (cf. Step IV:a in Section 5.2.3) in
snippets with Comments Missing (CM) against those with Comments Present (CP).

In addition to the above analysis on the aggregated data, we quantitatively analyzed the
fixation counts and durations for the different categories across the different snippets to
capture possible snippet-specific effects. LMEs were again employed for each snippet to
rigorously evaluate these differences. The models were constructed similar to the previous
section to assess the fixed effects of the snippet type (CM or CP) on visual attention, while
controlling for random effects due to individual participant variations (cf. Section 5.3). This
approach allowed us to draw statistically robust conclusions about the role of comments in
directing visual attention during program comprehension on a snippet-specific level.
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Table 6.3: Comparative analysis of visual attention metrics of CM and CP snippets.

Type Statistical Tests (Wilcoxon Signed-Rank Test)

CM CP Effect Direction Statistic p -Value Corr. p -Value

All Fixations
Count 525 579 two-sided 2867.0 0.046 0.067

Duration 177.0 171.4 two-sided 3620.0 0.979 0.979

AOI Fixations
Count 358 397 two-sided 2881.5 0.050 0.067

Duration 123.9 121.2 two-sided 3582.5 0.901 0.979

Code Fixations
Count 358 305 less 2732.5 0.018 0.037

Duration 123.9 100.3 less 2468.0 0.001 0.003

Comment Fixations
Count - 92 greater 7260.0 < 0.001 < 0.001

Duration - 20.9 greater 7260.0 < 0.001 < 0.001

Tables 6.4, 6.5, 6.6, and 6.7 present the results of these analyses. Each table corresponds to
one of the different fixation categories - All Fixations, AOI Fixations, Code Fixations, and
Comment Fixations, respectively.

Table 6.4 demonstrates notable findings. For Snippets 1 – 4, there are significant increases
in both fixation counts and durations when comments are present. This result aligns with
expectations, considering that the inclusion of comments adds to the total text visible on the
screen. However, the pattern observed in these snippets is not universally consistent. For the
subsequent snippets, the impact of comments varies. In some cases, there is no significant
difference in fixation counts between the two conditions, while in others, particularly
Snippets 8, 9, and 10, an interesting trend emerges. In these snippets, not only does the
fixation count decrease with the presence of comments, but there is also a notable reduction
in the duration of fixations per participant. This suggests that comments, in certain contexts,
may actually streamline the process of visual engagement, possibly making the code easier
to comprehend or navigate.

Table 6.5 presents data on fixations specifically targeting the designated AOIs for code and
comments. We observe a similar trend of variability as before, although not as pronounced.
The data indicate that the presence of comments influences where participants focus their
attention, but the effect varies across different snippets.
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Table 6.4: LME results for all fixation counts and durations of each snippet. Lower numbers are gen-
erally preferable and suggest less cognitive load. The cell shading highlights a significant
effect of comments ( positive or negative ). Values marked with an asterisk (*) indicate
the use of alternate fitting methods (’powell’, ’lbfgs’) due to convergence issues, where the
determinant of matrices approached zero, leading to linear algebra errors.

All Fixations

Count Duration

Snippet Intercept Effect of CP p-Value Corr. p-Value Intercept Effect of CP p-Value Corr. p-Value

1 469.8 191.7 0.003 0.004 149.362 56.270 < 0.001 < 0.001

2 480.4 217.9 0.006 0.013 154.885 28.577 0.108 0.123

3 557.2 285.9 0.001 0.002 177.034 44.258 < 0.001 < 0.001

4 497.0 239.1 0.002 0.003 160.651 30.799 < 0.001 < 0.001

5 722.6 64.8 < 0.001 < 0.001 219.540 36.580 0.292 0.467

6 642.1 68.6 0.617 0.729 245.289 -18.819 0.653 0.729

7 456.3 25.7 0.650 1.000 183.148 -0.723 0.930 1.000

8 441.4 -30.2 0.768 0.768 163.040 -39.757 < 0.001 < 0.001

9 833.4 -351.2 < 0.001 < 0.001 269.014 -125.487 < 0.001 < 0.001

10 418.4 -35.8 0.689 0.689 138.568 -25.288 0.031 0.049

11 *610.0 *-56.0 *0.685 *0.685 214.397 -59.307 0.122 0.195

12 172.7 27.4 0.504 0.806 49.439 5.230 0.450 0.806

Table 6.5: LME results for AOI fixation counts and durations of each snippet. Lower numbers
are generally preferable and suggest less cognitive load. The cell shading highlights a
significant effect of comments ( positive or negative ).

AOI Fixations

Count Duration

Snippet Intercept Effect of CP p-Value Corr. p-Value Intercept Effect of CP p-Value Corr. p-Value

1 314.7 133.0 < 0.001 < 0.001 97.9 40.9 0.066 0.075

2 333.4 178.8 < 0.001 < 0.001 108.4 25.3 0.060 0.081

3 324.8 228.4 < 0.001 < 0.001 102.7 43.1 < 0.001 < 0.001

4 321.8 127.8 0.054 0.087 104.5 18.9 0.417 0.477

5 534.2 75.6 0.477 0.635 174.8 35.5 0.223 0.447

6 377.4 78.2 0.280 0.559 141.8 9.9 < 0.001 < 0.001

7 334.2 8.2 0.876 1.000 145.5 -7.0 0.580 1.000

8 339.0 -41.8 0.124 0.142 133.5 -40.1 0.007 0.011

9 564.7 -250.2 < 0.001 < 0.001 191.9 -92.5 < 0.001 < 0.001

10 298.5 -72.7 0.229 0.262 100.9 -31.4 0.064 0.086

11 445.5 -10.8 0.640 0.853 156.4 -34.8 0.289 0.463

12 112.1 4.9 0.830 0.949 28.7 -0.1 0.994 0.994
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Table 6.6: LME results for code fixation counts and durations of each snippet. Lower numbers
are generally preferable and suggest less cognitive load. The cell shading highlights a
significant effect of comments ( positive or negative ).

Code Fixations

Count Duration

Snippet Intercept Effect of CP p-Value Corr. p-Value Intercept Effect of CP p-Value Corr. p-Value

1 314.7 74.9 < 0.001 < 0.001 97.9 30.4 0.270 0.270

2 333.4 105.4 0.045 0.072 108.4 10.2 0.499 0.499

3 324.8 20.4 < 0.001 < 0.001 102.7 -9.5 0.509 0.582

4 321.8 59.6 0.324 0.432 104.5 5.4 0.814 0.814

5 534.2 -63.0 0.557 0.637 174.8 4.4 0.890 0.890

6 377.4 -24.5 0.729 0.729 141.8 -12.4 0.535 0.729

7 334.2 -68.3 0.142 0.567 145.5 -27.2 0.219 0.583

8 339.0 -118.2 0.029 0.038 133.5 -54.5 < 0.001 < 0.001

9 564.7 -326.1 < 0.001 < 0.001 191.9 -109.7 < 0.001 < 0.001

10 298.5 -105.9 < 0.001 < 0.001 100.9 -37.4 0.008 0.017

11 445.5 -189.8 < 0.001 < 0.001 156.4 -80.0 0.001 0.002

12 112.1 -10.7 0.698 0.931 28.7 -2.5 < 0.001 < 0.001

Table 6.7: LME results for comment fixation counts and durations of each snippet. Lower numbers
are generally preferable and suggest less cognitive load. The cell shading highlights a
significant effect of comments ( positive or negative ). Values marked with an asterisk (*)
indicate the use of alternate fitting methods (’powell’, ’lbfgs’) due to convergence issues,
where the determinant of matrices approached zero, leading to linear algebra errors.

Comment Fixations

Count Duration

Snippet Intercept Effect of CP p-Value Corr. p-Value Intercept Effect of CP p-Value Corr. p-Value

1 0.0 58.1 < 0.001 < 0.001 0.0 10.5 < 0.001 < 0.001

2 0.0 73.4 < 0.001 < 0.001 0.0 15.1 < 0.001 < 0.001

3 *0.0 *208.0 *< 0.001 *< 0.001 0.0 52.6 < 0.001 < 0.001

4 0.0 68.2 < 0.001 < 0.001 0.0 13.5 < 0.001 < 0.001

5 0.0 138.6 < 0.001 < 0.001 0.0 31.0 < 0.001 < 0.001

6 0.0 102.7 < 0.001 < 0.001 0.0 22.3 < 0.001 < 0.001

7 *0.0 *76.5 *< 0.001 *< 0.001 0.0 20.2 < 0.001 < 0.001

8 0.0 76.4 < 0.001 < 0.001 0.0 14.4 < 0.001 < 0.001

9 0.0 75.9 < 0.001 < 0.001 0.0 17.2 < 0.001 < 0.001

10 0.0 33.2 < 0.001 < 0.001 0.0 6.0 < 0.001 < 0.001

11 *0.0 *179.0 *< 0.001 *< 0.001 0.0 45.2 < 0.001 < 0.001

12 0.0 15.6 < 0.001 < 0.001 0.0 2.4 < 0.001 < 0.001
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However, the impact of comments becomes more distinct when analyzing Tables 6.6
and 6.7, which categorize fixations based on their focus on code versus comments. An
interesting observation from these tables is the shift in visual attention from code to
comments for Snippets 5 – 11. In these snippets, we find that the inclusion of comments
corresponds to a decrease in both the count and duration of fixations on code elements,
with some snippets showing significant reductions. Simultaneously, there is an increase in
fixation counts and durations on the comments. This pattern suggests that comments, in
these instances, may be redirecting attention away from the code to themselves, possibly
providing clarifications or additional information that makes understanding the code easier.
This effect underscores the potential of comments in guiding visual attention and influencing
the comprehension process in programming tasks.

RQ2

Our study’s findings illuminate the significant impact of comments on visual
attention during program comprehension. We discovered that the presence
of comments redirects approximately 23% of visual attention away from
the code, suggesting a substantial shift in focus towards the comments. This
reallocation of attention from code to comments underlines the influential role
comments play in the cognitive process of understanding code. These insights,
derived from detailed analysis of fixation counts and durations across Code
and Comment AOIs, reveal a nuanced dynamic in how programmers interact
with and process information in commented code.

6.3 effect of comments on linearity of reading order

Having established the significant role of visual attention in program comprehension, as
evidenced by the substantial focus programmers dedicate to comments, we now extend our
exploration to another critical dimension: the linearity of reading order in programming
tasks as described in Step IV:b of Section 5.2.3.

6.3.1 Local Metrics

In examining the impact of comments on the local linearity of reading order in program
comprehension, our analysis unveils nuanced effects. The presence of comments significantly
reduces the Vertical Later Fixations, suggesting a more linear, top-to-bottom reading pattern
with comments, with participants less likely to skip over multiple lines. Conversely, we
observe an increase in Horizontal Later Fixations, suggesting that comments encourage
more lateral scanning within a line. Interestingly, the Regression Rate diminishes in the
presence of comments, pointing to a reduction in backward saccades, thereby streamlining
the reading process. This trend is combined with an increased Line Regression Rate,
hinting at more frequent revisits within a line, potentially to reconcile code understanding
with accompanying comments. Notably, the Saccade Length remains consistent across
both scenarios, underscoring a uniformity in the distance of eye movements regardless of
comment inclusion.
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Table 6.8 presents our findings, offering a statistical analysis of various metrics such as
Vertical Next and Later Fixations, Regression Fixations, Horizontal Later Fixations, Line
Regression Fixations, and Saccade Length.

Table 6.8: Comparative analysis of local linearity metrics of CM and CP snippets.

Type Statistical Tests (Wilcoxon Signed-Rank Test)

Metric CM CP Effect Direction Statistic p -Value Corr. p -Value

Vertical Next Fixations 14.4% 14.3% two-sided 14.0 1.000 1.000

Vertical Later Fixations 14.3% 12.1% two-sided 1.0 0.011 0.018

Regression Fixations 28.7% 25.7% two-sided 2.0 0.001 0.004

Horizontal Later Fixations 16.6% 22.8% two-sided 0.0 < 0.001 0.003

Line Regression Fixations 14.8% 16.1% two-sided 3.0 0.012 0.018

Saccade Length (in pixels) 43.1 41.6 two-sided 29.0 0.470 0.564

6.3.2 Global Metrics

Next, we present the results of our study on the impact of comments on the global metrics
of code reading. The N-W scores obtained from this analysis quantified how participants’
reading patterns aligned with the expected reading sequences of the code. Higher scores
translate to better alignment while lower scores indicate poor alignment. The RTGCT offers a
visual representation of the varied line reading orders we used for comparison. Figure 6.2
depicts the different line reading orders for Snippet 1. The radial transition graphs showing
the global line orders for all snippets can be found in the appendix (Figures A.14 and A.15). AboutTutorial SettingsList View  
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Figure 6.2: RTGCT visualization of different line reading orders for Snippet 1.

Our aggregated findings show that the dynamic N-W scores (Story and Execution Order)
consistently surpass the naive scores across the snippets. This indicates that the algorithm’s
dynamic adaptation better reflects participants’ reading order, which usually includes several
iterations of reading the same lines. Furthermore, the reading order mostly resembled the
execution order of the code rather than the story order. Comments seem to have little to no
impact on the N-W scores of the different metrics.
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This suggests that the presence of comments does not uniformly influence the linearity
of reading patterns as initially hypothesized. The results are visually summarized in
Figure 6.3, which illustrates the negligible effect of comments on global metrics. Furthermore,
Table 6.9 corroborates these insights, demonstrating that the inclusion of comments does
not significantly affect the evaluated metrics when aggregated.

150 100 50 0
N-W Score

CM

CP

Metric
Story_Global_Naive
Exec_Global_Naive
Story_Global_Dynamic
Exec_Global_Dynamic

Figure 6.3: Aggregated linearity N-W scores for CM and CP snippets. The figure illustrates the
aggregate scores for both story and execution reading sequences using naive and dynamic
N-W calculations.

Table 6.9: Comparative analysis of global linearity N-W scores of CM and CP snippets.

N-W Score Statistical Tests (Wilcoxon Signed-Rank Test)

Metric CM CP Effect Direction Statistic p-Value Corr. p-Value

Story Order Naive -182.95 -184.67 two-sided 3451.0 0.639 0.639

Exec Order Naive -107.99 -112.46 two-sided 3226.5 0.362 0.483

Story Order Dynamic -49.25 -59.80 two-sided 2935.0 0.069 0.137

Exec Order Dynamic 18.27 4.46 two-sided 2751.5 0.057 0.137

However, deeper examination of the individual snippets presents a more detailed per-
spective. For Snippets 1 – 6, we observe a predominantly negative effect of comments on
both naive story and execution orders, with some effects reaching statistical significance.
Conversely, for Snippets 7 – 12, we see a tendency for comments to be correlated with a
more linear reading order. This pattern is consistent in the dynamic story order, where
comments appear to decrease linearity in Snippets 1 – 6 and increase it in Snippets 7 – 12.
Tables 6.10 and 6.11 further emphasize these findings.

As illustrated in Figure 6.4, snippets where comments had a positive impact (see 6.1,
Snippets 7 – 12), comments enhanced the story metric but adversely influenced execution
order alignment. Essentially, when comments were actually beneficial, they made the code
reading order more linear, whereas in snippets 1 – 6, where comments had no or negative
effect, the alignment with the story order decreased.
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Figure 6.4: Global linearity N-W scores for CM and CP snippets. Higher scores translate to better
alignment while lower scores indicate poor alignment with the expected reading se-
quences.
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Table 6.10: LME results for naive linearity metrics of each snippet. Higher numbers are preferable
and suggest a better alignment with the compared reading order. The cell shading
highlights a significant effect of comments ( positive or negative ).

Story Global Naive Exec Global Naive

Snippet Intercept Effect of CP p-Value Corr. p-Value Intercept Effect of CP p-Value Corr. p-Value

1 -171.4 -59.5 0.093 0.192 -151.4 -56.5 0.096 0.192

2 -174.1 -87.2 0.001 < 0.001 -143.1 -75.2 0.001 < 0.001

3 -159.6 -104.8 0.003 0.003 -82.1 -115.3 0.001 < 0.001

4 -149.4 -56.3 0.001 < 0.001 -65.9 -30.3 0.290 0.387

5 -278.5 -4.9 0.911 0.911 -144.0 9.6 0.775 0.911

6 -195.9 -12.8 0.762 0.762 -27.4 21.7 0.001 < 0.001

7 -192.6 13.1 0.593 0.683 -144.1 9.1 0.683 0.683

8 -187.0 46.3 0.237 0.272 -124.5 34.3 0.255 0.272

9 -283.7 153.2 0.001 < 0.001 -111.2 81.7 0.001 < 0.001

10 -142.4 50.9 0.210 0.571 -137.9 40.9 0.286 0.571

11 -230.2 38.9 0.585 0.799 -129.2 26.4 0.619 0.799

12 -30.6 2.5 0.800 1.000 -35.1 0.000 1.0 1.0

Table 6.11: LME results for dynamic linearity metrics of each snippet. Higher numbers are preferable
and suggest a better alignment with the compared reading order. The cell shading
highlights a significant effect of comments ( positive or negative ).

Story Global Dynamic Exec Global Dynamic

Snippet Intercept Effect of CP p-Value Corr. p-Value Intercept Effect of CP p-Value Corr. p-Value

1 -48.4 -17.0 0.402 0.402 1.0 10.4 0.181 0.242

2 -21.0 -61.4 < 0.001 < 0.001 -7.1 0.3 0.976 0.976

3 -34.0 -38.1 < 0.001 0.001 45.5 -82.1 < 0.001 < 0.001

4 -48.3 -38.8 < 0.001 < 0.001 -4.6 -5.2 0.538 0.538

5 -79.8 -17.3 0.518 0.911 60.5 -22.2 0.181 0.723

6 -70.0 -26.8 0.033 0.065 7.6 33.0 0.346 0.461

7 -36.0 7.2 0.506 0.683 29.0 14.5 0.193 0.683

8 -67.0 23.3 0.211 0.272 33.6 -23.0 0.272 0.272

9 -64.5 31.7 < 0.001 < 0.001 48.4 -46.3 0.138 0.138

10 -38.0 3.4 0.829 0.829 -25.9 -3.1 0.675 0.829

11 -84.9 8.7 0.799 0.799 39.2 -38.9 < 0.001 < 0.001

12 0.9 -1.5 0.816 1.000 -7.9 -3.2 0.166 0.663
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RQ3

Our investigation into the influence of comments on the linearity of reading
order reveals nuanced interactions. The analysis demonstrates that comments
significantly alter local reading patterns, leading to a more linear progression
through the code. In addition to that, an increase in Horizontal Later Fixa-
tions points to more lateral focus within lines, possibly reflecting a deeper
engagement with comments. The decrease in Regression Fixations, combined
with an uptick in Line Regression Fixations, underscores a more focused yet
revisitory reading behavior. Despite these local effects, comments showed
limited impact on global reading linearity, when aggregated and measured
using the N-W algorithm, challenging our initial hypothesis of a uniform
influence. However, the more detailed analysis of the individual snippets
reveal interesting patterns that suggest a more complex relationship than
previously anticipated.

6.4 effect of comments on gaze strategy

Expanding on our prior analysis of reading order linearity, we now explore gaze strategies
in programming tasks. For a detailed analysis, we employed local and global measures
(cf. Step IV:c of Section 5.2.3) to provide insights into immediate gaze patterns as well as
reveal how participants navigate between code and accompanying comments on a broader
perspective.

6.4.1 Local Metrics

Regarding the local gaze strategy metrics, our findings show that the saccade counts are
relatively balanced between the two transition types for most snippets. However, there
seems to be a general tendency for more Code-to-Comment transitions, with certain snippets
exhibiting statistically significant differences. The overall saccade counts across all snippets
show a significant difference (p-value = 0.007), indicating a general tendency for program-
mers to transition more from code to comments than vice versa. Table 6.12 encapsulates
these findings for the local gaze strategy metrics.
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Table 6.12: Comparative analysis of saccade counts between code-to-comment and comment-to-code
gaze strategies.

Gaze Strategy (Saccade Counts) Statistical Tests (Wilcoxon Signed-Rank Test)

Snippet Code-to-Comment Comment-to-Code Effect Direction Statistic p -Value

1 4.5 4.7 two-sided 14.5 0.608

2 5.2 4.8 two-sided 23.5 0.770

3 11.7 8.6 two-sided 4.0 0.050

4 9.5 7.6 two-sided 4.5 0.031

5 13.5 10.3 two-sided 5.0 0.020

6 6.8 6.7 two-sided 21.0 0.855

7 7.0 7.5 two-sided 7.5 0.527

8 6.2 5.4 two-sided 12.0 0.398

9 7.1 5.6 two-sided 6.5 0.105

10 2.3 1.4 two-sided 11.0 0.168

11 15.6 12.0 two-sided 7.0 0.066

12 3.6 2.7 two-sided 5.0 0.236

Overall 7.8 6.4 two-sided 6.0 0.007

6.4.2 Global Metrics

We now shift our focus to the global metrics. Figure 6.5 visually represents the different
AOI reading orders employed for Snippet 1 using radial transition graphs. For the complete
set of radial transition graphs refer to Figures A.16 and A.17 in the appendix.

Aligning the participants AOI reading order to these predefined sequences and comparing
’Naive’ and ’Dynamic’ scores within both ’Code-First’ and ’Comment-First’ approaches
showed again a consistent pattern of improved performance in the ’Dynamic’ calculation
further supporting the iterative reading nature of source code. It is however evident that
both ’Code-First’ and ’Comment-First’ approaches result in similar performance scores,
with no significant statistical difference between them. This is demonstrated across different
metrics, including Story Order and Execution Order, in both Naive and Dynamic algorithms.
The negative N-W Scores across all categories highlight a below-baseline performance,
suggesting challenges in aligning gaze patterns even with the best aligned reading sequence.
The detailed N-W scores of the different reading orders across the snippets are illustrated
in Figure 6.6. Furthermore, a detailed comparative analysis of the scores between the two
gaze strategies can be found in Table 6.13.
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Figure 6.5: RTGCT visualization of AOI order for Snippet 1 CP.
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Table 6.13: Comparative analysis of N-W Scores between code-first and comment-first gaze strategies.

Global Gaze Strategy (N-W Score) Statistical Tests (Wilcoxon Signed-Rank Test)

Metric Code-First Comment-First Effect Direction Statistic p-Value Corr. p-Value

Story Order Naive -92.1 -92.0 two-sided 20.0 0.441 0.441

Execution Order Naive -65.6 -65.8 two-sided 21.0 0.284 0.379

Story Order Dynamic -55.5 -56.5 two-sided 23.5 0.224 0.379

Execution Order Dynamic -41.1 -41.9 two-sided 22.5 0.195 0.379

RQ4

Our study into gaze strategies highlights a general tendency for programmers
to move their gaze from code to comments, indicating a directional strategy
that seeks additional context or clarification within comments after having
read the code first. Despite this, the assessment of global gaze strategies
through the N-W algorithm reveals no significant preference between ’Code-
First’ and ’Comment-First’ approaches. This suggests that while local gaze
transitions favor a move towards comments, the overarching strategy of
navigating code and comments does not significantly lean towards starting
with one over the other on a global scale.

6.5 effect of comments on participants’ perception

In this final section, we examine participants’ difficulty and comment contribution ratings,
offering insights into their subjective experiences with program comprehension. This exami-
nation is crucial for understanding the perceived impact of comments on navigating code
complexity and enhancing the comprehension process.

The examination of difficulty ratings across CM and CP snippets uncovers intriguing
patterns. For example, Snippet 1 exhibits a slight decrease in perceived difficulty with
comments, moving from a mean rating of 2.7 in the CM condition to 2.5 in the CP condition.
This suggests a marginal but positive impact of comments. Conversely, Snippet 2 sees an
increase in difficulty from 2.4 to 3.1 with the introduction of comments, hinting at the
potential for comments to sometimes introduce additional complexity or distraction. Among
the different snippets, Snippet 9 exhibited a substantial 34% reduction in perceived difficulty
with comments (p<0.001), underscoring comments’ potential to significantly clarify and
simplify the comprehension process.

Interestingly, the effect of comments on perceived difficulty does not uniformly correlate
with their contributory ratings to comprehension. While Snippet 9’s significant ease in
difficulty is paralleled by a high comment contribution rating (3.9), other snippets with
negative or minimal changes in difficulty still report substantial comment contribution scores,
such as Snippet 4 (3.7) and Snippet 10 (3.8). This suggests that while comments can directly
influence the perceived difficulty of snippets, their value in enhancing comprehension may
be perceived independently of this difficulty impact.
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Table 6.14 details the comprehensive results and specific distributions of difficulty and
comment contribution ratings across snippets, providing a granular view of how participants’
perceptions vary by snippet. Table 6.15 then synthesizes these individual observations into a
broader context, presenting the mean ratings across snippets to summarize the overarching
trends in perceived difficulty and the value of comments in program comprehension.
Additionally, Figure 6.7 visualizes these summarized findings and illustrates the relationship
between the effect on difficulty and the perceived comment contribution.

Even when comments do not significantly alter the difficulty level, their presence is appre-
ciated for providing context, clarifying intent, or offering insights that aid in understanding
complex code segments.

Table 6.14: Participants’ Likert scale ratings on snippet difficulty and comment contribution.

Ratings (Likert Scale 1 → 5)

Difficulty Comment Contribution

Snippet Description Type ( Very Easy → Very Difficult ) ( Not Helpful → Very Helpful )

1 Identifies a peak element in an array.
CM

CP

2 Finds two elements that sum to a target.
CM

CP

3 Computes maximum zero-sum subarray length.
CM

CP

4 Longest consecutive sequence in array.
CM

CP

5 Longest common subsequence between strings.
CM

CP

6 Longest increasing subsequence length.
CM

CP

7 Efficient power calculation.
CM

CP

8 Fibonacci number at given position.
CM

CP

9 Lists primes up to a number (Sieve of Eratosthenes).
CM

CP

10 Binary search in sorted array.
CM

CP

11 Counts palindromic substrings.
CM

CP

12 Anagram check for two strings.
CM

CP
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Table 6.15: Summary of mean difficulty and comment contribution ratings. The overall effect repre-
sents the percentage change in difficulty rating between CM and CP snippets. The cell
shading highlights a significant effect of comments ( positive or negative ).

Difficulty (Likert Scale 1 → 5) Comment

Snippet CM CP Overall Effect p-Value Contribution

1 2.7 2.5 -4% 0.603 2.9

2 2.4 3.1 +14% 0.062 3.4

3 3.3 3.0 -6% 0.431 3.4

4 3.2 3.4 +4% 0.564 3.7

5 3.9 4.2 +6% < 0.001 3.4

6 4.1 3.5 -12% 0.062 3.5

7 2.4 2.5 +2% 0.769 2.9

8 1.8 1.8 0% 1.000 2.8

9 3.1 1.4 -34% < 0.001 3.9

10 1.8 1.3 -10% 0.128 3.8

11 3.4 3.4 0% 1.000 3.4

12 1.4 1.0 -8% 0.168 2.8
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Figure 6.7: Relationship between the effect of comments on difficulty and their contribution ratings.
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RQ5

Our analysis of participants’ difficulty and comment contribution ratings
shows a snippet-dependent influence of comments on perceived difficulty.
Notably, Snippet 9 stands out with a substantial 34% reduction in perceived
difficulty when comments are present, highlighting the potential of good
comments to significantly clarify and simplify the comprehension process.
Conversely, snippets such as Snippet 2 indicate that comments can sometimes
introduce additional complexity, suggesting the importance of comment
quality and relevance. Despite these variations, consistently high comment
contribution ratings across snippets indicate a generally positive perception
of comments.
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D I S C U S S I O N

This study aimed to explore the impact of comments on program comprehension, focusing
on how comments affect program understanding, visual attention, linearity of reading order,
gaze strategies, and participants’ perceptions. By conducting a detailed analysis involving
eye-tracking data and participant feedback, we have gained insights that contribute to the
existing body of knowledge on the role of comments in software development.

Central to our investigation was not only the collection of eye-tracking data but also the
gathering of qualitative feedback through the post-questionnaire (cf. Section 4.6) designed to
capture participants’ perceptions and experiences with comments in code. The incorporation
of participant feedback provides a rich, qualitative layer to our analysis, allowing us to
delve deeper into the subjective experiences of programmers as they navigate code with
and without comments.

The discussion that follows is structured that way to weave together the insights from our
quantitative analysis with the qualitative themes identified through the thematic analysis
(cf. Section 5.4). By integrating these findings, we aim to offer a comprehensive overview
of the impact of comments on program comprehension, highlighting the significant role
comments play in aiding understanding, guiding attention, and influencing reading and
gaze strategies.

7.1 program comprehension

Our findings indicate that the impact of comments on program comprehension is com-
plex and varies according to specific contexts, suggesting a more nuanced effect than the
uniformly positive improvements reported by Dunsmore [33] and Tenny [118, 119]. For
instance, Snippet 9, which listed primes up to a given number, demonstrated a significant
improvement in comprehension when comments were included (+34.1%). On the other
hand, Snippet 1, which identified a peak element in an array, showed a significantly de-
creased performance as a result of the comments added to it (-30.0%). This variability in the
effectiveness of comments seems to depend on various factors such as the complexity of
the code, the quality of the comments, and the background knowledge of the programmer.
These findings align with the conditional improvements noted by Woodfield et al. [128] and
the varied outcomes for different user groups reported by Salviulo and Scanniello [87]. It
suggests that the effectiveness of comments is not universally applicable but contingent
on the interplay of various factors, which is also supported by Nurvitadhi et al. [69], who
underscore the importance of considering the specific application and content of comments
in programming tasks.

Our study, therefore, contributes to the discourse on comments in programming by
offering evidence of their context-dependent utility, subtly diverging from the findings of
researchers like Sheppard et al. [99], Börstler and Paech [18], and Nielebock et al. [67], who
observed minimal or no influence of comments on comprehension for small tasks.

67
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From the responses regarding the impact of comments on program comprehension,
several key phrases and concepts emerged, providing some perspectives on how comments
influence understanding of code. Here are a some of the identified themes:

• Clarification and Summary: Comments are valued for providing structure and sum-
marizing complex code segments, making them easier to understand. For instance,
comments that "give a structure to understanding", or "can summarize complicated
code sections simply" are highlighted as particularly helpful.

• Providing Context and Facilitating Comprehension: For code snippets that were
not immediately clear, comments not only provided necessary context, which was
particularly valued in instances of uncertainty, but many responses also indicated that
comments facilitated the comprehension process, as seen in phrases like "Comments
have generally simplified and sped up my understanding."

• Intention Behind the Code: Comments adding new information about the intention
behind the code or explaining complex lines are seen as beneficial. However, comments
that "merely restate easy to understand lines were not helpful."

• Relevance and Quality of Comments: The effectiveness of comments is tied to
their relevance and quality. Short, descriptive comments are appreciated for aiding
comprehension, whereas "misleading comments" are criticized.

• Selective Reading Based on Understanding: Some participants indicated they would
not read comments if they understood the code, suggesting a selective approach to
using comments based on immediate comprehension needs.

The analysis reveals that comments play a crucial role in facilitating program comprehen-
sion by providing clarification, summarizing complex parts, and explaining the intention
behind code. Their utility, however, is highly dependent on their quality and relevance, with
effective comments being those that are concise, informative, and directly related to the
complexities or uncertainties of the code. Participants’ engagement with comments appears
to be selective, influenced by their initial understanding of the code and the perceived value
of the comments in enhancing that understanding.

In comparing these findings with Nielebock et al. [67], we note some parallels and
differences. Like our study, Nielebock et al. found that participants generally viewed
comments as potentially helpful in reducing the time for comprehension, which aligns with
our observations on speeding up comprehension and providing context. However, they also
noted no significant differences in the perceived effectiveness of different types of comments,
which contrasts with our findings that suggest that the relevance and quality of comments
plays a role in their effectiveness.

In summary, our research adds an additional layer to the understanding of how comments
affect program comprehension, drawing attention to the subtleties and variations in their
impact. Moving forward, these insights pave the way for further research into optimizing
the use of comments in programming, focusing on how they can be tailored to enhance
comprehension and efficiency in diverse coding scenarios.
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7.2 visual attention

Our quantitative analysis, enriched by thematic insights from participants, highlights the
significant impact comments have on visual attention during program comprehension. The
eye-tracking data demonstrated that a notable portion of visual attention – approx. 23% –
was directed towards comments when present, underscoring their vital role in engaging
programmers. This finding is complemented by the themes identified through participants’
feedback, which further elucidate the nuances of how comments attract visual attention:

• Variable Attention Allocation: Participants exhibited a wide range of attention distri-
bution between comments and code. While some participants were drawn more to
comments, particularly noting variable declarations and output lines, others remained
primarily focused on the code, occasionally overlooking comments.

• Dependency on Code Clarity: The emphasis on comments was markedly reduced
when participants encountered clear code. This suggests that the presence of comments
is particularly valued in instances of complexity or when the code lacks intuitiveness,
serving as a beacon for clarification.

• Proportion of Focus: A striking observation from some participants highlighted a
focus distribution where comments commanded a majority of the attention, with ratios
self-reported as 65% on comments to 35% on code. This indicates that, under certain
circumstances, comments can dominate the visual exploration of code, potentially
guiding comprehension and focus.

Furthermore, the thematic analysis uncovered an increased reliance on comments among
participants with varying levels of experience, indicating that comments are not just com-
plementary but essential components of code that significantly influence comprehension
strategies. Participants frequently shifted their primary focus to comments, particularly in
search of clarifications or additional explanations not readily apparent in the code itself.
This shift often occurred when comments were perceived as more informative or when the
code alone was deemed insufficient for full comprehension.

The relation between comments and visual attention in program comprehension has
profound implications for software development practices. Firstly, the findings emphasize
the importance of clear and informative comments, especially in complex or unclear code
segments, to aid programmers in navigating and understanding codebases efficiently.
Secondly, the variability in attention allocation between comments and code highlights
the need for tailored commenting strategies that consider the diverse preferences and
experiences of programmers. Lastly, the significant reliance on comments for understanding
underscores the value of comments and the need for further investigation on commenting
practices.
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7.3 linearity of reading order

Following our exploration of how comments shape visual attention, we delved into their
influence on the linearity of reading order. Quantitatively, we observed that comments
significantly altered local reading patterns, encouraging a more linear, top-to-bottom pro-
gression through the code. This was coupled with an increase in Horizontal Later Fixations,
suggesting a lateral focus within lines that likely reflects deeper engagement with comments.
Concurrently, a decrease in Regression Fixations, paired with an increase in Line Regression
Fixations, highlighted a more focused yet revisitory reading behavior. These shifts sug-
gest that comments can both guide a systematic approach to reading code and encourage
programmers to seek out specific, detailed understanding within the codebase. However,
the impact of comments on the global linearity of reading, as measured using the N-W
algorithm, was limited when aggregated. This finding challenges the initial hypothesis of a
uniform influence of comments on reading order, suggesting a more complex relationship
that varies across individual snippets and programmer experiences.

The thematic analysis of participant feedback, sheds light on the different ways comments
impact reading strategies:

• Top-Down vs. Selective Reading: The presence of comments appears to modify
reading strategies from a purely top-down approach to a more selective one. Partici-
pants often shifted focus to specific lines of interest, particularly output lines or those
directly clarified by comments, indicating a departure from linear navigation to a
more targeted engagement with the code.

• Impact on Code Navigation: Responses suggests that without comments, program-
mers might find themselves more inclined to jump around the code. This implies
that comments serve not just as explanatory aids but also as navigational beacons,
offering a structured pathway through the complexities of code, thereby enhancing
the comprehensibility and accessibility of the codebase.

• Mixed Effects on Linearity: The effects of comments on the linearity of reading
patterns were mixed. While some participants observed no change in their reading
order, others noted that comments influenced them to prioritize specific lines. However,
a generally top-down reading pattern was maintained, albeit with deviations to
accommodate the insights offered by comments.

These insights highlight the significant role comments play in aiding program compre-
hension and navigation, especially in guiding developers through complex or ambiguous
sections. Nonetheless, the research reveals a critical gap in the existing knowledge regarding
the optimal placement and formulation of comments within code to maximize their utility.
This gap points to the issue that the effectiveness of comments is not universal but may
vary significantly among developers, suggesting that what constitutes a "good" comment is
subjective and potentially dependent on individual preferences and coding styles.
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This variability in the perceived value of comments underscores the need for further
exploration into commenting practices and developer education. It indicates that a universal
approach to commenting may not be sufficient. Instead, there is a need for further research
to define more effective guidelines that can accommodate the diverse perspectives and
preferences of developers. Specifically, future studies could benefit from exploring the
impact of different types of comments on program comprehension by comparing identical
code snippets annotated with varied commenting styles.

An intriguing extension of this research could also explore the integration of Large
Language Models (LLMs) into Integrated Development Environments (IDEs) to provide
personalized comment generation, similar to the work of Wong et al. [127] and McBurney
and Mcmillan [65]. The extension would analyze the code being read and automatically
generate comments that are tailored to the developer’s specific reading and comprehension
strategies. By doing so, it could significantly reduce the time developers spend on writing
comments and improve code understanding efficiency. Such an approach would not only
personalize the development experience but also potentially transform commenting practices
by making them more dynamic and adaptive to individual needs.

7.4 gaze strategy

Building on our insights into how comments influence visual attention and the linearity
of reading order, we further explored their impact on gaze strategies during program
comprehension. Our investigation aimed to understand how programmers navigate between
code and comments.

The findings from our study reveal a nuanced picture of how programmers navigate
between code and comments, with local metrics indicating a statistically significant pref-
erence for a Code-First approach. This preference suggests that, at least in the context of
shorter or more focused interactions, programmers tend to engage with the code before
seeking out comments for additional context or clarification. In contrast, the global metrics
did not reveal a definitive preference for starting with code versus comments, highlighting
a potential limitation in our methodology. The application of the N-W algorithm, while
effective in certain analytical contexts, may not have been ideally suited to capture the
slight differences in AOI orders between the sequences, potentially obscuring subtle but
significant gaze strategy patterns.

Complementing our quantitative analysis, the thematic analysis of participant feedback
offers additional insights into the gaze strategies among programmers. This qualitative
approach revealed a clear division in preferences and behaviors:

• Comment-First vs. Code-First Strategies: Participants exhibited distinct preferences,
with some focusing on comments before delving into the code, while others prioritized
understanding the code directly, resorting to comments only when further clarification
was needed. A few participants even adopted a "code-only" approach, bypassing
comments unless they deemed it absolutely necessary for comprehension.
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• Adaptive Strategies: A significant insight from our study is the adaptability of
programmers’ gaze strategies. Participants reported adjusting their focus based on the
perceived utility of comments, indicating a highly contextual and responsive approach
to navigating code. This adaptability suggests that programmers are not rigid in their
strategies but are instead capable of dynamically altering their focus to maximize
comprehension.

Given these observations, future studies should consider employing a mix of local
and global metrics, potentially integrating alternative measures that are better suited for
capturing the intricacies of programmer behavior. A more appropriate design might involve
focusing on shorter code snippets which could offer a more controlled environment to
compare code-first versus comment-first reading strategies. Shorter snippets are likely to
result in shorter AOI sequences, facilitating a more accurate alignment score with fewer
gaps. This methodological adjustment promises a clearer understanding of programmers’
navigational preferences by minimizing the confounding factors present in longer code
segments.

Overall, the exploration of gaze strategies reveals the critical role comments play as
dynamic elements that programmers interact with in a strategic manner. This interaction is
not only a matter of preference but is also deeply influenced by the content and perceived
utility of comments, suggesting that effective commenting practices are crucial for enhancing
program comprehension.

7.5 participants’ perception

Following our examination of gaze strategies, we turn our focus towards understanding how
participants perceive the role of comments in program comprehension. This perspective
offers a direct insight into the subjective experience of programmers as they navigate
through code, complemented by comments.

Our analysis reveals nuanced patterns that underscore the multifaceted impact of com-
ments. Significantly, Snippet 9 exhibited a notable reduction in difficulty by 34% with
comments, highlighting how substantial the effect of well-written comments could be.

Interestingly, the impact of comments on snippet difficulty did not always align with their
perceived helpfulness, mirroring the discrepancy observed by Nielebock et al. [67] between
expectations of comments’ utility and actual performance outcomes. Despite participants
consistently perceiving and rating comments as helpful, this did not uniformly translate to
a reduction in perceived snippet difficulty.

The thematic analysis of participant responses further deepens our understanding, un-
veiling several key themes:

• Essential for Understanding Complex Code: Participants overwhelmingly recognized
comments as indispensable, particularly for navigating through challenging code
blocks. This highlights comments as "lifelines" in certain situations and indispensable
in reducing code complexity.
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• Varied Contribution: While some participants viewed comments as potentially time-
consuming for straightforward code snippets, others praised their role in making
conditions, loops, and complex structures more clear.

• Perception of Code Complexity: Interestingly, the presence of comments sometimes
contributed to an initial perception of increased code complexity. This indicates that the
mere presence of comments can influence programmers’ first impressions, potentially
framing their approach to understanding the code.

Combining these insights, our study illustrates that while comments can directly influence
the perceived difficulty of programming tasks, they are consistently valued for their broader
contribution to comprehension. Even in scenarios where comments appear to increase
complexity, their overall contribution to clarifying code logic and intent is highly regarded.

This refined understanding of comments – captured through both quantitative ratings
and qualitative themes – highlights their critical role in software development. Comments
serve not just as aids for reducing immediate snippet difficulty but as essential tools for
enhancing the deeper comprehension of code. They provide context, clarify intent, and offer
insights crucial for understanding complex code segments.

Our findings suggest that the effectiveness of comments is contingent upon their quality,
relevance, and the context in which they are used. Future research should further explore
how to optimize comment use to maximize their benefits in program comprehension,
considering factors such as code complexity, programmer experience, and the specific needs
of different programming tasks and comprehension strategies.
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T H R E AT S T O VA L I D I T Y

8.1 construct validity

Construct validity was a critical consideration in our eye-tracking study to ensure that
the measured variables effectively represent the intended constructs. Our study employed
various eye movement measures to assess participants’ visual behavior during program
comprehension and the interaction between code and comments.

One potential threat was the possibility of participants using peripheral vision or not
focusing directly on a source code line during eye tracking sessions [71]. To address this
concern, we employed eye-movement measures that are based on matching fixations to
specific AOIs. This approach, similar to the work of Busjahn et al. [22], allowed us to capture
participants’ actual fixation patterns and align them accurately with the corresponding code
elements. By considering horizontal proximity, we accounted for peripheral vision while
ensuring a reliable assessment of participants’ reading behavior.

For detailed descriptions of the operationalizations of program comprehension, visual
attention, linearity, gaze strategies, and participants’ perceptions refer to Section 4.4. By
diligently considering construct validity and aligning our operationalizations with estab-
lished measures and methods, we ensure the accuracy and reliability of our study’s findings
regarding the effects of comments on program comprehension and gaze strategies during
code and comment interaction.

8.2 internal validity

Internal validity is crucial to ensure the accurate measurement of the cause-and-effect
relationships between the independent and dependent variables in our study. To enhance
internal validity, we have employed a carefully designed within-subject experimental design.
Each participant was exposed to both conditions (Comments Present and Comments
Missing) in a counterbalanced order to control for order effects. The random assignment of
code snippets to participants further minimized potential biases or confounding factors.

The use of eye-tracking data allowed for accurate and objective measurements of par-
ticipants’ visual attention during program comprehension. To ensure the reliability of
eye-tracking data, the eye tracker was carefully positioned according to the manufacturer’s
instructions, and participants underwent a calibration process before the study.

To minimize potential biases, the study was conducted in a controlled environment. Each
snippet was presented only once in a random condition to avoid any potential learning
effects. Participants received clear written instructions and a warm-up snippet to ensure
they are familiar with the study procedures, reducing the risk of misunderstanding or
confusion.
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Furthermore, the selected code snippets have undergone careful adaptations to standard-
ize tasks, remove code documentation, and obfuscate obvious function and variable names.
These modifications aimed to minimize potential biases arising from specific coding styles or
identifier names and allowed us to focus on the influence of comments on comprehension.

By employing established measures and methodologies, our study ensured accurate
representations of program comprehension, visual attention, linearity, and gaze strategies
during code and comment interaction. The rigorous experimental design and the control of
potential confounding factors enhance the internal validity of our findings.

8.3 external validity

External validity concerns how well our study’s findings can be applied to different popula-
tions, settings, and contexts beyond our specific sample and conditions. While our study
provides valuable insights into the effect of comments, it is essential to consider certain
limitations that may affect the generalizability of the results.

The sample for our study consists of computer science students with some programming
experience, which may not fully represent professional software developers or individuals
from different academic backgrounds. Therefore, the generalizability of our findings to a
broader population of developers should be interpreted with caution.

Additionally, the study focused on relatively simple code snippets with approximately
20 lines of code. While this design choice allows us to investigate the role of comments in
understanding basic code components, the findings may not fully capture the effects of
comments in more complex codebases or domains. The use of a controlled environment
and code snippets also differs from the dynamics of real-world software development,
potentially affecting the external validity.

Future research could consider expanding the participant pool to include developers
with varying levels of experience and from different programming languages or domains.
Furthermore, studying larger and more complex codebases could provide insights into how
comments influence program comprehension in real-world scenarios.
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C O N C L U S I O N

This thesis set out to explore the impact of comments on program comprehension among
computer science students, addressing five critical research questions through a combi-
nation of behavioral data, eye-tracking analysis, and participants’ subjective perceptions.
By providing a quantifiable analysis of how comments impact various aspects of program
comprehension, this research marks a notable contribution to the field, offering empirical
evidence to deepen our understanding the role of comments in software development.

Our findings revealed a complex relation between comments and the various dimensions
of program comprehension investigated, offering nuanced insights as outlined below:

RQ1: Program Comprehension: The study revealed that comments have a variable impact
on program comprehension. Some code snippets showed improved performance
with comments, indicating their potential to enhance understanding, while others
displayed a decrease in performance, highlighting the context-dependent effectiveness
of comments. Participants’ feedback supported these findings, noting that the value of
comments lies in their ability to clarify and summarize complex code segments, offer
context, and elucidate code intentions. This suggests that the efficacy of comments in
programming is highly reliant on their relevance, quality, and the specific context of
the code.

RQ2: Visual Attention: The study found that comments notably shift visual attention
during code comprehension, with approximately 23% of focus redirected from code to
comments. This demonstrates comments’ critical role in influencing how programmers
engage with and understand code. Participant feedback supported these findings,
indicating that comments are particularly valuable in navigating complex or unclear
code segments.

RQ3: Linearity of Reading Order: The study found that comments influence the linearity
of reading order, encouraging a more linear, top-to-bottom reading pattern locally.
Globally, the impact of comments on reading linearity was snippet-dependent, sug-
gesting a complex interplay between comments and reading strategies. These findings
indicate that comments serve as navigational aids in code comprehension, particularly
in guiding through complex sections, and underscore the importance of effective
commenting practices to enhance program understanding.

RQ4: Gaze Strategies: The investigation into gaze strategies revealed a significant tendency
for programmers to shift their gaze from code to comments, suggesting a directional
strategy that integrates additional context or clarifications found within comments.
This dynamic behavior indicates the significant yet variable role of comments in pro-
gramming, pointing to the need for flexible commenting practices that accommodate
diverse programming tasks and individual preferences.
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RQ5: Participants’ Perceptions: The study on participants’ perceptions highlighted that
comments can both simplify and complicate program comprehension, with significant
variability across tasks. Notably, comments significantly reduced perceived difficulty
in certain tasks, underscoring their potential to enhance comprehension significantly.
Despite varied impacts on perceived difficulty, comments were universally valued
for their contribution to understanding, suggesting that their role extends beyond
simplifying tasks to enriching overall comprehension.

These findings contribute to a deeper understanding of the role of comments in program
comprehension, suggesting that while comments can be a powerful tool for enhancing
program comprehension, their impact is not universally positive nor negative and depends
on various factors including the complexity of the code, the quality and relevance of the
comments, and the individual programmer’s strategy for navigating code and comments.

The implications of these insights extend beyond academic inquiry into potential practical
applications for integrating adaptive commenting systems within development environ-
ments. Such systems could leverage insights from our study to dynamically adjust the
presentation or emphasis of comments based on the programmer’s current task, their read-
ing patterns, and possibly even their historical interaction with similar code structures. This
personalized approach could optimize program comprehension by ensuring that comments
serve as effective guides through the code, enhancing understanding without overwhelming
the programmer with unnecessary information.

In conclusion, this thesis not only contributes to the theoretical understanding of the role
of comments in program comprehension but also opens avenues for practical applications
and future research. By shedding light on how comments influence various aspects of
program comprehension, we offer a foundation for developing more effective commenting
practices and tools that can adapt to the needs of individual programmers. This work points
towards the need for further research into the cognitive processes underlying programming.
Understanding the interplay between comments and program comprehension, visual atten-
tion, and comprehension strategies could provide a foundation for designing more intuitive
and supportive development tools and environments.

Future work in this area could focus on developing algorithms or models that predict
the usefulness of comments based on the code context, programmer expertise, and task
complexity. Additionally, exploring the role of automated comment generation and its
effectiveness compared to human-written comments could offer insights into how best to
support programmers in their work. Ultimately, this thesis lays the groundwork for a more
nuanced understanding of comments in programming, advocating for their strategic use to
improve program comprehension and the software development process at large.
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Figure A.1: Warm-Up Snippet. Solution: true
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(a) Snippet 1 CM

(b) Snippet 1 CP

Figure A.2: Snippet 1. Identifies a peak element of an array. Solution: 5
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(a) Snippet 2 CM

(b) Snippet 2 CP

Figure A.3: Snippet 2. Finds two elements that sum to a target. Solution: [9, 1]
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(a) Snippet 3 CM

(b) Snippet 3 CP

Figure A.4: Snippet 3. Computes maximum zero-sum subarray length. Solution: 5
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(a) Snippet 4 CM

(b) Snippet 4 CP

Figure A.5: Snippet 4. Longest consecutive sequence in array. Solution: 5
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(a) Snippet 5 CM

(b) Snippet 5 CP

Figure A.6: Snippet 5. Longest common subsequence between strings. Solution: 3
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(a) Snippet 6 CM

(b) Snippet 6 CP

Figure A.7: Snippet 6. Longest increasing subsequence length. Solution: 4



86 appendix

(a) Snippet 7 CM

(b) Snippet 7 CP

Figure A.8: Snippet 7. Efficient power calculation. Solution: 1024
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(a) Snippet 8 CM

(b) Snippet 8 CP

Figure A.9: Snippet 8. Fibonacci number at given position. Solution: 13
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(a) Snippet 9 CM

(b) Snippet 9 CP

Figure A.10: Snippet 9. Lists primes up to a number (Sieve of Eratosthenes).
Solution: [2, 3, 5, 7, 11, 13, 17]
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(a) Snippet 10 CM

(b) Snippet 10 CP

Figure A.11: Snippet 10. Binary search in sorted array. Solution: 7
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(a) Snippet 11 CM

(b) Snippet 11 CP

Figure A.12: Snippet 11. Counts palindromic substrings. Solution: 6
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(a) Snippet 12 CM

(b) Snippet 12 CP

Figure A.13: Snippet 12. Anagram check for two strings. Solution: true
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Table A.1: Order of snippets shown to participants.

Snippet Order

Participant 1 2 3 4 5 6 7 8 9 10 11 12

1 12 CM 2 CP 10 CM 6 CP 3 CP 1 CP 11 CM 4 CP 7 CM 5 CP 8 CM 9 CM

2 5 CP 12 CM 6 CP 1 CP 9 CM 11 CM 3 CP 10 CM 7 CM 4 CP 2 CP 8 CM

3 10 CM 1 CP 4 CP 3 CP 12 CM 8 CM 9 CM 2 CP 6 CP 5 CP 11 CM 7 CM

4 9 CM 11 CM 5 CP 12 CM 7 CM 3 CP 8 CM 2 CP 4 CP 6 CP 1 CP 10 CM

5 10 CM 11 CM 5 CP 1 CP 9 CM 7 CM 4 CP 2 CP 12 CM 8 CM 6 CP 3 CP

6 5 CP 11 CM 10 CM 8 CM 4 CP 2 CP 1 CP 6 CP 3 CP 7 CM 12 CM 9 CM

7 9 CM 6 CP 11 CM 8 CM 3 CP 7 CM 5 CP 12 CM 10 CM 1 CP 4 CP 2 CP

8 1 CP 11 CM 7 CM 8 CM 9 CM 4 CP 10 CM 12 CM 5 CP 2 CP 3 CP 6 CP

9 1 CP 4 CP 5 CP 9 CM 2 CP 12 CM 7 CM 6 CP 11 CM 3 CP 10 CM 8 CM

10 7 CM 9 CM 3 CP 4 CP 5 CP 6 CP 10 CM 1 CP 12 CM 11 CM 2 CP 8 CM

11 3 CM 11 CP 1 CM 12 CP 6 CM 2 CM 9 CP 5 CM 4 CM 10 CP 7 CP 8 CP

12 7 CP 10 CP 9 CP 5 CM 2 CM 6 CM 4 CM 8 CP 11 CP 1 CM 12 CP 3 CM

13 6 CM 10 CP 2 CM 12 CP 8 CP 1 CM 11 CP 3 CM 9 CP 4 CM 5 CM 7 CP

14 5 CM 7 CP 12 CP 9 CP 6 CM 8 CP 2 CM 10 CP 3 CM 11 CP 4 CM 1 CM

15 8 CP 10 CP 2 CM 1 CM 5 CM 3 CM 12 CP 9 CP 11 CP 7 CP 6 CM 4 CM

16 2 CM 6 CM 7 CP 12 CP 9 CP 10 CP 4 CM 3 CM 5 CM 8 CP 1 CM 11 CP

17 12 CP 8 CP 7 CP 4 CM 10 CP 6 CM 3 CM 11 CP 5 CM 2 CM 1 CM 9 CP

18 11 CP 1 CM 8 CP 4 CM 12 CP 7 CP 10 CP 3 CM 6 CM 2 CM 9 CP 5 CM

19 6 CM 7 CP 9 CP 1 CM 4 CM 3 CM 10 CP 12 CP 2 CM 5 CM 11 CP 8 CP

20 3 CM 9 CP 10 CP 6 CM 7 CP 1 CM 2 CM 4 CM 5 CM 8 CP 11 CP 12 CP
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Figure A.14: RTGCT Visualization of Line Order for Snippets 1-6
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Figure A.15: RTGCT Visualization of Line Order for Snippets 7-12



appendix 95

AboutTutorial

 Settings

List View  

 0  0  1  2  3  4  5  6  7  8  9 
10  11  12  13  14  15  15  16  17  18 
18  19  19  20  20  21  21  22  22  23  23  24  24

 25  25  26  27  27  28  28  29  30  31  32  incoming 
outgoing

Grid 



StoryOrderCodeFirst
Task1CP
22ms

StoryOrderCommentFirst
Task1CP
22ms

ExecutionOrderCodeFirst
Task1CP
38ms

ExecutionOrderCommentFirst
Task1CP
38ms

StoryOrderCodeFirst
Task2CP
24ms

StoryOrderCommentFirst
Task2CP
24ms

ExecutionOrderCodeFirst
Task2CP
51ms

ExecutionOrderCommentFirst
Task2CP
51ms

StoryOrderCodeFirst
Task3CP
26ms

StoryOrderCommentFirst
Task3CP
26ms

ExecutionOrderCodeFirst
Task3CP
66ms

ExecutionOrderCommentFirst
Task3CP
66ms

StoryOrderCodeFirst
Task4CP
28ms

StoryOrderCommentFirst
Task4CP
28ms

ExecutionOrderCodeFirst
Task4CP
97ms

ExecutionOrderCommentFirst
Task4CP
97ms

StoryOrderCodeFirst
Task5CP
26ms

StoryOrderCommentFirst
Task5CP
26ms

ExecutionOrderCodeFirst
Task5CP
128ms

ExecutionOrderCommentFirst
Task5CP
128ms

StoryOrderCodeFirst
Task6CP
27ms

StoryOrderCommentFirst
Task6CP
27ms

ExecutionOrderCodeFirst
Task6CP
236ms

ExecutionOrderCommentFirst
Task6CP
236ms

StoryOrderCodeFirst
Task7CP
21ms

StoryOrderCommentFirst
Task7CP
21ms

ExecutionOrderCodeFirst
Task7CP
50ms

ExecutionOrderCommentFirst
Task7CP
50ms

StoryOrderCodeFirst
Task8CP
23ms

StoryOrderCommentFirst
Task8CP
23ms

ExecutionOrderCodeFirst
Task8CP
64ms

ExecutionOrderCommentFirst
Task8CP
64ms

StoryOrderCodeFirst
Task9CP
20ms

StoryOrderCommentFirst
Task9CP
20ms

ExecutionOrderCodeFirst
Task9CP
124ms

ExecutionOrderCommentFirst
Task9CP
124ms

StoryOrderCodeFirst
Task10CP

25ms

StoryOrderCommentFirst
Task10CP

25ms

ExecutionOrderCodeFirst
Task10CP

26ms

ExecutionOrderCommentFirst
Task10CP

26ms

StoryOrderCodeFirst
Task11CP

26ms

StoryOrderCommentFirst
Task11CP

26ms

ExecutionOrderCodeFirst
Task11CP
119ms

ExecutionOrderCommentFirst
Task11CP
119ms

StoryOrderCodeFirst
Task12CP

19ms

StoryOrderCommentFirst
Task12CP

19ms

ExecutionOrderCodeFirst
Task12CP

19ms

ExecutionOrderCommentFirst
Task12CP

19ms upload your stimulus (image or video)

Figure A.16: RTGCT Visualization of AOI Order for Snippets 1-6
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Figure A.17: RTGCT Visualization of AOI Order for Snippets 7-12
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