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ABSTRACT

Code complexity metrics have seen widespread use to predict how hard comprehending
a program is. However recent studies have cast some doubts on how well suited they
actually are for this purpose. Subjective difficulty has been shown as a potentially better
predictor then complexity metrics. In this thesis we will further investigate how strongly
both complexity metrics and subjective difficulty correlate with the difficulty of program
comprehension and the usage of different strategies for program comprehension. To this
end we have used data from a previously conducted combined electroencephalogram
(EEG) and eye-tracking study on program comprehension and searched for correlations
with complexity metrics and subjective difficulty. In this the mental load measured by
an EEG shows the difficulty of program comprehension while eye-tracking data helps us
understand differences in comprehension strategy. We found that some complexity metrics
can explain the difficulty of program comprehension pretty well. Subjective difficulty
performed worse than multiple metrics but seems to correlate with an aspect of mental
load that no complexity metric does. We also found significant differences in fixation length
between iterative and recursive code snippets. Lastly, we found multiple relations that
warrant a deeper investigation in future research.
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INTRODUCTION

When a part of code in a larger project is very complex it can lead to a lot of problems
in long-term development. Since complex code is difficult to understand it is harder to
maintain, because a lot of tasks become more difficult. For example, it becomes harder
for programmers to familiarize themselves with the code, which makes introducing new
programmers to a project harder. In addition, maintenance becomes harder because errors
are more likely to occur in more complex code [16]. Thus, it would be beneficial to rewrite
code sections that are difficult to understand to be less complex and easier to understand.

However, to rewrite complex code sections we first need to be able to find these code
sections. Using programmers’ subjective judgement of difficulty is limited because it is
a subjective measurement. This comes with two significant problems to its usability as a
metric. Firstly, it is hard to automate and secondly as a subjective measurement it can differ
to a significant extent between programmers. Instead metrics that use properties of the
source code have been used to judge the complexity of code. Two such examples are lines
of code and cyclomatic complexity. These metrics are objective and easy to automate.

However, it is still unclear how well complexity metrics correlate with the actual effort
needed to understand a program. In the past years, a new wave of software engineering re-
search has expanded the use of neuro-imaging techniques in software engineering research.
This gives us the tools necessary to measure the mental load during program comprehen-
sion directly. Thus, we can use neuro-imaging techniques to validate if complexity metrics
actually correlate with mental load. So far there only have been a few studies into this
topic, with most of them being limited by a limited number of metrics and snippets used. A
study by Peitek et al.[18] was the only study we found that used both a big set of snippets
and numerous metrics. They found that overall subjective difficulty performed better then
complexity metrics, with multiple widely used complexity metrics showing no or weak
positive correlations with brain activation [18].

In this thesis we will use data from an experiment that used EEG to measure mental
load. In the experiment eye-tracking and EEG data was collected for 37 participants. After
the experiment participants were asked to give a subjective difficulty judgement for each
snippet [17]. In addition, we calculated complexity metrics for each snippet where they
were applicable. Using this data we will investigate correlations between code complex-
ity (measured by complexity metrics and subjective difficulty) and both mental load and
eye-tracking data.
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BACKGROUND

In this chapter we will introduce necessary background information for this thesis.

2.1 PROGRAM COMPREHENSION

Program comprehension describes the family of tasks related to understanding the func-
tionality of a source-code snippet. In every-day work basically every task of a programmer
includes program comprehension [25]. Therefore, program comprehension tasks have been
used in research for a long time to measure how difficult it is to work with a piece of
code. The first big wave of research into program comprehension happened in the 198os.
This research did establish several theories regarding how programmers understand code,
most importantly the difference between bottom-up and top-down comprehension [21].
Bottom-up comprehension describes a strategy in which a programmer reads a program
line-by-line and constructs a mental model for the entire snippet based on the effect of
each line. In contrast to bottom-up comprehension top-down comprehension describes a
strategy in which a programmer starts out with a mental model of what the code does and
checks if the rest of the code confirms this model [19]. The model can be based on telling
identifiers, general structure, or other so-called beacons [1]. In general, the choice between
using top-down and bottom-up comprehension is not a conscious decision but based on
factors like experience and code clarity. These models for program comprehension strategies
where mainly developed using techniques like think-aloud protocols or post-experiment
interviews [19].

Siegmund [21] provided a general overview over the state of program comprehension
research. This work outlined both the findings of the first wave of research into program
comprehension and also more recent developments. After the first wave research into the
human components of software engineering was largely ignored in favour of research into
technical aspects. Only starting around 2010 did research into program comprehension gain
steam again. This was driven by the usage of neuro-imaging techniques (see chapter 2.4) to
gain a better understanding of the workings in the brain during program comprehension.
This new wave of research is still ongoing, and here we present some important findings of
these studies so far. A number of studies were important as they provided a proof-of-concept
for using different neuro-imaging techniques in software engineering research [2, 3, 15,
22]. Another study showed the possibility of deciding code complexity based on mental
load measurements [12]. Peitek et al. found correlations between programmer performance
and mental load, with better programmers showing fewer and lower spikes in mental load
during program comprehension tasks [17].

In addition, research using eye-trackers was conducted to further our understanding of
theories about program comprehension strategies [20]. One of these studies found that
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intermediate programmers read code less linearly then beginners and that the linearity
of source code significantly impacts the linearity of reading the code [19]. Another study
found that more proficient programmers are more likely to skip tokens, fixate code parts
for a shorter amount of time and are less likely to revisit tokens. Overall, this shows a more
efficient reading behaviour for more proficient programmers [17].

2.2 CODE COMPLEXITY

Code Complexity describes how hard to understand a source-code snippet is. Importantly,
code complexity is not solely dictated by the functionality of the code but instead depends
on the way this functionality is implemented. We can see that two source-code snippets
with the same purpose can differ in terms of complexity by comparing a straightforward
implementation of a function with one that includes a lot of unnecessary operations. The
one with unnecessary operations is harder to understand, even if it implements the same
functionality (see Figure 2.1).

Figure 2.1: Two methods that implement the same functionality (switching two values) but with
different complexities. The right snippet simply switches two variables while the left one
uses unnecessary complex operations

Overall, we would expect code complexity to correlate with the time needed to solve
a task and with how often the task is solved successfully. For example, a more complex sys-
tem would be harder to maintain, requiring more working time then a less complex system.
Because of that a way to measure the complexity of a source-code snippet automatically
could prove highly beneficial to software development by identifying parts of a program that
might introduce problems or lead to higher maintenance effort when working on a program.

An intuitive way to measure code complexity is subjective difficulty, asking program-
mers working on it to judge how difficult the snippet is. Different studies found correlations
between subjective difficulty ratings and answer correctness or time taken for a task [12,
18]. However, using subjective difficulty comes with the problem that there is no intuitive
way to automatically classify source-code snippets using subjective difficulty. As such it is
hardly usable in a practical environment because we want code complexity measurements
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to be quick and automated. In addition, subjective difficulty is dependent on the individual
programmer, because different people may judge the same snippet drastically different. For
example, in the study used in the exploratory analysis in this thesis for six snippets ratings
ranged from 1 (the easiest rating) to 10 (the hardest rating) and the ratings for a single
snippet had a mean range of 7.94 values. Ideally, we would want an alternative to subjective
difficulty that can be automated and is objective while still sharing similar correlations as
subjective difficulty.

2.3 COMPLEXITY METRICS

One possibility for such an alternative are complexity metrics, which only depend on the
actual program code (and comments in the code) and are thus objective and easy to auto-
mate. Complexity metrics have been used both in research and in practical development [18].

Some famous complexity metrics are McCabes cyclomatic complexity, Halsteads effort
metric or Lines of Code. McCabes cyclomatic complexity metric calculates the amount of
different paths through a program and is calculated by adding 1 to the number of if’s,
while’s, for’s, do’s, switch cases, catches, conditional expressions, &&’s and ||’s in the
method. When used in research and practical development, cyclomatic complexity is often
used with a threshold at which methods are marked as too complex. A common threshold
used is a cyclomatic complexity of 10 [18]. Lines of Code is a very basic metric that counts
the amount of lines of code in a method. There are some different variants of this metric
that count different lines as part of a metrics or not. In this thesis we used two different
variants. One which included every line of code except whitespace in the method and one
which also excluded comments. Halsteads effort metric is calculated from the number of
distinct operators, the number of distinct operands and the total number of operands in the
method [24].

Many metrics focus on a single aspect of code complexity. Cyclomatic complexity for
example only considers the number of different paths through a program. Some other
metrics combine multiple aspects, such as Halsteads effort metric, which should correspond
with the level of difficulty of understanding a method. This in turn should intuitively be
correlated to the difficulty during program comprehension. In addition, complexity metrics
exist for various levels in a project hierarchy, from metrics that deal with a single method
over methods over metrics on the level of classes and modules up to metrics for entire
projects. Metrics on each of these levels can deal with different aspects of code complexity.
As an example, cyclomatic complexity captures the control-flow of a single method, while
module metrics often deal with the connections between different modules.

While complexity metrics are widely used there is insufficient evidence that they actu-
ally are a good representation of code complexity. If they were we would expect them to
correlate with higher difficulty of program comprehension. Peitek et al. [18] found that
subjective difficulty correlated stronger with mental load (see Chapter 2.4) than any of the
complexity metrics they used. In addition, no single metric currently used captures all
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aspects of code complexity [9].

2.4 MENTAL LOAD

Mental load is a psychological term that describes the amount of work the brain has to do to
solve a task. When measuring mental load for a task we want to specifically measure mental
activity caused by this task and isolate that from the mental load caused by background
activity.

Neuro-imaging techniques are methods we can use to capture brain activity, either by mea-
suring it directly or by measuring effects caused by brain activity. The main techniques
used to measure brain activity are EEG, functional magnetic resonance imaging (fMRI) and
functional near-infrared spectroscopy (fNIRS). FMRI and fNIRS both measure the flow of
oxygenated blood to activated brain areas. To do so they use electromagnetic fields (fMRI)
or infrared light (fNIRS), both of which react differently depending on the oxygen level
of blood. While this response can be located very well, especially when using fMRI, it
takes some time after the onset of brain activity to occur and is thus hard to match with
a specific stimulus. As such fMRI has high spatial resolution, meaning that which brain
areas are active can be identified very well, and low temporal resolution, meaning that we
cannot pinpoint when a brain area is activated or deactivated [6]. In contrast, EEG directly
measures the electronic potentials created by brain activity.

Aside from these techniques there also are some less common ways to measure mental
load, for example heart rate variability (HRV) measurements. These measure the increase
in heart rate caused by increased mental activity. Different neuro-imaging techniques all
have different strengths and weaknesses that lead to different experimental designs and
means they capture different aspects of mental load [2]. We will describe EEG in more detail,
because it was used in the study we used for this thesis.

Figure 2.2: Images of different neuro-imaging techniques, form left to right: An EEG cap in use [27],
a measurement tool used in fNIRS [15] and a MRI device as used for fMRI [28].

EEG is a non-invasive neuro-imaging device that can be used to measure the electrical
potentials created by mental activity in the brain. To use an EEG electrodes are placed on the
participants skull and a conductive gel is used to connect them to the skin so that electrical
potentials can be measured. While the participant performs a task each of these electrodes
continuously measures the electrical potential at the place it is attached to. This allows EEG
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to have a very high temporal resolution, because changes in electrical potentials happen
within milliseconds of a stimuli appearing. However, EEG has a very poor spatial resolution
because it is mathematically not possible to discern where the electrical potentials originate
based only on the values present at the electrodes. As a result, it is not possible to calculate
which brain areas are active based only on EEG measurements. It is however possible to
use EEG to check an assumption about where in the brain a process occurred. Such an
assumption could for example be based on prior work using a technique with good spatial
resolution like fMRI. [11]

Program comprehension tasks are tasks used in software engineering research to measure how
difficult it is to work with a piece of code. These tasks are appropriate for this purpose be-
cause program comprehension features in nearly every task a programmer might face. Thus,
program comprehension tasks enable us to measure mental load during understanding a
source-code snippet. Some of the earliest program comprehension tasks used in research
were modifying a source-code snippet to fit a given specification [4] and rewriting code
from memory [4, 21]. These tasks were all assumed to be easier the better the program
was understood based on prior psychological research. In contrast, newer studies instead
used tasks more directly related to program comprehension, such as first understanding a
snippet and then giving the output for a given input [18].

Ideally, we would expect that measurements of code complexity correlate with mental
load during program comprehension. So, we would expect a more complex source-code
snippet to require more mental effort to understand then a simpler snippet. If this as-
sumption holds then mental load during program comprehension tasks should strongly
correlated to code complexity metrics. In practice these assumptions could so far not be
proven, for example a study by Peitek et al. [18] found at best weak to medium correlations
between mental load and code complexity metrics.
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In the previously mentioned study, Peitek et al. [18] conducted an experiment in which
they used fMRI to measure mental workload. The snippets they used were similar to ours,
small Java snippets without identifying names, but all of the snippets only consisted of one
method. They searched for correlations between complexity metrics and mental workload
as well as subjective difficulty and mental workload. Peitek et al. found small to medium
correlations for complexity metrics and mental workload but a strong correlation for mental
workload and subjective difficulty.

A number of studies analysed the correlations between mental workload and program com-
prehension. A study using fMRI to measure mental workload during top-down and bottom-
up comprehension of Java source-code snippets was conducted by Siegmund et al. [23].
In the study participants were shown snippets designed to facilitate or hinder top-down
comprehension. They found a significantly lower mental workload for snippets enabling
top-down comprehension than for snippets that necessitate bottom-up comprehension. In
addition, they identified a brain area that was activated for bottom-up comprehension and
deactivated for top-down comprehension. Medeiros et al. [12] conducted a study in which
they measured mental workload using EEG. They used three different Java source-code
snippets and collected subjective difficulty ratings from the participants. They were able
to build a classifier that could identify whether data belonged to the easiest source-code
snippet with both high recall and precision. However, when data belonged to one of the two
more difficult snippets the classifier was not able to distinguish between them in a reliable
manner. This also matched up with the subjective difficulty ratings in which the two more
complex snippets scored nearly equal. Of note is that the two snippets had significantly
different complexity metric values for multiple metrics, most notable cyclomatic complexity,
but neither mental workload nor subjective difficulty reflected that.

Yeh et al. [26] conducted a study in which they used EEG to measure mental workload
during code comprehension tasks on C/C++ snippets. For each snippet they used two
versions that computed the same result. One of the versions was intentionally changed to
be more confusing by obfuscating identifiers and introducing statements with no effect on
the result. They found that mental workload was higher for confusing source-code snippets
and also that mental workload correlated with correctness of the answers.

Overall, these studies all found links between mental workload and subjective difficulty
or mental workload and code complexity. They found that mental workload can be used
to distinguish between snippets seen as easy or hard according to subjective difficulty.
However, the ability to distinguish between snippets based on mental workload in these
studies was somewhat limited, only being able to distinguish between snippets with clear
differences in subjective difficulty.

11
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Aside from studies dealing with relations between mental workload and program compre-
hension there also exist other studies in the field of software engineering using different
techniques to measure mental workload. Nakagawa et al. [15] used fNIRS to measure the
cerebral blood flow while comprehending easy and hard C source-code snippets using
bottom-up strategies. Similar to the study by Yeh et al. the hard snippets were created by
obfuscating easy snippets. They found increased blood flow for hard tasks, aligning with
the expected higher mental load for these tasks. This suggests that fNIRS is a viable way to
measure mental workload for programming. Couceiro et al. [2] used HRV as a measurement
of mental workload during program comprehension tasks on Java snippets. They found
that it matched the subjective difficulty experienced by the participants much closer then
cyclomatic complexity did. Both HRV and subjective difficulty were nearly equal for code
snippets with highly different cyclomatic complexity. Kosti et al. [10] used EEG to measure
mental workload during program comprehension tasks on snippets in the programming
language C. They were able to construct models that distinguished between syntax tasks
and program comprehension tasks based on the matching EEG data. Overall, these studies
have shown that different techniques to measure mental workload are suitable in software
engineering research.

In addition to this more recent research into program comprehension and code com-
plexity there also exist a number of older studies into code complexity. These often-found
correlations between code complexity and programmers” performance in program compre-
hension tasks or subjective difficulty. For example, Curtis et al. [4] conducted an experiment
were participants were shown Fortran snippets and then had to recall the program or
modify it in a specified way. They found that both Halsteads effort metric and McCabe’s
cyclomatic complexity correlate with programmer’s performance in these tasks. In another
study Kafura et al. [7] searched a long-term developed system for complexity outliers. They
then asked developers heavily involved in the project for a subjective difficulty evaluation
of the different parts of the project. They showed that for a number of complexity metrics
the outliers were parts of the program associated with problems or confusion during de-
velopment. In a more recent study Katzmarki et al. [9] matched programmers’ subjective
difficulty rankings of Java snippets with complexity metrics for those snippets. They found
that while there is some correlation between complexity metrics and subjective difficulty no
metric fully agrees with subjective difficulty and also that more complex metrics did not
necessarily outperform simpler metrics that measure the same general aspects of a program.

In the study that is also used for this thesis Peitek et al. [17] used EEG and eye-tracking to
collect data from participants during program comprehension tasks. They also collected
experience measurements for the participants. They found that more efficient programmers
read code more efficiently and have a lower mental workload during comprehension. They
also found that some common experience measures like years of programming did not
correlate with efficiency, while some less common measures such as self-estimation and
measurements of learning eagerness correlated with efficiency.

In general, the connection between complexity metrics and mental workload has only
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been explored a little. Most studies that used complexity metrics did not deal with mental
workload and most studies that used mental workload used heuristics or subjective judge-
ment for code complexity. When studies included complexity metrics it is often only in a
small manner including only a few complexity metrics. A counterexample to this is the
fMRI study by Peitek et al. which did include a high number of complexity metrics and
also found some weak to medium correlations between complexity metrics and mental
workload. However, with it only being a single study the generalisability of their findings is
limited. As such to what extent currently used complexity metrics actually correlate with
code complexity and mental workload during code comprehension is still not fully clear
and we aim to expand upon the existing research into the topic by using another technique
to measure mental workload. In regard to the other main aspect of our study, the correlation
between eye movement and complexity metrics, we were not able to find any previous work
that dealt with the effect code complexity has on eye movement and reading strategies.

13






STUDY DESIGN

In the following we will describe the overall design of our study. We will begin by describing
the experiment conducted by Peitek et al. [17]. Then we will present our research questions
and explain how we will use the data from the experiment by Peitek et al. for our analysis.

4.1 EXPERIMENT DESIGN

The experiment was conducted by Peitek et al. for a study dealing with programming
experience and performance [17]. They had participants solve program comprehension tasks
while recording their eye movements using an eye tracker and using an EEG to measure
brain waves. We will use the data collected in this experiment for this thesis.

For the experiment 39 participants were invited. Every participant had at least one year of
experience with Java or three years of experience with a related language (for example C#).
Of those participants one did not complete the experiment and the data of one participant
was not included in the analysis because they were an outlier in regard to time taken to an-
swer, being too slow for more than half of the tasks. For one of the remaining 37 participants
the eye-tracker could not be calibrated, so only EEG data was collected for them. As such
EEG data from 37 and eye-tracking data for 36 participants were available for our analysis.
In the experiment participants had to complete program comprehension tasks. One task

Up to 60 sec 30 sec Up to 60 sec 30 sec

Input/Output | Rest - Input/Output | Rest

Upto60sec | [ 30sec
Input/Output Rest

Upto6Osec | | 30sec
Input/Output Rest

+

Up to 30 sec 30 sec
—
Search Task Rest

Figure 4.1: The order of the different tasks during the experiment.

consisted of two steps. In the first step the participants were shown a source-code snippet
until they confirmed they understood the snippet or 180 seconds passed. Afterwards the
snippet was replaced by an input and the participants had to calculate the output for this
input. When they confirmed that they had solved the task they were shown four possible
outputs and an option to skip the task. The selection of the correct output was limited to 60
seconds. The participants were asked to select the output the snippet would give for the
input or select skip if they weren’t able or willing to solve the task. As a distraction task

15
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for the EEG measurements a search task in which participants had to count brackets was
included. The distraction and comprehension task were ordered so that participants always
completed blocks of four comprehension and one distraction tasks. Between tasks a rest
condition in the form of cross fixation was included. Each rest condition lasted 30 seconds.
Figure 4.1 presents the overall order of tasks in the experiment.

The experiment lasted up to an hour, with breaks of up to five-minute length after 20
and 40 minutes. In total up to 32 program comprehension tasks were presented. Due to
the experiment length being limited to an hour most participants answered less than 32 tasks.

After the experiment each participant answered a postquestionnaire which included them
ranking the difficulty of each task. This subjective difficulty rating was performed by par-
ticipants ranking all the snippets on a scale from 1 to 10 using papers with images of the
snippets on them. Each participant was only handed snippets they actually saw during the
experiment. In some cases, a participant could not remember that they saw a snippet. In
this case the snippet was excluded from the rating.

4.2 RESEARCH QUESTIONS

We will use the data from this experiment to answer a number of research questions. As we
explained in the section regarding related work, while many studies exist dealing with code
complexity metrics and also an ever-growing number of studies using mental load during
program comprehension studies the correlations between code complexity and mental load
are still largely unexplored. As such the first research question we focus on is:

RQ1: What correlations between complexity metrics and mental load during program
comprehension tasks exist?

In addition to mental load data the experiment also collected eye-tracking data which
could give us insight into different usage of strategies to comprehend source-code snippets
of different difficulties. As such our second research question is:

RQ2: What correlations between complexity metrics and eye-tracking metrics during
program comprehension tasks exist?

The first study in the area of correlations between code complexity and mental load
found that overall subjective difficulty is often correlated more strongly with mental load
then with complexity metrics [18]. We want to continue this avenue of research by studying
if there is a metric or multiple metrics that correlate with subjective difficulty particularly
strongly. If we find such a metric it might be usable as a replacement for subjective difficulty
that can easily be automated. As such our third research question is:

RQ3: What correlations between complexity metrics and subjective difficulty ratings for
methods exist?
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Lastly, we want to see how subjective difficulty performs as a method for judging mental
load. In addition, we want to look at the connections between subjective difficulty and
eye-tracking. As such our fourth and fifth research questions are:

RQ4: What correlations between subjective difficulty and mental load during a program
comprehension task exist?

RQs5: What correlations between subjective difficulty and eye movement during a pro-
gram comprehension task exist?

4.3 DATA

In this section we will explain how we obtained and analysed the data for our study.

4.3.1  Complexity Metrics

The experiment by Peitek et al. did not use complexity metrics so we had to find an ap-
propriate set of metrics to use for our study. One problem we found with this was that the
source-code snippets in the experiment were not designed with applying a set of metrics to
them in mind. Most of the snippets presented to the participants consist of only one method,
which would make method complexity metrics an appropriate option. However, a number
of snippets consist of multiple methods or include helper classes. For these snippets method
complexity levels are not able to capture the entirety of the snippet in their measurement. To
have a set of complexity metrics that can be used for every snippet we would thus need to
use module complexity metrics. Using module complexity metrics would come with other
disadvantages which we believe would outweigh the advantage of using more snippets.
Thus, we decided to use method complexity metrics. In the following we will explain ad-
vantages and disadvantages of both module and method complexity metrics for our data set.

The first aspect, which we already mentioned is the number of snippets the metric can be
used for. All 32 snippets consisted of a single module and thus could be measured with
module complexity metrics. For method complexity metrics six snippets consist of more
than one method and thus could not be appropriately measured with method complexity
metrics and one snippet had a helper class that would not be taken into account by the
method complexity metrics. Overall, this means using module complexity metrics would
allow us to use seven additional snippets for our study.

However if we use module complexity metrics we would face two large issues, firstly
we could not use many commonly used metrics such as cyclomatic complexity, because
these are only defined for methods and not for modules. In addition, while some metrics
that are not typically used at a module level could easily be adopted for use at such a level,
some metrics, again including the commonly used cyclomatic complexity, cannot be cleanly
used on a module level. While in theory these important method level metrics could be
replaced by other often used module level metrics, such as ones concerned with connections
with other modules, basically all of these metrics would be unusable, because they are
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designed to judge a module that is part of a bigger project, often in terms of connections
with other modules. Because all modules presented in the experiment work completely
isolated from each other we could not apply these metrics in a sensible manner.

As such we decided to use method metrics, because being able to use more metrics and
metrics that are more meaningful for the snippets was more important than using more
snippets with less meaningful metrics. In theory using class level complexity metrics was
also possible, however these would have shared all the issues module complexity metrics
had while still excluding one snippet and thus this option was not further investigated.

After deciding to use method complexity metrics we then had to find a fitting collec-
tion of metrics to use. We used the MetricsReloaded Plugin for Intelli] [14] to calculate all
available method level metrics. We then removed all metrics whose values where always
zero for all of our snippets. This removed eleven out of 41 metrics. Then in a second pass
we checked if there were any two metrics with exactly the same values for each snippet
and found two such pairs. Thus, we removed one metric from each of these pairs from
our analysis, to prevent duplicate values. A list of all initially used metrics with reasons
for excluding the metric if we didn’t use it in our analysis can be found in the appendix
(Section A.1).

4.3.2 Mental Load

To measure mental load, we used the mental load data provided by the original study.
The data was calculated using the ratio of alpha to theta band measurements. Since theta
band activity mostly represents background activity while the brain is idle and alpha band
activity mostly represents active thought, like it is required to comprehend program code,
this gives a good measurement of mental load. In addition to the study by Peitek et al. [17]
this measurement has been shown by Medeiros et al. [13] to be a good measurement of
mental load in computer science research. It is also commonly used in psychological work,
for example by Holm et al. and Kartali et al. [5, 8] Since we use the same metric as the
study by Peitek et al. we reused their already calculated mental load values instead of
recalculating them for our study. The measurements include a data point every 0.1 seconds,
with a single data point being comprised of values from a 3 second sliding window. This
gives us values over time for each participant and each snippet.

From these values we determined outliers by calculating the inter-quartile range for each
snippet and removing every value further away from the median than 3 times the inner-
quartile range. If more than 50% of the values of a participant for a single algorithm were
marked as outliers we removed the entire measurement as an outlier, otherwise we kept
the entire measurement. Initially we tried to also remove individual data points if they
were marked as outliers, however this would have removed a lot of valid data due to the
waveform of mental load data (See Figure 4.2 for why outlier removal was necessary).

We used 3 times the interquartile range instead of the more common 1.5 times the inner
quartile range to make up for the true high peaks in mental load data we used (See Figure
4.3). If more than half of the measurements for a single participant were removed we
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Figure 4.2: Examples of our mental load data for two tasks before outlier removal (RabbitTortoise on
the left and MedianOnSorted on the right). Each colored line represents data from one
participant. It shows clearly that data for at least one participant is a significant outlier in
each of these tasks. Similar outliers existed for most tasks for a few participants. If we
did not remove these outliers our mental load measurements, especially the maximum
mental load would have been heavily distorted.

excluded the entire participant to account for potential errors in the EEG set-up that could
render these measurements unusable.
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Figure 4.3: The data for the snippets in Figure 4 (RabbitTortoise on the left and MedianOnSorted
on the right) after removing outliers (more then half of values outside of 3 times the
inter-quartile range). The upper bound of 1.5 times the inter-quartile range was below 10
for each snippets. As we can see using 1.5 times the inter-quartile range we would have
cut off a lot of data due to the peaks in mental load data.

We then calculated three different values for each algorithm and each participant. These
values were the maximum and minimum of the mental work values and the mean of all
values. To obtain a single value for each snippet we then calculated the mean for each of the
values. This yielded three metrics we could use for our analysis: MW-min, MW-max and
MW-mean.

1. MW-max: The mean of the maximum mental load during a task, calculated over all
participants
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2. MW-mean: The mean of the mean mental load during a task, calculated over all
participants

3. MW-min: The mean of the minimum mental load during a task, calculated over all
participants

4.3.3 Eye Tracking Metrics

For our eye-tracking metrics we obtained data in the form of fixation lengths for all fixations
during the experiment. The data was divided into first fixations and refixations and available
on three different levels, tokens, areas of interest (AOI) and lines of code. We chose to only
use data from the token and AQOI level, because lines of code would be less granular then
tokens and less telling then AOIL. An example for how AQOIs and tokens were marked can
be seen in Figure 4.4. For both levels we then calculated the following metrics: The average
fixation length for first fixations, refixations and all fixations, the average percentage of
fixations that were refixations and the percentage of tokens/AOIs that were skipped. We
counted a token as skipped if it was never fixated. The fixation length data from the original
experiment was divided into first fixations and refixations. However in some cases a token
or AOI had two lengths for first fixations given. This happened when a participant fixated
a token or AOI for the first time, then the eye-tracker lost track of their fixation and the
next fixation was again the same token or AOI. Possible reasons for this could be that the
participant looked off-screen, which would disrupt the eye-tracking or that the eye-tracker
failed to track the participants eyes for some time, for example because of a glare on their
glasses. We decided to only count the first of these fixations as a first fixation and every
subsequent one as a refixation. We did this because we can’t know for certain if there was a
fixation in between those two fixations or not. In total this yielded ten eye-tracking metrics
we used in our analysis. A list of all used eye-tracking metrics can be found in the appendix
(Section A.2).

4.3.4 Subjective Difficulty

For the subjective difficulty ratings of the snippets, we used ratings obtained in a post-
questionnaire in the original study. For this, participants were asked to sort all of the
snippets regarding how difficult they were on a scale from one to ten. These values exist for
38 out of 39 participants because one participant did not finish the post-questionnaire. To
obtain single values for each algorithm we then calculated the median subjective difficulty of
each snippet (SD-Median). This is necessary for our analysis because we compare subjective
difficulty and complexity metrics. Thus, we need to bring our subjective difficulty data into
a form that is comparable to that of complexity metrics, one value per algorithm.

Instead of the median we could also have used the mean of the subjective difficulty ratings
of a snippet. However, we do not know if the participants used the scale from 1 to 10 as a
linear scale or in some other fashion. For example, in the postquestionnaire a participant
explained that they used the scale with small differences between 1 to 6 and increasingly
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pubtic static int[] pogo(int[] field)] {
Random r = pew Random [J);

while ('isFinished(field)) {

int a = [IEXTIN(FIeLd. Tengthl];
int b = FREXCITTIeld. Tength));
int temp = field[a];

field[a] = field[b];

field[b] = temp;

return field;

pubTic static boolean fisFinished(int[] field)] {

for (int i = 0; i < field.length - 1; i++) {
if (field[i] > field[i + 1)
return false;

i3
return true;

}

Figure 4.4: This graphic showcases the selection of AOIs and tokens for the example of the BogoSort

snippet. On the left the tokens are marked, encompassing singular words or characters.

On the right the AOIs are marked, encompassing bigger logical areas of the program.

bigger differences between 77 to 10. Because the mean assumes a linear scale, we decided to

use the median.
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RESULTS

In this section we will present the results of our analysis. To check for correlations between
our metrics we used kendalls-tau. We decided to use kendalls-tau (instead of pearson’s
correlation coefficient) due to it dealing better with outliers and being well suited for ordinal
and continuous data. The Thresholds we used correlations can be seen in Figure 5.1.

-1 -05 -03 -01 0,1 0,3 0,5 1

Figure 5.1: This graph shows the different categories of correlation we used. The graph reaches from
strong negative correlations to strong positive correlations.

5.1 RESEARCH QUESTION 1

In the following we will present the results relevant to research question 1:
What correlations between complexity metrics of methods and mental workload during Program
comprehension tasks exist?

All correlations between mental workload and complexity metrics can be found in Figure
5.2. For MW-mean we found mostly no or weak positive correlations. However, CALLED
and RETURN showed weak negative correlations. MW-min shows no or a weak negative
correlation with most metrics. We also found a weak positive correlation with the metrics
ev(g) and IF_NEST. In Addition, BRANCH showed a medium positive correlation with
MW-min. For MW-max we found weak to medium positive correlations with most complex-
ity metrics. Four metrics (BRANCH, CALL, CALLED and ev(G), while D and E showed
strong positive correlations with MW-max.

The metrics that showed medium or strong positive correlations with MW-max are a
diverse set of metrics. Both very simple metrics (LOC) and more complicated metrics (QCP
metrics) are part of that group. These metrics also measure different aspects of the program,
for example control flow metrics (v(G)), vocabulary metrics (N) and code size metrics (STAT)
all show medium positive correlations.
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BRANCH __|CALL CALLED __|cAsT CDENS CONTROL _|D
MW-max 0,093 0,065 -0,026 0,118 0,134 0,355H
MW-mean 0,031 0,011 0,170 0,165 0,051 0,112 0,246
MW-min 0,303 0,049 0,119 -0,259 0,093 0,067 0,132
E ev(G) EXEC EXP F_NEST___[iv(G) LOC
EH 0,039 0,322 0,466 0,161 0,246 0,409
MW-mean 0,260 0,078 0,112 0,223 0,085 0,138 0,129
MW-min -0,080 0,156 0,077 -0,108 0,275 0,130 0,024
LOOP LOOP_NEST |N n NBD NP QCP_CRCT
MW-max 0,393 0,278 0,467 0,269 0,142 0,063 0,483
MW-mean 0,360| 0313 0,225 0,310 0,117 0,143 0,195
MW-min -0,103| 0,013 -0,084 0,003 0,229 -0,045 0,067
QCP_MAINT |QCP_RLBTY |RETURN __|RLOC STAT v v(G)
MW-max 0,455 0,462 -0,130 0,155 0,368 0,384 0,398
MW-mean 0,194 0,199 0,112 0,135 0,165 0,177 0,190
MW-min -0,087 0,064 -0,067 0,041 0,018 -0,037 0,004

Figure 5.2: This table shows the correlations between our mental workload measurements and the
complexity metrics we used.

Overall, we found that maximum and mean mental workload correlate with a wide array of
different metrics, but none of the metrics on their own explain mental workload. Maximum
mental workload showed significantly stronger correlations then mean mental workload.
For minimum mental workload we found at best weak correlations and no clear trend
regarding positive or negative correlations.

5.2 RESEARCH QUESTION 2

In the following we will present the results relevant to research question 2:

What correlations between eye-tracking metrics and complexity metrics during program comprehen-
sion tasks exist?

The correlations between eye-tracking metrics using tokens and complexity metrics can
be found in Figure 5.3. The correlations between eye-tracking metrics using AOIs and
complexity metrics can be found in Figure 5.4.

For the different fixation length metrics, we found mostly weak or no correlations with a few
exceptions. Multiple metrics showed medium negative correlation with one or more fixation
length metrics. For the CALLED metric we also found a medium positive correlation for the
length of refixations on tokens (L_rf-TKN).

For the remaining metrics we will deal with those using tokens first. For both the likelihood
of a token being skipped (P_skip-TKN) and of a fixation being a refixation (P_rf-TKN) we
found mostly no or weak positive correlations. A few metrics also showed weak negative
correlations (P_skip-TKN with BRANCH and P_rf-TKN with CAST and RETURN).



5.2 RESEARCH QUESTION 2

BRANCH CALL CALLED CAST CDENS CONTROL D
L_ff-TKN -0,056 -0,186 0,139 -0,047 0,058 -0,239 -0,037
L fix-TKN -0,068 -0,027 0,284 -0,071 0,216 -0,022 0,044
L_rf-TKN -0,068 0,072 0,325 -0,024 0,223 0,007 0,051
P_skip-TKN -0,155 0,065 -0,026 0,000 0,010 0,030 0,024
P_rf-TKN 0,241 0,011 0,057 -0,165 0,120 0,127 0,111
E ev(G) EXEC EXP IF_NEST iv(G) LoC
L_ff-TKN -0,153 0,078 0,378 -0,108 -0,123 -0,085 -0,269
L_fix-TKN -0,020 0,094 -0,287 -0,020 0,076 -0,013 -0,052
L_rf-TKN -0,020| 0,117 -0,294 -0,034 0,123 0,058 -0,010
P_skip-TKN 0,113 0,086 -0,035 0,128 0,038 0,013 -0,024
P_rf-TKN 0,033 0,055 0,070 0,027 0,171 0,058 0,136
LOOP LOOP_NEST |N n NBD NP QCP_CRCT
L_ff-TKN -0,252 0,234 0,124 0,140 0,263 -0,045 -0,154
L_fix-TKN -0,409 -0,402 0,010 -0,187 -0,246 0,260 -0,013
L_rf-TKN -0,426 -0,419 -0,003 -0,194 -0,220 0,296, -0,020
P_skip-TKN -0,087 -0,084 0,084 0,119 -0,065 0,081 0,007
P_rf-TKN 0,136 0,102 0,084 0,024 0,134 0,009 0,134
QCP_MAINT [QCP_RLBTY [RETURN RLOC STAT v v(G)
L_ff-TKN -0,167 -0,212 0,219 -0,088 0,361 -0,144 -0,294
L fix-TKN -0,027 -0,057 0,255 0,020 -0,242 -0,023 -0,078
L_rf-TKN -0,040) -0,064 0,290 0,007 -0,228 -0,023 -0,033
P_skip-TKN 0,054 0,051 0,121 0,101 0,046 0,104 0,108
P_rf-TKN 0,120 0,132 -0,103 -0,027 0,046 0,037 0,100

Figure 5.3: This table shows the correlations between our eye-tracking metrics using tokens and the

complexity metrics we used.
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BRANCH CALL CALLED CAST CDENS CONTROL |D
L_ff-AOI -0,130 -0,042 0,191 0,283 -0,072 -0,261 -0,064
L_fix-AOl -0,080 -0,141 0,201 -0,047 0,038 -0,089 0,091
L rf-AOl -0,105 -0,125 0,222 -0,118 0,065 -0,089 0,051
P_skip-AOI 0,006 0,460 0,212 0,094 0,120 0,164 0,165
P_rf-AOI 0,390 -0,148 -0,160 -0,165 0,134 0,350 0,307
E ev(G) EXEC EXP IF_NEST iv(G) LOC
L_ff-AOI -0,067 -0,008 -0,259 -0,142 -0,085 -0,058 -0,157
L fix-AOI 0,013 -0,047 0,217 0,061 -0,104 0,121 -0,066
L_rf-AQI -0,040 -0,039 -0,245 0,034 -0,095 -0,121 -0,094
P_skip-AOI 0,180 0,219 0,077 0,149 0,266 0,219 0,178
P_rf-AOI 0,287 0,031 0,385 0,291 0,152 0,022 0,311
LooP LOOP_NEST |N n NBD NP QCP_CRCT
L_ff-AOI -0,260 -0,225 -0,158 -0,051 -0,272 0,170 -0,168
L_fix-AOl 0,343 -0,375 0,050 -0,290 -0,375 0,215 0,027
L_rf-AOI -0,360 -0,393 0,024 -0,303 -0,367 0,215 0,007
P_skip-AOI -0,079 -0,066 0,138 0,160 0,082 0,054 0,134
P_rf-AQI 0,368 0,340 0,319 0,133 0,272 0,027 0,362
QCP_MAINT |QCP_RLBTY |RETURN RLOC STAT Vv v(G)
L ff-AOI -0,181 -0,199 0,165 -0,392 0,277 -0,157 -0,294
L_fix-AOI 0,020 -0,024 0,094 0,034 -0,207 -0,017 -0,152
L_rf-AOI -0,007 -0,051 0,138 0,047 -0,235 -0,043 -0,152
P_skip-AOI 0,127 0,125 0,246 -0,054 0,109 0,164 0,182
P_rf-AOI 0,361 0,388 -0,389 0,176 0,361 0,290 0,294

Figure 5.4: This table shows the correlations between our eye-tracking metrics using AOIs and the
complexity metrics we used.

For the metrics using AOIs we found the likelihood of an AOI being skipped (P_skip-AOI)
to show weak positive or no correlations with the complexity metrics. The only Exception
is CALL which has a medium positive correlation with P_skip-AOI. The likelihood of a
fixation being a refixation (P_rf-AOI) shows mostly weak or medium positive correlations.
A few metrics showed no (NP, ev(g), iv(G)) or a weak negative (CALL, CALLED, CAST)
correlation. In addition, RETURN shows a medium negative correlation.

The weak correlations for the probability of a fixation on a token being a refixation (P_rf-
TKN) and of a token being skipped (P_skip-TKN) would suggest that complexity metrics
are not able to capture what causes decision making for eye-movements on a token level. On
the other hand, the same metrics for AOIs showed overall stronger correlations, suggesting
complexity metrics are better suited to predict eye-movements on an AOI level than on a
token level.

With a few exceptions only weak correlations between fixation length metrics and complexity
metrics exist. The likelihood of a token being skipped or refixated showed only at most
weak correlations. The likelihood of an AOI being skipped also showed mostly only weak
correlations. The likelihood that a fixation on an AOI was a refixation showed medium
correlations with multiple metrics.
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5.3 RESEARCH QUESTION 3

In the following we will present the results relevant to research question 3:
What correlations between complexity metrics and subjective difficulty ratings for methods exist?

BRANCH CALL CALLED CAST CDENS CONTROL D

SD Median 0,180 0,139 0,239 -0,177 0,218 0,356 0,380
E ev(G) EXEC EXP IF_NEST iv(G) LoC

SD Median 0,294 0,092 0,237 0,276 0,219 0,168 0,245
LOOP LOOP_NEST [N n NBD NP QCP_CRCT

5D Median 0,053 -0,033 0,325 0,007 0,130 0,221 0,393
QCP_MAINT |QCP_RLBTY |RETURN RLOC STAT v v(G)

5D Median 0,331 0,344 0,010 0,091 0,230 0,240 0,232

Figure 5.5: This table shows the correlations between subjective difficulty and complexity metrics

All correlations between subjective difficulty and complexity metrics can be seen in Figure
5-5-

Overall, we found mostly weak and medium correlations. Six metrics showed no cor-
relation (LOOP, LOOP_NEST, ev(G), n, RETURN and RLOC). In addition, for the CAST
metric we found a weak negative correlation.

The metrics that showed medium positive correlations were a mix of simple metrics (like
LOC) and more complex metrics (like QCP_RLBTY). Notably every metrics that showed a
medium correlation here also has a medium or strong correlation with maximum mental
workload (see Chapter 5.5). The only negative correlation we found was for the metric
CAST. However, because CAST only has a value different from zero for one of our snippets
it is possible that the correlation would change with a set of snippets that is more balanced
regarding the metric.

Complexity metrics did show some positive correlations with subjective difficulty.
QCP_CRCT and D showed the strongest correlations. The only negative correlation was
for CAST and probably caused by limits of our data set. Multiple metrics also had no
correlation with subjective difficulty.

5.4 RESEARCH QUESTION 4

In the following we will present the results relevant to research question 4:
What correlations between subjective difficulty and mental workload during a program comprehension
task exist?

The correlations we found for mental workload and subjective difficulty can be found
in Figure 5.6. We can see that the correlation strongly depends on what aspect of mental
workload we look at. For MW-max we found a medium positive correlation, meaning
that for snippets with higher subjective difficulty ratings maximum mental workload was
higher. For MW-mean we found no correlation with subjective difficult, despite multiple
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MW -min

SD Median

-0,057

-0,301

0,365

Figure 5.6: This table shows the correlations between subjective difficulty and mental workload

L_ff-TKN L fix-TKN  |L_rf-TKN P_skip-TKN |P_rf-TKN
SD Median 0,079 0,193 0,165

L_ff-AOI L_fix-AOI L_rf-AOI P_skip-AOI |P_rf-AOI
SD Median -0,243 0,229 0,215 0,172

Figure 5.7: This table shows the correlations between subjective difficulty and eye tracking

complexity metrics showing medium or weak correlations with MW-mean. MW-medium
showed a medium negative correlation with subjective difficulty, meaning that for snippets
with higher subjective difficulty the minimum mental workload was lower. This is notably
the strongest negative correlation we found for minimum mental workload.

Subjective difficulty showed a medium positive correlation with maximum mental work-
load, no correlation with mean mental workload and a medium negative correlation with
minimum mental workload.

5.5 RESEARCH QUESTION 5

In the following we will present the results relevant to research question 5:
What correlations between subjective difficulty and eye movement during a program comprehension
task exist?

All correlations between eye-tracking metrics and subjective difficulty can be seen in
Figure 5.7. We found weak positive correlations with subjective difficulty for the lengths of
refixations and all fixations. The length of first fixations showed weak negative correlation
with subjective difficulty for AOIs and no correlation for tokens.

The probability of a fixation being a refixation showed strong positive correlations with
subjective difficulty for both tokens and AOIs. This suggests that how often they go back
to already fixated parts of a program significantly impacts a programmer’s assessment of
difficulty.

The probability of an AOI being skipped showed a weak negative correlation with sub-
jective difficulty while the probability of a token being skipped showed a strong negative
correlation. The difference between AOIs and tokens here might be explained by the size of
AOIs, with them being larger it is significantly less likely for an AOI to be skipped and the
correlation is thus influenced more easily by outliers or the way AOIs were defined.



5.5 RESEARCH QUESTION 5

Fixation length metrics showed at most weak correlations with subjective difficulty. The
likelihood of a fixation being a refixation showed strong positive correlations with subjective
difficulty for both tokens and AOIs. The likelihood of a token being skipped showed a
strong correlation with subjective difficulty while the likelihood of an AOI being skipped
only showed a weak correlation.
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DISCUSSION

In this section we will discuss interesting correlations and provide possible interpretations
as well as tie in related literature

6.1 COMPLEXITY METRICS

The strongest correlations for MW-max were found with D and E, both metrics that were
designed specifically to correlate with the effort or difficulty of designing and understanding
a program and seem to fulfil that purpose well on our data.

The strongest correlations for MW-mean were with LOOP and LOOP_NEST, with LOOP_NEST
being one of only two metrics to correlate stronger with MW-min then MW-max. A possible
reason for this might be that the Expressions used inside a loop in the snippets were often
not complex, being simple arithmetic operations. Instead, the complexity here comes from
repeatedly doing the same operations, something which we would expect to take a longer
relatively stable amount of effort instead of single peaks. Notably our data set has only
values from o to 2 for LOOP_NEST and from o to 4 for LOOP. This could mean our findings
regarding the LOOP and LOOP_NEST metrics do not necessarily hold for data sets with
a wider spread of values. An experiment with a set of snippets specifically designed to
contain different LOOP and LOOP_NEST values could find clearer results here.

Notably we found a medium positive correlation of cyclomatic complexity (v(G)) with
MW-max and a weak positive correlation with MW-mean. This stands in contrast to prior re-
search using fMRI by Peitek et al. [18] in which they found no correlations between v(G) and
any of the measures of brain activation or deactivation they used. However, it is important
to note that their experiment did not include a measurement representing maximum mental
workload where we found the stronger correlation. In difference to MW-mean and the
fMRI measurements used by Peitek et al. MW-max does not show effort over an extended
period of time but only a peak of mental load during the task. For example, a snippet that
is generally easy but has a difficult part could lead to a low MW-mean and a high MW-max.
In contrast a snippet that is constantly difficult would have a relatively high MW-mean but
a low MW-high in comparison to other snippets. The correlation with MW-mean might be
explained by differences in the snippets we used. Overall, we cannot confirm the findings
by Peitek et al. that cyclomatic complexity shows no correlations with mental workload. We
believe further research is necessary to conclusively answer the question, especially given
that both of the study by Peitek et al. and the experiment we used for our data did not
include snippets with cyclomatic complexity above 10, a common threshold for warning
about cyclomatic complexity being to high [18]. Such research could focus on singular
metrics or limited sets of metrics. This would enable us to use sets of snippets designed to
have a spread of values for these metrics while ruling out other sources of complexity by
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keeping other metrics as stable as possible.

For minimum mental workload we found mostly weak correlations, suggesting it might not
be captured well by complexity metrics. The only exception is the BRANCH metric, which
showed a medium positive correlation.

For fixation length metrics the strongest negative correlations notably were with met-
rics that directly or indirectly indicate an iterative method (LOOP, LOOP_NEST and NBD).
The strongest positive correlations were with metrics indicating a recursive method (RE-
TURN and CALLED). This might mean that there is a significant difference in reading
strategy for iterative and recursive functions. A possible explanation for this is that the
statements within loops in our data tend to be relatively easy executable statements which
participants look at repeatedly to understand the loop. This might lead to a series of short
fixations. Future research could use a qualitative analysis of eye-tracking data to possibly
show this difference or find a different explanation for the differences in fixation length
between recursive and iterative functions.

6.2 SUBJECTIVE DIFFICULTY

Subjective difficulty correlated weaker with maximum mental workload then 12 of the
complexity metrics we used. For medium mental workload we found an at least weak
positive correlation for twenty complexity metrics but none for SD-MEDIAN. This stands in
strong contrast to findings by Peitek et al. [18], which found medium to strong correlations
between subjective difficulty and their measurements of mental workload and had subjective
difficulty correlate stronger with mental workload then most metrics. The reason for this
difference is unclear so far but it might be caused by differences in the used neuro-imaging
techniques and measurements of mental workload. The study by Peitek et al. used fMRI
and used the deactivation of default mode network brain areas while we used EEG and the
ratio between alpha and theta power bands.

The medium negative correlation we found between MW-min and subjective difficulty
is also notable, because it is significantly stronger than any correlation, we found for com-
plexity metrics and minimum mental workload or for eye tracking metrics and minimum
mental workload. This indicates that there might be some aspect of mental workload that
the different complexity metrics and eye-tracking metrics we used did not capture that
subjective difficulty does capture.

Overall, these results suggest that subjective difficulty could probably not be used to
replace complexity metrics, because it performs significantly worse than many of them
regarding the correlation with mental workload. However there seems to be some element
of subjective difficulty that is relevant to mental workload but not captured by any of
the complexity metrics we used. Finding what aspect exactly that is and why it seems
connected with minimum mental workload requires further investigation. Notably it is also



6.2 SUBJECTIVE DIFFICULTY

possible for a change in behaviour regarding very hard tasks to explain the lower MW-min.
This would mean that participants disengaged from tasks they found particularly hard,
explaining the difference in MW-min. Future research could further investigate the relation
between minimum mental workload and subjective difficulty. The first step to do so would
be to exclude the possibility of disengagement as a confounding factor. For this a qualitative
analysis of individual participants behaviour during tasks they judge as difficult would be
well suited. If such a study would find that disengagement is unlikely to cause the relation
we found than further investigation into the topic should continue.

For fixation length we found no to weak correlations with subjective difficulty. The probabil-
ity that a token gets skipped showed a strong negative correlation with subjective difficulty.
Notably for AOIs the probability of one getting skipped only showed a weak correlation
with Subjective difficulty. This points towards programmers skipping singular tokens when
a snippet is easy for them to interpret. This is coherent with the idea of top-down com-
prehension, with programmers forming an assumption about the snippet and skipping
tokens when they already have a strong assumption what should be in that position. Future
research shall explore using a qualitative analysis of eye-tracking data to show in more
detail which tokens are skipped.

Both for tokens and AQIs the probability of a fixation being a refixation correlates strongly
with subjective difficulty. This means that how often a programmer goes back to an already
fixated part of the code impacts their assessment of how difficult code is to comprehend.
Future research shall attempt to use these eye-tracking metrics to predict subjective difficulty.
If this is indeed possible it would allow us to predict subjective difficulty solely based on
objective data, removing one of the two big hurdles towards using subjective difficulty as a
practical measurement of complexity.
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THREATS TO VALIDITY

In the following we will outline some possible threats to the validity of our results. We will
divide this section between threats to the internal validity of our results and threats to the
external validity of our results.

7.1 THREATS TO INTERNAL VALIDITY

As we used data from an experiment by Peitek et al. [17] threats to the internal validity
of that experiment also apply to our study in so far as they are relevant to the data we
used. Specifically, this means that by using data from the experiment we also adopted
the operationalization of program comprehension inherent to that experiment. This op-
erationalization divides program comprehension into a process with multiple steps, first
comprehending the code then calculating the output for a given input and lastly selecting
the output from multiple options. Given the complexity of program comprehension this
certainly is not the only possible operationalization of program comprehension, but the one
used here was specifically designed to make sure participants actually try to comprehend
the snippet [17]. One possible drawback of this approach is that participants might guess an
option when they calculated the wrong output, and their solution was not one of the options.
To minimize this risk the experiment had the option to skip answering if participants were
not sure of their answer.

To avoid fatigue effects the experiment was ended after an hour. To make sure that this
does not cause large disparities in the amount of data available the order of snippets was
randomized [17].

As previously discussed, the correlation we found between SD-Median and MW-min
might not point towards a unique aspect of mental workload captured by subjective diffi-
culty but instead could be explained by participants disengaging from particularly difficult
tasks.

7.2 THREATS TO EXTERNAL VALIDITY

The generalizability of our results is limited by a number of factors. Firstly our study was
limited only to relatively small snippets in Java. As such our results may not be generaliz-
able to larger programs or to programs in other programming languages. Additionally we
limited our analysis only to method level metrics due to them being suited best to analyse
our snippets. This however further limits the generalizability to larger problems, because
these method metrics are not cleanly applicable to larger programs.
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Regarding our overall verdict on complexity metrics, while we used a wide selection
of metrics it is possible that we missed metrics that would have correlated differently with
some or all of our other metrics. This is an issue we can not fully eliminate, due to the high
and constantly growing amount of complexity metrics. Lastly among the metrics we used
there are some that only showed a limited span of values on our snippets. This might mean
that results for some of these metrics are not generally applicable because our snippets do
not vary enough regarding the metrics. One example of this would be cyclomatic complexity,
for which our snippets only included values from two to seven. However a value of ten
is often considered a threshold for a warning regarding high complexity, so none of our
snippets actually exceeded that threshold. Another example is the CAST metric, which had
a value of one for a single snippet and a value of zero for all other snippets. As such results
using the CAST metric are very limited regarding their generalizability.

More in-depth studies for a single metric or a small set of metrics would be able to
design sets of snippets specifically to cover a wide range regarding that metric. For our
study we instead decided to focus on getting data for as many complexity metrics as
possible. We believe this to be a good approach to extend the so far very limited pool of
existing results regarding the relation between complexity metrics and mental workload.



CONCLUSION

Complexity metrics are an important tool for researchers and programmers, but their actual
correlation with comprehension strategies and mental load is still unclear. We conducted
an analysis into the correlations between complexity metrics and both eye-tracking and
mental load. For this analysis we used subjective difficulty, eye-tracking and EEG data from
a pre-existing experiment and calculated complexity metrics for each of the snippets used.
Due to our usage of method metrics, we were limited to snippets consisting of a single
method.

For maximum mental workload we found mostly weak to medium correlations with
complexity metrics. Mean mental workload showed overall weaker correlations then max-
imum mental workload. We especially found that Halsteads effort and difficulty metrics
correlated strongly with mental load. For minimum mental workload we found mostly
insignificant correlations. For fixation length metrics we found a significant difference
between metrics indicating recursive methods and metrics indicating iterative methods.

For subjective difficulty we found a medium correlation with maximum mental work-
load and no correlation with mean mental workload. In contrast to previous research this
means that subjective difficulty overall showed weaker correlations with mental load then
most complexity metrics. Notably we also found a medium negative correlation between
subjective difficulty and minimum mental workload, potentially pointing to an aspect of
mental load captured by subjective difficulty that none of the complexity metrics we used
can explain.

For our eye-tracking metrics the probability of a fixation being a refixation showed a strong
positive correlation with subjective difficulty. The probability of a token being skipped
showed a strong negative correlation with subjective difficulty.

We found some supporting evidence that complexity metrics do properly represent at
least part of the mental load during program comprehension. However, given the limited
generalisability of our study we do not believe our findings are sufficient to give clear advice
for practical applications. To clearly determine if complexity metrics can approximate the
difficulty of program comprehension in a practical environment future research is needed.
This research could for example focus on a single complexity metric for which we found
promising results and use snippets specifically designed to cover a wide range of values
for this metric. This would allow a more focused investigation of the relation between this
complexity metric and mental load.

The difference in fixation length between recursive and iterative functions is another in-
teresting finding that future research shall elaborate on to deepen our understanding of
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different program comprehension strategies.

Another possibility we found is the relation between eye-tracking metrics and subjec-
tive difficulty. Specifically the probability of a token being skipped and of a fixation being a
refixation showed strong correlations with subjective difficulty. This could mean that these
are a possible way to predict subjective difficulty based on objective data.



APPENDIX

A1

LIST OF COMPLEXITY METRICS

The following is a list of all complexity metrics that were used in the experiment.

1.

10.

ASSERT: The number of assertions in the method. This metrics was discarded, because
its value was always o, no snippet used assertions.

. B: Halsteads bug metric, intended as an estimate of the number of bugs in a function.

It is calculated as B = V /3000, where V is Halsteads volume metric. This metric was
excluded because it was o for all our snippets.

. BRANCH: The number of non-structured branch statements in a method. Non-

structured branches include continue statements and branch statements outside of
switch statements.

CALL: The number of method calls in a method.

. CALLED: The number of places in the project from which the method may be called.

. CALLEDp: The number of places in the product code of the project from which the

method may be called. This has the same value as CALLED for each method and was
thus excluded.

CAST: The number of typecast or instanceof expressions in the method. This method
has the value o for all but one method. Thus we used it but we can only make limited
conclusions regarding this metric based on such a limited set of snippets

. CAUGHT: The number of expression classes caught in the method. This metric was

zero for all snippets and was thus excluded.

. CDENS: The ratio of control statements to all statements in the method.

CLOC: The amount of lines of comments in the method. The value of this metric was
zero for all snippets and it was thus excluded.

39



40

APPENDIX

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

COM_RAT: The ratio of lines of comments to total lines of code in the method. This
metric was zero for all snippets and was thus discarded.

CONTROL: The total number of control statements in a method.

D: Halsteads difficulty metric, intended to correspond to the level of difficulty of
understanding or programming a method. It is calculated as (171 /2) * (N2/#2), where
eta; is the number of distinct operators in the method, eta; is the number of distinct
operands in the method and N; is the total number of operands in the method.

E: Halsteads effort metric, intended to correspond to the level of effort necessary to
maintain a method. It is calculated as D * V, where D is Halsteads difficulty metric
and V is Halsteads volume metric.

ev(G): The essential complexity of a method. This is a graph-theoretic measurement
of how ill-structured the control flow of a metric is. This reaches from 1 to v(G), the
cyclomatic complexity of a method.

EXEC: The total number of executable statements in a method.

EXP: The total number of expressions in a method.

IF_NEST: The highest nesting depth of conditional statements in a method

iv(G): The design complexity of a method. This is a measurement of how interlinked
a methods control flow i with calls to other methods. This reaches from 1 to v(G), the
cyclomatic complexity of a method.

JLOC: The lines of javadoc comments in the method. We did not comment the snippets
and thus this metric was zero for all snippets and was excluded.

LOC: The lines of code in a method. This includes comments but excludes whitespace.

LOOP: The number of loop statements in a method.

LOOP_NEST: The maximum nesting depth of loops in a method.
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25.

26.

27.

28.

29.

30.

31.

32.

33

34

35-

A.1 LIST OF COMPLEXITY METRICS

. N: Halsteads length metric, it is the total number of operands and operators in a
method. It is calculated as N = N;j + N, where Nj is the total number of operators
and N is the total number of operands.

n: Halsteads vocabulary metric, it is the total number of distinct operands and opera-
tors in a method. It is calculated as n = 11 + 72, where 71 is the number of distinct
operators and 7, is the number of distinct operands in a method.

NBD: The maximum nesting depth of a method.

NCLOC: The number of lines of code in a method. This excludes whitespaces and
comments. Because we did not use any comments this metric has the same value as
LOC for each snippet and was thus excluded.

NP: The number of parameters in a method.

NTP: The total number of type parameters in a method. This is zero for all snippets
and thus was excluded.

NULL: The number of comparisons with null in a method. This is zero for all snippets
and was thus excluded.

QCP_CRCT: The Quality Control Profile metric for correctness. This is designed
to determine the correctness of a method. It is calculated as QCP_CRCT = D +
CONTROL + EXEC + (2% v(G)).

QCP_MAINT: The Quality Control Profile metric for maintainability. This is designed
to estimate the difficulty of maintaining a method. It is calculated as QCP_MAINT =
(3% N)+ EXEC+ CONTROL + NEST + (2 +xv(G)) + BRANCH

QCP_RLBTY: The Quality Control Profile metric for reliability. This is designed to esti-
mate the reliability of a method. It is calculated as QCP_RLBTY = N + (2« NEST) +
(3%9v(G)) + BRANCH + CONTROL + EXEC

RETURN: The number of return points in a method.

RLOC: The ratio of lines of code of a method to the lines of code in its class.
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36. STAT: The number of statements in a method.

37. TCOM_RAT: The ratio of lines of comments to lines of source code in a method. This
is always zero for our snippets and was thus excluded.

38. THROWS: The number of exception classes a method is marked as throwing. This is
zero for our snippets and was thus excluded.

39. TODO: The number of TODO comments in a method. This is zero for all our snippets
and was thus excluded.

40. V: Halsteads volume metric, intended to correspond to the size of a method. It is
caclulated as V = N % log(n), where N is the Halstead length metric and n is the
Halstead vocabulary metric.

41. v(g): The cyclomatic complexity of a metric.

A.2 LIST OF EYE-TRACKING METRICS

The following is a list of all eye-tracking metrics we used in our analysis:
1. L_fix-TKN: The mean length of all fixations on tokens.
2. L_ff-TKN: The mean length of all first fixation on tokens.
3. L_rf-TKN: The mean length of all fixations on tokens after the first for each tokens.
4. P_skip-TKN: The probability that a token was never fixated by a participant.
5. P_rf-TKN: The probability of a fixation being a refixation on token level.
6. L_fix-AOI: The mean length of all fixations on AQOIs.
7. L_ff-AOI: The mean length of all first fixation on AOls.
8. L_rf-AOI: The mean length of all fixations on AQI after the first for each AOL
9. P_skip-AOI: The probability that a AOI was never fixated by a participant.

10. P_rf-AOI: The probability of a fixation on an AOI being a refixation.
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