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Abstract

Code comprehension is a crucial task in software development, as a lot of time is spent
reading and understanding code. The ability to simulate the thought process of a developer
during code comprehension tasks could provide insights into the cognitive processes of
developers. This in turn would enable the development of tools that support developers in
their everyday work through more efficient code comprehension.

However, the cognitive processes involved in code comprehension are complex and not
yet fully understood. Even though a lot of theoretical models have been proposed, they
are difficult to use in practice due to their complexity. To this day, only models with major
simplifications of the actual environment of a developer have been implemented, such as
only being able to read one line at a time without the ability to return to previous lines.

We split the thesis into two parts: a replication study and an extension study. The repli-
cation study aimed to replicate the results of a previously developed cognitive model,
enhanced with similarity errors, for code comprehension tasks, while the extension study
extended this model with a backtracking mechanism to improve its generalizability. For
both parts, we conducted an empirical evaluation with participants who were asked to read
and understand code snippets and a simulation evaluation with a cognitive model trained
on the empirical data that simulates the behavior of the participants.

We were able to replicate some results of the previously developed cognitive model
for code comprehension tasks. Additionally, by extending this model with a backtracking
mechanism and similarity errors, we were able to improve the generalizability of this model
and provided a better foundation for subsequent studies in this area. Notably, our empirical
evaluation showed that 70% of participants exhibited at least one instance of backtracking,
supporting the view that code comprehension is an iterative and non-linear process. In ad-
dition, incorporating backtracking improved the model’s fit to the empirical data, allowing
it to more accurately simulate developers’ cognitive processes during code comprehension.

The developed model is a good starting point for simulating the cognitive processes of
developers during code comprehension tasks, but further improvements and refinements
are still needed.
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Introduction

Code comprehension plays an important role in the everyday work of developers, as they
need to understand existing code to maintain and extend it. Being able to understand code
efficiently is crucial for developers to remain productive and to avoid introducing errors.
It is estimated that 30—70% of a developer’s time is spent on understanding code [24, 42].
Thus, the need for a better understanding of how developers comprehend code has been
recognized by the software engineering community [41].

To make source code easier to understand, software developers often refactor their code
to improve its readability and maintainability [2]. Traditional approaches to evaluating
code comprehension often rely on static code metrics provided by analysis tools, such as
cyclomatic complexity or line counts. While such metrics can indicate potential difficulties,
they remain at a surface level and do not directly capture the cognitive processes underlying
human comprehension. These metrics may not be validated [27] or may not reflect the actual
value that should be measured [26, 31]. Therefore, there is a need for models that go beyond
static properties and simulate the cognitive processes involved in code comprehension more
directly.

This leads us to the concept of mental models, which describe how developers internally
represent code and how these representations influence comprehension performance. Such
mental models can be formalized into cognitive models using cognitive architectures like
ACT-R [4]. Cognitive models can simulate the behavior of developers during code compre-
hension tasks and provide fine-grained insights into the underlying cognitive mechanisms
— such as memory load, attention shifts, and decision-making processes — offering a much
deeper understanding than traditional metrics alone.

While the potential of creating cognitive models for code comprehension is promising,
previous work has mostly been theoretical [19]. Closheim [10] developed a first executable
ACT-R model simulating developers during code comprehension tasks, achieving promising
results. However, the model still relies on many assumptions and simplifications, which
may limit its accuracy in reflecting real-world developer behavior.

1.1 Goal of this Thesis

The goal of this thesis is to replicate the empirical evaluation and extend the ACT-R model of
Closheim. By replicating the study of Closheim, we aim to validate the results of the model
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and to understand the limitations of the model. This is an important step in ensuring that
the model is accurate and can be used to simulate the behavior of developers in real-world
scenarios.

Additionally, by performing an extension study, we aim to improve the model by incorpo-
rating a backtracking mechanism. As the current model can only show one line of code at a
time and does not allow for backtracking, it is limited in its ability to accurately reflect the
behavior of developers. This is a significant limitation, as developers often need to go back
and forth between different lines of code to understand the overall structure and flow of the
code. By incorporating a backtracking mechanism, we aim to increase the generalizability
of the model and provide a better foundation for subsequent studies in this area. While this
will still not be a perfect model of the behavior of developers, it will be a step in the right
direction and will allow us to better understand the cognitive processes involved in code
comprehension.

To achieve these goals, we will split each study into two evaluations: an empirical
evaluation and a simulation evaluation. The empirical evaluation will consist of a study
with participants who will be asked to read and understand code snippets. The simulation
evaluation will consist of a simulation of the behavior of the participants using the ACT-R
model. The results of the empirical part will be compared to the results of the simulation to
evaluate the accuracy of the model.

1.2 Structure of this Thesis

The Background chapter will discuss the theoretical background of the proposal and explain
the concepts that are important for the proposal. In Part I, we will discuss the methodology,
research questions, and expectations of the replication study. In Part II, we will discuss
the methodology, research questions, and expectations of the extension study. The first
Evaluation chapter will discuss the evaluation of the empirical and simlation study results
of the replication study. The second Evaluation chapter will discuss the evaluation of the
empirical and simulation study results of the extension study. In the Related Work chapter,
we will discuss the similar works that have been done in the past and how they are related
to our thesis. Finally, the Conclusion chapter will conclude the thesis and provide an outlook
for future work.

1.3 Methodological Overview

In this section, we will discuss the methodology of the thesis. The thesis consists of two
parts: a replication study and an extension study. In Figure 1.1, we present the schematic
representation of the research methodology.

In Part I, we focused on the replication study of the ACT-R model of Closheim. In this
study, we performed an empirical evaluation and a simulation evaluation. The empirical
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Part Il

Empirical Model Empirical Think-Aloud
Evaluation Study

Evaluation Extension

Model Simulation Model Model

Training Evaluation Training Extension
Simulation

RQ1 + RQ2 Evaluation

Figure 1.1: Schematic Representation of the Research Methodology

evaluation consisted of a crowdsourcing study with participants who were be asked to read
and understand code snippets. In parallel, we extended the model of Closheim to include
similarity errors. With the extended model, we used the results of the empirical evaluation
to train the parameters of the model. The resulting model was then evaluated in regard
to its accuracy in terms of processing time and error rates. The results of this simulation
evaluation were used to answer RQ1 and RQ2.

In Part II, we focused on the extension study of the ACT-R model of Closheim. In this
study, we also performed an empirical evaluation and a simulation evaluation. The empirical
evaluation consisted of a crowdsourcing study with participants who were be asked to read
and understand code snippets. In parallel, we carried out a think-aloud study with three
participants to gain insights into the cognitive processes of developers during backtracking
to previous lines of code. The results of the think-aloud study were used to understand
the cognitive processes of developers during backtracking and to extend the model of Part
I to include backtracking. With the extended model, we used the results of the empirical
evaluation to train the parameters of the model. The resulting model was then evaluatued
in regards to its accuracy in terms of processing time and error rates. The results of this
simulation evaluation were used to answer RQs3.






Background

In this chapter, we provide an overview of the cognitive architecture ACT-R and its compo-
nents, as well as the concepts of letter similarity and reading mechanisms. These topics are
fundamental to understanding the cognitive processes involved in source code comprehen-
sion, which is the focus of this thesis.

The ACT-R architecture is particularly relevant because it provides a framework for mod-
elling human cognition, including how knowledge is represented, retrieved and applied. By
using ACT-R, we aim to simulate the cognitive processes of programmers as they read and
understand source code.

We will also discuss letter similarity to highlight how visual and cognitive similarities
can lead to errors or increased cognitive load, a phenomenon that is also observed in source
code comprehension when variable names or structures are similar. Understanding these
effects helps us design more realistic cognitive models.

Finally, we will explore reading mechanisms, including backtracking and multi-line
reading, to establish their importance in understanding source code. These mechanisms
are critical for simulating how programmers navigate and interpret code, which directly
informs the enhancements made to the ACT-R model in this work.

By connecting these topics, this chapter lays the groundwork for the subsequent develop-
ment and evaluation of a cognitive model that incorporates backtracking to better simulate
human code comprehension.

2.1 Cognitive Architectures

Cognitive architectures are defined in the following way by Anderson [5]:

“A cognitive architecture is a specification of the structure of the brain at a level
of abstraction that explains how it achieves the function of the mind.”

Therefore, cognitive architectures are models that attempt to explain how the human mind
works by simulating cognitive processes such as perception, memory, and problem-solving.
These models are not intended to be exact replicas of the brain, they should provide a
framework for understanding how cognitive functions are organized and how they interact
with each other while also enforcing biological constraints. These models are used to study
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human behavior, predict performance, and understand the underlying mechanisms of
cognition [19].

While there are many cognitive architectures, one of the most well-known and widely used
is the Adaptive Control of Thought-Rational (ACT-R) architecture developed by Anderson

[3]-

2.2 ACI-R

ACT-R is domain-specific programming language built on top of LISP that is used to model
cognitive processes. It is based on assumptions about how the human mind works and is
designed to simulate human behavior in a variety of tasks. The simulations can be used to
predict several psychological dimensions, such as reaction times and task accuracy[19]. ACT-R
consists of eight modules representing different aspects of cognition which are associated
with a particular brain region. These modules interact to simulate cognitive processes and
behavior. Each module has its own , buffer”, which contains , chunks”of information that
represent knowledge. In addition, ACT-R uses a production system to model how knowledge
is represented and retrieved in the brain [19].

Buffers

Buffers are temporary storage areas that hold information being processed by the cognitive
system. Buffers are also used to communicate between modules and to represent the current
state of the system such as failure, empty or full [19].

Chunks

Chunks are the basic unit of knowledge in ACT-R. ACT-R uses chunks to represent knowledge
in the system, such as facts, rules, and concepts. They consist of a set of slots, which are key-
value pairs that represent different aspects of the knowledge [19]. Chunks can be declared
before running a simulation to represent the existing knowledge or created dynamically
during the simulation to represent new information.

Production System

The production system is a set of rules that pattern-match against the contents of the buffers
to determine the next action to take. When a rule matches the contents of a buffer, it is fired,
and the corresponding action is executed. This action can involve updating the buffers,
creating new chunks, or modifying/removing existing chunks [19].



2.2 ACT-R

Symbolic and Subsymbolic Layer

ACT-R consists of two layers: the symbolic layer and the subsymbolic layer. The symbolic layer
represents knowledge in a symbolic form, using chunks and rules to represent concepts and
relationships. The subsymbolic layer represents human performance in terms of cognitive
tasks. It uses facts derived from psychological experiments to predict human behavior [19].

<«
2P =

a
- F2~ >

Figure 2.1: ACT-R 6.0 modules and their communication paths [19]

Modules

ACT-R consists of several modules that can be seen in Figure 2.1. The visual, aural, vocal,
and manual modules are able to interact with the environment. The remaining modules are
explained below:

Declarative Memory

Declarative memory is the long-term memory system that stores facts, concepts, and rules.
Information can be retrieved via the retrieval buffer, which is used to search for chunks in
declarative memory that match a given pattern.

Procedural Memory

Procedural memory is the center of the communication between the modules. Procedural
memory is responsible for controlling the flow of information between the modules and
executing the actions specified by the production rules. Thus, it is the bottleneck of the
system, as only one production may fire at any time.
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Imaginal Module

The imaginal module is used to maintain the model’s current problem state. It is used to
store and manipulate information not currently in the environment, such as mental images
or representations of the current task.

Goal Module

The goal module is used to represent the current goal of the model. It is responsible for
selecting the next action to take based on the current goal and the contents of the buffers.

Partial Matching

Partial matching is a key feature of ACT-R that allows it to retrieve information from memory
based on a partial pattern by using a similarity metric instead of an exact match during
the matching process. This allows the model to recognize patterns that are similar to those
stored in memory, even if they are not identical. Additionally, it also enables the model to
make human-like errors, such as mistaking similar letters or numbers for each other [19].

Activation and Retrieval

Activation is computed based on the setting of several parameters, such as base-level
activation, spreading activation, and noise. The general equation for activation is as follows:

A; = B;+ P+ ¢

where A; is the activation of chunk i, B; is the base-level activation, P; is the partial
matching value and ¢; is the noise term.

The base-level activation is computed as follows:

n
1-d

where 1 is the number of times the chunk has been retrieved, d is the decay parameter,
and L is the lifetime of the chunk i.

The partial matching value is computed as follows:

B; = In( ) —d*In(L)

P, =) PMjy
k

where P is the match scale parameter that reflects the added weight of the similarity and
My is the similarity between the value k in the retrieval specification and the value of slot k
in chunk 7.

The noise term is a random value drawn from a logistic distribution with a mean of o
and a variance of:
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where s is defined with the noise parameter :ans.
To calculate the retrieval time, we use the following equation:

RT = Fe [*4

where RT is the retrieval time, F is the latency factor parameter :If, f is the latency
exponent parameter :le and A; is the activation of chunk i. If no chunk can be retrieved, A;
is replaced by the value of the retrieval threshold parameter :rt[18].

2.3 Similarity of Letters and Numbers

Letter similarity plays a central role in several cognitive processes, especially in reading,
letter recognition, and visual perception. Letter similarity refers to the degree to which
different letters resemble each other in shape, form, and visual properties. The implications
of letter similarity are significant in fields such as psycholinguistics, educational psychology,
and human-computer interaction. By studying how similar or dissimilar letters affect
cognition, we can better understand how people read, learn, and interact with written
language.
There exist several motivations for studying letter similarity [32]:

¢ Practical attempts to make written text more comprehensible
¢ Empirical understanding of the visual system functions
* Theory of representation of letters in the visual system

* Theory of representation of the abstract form of letters in the cognitive system

Visual Perception and Letter Recognition

Letter recognition is a fundamental component of reading proficiency depending heavily
on the visual distinctiveness of letters. The process of visual perception entails the capacity
to detect, interpret, and categorize visual stimuli, which is an important aspect of the recog-
nition of letters. The difficulty of distinguishing between two or more letters with similar
visual features can decrease reading speed and increase the probability of identification er-
rors. Research has demonstrated that letters with analogous shapes are frequently confused
with one another, particularly when they are presented in suboptimal conditions, such as
low contrast, in a noisy environment or under time pressure. The Feature Integration Theory,
proposed by [36], suggests that the brain processes disparate visual features (e.g., lines,
curves, and angles) serially before combining them to recognize entire objects, including
letters. The integration process becomes more complex when letters share multiple visual
features, increasing the likelihood of perceptual errors. For example, the letter “p” and the
letter ”q” are mirror images of each other, and individuals, particularly children or those
with dyslexia, often confuse them due to their similar visual properties [35].
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2.4 Source Code Comprehension

Source code comprehension has had many definitions over the years, but it is generally
understood as the process of understanding and interpreting programming code. A more
precise definition is provided by Wyrich [40]:

“Source code comprehension describes a person’s intentional act and degree of
accomplishment in inferring the meaning of source code.”

The degree of accomplishment refers to the level of understanding achieved by the person,
which can range from a superficial understanding to a deep, detailed understanding. It
should be noted that depending on the kind of comprehension task, different levels of
understanding may be required, as finding a bug in a program requires a different level of
understanding than having an in-depth understanding of the program itself.

The meaning of the source code can be separated into three categories, which may overlap
depending on the context:

¢ Functional: What does the code do?
* Specification: What the code is supposed to do?

e Context: What is the intention of the author?

Code Comprehension Processes

Two popular theories of code comprehension are the top-down and bottom-up process. The
top-down theory posits that programmers start by understanding the overall structure and
purpose of the code before delving into the details. This approach is often used by expert
programmers who have a deep understanding of common patterns and algorithms.

The bottom-up theory, on the other hand, suggests that programmers start by understand-
ing the individual components of the code before piecing them together to understand the
overall structure. This approach is often used by novice programmers who lack experience
with common patterns and algorithms [15].

The ACT-R model developed by Closheim [10] implemented the bottom-up theory by
simulating the slow learning process of novices as they build up their chunks of declarative
knowledge. The model is limited by being only able to simulate a small part of the code
execution as chunks are limited to the name of the variable and its value and that the
starting knowledge of the model is limited to basic arithmetic operations.

Implementations of the top-down theory are more complex as they require the model
to have a more detailed understanding of the code structure and logic. Further developed
models such as the integrated metamodel by Von Mayrhauser and Vans [38] would com-
plicate an implementation even further as they require the model to be able to switch
between different comprehension models depending on the interaction and progression of
the different code comprehension processes.
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2.5 Reading Mechanisms

Reading is a complex cognitive process that involves the integration of multiple cognitive
functions, such as visual perception, attention, memory, and language processing. The
process of reading involves several stages, including visual processing, word recognition,
sentence parsing, and comprehension [29].

Reading one line at a time without the ability to go back to previous lines is not how
a programmer would read code. Programmers often read code in a non-linear fashion,
jumping back and forth between different parts of the code to understand the overall
structure and logic [23].

We present two ways to model reading mechanisms in the context of source code
comprehension: the backtracking mechanism and multi-line reading.

Backtracking Mechanism

The backtracking mechanism is a cognitive process that allows readers to revisit previously
read text to clarify or reinforce their understanding. This mechanism is essential for reading
comprehension, as it enables readers to correct misunderstandings, fill in gaps in their
understanding, and make connections between different parts of the text.

In the context of source code comprehension, the backtracking mechanism is crucial for
understanding complex code structures, identifying bugs, and debugging code. Program-
mers often need to go back and forth between different parts of the code to understand the
overall logic, trace the flow of data, and identify the root cause of errors.

Multi-Line Reading

Multi-line reading is a reading mechanism that allows readers to see and process multiple
lines of text simultaneously. This mechanism is essential for understanding the overall
structure and logic of a text, as it enables readers to make connections between different
parts of the text and identify patterns and relationships that span multiple lines.

In this Work

The objective of this study is to enhance the existing ACT-R model of source code compre-
hension by incorporating a mechanism for backward navigation. While multi-line reading is
an important aspect of source code comprehension, this study focuses on the backtracking
mechanism as it is a key cognitive process that enables programmers to understand complex
code structures and identify errors. Understanding when and why programmers go back
to previous code lines is crucial for developing a more accurate and realistic model of
source code comprehension. Extending this work to include multi-line reading would be an
interesting extension for future research, but it is beyond the scope of this thesis.
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Part I Methodology: Replication Study

This chapter describes the methodology of our replication study. It consists of two parts: a
simulation evaluation and an empirical evaluation. It is based on the study by Closheim.
We will start by presenting the research questions that will be answered in this study.
This will provide us an overview of the aims of this part of the thesis. Afterward, we will
describe the study materials and study design of the simulation evaluation and the empirical
evaluation. Finally, the data analysis and evaluation of the two parts will be presented.

3.1 Research Questions

Our goal is to replicate the study by Closheim to strengthen the results of Closheim’s
original study. Nevertheless, the original model had some weaknesses that we wanted
to address. While the distances between declarations and re-declarations/usages were
great enough to be noticeable, we would like to explore how the model behaves when the
distances are further increased. This leads us to the following research question:

RQ1: How do increased distances between declarations and re-declarations/usages
influence the accuracy of the ACT-R model in terms of processing time and error
rate?

In addition, the model was only able to make one type of error, the inability to retrieve a
particular value from memory. As humans are prone to making errors in other ways, we
would like to explore how the model behaves when it is able to make more types of errors.
Therefore, we added partial matching to the model to allow for similarity errors. This leads
us to our second research question:

RQz2: Can we increase the accuracy of the ACT-R model in terms of processing
time and error rate by implementing similarity errors between variable names?

These two research questions enabled us to explore the model’s behavior in more detail
and to strengthen the results of Closheim’s original study.

3.2 Study Design

In this section, we will describe the design of the study. We performed two types of
evaluation: a simulation evaluation and an empirical evaluation. The empirical evaluation

13
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was a questionnaire where participants were presented with code snippets and asked to
solve them.

The simulation evaluation consisted of extending an existing cognitive model with the
ability to make similarity errors and training it with the results of the empirical evaluation.
The aim was to enable us to use the cognitive model to predict the behavior of program-
mers on a larger scale. The prediction accuracy of the cognitive model was evaluated to
understand how well the model is able to predict the behavior of the participants.

3.2.1 Study Materials

We replicated the study by Closheim [10] with some changes to the code snippets that were
presented to the participants.

The participants were presented with eight tasks, each consisting of a code snippet. The
code snippet was either a treatment or a control code snippet. After each code snippet,
the participants were be asked to work on an intermediate task to perform a reset of the
working memory of the participants to prevent sequence effects.

We have also asked the participants to fill out a socio-demographic questionnaire at the
end of the study, as has been done in Closheim’s original study.

While the code snippets were different to Closheim’s original study, the intermediate
tasks and socio-demographic questions were the same.

We create a questionnaire with the help of SoSci Survey’, as it allows the free creation
and execution of questionnaires for academic purposes. We used LabJS* to present the code
snippets to the participants, as it allowed us to record the times and key presses of the
participants, which was necessary for the analysis of the results.

3.2.1.1  Code Snippets

The code snippets were the same for both studies. They were shown to the participants
one line at a time. To continue to the next line, the participants had to press the Space
key. At the end of the code snippet, the participants were asked to enter the value of the
variable that is declared in the print statement and press Space or a button on the screen to
submit their answer. The snippets consist of simple arithmetic operations, such as addition,
subtraction, multiplication and division. Variables can be declared multiple times, also
without being used in between. Multiple operations can be performed on the same code
line, but point-before-dash calculations were not taken into account, as we assume a simple
left-to-right reading of the code. Additionally, it is impossible to return to a previous code
line.
The code snippets have the following differences to Closheim’s original study:

¢ The distances between declarations and re-declarations/usages were increased

e The variable names were made more similar to each other

1 https://www.soscisurvey.de/
2 https://lab.js.org/
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3.2 Study Design

3.2.1.2  Training Code Snippets

We first let the participants practice with training code snippets. These code snippets are
similar to the code snippets used in the study. However, they are easier to solve and do
not contain any of the changes made to the experimental code snippets. This allowed the
participants to familiarize themselves with the interface and the tasks they will be presented
with. As the ACT-R model does not need training code snippets, they were not used in the
simulation evaluation.

3.2.1.3  Experimental Code Snippets

An example of changed code snippets can be found in Listing 3.1. Code snippets were either
changed by changing the variables names to be more similar to each other as in (b) or by
increasing the length of the code snippet as in (c) by adding filler lines of code.

i=4 p =4 i=4

k =8 q=28 k=8

h=KkKx*x2 d=q * 2

y=1ix%x4-nh b=p=x*x4-d

print(y) print(b)
h =k x*x 2
y=1x4-nh
print(y)

(a) Original Study (b) Similar variable names (c) Increased Distances

Listing 3.1: Code Snippets Changes

The code snippets that were used can be found in the appendix A 4.
We used the same treatments of code snippets as in Closheim’s original study, which are
the following:

¢ CD: We observe the effect of the distance between declaration and usage of a variable.

— Difference between Treatment and Control: We have a longer distance between
declaration and usage of a variable in the treatment code snippet.

* CR: We observe the effect of a double declaration at the beginning of code snippet and
subsequent usage of the variable.

- Difference between Treatment and Control: The control code snippet has no
double declaration.

e DR: We observe the effect of a double declaration and the distance between the last
redeclaration of the variable and subsequent usage of the variable.

- Difference between Treatment and Control: The control code snippet has a double
declaration with the redeclaration of the variable being just before the usage of
the variable, contrary to the treatment code snippet, where the double declaration
is at the beginning of the code snippet.

15
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e RP: We observe the effect of a larger distance between a double declaration and
subsequent usage of the variable.

— Difference between Treatment and Control: The control code snippet has a double
declaration that is near the usage of the variable, contrary to the treatment code
snippet, where the double declaration is at the beginning of the code snippet.

We had two types of code snippets, namely treatment and control code snippets, as in
Closheim’s original study. The treatment code snippets contained the changes mentioned
above, while the control code snippets were used as a baseline to compare the results of
the treatment code snippets. Therefore, each treatment code snippet had a corresponding
control code snippet.

We reused the treatment code snippets from Closheim’s original study and split them
into two groups of equal size of four snippets: one group was changed to implement
the increased distances between declarations and re-declarations/usages, while the other
group was changed to implement the similarity between variable names. This allowed us to
compare the results of our study to Closheim’s original study. The control code snippets
were adjusted accordingly.

To validate the effectiveness of our code snippets, we conducted a pilot study with three
participants. This enabled us to see if the code snippets were solvable and if the changes
had the desired effect on the participants.

3.2.1.4 Intermediate Tasks

The intermediate tasks was a ten-second video clip of fish in an aquarium, which was the
same as in Closheim’s original study. Video clips without letters or numbers were used to
properly reset the working memory of the participants. Additionally, using such videos does
not accelerate the mental fatigue of the participants, as they are not required to perform any
tasks during the video.

3.2.1.5  Socio-Demographic Questionnaire

The socio-demographic questionnaire was the same as in Closheim’s original study. This

will enable researchers to use both datasets together, if the need arises in future studies,

even though we did not analyse any of the socio-demographic data in the present study.
The questions that were asked had the following themes:

* Age

¢ Country

Education

Job Title
* Programming Experience
¢ Experience with Programming Paradigms

The entire questionnaire can be found in the appendix A.1.
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3.2.2 Simulation Evaluation

In this section, we will describe the cognitive model that was used in the study.

We built upon the existing model by Closheim, created with the cognitive architecture
ACT-R, and extended it with the ability to make similarity errors. Additionally, the model is
now able to handle assert keywords and comments prepended with “//”.

As ACT-R is able to model human input and output, we used it to model the behavior of
participants in the study. By utilizing the vision interface of ACT-R in the same way as in the
existing model, we were able to model the visual input of the participants, namely the code
snippets they will be presented with. This allowed us to copy the environmental conditions
as in the empirical evaluation, enabling us to use the results of the empirical evaluation to
train the ACT-R model.

The model is able to perform the following tasks:

* Read one line at a time from left to right

Store variable names and values in declarative memory
* Retrieve variable names and values from declarative memory

¢ Perform arithmetic operations, namely addition, subtraction, multiplication and divi-
sion, on integer numbers from -20 to 20

¢ Read comments
* Read and verify assert statements

¢ Answer a print statement with the expected output of the model by entering the
guessed number and pressing Space.

The model aims to mimic human behavior as closely as possible by using the same input
and output as the participants in the empirical evaluation. The model reads the unparsed
line of code and processes it in the same way as the participants. When the model is finished
with a line, it will also press the Space key to continue to the next line. The same is true
for the print statement, where the model will enter the guessed number and press Space to
submit the answer.

Everytime a variable is declared, the model stores the variable name and value in declar-
ative memory. This is also the case if the variable was already declared before. When a
variable is used, the model tries to retrieve the variable name and value from declarative
memory. As the model returns chunks based on their current activation value, the model is
able to retrieve the wrong value of a variable.

The parameters that were tuned to train the model can be found in Table 3.1. Even though
the model has more parameters that can be tuned, we focused on these four parameters as
they are the most relevant for our study. As more parameters would lead to a more complex
model, we kept the number of parameters to a minimum. Additionally, the parameters rt,
ans and If have been used in Closheim’s original study and have been shown to have an
impact on the model’s behavior.
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Parameter Name Default
rt retrieval threshold 0
ans activation noise s  0.2-0.8
Lf latency factor 1
mp mismatch penalty 0

Table 3.1: Default values for parameters [18].

3.2.3 Empirical Evaluation

The study was conducted to gather data on how humans behave when presented with
the previously mentioned code snippets. The participants were first presented with the
training code snippets, followed by the experimental code snippets. Afterward, they were
presented with the socio-demographic questionnaire. We used the same procedure as in
Closheim’s original study, except for the changes to the code snippets and the recruitment
of participants.

We used a crossover design, as in Closheim’s original study, to control as many con-
founding variables as possible. A crossover design is a combination of a within-subject and
between-subject design.

The within-subject design part was implemented by presenting each participant with code
snippets for each group of code snippet. The between-subject design part was implemented
by assigning each participant to a group that received either the treatment or control code
snippets.

Each participants was assigned to one of the four groups. The difference between group
1—2 and 3—4 was that the participants had either the treatment or control variant of a
code snippet presented to them. The difference between group 1-3 and 2—4 was that the
participants had a different order of the code snippets. These groups were created to reduce
learning effects and to ensure that the participants were not biased by the order of the code
snippets.

We prepared an application of the study to be reviewed by the ethical review board of the
Faculty of Mathematics and Computer Science at the Saarland University. The ethical review
board reviewed and accepted the study without the need of additional modifications.

3.2.3.1  Recruitment

For such studies that require a larger sample size, Russo [30] named three limitations:
¢ Ensuring the representatives of the selected population
¢ Finding enough data points for a statistically significant result

¢ Correct operationalization of the variables

By using crowdsourcing platforms, the first two limitations can be addressed, as they
allow for a large number of participants to be recruited in a short amount of time while
ensuring the representativeness of the sample.
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Therefore, we chose to use a crowdsourcing platform to recruit participants for the study.
This enabled us to reach a large number of participants in a short amount of time. We used
the Connect platform of the website CloudResearch3 to recruit participants for the study.
CloudResearch is a platform that works similarly to Amazon Mechanical Turk, but offers
additional features that are useful for academic studies.

To further ensure the representativeness of the sample, we chose to use a pre-screening
process for the participants to ensure that they have programming experience. Russo
provided a list of demographic information that should be used to pre-screen participants
to increase the probability of receiving participants with programming experience. This list
includes the following information:

have knowledge of software development techniques

* have computer programming skills

use technology at work (e.g., software) at least once a day
¢ approval rate of at least 95% on their crowdsourcing platform

Notably, this list is associated to the crowdsourcing platform Prolifict. Additionally, Russo
recommended to not filter by industry or to balance the gender, as those would falsify the
representativeness of the sample. In our case, we only added a filter to ensure that all the
participants had programming experience.

After the participants were pre-screened, we conducted a pilot study to ensure that the
participants have, in fact, programming experience. This enabled us to filter out participants
that do not meet the requirements of the study. We used a multiple-choice screening test to
ensure that the participants have programming experience. The questions were based on
Danilova et al. [12] screening questions, that they developed to ensure that the participants
have programming experience. The used questions can be found in the appendix A.2.

We were able to recruit 124 participants for this part of the study. The participants were
rewarded with $5.00 for their participation in the study, which took around 10—-20 min to
complete.

3.2.3.2  Exclusion Criteria

We used similar exclusion criteria as in CognModelChris’s original study. We excluded any
participants that did not complete the questionnaire entirely. We also excluded participants
that completed the study too fast or too slow, i.e less or more than 1.5 times the interquartile
range below the first quartile or over the third quartile. This was done to ensure that the
participants were not rushing through the study or taking too long to complete it. After
applying the exclusion criteria for participants of the crowdsourcing platform, we were left
with 96 participants.

3 https://www.cloudresearch.com/
4 https://www.prolific.co/
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3.3 Data Mining

In this section, we will present how we analyzed this part of the thesis. We analyzed the
results of the empirical evaluation. These results were used to train the parameters of the
cognitive model, which could then be evaluated.

3.3.1 Empirical Data Mining

We used the same data mining as in Closheim’s original study. This allowed us to ensure
comparability between the results of Closheim’s original study and our study. Closheim
provided a detailed description of the data mining and an executable script to analyze the
data, which we used and expanded to account for our changes.

The data mining consisted of gathering the following:

¢ Group number of the participant to determine which type of code snippet was used
(treatment or control)

¢ Time taken by the participant for each line

¢ Total time for the task

* Which code snippet was used

¢ Given answer

¢ Correctness of the answer as a true or false value
* Answers to the socio-demographic questionnaire

These values were then be used in the next step to train our cognitive model.

3.3.2 ACT-R Simulation

Closheim provided an analysis script written in Lisp to create and analyze the data. It takes
the number of simulation runs and different parameters as input and outputs the results
of the simulation in the same form as the empirical data. We converted this script into the
programming language Python for easier readability and maintainability. Additionally, the
ability to run the script in parallel was added to speed up the model simulation, as the
training of the model would take a long time. We only focused on the difference between
control and treatment snippets. Groups were of different sizes to better fit the data.

Simulations were done by setting a new random seed for each simulation run to reflect
human behavior as closely as possible. The results of the simulations runs were saved in the
same format as the empirical data.

We used a Bayes Optimization algorithm to find the parameters that fit the data the best
for the model. We prepared a Python script that takes parameters, the group size and the
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code snippet as input and outputs the results of the simulation in the same format as the
empirical data. The results of the simulation were then used to calculate a value, which
depended on which aspect of the model was to be optimized. The Bayes Optimization
algorithm then tried to maximize the value of the results of the simulation.

3.4 Evaluation

The evaluation was performed in three steps:

1. Analyze the results of the empirical evaluation and compare it to Closheim’s original
study

2. Train the parameters of the cognitive model
3. Evaluate the cognitive model

3.4.1 Empirical Evaluation

The results of the empirical evaluation were analyzed in terms of time and error rate. This

allowed us to infer which effect the changes to the code snippets had on the participants.

We used the same statistical tests as in Closheim’s original study, namely the t-test and
Cohen’s d for the time and x? test and ¢ test for the error rate.

3.4.2 Treatment Effects

The empirical data was analyzed to determine the treatment effects of the code snippets.

We specifically looked at time and error effects of the participants.

3.4.2.1  Time Effects

We used the same method as in Closheim’s original study to analyze the time effects of the
code snippets, namely the t-test and Cohen’s d.

For the t-test, we divided the times of the participants into two groups: one group that
received the treatment code snippets and one group that received the control code snippets
and performed an independent t-test.

To be able to perform an independent t-test, we need data independence, normality
and homogeneity of variance. We checked the data independence by ensuring that each
data point is independent of each other. We calculated the Shapiro-Wilk test to check the
normality of the data, but as the t-test is robust to violations of normality [28, 39], we did
not use its results for the data analysis. We used the Levene’s test to check the homogeneity
of variance. If the data is not normally distributed, we used the Welch’s test instead as it
calculates its test statistic with both variances.
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To be able to compare the effect of the treatments with the data from the simulation
evaluation, we calculated the Cohen’s d.

3.4.2.2  Error Rate Effects

As already mentioned, we used the x? test to analyze the error rate of the participants to
compare whether there was a significant difference between the error rate of the treatment
and the control code snippets.

To be able to perform a X2 test, we need a nominal scale, independent measurements and
a sample size of at least five. As already explained in the previous section, we ensured that
the data is independent. We also have a nominal scale, as the error rate is either true or
false. If a category has less than five data points, we used Fisher’s exact test instead of the
Xz test, as it has no such requirement.

We calculated the ¢ test to be able to compare the effect of the treatments with the data
from the simulation evaluation, since it is a measure of association between two binary
variables.

3.4.2.3  Significance Level Correction

We used the Bonferroni-Holm correction to correct the significance level for multiple
comparisons to account for alpha error accumulation. We did not use the Bonferroni
correction, as it is too conservative and can lead to a high risk of Type II errors [8].

Since we performed two significance tests per code snippet and we had eight code snippets
to analyze, we had a total of 16 significance tests. We used a significance level of & = 0.05 as
a base value and divided it by the number of tests to get the corrected significance level for
the first test. This leads to a corrected significance level of « = 0.05/16 = 0.003125 for the
first test, with the following tests having a significance level of « = 0.05/(16 — i), where i is
the number of the test, with the tests are ordered by their p-value.

3.4.3 Model Training

The training of the cognitive model was done in the same way as in Closheim’s original
study except for the difference of splitting the data into two sets: one training data set, which
was used to train the model, and one test data set, which was used to evaluate the model [13].
We used 80% of the data for training and 20% for testing, as this is a common practice
in machine learning. This enabled us to evaluate the model on data that it has not seen
before and thus provide a lower risk of overfitting and a higher generalizability of the model.

3.4.3.1 Distance Metric

The model was optimized for time and error rate with the help of the Ks statistic and the x?
test. Additionally, we also performed an optimization of the combined time and error data
to find a set of parameters that fit the data best.
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Time Data

We used the KS statistic to compare the empirical data with the simulation data, as it is
a non-parametric test that does not assume any distribution of the data. Therefore, it is a
good choice for our data, as we do not know the distribution of the data. Additionally, it
always gave us a significance level at which the two distributions are different, which was
used for the combined optimization of time and error data.

Error Rate Data

We used the x? test to compare the empirical data with the simulation data, as we only
needed to check if the two distributions are different. As our error rate data is binary, we
could not use the KS statistic, as it is not suitable for binary data. Additionally, the X2 test
also provides a significance level at which the two distributions are different, which was
used for the combined optimization of time and error data.

It should be noted that in certain marginal instances, specifically when the column sums
were found to be zero, the x? test was bypassed and a value of 0 and a significance of 1 were
assumed directly. This is a necessary step because the x? test is not defined for o sums. The
underlying reason for the efficacy of this particular shortcut is attributable to the constant
row sums, which are consistent with the number of simulations and the empirical data. It
can thus be concluded that, in the event of the row sums being equal and one of the column
sums being o, the distribution in the other column must be identical.

Combined Data

We used the significance levels of KS statistic and the x? test to compare the empirical data
with the simulation data, as we wanted to check if the two distributions are different. We
needed to use the significances levels, as the chi? test and the KS statistic are not comparable,
as they have different ranges.

To avoid the accumulation of distance values, the individual summands were squared.

This increased the weight of individual large deviations while keeping smaller deviations
relatively small.

3.4.3.2 Searching Strategy

To find the best set of parameters, we used a Bayes Optimization algorithm, as it has proven
to be more efficient for training ACT-R models compared to a grid search [22]. We only
varied the four parameters mentioned above, as the number of parameters should be kept to
a minimum to avoid overfitting and reducing its generalizability [33], while also still being

able to capture the behavior of the participants due to being a well-constructed model [34].

We also started runs with different amounts of varied parameters for better coverage of the
parameter space.
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3.4.4 Simulation Evaluation

To evaluate the resulting model, we evaluated the time and error rate data of the model
compared to the empirical data. Additionally, we examined if the model was able to replicate
observed effects of the code snippets.

Time Data

We used the KS statistic to evaluate the time data of the trained model. By reporting both
the F-statistic and the p-value of each group and code snippet, we were able to determine
if the model was able to replicate the time data of the empirical evaluation and for each
combination of group and code snippet.

Error Rate Data

We used the x? test to evaluate the error rate data of the trained model. By reporting both
the x? statistic and the p-value of each group and code snippet, we were able to determine
if the model was able to replicate the error rate data of the empirical evaluation and for
each combination of group and code snippet.

Treatment Effects

Finally, we also evaluated the effect of the treatments on the code comprehension of the
code snippets. We analyzed the treatment effects of the model in the same way as in the
empirical evaluation. Afterwards, we compared the results of the model with the results of
the empirical evaluation to see if the model was able to replicate the treatment effects.

We also checked if the model predicted effects that were not present in the empirical
evaluation and discussed the implications of these effects.
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In this chapter, we will present and discuss the evaluation of the results collected from the
empirical evaluation and the simulation evaluation.

4.1 Results

First, we will present the data collection and data preparation. We will then give a short
overview over the socio-demographic data of the participants. Afterward, we will present
the results of the empirical evaluation. Finally, we will focus on the fitting of the ACT-R
model to the empirical data and the simulation evaluation.

4.1.1 Data Collection and Preparation

The data collection was conducted using CloudResearch. The questionnaire was created
using the SoSci' platform and was distributed via CloudResearch®. We started the ques-
tionnaire on 2025-02-10 and received the last results on 2025-02-18. During this time, the
questionnaire was closed for four days to ensure the data quality of the first participants.

In total, 682 participants started the questionnaire, of which 145 participants completed
the questionnaire. Of these 145 participants, 124 participants completed the questionnaire
entirely and were included in the analysis. The high number of participants that started
the questionnaire but did not complete it is due to the fact that we used a crowdsourcing
platform and performed a screening at the start of the questionnaire, that filtered out those
participants who did not meet the requirements. The questionnaire received a rating of
4.3\5 with 73 votes on CloudResearch, which implies that the participants were satisfied
with the quality of the questionnaire.

Of the 124 participants, we excluded 28 participants due to completing the study too fast
or too slow, i.e less/more than 1.5 times the interquartile range below the first quartile/above
the third quartile. Therefore, 96 participants were included in the analysis and evaluation.
The participants were randomly assigned to four groups, whose distribution is shown in
Table 4.1.

As a reminder, we created four groups to reduce learning effects by changing the order of
the code snippets. As groups 1 and 3, and groups 2 and 4, differed solely in the order of
their snippet presentation, groups 1 and 3 were combined into group 1, and groups 2 and

1 https://www.soscisurvey.de/
2 https://www.cloudresearch.com/
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Group Count

1 24
2 24
3 23
4 25

Table 4.1: Number of participants randomly assigned to four groups

4 were combined into group 2 for the subsequent evaluations. The two remaining groups
differentiate in the type of the code snippet, i.e. treatment or control group, which is used
to analyze the effect of the treatment. This resulted in a total of 47 participants for Group 1
and 49 for Group 2. All simulations of the ACT-R model utilised in the subsequent analyses
were calculated with these two group sizes.

4.1.2 Socio-Demographic Data

The following section will provide an overview of the participants and their socio-demographic
data.

The average participant was 34.8 years old, with a standard deviation of 10.1 years. The
youngest participant was 18 years old, while the oldest participant was 64 years old.

The distribution of the age groups can be seen in Figure 4.1. Most people were around
20—4o0 years old, even though older participants are still present.
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Figure 4.1: Age Groups of Participants

The country distribution of the participants is shown in Figure 4.2. We can clearly see
that the majority of participants were from the USA, followed by Canada and the United
Kingdom. This is probably due to the fact that the questionnaire was distributed via
CloudResearch, which is a crowdsourcing platform that is mainly used in the USA and



4.1 Results

other english-speaking countries. Additionally, CloudResearch is not available in some
countries, for example in Germany.

Country Distribution
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Figure 4.2: Country Distribution of Participants

The participants were asked to indicate their highest level of education. The distribution
of the education levels is shown in Figure 4.3 The majority of participants had a bachelor’s
degree with 64.8%, followed by a master’s degree with 18.8% and a high school diploma
with 15.6%.

Education Distribution

60
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Figure 4.3: Education Level of Participants

The participants were also asked to indicate their gender identity. The most common
gender of the participants with around 78% was male. Woman followed with around 18%,
while the remaining 4% of participants identified as non-binary.
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4.1.3 Empirical Evaluation

The following chapter will present the results of the empirical evaluation. We will present
the data of both code snippets for each group, due to having different changes (i.e. similarity
and distance changes) and the results of the statistical analysis. Each type of treatment will
be discussed separately to allow for a better understanding of the results.

For each type of treatment, we will analyse the results of the empirical evaluation with
regard to the time data and the error data.

We used the t-test to compare the means of the two groups. A value of p < 0.05 was
considered statistically significant, but was later adjusted with the Bonferroni correction in
Section 4.1.3.5 to account for multiple comparisons. While our group sizes are great enough
to assume normality, we also checked the normality of the data with the Shapiro-Wilk test.
The results of the Shapiro-Wilk test are shown in the tables for each code snippet, but were
not used. Additionally, we tested for homogeneity of variance with the Levene test, which
is also reported in the tables for each code snippet. In the following, if the Levene test says
that the data is not normally distributed, we used the Welch’s t-test instead of the t-test
without reporting it again. The values are reported in the tables in the same column as the
t-test.

4.1.3.1  Code Distance

The code distance treatment was designed to investigate the influence of the distance
between the declaration of a variable and its usage at a later point in the code snippet.

Time Data
The results of the time data of code distance treatment are shown in Figure 4.4.
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Figure 4.4: Time Data for Code Distance Snippet CD1 (a) and CDz2 (b)
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Control

We can see that for code snippet CD1, the treatment group was faster by around 8 seconds
on average than the control group. This was unexpected, as the treatment group should
have been slower due to the distance between the declaration and usage of the variable. The
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change introduced for CD1 was a higher distance between the declaration and usage of the
variable.

For code snippet CD2, the treatment group was slower by around 5 seconds on average
than the control group. The change introduced for CD2 was similarity between variable
names. This result was expected, as the treatment group had to deal with similar variable
names.

The results of the statistical analysis can be seen in Table 4.2.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d

Value P Value P Value p  Value p

CD1  0.958 0.089 0.978 0.502 0.978 0.502 2.435 0.017 0.497
CD2 0.934 0.010 0.957 0.074 0.139 0.710 1.840 0.069 0.376

Table 4.2: Statistical Analysis for CD1 and CD2

For CD1, there is a significant difference between groups, supported by a medium effect
size. For CD2, the difference is not statistically significant, but a small to medium effect size
is observed. The assumptions for the t-test (normality and homogeneity of variance) are
mostly met, except for the control group of CD2, which deviates from normality.

Error Data

The values of the error data analysis can be seen in Table 4.3.

The analysis of the CD1 and CD2 error rates shows slight differences in correctness
between the treatment and control groups. For CD1, the control group achieved a higher
correctness rate (65.30%) compared to the treatment group (53.19%), but the difference was
not statistically significant (p = 0.317) and showed a small effect size (¢ = 0.102). For CD2,
the correctness rates of the treatment (63.83%) and control (65.31%) groups were nearly
identical, with no statistical significance (p = 1.0) and no effect size (¢ = 0.0). These results
suggest that while there are observable differences in CD1, they are not strong enough to be
statistically significant. For CD2, the performance of both groups is nearly identical.

Overall, the findings indicate no strong association between group type and correctness
for either CD1 or CD2.

Group  False True Correctness (%) | x2 P ¢ Group  False True Correctness (%) | x> p ¢
Treatment 22 25 53.19 10 0317 0102 Treatment 17 32 63.83 00 1.0 00
Control 17 32 65.30 Control 17 30 65.31
Table 4.3: CD1 Error Rate Table 4.4: CD2 Error Rate

4.1.3.2  Repeated Code

The repeated code treatment was designed to investigate the influence of having multiple
declarations of variables in the same code snippet.
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Time Data
The results of the time data of repeated code treatment are shown in Figure 4.5.
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Figure 4.5: Time Data for RepeatedCode Snippet CR1 (a) and CR2 (b)

We can see that for code snippet CR1, the treatment group was slightly faster by around
1.5 seconds on average than the control group. The change introduced for CR1 was similarity
between variable names.

For code snippet CR2, the treatment group was slower by around 12 seconds on average
than the control group. The change introduced for CR2 was a higher distance between the
declaration and usage of the variable. This result was expected, as the treatment group had
to deal with a higher distance between the declaration and usage of the variable.

The results of the statistical analysis can be seen in Table 4.5.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value P Value P Value P Value P
CR1 0.924 0.004 0.931 0.008 0.039 0.845 1.090 0.278 0.223
CR2 0.927 0.006 0.942 0.017 12.707 0.001 4.242 <0.001 0.866

Table 4.5: Statistical Analysis for CR1 and CR2

For CR1, there was no significant difference between groups, with a small effect size.
For CR2, there was a significant difference with a large effect size, but the variances were
unequal.

Error Data

The analysis of the CR1 and CR2 error rates shows differences in correctness between the
treatment and control groups. For CR1, the control group achieved a higher correctness
rate (93.88%) compared to the treatment group (78.72%), with a small to medium effect
size (¢ = 0.191), but the difference was not statistically significant (p = 0.061). For CR2,
the treatment group performed slightly better (91.84%) than the control group (85.11%),
but the difference was also not statistically significant (p = 0.475) and showed a negligible
effect size (¢ = 0.073). These results suggest that while there are observable differences
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in correctness rates, they lack statistical significance. The effect sizes indicate weak or no
association between group type and correctness.

Overall, the findings highlight no strong evidence of a significant advantage for either
group in these conditions.

Group  False True Correctness (%) | x2 P ¢ Group  False True Correctness (%) | x2 P ¢
Treatment 10 37 78.72 3500 0061 0191 Treatment 4 45 91.84 0510 0475 0.073
Control 3 46 93.88 Control 7 40 85.11
Table 4.6: CR1 Error Rate Table 4.7: CR2 Error Rate

4.1.3.3  Declaration Redeclaration Distance

The declaration redeclaration distance treatment was designed to investigate the interaction
between the CD and CR treatments. Specifically, the treatment consists of having a double
declaration of a variable at the beginning of the code snippet (CR treatment) and a usage of
the variable at the end of the code snippet (CD treatment).

The control code snippets have their second declaration of the double declaration in the
line before the usage of the variable.

Time Data

The results of the time data of repeated code treatment are shown in Figure 4.6.
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Figure 4.6: Time Data for Declaration Redeclaration Snippet DR1 (a) and DRz (b)

We can see that for code snippet DR1, the treatment group was faster by around 8 seconds
on average than the control group. The change introduced for DR1 was similarity between
variable names.

For code snippet DR2, the treatment group was slower by around 9 seconds on average
than the control group. The change introduced for DR2 was a higher distance between the
declaration and usage of the variable. This result was expected, as the treatment group had
to deal with a higher distance between the declaration and usage of the variable.

The results of the statistical analysis can be seen in Table 4.8.

For both DR1 and DRz, a significant difference is observed between the treatment and
control groups, with medium to large effect sizes. The assumptions for the t-test are largely

31



32

Part I Evaluation: Replication Study

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d

Value P Value p Value P Value p

DR1 0.939 0.013 0.954 0.063 3.080 0.083 2.445 0.016 0.499
DR2  0.959 0.095 0.947 0.029 2.599 0.110 2.677 0.009 0.546

Table 4.8: Statistical Analysis for DR1 and DR2

met, with the exception of the control group in DR1, which exhibits a minor deviation from
normality.

Error Data

The analysis of the DR1 and DRz error rates reveals distinct patterns in performance between
the treatment and control groups. For DR1, the control group achieved a higher correctness
rate (67.35%) compared to the treatment group (57.45%), but the difference was not statis-
tically significant (p = 0.429) and showed a negligible effect size (¢ = 0.081). In DR2, the
treatment group performed better (65.31%) than the control group (46.81%), but again, the
difference was not statistically significant (p = 0.105) with a small effect size (¢ = 0.165).
These results suggest that while there are observable differences in correctness rates, they
lack statistical significance and are associated with small or negligible effect sizes.

Overall, the findings indicate no strong association between group type and correctness
for either DR1 or DR2.

Group False True Correctness (%) )(2 P ¢ Group False True Correctness (%) )(2 P ¢
Treatment 20 27 57.45 0625 0429 0.081 Treatment 17 32 65.31 2626 0105 0.165
Control 16 33 67.35 Control 25 22 46.81
Table 4.9: DR1 Error Rate Table 4.10: DR2 Error Rate

4.1.3.4  Repeated Distance

The repeated distance treatment manipulated the position of filler lines relative to a double
declaration and its usage. In the treatment group, some filler lines were inserted between
the double declaration and its subsequent usage. In contrast, in the control group, the same
filler lines appeared before the double declaration.

Time Data

The results of the time data of repeated code treatment are shown in Figure 4.7.

We can see that for code snippet RP1, the treatment group was faster by around 12.5
seconds on average than the control group. The change introduced for RP1 was a higher
distance between the declaration and usage of the variable.

For code snippet RP2, the treatment group was slower by around 6 seconds on average
than the control group. The change introduced for RP2 was similarity between variable
names.

The results of the statistical analysis can be seen in Table 4.11.
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Figure 4.7: Time Data for Repeated Distance Snippet RP1 (a) and RP2 (b)

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d

Value P Value p Value P Value P

RP1  0.930 0.006 0.954 0.060 6.537 0.012 3.056 0.003 0.624
RP2  0.943 0.023 0.931 0.007 2.526 0.115 2.195 0.031 0.448

Table 4.11: Statistical Analysis for RP1 and RP2

For both conditions (RP1 and RP2), the t-tests demonstrate significant differences between
the groups with large effect sizes. The assumption of normality is violated for some groups,
which has the potential to influence the interpretation of the results. It is evident that the
variance homogeneity is violated for RP1, which is why we used the Welch t-test. In RP2,
however, the variances are homogeneous.

Error Data

The statistical analysis highlights significant differences between treatment and control
groups in several conditions. For RP1, the control group outperformed the treatment group
with a large effect size (¢ = 0.442), while RP2 showed no significant difference between
groups (¢ = 0.0). The t-tests for time data revealed significant differences for both RP1 and
RP2, with medium to large effect sizes favoring the control group. Normality assumptions
were violated in some cases, particularly for RP1, which may affect the interpretation of
results. The error rate analysis for RP1 showed a strong association between group type and
correctness, while RP2 demonstrated no such association.

Overall, the control group consistently performed better in RP1, where the differences
were more pronounced. These findings suggest that the control group had an advantage in
correctness due to the nature of the code snippets and the treatment applied.

Group False True Correctness (%) X P ¢ Group False True Correctness (%) XZ P ¢
Treatment 30 17 36.17 18714 <0001 0442 Treatment 17 32 65.31 00 10 00
Control 9 40 81.63 Control 16 31 65.96

Table 4.12: RP1 Error Rate Table 4.13: RP2 Error Rate
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4.1.3.5  Significance Level Correction

We checked the significance level correction for the t-tests and x? tests of all eight code
snippets. Of those 16 values, seven values were significant at the 0.05 level. The significance
level correction can be seen in Table 4.14.

CR2z t-test RP1)?> CD1t-test CD2zt-test DR1 t-test DRz t-test RP2 t-test

p-value <0.001 <0.001 0.003 0.009 0.016 0.017 0.031
Bound 0.003125  0.003333 0.003571  0.003846  0.004167  0.004545 0.005
Significant Yes Yes Yes No No No No

Table 4.14: Significance Level Correction

The values of the t-tests for CD1, CD2, DR1, and DR2 were not significant after the correction
and may have been due to chance. The values of the t-tests for CR2, RP1, and RP2 were
significant after the correction and are not due to chance.

4.1.4 Simulation Evaluation

In this section, we will analyze the results of the fitting of the model to the data of the
simulation evaluation. Afterwards, we will analyze the results of the fitted model.

4.1.4.1  Model Fitting

We performed different types of optimizations with the data of the empirical evaluation
to train the parameters of the ACT-R model. Specifically, we trained either three (ans, If,
rt) or four parameters (ans, If, rt, mp) of the model. We used the following ranges for the
parameters:

® ans: [0.01, 2.0]
e If: [0.1, 5.0]

e rt: [-10.0, 10.0]
e mp: [0.2, 2.0]

The parameter mp was set to 1.0 if not varied, as it seemed like a good value during the
tests that were run prior to starting the optimization. The Bayesian Optimization tried to
maximize either the time data with the help of the Ks statistic or the error data with the help
of the x? statistic. Additionally, we also tried to maximize the significance of the combined
time and error data.

Due to time constrains, we did not find an maximum for the optimization of the model pa-
rameters. The experiments were run for 12 days, but due to the increased model complexity,
the run time of a single optimization took too long to run more steps.

In the following, we will describe the best parameters in regard to time data, error data
and combined data for the optimizations with three and four parameters.
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Time Data

The optimization was run for 640 steps. There was no convergence of the optimization, as
we needed to stop the optimization due to time constraints. The best possible reachable
sum of squared KS statistics was -1.239 and found at the 621st step of the optimization. The
parameters for this run are described in Table 4.15 (a).

Parameter Value Parameter Value Parameter Value
ans 0.418 ans 0.010 ans 0.014
If 4.253 1f 5.000 If 4.066
rt -0.204 rt -0.056 rt -8.100
mp 1.860 mp 0.200 mp 1.0
(a (b) (©)

Table 4.15: Best Parameters for Time (a), Error (b) and Combined Data (c)

The evolution of the Bayesian Optimization can be seen in Figure 4.8.
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Figure 4.8: Evolution of the BO algorithm with 50 start points for tuning ans, If, rt, mp for time data

The accuracy in terms of time data and error rate of this approximation can be seen in
Figure 4.9.

If we consider Figure 4.9 (b), we can see that all values are very high with all significance
values being 0.0. This means that the model was not able at all to predict the responses of
the participants. This was to be expected, as we only optimized in regards to time for this
optimization. If we have a look at the error data, we can see that the model did not return
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Figure 4.9: Heatmaps of KS statistic (a) and xz statistic (b) for tuning ans, If, rt, mp for time data

an answer for nearly every code snippet and thus had a false result. This optimization is
therefore not realistic and does not help in providing a useful model, even if the time values
are quite good.

As can be seen in Figure 4.9 (a), the worst value is 0.449. Over half of the code snippets
have a significance value of over 0.05, which means that the probability that the simulated
and empirical data have the same distribution is correspondingly high.
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Figure 4.10: QQ Plots for RP1 (a) and CD1 (b) tuning ans, If, rt, mp for time data

We used QQ plots to visualize the difference between the empirical and simulation data.
As we can see in Figure 4.10, the overall direction seems to be correct, but the values are
shifted to the bottom for those code snippets that are not significant. Mostly, the simulation
is faster than the empirical data, leading to this shift to the bottom.

Error Data

The optimization was run for 628 steps. There was no convergence of the optimization, as
we needed to stop the optimization due to time constraints. The best possible reachable sum
for the x? statistics was -964.353 found at the 104th step of the optimization. The parameters
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for this run are described in Table 4.15 (b). The evolution of the Bayesian Optimization can
be seen in Figure 4.11.
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Figure 4.11: Evolution of the BO algorithm with 50 start points for tuning ans, If, rt, mp for error data

The accuracy in terms of time data and error rate of this approximation can be seen in
Figure 4.12.
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Figure 4.12: Heatmaps of Ks statistic (a) and x? statistic (b) for tuning ans, If, rt, mp for error data

Control Treatment

As we can see in Figure 4.12 (a), the simulated time does not fit the empirical data at all.
This result could be expected as we only optimized in regards to correctness of the answers.
Nevertheless, the distribution of the time data is vastly different due to the simulated time
data not having nearly as much variance as the empirical data. The simulated times are
concentrated at around 60 seconds, whereas the empirical data has time values between
3—70 seconds for the code snippet CD1.
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False True Correctness (%) False  True Correctness (%)
Control 2 (17) 47 (32) 96% (65%) Control 25 (16) 22 (31) 47% (66%)
Treatment 2 (22) 45 (25) 96% (53%) Treatment 24 (17) 25 (32) 51% (65%)

Table 4.16: CD1 Error Rate for simulated data  Table 4.17: RP2 Error Rate for simulated data
with empirical data in parentheses with empirical data in parentheses

The correctness of two code snippets are shown in Table 4.16 and Table 4.17. The values
in the brackets describes the values of the empirical data. Half of the code snippets have
a significance value of over 0.05, which means that the probability that the simulated and
empirical data have similar distributions is correspondingly high. Nevertheless, some 2
values are very high, which means that the model was not able at all to predict the responses
of the participants. This is especially true for the code snippets CD1, which can be seen in
Table 4.16.

Combined Data

The optimization was run for 635 steps. There was no convergence of the optimization, as
we needed to stop the optimization due to time constraints. The best possible reachable
sum for the combined significance was 5.084 found at the 302th step of the optimization.
The parameters for this run are described in Table 4.15 (c).

The evolution of the Bayesian Optimization can be seen in Figure 4.13.
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Figure 4.13: Evolution of the BO algorithm with 50 start points for tuning ans, If, rt for combined data

The accuracy in terms of time data and error rate of this approximation can be seen in
Figure 4.14.
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As we can see in Figure 4.14 (a), the simulated time does not fit the empirical data at all,
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similar to the error data. Here, we did expect to have some compromise between the time

and error data, but the model was not able to correctly predict the time needed to solve the
code snippets. The distribution of the time data is vastly different due to the simulated time
data not having nearly as much variance as the empirical data, which can be seen in the QQ
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Figure 4.15: QQ Plots for CD1 (a) and RP1 (b) tuning ans, If, rt for time data

4.1.4.2  Model Evaluation

Finally, we will evaluate the model with the help of the K statistic and the x? statistic, as we
did for the empirical evaluation. For this evaluation, we used the results of the simulation
with the parameters that were found in Section 4.1.4.1. We chose the error data optimization,
as it was the most accurate. As all different optimizations, except for the time optimization,
were not able to predict the time data, we chose the model with the best error data. The
time data was not chosen, as it was not a faithful representation of the empirical data, due

to mostly not returning any answers for the code snippets.
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4.1.4.3 Code Distance

The code distance treatment was designed to investigate the influence of the distance
between the declaration of a variable and its usage at a later point in the code snippet.

Time Data

The results of the time data of code distance treatment are shown in Figure 4.16.
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Figure 4.16: Time Data for Code Distance Snippet CD1 (a) and CDz2 (b)

We can see that for both code snippets, the simulation time data is much higher and less
distributed than the empirical time data. The simulation time data is concentrated at around
60 seconds, whereas the empirical data has time values between 3—70 seconds for the code
snippet CD1. Therefore, the time data of the simulation is not a good representation of the
empirical data.

The results of the statistical analysis can be seen in Table 4.18.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value p Value P Value P Value P
cpr 0921 0.004  0.949 0.034 0.001 0971 2567  0.012 0.524
(0.953)  (0.058) (0.986) (0.817) (0.619) (0.433) (0.455) (0.650) (0.093)
cp2 0943 0.020  0.981 0.636 0.019 0891 -0.929 0.355 -0.190

(0.939)  (0.013) (0.944) (0.024) (0.005) (0.941) (-0.151) (0.880) (-0.031)

Table 4.18: Statistical Analysis for CD1 and CD2 with empirical data in brackets

The analysis for CD1 shows that the simulation data does not deviate from normality
(p = 0.358) and exhibits significant variance differences (p = 0.002), unlike the empirical
data. The simulation indicates no significant treatment effect (p = 0.728) with a negligible
effect size (d = —0.071), whereas the empirical data shows a significant difference (p = 0.017)
with a medium effect size (d = 0.497). For CD2, both the simulation and empirical data align
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more closely, showing no significant differences (p = 0.588 and p = 0.069) and small effect
sizes (d = —0.111 and d = 0.376).

These results suggest that the simulation underestimates the treatment effect for CD1
but accurately reflects the minimal impact of the treatment for CD2. The discrepancies in
variance and effect size for CD1 highlight areas where the model requires refinement to
better replicate human behavior.

Error Data

The values of the error data analysis can be seen in Table 6.23.

The error rate analysis for CD1 and CD2 reveals significant differences between the
simulation and empirical data. For CD1, the simulation data shows near-perfect correctness
for both the treatment and control groups, which significantly overestimates the empirical
results. Similarly, for CD2, the simulation data indicates higher correctness rates for both
groups compared to the empirical data, particularly for the treatment group.

The (x?) tests for both CD1 and CD2 show no significant differences (p = 1.0 and
p = 0.715) in the simulation data, which aligns with the empirical results. However, the
consistently higher correctness rates in the simulation suggest that the model underestimates
the cognitive challenges posed by the treatment, increased code distance and variable
similarity.

Group False True Correctness (%) )(2 P ¢ Group False True Correctness (%) )(2 P ¢
Treatment 2 (22) 45 (25) 95.74 (53.19) 0.0 1.0 0.0 Treatment 7 (17) 42 (32) 85.71 (63.83) 0.133 0.715 0.037
Control 2 (17) 47(32)  95.92(6530) | (1.0) (0.317) (0.102) Control  9(17) 38(30)  80.85(65.31) | (0.0) (1.0) (0.0
Table 4.19: CD1 Error Rate Table 4.20: CD2 Error Rate

4.1.4.4 Repeated Code

The repeated code treatment was designed to investigate the influence of having multiple
declarations of variables in the same code snippet.

Time Data

The results of the time data of repeated code treatment are shown in Figure 4.17.

Here again, we can see that for both code snippets, the simulation time data is much
higher and less distributed than the empirical time data. The simulation time data is
concentrated at around 30-35 seconds, whereas the empirical data has time values between
2—25 seconds for the code snippet CR1. Therefore, the time data of the simulation is not a
good representation of the empirical data.

The results of the statistical analysis can be seen in Table 4.21.

For code snippet CR1, the simulation data shows a significant difference between the
treatment and control groups (p < 0.001), with a very large effect size (d = 26.716). This
contrasts with the empirical data, where no significant difference was observed (p = 0.278)
and the effect size was small (d = 0.223). The treatment groups of both the simulation and
empirical data are similar, but the control group in the empirical data performed faster and
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Time Difference Plot for CR1

Time Difference Plot for CR2
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Figure 4.17: Time Data for Repeated Code Snippet CR1 (a) and CR2 (b)
Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value P Value P Value P Value p
cre 9979 0.476  0.979 0.513 0.631 0429 130.853 <0.001 26.716
(0.924) (0.004) (0.931) (0.008) (0.039) (0.845) (1.090) (0.278) (0.223)
Crz 0291 <0.001 0.396 <0.001 2298 0.133 -8.781 <o0.001 -1.793
(0.927)  (0.006) (0.942) (0.017) (12.707) (0.001) (4.242) (<0.001) (0.866)

Table 4.21: Statistical Analysis for CR1 and CR2 with empirical data in brackets
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exhibited more variability compared to the simulation data.

For code snippet CR2, the simulation data also shows a significant difference between the
treatment and control groups (p < 0.001), with a large negative effect size (d = —1.793). This
is in contrast to the empirical data, which also shows a significant difference (p < 0.001) but
with a still large but smaller positive effect size (d = 0.866). The simulation data indicates
a much larger discrepancy between the groups in the other direction compared to the
empirical data, suggesting that the model overestimates the treatment effect.

The results of the statistical analysis highlight that the simulation overestimates the
differences between the treatment and control groups for both CR1 and CR2, particularly in
terms of effect sizes.

Error Data
Group False  True Correctness (%) x> P ¢ Group False True Correctness (%) X2 P ¢
Treatment 27 (10) 20 (37) 42.55 (78.72) 24.443 <0.001  0.505 Treatment 24 (4) 25 (45) 51.02 (91.84) 19.477 <0.001  0.450
Control ~ 4(3) 45 (46)  91.84(93.88) | (3.500) (0.061) (0.191) Control  3(7) 44(40)  93.62(85.11) | (0.510) (0.475) (0.073)
Table 4.22: CR1 Error Rate Table 4.23: CR2 Error Rate

For CR1, the simulation data shows a correctness rate of 42.55% for the treatment group,
which is significantly lower than the empirical rate of 78.72%. Similarly, the control group in
the simulation achieved a correctness rate of 91.84%, slightly lower than the empirical rate
of 93.88%. The x? test for CR1 indicates a significant difference (p < 0.001) in the simulation
data, with a large effect size (¢ = 0.505), contrasting with the empirical data, which showed
no significant difference (p = 0.061) and a small effect size (¢ = 0.191). Additionally, the
answer distribution has a small peak for an error that is due to the treatment, which is also
present in the empirical data, but not as pronounced as in the simulation data.

For CR2, the simulation data shows a correctness rate of 51.02% for the treatment group,
which is significantly lower than the empirical rate of 91.84%. The control group in the
simulation achieved a correctness rate of 93.62%, slightly higher than the empirical rate
of 85.11%. The x? test for CR2 also indicates a significant difference (p < 0.001) in the
simulation data, with a large effect size (¢ = 0.450), whereas the empirical data showed no
significant difference (p = 0.475) and a negligible effect size (¢ = 0.073).

Overall, the findings suggest that the simulation overestimates the differences in correct-
ness rates for both CR1 and CR2. While the empirical data shows no significant differences
between the treatment and control groups, the simulation predicts significant differences
with large effect sizes.

4.1.4.5 Declaration Redeclaration Distance

The declaration redeclaration distance treatment was designed to investigate the interaction
between the CD and CR treatments. Specifically, the treatment consists of having a double
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declaration of a variable at the beginning of the code snippet (CR treatment) and a usage of
the variable at the end of the code snippet (CD treatment).

The control code snippets have their second declaration of the double declaration in the
line before the usage of the variable.

Time Data

The results of the time data of repeated code treatment are shown in Figure 4.18.
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Figure 4.18: Time Data for Declaration Redeclaration Snippet DR1 (a) and DR2 (b)

Again we can see that for both code snippets, the simulation time data is much higher
and less distributed than the empirical time data. The simulation time data is concentrated
at around 75 seconds, whereas the empirical data has time values between 5-75 seconds for

the code snippet DR2. Therefore, the time data of the simulation is not a good representation
of the empirical data.

The results of the statistical analysis can be seen in Table 4.24.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value p Value p Value p Value p
DR1 0.268 <0.001  0.984 0.744  1.143 0.288 0.925 0.357 0.189
(0.939)  (0.013) (0.954) (0.063) (3.080) (0.083) (2.445) (0.016)  (0.499)
DR2 0.258 <0.001 0.196 <0.001 0.090 0.765 -0.344 0.732 -0.070
(0.959)  (0.095) (0.947) (0.029) (2.599) (0.110) (2.677) (0.009)  (0.546)

Table 4.24: Statistical Analysis for DR1 and DR2 with empirical data in brackets

For DR1, the simulation data shows no significant difference between the control and
treatment groups (p = 0.357), with a small effect size (d = 0.189). This contrasts with the
empirical data, which indicates a significant difference (p = 0.016) and a medium effect size

(d = 0.499). The simulation underestimates the treatment effect compared to the empirical
data.
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For DRz, the simulation data also shows no significant difference between the groups
(p = 0.732), with a negligible effect size (d = —0.070). This contrasts with the empirical data,
which reports a significant difference (p = 0.009) and a medium effect size (d = 0.546). The
simulation again underestimates the treatment effect observed in the empirical data.

Overall, the findings suggest that the simulation underestimates the treatment effects for
both DR1 and DR2, particularly in terms of effect sizes and statistical significance.

Error Data

The analysis of the error rates for DR1 and DR2 reveals notable differences between the
simulation and the empirical data. For DR1, the treatment group in the simulation achieved
a correctness rate of 31.91%, which is significantly lower than the empirical rate of 57.45%.
Similarly, the control group in the simulation had a correctness rate of 40.82%, also lower
than the empirical rate of 67.35%. The x? test for DR1 shows no significant difference
(p = 0.488) in the simulation data, in agreement with the empirical results (p = 0.429).

For DR2, the treatment group in the simulation achieved a correctness rate of 44.90%,
which is lower than the empirical rate of 65.31%. The control group in the simulation
achieved a correctness rate of 44.68%, which is similar to the empirical rate of 46.81%. The
x? test for DR2 shows no significant difference (p = 1.000) in the simulation data, which
contrasts with the empirical results (p = 0.105) that showed a small effect size.

Overall, the simulation underestimates the correctness rates for both DR1 and DR2, espe-
cially for the treatment groups. While the simulation aligns with the empirical results in
terms of statistical significance for DR1, it fails to capture the differences observed in the
empirical data for DR2.

Group False  True Correctness (%) X p ¢ Group False  True Correctness (%) X p ¢
Treatment 32 (20) 15 (27) 31.91 (57.45) 0481 0488  o.071 Treatment 27 (17) 22(32) 44.90 (65.31) 0.0 1.0 0.0
Control 29 (16) 20 (33) 40.82 (67.35) (0.625) (0.429) (0.081) Control 26 (25) 21 (22) 44.68 (46.81) (2.626) (0.105) (0.165)
Table 4.25: DR1 Error Rate Table 4.26: DR2 Error Rate

4.1.4.6  Repeated Distance

The repeated distance treatment manipulated the position of filler lines relative to a double
declaration and its usage. In the treatment group, some filler lines were inserted between
the double declaration and its subsequent usage. In contrast, in the control group, the same
filler lines appeared before the double declaration.

Time Data

The results of the time data of repeated code treatment are shown in Figure 4.19.

The last type of treatment also shows that the simulation time data is much higher and
less distributed than the empirical time data. The simulation time data is concentrated at
around 52 seconds, whereas the empirical data has time values between 3-50 seconds for
the code snippet RP1. Therefore, the time data of the simulation is not a good representation
of the empirical data.

The results of the statistical analysis can be seen in Table 4.27.
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Figure 4.19: Time Data for Repeated Distance Snippet RP1 (a) and RP2 (b)
Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value P Value P Value p Value P
rpy  ©-578 <0.001  0.235 <0.001 1777 0.186 -1.350 0.180 -0.276
(0.930)  (0.006) (0.954) (0.060) (6.537) (0.012) (3.056) (0.003) (0.624)
RP2 0.162 <0.001 0.987 0.846 1.135 0.289 -1.120 0.266 -0.229

(0.943) (0.023) (0.931) (0.007) (2.526) (0.115) (2.195) (0.031) (0.448)

Table 4.27: Statistical Analysis for RP1 and RP2 with empirical data in brackets
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For RP1, the simulation data shows no significant difference between the control and
treatment groups (p = 0.180), with a small effect size (d = —0.276). This contrasts with the
empirical data, which indicates a significant difference (p = 0.003) and a medium effect size
(d = 0.624). The simulation seems to underestimate the influence of the treatment effect
compared to the empirical data.

For RP2, the simulation data also shows no significant difference between the groups
(p = 0.266), with a small effect size (d = —0.229). Similarly, the empirical data shows a
significant difference (p = 0.031) with a medium effect size (d = 0.448). The simulation
underestimates the treatment effect observed in the empirical data.

Overall, the findings suggest that the simulation underestimates the treatment effects for
both RP1 and RP2, which can be observed in the effect sizes and statistical significance.

Error Data

The error rate analysis for RP1 and RP2 highlights differences between the treatment and
control groups. For RP1, the treatment group achieved a correctness rate of 48.94%, which
is lower than the control group’s 59.18%. However, the difference was not statistically
significant (p = 0.422) and showed a small effect size (¢ = 0.082). In contrast, the empirical
data shows a much larger difference, with the treatment group achieving a correctness
rate of 36.17% and the control group achieving 81.63%, which was statistically significant
(p < 0.001) with a large effect size (¢ = 0.442).

For RP2, the treatment group achieved a correctness rate of 51.02%, which is slightly
higher than the control group’s 46.81%. The difference was not statistically significant
(p = 0.835) and exhibited a negligible effect size (¢ = 0.021). Similarly, the empirical data
shows no significant difference, with the treatment group achieving a correctness rate of
65.31% and the control group achieving 65.96% (p = 1.0, ¢ = 0.0).

Opverall, the findings suggest that the simulation underestimates the differences observed
in the empirical data for RP1, where the control group significantly outperformed the
treatment group. For RP2, the simulation aligns more closely with the empirical data,
showing minimal differences between the treatment and control groups.

Group False True Correctness (%) X2 p ¢ Group False True Correctness (%) | X2 P ¢
Treatment 24 (30) 23 (17)  48.94 (36.17) 0.644 0.422 0.082 Treatment 24 (17) 25 (32) 51.02 (65.31) 0.043 0.835 0.021
Control  20(9) 29(40)  59.18 (81.63) | (18.714) (<0.001) (0.442) Control  25(16) 22(31)  46.81 (65.96) (0.0) (1.0) (0.0)
Table 4.281 RP1 Error Rate Table 4.29: RP2 Error Rate

4.1.4.7  Similarity Errors

In this section, we will analyze the errors that were made by the participants in the empirical
evaluation and the simulation evaluation. The code snippets that were adjusted to facilitate
similarity errors were CD2, CR1, DR1 and RP2.

For CD2, we can see that both groups in the empirical and simulation data made a few
more pronounced errors, namely the value 8 instead of the value 0. This result may be
achieved by involuntarily exchanging the values of the variables d and b in the last line in
the code snippet. Another possible error is to use the value 16. This result can be achieved
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Figure 4.20: Answer Distribution of Code Snippet CD2 (a) and CR1 (b)

by involuntarily exchanging the values of the variables p and q in the second last line in the
code snippet.

For CR1, we can see that both groups in the empirical and simulation data made a rare

similarity error, namely the value 2 instead of the value 6. This may be due to a confusion
of the values of the variables b and d in the second last line in the code snippet.
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Figure 4.21: Answer Distribution of Code Snippet DR1 (a) and RP2 (b)

For DR1, we can see that both groups in the empirical and simulation data made a rare
error, namely the value 2 instead of the value 16, which could be due to confusing the
values of the variables h and n in the last line in the code snippet.

Finally, for RP2, we can see that both groups in the empirical and simulation data made
a more pronounced error, namely the value 5 instead of the value 2, which could be due
to confusing the values of the variables p and q in the second last line of the code snippet.
This error was more common in the empirical data than in the simulation data.

4.1.4.8  Significance Level Correction

We checked the significance level correction for the t-tests and x? tests of all eight code
snippets. Of those 16 values, five values were significant at the 0.05 level. The significance
level correction can be seen in Table 4.30.
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CR1 t-test CRzt-test CR1)> CRz2)> CD1 t-test

p-value <0.001 <0.001 <0.001 <0.001 0.012

Bound 0.003125 0.003333  0.003571 0.003846  0.004167
Significant Yes Yes Yes Yes No

Table 4.30: Significance Level Correction of the Model Results

The value of the t-test for CD1 was not significant after the correction and may have been
due to chance. All other values were still significant after the correction.

Comparison with Test Dataset

We ran the model with the same parameters for the same amount of iterations as there
are participants in the test dataset. We then evaluated the model with the same statistical
tests as we did for the empirical evaluation. The error value of the test dataset was -701.721,
which is much better than the error value of the training dataset, which was -964.353. The
time data and the error data had a better fit to the test dataset than to the training dataset,
which is a good sign that the model is able to generalize to other datasets.

4.2 Discussion

In this section, we will discuss the results of the empirical evaluation and the simulation
evaluation.

4.2.1 Empirical Evaluation

We evaluated the results of the effects of the treatments on the time data and the error data.
We will not discuss the results of the socio-demographic data, as those are out of scope of
this work.

Code Distance

For code snippet CD2, the participants in the treatment group were slower than the partici-
pants in the control group, which was expected. The code snippet change was to change
the variable names to be similar to each other. The similarly named variables probably
led to a higher cognitive load for the participants, as they had to connect the name of the
variable with its value while reading the code snippet for a longer time. Thus they needed
more time to process the code snippet. The control group had a lower distance between the
variables that needed to be remembered, which may have lead to a lower cognitive load
and therefore a faster processing time. While the effect size was medium, the difference was
not statistically significant.
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The error data did not show any signicant difference between the groups, therefore in
this case, the treatment had apparently no effect on the error rate.

For code snippet CD1, the treatment group was unexpectedly faster than the control
group. The code snippet was changed to have longer distances between declarations and
usages of variable. If we follow the logic of the CD2 code snippet, we would expect the
treatment group to be slower than the control group, especially as the distance between
the declaration and usage of the variable was greater. We are not sure why the treatment
group was faster, as the treatment group needed to remember two variables from the start
of the code snippet instead of one. A possible explanantion could be that the treatment
group finished the code snippet faster, but that was due to not remembering the variable
and thus directly finishing the code snippet, which led to a lower correctness rate. There
was no strong association between group type and correctness, as the effect size was small
and the difference was not statistically significant, but it could still be a hint to support the
previous explanation.

Repeated Code

For code snippet CR1, the treatment group was only slightly faster than the control group.
The analysis also revealed that there was no significant difference between the groups in
terms of time and correctness. In the original work of Closheim, the author also did not find
a significant difference in the acquired data. Therefore, it seems as if the treatment group
was not affected by the similarity of the variable names.

Contrarily, for code snippet CR2, the treatment group was much slower than the control
group. We found a significant difference between the groups, with a large effect size, for the
time data. The code snippet had a longer distance between the declaration and usage of the
variable. This leads us to the possibility that having a double declaration of a variable in the
code snippet led to a higher cognitive load for the treatment group, as they had to remember
the correct value of a variable for a longer time. It may also have lead to uncertainty about
the correct value and thus to a longer processing time. The error data did not show any
significant difference between the groups, therefore this treatment did not have a strong
effect on the correctness of the participants.

Declaration Redeclaration Distance

For code snippet DR1, the treatment group was also significantly faster than the control
group. The difference is significant with a nearly a large size effect. The code snippet
was changed to have variable names that are similar to each other. Such a result was also
unexpected, as the distance between the last declaraction of the variable and its usage was
higher for the treatment group. Nevertheless, some other factors may have been at play
here.

As we can see in the control code snippet 4.1, the declaration of the variable  is one line
farther away than in the treatment code snippet 4.1 (a). These order effects may interact
with each other to make the treatment code snippet easier than the control code snippet as
the value of the variable i may be more difficult to remember than the value of the variable
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1=2 1=2
1=5 i=28
i=28 h=1/4
h=1i/4 1=5
n=~hsx*1 n=~hsx*xT1
print(n) print(n)

(a) (b)
Listing 4.1: DR1 Treatment (a) and Control (b) Snippets

I and thus also lead to a longer processing time. The error in comparison did not show any
significant difference between the groups.

For code snippet DR2, the treatment group was also significantly slower than the control
group. The difference is significant with a nearly large size effect. Due to having a larger
distance between the double declaration and the subsequent usage, the effect of the treatment
appears to be stronger than in the similarity variant of the code snippet. The longer distance
between the declaration and the retrieval of the value of the variable may have led to a
higher cognitive load for the treatment group, as they had to remember the value of the
variable for a longer time. While the error data did not show any significant difference
between the groups, the treatment group performed nearly 20% better than the control
group. As the result is not significant, it should be taken with caution, but it may indicate
that the treatment group was able to remember the value of the variable better than the
control group due to taking more time to process the code snippet.

Repeated Distance

For code snippet RP1, we again had the case that the treatment group was significantly faster
than the control group. Nevertheless, these results were not expected, as the treatment code
snippet was designed to be easier to solve than the control code snippet. In the control code
snippet, the participant only needed to remember the last 2 lines before the print statement,
whereas in the treatment code snippet, the participant had to remember up to seven lines
before the print statement. The standard deviation of the time data is rather high with 14.7
seconds for the treatment group and 24 seconds for the control group, which may cause
these unexpected results. Additionally, there were more participants in the treatment group
that took less than 5 seconds for the code snippet, which may have led to a bias in the
results. Moreover, participants in the treatment group may have been giving up earlier than
the participants in the control group, as they may have been sure that they do not remember
the variable correctly.

Regarding the error data, the control group performed significantly better than the treat-
ment group with a nearly large effect size. This supports the previous argument that the
treatment group may have given up earlier than the control group, as they were not able to
remember the variable correctly. We can conclude that the RP treatment correlates with the
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error rate for this code snippet.

For code snippet RP2, the treatment group was slower than the control group. This code
snippet was changed to have similar variable names. The t-test also showed a significant
difference between the groups with a nearly large effect size. As RP1 had a much faster
processing time for the treatment group, it may be that the similarity between the variable
names contributed to the slower processing time of the treatment group in this code snippet.
While this may be a satisfactory explanation, we cannot be sure that this is the only reason
for the slower processing time, as other factors as specific characteristics of the participants
or code snippets may have played a role in the results.

The error data did show nearly no difference between the groups with nearly identical
correctness rates. It seems as if the participants were able to remember the variable correctly,
even if the variable names were similar to each other, but needed more time to retrieve the
correct value of the variable.

Owverall Evaluation

Overall, we can extract the following conclusions from the empirical evaluation:

Time Effects

We had several unexpected results in regard to the time data, namely for the code snippets
CD1, CR1, DR1 and RP1. For all four of them, the treatment group was faster than the control
group, which was not expected. While this may all be explained by some facts that are
specific to the code snippet or the participants, we cannot be sure what the exact reason
for these results are. From a logical standpoint, we would expect the treatment group to
be slower than the control group, as they had to deal with a higher cognitive load due
to the treatment. A treatment may prove as ineffective if the code snippet is altered in a
specific way, but it should not reduce the time needed to process the code snippet. As the
affected code snippet were comprised of two code snippets that had their length increased
and two code snippets that had their variables renamed, the probability of these changes
leading to a faster processing time is rather low, considering that for the other code snippets,
the treatment group was slower than the control group. It would be necessary to conduct
further studies to investigate these results and to find out if they are reproducible. Other
possible explanations for these results could be that the treatment group was not able to
remember the variable correctly and thus directly finished the code snippet, which led to a
lower correctness rate, but a faster processing time. Additionally, order effects could have
played a role in the results.

For the other code snippets with the expected behavior, we can see that the distance
between the declaration and usage of the variable may have a signicant effect on the
processing time of the code snippet. We had a signicant and strong effect for the code
snippets CR2 and DR2, where the treatment group was slower than the control group.
Additionally, the similarity of the variable names may also have an effect on the processing
time, as we saw in the code snippets CD2 and RP2, where the treatment group was slower
than the control group. We can also see that double declarations of variables may increase
the effectiveness of similarity errors.



4.2 Discussion

Error Effects

We observed several interesting results in regard to the error data. First of all, most code
snippets had no significant difference between the groups. Additionally, the effect sizes
were rather small, which indicates that the treatments did not have a strong effect on
the correctness of the participants. Nevertheless, the code snippet RP1 had a significant
difference between the groups, with a nearly large effect size, and DR2, while not significant,
still had a rather large difference in correctness between the groups. This may be due having
to having double declarations of variables in combination with a higher distance between
the declaration and usage of the variable. As the effect is less pronounced in DR2 than
RP1, we can conclude that the distance between the declaration and usage of the variable
may have a stronger effect on the correctness than the double declaration of the variable.
Additionally, greater distances are more likely to lead to errors than smaller distances, as
we saw in the code snippets RP2 and DR1. Finally, there may be some order effects that lead
to a higher error rate, as for example the control code snippet DR2 had a higher error rate
than the treatment code snippet, even though the control code snippet should have been
easier to solve.

4.2.2 Simulation Evaluation

In this section, we will evaluate the results of the model fitting and the model evaluation of
the simulation evaluation. First, we will discuss the model fitting process. Afterwards, we
will evaluate the results of the simulation in comparison to the empirical data.

4.2.2.1  Model Fitting

We trained the model in the same way as Closheim did in their study. Unfortunately, the
model fitting process was not as successful as in the original study. The time data of our
empirical evaluation was much more spread out than the time data of the original study,
which led to problems with fitting the time data of the simulation evaluation. Additionally,
we were also unable to fit the error data of the simulation evaluation as well as in the
original study.

Due to time constraints, we were unable to wait for the optimization process to converge,
which may have led to a less optimal model than in the original study. While it may be
possible that the model would have converged to a better solution if we had waited longer,
we do not think that further optimizations would have led to a much better model, as the
model in its current state is probably not able to fit our collected data properly.

Optimizating the model in regards to the time data always led to the model trying to
create a retrieval error, which leads to a rather large wide distribution of the time data,
which was needed to fit the time data, which in turn led to no responses for the error data.
Such a behavior needs to be avoided, as the model should not create a retrieval error for the
time data, but rather try to fit the time data with a normal distribution. This behavior needs
to be fixed in the model itself, by providing the model with a better ability to create wide
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distributions for the time data without creating retrieval errors.

The usage of the significance level to optimize the model was not as successful as in the
original study, as it provided no better results than the error data optimization. This is due
to the fact that the model was not able to fit the time data properly. If we had a model
that was able to fit the time data properly, we probably would have been able to use this
optimization method to find the best model parameters.

As a final note, while the test set provided an interesting insight into the model’s
performance, it is important to acknowledge that depending on the seed that was used the
test set may not be representative of the model’s performance. A better approach would
have been to use a different method, such as cross-validation [6], to ensure that the model is
able to generalize well to unseen data. This would have required more time and resources
than were available for this thesis, but it would have provided a more robust evaluation of
the model’s performance.

4.2.2.2  Model Evaluation

We evaluated the results of the effects of the treatments on the time data and the error data
in comparison to the empirical data.

Code Distance

We need to keep in mind that the results of CD1 were unexpected, as the treatment group
was faster than the control group. Therefore we should be careful with the interpretation of
the comparison of the simulation and empirical data.

The results of the code distance treatment provide insights into the differences between
the simulation and empirical data. For CD1, the simulation time data suggest no significant
treatment effect with a negligible effect size, in contrast to the empirical time data, which
show a significant difference with a medium effect size. The simulation time data is con-
centrated around a few values, unlike the empirical data, which is more distributed. These
findings suggest that the simulation underestimates the variability in the time needed to
process code snippets. Short pauses to process some variables are not implemented in the
model, which may lead to a more concentrated distribution of the time data.

For CD2, the simulation and empirical time data analysis align more closely, showing no
significant differences and small effect sizes. This consistency suggests that the simulation
accurately reflects the minimal impact of similar variable names on task performance.
However, the simulation data also exhibits a more concentrated distribution compared to
the empirical data, probably due to the lack of some cognitive processes in the model.

The error rate analysis reveals further limitations of the model. For CD1, the simulation
data shows near-perfect correctness for both the treatment and control groups, significantly
overestimating the empirical results. Similarly, for CD2, the simulation data indicates higher
correctness rates for both groups compared to the empirical data, particularly for the



4.2 Discussion

treatment group. While the x? tests for both CD1 and CD2 shows no significant differences in
the simulation data, consistent with the empirical results, the consistently higher correctness
rates in the simulation suggest that the model underestimates the cognitive challenges
posed by the treatment, increased code distance and variable similarity.

If we take a look at the error distribution of CD2, we can see that the model was able to
replicate some errors of the empirical data, especially those that may be due to similarity
errors. This indicates that the model is able to replicate some cognitive processes that lead
to smilarity errors.

Overall, while the model aligns well with the empirical data for CD2 in terms of time
and error rate, it overestimates the impact of the treatment in CD1 in terms of time and
underestimates the cognitive challenges in terms of error rates. Additionally, the model is
not able to vary the time data properly, which leads to a more concentrated distribution of
the time data than in the empirical data.

Repeated Code

For CR1, the simulation time data suggests a significant treatment effect with a very large
effect size, in contrast to the empirical time data, which shows no significant difference and
a small effect size. The simulation time data is again concentrated around a few values,
indicating that the model is not able to replicate the variability observed in the empirical
data. These findings suggest that the simulation underestimates the variability in the time
needed to process code snippets.

For CR2, the simulation data also shows a significant treatment effect with a large effect
size, which aligns with the empirical data. As CR1 had an overestimation of the treatment
effect, whereas CR2 had a similar effect, we can conclude that the treatment effect is en-
hanced by the distance between the declaration and usage of the variable, as CR1 had a
smaller distance than CR2 and instead used similar variable names. This leads us to believe
that the model may overestimate the treatment effect for smaller distances and/or may also
overestimate the effect of similarity of the variable names.

The error rate analysis reveals additional limitations of the model. For CR1, the simulation
data shows a correctness rate of 42.55% for the treatment group, which is significantly lower
than the empirical rate of 78.72%. The control group in the simulation achieved a correctness
rate of 91.84%, slightly lower than the empirical rate of 93.88%. The significant difference
observed in the simulation data, with a large effect size, contrasts with the empirical data,
which showed no significant difference and a small effect size. This suggests that the model
overestimates the impact of repeated declarations on correctness rates.

If we take a look at the error distribution of CR1, we can see that the model was able to
replicate one error that may be due to similarity of the empirical data errors. This indicates
that the model may be able to replicate some cognitive processes that lead to smilarity errors.

For CR2, the simulation data also shows a significant difference between the treatment
and control groups, with a large effect size. However, the treatment group in the simulation
performed significantly worse than the empirical data, achieving a correctness rate of 51.02%
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compared to 91.84%. The control group in the simulation slightly overperformed compared
to the empirical data. These findings suggest that the simulation overestimates the treatment
effect on correctness rates, particularly for the treatment group.

Opverall, while the simulation captures some general trends, it overestimates the treatment
effects for both CR1 and CR2 in terms of time and error rates. The differences in time data
suggest that the model may also overestimate the effect of similarity of variable names.
The model also fails to replicate the variability observed in the empirical time data, likely
due to missing cognitive processes, such as pauses to resolve ambiguities or variability in
processing repeated declarations.

Declaration Redeclaration Distance

We need to keep in mind that the results of DR1 were unexpected, as the treatment group
was faster than the control group. Therefore we should be careful with the interpretation of
the comparison of the simulation and empirical data.

For DR1, the simulation time data suggests no significant treatment effect with a small
effect size, in contrast to the empirical time data, which shows a significant difference with
a medium effect size. This result suggests that the simulation overestimates the treatment
effect, compared to the empirical data. The simulation time data is concentrated around 75
seconds, whereas the empirical data is more distributed, with time values ranging from 5 to
75 seconds. The lack of variability in the simulation data may be due to missing cognitive
processes, such as pauses to resolve ambiguities caused by the double declaration.

For DR2, the simulation data also shows no significant treatment effect with a negligible
effect size, whereas the empirical data shows a significant difference with a medium effect
size. This discrepancy indicates that the simulation underestimates the treatment effect for
DR2 as well. The concentrated distribution of the simulation time data further highlights the
limitations of the model in replicating the variability observed in human behavior.

As DR2 had an underestimation of the code snippet effect on the time needed to process
it, we can conclude that the model may underestimate the treatment effect itself, as one
code snippet had similar variable names and the other code snippet had a larger distance
between the declaration and usage of the variable.

The error rate analysis reveals additional limitations of the model. For DR1, the simulation
data shows a correctness rate of 31.91% for the treatment group, which is significantly lower
than the empirical rate of 57.45%. Similarly, the control group in the simulation achieved
a correctness rate of 40.82%, also lower than the empirical rate of 67.35%. The lack of a
significant difference in both the simulation and empirical data suggests that the model
underestimates the correctness rates but aligns with the statistical significance observed in
the empirical data.

If we take a look at the error distribution of DR2, we can see that the model was able to
replicate some errors of the empirical data, especially those that may be due to similarity
errors. This indicates that the model is able to replicate some cognitive processes that lead
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to smilarity errors.

For DR2, the simulation data shows a correctness rate of 44.90% for the treatment group,
which is lower than the empirical rate of 65.31%. The control group in the simulation
achieved a correctness rate of 44.68%, which is similar to the empirical rate of 46.81%. While
the simulation aligns with the empirical results in terms of no significant difference, it
underestimates the correctness rates, particularly for the treatment group. This suggests that
the model fails to capture the cognitive challenges posed by the combination of increased
code distance and repeated declarations.

Overall, the simulation underestimates the treatment effects for both DR1 and DR2 in
terms of time and error rates. The differences in time data suggest that the model may
fail to account for the interaction between repeated declarations and subsequent usage of
the variable. Additionally, the model’s inability to replicate the variability observed in the
empirical data highlights the need for further refinement, such as incorporating pauses to
resolve ambiguities or variability in processing double declarations.

Repeated Distance

We need to keep in mind that the results of RP1 were unexpected, as the treatment group
was faster than the control group. Therefore we should be careful with the interpretation of
the comparison of the simulation and empirical data.

For RP1, the simulation time data suggests no significant treatment effect with a small
effect size, in contrast to the empirical time data, which shows a significant difference with
a medium effect size. The simulation time data is concentrated around 52 seconds, whereas
the empirical data is more distributed, with time values ranging from 3 to 50 seconds. These
findings suggest that the simulation underestimates the treatment effect and fails to replicate
the variability observed in the empirical data. The lack of variability in the simulation data
may be due to missing cognitive processes, such as pauses to resolve ambiguities caused by
the code snippet.

The error rate analysis reveals additional limitations of the model. For RP1, the simulation
data shows a correctness rate of 48.94% for the treatment group, which is higher than the
empirical rate of 36.17%. Similarly, the control group in the simulation achieved a correctness
rate of 59.18%, which is significantly lower than the empirical rate of 81.63%. The lack of a
significant difference in the simulation data contrasts with the empirical data, which showed
a significant difference with a large effect size. This suggests that the model underestimates
the impact of repeated distance in combination with a larger distance between the last
declaration of the variable and its usage on correctness rates, particularly for the control
group. The model does not capture the ease of the task for the control group, which may be
due to some confusion about the value of the variable due to the double declaration of the
variable at the beginning of the code snippet. Therefore, the model may overestimate the
effect of a double declaration of a variable on the correctness rate.
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For RP2, the simulation data shows no significant difference between the treatment and
control groups, with correctness rates of 51.02% and 46.81%, respectively. This aligns with
the empirical data, which also shows no significant difference, with correctness rates of
65.31% and 65.96%. However, the simulation underestimates the correctness rates for both
groups compared to the empirical data, particularly for the treatment group. These findings
suggest that the simulation fails to capture the cognitive challenges posed by the repeated
distance treatment, similarly to RP1.

If we take a look at the error distribution of RP2, we can see that the model was able to
replicate some errors of the empirical data, especially those that may be due to similarity
errors. This indicates that the model is able to replicate some cognitive processes that lead
to smilarity errors.

Overall, the simulation underestimates the treatment effects for RP2 and overestimates
them for RP1 in terms of time and error rates. The differences in time data suggest that
the model may fail to account for the interaction between repeated distance and cognitive
load. Additionally, the model’s inability to replicate the variability observed in the empirical
data highlights the need for further refinement, such as incorporating pauses to resolve
ambiguities or variability in processing repeated distances. Finally, the error data also
suggests that the model may not accurately capture the cognitive challenges posed by the
treatment, as it consistently underestimates the correctness rates for both RP1 and RP2,
especially for the treatment group in RP1.

Owverall Evaluation

The overall evaluation of the simulation model reveals both strengths and weaknesses in its
ability to replicate human behavior in programming tasks. We will summarize the findings
of the simulation evaluation in the following sections.

Time Effects

The model aligns well with the empirical data for some scenarios, such as CD2 and CR2,
accurately capturing the minimal or significant effects of the treatments. However, for other
scenarios, such as CD1, CR1, DR1, and RP1, the model either overestimates or underestimates
the treatment effects. For CD1 and RP1, the model underestimates the treatment effects,
while for CR1, it overestimates the impact of repeated declarations. Additionally, the sim-
ulation consistently fails to replicate the variability observed in the empirical time data,
with concentrated distributions that suggest missing cognitive processes, such as pauses to
resolve ambiguities or variability in processing repeated declarations and distances. Finally,
the model also consequently overestimates the time needed to process the code snippets,
which is due to the model not being able to replicate the variability in the time data properly.

Error Effects

The model generally underestimates the cognitive challenges posed by the treatments,
leading to overestimated correctness rates for scenarios such as CD1, CR1, and RP2. For CD1,
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the model predicts near-perfect correctness rates, significantly overestimating the empirical
results. For CR1 and RP1, the model underestimates the differences between the treatment
and control groups, failing to capture the significant effects observed in the empirical data.
While the model aligns more closely with the empirical data for CD2, CR2, and DR2, it still
underestimates the correctness rates for treatment groups and fails to replicate the distri-
bution of errors, particularly for scenarios involving increased code distance or repeated
declarations.

If we look at the comparison of similarity errors, we can see that the model was able to
replicate some expected similarity errors of the empirical data. This indicates that the model
is able to replicate some cognitive processes that lead to similarity errors, but it is not able
to replicate all of them.

Model Improvements

We propose the following improvements to the cognitive model based on the evaluation
of the simulation results to increase the accuracy of the model and to better align it with
the empirical data. We will focus on addressing the variability and cognitive challenges
observed in the empirical data.

First, the model should incorporate mechanisms to better replicate the variability in time
data, such as introducing pauses to resolve ambiguities or variability in processing repeated
declarations and distances. This could involve adding probabilistic elements to simulate the
range of human behavior observed in the empirical data.

Second, the model should refine its handling of error rates by better capturing the cogni-
tive challenges posed by treatments such as increased code distance, repeated declarations,
and variable similarity. This could include implementing additional cognitive processes,
such as memory decay or confusion caused by double declarations, to better reflect the
observed error patterns.

Finally, a longer training process and parameter optimization would be beneficial to im-
prove the model’s fit to the empirical data. As the current optimization process was limited,
extending it could help the model better capture the complexities of human behavior in
programming tasks.

In conclusion, while the cognitive model provides a valuable framework for understanding
cognitive processes in programming tasks, it requires further refinement to accurately
replicate the variability and cognitive challenges observed in the empirical data. These
improvements would enhance the model’s ability to simulate human behavior and provide
more accurate predictions for programming tasks.

4.2.3 Comparison of Closheim’s Study and Part I

In this section, we will compare the results of the empirical evaluation and the simulation
evaluation with the results of the study of Closheim.
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Empirical Evaluation

The time needed to process code snippets was significantly higher and spread out for our
study than for the study of Closheim, leading also to problems with fitting the time data of
the simulation evaluation. Such a difference was not expected, as the code snippets were
designed to be similar to the code snippets of Closheim. This may be due to the fact that
they did not use a crowdsourcing platform as we did, which may have led to a different
sample of participants that were less distracted and more motivated to solve the tasks.

While the empirical evaluation of Closheim did not find any significant difference between
the groups, we found several significant differences between the groups in our study for
both time and error data, which supported the findings of Closheim. Additionally, we also
found significant differences between the groups when using code snippets with similar
variable names, which was a factor that was proposed by Closheim as a possible direction
for future work.

Nevertheless, we also found several unexpected results in our study, which did not match
the results of Closheim, namely for the code snippets CD1, CR1, DR1 and RP1. For these code
snippets, the treatment group was faster than the control group, which was not expected.

Overall, we can conclude that most of the results of our study are in line with the findings
of Closheim, but there is the need of further studies to investigate the unexpected results
and to find out if they are reproducible.

Simulation Evaluation

Closheim was able to fit the time data of their simulation evaluation much better than we
were able to do in our study. This is in part due to the fact that the time data of their empir-
ical evaluation was much less spread out than the time data of our empirical evaluation,
which led to problems with fitting the time data of the simulation evaluation, as the model
in its current state is not able to replicate the variability in the time data properly.

We also had more problems to fit the error data of our simulation evaluation than
Closheim had in their study. The problems, namely the overestimation or underestimation
of the treatment effects, were similar to the problems that of Closheim, but more pronounced,
especially for the code snippet CD1.

The increased distance between declarations and re-declarations had a negative impact
on the accuracy of the ACT-R model compared to Closheim’s original study. The inclusion
of similarity-based errors between variable names improved the ability of the ACT-R model
to reproduce human-like error patterns, but the model still fails to capture the full range of
such errors and their impact on processing time and needs further refinements.

Overall, we can conclude that the simulation evaluation of our study is not able to
reproduce the favourable results of Closheim’s original study and that the model needs
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further refinements to be able to replicate the variability in the time data and to better
capture the cognitive challenges posed by the treatments.

4.2.4 Answering the Research Questions

The aim of this part of the thesis was to evaluate the cognitive model that was created in
Part I and to evaluate the accuracy in terms of processing time and the error rate. First, we
wanted to answer the following research question:

RQ1: How do increased distances between declarations and re-declarations/usages
influence the accuracy of the ACT-R model in terms of processing time and error
rate?

The evaluation shows that the ACT-R model partially captures the effects of increased
distance between declarations and re-declarations, but has limitations in both time and
error predictions. In terms of processing time, the model often fails to reflect empirical
variability and tends to produce more concentrated distributions, probably due to miss-
ing cognitive mechanisms such as pausing or ambiguity resolution. For example, while
it correctly predicts minimal distance effects in some scenarios, it either overestimates or
underestimates treatment effects in others. Some treatment effects are more pronounced in
the empirical data than in the simulation, suggesting that the model may not fully account
for the cognitive load associated with increased distances.

In terms of error rates, the model generally underestimates the cognitive difficulty of
increased distances. It predicts overly optimistic correct rates and fails to reflect the signifi-
cant group differences observed in the empirical data. This suggests that while the model
structurally represents increased distance, it does not fully simulate the cognitive load it
imposes. Overall, increased distance has a negative impact on the accuracy of the ACT-R
model, primarily due to oversimplified time variability and limited error modelling.

Our second research question was:

RQ2: Can we increase the accuracy of the ACT-R model in terms of processing
time and error rate by implementing similarity errors between variable names?

The inclusion of similarity-based errors between variable names appears to improve the
ability of the ACT-R model to reproduce human-like error patterns. The evaluation shows
that in several snippets the model was able to reproduce specific similarity errors that also
occurred in the empirical data. This suggests that the implementation of a similarity-based
retrieval mechanism allows the model to simulate confusion due to similar variable names,
more accurately reflecting real-world cognitive challenges.

However, the model still fails to capture the full range of such errors and their impact
on processing time. While it benefits from the inclusion of similarity in retrieval, the effect
sizes and variability in both time and error data remain under- or overestimated in several
scenarios. Therefore, the implementation of similarity errors is a promising step towards
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improving model accuracy, but further refinements, such as probabilistic retrieval, better
modelling of activation noise and memory confusion dynamics, are needed to fully capture
the cognitive processes involved in programming tasks.

4.3 Threats to Validity

In the following sections, we will discuss the threats to internal and external validity of the
study.

4.3.1 External Validity

The use of a crowdsourcing platform such as Amazon Mechanical Turk may threaten the
external validity of the study due to, for example, self-misrepresentation, self-selection bias
and high attrition rates of participants [1]. To reduce these threats, we used CloudResearch,
as it provides better data quality from participants [20].

Due to the nature of this study, we were only able to generalize the results to a certain
extent. Especially the code snippets were be a simplification of real-world code due to their
line-by-line reading order, having only letters as variables, using only simple arithmetic
operations and no other keywords or function calls except for “print()”. Nevertheless, the
aim of our study is not to provide a generalization to all code comprehension tasks, but to
provide a better understanding of the cognitive processes of programmers when reading
code snippets.

The external validity could be threatened by an unrepresentative sample. We tried to
reduce this threat by using CloudResearch, as it provides participants that are more rep-
resentative of the general population than other crowdsourcing platform such as Amazon
Mechanical Turk. Nevertheless, we encountered unexpected results in our study, which may
be due to the sample of participants that we used.

4.3.2 Internal Validity

Crowdsourcing platforms may lead to a biased sample due to, for example, inattention,
high attrition rates, inconsistent english language skills and non-naivete of participants [1].
We tried to reduce these threats by using CloudResearch instead of Amazon Mechanical
Turk, as it provides better quality participants [20].

Feitelson [14] provided a list of threats to the validity for code comprehension studies.
Feitelson described the pitfalls “Misleading Code”, where participants may make errors due
to being unintentionally misled, and “Recognized Code”, where code is easily recognized.
We tried to avoid these pitfalls by paying attention to these details when creating the code
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snippets.

Another threat to the validity of this study was that cognitive architectures are not perfect
models of human behavior. They may create models that are able to replicate specific behav-
iors while not aligning with the underlying cognitive processes. These models function as a
simplification of the human brain and are used to understand cognitive processes better.
Specifically, issues such as learning effects, are missing from such models. Therefore, we
cannot expect the model to be simulate the exact inner workings of the brain.

Due to the scope of this thesis and in accordance to the original study, we only varied
four parameters of the model. We may encounter better results by varying more param-
eters, but this would lead to a more complex model and being unable to compare the studies.

As this part of the thesis was based on the thesis of [10], we had to rely on the correctness
of the theoretical foundation of the model from the original study. If the model of the
original study was not correct, we may have produce a model and results that are also not
correct. Nonetheless, our aim was to replicate this thesis as closely as possible to provide a
more robust model for future studies. Therefore, even a model that is not correct may have
provide valuable insights.
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This chapter describes the methodology of our extension study that was conducted. For
this part, the ACT-R model was extended to include a backtracking mechanism. It consists
of two parts: a simulation evaluation and an empirical evaluation. First, we will present
the research question that will be answered in this study. This will provide us an overview
of the aims of this part of the thesis. We then describe the study materials and the study
design of the simulation evaluation and the empirical evaluation. Finally, the data analysis
and evaluation of the two parts will be presented.

5.1 Research Questions

While Closheim’s ACT-R model is able to simulate the behavior of developers during code
comprehension tasks, the simplifications made in the model lead to a lower external validity,
as experimental conditions are not comparable to real-world conditions. Thus, there is a
need to extend the model to be more in line with real-world conditions. Implementing a
backtracking mechanism would allow the participants to return to a previous code line,
which is a common strategy used by developers. This leads us to the following research
question:

RQ3: How does the possibility to return to a previous code line influences the
accuracy and predictions of the ACT-R model?

5.2 Study Design

In this section we describe the design of the study. We conducted two types of study:
a simulation evaluation and an empirical evaluation. The empirical evaluation consisted
of two parts. One was a questionnaire combined with a think-aloud protocol and short
interview at the end. For the second one, we performed the empirical evaluation of Part I
by having some participants do the same tasks as in Part I, but with the ability to go back
to previous code lines.

The simulation evaluation consisted of extending an existing cognitive model with the
backtracking mechanism and training it with the results of the empirical evaluation. The
implementation of the backtracking mechanism was built upon the results of the think-aloud
protocol and the semi-structured interview. We used the results of the crowdsourcing study
to train the parameters of the cognitive model. This allowed us to use the cognitive model
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to predict programmer behaviour on a larger scale. The prediction accuracy of the cognitive
model was evaluated to understand how well the model is able to predict the behavior of
the participants.

5.2.1 Study Materials

We used the same materials as we used in Part I of this thesis. This enabled us to compare
the results of both parts of this thesis. The materials consisted of the following:

¢ Training code snippets

¢ Experimental code snippets (control and treatment)
¢ Intermediate tasks

¢ Socio-demographic questionnaire

With the Left Arrow key, the participants were able to return to a previous code line. The
Left Arrow key was chosen as the Backspace key is already used to delete characters during
the last screen where the result should be entered.

We also create a questionnaire with the help of SoSci Survey’, as it allows the creation
and execution of questionnaires for academic purposes for free. We used LabJS* to show
the users the code snippets, as it allowed us to record the times and key presses of the
participants.

5.2.2 Simulation Evaluation

In this section, we will describe the cognitive model that was used in the study.

We created a new version of the ACT-R model, which included a backtracking mechanism.
We extended our model from Partl to include the possibility to return to a previous code
line. This enabled us to compare the results of the model with the results of Part I.

As ACT-R is able to model human input and output, we used it to model the behavior of
participants in the study. By utilizing the vision interface of ACT-R in the same way as in the
existing model, we were able to model the visual input of the participants, namely the code
snippets they were presented with. This allowed us to copy the environmental conditions
as in the empirical evaluation, enabling us to use the results of the empirical evaluation to
train the ACT-R model.

The model was able to perform the following tasks:

* Read one line at a time from left to right
¢ Store variable names and values in declarative memory

¢ Retrieve variable names and values from declarative memory

1 https://www.soscisurvey.de/
2 https://lab.js.org/
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¢ Perform arithmetic operations, namely addition, subtraction, multiplication and divi-
sion, on integer numbers from -20 to 20

¢ Read comments
* Read and verify assert statements

* Return to a previous code line by pressing the Left Arrow key and advancing to the
next line by pressing the Right Arrow key

* Answer a print statement with the expected output of the model by entering the
guessed number and pressing Space.

As already explained in Part I, the model aims to mimic human behavior as closely as
possible by using the same input and output as the participants in the empirical evaluation
and reads the unparsed line of code and processes it in the same way as the participants.
When the model will be finished with a line, it will also press the Right Arrow key to
continue to the next line. After the print statement, the model will enter the guessed number
and press Space to submit the answer.

5.2.2.1  Backtracking Mechanism

Compared to Part I, the model is now able to return to a previous code line. To return to a
previous code line, the model presses the Left Arrow key. To simulate the decision-making
of the participants, the model uses the retrieval threshold parameter of the ACT-R model.

Everytime the value of a variable is needed, the model retrieves the value of the variable
from declarative memory. The retrieval process is based on the activation value of the
chunks in declarative memory. If the calculated activation value of the chunk is higher than
the retrieval threshold, the model will retrieve the value of the variable, otherwise the model
will output a retrieval error. If the retrieval fails, the model goes back to previous code lines
till it finds the last value of the variable.

The model will simulate going back to a previous code line by showing the previous code
line to itself. The model will then go back to the previous code line and scan the line to
see if the searched variable is declared. If it is not declared, the model will do this step for
every previous code line until it finds the declaration of the variable. Once the value of the
variable has been found, the model will continue where it left off by skipping the lines it
has already read and the part of the current line it has already processed.

We also implemented nested backtrackings, which means that the model can go back to a
forgotten variable, and if in this calculation another variable value is forgotten, the model
returns to previous code lines to search for the newly forgotten variable. After finding the
value of the variable, the model will resume with the line where the previous variable was
forgotten.

Additionally, the model uses assert statements as a way to check the value of the variable
when going back. When going back to look for the value of a variable, if an assert statement
is found, the model will look at the variable in it. If the variable is the variable that was
searched, the model will evaluate the value of the other equality in the assert statement.
This behavior was implemented as we observed this behavior during the manual analysis
of the data received from CloudResearch and during the think-aloud study.
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We implemented the following stopping conditions:

¢ The model reached the last line and was able to run it

¢ The model returned more than three times to the same variable at once, i. e.,it was not
able to use the found value of the variable three times in a row

* The model looped through the code lines more than 500 times

By implementing these stopping criteria, we were able to prevent the model from going
into an infinite loop and prevent simulation of unrealistic behavior.

The implementation of this backtracking mechanism was mostly done in the form of
ACT-R productions. By trying to implement most functionality in ACT-R, we tried to keep the
model as cognitively faithful as possible and avoid introducing unintended functionality
that could contradict established psychological principles.

The processing of which code line and the order of which variable the model is currently
looking for when going back was implemented in Python due to the complexity of this
feature and the need to use a more complex data structure than the ACT-R production
system allows. Furthermore, a Python implementation promotes better maintainability and
readability of the code.

5.2.3 Empirical Evaluation

This section describes the empirical evaluation that was conducted.

The think-aloud study was conducted as a pilot study to understand the participants’
thoughts in more detail. Understanding when and why participants choose to go back to a
previous line of code would allow us to build a more accurate model.

The participants were introduced to the process of the study and presented with the
training code snippets. Subsequently, the participants were shown the experimental code
snippets. Lastly, they completed the socio-demographic questionnaire.

We used the think-aloud protocol to capture the thoughts of the participants. The think-
aloud protocol is a method where participants verbalize their thoughts during a task and is
used to turn implicit mental models into understandable insights [37]. Each session was
audio recorded for later transcription and analysis.

During the last two code snippets, participants were asked questions during the code
snippet to gather more information on why participants decide to backtrack to a previous
line of code.

Additionally, we conducted a short semi-structured interview at the end of the study to
gather more information about the participants” thoughts. This enabled us to understand
the participants” thoughts in more detail and to build a more accurate model. The interview
was semi-structured, meaning that we had a set of questions to ask the participants, but we
were also open to follow-up questions and discussions. Some questions were specifically
tailored to the participants” behavior during the study. This helped address a limitation of
the think-aloud protocol, as participants may not be able to verbalize all of their thoughts [9].
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We prepared an application of the study to be reviewed by the ethical review board of
the Faculty of Mathematics and Computer Science at the Saarland University. The ethical
review board reviewed and accepted the study without the need of additional modifications.

We gathered additional data points by having some of the participants of the empirical
evaluation of Part I do the same tasks as in Part I, but with the possibility to go back to a
previous code line. This allowed us to perform a statistical analysis on the results of Part II,
as only three data points would not have been enough. The study procedure was the same
as for Part L.

5.2.3.1  Recruitment

We recruited three participants for the think-aloud study. As we only needed a low number
of participants, we used convenience sampling. While convenience sampling is not repre-
sentative of the population [16], it is a good method to use for a pilot study, as it requires
little effort and enough data can be gathered to make a preliminary analysis.

The recruitment of the participants for the additional data points was done in the same
way as in Part I, with the help of the Connect platform on CloudResearch. We were able to
recruit 123 participants for this part of the study. The participants were rewarded with $5.00
for their participation in the study, which took around 10-20 min to complete.

5.2.3.2  Exclusion Criteria

For our pilot study, we aimed to exclude any participants that did not complete the ques-
tionnaire entirely. There were no exclusions necessary for the pilot study.

The exclusion criteria for participants from CloudResearch was the same as in Part I.
After applying the exclusion criteria for participants of the crowdsourcing platform, we
were left with 96 participants.

5.3 Data Mining

In this section, we will present how we analyzed the second part of the thesis. First, we
analyzed the results of the empirical studies. Then, these results were used to extend and
train the parameters of the cognitive model, which was then evaluated.

5.3.1 Empirical Data Mining

We used the same data mining procedure as in Part I with some additional data. This
allowed us to ensure comparability between the results of Part I and Part 1L
The data mining consisted of gathering the following;:

¢ Type of code snippet was used (treatment or control)
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Time taken by the participant for each line

Total time for the task

Which code snippet was used

¢ Given answer

Correctness of the answer as a true or false value
* Answers to the socio-demographic questionnaire

Additionally to the previously mentioned data points, for our three participants from the
pilot study, we gathered the following data:

¢ Think-aloud protocol

¢ Interview answers

5.3.2 ACT-R Simulation

We used a slightly changed version of the analysis script of Part I, which was changed to
reflect the changes in the cognitive model due to the backtracking mechanism.

Simulations were done by setting a new random seed for each simulation run to reflect
human behavior as closely as possible. The results of the simulations runs were saved in the
same format as the empirical data except for the think-aloud protocol.

We used a Bayes Optimization algorithm to find the parameters that fit the data the best
for the model. We prepared a Python script that takes parameters, the group size and the
code snippet as input and outputs the results of the simulation in the same format as the
empirical data. The results of the simulation were then used to calculate a value, which
dependent on which aspect of the model was to be optimized. The Bayes Optimization
algorithm then tried to maximize the value of the results of the simulation.

5.4 Evaluation

The evaluation was performed in four steps:

1. Analyze the results of the think-aloud study
2. Analyze the results of the empirical evaluation
3. Train the parameters of the cognitive model

4. Evaluate the cognitive model



5.4 Evaluation

5.4.1 Empirical Evaluation

First, we analyzed the results of the think-aloud study. The results of the additional data
points from the Connect platform were analyzed in the same way as in Part I, which is
why we do not explain the analysis in detail here. Additionally, we also analyzed the
backtracking behavior of the participants in detail.

5.4.1.1  Think-Aloud Study

The think-aloud study was first transcribed and then analyzed. Two think-aloud studies
were conducted in German, due to the participants being German, while the remaining one
was conducted in English. The interview questions can be seen in the Appendix A.3. The
think-aloud protocol and the semi-structured interview were analyzed with the software
MAXQDAS3. The think-aloud protocol was transcribed, analyzed and finally coded with the
help of the software.

We classified the data using thematic analysis [11] and coded the data with an inductive
approach, as we did not want to erroneously ‘force” a preconceived result. We first extracted
the relevant passage as a quote. From this quote, we created labels that are describing
as accurately as possible the quote. Finally, categories were built from these labels. These
categories were then used to understand the thought processes of the participants.

By analyzing the data of the think-aloud protocol and the interview, we were able to
understand the behavior of the participants in more detail. We performed this step before
implementing the changes to the cognitive model, as they provided valuable insights into

code comprehension behavior. We tried to replicate these behaviors in the cognitive model.

5.4.1.2  Backtracking Behavior

We analyzed different aspects of the backtracking behavior of the participants. This was
done by analyzing how many participants chose to go back, how many times they went
back, and to which lines they went back. As this analysis was explorative, we did not have
any specific hypotheses about the behavior of the participants.

5.4.2 Simulation Evaluation

The simulation evaluation was done in the same way as in Part I. Additionally, we also
analyzed the backtracking behavior of the model, but not as detailed as in the empirical
evaluation. We only analyzed how many times the model went back to a previous code
line during each code snippet. This enabled us to compare and evaluate the behavior of the
model with the behavior of the participants in a more general way. If we would have wanted
to analyze the backtracking behavior of the model in more detail, we would have needed
to save additional data points during the run, which would have increased the simulation

3 https://www.maxqda.com/
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time significantly. As the simulation time was already quite high, we decided to not save
additional data points.



Part II Evaluation: Extension Study

In this chapter, we will present and discuss the evaluation of the results collected from
the think-aloud pilot study, the empirical evaluation and the simulation evaluation of a
cognitive model able to use backtracking.

6.1 Results

First, we will present the data collection and data preparation. We will then give a short
overview over the socio-demographic data of the participants. Afterward, we will present
the results of the empirical evaluation. Finally, we will focus on the fitting of the ACT-R
model to the empirical data and the simulation evaluation.

6.1.1 Data Collection and Preparation

In this section, we will present the data collection and preparation of the data acquired from
the think-aloud pilot study and the empirical evaluation.

Think-Aloud Study

We used convenience sampling to recruit participants for the think-aloud pilot study. We
contacted three contacts and asked them to participate in the study, which they agreed
to. The participants were recruited from the local university and were all students. One
participant was a bachelor student in cybersecurity, one was a master student in computer
science and one was a master student in embedded systems.

Their ages were 23, 26 and 27 years. All three participants identified as male.

The data was collected using an audio recorder. The participants were asked to think
aloud while solving the task. Additionally, the participants were asked to answer a few
questions after the task.

We did not need to remove any participants from the analysis.

The data was transcribed and analyzed using the qualitative data analysis software
MAXQDA™.

1 https://www.maxqda.com/
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Empirical Evaluation

The data collection was conducted using CloudResearch. The questionnaire was created
using the SoSci? platform and was distributed via CloudResearch3. We started the ques-
tionnaire on 2025-02-10 and received the last results on 2025-02-18. During this time, the
questionnaire was closed for four days to ensure the data quality of the first participants.

In total, 656 participants started the questionnaire, of which 139 participants completed
the questionnaire. Of these 139 participants, 123 participants completed the questionnaire
entirely and were included in the analysis. The high number of participants that started
the questionnaire but did not complete it is due to the fact that we used a crowdsourcing
platform and performed a screening at the start of the questionnaire, that filtered out those
participants who did not meet the requirements. The questionnaire received a rating of
4.6\5 with 64 votes on CloudResearch, which implies that the participants were satisfied
with the quality of the questionnaire.

Of the 123 participants, we excluded 27 participants due to completing the study too
fast, i.e less than 1.5 times the interquartile range below the first quartile. Therefore, 96
participants were included in the analysis and evaluation. The participants were randomly
assigned to four groups, whose distribution is shown in Table 6.1.

Group Count

1 24
2 25
3 25
4 22

Table 6.1: Number of participants randomly assigned to four groups

As a reminder, we created four groups to reduce learning effects by changing the order of
the code snippets. As groups 1 and 3, and groups 2 and 4, differed solely in the order of
their snippet presentation, groups 1 and 3 were combined into group 1, and groups 2 and
4 were combined into group 2 for the subsequent evaluations. The two remaining groups
differentiate in the type of the code snippet, i.e. treatment or control group, which is used
to analyze the effect of the treatment. This resulted in a total of 49 participants for Group 1
and 47 for Group 2. All simulations of the ACT-R model utilised in the subsequent analyses
were calculated with these two group sizes.

6.1.2 Socio-Demographic Data

The following section will provide an overview of the participants and their socio-demographic
data for the empirical evaluation and the think-aloud pilot study:.

2 https://www.soscisurvey.de/
3 https://www.cloudresearch.com/
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The average participant was 37.0 years old, with a standard deviation of 12.0 years. The
youngest participant was 19 years old, while the oldest participant was 82 years old.

The distribution of the age groups can be seen in Figure 6.1. Most people were around
25—40 years old, even though older participants are still present.

Age Distribution
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Figure 6.1: Age Groups of Participants

The country distribution of the participants is shown in Figure 6.2. We can clearly see
that the majority of participants were from the USA, followed by the United Kingdom
and Canada. This is probably due to the fact that the questionnaire was distributed via
CloudResearch, which is a crowdsourcing platform that is mainly used in the USA and
other english-speaking countries. Additionally, CloudResearch is not available in some
countries, for example in Germany.

The participants were asked to indicate their highest level of education. The distribution
of the education levels is shown in Figure 6.3 The majority of participants had a bachelor’s
degree with 57.3%, followed by a master’s degree with 22.9% and a high school diploma
with 14.6%.

The participants were also asked to indicate their gender identity. The most common
gender of the participants with 75% was male. Woman followed with around 22.9%, while
one remaining participant had their gender not listed and the other preferred not to answer.

6.1.3 Think-Aloud Study

We used the software MAXQDA* to analyze the data of the think-aloud pilot study. The
recordings were transcribed and important parts were marked and coded, which resulted
in the following results:

It is evident that uncertainty or not knowing the value of a variable are the most important
aspect of reasons to use backtracking. The most prominent label with 24 mentions is that

4 https://www.maxqda.com/
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Table 6.2: Backtracking Reasoning Categories
Categories # of Mentions # of Labels Description
. Mentions of being unsure about/forgetting the
Uncertainty 40 7 & & &
value
Cognitive Load 6 3 Mentions of amount/complexity of information
Mentions of minimizing effort or maximizing
Strategy 5 4

memory use
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participants forgot the value of the variable and thus wanted to go back to remember it. A
few participants mentioned that they were unsure about the value of the variable due to
different reasons and wanted to go back to check it.

Cognitive load also played an important role in the backtracking behavior of the par-
ticipants. Most participants mentioned that the similar variable names made it difficult
to remember the values of the variables. Additionally, there were mentions of having too
much input and thus difficulty to remember the value of a specific variable, necessitating
backtracking.

Participants also used different strategies during their backtracking behavior. Some partic-
ipants went back for multiple variables during one backtracking action. Others used assert
keywords as anchors to remember the value of a variable, thus making further backtracking
to the wanted variable unnecessary. One participant also mentioned being unsure about a
value but deciding not to backtrack due to being too lazy.

6.1.4 Empirical Evaluation

The following chapter will present the results of the empirical evaluation. We will present
the data of both code snippets for each group, due to having different changes (i.e. similarity
and distance changes) and the results of the statistical analysis. Each type of treatment will
be discussed separately to allow for a better understanding of the results.

For each type of treatment, we will analyze the results of the empirical evaluation with
regard to the time data and the error data.

We used the t-test to compare the means of the two groups. A value of p < 0.05 was
considered statistically significant, but was later adjusted with the Bonferroni correction in
Section 6.1.4.6 to account for multiple comparisons. While our group sizes are great enough
to assume normality, we also checked the normality of the data with the Shapiro-Wilk test.
The results of the Shapiro-Wilk test are shown in the tables for each code snippet, but were
not used. Additionally, we tested for homogeneity of variance with the Levene test, which
is also reported in the tables for each code snippet. In the following, if the Levene test says
that the data is not normally distributed, we used the Welch’s t-test instead of the t-test
without reporting it again. The values are reported in the tables in the same column as the
t-test.

Finally, we will also have a detailed look at the usage and impact of backtracking on the
results.

6.1.4.1  Code Distance

The code distance treatment was designed to investigate the influence of the distance
between the declaration of a variable and its usage at a later point in the code snippet.
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Time Data

The results of the time data of code distance treatment are shown in Figure 6.4.
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Figure 6.4: Time Data for Code Distance Snippet CD1 (a) and CD2 (b)

We can see that for code snippet CD1, the control group was faster by around 1 second on
average than the treatment group. The change introduced for CD1 was a higher distance
between the declaration and usage of the variable. This aligns with the expectation that the
treatment group would be slower due to the higher distance between the declaration and
usage of the variable.

For code snippet CD2, the treatment group was slower by around 0.3 seconds on average
than the control group. The change introduced for CD2 was similarity between variable
names.

The results of the statistical analysis can be seen in Table 6.3.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d

Value p Value p Value p Value p

CD1 0.953 0.058 0.986 0.817 0.619 0.433 0.455 0.650 0.093
CDz2 0.939 0.013 0.944 0.024 0.005 0.941 -0.151 0.880 -0.031

Table 6.3: Statistical Analysis for CD1 and CD2

The results suggest that for CD1, the data is normally distributed, variances are equal, and
there is no significant difference between control and treatment groups, with a negligible
effect size. For CD2, the data deviates from normality, but variances are equal, and there is
no significant difference between groups, with a similarly negligible effect size.

Error Data

The values of the error data analysis can be seen in Table 6.4.

For CD1, the treatment group achieved a higher correctness rate (87.76%) compared to the
control group (76.60%). However, the difference was not statistically significant (p = 0.244)
and had a small effect size (¢ = 0.119). For CD2, the treatment group had a correctness rate
of 80.85%, slightly lower than the control group’s 87.76%. Again, the difference was not
statistically significant (p = 0.516) and showed a negligible effect size (¢ = 0.066). These
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results suggest that while there are observable differences in correctness rates, they lack
statistical significance and have minimal practical impact.

Overall, the findings indicate no strong association between group type and correctness
for either CD1 or CD2.

Group  False True Correctness (%) | x2 P ¢ Group  False True Correctness (%) | x2 P ¢
Treatment 6 43 87.76 1356 0244 0119 Treatment 9 38 80.85 0423 0516 0.066
Control 11 36 76.60 Control 6 43 87.76
Table 6.4: CD1 Error Rate Table 6.5: CD2 Error Rate

6.1.4.2  Repeated Code

The repeated code treatment was designed to investigate the influence of having multiple
declarations of variables in the same code snippet.

Time Data

The results of the time data of repeated code treatment are shown in Figure 6.5.
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Figure 6.5: Time Data for Code Snippet CR1 (a) and CR2 (b)

We can see that for code snippet CR1, the control group was faster by around 5 seconds
on average than the treatment group. The change introduced for CR1 was similarity between
variable names.

For code snippet CR2, the treatment group was slightly faster by around o.5 seconds
on average than the control group. The change introduced for CR2 was a higher distance
between the declaration and usage of the variable.

The results of the statistical analysis can be seen in Table 6.6.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d

Value P Value P Value P Value P

CR1 0.946 0.029 0.870 <0.001 7.399 0.008 3.793 <0.001 0.774
CR2 0.946 0.026 0.979 0.551 0.101 0.752 0.236  0.814 0.048

Table 6.6: Statistical Analysis for CR1 and CR2
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The CR1 analysis reveals substantial disparities in normality, variance, and means between
the control and treatment groups, exhibiting a large effect size. The t-test confirmed a
significant difference in means (p < 0.001). The CR2 demonstrates no significant disparities
in variance or means, and the effect size is negligible, indicating minimal practical differences
between the groups.

Error Data

For CR1, both the treatment and control groups achieved similar levels of accuracy, with the
treatment group attaining an accuracy rate of 87.76% and the control group attaining an
accuracy rate of 87.23%. The observed difference was not statistically significant (p = 1.0)
and had no effect size (¢ = 0.0). Similarly, the treatment group exhibited a marginally
elevated rate of correctness (93.62%) in comparison to the control group (91.84%). However,
this difference was not statistically significant (p = 1.0) and showed no effect size (¢ = 0.0).
The findings indicate that there is no statistically significant discrepancy in the accuracy
of responses between the treatment and control groups for either CR1 or CR2. The findings
indicate an absence of a strong association between group type and correctness in the
Repeated Code treatment.

Group False True Correctness (%) | x> p ¢ Group  False True Correctness (%) | x p ¢
Treatment 6 43 87.76 00 10 00 Treatment 3 44 93.62 00 10 00
Control 6 41 87.23 Control 4 45 91.84
Table 6.7: CR1 Error Rate Table 6.8: CR2 Error Rate

6.1.4.3  Declaration Redeclaration Distance

The declaration redeclaration distance treatment was designed to investigate the interaction
between the CD and CR treatments. Specifically, the treatment consists of having a double
declaration of a variable at the beginning of the code snippet (CR treatment) and a usage of
the variable at the end of the code snippet (CD treatment).

The control code snippets have their second declaration of the double declaration in the
line before the usage of the variable.

Time Data

The results of the time data of repeated code treatment are shown in Figure 6.6.

We can see that for code snippet DR1, the treatment group was slower by around 3.5
seconds on average than the control group. The change introduced for DR1 was similarity
between variable names.

For code snippet DR2, the treatment group was slighty faster by around 2 seconds on
average than the control group. The change introduced for DR2 was a higher distance
between the declaration and usage of the variable.

The results of the statistical analysis can be seen in Table 6.9.

The results suggest that for DR1, the data is approximately normally distributed, variances
are equal, and there is no significant difference between control and treatment groups, with
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Figure 6.6: Time Data for Code Snippet DR1 (a) and DRz (b)

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value p Value P Value p  Value P
DR1 0.956 0.077 0.962 0.110 0.458 0.500 1.576 0.118 0.322
DR2  0.933 0.008 0.942 0.022 0.321 0.572 0.662 0.510 0.135

Table 6.9: Statistical Analysis for DR1 and DR2

a medium effect size. For DR2, the data deviates from normality, but variances are equal,
and there is no significant difference between groups, with a small effect size.

Overall, the findings suggest no strong association between group type and speed for the
DR treatment.

Error Data

The analysis of the DR1 and DR2 error rates highlights minor differences in correctness
between the treatment and control groups. For DR1, the treatment group achieved a higher
correctness rate (83.67%) compared to the control group (76.60%), but the difference was not
statistically significant (p = 0.539) and had a negligible effect size (¢ = 0.063). Similarly, for
DR2, the treatment group exhibited a slightly lower correctness rate (74.47%) compared to the
control group (77.55%), but this difference was also not statistically significant (p = 0.909)
and showed a negligible effect size (¢ = 0.012). These results suggest that while there are
observable differences in correctness rates, they lack statistical significance and practical
impact.

Overall, the findings indicate no strong association between group type and correctness
for either DR1 or DR2.

Group False True Correctness (%) )(2 P ¢ Group False True Correctness (%) )(2 P ¢
Treatment 8 41 83.67 0377 0539 0.063 Treatment 12 35 74.47 0013 0909 0.012
Control 11 36 76.60 Control 11 38 77.55

Table 6.10: DR1 Error Rate Table 6.11: DR2 Error Rate
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6.1.4.4 Repeated Distance

The repeated distance treatment manipulated the position of filler lines relative to a double
declaration and its usage. In the treatment group, some filler lines were inserted between
the double declaration and its subsequent usage. In contrast, in the control group, the same
filler lines appeared before the double declaration.

Time Data

The results of the time data of repeated code treatment are shown in Figure 6.7.
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Figure 6.7: Time Data for Code Snippet RP1 (a) and RP2 (b)

We can see that for code snippet RP1, the treatment group was slower by around 12.5 sec-
onds on average than the control group. The change introduced for RP1 was a higher distance
between the declaration and usage of the variable, with less filler lines like comments.

For code snippet RP2, the treatment group was slighter slower by around 0.3 seconds
on average than the control group. The change introduced for RP2 was similarity between
variable names.

The results of the statistical analysis can be seen in Table 6.12.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d

Value P Value P Value P Value P

RP1  0.986 0.836 0.987 0.878 8.272  0.005 4.210 <0.001 0.860
RP2 0.880 <o0.001  0.987 0.870 0.610 0.437 -0.176 0.861 -0.036

Table 6.12: Statistical Analysis for RP1 and RP2

The findings indicate that for RP1, the data appears to be approximately normally dis-
tributed for both groups. However, it is evident that the variances are not equal. The
application of the t-test reveals a statistically significant difference between the control
and treatment groups, with a substantial effect size. For RP2, the data exhibits deviation
from normality for the control group. Nevertheless, it is observed that the variances are
equal, and the t-test demonstrates an absence of significant difference between the groups,
exhibiting a negligible effect size.
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The findings indicate a strong association between group type and speed for RP1, while
no meaningful association is observed for RP2.

Error Data

The analysis of RP1 and RP2 error rates can be seen in Table 6.32. For RP1, the control group
achieved a higher correctness rate (85.11%) compared to the treatment group (71.43%), but
the difference was not statistically significant (p = 0.170) and showed a small effect size
(¢ = 0.140). For RP2, the control group also performed slightly better (85.71%) than the
treatment group (80.85%), but this difference was not statistically significant (p = 0.715) and
had a negligible effect size (¢ = 0.037). These results suggest that while the control group
consistently outperformed the treatment group in correctness, the differences lack statistical
significance and practical impact.

Overall, the findings indicate no strong association between group type and correctness
for either RP1 or RP2.

Group False True Correctness (%) | x> P ¢ Group False True Correctness (%) | x? P ¢
Treatment 14 35 71.43 1887 016957 0140 Treatment 9 38 80.85 0133 071494 0037
Control 7 40 85.11 Control 7 42 85.71
Table 6.13: RP1 Error Rate Table 6.14: RP2 Error Rate

6.1.4.5 Backtracking

In this section, we will analyze the backtracking behavior of the participants.
Of all participants, 69.8% of the participants backtracked at least once during the study.
The backtracking behavior of the participants is shown in Figure 6.8.
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Figure 6.8: Backtracking Behavior of Participants
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For easier code snippets, for example, CR1, we can see that less people backtracked than
for harder code snippets, for example, RP1. For most code snippets, more participants went
back to a previous line if the code snippet was a treatment variant instead of the control
variant, ecept for DR2, where around 8 % more participants backtracked in the control group
than in the treatment group.

The amount of average lines of code a participant backtracked is shown in Figure 6.9.
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Figure 6.9: Backtracking Usage of Participants

The height of the bars indicates the average number of lines a participant backtracked.
The error bars indicate the standard deviation of the backtracking behavior.

The results show that the participants backtracked more in the treatment group than in
the control group for all code snippets, except for DR2, where the participants backtracked
less in the treatment group than in the control group. For easier code snippets as CR1 or
CD2, the participants backtracked less lines of code.

The greatest difference of backtracking behavior in between code snippets was for RP1,
where the treatment group backtracked around 2.5 lines of code more than the control
group. For the other code snippets, the difference was not as high, with around 1-2 lines of
code more for the treatment group than for the control group.

In Figure 6.10, we can see the backtracking behavior of the participants on the print line
of the code snippets. The print line is the line where the participants had to remember the
value of the variable in the print statement. The bars represent the percentage of participants
that backtracked at the print line, while the number on top of the bars represents the average
number of lines the participants backtracked at the print line.

For six of eight code snippets, the treatment group backtracked more than the control
group at the print line. As CR1 was an easy code snippet, especially for the control group,
this code snippet had the lowest backtracking behavior at the print line. The greatest
amount and also the highest difference between treatment and control code snippets of
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Figure 6.10: Backtracking Behavior of Participants

lines backtracked at the print line was for RP1 with around 16.2 lines of code compared
to 7.6 lines of code for the control group. Code snippets that had their distance increased
instead of using similar variable names had a higher backtracking behavior at the print line
than code snippets that had their variable names changed, which is to be expected due to
the higher distance between the declaration and usage of the variable.

CR1 and CRz2 Backtracking Behavior

We analyzed the backtracking behavior of the participants for CR1 and CR2 in more detail, as
these code snippets were easily comparable due to the treatment code snippet only having
one line of code more at the beginning of the code snippet and due to the differences in
the backtracking behavior of the participants for these code snippets seen in the previous
section.

CR1 Backtracking Behavior The x-axis shows the code line that was shown to the
participants in the order of the code snippet. The y-axis shows the number of times
participants started to backtrack at this code line. The number on top of the bars shows the
average number of lines the participants backtracked from this line of code at once. The
second line has no backtracking behavior for the control snippet as it was the first line of
code in the code snippet.

We can see that we have a much higher amount of lines backtracked for the treatment
group than for the control group in the line of code p = b * d. Interestingly, the treatment
group backtracked less times at the print line print(p) than the control group.

CR2 Backtracking Behavior The information in Figure 6.12 is presented in the same way
as in Figure 6.11.
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We can see that we have similar backtracking behaviors for the treatment and control
group in all lines of code except for the print line print(p), where the treatment group
backtracked nearly double as often as the control group. The treatment group backtracked
farther back for most lines of code than the control group, but we need to keep in mind that
the treatment code snippet was one line longer than the control code snippet.

6.1.4.6  Significance Level Correction

We checked the significance level correction for the t-tests and x? tests of all eight code
snippets. Of those 16 values, two values were significant at the 0.05 level. The significance
level correction can be seen in Table 6.15.

RP1 t-test CR1 )2

p-value <0.001 <0.001
Bound 0.003125  0.003333
Significant Yes Yes

Table 6.15: Significance Level Correction

Even with the correction, the t-test for RP1 and the x? test for CR1 are still significant.

6.1.5 Simulation Evaluation

In this section, we will analyze the results of the fitting of the model to the data of the
simulation evaluation. Afterwards, we will analyze the results of the fitted model.

6.1.5.1 Model Fitting

We performed different types of optimizations with the data of the empirical evaluation
to train the parameters of the ACT-R model. Specifically, we trained either three (ans, If,
rt) or four parameters (ans, If, rt, mp) of the model. We used the following ranges for the
parameters:

® ans: [0.01, 2.0]
e If: [0.1, 5.0]

e rt: [-10.0, 10.0]
* mp: [0.2, 2.0]

The parameter mp was set to 1.5 if not varied, as it seemed like a good value during the
tests that were run prior to starting the optimization. The Bayesian Optimization tried to
maximize either the time data with the help of the KS statistic or the error data with the help
of the x? statistic. Additionally, we also tried to maximize the significance of the combined
time and error data.
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Due to time constrains, we did not find an maximum for the optimization of the model pa-
rameters. The experiments were run for 12 days, but due to the increased model complexity,
the run time of a single optimization took too long to run more steps.

Consequently, an attempt was made to manually identify parameters that would align
with the data from the empirical evaluation which lead to a further optimization of the
model parameters. The results of this attempt will be presented in the final section.

In the following, we will describe the best parameters in regard to time data, error data
and combined data for the optimizations with three and four parameters.

Time Data

The optimization was run for 309 steps. There was no convergence of the optimization, as
we needed to stop the optimization due to time constraints. The best possible reachable sum
for the sum of squared KS statistics was -1.576 found at the 287th step of the optimization.
The parameters for this run are described in Table 6.16 (a).

Parameter Value Parameter Value Parameter Value
ans 0.850 ans 0.147 ans 0.193

If 1.331 1f 0.957 If 0.502

rt 1.835 rt -8.906 rt 0.146

mp 15 mp 1.974 mp 1.389

(a) (b) (©)

Table 6.16: Best Parameters for Time (a), Error (b) and Combined Data (c)

The evolution of the Bayesian Optimization can be seen in Figure 6.13.
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Figure 6.13: Evolution of the BO algorithm with 50 start points for tuning ans, If, rt for time data

The accuracy in terms of time data and error rate of this approximation can be seen in
Figure 6.14.
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Figure 6.14: Heatmaps of KS statistic (a) and x? statistic (b) for tuning ans, If, rt for time data

If we consider Figure 6.14 (a), we can see that all values are very high with all significance
values being 0.0. This means that the model was not able at all to predict the responses of
the participants. This was to be expected, as we only optimized in regards to time for this
optimization. If we have a look at the error data, we can see that the model did not return
an answer for nearly every code snippet and thus had a false result.. This optimization is
therefore not realistic and does not help in providing a useful model, even if the time values

are quite good.

As can be seen in Figure 6.14 (b), the worst value is 0.426. Nearly half of the code snippets
have a significance value of over 0.05, which means that the probability that the simulated

and empirical data have the same distribution is correspondingly high.
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We used QQ plots to visualize the difference between the empirical and simulation data.
As we can see in Figure 6.15, for lower time values, the simulated data fits pretty well,
whereas if we advance to longer times, the model will overstimate the time needed to
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Figure 6.15: QQ Plots for RP1 (a) and CD1 (b) tuning ans, If, rt for time data

complete the code snippet.
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Figure 6.16: Evolution of the BO algorithm with 50 start points for tuning ans, If, rt, mp for time data

The optimization was run for 315 steps. There was no convergence of the optimization, as
we needed to stop the optimization due to time constraints. The best possible reachable sum
for the x? statistics was -8215.705 found at the 221th step of the optimization. The parameters
for this run are described in Table 6.16 (b). The evolution of the Bayesian Optimization can
be seen in Figure 6.16.
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Figure 6.17: Heatmaps of KS statistic (a) and x? statistic (b) for tuning ans, If, rt, mp for error data

The accuracy in terms of time data and error rate of this approximation can be seen in
Figure 6.17.

As we can see in Figure 6.17 (a), the simulated time does not fit the empirical data at all.
This result could be expected as we only optimized in regards to correctness of the answers.
Nevertheless, the distribution of the time data is vastly different due to the simulated time
data not having nearly as much variance as the empirical data. The simulated times are
concentrated at around 11-12 seconds, whereas the empirical data has time values between
5-65 seconds, as can be seen in the QQ plot in Figure 6.18.
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Figure 6.18: QQ Plots for CD1 for error data
Group  False True Correctness (%) Group  False True Correctness (%)
Control 49 (6) o0 (43) 0% (88%) Control  0(4) 49 (45) 100% (92%)
Treatment 47 (9) 0 (38) 0% (81%) Treatment o0 (3) 47 (44) 100% (94 %)
(a) (b)

Table 6.17: Error Rates for CD2 (a) and CR2 (b) with empirical data in brackets
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The correctness of two code snippets are shown in Table 6.17 (a) and (b). The values in
the brackets describes the values of the empirical data. While the x? statistics already look
more promising than those of the time data, we still have a lot differences to the results of
the empirical data, as can be seen in Table 6.17 (a). Otherwise, the data in Table 6.17 (b)
looks very similar to the empirical data.

Combined Data

The optimization was run for 155 steps. There was no convergence of the optimization, as
we needed to stop the optimization due to time constraints. The best possible reachable sum
for the combined significance was 6.962 found at the 119th step of the optimization. The
parameters for this run are described in Table 6.16 (c). We reached this result by changing
the range of the rt parameter to [-1.0, 1.0], as these were the values that needed to be used
so that the model also uses the backtracking mechanism. For lower rt values, the model may
just not use the backtracking mechanism at all, as it will encounter no retrieval errors.
The evolution of the Bayesian Optimization can be seen in Figure 6.19.
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Figure 6.19: Evolution of the BO algorithm with 50 start points for tuning ans, If, rt, mp for time data

The accuracy in terms of time data and error rate of this approximation can be seen in

Figure 6.20.
Group False  True Correctness (%) Group False True Correctness (%)
Control 10 (11) 37 (36) 79% (77%) Control 44 (6) 5 (43) 10% (88%)
Treatment 12 (6) 37 (43) 76% (88%) Treatment 44 (9) 3 (38) 6% (81%)

(a) (b)

Table 6.18: Error Rates for CD1 (a) and CD2 (b) with empirical data in brackets

The results of the x? statistic are mixed, with some code snippets being a very good fit
while others do not fit at all. If we look at Table 6.18 (a), we can see that the model was able
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Figure 6.20: Heatmaps of Ks statistic (a) and x? statistic (b) for tuning ans, If, rt, mp for combined data

to predict the results of the empirical data very well. Contrary to that, Table 6.18 (b) shows
that the model was not able to predict the results of the empirical data at all.

The time data in Figure 6.20 (a) also showed mixed results, as some code snippets seemed
to have similar distributions. Nevertheless, most code snippets do not have a significance
value of over 0.05 and possess therefore a different time distribution. We can see the
differences in Figure 6.21, where the CR2 code snippet has a very similar distribution to
the empirical data, while the CR1 code snippet has a very different distribution, as the time

values of the simulation are concentrated in small value range.
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Figure 6.21: QQ Plots for CR1 (a) and CR2 (b) tuning ans, If, rt, mp for time data

Combined Data with Parameter bl

As these results did not provide satisfactory findings, we also tried to manually fit the

model to the data of the empirical evaluation with parameter values according to our
understanding of the model. During this testing, we found out that while the strongly

recommended value of the parameter bll was 0.5, it caused our model to forget the value

of its variables too fast, causing repeated backtracking for information that was just seen.
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Parameter Value

ans 0.308
If 1.803
rt -0.040

mp 7-483

bll 0.220

Table 6.19: Best Parameters for Combined Data with bll

By decreasing its value, the value of a variable can be retrieved more easily. This caused
another effect, as now variables that had been seen often due to backtracking caused errors
due to being retrieved for another variable as their activation was too high. By increasing
the parameter mp to a higher value, we increased the penalty of having different variables
and therefore increased the chance of retrieving the correct variable.

We then started a new optimization with the following parameter ranges:

® ans: [0.01, 2.0]
e If: [0.1, 5.0]

e rt: [-1.0, 1.0]

® mp: [5.0, 10.0]

® bll: [0.2, 0.3]

These values were chosen after experimenting with the model and trying to find good
values for the parameters.

The optimization was run for 73 steps. There was no convergence of the optimization,
as we needed to stop the optimization due to time constraints. The best possible reachable
sum for the combined significance was 7.424. The parameters for this run are described in
Table 6.19.

The evolution of the Bayesian Optimization can be seen in Figure 6.22.

The accuracy in terms of time data and error rate of this approximation can be seen in
Figure 6.23.

The time data in Figure 6.23 (a) showed promising results, as most code snippets have a
significance value of over 0.05 and therefore have a similar distribution.

If we look at the QQ plot in Figure 6.24 (a), we can see that the simulated data fits the
empirical data very well, as the values are very close to the diagonal line. In Figure 6.24 (b),
we can see that while the control group has no similar distrubtion, the overall positions of
the points are shifted to the left, which means that the model is overrestimating the time
needed to complete the code snippet. For both code snippets, we can see that higher times
do not fit well on the diagonal line.

The results of the x? statistic are still mixed, with some code snippets being a very good
fit while others do not fit at all. Nevertheless, this model is able to predict the results of the
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empirical data better than the previous model with ten code snippets having a significance
value of over 0.05. For code snippets CD1 and DR1, the model was not able to predict the
results of the empirical data very well for the treatment and control groups. Additionally,
the treatment groups of CR1 and CR2 also did not fit well. If we take a look at the error rates
in Table 6.20 (a), we can see that the model was always able to respond with the correct
value, which the real participants were unable to do. For more difficult code snippets such
as RP1, the model was able to predict the results of the empirical data very well, as can be
seen in Table 6.20 (b).

Group  False True Correctness (%) Group False @ True Correctness (%)
Control o (11) 47 (36) 100% (77%) Control 9(7) 38 (40) 81% (85%)
Treatment 0(6) 49 (43) 100% (88%) Treatment 13 (14) 36 (35) 73% (71%)

(a) (b)

Table 6.20: Error Rates for CD1 (a) and RP1 (b) with empirical data in brackets

6.1.5.2 Model Evaluation

Finally, we will evaluate the model with the help of the KS statistic and the x? statistic, as we
did for the empirical evaluation. For this evaluation, we used the results of the simulation
with the parameters that were found in Section 6.1.5.1.

For all following time graphs, the dashed lines and striped bars represent the simulation
data, while the solid lines and solid bars represent the empirical data. All following statistics
will show the results of the simulation data first, followed by the empirical data in brackets.

6.1.5.3 Code Distance

The code distance treatment was designed to investigate the influence of the distance
between the declaration of a variable and its usage at a later point in the code snippet.

Time Data

The results of the time data of code distance treatment are shown in Figure 6.25.

We can see that for code snippet CD1, the treatment group was slower by around 6
seconds on average than the control group. The effect of the treatment was stronger in the
simulation than in the empirical data, as the treatment group of the simulation was around
4 seconds slower than the treatment group of the empirical data. The control group times
were very similar, with the simulation data having a more pronounced peak.

For code snippet CD2, the treatment group distributions of the simulation and empirical
data were nearly identical. The control group of the simulation data had a more pronounced

peak than the empirical data, which was more evenly distributed.

The results of the statistical analysis can be seen in Table 6.21.
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Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value P Value P Value P Value p
cpg 0921 0.004 0.949 0.034 0.001 0.971 2.567  0.012 0.524
(0.953)  (0.058) (0.986) (0.817) (0.619) (0433) (0455) (0.650)  (0.093)
cpa 0943 0.020  0.981 0.636 0.019 0.891 -0.929 0.355 -0.190
(0.939) (0.013) (0.944) (0.024) (0.005) (0.941) (-0.151) (0.880) (-0.031)

Table 6.21: Statistical Analysis for CD1 and CD2 with empirical data in brackets
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The analysis for CD1 shows that the simulation data deviates from normality and exhibits
significant variance differences, unlike the empirical data. The simulation also indicates a
significant treatment effect with a medium effect size (d = 0.524), whereas the empirical
data shows no significant difference (p = 0.650) and a negligible effect size (d = 0.093). For
CD2, both simulation and empirical data align, showing no significant differences in time
(p = 0.355 and p = 0.880) and negligible effect sizes (d = —0.190 and d = —0.031).

These results suggest that the simulation overestimates the impact of increased code
distance in CD1 but accurately reflects the minimal effect of similar variable names in CD2.
Discrepancies in normality, variance, and effect size for CD1 highlight areas for model
refinement to better align with human behavior.

Error Data

The values of the error data analysis can be seen in Table 6.23.

The error rate analysis for CD1 and CD2 reveals notable differences between the simula-
tion and empirical data. For CD1, the simulation data shows perfect correctness for both
the treatment and control groups, which significantly overestimates the empirical results.
Similarly, for CD2, the simulation data indicates higher correctness rates compared to the
empirical data.

The x? tests for both CD1 and CD2 show no significant differences (p = 1.0) in the simu-
lation data, which aligns with the empirical results. However, the simulation consistently
predicts higher correctness rates, suggesting that the model may underestimate the cognitive
challenges posed by the treatment, increased code distance or variable similarity.

Group  False True Correctness (%) X2 p ¢ Group  False True Correctness (%) X P ¢
Treatment o0 (6) 49 (43) 100.0 (87.76) 0.0 1.0 0.0 Treatment 3(9) 44 (38) 93.62 (80.85) 0.0 1.0 0.0
Control  0(11) 47 (36) 100.0 (76.60) (1.356) (0.244) (0.119) Control 4 (6) 45 (43) 91.84 (87.76) (0.423) (0.516) (0.066)

Table 6.22: CD1 Error Rate with empirical data  Table 6.23: CD2 Error Rate with empirical data
in brackets in brackets

6.1.5.4 Repeated Code

The repeated code treatment was designed to investigate the influence of having multiple
declarations of variables in the same code snippet.

Time Data

The results of the time data of repeated code treatment are shown in Figure 6.26.

For code snippet CR1, the difference between the treatment and control groups is very
small with 0.5 seconds on average, contrary to the empirical data, where a greater difference
can be seen. The treatment groups of both the simulation and empirical data are nearly
identical, while the control group of the empirical data has a more pronounced peak and
was faster than the simulation data.

Code snippet CR2 shows a similar distribution for both groups, while being around 4
seconds slower on average than the empirical data.

The results of the statistical analysis can be seen in Table 6.24.
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Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value P Value p Value p Value p
cre 9915 0.002  0.919 0.002 2765 0.100  0.440 0.661 0.090
(0.946)  (0.029) (0.870) (0.001) (7.399) (0.008) (3.793) (<0.001) (0.774)
CR2 0.966 0.174  0.906 0.001  0.411 0.523 0.734  0.465 0.150

(0.946)  (0.026) (0.979) (0.551) (0.101) (0.752) (0.236) (0.814) (0.048)

Table 6.24: Statistical Analysis for CR1 and CR2 with empirical data in brackets
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The statistical analysis for CR1 and CR2 highlights differences between the simulation
and empirical data. For CR1, the simulation data shows no significant difference between
the control and treatment groups (p = 0.661), with a negligible effect size (d = 0.090). This
contrasts with the empirical data, where a significant difference was observed (p < 0.001)
and a large effect size (d = 0.774) was reported.

For CR2, both the simulation and empirical data show no significant differences between
the groups (p = 0.465 and p = 0.814, respectively), with small effect sizes (d = 0.150 and
d = 0.048). This alignment indicates that the model accurately reflects the minimal impact
of increased distance between variable declaration and usage in this scenario.

Error Data

The error rate analysis for CR1 and CR2 highlights notable differences between the simulation
and empirical data. For CR1, the simulation data shows a correctness rate of 59.18% for the
treatment group, which is significantly lower than the empirical rate of 87.76%. Similarly, the
control group in the simulation achieved a correctness rate of 93.61%, slightly higher than
the empirical rate of 87.23%. The x? test for CR1 indicates a significant difference (p < 0.001)
in the simulation data, with a medium effect size (¢ = 0.379), contrasting with the empirical
data, which showed no significant difference (p = 1.0) and no effect size (¢ = 0.0).

For CR2, the simulation data shows a correctness rate of 68.09% for the treatment group,
which is significantly lower than the empirical rate of 93.62%. The control group in the
simulation achieved a correctness rate of 100.00%, higher than the empirical rate of 91.84%.
The x? test for CR2 also indicates a significant difference (p < 0.001) in the simulation data,
with a medium effect size (¢ = 0.411), whereas the empirical data showed no significant
difference (p = 1.0) and no effect size (¢ = 0.0).

Overall, the findings suggest that the simulation overestimates the differences in correct-
ness rates for both CR1 and CR2. While the empirical data shows no significant differences
between the treatment and control groups, the simulation predicts significant differences
with medium effect sizes, highlighting discrepancies that may require further refinement of
the simulation model.

Group False True Correctness (%) | x? P ¢ Group  False True Correctness (%) X p ¢
Treatment 20 (6) 29 (43) 59.18 (87.76) 13.780 <0.001 0.379 Treatment 15(4) 32 (45) 68.09 (91.84) 16.193 <0.001 0.411
Control 3(6) 44 (41) 93.61 (87.23) (0.0) (1.0)  (0.0) Control 0(3) 49(44) 100.00 (93.62) (0.0) (1.0)  (0.0)

Table 6.25: CR1 Error Rate with empirical datain  Table 6.26: CR2 Error Rate with empirical data in
brackets brackets

6.1.5.5 Declaration Redeclaration Distance

The declaration redeclaration distance treatment was designed to investigate the interaction
between the CD and CR treatments. Specifically, the treatment consists of having a double
declaration of a variable at the beginning of the code snippet (CR treatment) and a usage of
the variable at the end of the code snippet (CD treatment).

The control code snippets have their second declaration of the double declaration in the
line before the usage of the variable.
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Time Data
The results of the time data of repeated code treatment are shown in Figure 6.27.
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Figure 6.27: Time Data for Declaration Redeclaration Snippet DR1 (a) and DR2 (b)

We can see that for code snippet DR1, the treatment group was as fast as the control
group, with a more pronounced peak. Contrary to the simulation data, the treatment group
of the empirical data was slower than the control group.

For code snippet DR2, the control group was faster on average than the treatment group.

The empirical data does not reflect this, as the treatment group was even a bit faster than
the control group.
The results of the statistical analysis can be seen in Table 6.27.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value P Value P Value p Value p
pre 0844 <0.001  0.917 0.002 0.110 0.741 -0.030 0.976 -0.006

(0.956)  (0.077) (0.962) (0.110) (0.458) (0.500) (1.576) (0.118) (0.322)

0.922 0.003  0.954 0.063 1.164 0.283 -1.805 0.074 -0.368

DR
* (0.933)  (0.008) (0.942) (0.022) (0.321) (0.572) (0.662) (0.510) (0.135)

Table 6.27: Statistical Analysis for DR1 and DR2 with empirical data in brackets

For DR1, the simulation data shows no significant difference between the control and
treatment groups (p = 0.976), with a negligible effect size (d = -0.006). This contrasts with the
empirical data, where a medium effect size (d = 0.322) was observed, though the difference
was not statistically significant (p = 0.118).

For DR2, the simulation data also shows no significant difference between the groups (p
= 0.074), with a small effect size (d = -0.368). This aligns with the empirical data, which
similarly reported no significant difference (p = 0.510) and a small effect size ( = 0.135).

Overall, the findings suggest that the simulation underestimates the potential effect size
for DR1 but aligns more closely with the empirical results for DR2.
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Error Data

The error rate analysis for DR1 and DR2 highlights notable differences between the simulation
and empirical data. For DR1, the treatment group in the simulation achieved a correctness
rate of 46.94%, significantly lower than the empirical rate of 83.67%. Similarly, the control
group in the simulation had a correctness rate of 51.06%, also lower than the empirical rate
of 76.60%. The x? test for DR1 indicates no significant difference (p = 0.841) in the simulation
data, aligning with the empirical results (p = 0.539).

For DR2, the treatment group in the simulation achieved a correctness rate of 70.21%,
slightly lower than the empirical rate of 74.47%. The control group in the simulation matched
the empirical correctness rate of 77.55%. The x? test for DR2 also shows no significant
difference (p = 0.558) in the simulation data, consistent with the empirical results (p = 0.909).

Overall, the simulation underestimates the correctness rates for DR1 but aligns more
closely with the empirical results for DR2.

Group False  True Correctness (%) X2 P ¢ Group False  True Correctness (%) X P ¢
Treatment 26 (8) 23 (41) 46.94 (83.67) 0.040 0842  o0.020 Treatment 14 (12) 33 (35) 70.21 (74.47) 0344 0558  0.060
Control 23 (11) 24 (36) 51.06 (76.60) (0.377) (0.539) (0.063) Control 11 (11) 38 (38) 77.55 (77.55) (0.013) (0.909) (0.012)

Table 6.28: DR1 Error Rate with empirical data  Table 6.29: DR2 Error Rate with empirical data
in brackets in brackets

6.1.5.6  Repeated Distance

The repeated distance treatment manipulated the position of filler lines relative to a double
declaration and its usage. In the treatment group, some filler lines were inserted between
the double declaration and its subsequent usage. In contrast, in the control group, the same
filler lines appeared before the double declaration.

Time Data

The results of the time data of repeated code treatment are shown in Figure 6.28.
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Figure 6.28: Time Data for Repeated Distance Snippet RP (a) and RP (b)
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We can see that for code snippet RP1, the treatment group of the simulation data is very
similar to the treatment group of the empirical data. The control group of the simulation
data is more concentrated on specific times than its counterpart in the empirical data, while
also being slower on average.

For code snippet RP2, the treatment groups of both the simulation and empirical data are
very similar, while the control group of the simulation data is slower than its counterpart in

the empirical data and both treatment groups.

The results of the statistical analysis can be seen in Table 6.30.

Shapiro Control Shapiro Treatment Levene t-Test Cohen’s d
Value P Value P Value P Value P

rpr 9979 0.542  0.956 0.067 12.088 <0.001 3.590  <0.001 0.733
(0.986) (0.836) (0.987) (0.878) (8.272) (0.005) (4.210) (<0.001) (0.860)
0.955 0.058 0.919 0.003 0.601 0440 2321  0.022 0.474

e (0.880)  (<0.001) (0.987) (0.870) (0.610) (0.437) (-0.176) (0.861) (-0.036)

Table 6.30: Statistical Analysis for RP1 and RP2 with empirical data in brackets

For RP1, the simulation data shows a significant difference between the control and
treatment groups (p < 0.001), with a large effect size (d = 0.733). This aligns with the
empirical data, which also reported a significant difference (p < 0.001) and an even larger
effect size (d = 0.860). However, the simulation slightly underestimates the magnitude of
the effect compared to the empirical data.

For RP2, the simulation data shows a significant difference between the groups (p = 0.022),
with a medium effect size (d = 0.474). This contrasts with the empirical data, which reported
no significant difference (p = 0.861) and a negligible effect size (d = —0.036). The simulation
overestimates the impact of the treatment for RP2.

Overall, the findings suggest that the simulation aligns well with the empirical results
for RP1, capturing the significant effect of the treatment, albeit with a slightly smaller effect
size. However, for RP2, the simulation overestimates the treatment’s impact, indicating areas
where the model requires refinement to better reflect the empirical observations.

Error Data

The error rate analysis for RP1 and RP2 highlights differences between the treatment and
control groups. For RP1, the treatment group achieved a correctness rate of 73.47%, which
is lower than the control group’s 80.85%. However, the difference was not statistically
significant (p = 0.537) and showed a small effect size (¢ = 0.063). This suggests that while
the control group performed slightly better, the difference lacks practical significance. The
simulation data is nearly identical to the empirical data.
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For RP2, the treatment group achieved a correctness rate of 61.70%, which is also lower
than the control group’s 67.35%. Similar to RP1, the difference was not statistically signifi-
cant (p = 0.715) and exhibited a negligible effect size (¢ = 0.037). This indicates that the
treatment had minimal impact on the correctness rates for RP2. Specifically, the treatment
group performed differently in the empirical data, achieving a correctness rate of 85.71%.
Nevertheless, there is significant difference between the treatment and control groups in
either the simulation or empirical data.

Overall, the findings suggest that while the control group consistently outperformed the
treatment group in correctness for both RP1 and RP2, the differences are neither statistically
significant nor practically meaningful. These results highlight the limited effect of the
treatment on error rates in these scenarios.

Group False True Correctness (%) X2 P ¢ Group  False True Correctness (%) X2 P ¢
Treatment 13 (14) 36 (35) 7347 (71.43) 0381 0537 0.063 Treatment 18 (7) 29 (42) 61.70 (85.71) 0.133  0.715  0.037
Control 9(7) 38(40) 80.85 (85.11) (1.887) (0.170) (0.140) Control 16 (9) 33 (38) 67.35 (80.85) (0.133) (0.715) (0.037)

Table 6.31: RP1 Error Rate with empirical datain ~ Table 6.32: RP2 Error Rate with empirical data in
brackets brackets

6.1.5.7  Backtracking

In this section, we will analyze the backtracking behavior of the model.
The model backtracked at least once during every simulation run. The backtracking
behavior of the model for the different code snippets is shown in Figure 6.29.
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Figure 6.29: Backtracking Behavior of Participants

We can see that the model backtracked more often for difficult code snippets such as RP1
and less for easier code snippets such as CR1, similarly to the empirical data. Interestingly,
the model backtracked the least for DR1. This is likely due to the rather low correctness
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rate of the model for this code snippet, as the model confuses the values of the double
declaration, and thus does not feel the need to backtrack to verify. The code snippet is on
the easier side but due to similarity errors, the model does not backtrack as often as for the
other code snippets.

Half of the code snippets have a higher backtracking rate for the treatment group than
for the control group. This does not reflect the empirical data, as the treatment group had
a higher backtracking rate for all except one code snippet. Especially the code snippets
CR1 is interesting, as the model backtracked more often for the control group than for the
treatment group, even though the code snippets were the same except for the treatment
group having one additional line, a double declaration, in the first line. This results seems
to be due to the same effect as for DR1, where the model confuses the values of the double
declaration and thus does not feel the need to backtrack to verify, which can be seen in the
distribution of the answer data.

The amount of average lines of code a participant backtracked is shown in Figure 6.30.
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Figure 6.30: Backtracking Usage of Participants

The height of the bars indicates the average number of lines a participant backtracked.

The error bars indicate the standard deviation of the backtracking behavior.
We can see five of the eight code snippets have a higher amount of lines backtracked for
the treatment group than for the control group. This is similar to the empirical data except

for CR1, CR2 and RP2, where the treatment group backtracked less than the control group.

CR1 and CR2 are probably due to the same effect as described previously, where the model
confuses the values of the double declaration and thus does not feel the need to backtrack
to verify. RP2 is probably due to ordering effects, as one line of code where a calculation is
done was moved to the beginning of the code snippet, increasing the distance between the
declaration and usage of the variable and thus also the amount of lines backtracked.
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Otherwise, the amount of lines backtracked is similar to the empirical data, with the
empirical data having at most 11 lines on average backtracked, while the simulation data
has at most 10 lines on average backtracked.

CD1 has a much higher backtracking usage in the simulation data than in the empirical
data. This is probably due to the fact that the model is only able to backtrack to one variable
at a time, as the treatment code snippet has two variables that are needed in one line of
code one next to each other, whereas the control snippet only has one variable that is far
away from the usage.

6.1.5.8  Significance Level Correction

We checked the significance level correction for the t-tests and x? tests of all eight code
snippets. Of those 16 values, five values were significant at the 0.05 level. The significance
level correction can be seen in Table 6.33.

CR1 x> CRz2)?> RP1t-test CD1 t-test RP2 t-test

p-value <0.001 <0.001 <0.001 0.012 0.022

Bound 0.003125 0.003333  0.003571 0.003846 0.004167
Significant Yes Yes Yes No No

Table 6.33: Significance Level Correction of the Model Results

The values of the t-test for CD1 and RP2 were not significant after the correction and may
have been due to chance. All other values were still significant after the correction.

Comparison with Test Dataset

We ran the model with the same parameters for the same amount of iterations as there are
participants in the test dataset. We then evaluated the model with the same statistical tests
as we did for the empirical evaluation. The significance value of the combined was 14.153,
which is nearly double the value of the evaluation with the training dataset. The time data
and the error data had a better fit to the test dataset than to the training dataset, which is a
good sign that the model is able to generalize to other datasets.

6.2 Discussion

In this section, we will discuss the results of the empirical evaluation, which encompasses
the think-aloud study and the data from CloudResearch, and the simulation evaluation.

6.2.1 Think-Aloud Study

The most important finding is the confirmation that most backtracking behavior is due to
uncertainty or forgetting the value of a variable. This aligned with our understanding of the
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code comprehension behavior that was expected. According to this finding, we chose to
implement the backtracking mechanism in a way that mimics uncertainty, which was done
with the help of the retrieval threshold.

Another interesting observation was the mention of cognitive loads being reasons for
using backtracking. Having code snippets that are difficult to understand with lots of vari-
ables may necessitate to backtrack to previous lines. This supports the previous hypothesis
that implementing backtracking into ACT-R is an important step into creating a universal
cognitive model for code comprehension.

The different strategies that were used by the participants give us a glimpse into the
possible strategies a person can use with backtracking. As we only have a small sample size,
more strategies are possible. All these strategies would have to be implemented into ACT-R
to simulate the human mind. As returning for multiple variables in one go would break the
scope of this work, we did not add this to our model. Nevertheless, it is an important finding
that should be implemented in subsequent iterations. The strategy to use assert keywords to
remember the value of a variable was implemented without too much additional work, as
this was also something that could be seen from the data of the CloudResearch study.

All in all, the think-aloud study gave us a lot of insights into the backtracking behavior
of participants and validated some of our hypotheses of the backtracking behavior. The
findings were used to implement the backtracking behavior into the cognitive model in a
way that resembles the result of this think-aloud study.

6.2.2 Empirical Evaluation

We evaluated the results of the effects of the treatments on the time data and the error data.
We will not discuss the results of the socio-demographic data, as those are out of scope of
this work.

Code Distance

Both code snippets have no signicant difference in the time data and the error data. For
CD2, the treatment and control group has nearly the same time plot. Therefore, one may
hypothesise that the addition of backtracking reduces the effects of the code distance
treatment on the time data. We have a slight edge for the control group in CD1, compared
to CD2. As CD1 is a code snippet that was changed to be longer, it supports our previous
argument, as apparently the treatment has an effect, just not as strong as we expected.

While the error rates were slightly different, they were not statistically significant. As once
the control group had a higher error rate than the treatment group and once the treatment
group had a higher error rate than the control group, we can guess that the addition of
backtracking reduces the effects of the code distance treatment in regards to the error rates
as well.
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The cause of these results could also be that the effect of the treatment is not strong
enough to be detected in the time data and the error data or even not existing at all.
Closheim also did not find a significant difference in the time data and the error data for
the code distance treatment in their study, which would support the previous argument.

Repeated Code

The code snippet CR2 had no significant difference in the time data and the error data.
As this code snippet had an increased distance between the declaration and usage of the
variable, we can assume that the treatment does not have a strong effect on the time data
and the error data.

Contrarily, while the code snippet CR1 did not have a signicant difference in the error rate,
the time data varied significantly between the treatment and control group. As the change
introduced for CR1 was similarity between variable names, we can assume that introducing
similarity between variable names when a variable is declared twice may have a stronger
effect on the time data. Double declarations with confusing variable names may lead to a
higher cognitive load for the participants, as they have to remember the variable names and
their values without mixing them up. Additionally, participants that were confused by the
variable names may have backtracked more often to check the value of the variable, which
would lead to a higher time data for the treatment group than for the control group.

Declaration Redeclaration Distance

For the time data, both code snippets DR1 and DR2 had a slower control group than the
treatment group. While the statistical analysis showed no significant difference for both
code snippets, DR1 was nearly signicant and also had a medium effect size. As DR1 also had
similarity between variable names and a double declaration of a variable, we see the same
effect as in CR1, where the treatment group was slower than the control group, just not as
pronounced.

For both code snippets, the error rates were not significantly different. Interestingly, both
code snippets had a higher correctness rate for the treatment group than for the control
group, which is the opposite of what we expected. While the difference is not significant,
this could be a hint that the addition of backtracking reduces the effects of the declaration
redeclaration distance treatment on the error rates. If a participant is not sure about the
value of a variable, which is rather the case in the treatment group, they may backtrack
to the declaration of the variable and check the value of the variable. This could lead to a
higher correctness rate for the treatment group than for the control group, as those in the
control group may not backtrack as often and therefore not check the value of the variable,
as they are sure about its value.

Repeated Distance

RP1 shows a significant difference in the time data between the treatment and control group,
with a large effect size, with the treatment group being slower than the control group. Such
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a result was expected, as the treatment group had a higher distance between the declaration
and usage of the variable. The longer times can be explained by most participants not
remembering the value of a variable or being unsure of its value and then needing to return
to the declaration of the variable to check its value. Especially the second-last line, which
was needed to calculate the value of the print statement, contained a variable that was
declared in the first and second line. These long distances probably added to the time
needed to process the code snippet. Remembering a value for longer and more lines of code
is harder than remembering a value for shorter and less lines of code, which may have also
led to participants backtracking more often than once to check the value of the variable.
While the error rates were not significantly different, the treatment group had a lower
correctness rate than the control group. Even though both groups were able to go back
to previous lines of code, the treatment group made more errors than the control group.
It may be that while they had the ability to backtrack, the treatment group was not able
to remember the value of the variable as well as the control group due to the higher
distances between the declaration and usage of the variable. Therefore, even with all the in-
formation available, the RP treatment may still cause more errors than without the treatment.

Contrary to that, RP2 had no significant difference in the time data and the error data. The
average time was nearly identical for both groups. This is probably due to the lower distance
between the declaration and usage of the variable, which was similar to the control group.
As the code snippet was changed to have similar variable names, the results contradict the
observations from before for code snippet CR1 and DR1, where the addition of similarity may
have led to a higher cognitive load for the participants and thus a higher time requirement.
It could be that having a variable declared twice in the control code snippet lead to a higher
cognitive load for the participants and thus also higher processing times. Therefore, double
declarations with confusing variable names may lead to a higher cognitive load for the
participants than just one of those two effects alone.

Backtracking

The analysis of the backtracking behavior of participants revealed several interesting insights.

Firstly, it is evident that backtracking is a prevalent behaviour among participants and, by
extension, programmers, given that 70% of the participants exhibited at least one instance
of backtracking during the course of the study. While we do not have evidence of why
participants backtracked, we can assume that they were unsure about the value of a variable
and wanted to check its value. This supports the notion that code comprehension is an
iterative and frequently non-linear process.

An important observation is that the treatment group consistently backtracked more
than the control group across most code snippets. This trend suggests that the introduction
of our specific treatments causes an increase in complexity, leading participants to seek
clarification by revisiting previous lines of code. Depending on the treatment it may be more
or less pronounced. The treatment is especially pronounced in code snippet CR1, where the
treatment group backtracked nearly twice as often as the control group. This demonstrates
that the presence of a double declaration in code can potentially lead to confusion for
readers, necessitating the review of prior lines of code to ascertain the variable’s value. This,
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in turn, results in an increase in cognitive load, as participants must navigate back through
the code to clarify their understanding.

Interestingly, the code snippet DR2 had a lower backtracking behavior in the treatment
group than in the control group, which is contrary to the other code snippets. This could be
due to order effects in the code snippet, as the difference between the treatment and control
group was only the order of the lines of code.

If we consider the amount of lines of code backtracked, code snippet RP1 stands out
with a significantly higher backtracking behavior in the treatment group than in the control
group. This finding highlights that an increased distance between declaration and usage
significantly impairs comprehension, reinforcing theories that suggest spatial locality in
code plays a crucial role in mental modeling during reading reference(s).

Additionally, treatment effects seem to not only lead to more backtracking but also a
higher usage of lines of code backtracked. Therefore, this finding supports the hypothesis
that our treatments have an effect on the cognitive load of the participants.

If we consider the backtracking behavior at the print line, we can see that most partici-
pants backtracked to verify the value of the printed variable, with most treatment groups
backtracking more often and further back than the control groups. This finding suggests that
when key information is separated from its usage by large blocks of filler code, participants
experience greater difficulty in retrieving it, and consequently rely on backtracking to
compensate.

Finally, the detailed analysis of the backtracking behavior for CR1 and CR2 revealed
valuable insights into the participants’ cognitive processes. While the treatment group
in CR1 exhibited a pronounced backtracking behavior, particularly at the line before the
print steatement, the print statement itself saw a lower backtracking rate. This suggests
that participants try to understand the value of each variable in each line, even given the
possibility to backtrack to check its value. As we had a double declaration in the first two
lines of code for the treatment group and no double declaration for the control group,
the double declaration may have lead to confusion about its value, leading to a higher
backtracking behavior and thus a higher cognitive load.

This effect was not observed in the CR2 experiment, wherein the treatment group exhibited
a greater degree of backtracking at the print line in comparison to the control group, rather
than at the line preceding the print statement. This leads to the assumption that the distance
has a stronger effect than the double declaration on the backtracking behavior of the
participants. Having a longer distance between the declaration of a variable and its usage
may lead to a higher amount of backtracking behavior. As the treatment group backtracked
around twice as often in the print line than the control group, it seems as the double
declaration treatment does have an effect on the backtracking behavior of the participants,
but it shifted to the print line, as participants were probably confused about the value of the
variable and thus backtracked more often to check its value.

Owverall Evaluation

Overall, we can extract the following conclusions from the empirical evaluation:



6.2 Discussion

Time Effects

The time data revealed that similar variable names (e. g.,CR1 and DR1) can lead to signifi-
cantly longer processing times compared to control versions, suggesting increased cognitive
load from similarity between variable names. Increased distance between declaration and
usage (e.g.,RP1) also caused significantly longer times, especially when combined with
variable similarity. Interestingly, in snippets where only distance was altered (e. g.,CD2), no
significant time effects were found, indicating that backtracking can mitigate the cost of spa-
tial code complexity. Overall, semantic confusion appears to impact time more consistently
than structural changes do, unless both are combined.

Error Effects

The study revealed no statistically significant differences across treatments, with only subtle
trends observed. In several cases (e. g.,DR1 and DR2), the treatment groups demonstrated
slight superiority, which may be attributed to careful reading and increased backtracking
induced by the confusing nature of the code. This finding indicates that errors are less
susceptible to structural manipulations when programmers have access to the full code and
can reread as required. This may be a significant implication for the design of programming
environments or educational tools.

Backtracking Effects

Taken together, these findings suggest that minor structural changes in code, such as increas-
ing the distance between variable declaration and use, can significantly affect comprehension
strategies and impose additional cognitive load. The results emphasize the importance of
code clarity and locality, especially in educational contexts or environments where quick
understanding is essential.

6.2.3 Simulation Evaluation

In this section, we will evaluate the simulation results of the cognitive model. First, we will
discuss the model fitting process. Afterwards, we will evaluate the results of the simulation
in comparison to the empirical data.

6.2.3.1 Model Fitting

Training the cognitive model was a challenging process, as the previously used parameters
and parameter ranges were not suitable for the new model. In addition, the increased
complexity of the model increased the time for completing one run by a factor of three,
which made the training process very time-consuming.

Due to the time constraints of this thesis, we were not able to optimize the model in
regards to time and error data with the additional parameter variation of bll. It would have
been interesting to see if the results of these optimizations would have led to a better fit
than the current results. Additionally, a longer training process would have been beneficial
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to find better parameters for the model. As we were only able to optimize the parameters
for 76 iterations, a longer optimization process might be able to fit the model better to the
empirical data.

The model provides some loop holes, as lower retrieval thresholds lead to no backtracking
behavior at all. Optimization of only either time or error data leads to a model that is not
able to fit the other data well. This is probably due to the backtracking mechanism being
able to be misused to fit the time data of the model, while not being able to fit the error data
well, as some of the defined stopping conditions may interfere with the computed result.

The use of the significance level as a combined measure warrants critical evaluation, as
the resulting interpretations can differ significantly. For example, a p-value of 1 is almost
never observed for the KS statistic, whereas it is often observed for the x? statistic related
to the error rate. Consequently, an improved score does not necessarily indicate a better
fit between the model and the data. Nevertheless, it proved to be the best measure for the
model fitting process, as it was able to fit the model to the empirical data better than the
other measures.

As a final note, while the test set provided an interesting insight into the model’s
performance, it is important to acknowledge that depending on the seed that was used the
test set may not be representative of the model’s performance. A better approach would
have been to use a different method, such as cross-validation [6], to ensure that the model is
able to generalize well to unseen data. This would have required more time and resources
than were available for this thesis, but it would have provided a more robust evaluation of
the model’s performance.

6.2.3.2  Model Evaluation

We evaluated the results of the effects of the treatments on the time data and the error data
in comparison to the empirical data.

Code Distance

The results of the code distance treatment provide interesting insights into the differences
between the simulation and the empirical data. For CD1, the simulation time data suggest a
significant treatment effect with a medium effect size, in contrast to the empirical time data
which show no significant difference and a negligible effect size. This discrepancy suggests
that the simulation overestimates the effect of increased code distance on task performance.
In addition, the simulation time data deviate from normality and show significant variance
differences that are not observed in the empirical time data. These findings suggest that the
simulation model may need to be refined to better capture the cognitive processes involved
in dealing with increased code distance.

For CD2, the simulation and empirical time data are more in agreement, showing no
significant differences over time and negligible effect sizes. This consistency suggests that
the simulation accurately reflects the minimal impact of similar variable names on task
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performance. However, the more pronounced peak in the control group time data of the
simulation data compared to the empirical data highlights potential differences in variability
that could be investigated further.

Some further limitations of the simulation error data are evident in the error rate analysis.
For CD1, the simulation error data significantly overestimate the empirical results. Similarly,
for CD2, the simulation error data shows higher accuracy rates than the empirical error data.
While the x? tests for both CD1 and CD2 show no significant differences in the simulation
data, consistent with the empirical results, the consistently higher correct rates in the
simulation suggest that the model may underestimate the cognitive challenges. As this effect
is less pronounced for CD2, we can assume that this is especially true for the treatment
effects, as CD1 did not have similar variable names, while CD2 did have similar variable
names.

Overall, while the model aligns well with the empirical data for CD2, it overestimates the
impact of the treatment in CD1 in terms of time and underestimes the cognitive challenges
in terms of error rates. These discrepancies suggest areas for improvement in the simulation
model to better reflect human behavior and cognitive challenges in these scenarios.

Repeated Code

The error rate analysis for CR1 and CR2 reveals significant discrepancies between the sim-
ulation and empirical time data. For CR1, the empirical time data indicates a significant
difference between the treatment and control groups, with a medium effect size. In contrast,
the simulation time data show no significant difference and no effect size, suggesting that the
simulation underestimates the effect of the treatment, namely only the double declaration of
one variable. Such a double declaration may lead to confusion for readers, necessitating the
review of prior lines of code to ascertain the variable’s value and thus increasing the time
needed to process the code snippet. The model may need to have a lower retrieval threshold
to better reflect the cognitive processes involved in dealing with increased code distance.

For CR2, the simulation and empirical time data show no significant differences and only
small effect sizes. The model underestimates the time needed to process the code snippet,
which is probably due to some parameters needing more optimization.

Regarding the error rate, the simulation data CR1 indicates a significant difference between
the treatment and control groups, with a medium effect size. The treatment group in the
simulation performed significantly worse than the empirical data. Nearly all wrong answers
had the value 10, which is no value that can be achieved by the code snippet, even through
similarity errors. This suggests that the model needs adjustments of the parameters to better
reflect the cognitive challenges associated with double declarations.

For CR2, the simulation data also shows a significant difference between the treatment
and control groups, with a medium effect size. The control group in the simulation achieved
perfect correctness, which slightly overestimates the empirical results, while the treatment
group in the simulation underperformed compared to the empirical data. This suggests that
the model overestimates the effect of the double declaration on the correctness rates, as the
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treatment group in the simulation performed significantly worse than the empirical data,
while only making errors due to the treatment.

Overall, the findings highlight discrepancies between the simulation and empirical time
data for CR1 and CR2, suggesting areas where the simulation model requires refinement.
Specifically the effect of the CR treatment on the time data is underestimated, while the
effect of the CR treatment on the error data is overestimated.

Additionally, the simulation model appears to under- and overestimate the impact of the
treatment on correctness rates for CR1 and CR2, indicating that the model may need to be
adjusted to better reflect the cognitive challenges associated with double declarations.

Declaration Redeclaration Distance

The results of the time and error rate analyses for DR1 and DR2 reveal notable differ-
ences between the simulation and empirical time data. For DR1, the simulation time data
shows no significant difference in time between the treatment and control groups, with
a negligible effect size. This contrasts with the empirical data, which indicates a medium
effect size, though the difference is not statistically significant. These discrepancies suggest
that the simulation model does not fully capture the cognitive challenges associated with
declaration-redeclaration distance, particularly for DR1. It may also be that other order
effects are present in the empirical data, which have not been captured in the simulation
due to missing productions of the ACT-R model.

For DR2, the simulation and empirical time data align more closely, showing no significant
differences between the treatment and control groups and small effect sizes. Nevertheless,
the simulation expects an increase in time needed for the treatment group, which is not
observed in the empirical data. This may also be due to some order effects that are not yet
implemented in the simulation model.

For DR1, the simulation also underestimates the correctness rates for both the treatment
and control groups compared to the empirical data. As this code snippet implemented
similarity between variable names, we can see that the model overestimated the effect of
this similarity on the correctness rates, as 25% of the errors that were made were due to
similarity errors. The other 25% of the errors were due the treatment, namely the double
declaration, which aligns with the empirical data. Similarly, the error rate analysis for DR2
shows consistent results between the simulation and empirical data, with no significant
differences and comparable correctness rates. However, the simulation slightly underesti-
mates the treatment group’s correctness rate while accurately reflecting the control group’s
performance. Nevertheless, the errors are not as dsitributed as in the empirical data. This
suggests that the model still needs to be adjusted to create errors of wrongly remembered
values, as the model is not able to create errors of wrongly remembered values, but only
similarity errors.

Overall, the findings suggest that the simulation model performs better for DR2, mostly
accurately capturing the minimal impact of declaration-redeclaration distance on both time
and correctness rates. However, for DR1, the simulation underestimates the effect size and
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correctness rates, highlighting areas where the model requires refinement to better align
with observed human behavior. These results emphasize the need for further adjustments
to the simulation parameters to improve its accuracy. Additionally, the model may need
further refinements to better capture the cognitive processes, such as order effects or more
error types, that influence task performance in these scenarios.

Repeated Distance

The results of the time and error rate analyses for RP1 and RP2 show both agreement and
disagreement between the simulation and empirical data. For RP1, the simulation time data
show a significant difference between the treatment and control groups, with a large effect
size. This is consistent with the empirical data, which also shows a significant difference,
but with an even larger effect size. However, the simulation slightly underestimates the size
of the effect compared to the empirical data. The treatment groups in both datasets are very
similar, but the control group in the simulation is slower and more concentrated at certain
times than its empirical counterpart, suggesting that the simulation may not fully capture
the variability in the performance of the control group.

For RP2, the simulation data shows a significant difference between the treatment and
control groups, with a medium effect size. This contrasts with the empirical data, which
reports no significant difference and a negligible effect size. While the treatment groups in
both datasets are very similar, the control group in the simulation is slower than its empirical
counterpart and both treatment groups. This suggests that the order effects that are present
are overestimated in the simulation, leading to a higher time data for the treatment group
than for the control group. The code snippet has a variable that needs to be calculated at
the beginning of the code snippet, which is at a lower position in the treatment. This may
lead to the control group being slower than the treatment group, as they have to backtrack
more often to check the value of the variable.

The error rate analysis further supports these findings. For RP1, the control group consis-
tently outperformed the treatment group in both the simulation and empirical data, but the
differences were not statistically significant and showed small effect sizes. The simulation
data closely mirrors the empirical data in terms of correctness rates, suggesting that the
model accurately captures the limited effect of the treatment on error rates for RP1. For
RP2, the treatment group in the empirical data performed slightly worse than the control
group, similar to the simulation data. Nevertheless, in both cases, the differences were not
statistically significant and exhibited negligible effect sizes, indicating minimal practical
impact of the treatment on correctness rates. However, the model had a lower overall
correctness rate for both groups compared to the empirical data. The model overestimates
the effect of the double declaration on the correctness rates, as >30% of the errors that were
made were due to similarity errors.

Overall, the findings suggest that the simulation aligns well with the empirical results for
RP1, capturing the significant effect of the treatment. For RP2, the simulation overestimates
the order effects impact on time and produces an overall lower correctness rate than the
empirical data due to an overestimation of the treatment effect. These discrepancies highlight
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the need for further refinement of the simulation model to better align with observed human
behavior, particularly for scenarios like RP2 where order effects and cognitive load play a
significant role in task performance.

Backtracking

The analysis of the backtracking behavior reveals both similarities and discrepancies between
the simulation and empirical data. The model consistently backtracked at least once during
every simulation run, with the frequency of backtracking varying across code snippets,
which does not reflect the behavior of the participants in the empirical data. Such a behavior
may be remedied by implementing productions that do not use backtracking with certain
probabilities or by finding better suited parameters for the model.

We observed the effect of double declarations on backtracking behavior in the simulation
data, where the model confused the values of the double declaration and therefore did not
need to backtrack as often as the participants in the empirical data. If there would have
been only one value, the model may have backtracked more often to check the value of the
variable, as the retrieval threshold would have been lower due to only one declaration of
the variable. This effect is also present in the amount of lines backtracked. These discrepan-
cies highlight limitations in the model’s ability to replicate human backtracking behavior,
particularly in scenarios involving double declarations.

Order effects may also play a role in the backtracking behavior of the participants, as the
simulation data shows a higher backtracking usage for RP1 compared to the empirical data.

The simulation data also shows a higher backtracking usage for CD1 compared to the em-
pirical data. This discrepancy is likely due to the model’s limitation of backtracking to only
one variable at a time. In the treatment code snippet for CD1, two variables are needed in one
line of code, which increases the backtracking usage compared to the control snippet where
only one variable is far from its usage. This highlights a potential area for improvement in
the model’s backtracking mechanism to better handle scenarios involving multiple variables.

Additionally, there is a need to implement the different strategies that participants may
use, such as those observed in the think-aloud study but not yet implemented in the model,
to properly simulate the backtracking behavior of participants.

Overall, the findings suggest that while the simulation captures some general trends
in backtracking behavior, it exhibits some deviations from the empirical data in specific
scenarios. These discrepancies are particularly evident in cases involving double declarations
and ordering effects, indicating areas where the model requires refinement to better replicate
human backtracking behavior.

Owerall Evaluation

The overall evaluation of the simulation model reveals both strengths and weaknesses in its
ability to replicate human behavior in programming tasks. We will summarize the findings
of the simulation evaluation in the following sections.
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Time Effects

The model aligns well with the empirical data for some scenarios, such as CD2 and RP1,
accurately capturing the minimal or significant effects of the treatments. However, for other
scenarios, such as CD1, CR1, and RP2, the model either overestimates or underestimates the
treatment effects. For CD1 and RP2, the model overestimates the impact of the treatment,
while for CR1, it underestimates the effect of double declarations. Additionally, differences
in variability and order effects, particularly for RP2, highlight areas where the model fails to
fully replicate the empirical time data.

Error Effects

The model generally overestimates the treatment effects on error rates, particularly for CD1,
CR1, and RP2. For CD1, the model predicts higher correctness rates than observed in the
empirical data, underestimating the cognitive challenges. For CR1 and RP2, the model overes-
timates the impact of double declarations and similarity errors, leading to lower correctness
rates than the empirical data. While the model aligns more closely with the empirical data
for CD2, CR2, and DR2, it still exhibits some discrepancies, such as underestimating the
treatment group’s correctness rates or failing to replicate the distribution of errors.

Backtracking Effects

The model captures some general trends in backtracking behavior, such as higher backtrack-
ing rates for more difficult code snippets like RP1. However, it deviates from the empirical
data in several scenarios. For example, the model backtracked less for DR1 and CR1 due
to an increased activation caused by double declarations, which reduced the need for
backtracking. Additionally, the model overestimates backtracking usage for CD1 due to its
limitation of backtracking to only one variable at a time. The model also fails to replicate
the variability in backtracking strategies observed in the empirical data, such as differences
in backtracking rates between treatment and control groups.

Model Improvements

We propose the following improvements to the cognitive model based on the evaluation
of the simulation results to increase the accuracy of the model and to better align it with
the empirical data. We will focus on the backtracking aspect, as other improvements have
already been discussed in Part I.

First of all, a longer training process would be beneficial to find better parameters for
the model. As we were only able to optimize the parameters for 76 iterations, a longer
optimization process might be able to fit the model better to the empirical data.

Additionally, a possible improvement would be to implement the different strategies that
participants may use, such as handling backtracking scenarios involving multiple variables.
This could be achieved by using the :ppm (procedural partial matching) parameter of the
ACT-R model to implement different strategies for backtracking, such as using a probabilistic
production to simulate scenarios where participants do not backtrack.
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One could also implement a backtracking threshold for triggering backtracking based on
task complexity, code snippet difficulty, or the number of variables involved. This would
allow the model to adapt its backtracking behavior to better reflect human variability.

In conclusion, this cognitive model provides a valuable framework for understanding
cognitive processes in programming tasks, but it requires further refinement to accurately
capture the complexities of human behavior.

6.2.4 Comparison of Part I and Part II

In this section, we will compare the results of the empirical evaluation and the simulation
evaluation with the results of Part L.

Empirical Evaluation

The time needed to process code snippets was similarly high and spread out for both parts
of the thesis. The impact of similar variable names on processing time was stronger in
Part II than in Part I, where the effect was negligible. Such a behavior may be due to the
fact that the ability to backtrack may encourage participants to go back to be sure of the
value of a variable, increasing the overall processing time. The empirical data of Part II also
produced less significant effects than in Part I, which may be due to the fact that the ability
to backtrack reduces the treatment effects.

Contrary to Part I and in line with the findings of Closheim’s thesis, we had no unex-
pected behavior of the time data for the code snippets CD1, CR1, DR1 and RP1. This finding
suggests that the unexpected behavior of the time data in Part I was some random noise in
the data and not a systematic effect.

Simulation Evaluation

The addition of the backtracking mechanism to the cognitive model in Part II led to a better
fit of the time data to the empirical data than in Part I. As the model was now able to vary
the time needed more easily by backtracking, it could fit the time data better than in Part I.

Additionally, we were also able to fit the error data better than in Part I. The backtracking
mechanism probably allows to fit the error data better, as it allows users to remember the
values of variables better and thus leads to a lower error rate, which can be better simulated
by the model.

Overall, the addition of backtracking to the cognitive model in Part II improved the fit of
the time and error data to the empirical data significantly compared to Part I while also
improving the model’s generalizability.



6.3 Threats to Validity

6.2.5 Answering the Research Question

The aim of this part of the thesis was to evaluate the cognitive model that was created in
Part I and to evaluate the accuracy in terms of processing time and the error rate. Namely,
we wanted to answer the following research question:

RQ3: How does the possibility to return to a previous code line influences the
accuracy and predictions of the ACT-R model?

The addition of backtracking to the ACT-R model improves its ability to simulate human-
like retrieval in code comprehension, especially in tasks requiring re-evaluation of variables.
However, the current implementation overuses backtracking, unlike the empirical data
where participants only occasionally backtracked. This rigid behavior reduces predictive ac-
curacy by ignoring strategic variability in when and why humans choose to revisit previous
lines.

Backtracking greatly improved the fitting of the processing time by allowing variability
in the time needed to process a code snippet compared to Part I, while only improving
the fitting of the error data slightly. The model is a valuable step towards understanding
cognitive processes in programming tasks, but requires further refinement to accurately
capture the complexities of human behavior.

6.3 Threats to Validity

In this section, we will discuss the threats to validity of this part of the thesis.

6.3.1 External Validity

The same threats to external validity as in Part I apply to this part of the thesis.

One threat to validity for the model creation is the low number of participants. As we
only aim to recruit around three participants, the results of the study will not generalizable
to the population. However, as this is a pilot study, our aim of the study is not to generalize
the results of the think-aloud study, but to create hypotheses for the functionality of the
backtracking component of cognitive model. Additionally, we recruited 123 participants for
the empirical study, which is a sufficient number of participants to generalize the results of
the study.

Another threat to validity is the use of convenience sampling for the pilot study. As
convenience sampling is not representative of the population, the results of the study may
not be generalizable to the population. Here again, the aim of the study is not to generalize
the results, but to create hypotheses for the cognitive model from the empirical data.
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6.3.2 Internal Validity

The same threats to internal validity as in Part I apply to this part of the thesis.

A threat to the internal validity of the study is the use of the think-aloud protocol. There
exist several limitations of the think-aloud protocol, such as the participants not being able
to verbalize all their thoughts [9]. We tried to reduce this threat by conducting a short
semi-structured interview at the end of the study to gather more information about the
participants’ thoughts.

Another threat to the internal validity of the study is the implementation of the back-
tracking mechanism in the cognitive model. As we needed to base the functionality of our
model on the results of the think-aloud study, we may have missed some important aspects
of the backtracking mechanism that were not mentioned by the participants. We tried to
mitigate this threat by conducting discussion with the advisor and other persons to rule out
any grave errors in the implementation.



Related Work

This thesis aims to replicate and extend the ACT-R model of [10]. To achieve this, we enhanced
the model by incorporating a backtracking mechanism and a similarity error mechanism.
Consequently, we conducted a comprehensive literature review on cognitive architectures,
letter similarity, and reading patterns.

Hansen et al. [19] provided an overview of cognitive architectures and discussed the
theoretical implementation of a cognitive complexity metric. They provided a theoretical
background on cognitive architectures and how they can be used to model human behavior.
Furthermore, they highlight that ACT-R offers the advantage of readily available perception
and motor modules, as well as the ability to simulate the blood-oxygenation-level dependent
effect using ACT-R, which broadens the scope of potential experiments. The potential of
cognitive architectures to model human behavior in a variety of tasks, including code
comprehension, is recognized. They provided a theoretical implementation of a cognitive
complexity metric, which could be used to measure the cognitive complexity of a task.
However, they did not provide a concrete implementation of the metric. This is in part due
to implementation difficulties, interpretation issues, and the possibility of social rejection of
the results of such a model. Therefore, we will attempt to avoid overcomplicating the model
and keep it as simple as possible.

In their study, Simpson et al. [32] developed a visual-similarity matrix for Latin-based
alphabets. Such visual similarity matrices may be employed to ascertain the degree of
resemblance between two letters. Research in this area has been conducted for over a
century and a half, with findings applied across a range of disciplines, including psychology,
cognitive science, and computer science Mueller and Weidemann [25]. The latest results in
this field are presented by Simpson et al., who also provides a visual-similarity matrix for
Latin-based alphabets, in contrast to other studies that have only considered the English
alphabet. Moreover, the matrix was constructed under controlled reading conditions, which
is crucial for ensuring the validity of the results. The matrix was provided for use by other
researchers, and we will employ it to ascertain the similarity between variable names in the
ACT-R model.

Busjahn et al. [7] investigated the linearity of code reading for novices and experts. They
found that code reading is less linear than natural language reading. Additionally, they
found that novices read code line-by-line, while experts read top-down and skip lines. These
results imply that developers do not read code in a linear fashion, which is important for
the implementation of the backtracking mechanism in the ACT-R model. Especially expert

121



122

Related Work

developers may go back to previous code lines to verify their hypothesis of the code.

Jbara and Feitelson [21] explored how programmers read code with the help of eye
tracking data. The scanpaths of programmers were analyzed during the reading and
comprehension of code snippets, and the patterns observed were classified into categories
that may be typical when reading code. The findings revealed that the majority of time
and effort spent on reading and understanding code is concentrated in the initial few lines.
Subsequently, the lines of code are scanned with less frequency and for shorter periods
of time. Moreover, the researchers discovered that the act of reading general code is not a
linear process, as their identified patterns suggest.

They also identified a pattern, named Look back, which describes the behavior of program-
mers who return to a previous code line before continuing their reading. This pattern is
particularly relevant for incorporating a backtracking mechanism in the ACT-R model, as it
aligns with the behaviors observed in programmers when they encounter a variable with a
forgotten value or when they need to verify a hypothesis.

This work is built upon the master thesis of [10]. In their thesis, Closheim developed
an ACT-R model to simulate the behavior of developers during code comprehension tasks.
They conducted a study with 63 participants on different types of code snippets. They
developed an ACT-R model that could realize a mental model of developers during code
comprehension tasks and adjusted the parameters of the model to fit the data of the study.
The study consisted of four different types of code snippets, which aimed induce a higher
error rate in the participants. The types of code snippets were the same as the ones we used
in our study in Part I.

The higher error rate was inspired by the study of [17]. Gopstein et al. found that the
error rate of developers increased when they had to work with code snippets that contained
certain syntax forms. They named these code snippets atoms of confusion.

While the results of the model were promising, the model was not able to predict the
behavior of developers accurately in all cases. Especially the prediction of the error rate was
not accurate as the model was not able to simulate the different types of errors developers
made during the study. Furthermore, the model’s validation would have been stronger if
the study had included a larger number of participants. Finally, the model was not able to
allow the participants to go back to a previous code line. This leads us to our main aims
of possible improvement of Closheim work, namely a stronger validation of an improved
version of the model and the implementation of a backtracking mechanism.

Table 7.1 provides a summary of the previously discussed related publications and their
influence on this thesis.



Table 7.1: Reference overview

Related Work
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Reference

What they did

How we build on it

Hansen et al. [19]

Simpson et al. [32]
Busjahn et al. [7]

Jbara and Feitelson [21]

Closheim [10]

Overview on cognitive architectures
and theoretical implementation of
cognitive complexity metric

Visual-similarity matrix of letters

Investigated the linearity of code
reading for novices and experts

Explored how programmers read
code
Developed an ACT-R model to simu-

late the behavior of developers dur-
ing code comprehension

Theoretical background

Using results for partial
matching

Theoretical background on
code reading

Theoretical background on
backtracking mechanism

Main building block of ex-
tended model






Conclusion

With so much time spent reading and understanding code, code comprehension is a critical
task in software development. As a result, it is an active area of research in software engi-
neering. Nevertheless, the cognitive processes involved in code comprehension are complex
and not yet fully understood.

In this thesis, we aimed to replicate the results of a previously developed cognitive model
for code comprehension tasks by Closheim [10]. Additionally, we extended this model with
a backtracking mechanism and similarity errors to improve its generalizability and provide
a better foundation for subsequent studies in this area.

We conducted two studies: a replication study and an extension study. The replication
study was unable to successfuly replicate the results of Closheim’s study. Especially the
processing time of Closheim’s model was significantly higher and had not enough variability
to be able to replicate the results. Closheim’s model was not able to fit the empirical data
well, which may also be due to the different sample of participants. By adding similarity
errors and increasing the length of the code snippets, we were able to show more significant
effects than in the original study, leading to a better understanding of the cognitive processes
involved in code comprehension.

The extension study was able to successfully replicate the results of its empirical results.
Our extended model was able to fit the empirical data well and was able to show significant
effects, if not as strong as in Part I. The backtracking mechanism enabled new possibilities
for our extended model to simulate the cognitive processes of developers during code
comprehension tasks and provided a better generalization of our extended model.

In conclusion, we were able to show that the model of Closheim is a good starting point
for simulating the cognitive processes of developers during code comprehension tasks
and that the addition of a backtracking mechanism and similarity errors can improve the
generalizability of the model. With further improvements and refinements, this model could
be used to gain insights into the cognitive processes of developers and to develop tools that
support developers in their everyday work through more efficient code comprehension.
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Future Work

As this work is the second step in a long-term research project, there are many possibilities
for future work. In the following, we will discuss some of the possibilities for future work.

Multi-Line Reading

As we already mentioned in the background chapter, our current model is limited to reading
one line of code at a time. This is a significant limitation, as developers often need to go
back and forth between different lines of code to understand the overall structure and flow
of the code. Backtracking was a first step in this direction, but it is still not a perfect model
of the behavior of developers.

As ACT-R is posseses a built-in mechanism for simulating eye movements, it would be
possible to implement a model that is able to read multiple lines of code at a time. A study
with eye-tracking data could be used to train the model and to evaluate its performance.
This would also need further analysis of the eye-tracking data to understand the different
strategies that participants use to read code, especially in the case of forgetting or being
unsure about the value of a variable.

If such a model could be developed, it would be possible to simulate the cognitive
processes of developers during code comprehension tasks in a more realistic way, enabling
the development of tools that support developers in their everyday work through more
efficient code comprehension.

Variability of Processing Time

A second possibility for future work would be to add variability of the processing time in
the model. During our studies, we observed that the processing time of the participants
had a high variability, which could not be replicated by the model. This is a significant
limitation, as the model was not able to fit the empirical data well.

Implementing pauses in the model could be a first step in this direction. These pauses
could be implemented by adding a production rule that would randomly be triggered,
causing the model to pause for a certain amount of time. This would allow the model to
simulate the variability of processing time that we observed in our studies.

Broader Code Understanding

A third possibility for future work would be to expand the syntax of the pseudo code
language used in our studies. Specifically, one could add more keywords and operators to
the language to make it more similar to real programming languages. This would allow for
a more realistic simulation of the cognitive processes of developers during code comprehen-
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sion tasks.

Such a extension could be realized by adding more production rules to the model that
would allow it to understand the new keywords and operators. Currently, the model has its
current capabilities each saved in a different file. Additional operators and keywords could
be added to the model by adding new files with the corresponding production rules. This
would allow modularity and flexibility in the model, enabling the addition of new features
and capabilities without having to modify the existing code.
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Appendix

a.1 Socio-Demographic Questionnaire

=

. Which gender do you identify with?

2. How old are you?

3. Which country do you currently live in?

4. What is the highest educational qualification you have?
5. What is your current profession?

6. How would you estimate your programming experience compared to your classmates
or colleagues?

7. How would you estimate your programming experience for these programming
paradigms? (logical, functional, and object-oriented programming)

d.2 Screening Questions

1. Choose the answer that best fits the description of a compiler’s function.
a) Refactoring code
b) Connecting to the network
c) Aggregating user data
d) I don’t know
e) Translating code into executable instructions

f) Collecting user data

2. Choose the answer that best fits the definition of a recursive function.
a) I don’t know
b) A function that runs for an infinite time
¢) A function that does not have a return value

d) A function that can be called from other functions
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e) A function that calls itself

f) A function that does not require any inputs

3. Which of these values would be the most fitting for a Boolean?
a) Small
b) I don’t know
¢) Solid
d) Quadratic
e) Red
f) True

4. What is the parameter of the function?

main {
print(func("hello world"))
}

String func(String in) {

int x = len(in)

String out = ""

for (int i =x - 1; i >=0; i--){
out.append(in[i])

}

return out

}

a) String out

b) String in

¢) I don’t know

d) inti=x-1;i >=0; i—
e) Outputting a string

f) int x = len(in)

5. What would this function output?

main {
print(func("hello world"))
}

String func(String in) {
int x = len(in)
String out = ""



A.3 Interview Questions

for (int i =x - 1; 1i>=0; i--){
out.append(in[i])
}

return out

}

a) hello world

b) hello world 10

¢) dlrow olleh

d) word hello

e) HELLO WORLD

f) I don’t know

g) hellow world hello world hello world hello world

a.3 Interview Questions

General Questions

1. What were you looking for when you went back?
2. How did going back help you understand the code?

3. Did you go back to a previous line without being unsure about/forgetting a variable?

* If yes, why did you do it?

4. Were there moments where you considered going back but chose not to? Why?

Specific Questions
These questions were asked if the specific situation arose during the interview:

1. If a participant went back multiple times to the same line:

e What made you return to this specific line multiple times?

2. If a participant took a long time before going back:

* What triggered your decision to go back at that moment?

3. If a participant hesitated before answering but didn’t go back:

¢ Were you debating whether to check a previous line? If yes, why?

4. If a person went back for a variable which was not seen in the current line:

e Why did you go back in this line even though this variable as not seen?
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a.4 Code Snippets



CD1 Treatment

h=4

k =6

// variables
m=3

g=>5

a=1
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print(i)
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Figure A.1: Code Snippets Used in the Study

CD2 Treatment

p =4
q=28
d=gq * 2
b=px*x4-4d
print(b)

CR2 Treatment
m=25
m=38
b =4
// test

assert(b == 4)
// continue
a=m/b
print(a)

DR2 Treatment

f=6
f=2
q=4
// test

assert(q == 4)
// continue

u=>5
x=u-q+f
print(x)

RP2 Treatment

q 1
q=2
p=>5
b=p-4
d=b *xq
print(d)

A.4 Code Snippets

CD:2 Control

=q*2

CR2 Control

m=28
b=4
// test

assert(b == 4)
// continue
a=m/b
print(a)

DR2 Control

f=6
q=4
// test

assert(q == 4)
// continue

u=>5

f=2
XxX=u-q+f
print(x)

RP2 Control

Il

= T U
'
N

=2
b *x q
rint(d)

p
b
q_
q
d
p
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Statement on the Usage of Generative Digital Assistants

For this thesis, the following generative digital assistant has been used: We have used
DEEp-L WRITE' for text rewriting. Additionally, we used ChatGPT 40 to generate code for
the analysis of the data. We are aware of the potential dangers of using these tools and have
used them sensibly with caution and with critical thinking.

We used Deep-L Write to rewrite parts of the text to improve the readability and to ensure
that the text is free of grammatical errors. We only used Deep-L Write for rewriting and
did not use it to generate new content. It was used especially in the background section to
improve the readability and accuracy of the text.

For ChatGPT, we used it to generate code snippets for the analysis of the data. We used
the generated code snippets as a starting point and modified them to fit our needs. We
did not blindly trust the output of the generative digital assistants and always checked the
output for correctness and reliability.

1 https://www.deepl.com/de/write
2 https:/ /openai.com/chatgpt


https://www.deepl.com/de/write
https://openai.com/chatgpt
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