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1. Introduction

Recent movements in software development focus on support for multiple platforms
and devices to be applicable for the largest possible group of systems. The de-
velopment of these cross-platform applications is a time intensive task since single
components have to be implemented for different platforms. Additionally lots of
software products grow over time and add more functionality, most of which are not
even utilized by the whole user base. To fulfill requirements such as performance or
memory consumption it is desirable to deliver custom tailored products, including
only the desired functionality. This advances the need for configurable software sys-
tems with reusable components to reduce the implementation effort and cost while
increasing the maintainability.
Different programming paradigms have been established to achieve the previously
mentioned goals. Feature-oriented software development (FOSD) is such a paradigm
which focuses on the composition of features for the creation of variable software
systems. The variability of a software system in terms of configuration options
is captured in a variability model. Feature modeling has been proven successful in
both research [CGR+12] and industry [BRN+13] ,since their first introduction in the
feature-oriented domain analysis (FODA) method by Kang [KCH+90]. A variability
model specifies all valid variants of a configurable system in a compact representation
with selectable configuration options and constraints among them. The variation in
a selection of configuration options implies differences in the quality concerns of a
system such as performance, main memory usage, energy consumption, security or
footprint. To name just one example: An encrypted database increases the security
in contrast to a normal database, but might have negative impact on the perfor-
mance.
An extension to the variability model, the attributed variability model, where qual-
ity attributes are annotated directly to the features, allows the reasoning about
non-functional properties of a generated product.
Various studies containing attributed variability have been published and their main
background are multi-objective optimization, runtime-adaptation or non-functional
property prediction. Variability models with realistic attribute values are however
very rare in the literature, because the measurement of non-functional properties
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from variants and the impact of individual features on that quality attribute is
expensive. It requires the building of products, taking measurements and finally
identifying the impact each feature has on the measured property. These tasks are
infeasible for medium and large sized software systems since their effort scales ex-
ponentially with the amount of features.
Therefore the studies tend to create their own variability models with randomly gen-
erated attribute distributions like the normal or uniform distribution. Furthermore
feature interactions are largely ignored in the literature, despite their evidenced ex-
istence and influence on non-functional properties in almost every real world system.
This poses several problems. On the one hand, synthetically generated value dis-
tributions differ largely from the ones found in real-world systems. These attribute
density distributions contain large gaps and strong peaks, opposed to the smooth
curve of a normal or uniform density distribution. This influences the computational
complexity of algorithms working on value distributions. For example, the search for
an optimal configuration with a genetic algorithm might favor a simple distribution
with only one local maximum over the uneven distributions of real-world systems
with multiple local maxima.
On the other hand, ignored feature interactions can lead to unexpected changes in
the non-functional properties of a product. This reduces the accuracy and even
the correctness of algorithms, as the presence of a feature interaction might alter a
calculated optimal configuration to a suboptimal one in a deployed system and vice
versa.
The lack of realistic attributed variability models and the negligence of feature in-
teractions is problematic for the research community. It could guide the researchers
into false assumptions due to the usage of synthetic attribute distributions with
different characteristics to real-world systems.

1.1 Goal of this Thesis

To overcome the shortage of realistic attributed variability models, we propose a tool
for the creation of attributed variability models, with realistic configuration option
attribute values, realistic system variant value distributions and including real-world
feature interaction values.
To achieve this task several sub-steps are necessary.
First we analyze the usage of attributed variability models in the current literature.
We examine the following topics and questions.

• Sources of attributed variability models: Are the models used in current liter-
ature derived from real-world systems or synthetically generated models?

• Initial generation of synthetic attributes: Are researchers using artificially gen-
erated or real-world attribute distributions in their variability models?

• Feature interactions: Are researchers considering feature interactions in their
publications?

• Research domain: Which problems are solved in the publications?
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Secondly we extract the attribute values of configuration options, interactions and
variants from the SPLConqueror[SRK+12] dataset, which is currently the only pub-
licly available dataset. We visualize the data from different measured real-world
systems for the non-functional properties performance, binary size and main mem-
ory consumption. Then we identify patterns in the distributions and point out the
differences to synthetically generated distributions.
Lastly we implement a tool which inputs are:

• A non-attributed variability model

• A configuration option attribute distribution from the SPLConqueror dataset
or own values

• An interaction value distribution from the SPLConqueror dataset or own val-
ues

• The amount and degree of interactions to be woven in

• A variant value distribution from the SPLConqueror dataset or own values

The tool’s output is an attributed variability model, where the feature-, interaction-,
and variant distributions are optimized to resemble the selected input distributions
as close as possible.
At the core a genetic algorithm searches for the pareto-optimal solutions to the multi-
objective optimization problem, where the fitness is defined over the similarity of
configuration option-, interaction-, and variant distribution. The goodness-of-fit of
two distributions can be calculated with different statistical tests or distance met-
rics. We implemented two statistical tests and two distance metrics and provide an
evaluation of these test statistics in performance and quality.
In particular we try to answer the following research questions for the literature
study (LS), SPLConqueror dataset analysis (DA), and the tool implementation (TI)

LS RQ1: From the papers that use attributed variability models, how many
use synthetic attribute values and how are they generated?

LS RQ2: Are feature interactions considered in the literature?
DA RQ1: Which patterns of attribute distributions are present in real-world

systems for configuration options, interactions and system variants?
TI RQ1: How well do the test statistics operate in performance and quality

over different attribute-value distributions and problem sizes? Is
there a single best metric?

TI RQ2: Is there an overall best variant sampling heuristic? Is there an
optimal trade off between the amount of generated variants and
the accuracy to the original variability model?

1.2 Structure of the Thesis

Chapter 2 gives an overview of the fundamental components used in this thesis.
The results of the literature survey are provided in Chapter 3:Literature study.
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Chapter 4:Problem Statement explains the major problems we needed to overcome
and Chapter 5:Approach describes the proposed solutions to the mentioned prob-
lems. Chapter 6:Evaluation explains several experiments and a subsequent discus-
sion of the results. Chapter 7:Related Work and the last chapter Conclusion close
the thesis.



2. Background

In this chapter, we provide an outline of the key concepts that are used in our gen-
erator.
The first section gives a brief explanation of attributed variability models and fea-
ture interactions. Section 2.3 introduces a statistical resampling technique called
kernel density estimation. Section 2.5 shows the main components of genetic algo-
rithms and lastly we describe different test statistics and metrics for the comparison
of distributions in Section 2.6

2.1 Variability Models

Configurable software systems can be described by the set of valid variants and
commonalities between them. A variability model is a representation of all possi-
ble configuration options, their relationships and constraints among them. These
relationships and constraints reduce the set of possible configuration options to the
subset of valid configurations.

The feature diagram describes the valid products (configurations) in a tree struc-
ture. Leafs represent features and serve as the variation points. Their selection or
deselection leads to the specification of a desired product.

The standard variability model includes the following parent-child relations:

• Optional: Features can be selected or deselected.

• Mandatory: A selected parent node requires the selection of this mandatory
feature.

• Or-group: A selected parent node requires the selection of at least one child
feature.
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Figure 2.1: Example attributed variability model

• Alternative-group: A selected parent node requires the selection of at most
one child feature.

• And-group: A selected parent node requires the selection of all child features.

Additionally cross-tree constraints define relations between configuration options
outside of the parent-child relations.

• Require: A selected feature implies the selection of another feature.

• Exclude: Two features in an exclude relation cannot be selected at the same
time.

Attributed Variability Models

The classic variability model only deals with the functional aspects of a configurable
software system. Non-functional properties such as performance, reliability and cost
cannot be modeled with it. To allow the automated reasoning on non-functional
properties Benavides et al.[BTRC05] proposed an extension to variability models,
the extended or attributed variability model. Attributes are annotated directly to
the features and define a measured or specified influence of a single feature on a
non-functional property. Every attribute belongs to a domain, which is the space of
possible attribute values. The domain can be discrete (e.g. high,middle,low, true,
false) or continuous (e.g. real). Figure 2.1 shows an example attributed variability
model. It consists of two non-functional properties (cost, performance) in a contin-
uous domain.
The attributed variability model enables additional analysis operations on a con-

figurable software system. Examples of these operations are:

• Optimization: Searches for products which minimize or maximize an objective
function. Example: Product with minimal total cost, where total cost is the
sum of costs of each feature.
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• Filter: Searches for products which are coherent to a certain requirement or
limitation. Example: All products which costs are below a certain value.

2.2 Interactions

Some feature combinations influence the non-functional property of a product unex-
pectedly. The combination of two or more features leads to an unexpected change in
the estimated non-functional property, whereas the individual selection of the fea-
tures does not. These interactions between features can be found for almost every
non-functional property in most real-world systems.[SKK+12]
The order of interaction specifies how many individual features take part in an inter-
action. A first order interaction consists of two features, a second order interaction
of three features and so on.
For example: A database system has the features compression and encryption. If
both are enabled the data is first compressed and then enciphered resulting in smaller
data chunks to encrypt, which in turn can lead to a faster data encryption.
Interactions can usually not be detected during at the configuration phase, as the

2.3 Kernel Density Estimation

The input distributions for our tool can be of any size. In order to generate attributed
variability models of the desired sizes with properties similar to real-world systems.
Therefore it is necessary to resample the input distributions of feature-, interaction-
, and variant values from real-world systems to any desired size. The underlying
distributions of the values are however unknown.
Kernel density estimation is a nonparametric (i.e. we assume the data is not drawn
from a given probability distribution) technique to estimate the probability density
function of a finite dataset. Once we calculated the density function, we can draw
random samples of any size from the calculated density estimation.
Let X1, X2, ..., Xn be a sample of size n from a random variable with density f. Then
the kernel density estimate of f at the point x is as described by Sheather [She04]
given with:

f̂h(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (2.1)

where the kernel K satisfies
∫
K(x)dx = 1 and h is the window width and often

called the bandwidth.
In the tool’s implementation the Gaussian kernel is used:

K(y) =
1√
2π
exp(−y

2

2
). (2.2)

The selection of the bandwidth parameter is crucial as it can overfit or underfit the
sample. An example is shown in Figure 2.2. We show the histogram and four differ-
ent kernel density estimation plots for the binary size feature values of the Berkeley
DB, with sample size 8. The bandwidth parameter heavily influences the smooth-
ness of density estimates. A false selection of the bandwidth parameter can lead to
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Figure 2.2: Histogram and kernel density estimation with different bandwidths

strong deviations from the original sample, especially in case of small input sample
sizes.
To compute the optimal bandwidth for each data sample the Kernel Smoothing 1

package for the R language is used. It minimizes the asymptotic mean integrated
square error (AMISE) with the bandwidth selector proposed by Wand et al. [WJ94]
in order to receive close to optimal bandwidth parameter selections.

2.4 Pareto Optimality

In multi-objective optimization pareto optimality describes the problem of finding
optimal solutions under multiple conflicting objectives, so that there does not exist
a solution that is better in one objective without being worse in another objective.
Formally, a solution s1 from the solution set S of the multi-objective problem P with
the objective value fi of the ith objective (pareto) dominates another solution s2, if:

1. fi(s1) ≤ fi(s2), for all objectives i, and
2. fj(s1) < fj(s2), for at least one objective j

A solution is pareto optimal, if it is not dominated by another solution. The set
of pareto optimal solutions is called the pareto front. Figure 2.3 shows an example
pareto-front of a two-dimensional minimization problem. The blue line represents
the pareto-optimal solutions which dominate the orange solutions.

1https://cran.r-project.org/web/packages/ks/ks.pdf
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Figure 2.3: Example pareto-front of a two-objective minimization problem

2.5 Evolutionary Algorithm

Evolutionary Algorithms (EAs) are heavily inspired by biology and Darwin’s evolu-
tion theory. A population of individuals is affected by the environmental pressure
which forces a natural selection process - the survival of the fittest - upon them which
causes a rise in the population’s fitness over time. The fitness specifies how well an
individual is able to survive in the current environment. Given a fitness function
it is possible to evaluate a candidates quality under a certain problem encoding.
Based on this fitness, a proportion of the better candidates are selected for seed-
ing the next generation by applying a recombination or mutation operator on this
selection. Performing recombination and mutation creates a new set of candidates
(the offspring) that compete with the existing population for a spot in the follow-
ing generation. This process starts with an initially randomly selected population
and identifies a set of candidates with sufficient quality (through several iterations).
The recombination and mutation operators create the diversity and promote new
candidates, whereas the selection operator advances the overall quality of solution
candidates over the generations.
Based on this theory evolutionary algorithms follow a fixed scheme which generally
consist of the following steps. This process is also illustrated in Figure 2.4:

1. Create an initially random population of individuals.

2. For each individual calculate a objective value.

3. Assign a fitness value from the objective values to each individual.

4. Perform a selection (”survival of the fittest”) where the best individuals are
placed into the mating pool.



2.5. Evolutionary Algorithm 10

Figure 2.4: Basic cycle of evolutionary algorithms

5. A recombination step performs crossover and mutation on the mating pool.
Those new individuals are integrated into the population.

6. Lastly a survivor selection is performed to eliminate candidates with poor
fitness.

7. If a termination criteria (e.g. solutions sufficiently good enough, or maximal
amount of iterations met) is reached then stop. Otherwise continue with step
2.

The following sections describe the components of evolutionary algorithms.

2.5.1 Problem Encoding

The problem encoding is essential to the applicability of an evolutionary algorithm
to an optimization problem. It provides a mapping from the physical representation
of a candidate to the qualities of an individual in the problem to be optimized by an
evolutionary algorithm. The similarity to genetics is characterized by the complex
mapping between a genotype (the collection of genes possessed by an individual) to
the properties of an organism, called the phenotype. The structure containing the
collection of genes of an genotype is referred to as the chromosome.[DM97]
The choice of encoding varies greatly with the chosen optimization problem and
certain problems might only be solvable with the correct encoding type. The most
common encodings are explained by examples:

Binary encoding In binary encoding every chromosome is a Boolean array, where
true (encoded as 1) represents the presence of a gene in an chromosome.

Chromosome A 10010101010101001
Chromosome B 00101000110110110

Example: A knapsack has a given capacity and there are items with given size
and value. Select the most value of items without exceeding the capacity.
Encoding: Each item of the knapsack represents a gene.
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Permutation encoding Each chromosome is an array of integers, which represent
the number in a sequence.

Chromosome A 3 6 2 1 7 4 5
Chromosome B 7 1 5 2 4 3 6

Example: A traveling salesman has to visit all cities which have a given dis-
tance between them. Find the minimal travel distance.
Encoding: The chromosomes defines the order of cities, in which the salesman
will visit them.

Value encoding Every chromosome is an array of values, where the value can be
of any type related to the problem (e.g. real, complex, other objects).

Chromosome A 1.75 2.23 8.10 3.14
Chromosome B 0.71 5.33 2.60 4.88

Example: This encoding is also used in our generator tool.
Encoding: Each gene represents an attribute value of a feature.

2.5.2 Fitness Function

The biological fitness defines the ability of an individual to survive and reproduce
in the current environment. Fitness functions of evolutionary algorithms provide a
mapping from the composition of genes to the quality of a candidate. Being the
foundation of the selection process, it facilitates the populations increase in quality
towards the solution over the generations.
The fitness calculation process generally consists of two steps:

• Calculate an objective value for each objective and individual using an objec-
tive function in compliance to the problem encoding. The objective function
provides a mapping from the individual’s genetic properties to a scalar value
(e.g. real). There can exist different objective functions for each objective.

• From the set of objective values of an individual calculate the fitness of the
candidate. The fitness function creates a total ordering and assigns a rank for
each individual based on its objective values. The fitness calculation may not
solely rely on the objective values, but can also include information about the
whole population, such as the distance of an individual to the neighboring so-
lution candidate, or the niching factor/crowding distance (sum of distances to
near individuals). There exist different methods for the creation of the ranking
of solution candidates, such as the weighted sum ranking, pareto-ranking, or
the variety preserving ranking which includes the niching information into the
ranking.

The design of the fitness function is next to the problem encoding the most important
aspect of an successful evolutionary algorithm, as it reflects the target function or
target state of the whole optimization process. Furthermore the fitness calculation
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needs to be done in every evolution step for each candidate in the population. This
encourages the usage of computationally inexpensive operators to reduce the total
amount of used resources.

2.5.3 Selection

The selection process enforces the survival of the fittest by choosing candidates for
reproduction based on their fitness value. The fitter individuals are more likely to
be included in the mating pool for the next generation. If an individual is selected
for reproduction it is called a parent. Selection operators can be deterministic or
randomized and might also incorporate an archive of previously found best indi-
viduals called the elites. Evolutionary algorithms that carry over a proportion of
best individuals to the next generation are called elitist EAs, otherwise the next
generation consists solely of the offspring of the parents and are referred to as gen-
erational EAs. The selection pressure is the degree over which better individuals
are favored over worse ones. If the pressure is too low, the evolutionary algorithm is
slower in finding optimal solutions, as more suboptimal individuals are placed into
the mating pool. If however the pressure is too high, the evolutionary algorithm has
an increased chance of prematurely converging to a suboptimal solution.[MG95]
The next sections describe some selection operators in detail.

2.5.3.1 Truncation Selection

The truncation selection is the simplest form of selection operators. The population
of size n is sorted by their fitness value in descending order. Afterwards the k best
individuals are placed into the mating pool. If k > n, then the best individuals are
taken multiple times.

2.5.3.2 Roulette Selection

In roulette selection the population is sorted by its descending normalized fitness.
Afterwards the accumulated normalized fitness value is computed for each individual,
such that the best candidate has the accumulated fitness value of 1. A random
number R between 0 and 1 is chosen. All individuals whose accumulated fitness
value is greater than R are placed into the mating pool. This procedure is then
repeated until the mating pool reaches the desired size.

2.5.3.3 Tournament Selection

A tournament is hold, where s (tournament size) random individuals compete against
each other. The individual with the highest fitness value is placed into the mating
pool. This is repeated until the mating pool is full. The choice of the tournament size
is essential and controls the selection pressure. Small tournament sizes decrease the
selection pressure, as lower valued candidates are more likely to win the tournament.
High tournament sizes increase the selection pressure, as lower valued candidates are
more likely to compete against better opponents. Tournament selections are there-
fore very popular, as it allows the adjustabillity of the selection pressure while still
maintaining a certain randomness in comparison to the truncation selection.[Luk13]
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Parent 1 1 0 1 1 0 1 0 1

Parent 2 0 1 1 0 1 0 1 1

Offspring 1 1 0 1 1 0 1 1

Offspring 2 0 1 1 0 0 1 0 1

1

Crossover Point

Figure 2.5: Example Single Point Crossover with Binary Encoding

Parent 1 1 0 1 1 0 1 0 1

Parent 2 0 1 1 0 1 0 1 1

Offspring 1 1 0 1 1 1 0 1

Offspring 2 0 1 1 1 0 0 1 1

0

Crossover Points

Figure 2.6: Example Two-Point Crossover with Binary Encoding

2.5.4 Crossover

The crossover operator is part of the recombination step, where new individuals are
formed from two parents. It is analogue to biological reproduction where the children
inherits some of the genes of each parent. Together with the mutation operator the
crossover is the foundation for the discovery of new candidates. The next sections
describe three different crossover operators.

2.5.4.1 One-point Crossover

A single crossover point on both parents is selected at random. The genes after this
point are then swapped and result in the new offspring. Figure 2.5 visualizes the
one-point crossover selection.

2.5.4.2 Two-point Crossover

Two crossover points are selected at random. The genes between those points are
swapped and result in the new offsprings. An example two-point crossover is depicted
in Figure 2.6.

2.5.4.3 Uniform Crossover

In uniform crossover each gene is selected with a defined probability from the first
parent, otherwise the second parent is chosen.
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Parent 1 1 0 1 1 0 1 0 1

Parent 2 0 1 1 0 1 0 1 1

Offspring 1 1 1 1 1 0 0 1

Offspring 2 0 0 1 1 0 0 0 1

1

Figure 2.7: Example Uniform Crossover with Probability 0.5

Parent 1 0 1 1 0 1 0 1

Offspring 1 1 1 1 0 0 0 1

Figure 2.8: Example Bit-flip Mutation

2.5.5 Mutation

Similar to the biological mutation, the mutation operator from evolutionary algo-
rithms changes the genes from one or more chromosomes. It is part of the recombi-
nation phase and mostly applied after the crossover operator. It is the component
of the genetic algorithm which counters the premature convergence to suboptimal
solutions. The kinds of applicable mutations depend on the problem encoding.

2.5.5.1 Bit-flip Mutation

Bit-flip mutation selects a gene with a probability of 1
n
, where n is the length of the

chromosome. The binary value of that gene is inverted. On average only a single
mutation appears in one step. The bit-flip mutation is only applicable to binary
encoded problems.

2.5.5.2 Uniform Mutation

Uniform mutation is a mutation operator for value encoded problems. The proba-
bility of a gene’s mutation is 1

n
, where n is the length of the chromosome. The new

value is selected uniformly from a lower and upper bound, which needs to be set
according to the boundaries of the value encoding.

Parent 1.38 7.38 4.35 9.03 5.10 3.43 0.93 8.14

Offspring 1.38 2.94 4.35 9.03 5.10 3.43 0.93 8.14

Є [0, 10]

Figure 2.9: Example Uniform Mutation
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Figure 2.10: Example KS-Test: Dotted line shows the supremum of the distance
between the empirical distribution function ad a probability distribution (red)

2.6 Statistical Tests

To tune our generated attributes close to the desired real-world attribute distribu-
tions, it is necessary to determine the grade of similarity, or goodness-of-fit, between
the targeted real-world distribution and the current distribution of the genetic al-
gorithm’s population. We implemented four different techniques for the comparison
of distributions, two statistical tests and two binned distance metrics.

2.6.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (KS) is a nonparametric (e.g. it is not dependent
on a parameter) test used to check the probability whether a sample distribution
comes from a specified probability function (one-sample KS-test) or if two samples
originate from the same distribution (two-sample KS test). We can use this test to
determine the goodness-of-fit of two sample distributions.
The test-statistic of the KS test is specified as the maximum distance between the
empirical distribution function and the given probability function or, in the two-
sample case, the maximum distance between both empirical distribution functions.
Formally, for (x1, ..., xn) independent, identically distributed real random variables
with the common cumulative distribution function F(t), the empirical distribution
function is defined as:

F̂n(x) =
1

n

n∑
i=1

1xi≤t (2.3)

The Kolmogorov-Smirnov statistic for a empirical distribution function F̂n(x) and a
probability function F (x) is then defined as:

Dn = sup
x

∣∣∣F̂n(x)− F (x)
∣∣∣ (2.4)

The one-sample test can be used to compare a sample with a reference probability
distribution, which is not useful for our purposes since we do not want to test the
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resemblance to normal or uniform distributions, but rather compare two distribu-
tion’s goodness-of-fit. Therefore we use the two sample KS test, whose output is the
maximum distance of two empirical distribution functions.

Dn,n′ = sup
x
|F1,n(x)− F2,n(x)| (2.5)

where F1,n and F2,n are the empirical distribution functions of both samples.

2.6.2 Cramér-von Mises Test

The CmV test is a rank-based distance metric for the goodness-of-fit of a cumulative
distribution function of a sample and a given empirical distribution function. Like
the Kolmogorov-Smirnov test it can also be used to calculate the goodness-of-fit of
two empirical distributions.
To compute the two sample Cramér-von Mises test statistic following steps are
necessary:

1. Sort both samples in ascending order.

2. Assign a rank to each value of the combined sample.

3. Sum the squared distances between the index and the rank for each value times
the sample size according to equation 2.7. Figure 2.11 illustrates this step.

4. Calculate the test-statistic T as shown in equation 2.6

The equations as described by Anderson[And62]:
Let x1, x2, ..., xN and y1, y2, ..., yM be the first and second sample with size N and M
in ascending order. Let r1, r2, ..., rN be the ranks of the first sample, and s1, s2, ..., sM
be the ranks of second sample in the combined sample. Then the test statistic T is
defined as:

T =
U

NM(N +M)
− 4MN − 1

6(M +N)
(2.6)

where

U = N

N∑
i=1

(ri − i)2 +M

M∑
j=1

(sj − j)2 (2.7)

The CmV test is the only test we implemented that uses a rank-based comparison
method. Rank-based techniques can be problematic as they do not operate on the
actual values of the sample. Consider the sample [1,2,3,4,5]. We want to compare
it with the sample [3,4,5,6,7] and also with [3,4,5,99,100]. Clearly the two samples
differ largely at their tails, but in both cases the two samples will receive the same
ranks and consequently the same test statistic. Therefore we expect the CmV test
to perform poorly if there are large gaps in the samples under test.
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Figure 2.11: Ranked-based Distance Calculation in Cramér-von Mises Test

2.6.3 Binned Distance

Binned distance metrics operate on histogram representations of the samples. The
value range of the sample is divided into bins of equal length, which are then filled
with the values falling into this range. The distance is then calculated on the bin
values of the sample and not on the actual values. Hence the test statistic depends
on the selection of the bin count and the resulting bin width. Both samples need to
be ordered into an histogram bin collection of the same size.
Two binned distance metrics are implemented in the tool, which are presented in
the following paragraphs.

Euclidean Distance

Let x = x1, x2, ..., xn and y = y1, y2, ..., yn be the bin counts of two histograms with
size n, then the Euclidean distance is defined as:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.8)

Chi-Squared Distance

Let x = x1, x2, ..., xn and y = y1, y2, ..., yn be two histograms of size n, then the
Chi-squared distance is defined as:

d(x, y) = 0.5
n∑

i=1

(xi − yi)2

xi + yi
(2.9)



3. Literature study

This chapter is divided into two parts. At first we present the key findings of our
literature study which investigated the usage of attributed variability models, initial
generation of attribute values, and the presence of feature interactions in current re-
search. The second part visualizes the distributions from the SPLConqueror dataset,
in order to spot patterns in real-world attribute distributions. These insights are
then utilized for the further improvement of the tools test statistics.

3.1 Literature Review

We performed a literature survey to assess the current state of the art of attributed
variability. In a selection of 90 studies on attributed variability we investigated the
following issues:

• Research domain: Describes which areas of research are covered and which
problems with attributed variability are solved.

• Sources of attributed variability models: Outlines how attributed variability
models are obtained in current research.

• Generation of attribute values: Characterizes the attribute value distributions
used in research and their initial generation.

• Recognition of Feature Interactions: Inspects to what extend feature interac-
tions are handled in current research.

3.1.1 Research Domain

Non-functional properties are the focus of a variety of different research topics in
the software product line area. They cover different topics, from optimization of
configurations under global constraints, over test case creation with minimal costs
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and maximal utility, to estimation or prediction of performance values, and many
other applications. Although our selection of papers on attributed variability covers
a wide spectrum of different problems and solution approaches, it is possible to
broadly classify the surveyed works into five categories.

• Optimal feature selection: Consists of studies dealing with the search for one
optimal configuration - or pareto-fronts of optimal configurations under one
or more conflicting constraints. The search can be conducted either at config-
uration time or dynamically at runtime. Results of the search can be either
approximative or exact.

• Non-functional property prediction: Stands for works on different heuristics for
measurements and model-based methods to predict the non-functional prop-
erties of configurations and features.

• Variability modeling: Is composed of topics on the modeling of quality at-
tributes. Domain-specific languages as well as modeling approaches like cus-
tom ontologies belong in this class.

• Variability model analysis: Contains publications which focus on the analysis
of attributed variability. Defines methods and implementations of operations
specialized on attributed feature models.

• Other: All publications which did not fall in one of the previous categories.
These consist of other literature surveys, parallelization techniques for solvers,
the synthesis of attributed feature models from product descriptions or the
modular verification of software product lines only to name some approaches.

As Section 3.1.1 illustrates, optimal feature selection is the most dominant category
with 48 out of 90 case studies. The next biggest category consists of 14 papers on the
prediction or estimation of non-functional properties. Lastly, modeling of attributed
variability and literature surveys on attributed variability appear in 4 papers each.

We also analyzed the approaches which were used in studies on the optimal fea-
ture selection problem. The results can be seen in Section 3.1.1. By far the most
popular method are evolutionary algorithms. Almost one third of publications used
a genetic algorithm for the optimal feature selection problem. 7 papers chose a
constraint-satisfaction-problem solver which provides exact solutions in comparison
to the evolutionary algorithm.

3.1.2 Sources of Attributed Variability Models

The variability models we found in the surveyed papers mainly came from one of
these three sources:

• Generated by a feature model generator such as BeTTy1

1http://www.isa.us.es/betty/betty-online
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Figure 3.1: Classification of surveyed papers into research domains

Figure 3.2: Classification of optimal feature selection approaches
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• Taken from online feature model repositories such as the SPL Online Tools,
SPLOT2 or from the Linux variability analysis tools, LVAT3.

• Created for or derived from real-world systems or academic case-studies.

The SPLOT has a large repository but their models are rather small (<366 features)
compared to the Linux studies of the LVAT repository (up to 13000 features). The
models found in SPLOT and LVAT contain no attributed variability. Only BeTTy
allows the creation of attributed variability models to a limited extend. Each of
these tools has no mention of feature interactions, although BeTTy can easily be
extended to include interactions.

3.1.3 Initial Generation of Attribute Values

Real-world attributed feature models are hard to obtain, because the measurement
of larger real-world systems is a time consuming process and proprietary data is of-
ten not freely available. The authors then tend to take randomly generated feature
models or those from the known online repositories like SPLOT for the evaluation
of their approaches.
With the exception of the BeTTy online model generator, which can generate at-
tributes to features, these feature models are not enriched with non-functional prop-
erties. Therefore, in order to use these models in studies on attributed-variability
they have to be annotated with non-functional properties, either by manual or au-
tomatic generation utilizing a random function.
This section describes how attributed values were added to the features in their re-
spective feature models. Figure Figure 3.3 illustrates in which manner the surveyed
publications added attributes to their model.
Overall 51 papers generated non-functional properties, 16 of these did not specify

their method, 12 used a uniform distribution, 12 added the attribute values man-
ually, 9 defined multiple attributes and used normal or uniform distributions and
lastly 2 works used a normal distribution.
In total 18 papers used measurements from existing systems for their attribute val-
ues. With 12 publications, the dataset from the SPLConqueror tool forms the
majority of used measurement values. Only 4 publications conducted their own
measurements, and 2 papers did not provide information on how they performed
the measurements.
The remaining publications provided no information on the source of their attribute
values.
One particular frequent kind of attribute generation is given by Sayyad et al. [SA13,
SGPMA13, SMA13, SIMA13a] who defines three attributes:

• Cost: Describes the cost of a feature. Normal distribution, real values in the
range from 0.0 to 15.0

• Defects: The amount of found errors. Normal distribution, integer values from
0 to 10

2http://www.splot-research.org/
3https://code.google.com/archive/p/linux-variability-analysis-tools/
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Figure 3.3: Counts of the found attribute generation methods

• Used before: Indicating if a feature was used in a previous configuration. Uni-
form distribution, boolean values

In order to compare their approaches many authors then adopted this genera-
tion method, even if Sayyad explicitly stated the danger of synthetically gener-
ated attributes in the threats to validity section. These among others include
Tan [TXC+15], Lian [LZ15], Zhang [ZYL14], Olaechea [ORGC14] and Henard [HPHLT15].
The drawback of randomly generated distributions is the inadequate similarity to
non-functional property values of real-world systems. We did not find a single system
in the SPLConqueror dataset where the attribute distributions are equal or close to
a normal or uniform distribution. Figure Figure 3.4 shows the histograms and ker-
nel density estimation of the main memory feature values of SQLite and the LLVM
performance feature values on the left side. The right side shows a sample uniform
and normal distribution as used by many authors in the surveyed studies. It can be
seen that real-world systems do not follow ideal distributions like the generated ones
and often contain strong peaks, gaps, and statistical outliers in the density function.

3.1.4 Feature Interactions

A feature interaction is present when two or more selected features in a configura-
tion lead to an unexpected change in a non-functional property, but their individual
selection does not.
From analyses of real-world systems including variability it can be seen that actually
every configurable system contains interactions [SKK+12]. From the visualization
of the SPLConqueror dataset we know that many of these feature interactions have
rather small impact on the non-functional properties, but their quantity () and few
single outliers who greatly influence a systems non-functional property, provide an
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Figure 3.4: Measured Main Memory (SQLite) and Performance (LLVM) distribution
profiles compared to Normal and Uniform Distributions

undeniable impact of feature-interactions on non-functional properties of a config-
urable system.

Figure Figure 3.5 shows the measured performance values of the LLVM compiler

Figure 3.5: Feature values and interaction values of LLVM performance and SQLite
memory consumption in comparison

system and the memory consumption of SQLite for features and the feature interac-
tions. In both cases it can be seen that many feature interactions have close to zero
impact on their respective non-functional property, but outliers exist whose impact
can not be neglected. The amount of interactions, for n features, there a 2n pos-
sible feature-interactions, also increases the impact of feature-interactions. In the
SPLConqueror dataset, we noticed that the amount of feature interactions is often
in the same magnitude as the amount of features, and more feature-interactions are
present the more features the configurable system has. From the surveyed papers
only 10 publications from 6 authors handle interactions. 5 of them mention feature
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Binary Size Feature Values Interaction Values Variant Values
BerkeleyDB X X X
EPL X
LinkedList X X X
Linux X X
PKJab X X X
Prevayler X X X
SNW X X
SQLite X X X
Violet X X X
ZipMe X X X

Table 3.1: Available Binary Size Measurements

interactions in their evaluation or threads to validity section, but do not further
include them in their approaches. The majority (75) of publications do not include
any kind of feature interaction nor discuss their absence in the evaluation, threats
or future work sections.
Figure Figure 3.6 shows the repudiation of feature interactions graphically.

Figure 3.6: Amount of publications with handled, mentioned, and ignored interac-
tions of the literature survey

3.2 SPLConqueror Dataset

This section visualizes the SPLConqueror dataset. It illustrates which data from
the configurable systems under test are available in the dataset. Measurements were
performed for the non-functional properties main-memory, performance, and binary
size. The tables Table 3.1, Table 3.3, Table 3.2 describe which data is available for
each of the measured properties binary size, performance, and main memory. With
the exception of some systems the datasets are exhaustive for features, interactions,
and system variant values.
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Performance Feature Values Interaction Values Variant Values
AJStats X X X
Apache X
BerkeleyDBC X X X
BerkeleyDBJ X X X
Elevator X X
Email X X X
LLVM X X X
x264 X X X
ZipMe X X

Table 3.2: Available Performance Measurements

Main Memory Feature Values Interaction Values Variant Values
BerkeleyDB X X X
Curl X X
LLVM X X X
SQLite X X X
Wget X X X
x264 X X X

Table 3.3: Available Main Memory Measurements

We created histograms and density plots for each of the dataset in order to spot
similarities and differences in the datasets and to recognize patterns which can pro-
vide useful insights for the tools implementation. We broadly classify the attribute
distributions from the dataset into the following categories:

• Single peak: Describes distributions with a single centered maximum and
very few deviances at the sides of the center. Examples of these can be found
in Figure 3.7.

• Skewed peak: Similar to the single peak distributions, only with the max-
imum shifted to one side of the distribution. Figure 3.8 shows some sample
distributions.

• Multiple peaks: Multiple maximums, with large gaps between single peaks.
Often one maximum is greatly larger than the others. This category is the
most frequent with around 60 % of all distributions which have two or more
peaks. The examples for this category are shown in Figure 3.9.

• Needle in a Haystack: Strong multiple peaks with attribute values clustered
around a peak, and with mostly smaller outliers at a greater distance. This
is the second most frequent distribution pattern with around 27%. Needle
distribution patterns are illustrated in Figure 3.10.

We expect this order of categories to increase in difficulty for the genetic algorithm,
as the distributions differ more and more from the genetic algorithms start with the
normal distribution. For evaluation results on these types of distributions we refer



3.3. Results 26

to the experiments and evaluation chapters. The complete set of plots can be found
in the appendix.
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Figure 3.7: Examples of single peak distributions
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Figure 3.8: Examples of skewed single peak distributions

3.3 Results

This section summarizes the results from the literature study and the SPLConqueror
dataset analysis with regard to the research questions proposed in the introduction.
Concerning LS RQ1, from the selection of 90 surveyed publications, 69 required
attributed variability models in their approaches. From these only the minority of
publications (18) are using measured attribute values, with 12 studies reusing the
existing SPLConqueror dataset. Only 6 works, measured their own attribute values
or obtained measurements from somewhere else.
The remaining publications (51) are using artificially generated attribute values.
Close to three quarters of publications use synthetic attribute value distributions
such as normal, or uniform distributions. Unfortunately most of the authors (16)
did not explicitly state which distributions were used. In case of multi-objective
problems multiple distributions were used on different attributes.
The literature study also answered LS RQ2. Only 10 research papers are including
feature-interactions in their approaches. Just 5 are at least mentioning the presence
of interactions in their evaluations or threats to validity section, but do not actively
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Figure 3.9: Examples of distributions with multiple peaks
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handle them. The vast majority (75) neither handle or mention interactions in any
way.
The dataset analysis, for DA RQ1, revealed four general patterns in the attribute
value distributions, whereas the transitions from one class to another are crossing
over such that is possible to assign some profiles to both classes. The multiple-peak
distribution pattern appeared the most frequent with 60% of all distributions in the
SPLConqueror dataset. Followed by the needle distribution pattern, with 27% of
distributions. Single peak and skewed peak are equally rare with around 6% of all
distributions.
We did not find a single distribution of attribute values from real-world configurable
systems in the SPLConqueror dataset which is resemblant to a normal or uniform
distribution.



4. Problem Statement

The purpose of this thesis is the creation of attributed variability models including
feature-interactions, where the models attribute values for the features, interactions,
and system variants are similar to targeted real-world distribution profiles. One
example application could be: Generate an attributed variability model with 500
features and 200 feature interactions, whose feature attribute distribution is similar
to the BerkeleyDB performance distribution, the interaction distribution similar to
the x264 performance distribution, and the attribute distribution over all variants is
like the one from the Linux kernel. Because the attribute values for the features and
interactions determine the attribute values of each variant one cannot simply set the
attribute values to the targeted real-world distribution: The characteristics of the
feature model, such as the size, constraints, and cross-tree constraints will lead to
different variant attribute distributions for different feature models. Therefore, to
achieve a high similarity of feature, interaction, and variant distributions, we need
an optimization process to explore different competing assignments of attributes to
features and interactions, to find one assignment that suffices the requirement of
similarity to a targeted variant distribution.
Because we initially have no knowledge of the influence of feature and interaction
attribute assignments to a variants distribution, we chose the genetic algorithm as
the optimization technique. It enables the learning from random assignments out of
the large search space to converge to an optimal solution. The involved randomness
of genetic algorithms also helps to find uncommon solutions.
For the generation of attributed variability models of arbitrary size with genetic
algorithms, several problems have to be addressed which will be described in the
following sections.

4.1 Bootstrapping and Data Scaling

Currently the only dataset for realistic attribute values comes from the SPLCon-
queror dataset. We utilize these as the selectable target distributions for features,
interactions and system variants. But the number of available attribute values for
each system is rather small (<100) compared to the large variability models we want
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to be able to generate, as for example sizes equivalent to the Linux kernel (>10000).
This is problematic because we need to assign an attribute value to each feature and
interaction. It is not possible to simply assign the values multiple times to features
and interactions, because it would be unrealistic that multiple features have exactly
the same influence on a non-functional property. Therefore, we need a method to
capture the underlying structure, the probability distribution, of the selected target
distribution and be able to transfer it to arbitrary sizes. We want to pull random
samples from the underlying structure of the target distribution, which are similar
in their characteristics to the source distribution, in order to fill the missing values
for larger models. The kernel-density estimation appears to be a good candidate for
this type of problem.
The kernel-density estimation is also problematic for some realistic distributions
which consist only of very few values (e.g. BerkeleyDB binary size feature attribute
consist of only 8 values) because the precision of the estimation increases with the
amount of source values. This makes it necessary to test, if a drawn large random
sample from a probability distribution estimate of such small input values is still
similar ”enough” to the initial sample. This requires a goodness-of-fit test between
the input sample and the drawn random sample of arbitrary size.
Lastly we want to be able to select feature, interaction and variant distributions
from different systems and combine them into the new attributed variability model.
Different systems have different value ranges in their attribute data, for which we
need to take countermeasures. For example, we should not take feature values in
the range [0,10] and weave in interaction values in the range [50000-100000]. This is
also the case when we increase the size of the variability model. Larger variability
model will likely lead to configurations with more features and consequently will
the variant distribution be in another value range as the original measured variant
values. To make the distributions comparable we must adjust the value ranges and
rescale the attribute values carefully when needed.

4.2 Variant Generation Sampling

For the calculation of the attribute distribution over the variants it is necessary to
generate configurations of the variability models. This is infeasible for the desired
size of variability models due to the variant explosion and the resulting computation
effort. We must therefore reduce the amount of generated variants to a subset of all
possible configurations.
The amount of variants on the one hand influences the accuracy of the distribution
of the attributes over all variants. On the other hand, it is bounded by the available
time, memory and processing power. Therefore, we must choose an amount of gen-
erated configurations, which is large enough, but must still be computable within
the machines available resources.
Even more important than choosing an appropriate amount of generated variants is
the problem of the selection of a suitable subset of variants. If the selected sample
of generated variants does not correspond to the structure of all configurations of
the variability model, then the resulting variant distribution will be over- or under-
represented at certain points depending on the sample. This is exemplary shown in
Figure 4.1, where the selected sample consists only of some of the smallest and largest
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Figure 4.1: Example of a bad variant sampling

available configuration sizes. The central part where usually the most configurations
reside is left out, so that the resulting variant distribution is over-represented in the
lower and upper value range, and under-represented in the center. It was created
using a combination of feature-wise sampling and negative feature-wise sampling,
which tend to oversample small and large configuration sizes.
The calculation of correct samples, who conform to the variability models specifics

is therefore essential to the success of the approach. The more variants are gen-
erated the more time and resources it takes to compute the variant distributions.
This creates a tradeoff between the accuracy with high amount of variants versus
the available time and resources. To choose an optimal number of variants it is nec-
essary to create sampling techniques, which allow the precise setting of the amount
of maximum desired variants.

4.3 Problem Encoding

As shown in Section 2.5.1, the encoding of the chromosomes for the genetic algorithm
is essential to the success of the approach. It is a mapping from the search space
of all potential solutions into a form that a machine can process. The selection of a
proper encoding is the starting point for solving problems with genetic algorithms.
It determines which genetic operators are applicable to a problem and defines the
foundation for the objective function and the fitness calculation.
For the annotation of variability models with realistic attribute values, an encoding
is needed which transfers the assignment of feature and interaction attributes to
features and feature-combinations into a format which is computable by the genetic
algorithm. Possible alternatives are, the binary encoding, where 1 (or True) repre-
sents the presence of a feature in a configuration. This brings the question forward
on how to include interactions: are they part of the encoding or do they need to be
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captured in a post computing step at the fitness calculation? The second alternative
is the value encoding, where the value of a chromosome specifies a feature’s attribute
value. Interactions can easily be added at the end of the encoding, as we know the
exact amount of features and interactions beforehand. These alternatives need to
be prototyped against, in order to find a proper design of the genetic algorithm.

4.4 Fitness Function

The fitness function assigns a quality measure to a solution candidate. It is the
central part of the genetic algorithm as it determines which candidates are further
selected for reproduction. The fitness evaluation guides the genetic search to the
targeted result, it defines the problem to solve in the evolutionary context. There-
fore, it must be able to accurately define a solutions quality. Because the fitness
function is the main part in the iterative process of the genetic algorithm it should
be computationally cheap and scalable to large problems sizes.
For the generation of large attributed variability models, the quality of a solution
candidate is defined as the similarity of the feature, interaction and variant distri-
butions to the targeted real-world attribute distributions. The fitness function must
be able to compute a similarity measure of two value distributions of the same size.
Different methods exist for the calculation of such a similarity measure, ranging from
statistical tests such as the two-sample Kolmogorov-Smirnov test or the Cramér-von-
Mises test, to different distance metrics as the Chi-Squared distance or the Euclidean
distance. Each technique has different properties in precision and computational ef-
fort which have to be evaluated against each other.



5. Approach

This chapter describes all necessary steps for the creation of attributed variability
models with realistic attribute values and interwoven interactions. After a general
overview we provide a detailed description of each step and the prevalent problems
we tried to overcome with our solution in the subsections.

An graphical overview for the generation of an attributed variability model with our
tool is presented in Figure 5.1.

Input At first, the user has to provide a non-attributed variability model. The tool
has parsers for SPLConqueror models, BeTTy attributed variability models
(.afm), Dimacs models as used in the LVAT, and the simple exchange format
used in the SPLOT (.sxfm). Additional parsers can easily be added to the
implementation. Next, the user has to define the amount and order of interac-
tions. Most importantly the user has to select the desired target distributions
for the features, interactions and system variants. One can choose between the
distributions from the SPLConqueror dataset, a normal or uniform distribu-
tion, or specify own comma separated values as input. At last, the user has to

Figure 5.1: Overview of the approach and the involved parts
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define the variant sampling strategy and the parameters for the genetic algo-
rithm, before the required settings are complete and the optimization process
can be started.

Bootstrapping The next step is to bring the selected input distributions into the
correct size and range. We bootstrap the input feature distribution to the size
of the feature count of the variability model. The input interaction distribu-
tion is bootstrapped to the amount of desired interactions. In case the input
interaction distribution is selected from a different system or non-functional
property as the feature distribution, we additionally rescale the value range
of the interaction distribution to the value range of the to the feature distri-
bution corresponding interaction value range. For example, if we select the
BerkeleyDB performance feature distribution and the LLVM performance in-
teraction distribution, we then rescale the bootstrapped LLVM interactions to
the value range of the BerkeleyDB performance interaction values to even out
eventual inequalities.

Interaction Weaving If the user has chosen to add interactions to the variability
model, we choose pairs, or combinations of more than two features depending
on the interaction order, at random until the amount of desired interactions
are met. No combination of features can be selected twice so that each inter-
action is unique. We additionally check the interaction for satisfiability with
the variability model, such that only valid combinations of features are gener-
ated as interactions. The interactions are stored in a compact matrix which
describes the partaking features for each interaction.

Variant Sampling In this step the user can choose from different sampling strate-
gies for the generation of variants. These options range from the heuristics
implemented in the SPLConqueror tool like the Pairwise, Feature-wise or
Negative Feature-wise heuristic to pure random selection and configuration
size sampling techniques, which will be explained in the subsections in detail.
The generated variants are saved in a Boolean matrix which describes which
features are present in the configurations.

Genetic Algorithm The problem is encoded as a real-valued array with the size of
the features in the variability model plus the amount of interactions in the end.
It declares the attributes value of the feature distribution and the interaction
distribution as the search space for the chromosomes in the genetic search. A
minimal and maximal value can be assigned individually to features and in-
teractions. The system variant attribute values are calculated from these two
distributions and the feature-variant- and feature-in-interaction matrix.
We chose the NSGA-II multi-objective optimization genetic algorithm for our
implementation. This allows us to use the three optimization objectives (fea-
ture,interaction and variant similarity) instead of combining the fitness calcu-
lation into one single objective.

Fitness Calculation The fitness of each objective is calculated by one of the
four implemented distance metrics/test-statistics described in the subsec-
tions. It provides a metric of the goodness-of-fit of an individual solution
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candidates feature and interaction distribution to the selected targeted
distributions. It computes the matrix multiplication of the feature-variant
matrix and the solution candidates feature-distribution. Then a matrix-
multiplication calculates the total interaction values of each configuration.
Lastly the interaction values for each configuration are added to the re-
sult of the feature-variant multiplication result. This provides the total
variant distribution of the solution candidate, which is then in turn com-
pared to the targeted variant distribution. Each similarity measure is
then applied as the fitness values for the three objectives.

Selection Operator We use a binary tournament selection with the tourna-
ment size 2.

Crossover Operator We chose the simulated binary crossover operator (SBX),
which is a special case of one-point crossover for real-coded variables.

Mutation Operator Polynomial mutation simulates the bit-flip mutation on
real-valued decision variables.

Solution Selection The genetic algorithms returns a set of pareto-optimal solu-
tions. To return a single solution we use a weighted sum selection.

The following sections explain the steps of the process in greater detail.

5.1 Variability Model Parsing

At startup, the tool expects a non-attributed variability model as input and parses
it into the SPLConqueror format. Each feature is represented as a configuration
option which can either be selected or deselected and holds a number of constraints.
Those include parent-child relations, exclude and imply options. Additional cross-
tree constraints are saved in the variability model. We implemented parser for the
BeTTy feature model format, SPLOT’s simple exchange format (SXFM), Dimacs
models, as well as the already existing SPLConqueror model parser.

5.2 Inputs

After parsing the variability model, the tool requests the amount and order of in-
teractions. The amount of interactions can either be provided by a fixed number,
or by a percentage of the amount of features in the variability model. The order of
interactions must be given by percentages, for example 70% first order, 20% second
order, and 10% third order interaction. The sum of order percentages must sum up
to 100. It also possible to specify zero interactions, which will exclude them from
the process and creates an attributed variability model without interactions.
The next step is to select the targeted feature distribution. It is possible to choose
from one of the included feature distributions from the SPLConqueror dataset, or
to create a new one according to a random function. We implemented the normal
distribution and the uniform distributions. The normal distribution must be given
with mean and standard deviation. The uniform distribution is taken from a mini-
mum and maximum value.
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After target distribution was selected, it needs to be rescaled to the variability mod-
els amount of features. As stated in Section 4.1, we need to estimate the underlying
probability distribution of the input sample using kernel density estimation. This
is done by an C# to R interface, where we use the Kernel Smoothing1 package for
kernel-density estimation. It enables the calculation of the estimate with the opti-
mal bandwidth of the underlying kernel using a plug-in bandwidth selector.
Next a random sample is drawn with the size of the variability models feature
count. To evaluate the correctness of the random sample, it is necessary to con-
duct a test for the goodness-of-fit of the drawn random sample, and the targeted
feature distribution. This is done using the two sample Kolmogorov-Smirnov test of
the Accord.NET framework.2 The function returns a test-statistic which defines the
similarity of the two distributions. The density-estimation, random sample drawing,
and the test can be performed multiple times, to receive the best possible random
sample. Additionally, we plot the drawn random sample, and the selected target
feature distribution, which allows the visual inspection of the bootstrapping qual-
ity. An example is given by Figure 5.2, the green distribution represents the drawn
random sample. The black line represents the targeted feature distribution.

The same process is used to obtain the interaction value distribution. The only
difference is that the selected interaction distribution is bootstrapped to the amount
of desired interactions. Lastly the user needs to specify the targeted variant distri-
bution, which will then be bootstrapped to the amount of generated configurations.

5.3 Interaction Weaving

For the creation of interactions, we require the amount and order of desired inter-
actions. We randomly select two or more (depending on the order) features and
check if the selected features are a valid subset of the variability model with the
help of Microsoft Solver Foundation wrapper found in SPLConqueror. In case the
selected features are not compliant to the model, for example because of an exclude
constraint between two selected features, we repeat the step and draw a new random
interaction. If it is a valid configuration we add a randomly selected interaction value
to it. This process is then repeated until the amount of interactions are reached. We
save the interacting features such that no interaction occurs twice. However higher
order interactions can consist of an already included interaction of lower order.
The interactions are then added to the SPLConqueror variability model, which main-
tains an influence model of attribute and interactions. To prepare the interactions
for the genetic algorithm we transform the generated interactions into a compact
Boolean matrix representation. For each interaction (rows) we mark the partaking
features (columns) with true.

5.4 Variant Generation

As shown in Section 4.2, the sampling of an appropriate subset of variants is needed
for the calculation of the distribution profile over all system variants. We reuse

1 https://cran.r-project.org/web/packages/ks/ks.pdf
2http://accord-framework.net/
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Figure 5.2: Example of a drawn random sample after kernel-density estimation in
comparison with the targeted feature distribution
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the existing SPLConqueror interface to the Microsoft Solver Foundation for the cre-
ation of valid variants from the variability model. Next to the existing heuristics
from SPLConqueror such as the Pairwise, Featurewise, or Negative-Featurewise, we
created heuristics which apply random generation on the feature-count level in dif-
ferent ways. The reasoning behind this is that without constraints the variability
model maximum amount of possible variants follows a binomial distribution. There
exists one minimum and one maximal configuration with all possible features, in
between the possible amount of configurations increases until half of the amount of
features and decreases afterwards. The constraints then alter the distribution from
the binomial distribution in such a way that the real, valid amount of configura-
tions for each feature count can not be easily figured out. Working out the exact
distribution of valid configurations of arbitrary variability models is not part of this
thesis. The following sections present the implemented heuristics for configuration
size sampling.

5.4.1 Configuration Size Random Sampling

The following heuristics try to create random configurations from the complete spec-
trum of the variability model. In order to achieve this, we add an additional con-
straint to the CSP-Solver. This addition directs the solver to only search for config-
urations which consists of a certain count of features. This is implemented using the
Solver Foundations M out of N operator. We can then generate valid configurations
which have the desired count of features. The amount of random samples with the
selected feature count varies in the implemented heuristics and is adjustable. This
allows the precise definition of the maximum number of generated variants, which
is important in order to create as many variants as possible without exceeding the
machines available memory and processing power.

Fixed Count

In the fixed count heuristic, the user is able to specify a constant count of config-
urations for each configuration size of the variability model. In figure Figure 5.3 a
constant value of 50 is selected. For each configuration size from one to the size of
the variability model, we generate 50 configurations at most. The maximum amount
of configuration is given by the selected constant value times the feature count of
the variability model.

Linear

In the linear heuristic, the user must also define a constant count of configuration,
but the number of configurations increases linearly up to the first half, then decreases
linearly until the greatest configuration size is reached. The maximum amount of
configurations, where c is the selected constant and s is the variability model size,
is given by:

Max Configs linear =
s∑

x=1

{
x+ c, i ≤ s

2

s− x+ c, i > s
2
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Figure 5.3: Variant sampling visualization with fixed configuration size

Figure 5.4: Variant sampling visualization with linear configuration size
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Figure 5.5: Variant sampling visualization with quadratic configuration size

Quadratic

In the quadratic heuristic the user must define a value between zero and 1, which
controls the curvature of the quadratic function. The function is shifted to the
right so that the maximum is at the half of the amount of features. The roots of the
quadratic function are at zero and the maximum amount of features. The amount of
configurations increases quadratically until the half of the maximum configuration
size is reached, afterwards it decreases quadratically. The maximum amount of
configurations, where a>0 is the curvature and s the variability model size, is given
by:

Max Configs quadratic =
s∑

x=1

−a(x− s

2
)2 +

as

2

2

5.5 Calculation of the Feature/Variant and Inter-

action Matrix

From the previous steps we obtained the generated configurations and the created
random interactions. For the fast processing of these information in the genetic algo-
rithms fitness evaluation we transform it into two compact matrix representations.
The feature matrix describes which features are present in each configuration. The
rows are built from the generated configurations, the columns from the features of
the variability model. We set the value of mth row, and nth column to one, if the
nth feature is present in the mth configuration. This process is done in parallel, as
the amount of configurations is desired to be large.
The second matrix, the interaction matrix, stores the information of the created
interactions per configuration. We set the mth row, and nth column to one, if the
nth interaction is present in the mth configuration. This is also done in parallel. A
brief example of these matrices can be seen in Figure 5.8. The usage of the matrices
is explained in the next chapter.

5.6 Genetic Algorithm

This section describes the main part of the tool, the genetic algorithm. Its main
goal is to find an assignment of feature and interaction attribute, which is similar
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to the specified target distributions, such that the resulting variant distribution also
resembles the specified target distribution of variants. The inputs for the genetic
algorithm are:

• The desired feature, interaction, and variant target distributions

• The feature and interaction matrix from the generated configurations and in-
teractions.

• Genetic algorithm settings like the population size, maximum amount of eval-
uations, probability of mutation and crossover operators and distribution in-
dexes.

• The selected test statistic and their special settings.

We selected the NSGA-II multi-objective genetic algorithm created by Deb et al.[DPAM02].
It is an elitist, non-dominated sorting genetic algorithm. Elitist refers to the method
of transferring a certain amount of good individuals, the elites, into the next gener-
ation of the population. Non-dominated sorts the solution candidates into levels of
pareto-optimal fronts. The first front consists of the pareto optimal solutions. The
second front consists of the pareto optimal solutions minus the ones from the first
front and so on.
Our tool is using the implementation from the C# port of the popular jMetal[DN11]
Framework called jMetal.Net.3 A visualization of the main loop for the parallel ver-
sion is presented in Figure 5.6.
At the initialization new random individuals are created until the population size

is reached and their fitness value is evaluated. The fitness calculation is explained
in Section 5.6.1. The main loop consists of two parts, at first the selection and cre-
ation of new candidates through the genetic operators and their fitness evaluation.
A second pool of offspring population is maintained in each iteration. It is filled
from children created from the crossover-operator and mutation from two tourna-
ment selected parents. Afterwards the offspring populations fitness is evaluated. In
the second phase, the union of the population and the new offspring population is
created, and ranked according to non-dominated sorting, which splits the population
into pareto fronts of dominating solutions, where the first front is the pareto optimal
front. The population is then filled with the individuals from the best fronts. In
case a front is too big, for example when the front has more individuals than the
remaining spots in the population, then only the best individuals from this front are
chosen by their crowding distance. The crowding distance prefers individuals which
are farther away from other individuals in the solution space to promote spread in
the population and to avoid clustering of similar individuals. Figure 5.7 illustrates
the selection process for the next generations population.

This procedure is repeated until the maximum amount of evaluations is reached.
Lastly the final populations best front is returned.
The implemented problem encoding is a real value encoding. The mapping for an
attribute assignment to features and interactions is implemented as an array of dou-
ble values with the size of the amount of features plus the amount of interactions.

3http://jmetalnet.sourceforge.net/
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Selection

CrossOver

Mutation

Parallel Fitness Evaluation

Offspring 1 Offspring 2 Offspring 3 ... Offspring n

Non-dominated Sorting / Crowding Distance Sorting

New Population

Figure 5.6: Main Loop of the Parallel NSGA-II algorithm

Figure 5.7: NSGA non-dominated and crowding distance sorting
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Feature 1 Feature 2 Feature 3 Feature 4

Config 1 1 1 0 0

Config 2 0 1 1 0

Config 3 0 0 1 1

Config 4 1 0 0 1

Config 5 1 1 1 1

Feature 

Attribute Values

12.5

27.1

19.3

7.7

Feature 1 Feature 2 Feature 3 Feature 4

Config 1 1 1 0 0

Config 2 0 1 1 0

Config 3 0 0 1 1

Config 4 1 0 0 1

Config 5 1 1 1 1

Interaction 1 Interaction 2 Interaction 3 Interaction 4

Config 1 0 1 0 0

Config 2 0 1 0 0

Config 3 0 0 1 0

Config 4 1 0 0 1

Config 5 0 1 0 1

Interaction 

Attribute Values

2.7

7.3

9.1

4.4

Variants Feature 

Attribute Sums

36.6

46.4

27

20.2

66.6

 Interaction 

Attribute Sums

7.3

7.3

9.1

11.8

11.7

 Variants 

Attribute Value

Config 1 43.9

Config 2 53.7

Config 3 36.1

Config 4 32

Config 5 78.3

Figure 5.8: Sample calculation of variants attribute values

The first value represents the assignment of an attribute value to the first feature,
the second value to the second feature and so on. Afterwards follow the assignments
for interaction attribute values in the array. A possible solution candidate therefore
consists of the attribute values for the features and interactions.

5.6.1 Fitness

In our tool a solution candidate’s fitness is calculated by their similarity of the fea-
ture, interaction and variant distributions to the targeted distributions. A solution
candidate consists of attribute assignments to the features and interactions. The
resulting variant distribution is calculated with the help of the feature and inter-
action matrices. This process is illustrated in Figure 5.8. We perform two matrix
multiplications. The first calculates the sum of the features for each configuration,
by multiplication of the solution candidate’s feature part and the feature matrix.
The second matrix multiplication calculates the influence of the interactions for
each configuration, by multiplication of the interaction matrix, with the interaction
attribute part of the solution candidate. This results in two values for each config-
uration, which are added to receive the total attribute value for the configuration.
The similarity of the distribution pairs is then calculated with one of the test-
statistics/distance metrics explained in Section 2.6.
For the calculation of the variants fitness some preconditions have to be respected

depending on the selected test-statistic. First of all, the value range of the tar-
geted variant distribution has to be adjusted in order to be comparable with the
calculated variant distribution. This is necessary since the varying amount of fea-
tures and value ranges for the feature assignments results in different value ranges
of variant distributions. This is done by the linear transformation function, where
we transform the values x from the range [A,B] to the range [C,D]:

f(x) = C(1− x− A
B − A

) +D(
x− A
B − A

) (5.1)

Secondly, some test-statistics such as the Cramér-von Mises Test require, in addition
to the same value ranges, the same sample size. This is solved with the bootstrap-
ping of the targeted variant distribution to the amount of generated variants.
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The calculated distance of the distribution pairs is then directly inserted as the so-
lutions fitness. The NSGA-II’s optimization goal is the minimization of the fitness
value, which adheres directly to the minimization of the distance between the cur-
rent individual and the target distributions.

5.7 Solution Evaluation

The output of the NSGA-II algorithm is the first front of solution candidates, which
is the pareto-optimal front. As this front’s size can be equal to the selected popula-
tion size, we need a technique to select one solution from the front.
We chose a weighted sum selection technique because of the easy understandability
and the simplicity of the implementation. A weight wi is set for the ith objective,
where

∑
wi = 1. The fitness values are normalized to the range [0, 1].

The selected solution is the candidate with the minimal weighted cost, where w is
the weight, f the fitness, n the amount of objectives:

cw(x) =
n∑

i=0

wi · fi (5.2)

The weighted sum selection process is visualized in Figure 5.9. It shows a fabricated
2-dimensional pareto-front of normalized feature and variant fitness values. With
2 objective values, the weighted sum selection is visually equal to the construction
of a straight line, with the negative quotient of the selected weights as slope. The
Y-intercept is then minimized until we found the minimal solution. The green and
orange line describe two different weight assignments, one with equal weights (50:50)
and one with double weight on the variants fitness. This leads to a selection of a
solution with lower (better) variant fitness, but higher (worse) feature fitness.
This simple procedure, which works the same for higher dimensions, allows us to
specify our desired solution with a high amount of precision.
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Figure 5.9: Solution selection from the pareto-front visualized with a two-objective
example problem. Two different weights and the resulting selection of solutions are
shown



6. Evaluation

The tool implementation allows many different settings for the creation of attributed
variability models. Starting from many selectable input distributions with their
special characteristics, over different variant sampling techniques, up to selectable
fitness calculations and settings for the genetic algorithm. In this section we want
to investigate if the variety of different options is really necessary to receive good
solutions, or if single settings always outperform other options and thus making
them redundant and unnecessary. In particular we want to answer the posed re-
search questions from the introduction and split them into detailed operationalized
research questions to provide informative and sound answers to the questions.
After an overview over the tool’s general scalability, we investigate the effects of an
implemented early stop criterion.
In order to answer TI RQ1, the existence of a single best fitness metric for all distri-
butions and problem sizes, we perform multiple experiments on the performance and
solution quality of the four implemented fitness metrics. The results and discussion
can be found in Section 6.2.
TI RQ2 focuses on the effect of different variant sampling strategies on the results
of the solutions. It is clear that the more variants there are the more accurate the
system variant distribution will be, but restrictions in time and available computing
resources pose a limit to the amount of derivable system variants. The goal is to
find an optimal sampling strategy which can handle the trade-off between accuracy
and the physical limits of the machine as best as possible. The experiments and
results for this question are explained in section Section 6.3. All experiments were
performed on a Intel i7-4790 4-core (8 threads) 3.60GHz, 16Gb RAM, Windows10
Desktop PC. If not explicitly mentioned, the parallel version of the NSGA-II algo-
rithm was chosen.

6.1 General Tool Evaluation

A great focus with the tool was set on the scalability and parallelization of tasks to
allow the handling of large attributed variability models.
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6.1.1 Tool Performance Evaluation

For the overall performance we focused on evaluating which components of the tool
uses up most of the program’s runtime, and how well they scale with increasing
problem sizes.
We identified the four most time-consuming operations and measured the time spent
at this step in the process. The four most time consuming operations are:

• The generation of variants from the variability model by the CSP-Solver. Has
to be performed only once.

• The calculation of the feature matrix from the generated variants and the
interaction matrix for the usage in the genetic algorithm. This is also done
only once.

• The matrix multiplications of the feature matrix with the feature values and
interaction matrix with the interaction values. Has to be performed in each
evaluation step.

• The fitness evaluation with the calculated distributions from the matrix mul-
tiplications. As part of the fitness calculation it must also be done in each
evaluation step.

Tool Performance: Experiment and Discussion

The most influential parameter in the processing time is the amount of generated
variants. The more variants we generate the longer it takes the program to calculate
a problem. Therefore, we chose to evaluate a single problem with different amounts
of generated variants and measured the time spent in each component of the tool,
in order to see how well the components scale with the amount of variants.
We started with 7500 generated system variants and increased the amount up to
82000 in several steps. The amount of evaluations of the genetic algorithm was set
to 5000. The Cramér-von Mises test was chosen as fitness test. Each run of the tool
was performed 10 times to reduce the measurement bias. The results are shown in
Figure 6.1.
The measurements show that the matrix multiplication for the variants attribute

distribution has the worst scaling with the number of variants. We use the Ac-
cord.Net1 framework for the matrix multiplication. The proportion of the matrix
multiplication time of the total time also increases when more evaluation steps are
performed, as the variant generation and matrix creation need to be performed only
once. The actual fitness evaluation and the matrix creation increases significantly
slower than the matrix multiplication. The time spent in the generation of the
variants can be controlled by setting a timeout for the solver after several seconds,
therefore the variant generation time remains mostly constant, with only small in-
creases.
For future optimizations the matrix multiplication can be altered from a dense ma-
trix to a sparse matrix representation, since the feature and interaction matrix con-
sist to a great degree of zero entries.

1https://github.com/accord-net
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Figure 6.1: Comparison of the most time consuming operations over different prob-
lem sizes

6.1.2 Generational Distance Evaluation

The tool implements an early stop procedure which we call the generational distance
criterion. The generational distance is the difference in fitness values in one evolu-
tion step between the best individual and the worst individual. If the difference in
these fitness values does not pass a user-definable threshold over the course of three
generations, we assume that the genetic algorithm converged to a local or global op-
timum and further improvements are unlikely to happen. The algorithm then stops
and returns the current population. Figure 6.2 shows an example illustration of the
generational distance approach. The red lines mark the difference between the best
and worst individual’s fitness. We performed the experiment for each of the four dis-
tribution classes, and with three different significance levels (α = [0.01, 0.05, 0, 1]),
for each test case 50 times to reduce measurement errors. Table 6.1 shows the av-
erage amount of evaluation steps needed before the generational distance did not
exceed the significance levels (0.01, 0.05 and 0.1) for each fitness metric.

The results show that the euclidean metric finds a local or global optimum the
fastest, while the CmV-test takes the most amount of evaluation steps. In the
three-objective case the results even out, and slightly inverse with smaller signifi-
cance levels.
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Figure 6.2: Example of the generational distance criterion. Red lines show the
generational distance.

Avg. Eval. Steps at different Significance Levels
Used Metric Features Significance Level

1% 5% 10%
Single Objective

CMV 80 3254 3196 2569
Chi 80 1783 1840 1574
Euc 80 1478 1429 1396

CMV 290 12960 9803 2704
Chi 290 7419 5464 2505
Euc 290 4576 4071 2393

Three Objectives

CMV 80 3694 2231 1448
Chi 80 3900 2347 1069
Euc 80 4434 2312 972

CMV 290 5981 2849 1065
Chi 290 6165 2812 1047
Euc 290 6000 2301 907

Table 6.1: Average evaluation steps of 50 runs, each with generation distance crite-
rion active under different significance levels and fitness metrics.
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6.2 Fitness Metric Evaluation

The fitness metric evaluation is split into two parts. The pure performance aspect
and the evaluation of solution quality for the four implemented metrics Kolmogorov-
Smirnoff test, Cramér-von Mises test, Euclidean distance, and the χ2 distance.

6.2.1 Performance Tests

The performance part of TI RQ1 will be answered with two newly introduced
operationalized research questions:

• Metric Performance 1: Which fitness test is the fastest and scales the best
on different input sample sizes?

• Metric Performance 2: Is the difference in speed significant for valid prob-
lem sizes in the tool?

Metric Performance 1: Experiment and Discussion

Experiment Setup: For each implemented fitness metric, we analyze the pure
processing time of the test-statistic in a separate project. This is done because the
fitness calculation in the tool is heavily parallelized so that we cannot make strong
guarantees on the actual duration of a single processing task. We created standalone
executables for each metric. Each executable creates two random input distributions
with the size n. The test-statistic is then calculated 50 times to reduce measurement
bias, and we sum up the required time for the 50 iterations, excluding the time it
takes to generate the input distributions. We start with n=1,000,000 and increase
it in steps of 500.000 until 10,000,000. Each time we add up the required time. Be-
cause the Euclidean and χ2 distance are binned distances, we also include different
histogram bin counts in the experiments. These include the Euclidean distance with
20 and 500 bins, and the χ2 distance with 50000 bins. These numbers were selected
arbitrarily. Additionally, we select dynamic bins where the bin count is the square
root of the input sample size.
Results: The results of the experiment are plotted in Figure 6.3. It shows that the
CmV test is a factor 4 to 5 times slower than the two binned distance metrics for
these sample sizes. The bin count however has next to no influence on the processing
time of the binned distance metrics. An explanation for the slow CmV is that it
must first sort the input samples in ascending order, compute a common rank on
both samples before the actual arithmetic takes places. Binned distances only need
to create the histogram bins.
In Figure 6.3 the KS test is intentionally left out, because it does not scale linearly

and is simple not applicable for these large input samples in fitness calculations.
The KS test results can be seen in Figure 6.4, where it was used in the tool on a
variability model with 80 features and increasing number of variants in comparison
to the CmV test. We measured the time our tool in 10 individual runs and computed
the average time.



6.2. Fitness Metric Evaluation 51

Figure 6.3: Results of the metric performance test 1. Processing time for different
fitness-metrics under increasing sample sizes in an isolated environment

Figure 6.4: Results of the metric performance test between the KS test and the
CmV test. Average duration of 10 runs with increasing number of variants
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Figure 6.5: Computation time of the genetic algorithm with different test-statistics
and variant sample sizes

Metric Performance 2: Experiment and Discussion

Experiment Setup: We performed multiple runs of the tool for each metric to test
if the performance differences of the fitness metrics found in the first experiment also
show up that clearly in actual runs of the tool.
Each tool executing time is obtained by taking the average of 10 runs. All settings
remained constant except the used fitness test and the number of generated variants.
We performed 5000 evaluations steps with the population size 50 of the ”toybox”
variability model with 545 features of the Linux Variability Analysis Tools (LVAT).
We added 150 interactions and selected the BDB binary size distributions for each
input distribution. The sampling method was the linear configuration size technique
and the selected configuration sizes started from 50 up to 1500, which results in
a generated configuration count from 18,400 to 552,000. We measured only the
duration of the genetic algorithms fitness evaluation steps. The prior steps, like the
interaction weaving or variant generation are not included in the measurements.
Results:
The results are plotted in Figure 6.5. The CmV test is still slower than both binned
distance metrics, but in the overall duration of the genetic algorithm it results only
in an increase of 10% in average up to the largest test size compared to the binned
distance metrics. Of course this difference will increase with even larger amounts of
variants, but it is still in an acceptable magnitude.

6.2.2 Metric Quality Tests

The second part of TI RQ1 deals with the quality of obtained solutions from the
different fitness-metrics. The main goal is to find a single metric, which delivers the
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Figure 6.6: Cross-validation process

best possible goodness-of-fit of the resulting feature, interaction and system-variant
distribution to the selected input distributions.
It is far more difficult to evaluate the quality of test statistics, because the resulting
fitness values from one test-metric are not comparable to the fitness values of other
metrics. Additionally, we cannot even compare the same test statistic between dif-
ferent sample sizes.

Metric Quality 1: Experiment and Discussion

In order to evaluate, which test statistic results in the best solutions overall, we per-
form multiple cross validation tests with all fitness-test metrics except the Kolmogorov-
Smirnov test, which is by far too slow for larger model sizes.
The cross-validation method is illustrated in Figure 6.6. At first we perform multiple
runs (10) for each of the fitness metrics under test with otherwise constant settings.
With a population size of 50, we consequently receive 10x50 solutions of each fitness
metric. These received solutions are then tested again with the remaining two fit-
ness metrics. This results in 1500 fitness values of a single metric, where 500 of each
descending from the 10 genetic runs of one fitness metric. This allows us to inspect
how each metric evaluates the results from genetic runs performed with all metrics.
The results are then illustrated as three boxplots, one for each of the three fitness
metrics.
To further reason about the results, we perform a one-way ANOVA test, to deter-

mine if the influence of the selected genetic run (3 Factors: CmV, Euclidean, χ2) is
statistically significant for the calculated results (Target Variable). In case they are
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significant, we further calculate the effect size (η2). This enables us to see, if one
metric performs significantly better, and if it does, we obtain a metric (effect size)
on how much better it performs.
We conducted the experiment for several different distribution types and sample
sizes. Starting from smaller models with 80 features up to the larger ”toybox” model
from the LVAT repository with 545 features. The input distributions were selected
from the four general patterns we found in the dataset analysis. Since every cross-
validation test results in nine different plots (3 metrics * 3 distribution types), it is
not possible to show the results of every single cross-validation test, but they are
included in the appendix.
A variability model with 80 features was selected from the SPLOT repository. The
feature, interaction and system variant belong to the ”Multi-peak” distribution pat-
tern. The input feature distribution was taken from the performance measurements
of LLVM. 40 (50%) interactions were added and the target was the BDBC perfor-
mance distribution. We generated 26,215 system variants with the pseudo-random
sampling heuristic, with a maximum of 500 variants per configuration size. The
target variant distribution was again taken from the LLVM performance measure-
ments. The population size was 50 and we set a maximum of 15000 evaluations steps.

Figure 6.7 shows the resulting nine boxplots. For each boxplot, the left box indicates
that the genetic run was performed with the χ2 metric, the center box shows the
solution from genetic runs with the CmV test, right box is for runs done with the
euclidean distance metric. The left column shows the retested χ2 values, center col-
umn CMV, right column the euclidean ones. Top row are the feature fitness values,
center row interaction values, and lastly bottom row for the variant values. Smaller
values indicate a smaller distance and therefore more similar distributions to the
target distribution.
We can see that the χ2 test is valued better than the euclidean distance in almost
every column. Additionally, the CmV test performed the worst in all scenarios,
except when retested with the CmV itself.
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Figure 6.8: Result of the cross-validation test with the ”multipeak” input distribu-
tions, using the KS-test as second evaluator. Left features, right interactions. Higher
is better

From these tests we can see that the χ2 metric performs better than the euclidean
metric. But we cannot make any assumptions about the quality of the CmV test,
because the results are biased in the equal combination of genetic run fitness and
retesting metric. The ANOVA test was significant for each combination at a sig-
nificance level of 5%. The effect sizes ranged from 0.04 (smallest effect, top right,
feature distributions, euclidean values) up to 0.6 (biggest effect, top left, feature
distributions, χ2 values).
The additional tests with different distribution types and problem sizes provided
similar results.
As this technique did not provide satisfactory results, we performed a second eval-
uation using the KS test as ground truth for the comparison of fitness metrics.

Metric Quality 2: Experiment and Discussion

The general idea of this experiment is equal to experiment 1, only that the resulting
solutions are retested with the Kolmogorov-Smirnoff test. As the KS-test is a rather
conservative test it was not able to provide results for the large sample sizes of the
variant distributions.
Figure 6.8 shows the plots for the feature and interaction distributions. Blue boxes
represent genetic runs with the CmV test, orange boxes χ2 runs, and gray boxes
visualize genetic runs with the euclidean distance metric. Higher is better, with 1
being the best value. Solutions obtained from genetic runs with the CmV test are
significantly better (e.g. the target distributions and solution distribution are more
similar) than the other metrics, when evaluated with the KS test. These results can
be also seen for other distribution types and problem sizes.

6.3 Variant Sampling Evaluation

We implemented different variant sampling techniques. The purpose of these tech-
niques is to reduce the amount of generated system variants, while reproducing
characteristics of the variability models entire configuration distribution as close as
possible. This is of course difficult because we cannot know the actual amount of
configurations for each configuration size, without actually generating each system
variant, which is infeasible.
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Figure 6.9: Comparison of sampling techniques of a variability model with 31 fea-
tures and no constraints.

In this experiment we investigate the impact of different sampling methods on the
variant result distribution, in comparison to a fully configuration where all possible
system variants are generated. For this experiment we created a small variability
model with 31 features. Each feature has two children (tree depth of 4) and there
are no constraints at all. The fully configuration consists of 458,329 system variants.
Figure 6.9 shows the sampling techniques in comparison the fully configuration. It
can be seen that, the higher the setting for each sampling heuristic is set, the closer
we approach the fully configuration.

Sampling Experiment

Experiment Setup We perform a run of the tool with a normal distribution (mean
10, standard deviation 2) as feature target for the same small variability model with
31 features as before. No interactions are added and no variant target is chosen, so
that the resulting system variant distribution will be the pure outcome of the sam-
pled variants multiplied with the normal distribution of the features. This enables
us to visualize the effects of the sampling heuristic in a controlled environment.
We perform different runs with the same settings, only with differing variant sam-
pling heuristics. Starting from the in SPLConqueror implemented Pairwise, Feature
wise and Negative feature wise, up to the newly implemented configuration size tech-
niques. Heuristics chosen are Fixed/Pseudo-Random 10000 and 25000, Linear 5000,
10000, 15000 and Quadratic 5 and 10, and of course the full configuration. Table 6.2
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Amount of variants for different heuristics
Heuristic Variants

Fully 458,329
Pseudo 10000 150,876
Pseudo 25000 301,005
Linear 5000 133,299
Linear 10000 231,309
Linear 15000 310,041

Quad 5 88,244
Quad 10 273,217
Pairwise 6822

Featurewise 30
Negative featurewise 31

Table 6.2: Amount of variants generated for a variability model with 31 features
under different sampling heuristics

shows the generated variants for each heuristic. The resulting distributions for the
configuration size heuristics are shown in Figure 6.10 with the comparison to the full
configuration. It shows how each of the heuristics is able to sample from the whole
value range as the fully configuration. Each of the heuristics fails to mimic the full
configurations center peak, which is acceptable because this characteristic can only
be discovered when sampling fully from this exact location.
In comparison the SPLConqueror sampling heuristics Pairwise, Featurewise and
Negative Featurewise should be avoided for the use in this tool, as they fail to
capture the whole value range. Figure 6.11 shows the results of system variant
distribution of the 31 feature variability model with the Featurewise and Negative
Featurewise heuristic. This experiment was performed with a small variability
model where we were able to achieve a high ratio of per sampling generated variants
to a fully generation. For larger models it was not possible to generate a fully config-
uration with the available resources. In our multiple evaluations the Pseudo-random
heuristic proved to be simple and provide reasonable results.

6.4 Evaluation Summary

The general performance evaluation pointed out that the amount of generated vari-
ants impacts the total runtime of the genetic algorithm the most, with the matrix
multiplication being key factor for the runtime in each iteration of the genetic algo-
rithm. We hope to improve the cubic scalability with the use of sparse matrices in
the future.
The early stop procedure is working as intended and provides a good adaptability
for the significance level and is prepared for interchangeable implementations of the
stopping criterion. For future evaluations it is desirable to try out other multi-
objective genetic algorithms and compare their average amount of evaluation steps
to our implementation of the NSGA-II algorithm.
The Cramér-von Mises test turned out to be the slowest of the applicable fitness
metrics for the genetic algorithm, but was able to find more accurate solutions most
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Figure 6.10: Variant distribution results of different sampling techniques in compar-
ison to the fully configuration
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Figure 6.11: Featurewise and Negative Featurewise sampling heuristic

of the time. The fitness implementation is easy replaceable with other goodness-
of fit techniques and we plan to add and evaluate other metrics such as the earth
mover’s distance (EMD) in future releases.
The biggest improvements in the accuracy of solutions might however be achieved
with better variant sampling. The implemented heuristics are rather simple and
static, and cannot react to any special characteristics of the variability model. Our
main goal is to achieve a dynamic, adjustable heuristic, which tries to explore the
possible amount of variants depending on prior knowledge and feedback of the vari-
ant generator. In future releases we want to add these feature either with a pre-
computation step or with a dynamic heuristic.



7. Related Work

To our best knowledge the enhancement of large variability models to attributed
realistic variability models with interactions, is not handled in any other publica-
tion yet. But as we mentioned in the literature study chapter, many publications
are related to the generation of variability models, evolutionary algorithms, and the
reasoning on attributes of variability models.
The first attributed variability model generator was presented by Segura et al. [SGB+12]
within their BeTTy framework, which allows the creation of random variability mod-
els and attributed variability models. BeTTy allows the creation of integer attributes
with a large amount of pre-defined distributions1 found in the Apache Math package.
They also implemented an evolutionary generator, to create hard variability models
which maximize the memory consumption or CSP-solving time for the benchmark
testing of analysis tools.
Mendonca et al.[MWC09] also provide a generator which is used at the SPLOT web-
site. They generate variability models with cross-tree constraints in 3 CNF notation
for the benchmark testing of analysis tools using SAT solvers. However they do not
generate attributed variability models.
Segura et al. [SPH+14] use their ETHOM evolutionary algorithm for the generation
of computationally hard feature models, to pose complex problems for the analysis
tools of the community in comparison to purely random generated models. Genetic
algorithms have recently gained more and more popularity for the analysis of at-
tributed variability models. As we have shown in the literature study section they
are widely used for the selection of optimal configurations under multiple constraints.
For example, Ognjanovic et al.[OMG+12] use a genetic algorithm for the optimal fea-
ture selection with stakeholder constraints in business process management families
(BPMF). Sayyad et al.[SIMA13b] combine static and evolutionary learning with an
precomputed seed solution to find optimal configurations for large variability models
with their Indicator-based evolutionary algorithm (IBEA). Pascual et al.[PLHP+15]
compare different multi-objective evolutionary algorithms, for the dynamic recon-
figuration of mobile applications under changing environment parameters such as

1http://commons.apache.org/proper/commons-math/userguide/distribution.html
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battery status, available memory, or CPU load. Henard et al[HPHLT15] combine
evolutionary algorithms with constraint solving, to calculate optimal configurations
including cross-tree constraints on features and attributes.
We have not found any publications that use evolutionary algorithms for the creation
of attributed variability models.



8. Conclusion

We performed a literature study on the current state of attributed variability. The
survey indicated that the research community is missing on attributed variabil-
ity models with realistic, real-world attribute values. Additionally interactions are
widely ignored in the community. As the SPLConqueror dataset is, to our knowl-
edge, the only publicly available dataset on real-world attribute measurements, we
conducted an analysis on the prevalent attribute distributions. We identified four
general patterns of distributions in the SPLConqueror dataset.
To overcome the lack of attributed variability models we built an generator for the
creation of realistic attributed models including interactions. Its input are a non-
attributed variability model with support of many popular formats, and a feature,
interaction, and system variant distribution from the SPLConqueror dataset as tar-
get for a genetic algorithm’s multi-objective optimization process. The result of the
process is an attributed variability model with interactions, where the feature, inter-
action and system variant distribution is similar to the targeted input distributions.
We support many adjustable parameters such as the system variant sampling, the
fitness metric, early-stop criterion and weighted selection of results in the last pareto-
front of the genetic algorithm. The implemented tool achieves a high scalability
through a high degree of parallelization and we plan to improve it in further re-
leases. Many components of the tool are modularized so that it is possible to adapt
and extend the existing implementation.
We hope that our tool is able to help the research community to overcome the short-
age of attributed variability models and enable them to test and evaluate their tools
with our generated realistic attributed variability models.
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