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Abstract

Many popular and widely-used software projects are organized and developed as open-
source software (OSS) projects. Their source code is publicly available and everyone can
contribute. Thus, many OSS projects are able to attract a high number of contributors, who
develop the source code of the project or participate in the public communication channels
of the project. It is almost folklore that, when multiple developers contribute to the source
code of a project simultaneously, proper coordination between the developers is necessary to
avoid unexpected interactions between the simultaneously changed source-code parts and to
reduce the risk of introducing new bugs. As indicated by previous research, software bugs
are often caused by a lack of coordination and by problems in the organizational structure
of the project. However, while there is a clearly defined organizational hierarchy among the
developers in commercial, closed-source software projects, this does not necessarily apply to
OSS projects, which sometimes are seen as self-organizing communities. Consequently, to im-
prove developer coordination in OSS projects, it is essential to understand the organizational
structure of these projects.

For this purpose, we analyze the organizational structure of OSS projects and how it evolves
over time, by means of five different empirical studies on widely-used and well-known
OSS projects. This way, we aim at obtaining an understanding of developer activity and
coordination, which shall serve as a first step toward improved coordination processes and, in
turn, toward less flawed software products. In particular, we address three different aspects:
the evolution of developer collaboration and communication, the identification of developer
roles, and the relation between organizational events and developer-network characteristics.

First, to obtain insights into the evolution of developer collaboration (i.e., mutual editing of a
source-code artifact) and developer communication (i.e., mutual commenting on the same issue
or in the same mailing-list thread), we investigate how collaboration and communication
are temporally and content-wise related, as previous work has proposed that collaboration
and communication activities should align due to their common tasks. Therefore, we take a
conversation-based view and develop a method to measure the synchronicity of collaboration
and communication activities. Moreover, we also take a developer-network perspective to
examine whether developers form stable group structures and how they evolve over time.
To that aim, we devise a modular, multi-step measuring and modeling framework based on
canonical tensor decomposition to detect developer groups and predict interactions among
developers. This way, we are able to identify stable groups as well as distortions in the group
structure. In addition, we propose a method to detect hierarchical structures, and we report
on insights from an empirical study regarding the presence and evolution of hierarchical
structures in developer networks as well as regarding the roles developers take with respect
to their position in the hierarchy. These insights provide the basis for future investigations on
the organizational structure of OSS projects and shall help to guide project governance.
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Second, as developers in OSS projects perform different tasks and take different roles,
core developers play an important part with respect to coordination within the organizational
structure of an OSS project. While peripheral developers contribute only occasionally to the
project (e.g., provide a bug fix), core developers steadily contribute and work on central
maintenance tasks. While there is a growing corpus of research that attempts to identify core
developers, the performance of such identification methods is largely unclear. Therefore, we
propose an automaticmethod to identify core developers based on privileged role permissions
in GitHub issues and pull requests. In a validation study, we validate our derived set of
privileged developers with official, publicly available maintainers lists. Moreover, we perform
an assessment of the accuracy of state-of-the-art developer-role classification methods. Beside
devising an automated method for core developer identification, our results help researchers
and practitioners to choose an appropriate classification method.

Third, we investigate the relation between organizational events (such as the creation of forks
or company acquisitions) and developer-network characteristics, as organizational events can
dramatically influence the organizational structure and, thus, the collaboration and communi-
cation between developers of OSS projects. An analysis of developer-network characteristics
can reveal potentially unobserved changes in the organizational structure. Based on obser-
vations from an exploratory study on eight case studies, we develop hypotheses regarding
which network characteristics are promising indicators for detecting organizational events
that affect the structure of developer networks. This way, we lay the foundations for future
work on developing measures to detect organizational events that may potentially threaten
the sustainability of an OSS project.

In summary, our work comprehensively studies developers’ programming and communi-
cation activities in OSS projects. For this purpose, we provide multiple methods to analyze
the collaboration and communication activities of developers with respect to evolutionary
organizational structures. We demonstrate the applicability of the proposed methods and
provide valuable insights from different empirical studies on the coordination processes
in OSS projects. The insights we obtain shall enable devising guidelines and developing
improved processes for developer coordination in the future.
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Zusammenfassung

Viele populäre und weit verbreitete Softwareprojekte werden als Open-Source-Software-
Projekte (OSS-Projekte) organisiert und entwickelt, deren Quellcode öffentlich zugänglich
ist und zu dem jeder beitragen kann. Daher weisen viele OSS-Projekte eine hohe Anzahl an
Mitwirkenden auf, die den Quellcode des Projekts entwickeln oder sich an den öffentlichen
Kommunikationskanälen des Projekts beteiligen. Wenn mehrere Entwickler gleichzeitig zum
Quellcode eines Projekts beitragen, ist eine angemessene Koordinierung zwischen den Ent-
wicklern notwendig, um unerwartete Interaktionen zwischen den gleichzeitig geänderten
Teilen des Quellcodes zu vermeiden und das Risiko der Einführung neuer Fehler zu ver-
ringern. Wie frühere Untersuchungen gezeigt haben, werden Softwarefehler häufig durch
mangelnde Koordinierung zwischen den Entwicklern und durch Probleme in der Organi-
sationsstruktur des Projekts verursacht. Während es in kommerziellen, nicht-quelloffenen
Softwareprojekten eine klar definierte organisatorische Hierarchie unter den Entwicklern gibt,
gilt dies nicht unbedingt für OSS-Projekte, die manchmal als selbstorganisierende Gemein-
schaften angesehen werden. Um die Koordinierung der Entwickler in OSS-Projekten zu
verbessern, ist es daher wichtig, die Organisationsstruktur dieser Projekte zu verstehen.

Zu diesem Zweck analysieren wir in fünf verschiedenen empirischen Studien an weit
verbreiteten und bekannten OSS-Projekten deren Organisationsstruktur und wie sie sich
im Laufe der Zeit entwickelt hat. Auf diese Weise wollen wir ein Verständnis über die Ent-
wickleraktivität und -koordinierung erlangen, das ein erster Schritt zu verbesserten Koor-
dinierungsprozessen sein soll und damit zu weniger fehlerhaften Softwareprodukten führen
soll. Wir befassen uns insbesondere mit drei verschiedenen Aspekten: der Entwicklung der
Zusammenarbeit und Kommunikation von Entwicklern über die Zeit, der Identifizierung
von Entwicklerrollen und der Beziehung zwischen organisatorischen Ereignissen und Eigen-
schaften von Entwicklernetzwerken.

1. Um Einblicke in die Entwicklung der Zusammenarbeit (d.h., die wechselseitige Bear-
beitung eines Quellcode-Artefakts) und der Kommunikation (d.h., das wechselseitige Kom-
mentieren im selben Issue oder im selben Mailinglisten-Thread) von Software-Entwicklern
zu erhalten, untersuchen wir zunächst, wie Zusammenarbeit und Kommunikation zeitlich
und inhaltlich miteinander verbunden sind. Frühere Arbeiten haben vorgeschlagen, dass die
Zusammenarbeit und Kommunikation von Entwicklern aufgrund ihrer gemeinsamen Auf-
gaben aufeinander abgestimmt werden sollten. Daher nehmen wir eine konversationsbasierte
Sichtweise ein und entwickeln eine Methode, um die Synchronität von Zusammenarbeit und
Kommunikation zu messen. Darüber hinaus untersuchen wir mit Hilfe von Entwicklernetz-
werken, ob Entwickler stabile Gruppenstrukturen bilden und wie diese sich im Laufe der
Zeit entwickeln. Zu diesem Zweck erarbeiten wir ein modulares, mehrstufiges Mess- und
Modellierungs-Framework basierend auf kanonischer Tensor-Dekomposition, um Entwickler-
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gruppen zu erkennen und Interaktionen zwischen den Entwicklern vorherzusagen. Auf diese
Weise sind wir in der Lage, sowohl stabile Gruppen als auch Verzerrungen in der Gruppen-
struktur zu identifizieren. Darüber hinaus schlagen wir eine Methode vor, um hierarchische
Strukturen zu erkennen. Damit gewinnen wir aus einer empirischen Studie Erkenntnisse über
das Vorhandensein und die Entwicklung von hierarchischen Strukturen in Entwicklernetz-
werken sowie über die Rollen, die Entwickler in Bezug auf ihre Position in der Hierarchie ein-
nehmen. Diese Erkenntnisse bieten die Grundlage für zukünftige Untersuchungen zur Organi-
sationsstruktur von OSS-Projekten und sollen dabei helfen, die Projektführung zu steuern.

2. Da die Entwickler in OSS-Projekten unterschiedliche Aufgaben und Rollen übernehmen,
spielen die Kernentwickler eine wichtige Rolle bei der Koordinierung innerhalb der Orga-
nisationsstruktur eines OSS-Projekts. Während periphere Entwickler nur gelegentlich zum
Projekt beitragen (z.B. einen Bugfix liefern), tragen Kernentwickler kontinuierlich zum Pro-
jekt bei und übernehmen zentrale Wartungsaufgaben. Es gibt zwar eine wachsende Zahl von
Forschungsarbeiten, die versuchen, die Kerntwickler zu identifizieren, aber die Genauigkeit
solcher Identifizierungsmethoden ist weitgehend unklar. Aus diesem Grund entwickeln
wir eine automatische Methode zur Identifizierung von Kernentwicklern, die auf privi-
legierten Rollen-Berechtigungen in GitHub-Issues und Pull-Requests basiert. In einer Vali-
dierungsstudie gleichen wir unsere extrahierte Gruppe von privilegierten Entwicklern mit
offiziellen, öffentlich zugänglichen Maintainer-Listen ab. Außerdem führen wir eine Bewer-
tung der Genauigkeit etablierter Methoden zur Klassifizierung von Entwicklerrollen durch.
Neben der Entwicklung einer automatisierten Methode zur Identifizierung von Kernentwick-
lern sollen unsere Ergebnisse Forschern und Praktikern bei der Auswahl einer geeigneten
Klassifizierungsmethode helfen.

3. Schließlich untersuchen wir die Beziehung zwischen organisatorischen Ereignissen (wie
z.B. der Gründung von Abspaltungen eines Projekts oder Firmenübernahmen) und den Eigen-
schaften von Entwicklernetzwerken, da organisatorische Ereignisse die Organisationsstruktur
von OSS-Projekten und somit auch die Zusammenarbeit der Entwickler und die Kommunika-
tion zwischen den Entwicklern dramatisch beeinflussen können. Eine Analyse des Entwick-
lernetzwerks eines Projekts ist dazu in der Lage, Veränderungen in der Organisationsstruktur
aufzudecken, die bislang potenziell unbeobachtet waren. Auf der Grundlage von Beobachtun-
gen aus einer explorativen Studie mit acht Fallstudien entwickeln wir Hypothesen darüber,
welche Netzwerkeigenschaften vielversprechende Indikatoren sein könnten für die Erken-
nung organisatorischer Ereignisse, die die Struktur von Entwicklernetzwerken beeinflussen.
Auf diese Weise legen wir den Grundstein für die zukünftige Entwicklung von Maßnahmen
zur Erkennung jener organisatorischer Ereignisse, welche möglicherweise die nachhaltige
Entwicklung eines OSS-Projekts gefährden können.

Diese Arbeit untersucht die Programmier- und Kommunikationsaktivitäten von Entwick-
lern in OSS-Projekten auf verschiedene Weise. Einerseits erarbeiten wir mehrere Methoden
zur Analyse der Zusammenarbeit und Koordinierung von Entwicklern im Hinblick auf evo-
lutionäre Organisationsstrukturen, und andererseits zeigen wir auch die Anwendbarkeit der
erarbeitetenMethodenmit Hilfe verschiedener empirischer Studien. Die Erkenntnisse, die wir
aus unseren Studien gewinnen, sollen es schließlich ermöglichen, Richtlinien zu erarbeiten
und verbesserte Prozesse für die zukünftige Entwicklerkoordinierung zu entwickeln.

vi



Acknowledgments

Writing a doctoral thesis is a difficult endeavor, lasting for several years, and, thus, requires
the support of many people. I am grateful for every person I got to know during this endeavor,
as well as for having friends and colleagues who helped me in all kinds of situations.

First and foremost, I would like to thank my parents, who have always had my back all the
time and who have encouraged me on my way on pursuing a doctoral degree.

A heartfelt thank you goes to my supervisor Sven Apel, who gave me the opportunity
to conduct interesting and exciting academic research at his Chair of Software Engineering
within a group of enthusiastic researchers and to write this doctoral thesis in a cordial and
open environment. Sven also guided me well through the various challenges that arise when
doing research and also by sharing his wealth of experience and ideas.

I also would like to thank Janet Siegmund, whom I got to know when I was an undergrad-
uate student many years ago and who had initially introduced me to the research group
of Sven Apel. It was a pleasure to also collaborate with her and have her as a co-author of
research papers. In addition, there are also several other co-authors of my research papers
whom I would like to thank: Many thanks go to Mitchell Joblin, who supported me over many
years with his fruitful comments, his methodological experience, and his enthusiasm for
research. He always provided helpful feedback and enriched my work with inspiring ideas.
Moreover, I would also like to thank Angelika Schmid for sharing her expertise in statistics
and also for sharing any number of excellent ideas. Furthermore, I would like to thank Barbara
Eckl-Ganser and Claus Hunsen, with whom I had the pleasure of working together in the
early years of my research endeavor andwith whomwe started to build up the data-extraction
and data-preprocessing toolchain that serves as the technical basis for this thesis.

Many thanks go to my friends and colleagues at the Chair of Software Engineering. Special
thanks go to Christian Kaltenecker, who accompanied me from the beginning of my under-
graduate studies and always supported me in whatever respect through this long period of
time until today. I would also like to thank Florian Sattler for his assistance with regard to
technical matters as well as for many fruitful discussions and convivial evenings. Moreover,
I would like to thank my office colleague Christian Hechtl, who was always available for
spontaneous discussions. In addition, I would like to thank Christian Kaltenecker, Florian
Sattler, and Christian Hechtl for proofreading parts of this thesis and providing valuable
feedback. Besides, I would like to thank Kallistos Weis and Sebastian Böhm for providing
valuable feedback on selected visualizations and figures. I am also grateful for the many
other colleagues who have accompanied me on the way to this doctoral thesis. Further thanks
go to Nils Alznauer for his support in one of the empirical studies. Also the many student
research assistants who have contributed to the toolchain deserve my thanks, especially
Niklas Schneider, who helped me over several years quickly and reliably at any time.

vii



Additional thanks go to my second reviewer Bogdan Vasilescu for agreeing to read and
review this thesis, which is a time-consuming task, and for making the effort to attend my
colloquium on site.

Finally, I also would like to thank Eva Reichhart and Friederike Repplinger for their ad-
ministrative support as well as Armin Größlinger for providing and suggesting solutions to
technical challenges of any kind when analyzing huge amounts of data. All three always had
a sympathetic ear for me and helped me with any regards.

viii



Contents
List of Figures xiii
List of Tables xv
List of Algorithms xvii
List of Abbreviations xvii

1 Introduction 1
1.1 Goals of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Developer Coordination in Open-Source Software Projects . . . . . . . . . . . 7

2.1.1 Collaboration, Communication, and Coordination . . . . . . . . . . . . 7
2.1.2 Coordination Requirements and Socio-Technical Congruence . . . . . 8
2.1.3 Interaction Channels in Open-Source Software Projects . . . . . . . . . 9

2.2 Developer Roles in Open-Source Software Projects . . . . . . . . . . . . . . . . 12
2.3 Analyzing Developer Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Building Developer Networks . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Subsequent and Sliding Time Windows . . . . . . . . . . . . . . . . . . 16
2.3.3 Characteristics of Networks . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Data Extraction and Data Processing . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Synchronous Development in Open-Source Software Projects 29

3.1 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 C-Bursts, E-Bursts, and the Corresponding Curves . . . . . . . . . . . . 32
3.1.2 Investigating the Relationship Between Coding and Communication . 34
3.1.3 Dynamic Time Warping and Sakoe-Chiba Band . . . . . . . . . . . . . 36

3.2 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 File-Based C-Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Synchronicity Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Message-Based and Conversation-Based E-Bursts . . . . . . . . . . . . 39
3.2.5 Upper-Bound and Lower-BoundApproach for Determining Coordination 40
3.2.6 Time-Series Analysis of C-Curves and E-Curves . . . . . . . . . . . . . 42

3.3 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Subject Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



x contents

3.3.4 Null Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.5 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 C-Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 E-Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Temporal Correlation Between C-Bursts and E-Bursts . . . . . . . . . . 56

3.5 What Is Discussed Within E-Bursts? . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 C-Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 E-Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.3 Temporal Correlation Between C-Bursts and E-Bursts . . . . . . . . . . 61
3.6.4 Research Question and Perspectives . . . . . . . . . . . . . . . . . . . . 62

3.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Group Dynamics and Group Stability in Open-Source Software Projects 65
4.1 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Investigations of Organizational Stability in the Literature . . . . . . . 67
4.1.2 Tensor Decomposition, Spectral Stability, and State-Space Extrapolation 70

4.2 Research Questions, Method, and Models . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Overview of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Network Representation of Open-Source Software Development . . . 75
4.2.4 Predicting Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.5 The Reduced-Rank Latent Factor Model . . . . . . . . . . . . . . . . . . 78
4.2.6 Congruence of Sub-Groups in Coordination and Programming Work . 80
4.2.7 Spectral Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.8 Summary of the Proposed Models . . . . . . . . . . . . . . . . . . . . . 84

4.3 Implementation and Study Design . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 Study Design and Implementation Overview . . . . . . . . . . . . . . . 87
4.3.2 Exploratory Congruence Analysis . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 Canonical Tensor Decomposition . . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 Time-Series Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.5 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.1 Descriptive Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Decomposition Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.3 Predictive Performance by 𝑅 . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.4 Overall Performance for Fixed 𝑅 . . . . . . . . . . . . . . . . . . . . . . 102
4.4.5 Answers to the Proposed Research Questions . . . . . . . . . . . . . . . 104

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2 Perspectives for Empirical Software-Engineering Researchers . . . . . 107
4.5.3 Perspectives for Practitioners . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



contents xi

5 Hierarchical Organizational Structures in Open-Source Software Projects 117
5.1 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.1 Higher-Order Structure in Networks . . . . . . . . . . . . . . . . . . . . 119
5.1.2 Using Developer Networks for Studying Organizational Aspects . . . 121

5.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.1 Data Extraction & Construction of Developer Networks . . . . . . . . . 123
5.3.2 Typical Structure and Evolution . . . . . . . . . . . . . . . . . . . . . . 124
5.3.3 Change of Position in Hierarchy . . . . . . . . . . . . . . . . . . . . . . 128
5.3.4 Developers’ Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.5 Tenure and Programming Activity . . . . . . . . . . . . . . . . . . . . . 130

5.4 Longitudinal Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.1 Subject Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 Typical Structure and Evolution . . . . . . . . . . . . . . . . . . . . . . 132
5.4.3 Change of Position in Hierarchy . . . . . . . . . . . . . . . . . . . . . . 135
5.4.4 Developers’ Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.5 Tenure and Programming Activity . . . . . . . . . . . . . . . . . . . . . 142

5.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Identifying Core Developers in Open-Source Software Projects 151
6.1 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1.1 Core-Developer Identification in the Literature . . . . . . . . . . . . . . 154
6.1.2 User Permissions on GitHub . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.1 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.2 Identifying Core Developers Based on Issue Events . . . . . . . . . . . 159
6.2.3 Validating Our Set of Core Developers . . . . . . . . . . . . . . . . . . . 160
6.2.4 Developer Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.5 Assessing the Classification Accuracy . . . . . . . . . . . . . . . . . . . 164

6.3 Validation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3.1 Subject Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3.2 Time Difference Between Privileged Events . . . . . . . . . . . . . . . . 165
6.3.3 Validity of the Set of Privileged Developers 𝐷𝑝𝑟𝑖𝑣 . . . . . . . . . . . . . 167
6.3.4 Classification-Method Accuracy . . . . . . . . . . . . . . . . . . . . . . 167

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.5 A Perspective on Supervised Classification . . . . . . . . . . . . . . . . . . . . 172
6.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7 Investigating Organizational Events in Open-Source Software Projects 177
7.1 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.1.1 Organizational Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.1.2 Success and Failure of Open-Source Software Projects . . . . . . . . . . 182
7.1.3 Studying the Role of Organizational Events in the Literature . . . . . . 184



xii contents

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.2.1 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.2.2 Obtaining Network Characteristics in Relation to Events . . . . . . . . 187
7.2.3 Assessing the Influence of Events on Network Characteristics . . . . . 188

7.3 Exploratory Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3.1 Case Studies and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3.2 Observations Regarding Network Characteristics . . . . . . . . . . . . 195
7.3.3 Discussion of the Observations . . . . . . . . . . . . . . . . . . . . . . . 207

7.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8 Concluding Remarks 217
8.1 Summary of the Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

A Appendix 221

Bibliography 223



List of Figures

Figure 1.1 Overview of our contributions and their interplay. . . . . . . . . . . . 5
Figure 2.1 Overview of different interaction channels in open-source software

projects (collaboration and communication) as well as their interplay
(coordination). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 Overview of the different developer roles that we use in this thesis. . 12
Figure 2.3 Directed and undirected developer networks. . . . . . . . . . . . . . . 15
Figure 2.4 Simplified and unsimplified developer networks. . . . . . . . . . . . . 15
Figure 2.5 Exemplary visualization of the complete time range, subsequent win-

dows, and sliding windows. . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2.6 Example networks A (having a global clustering coefficient of 0.07)

and B (having a global clustering coefficient of 0.72). . . . . . . . . . . 19
Figure 2.7 Four examples of the local clustering coefficient. . . . . . . . . . . . . 20
Figure 2.8 Example networks C (not scale-free) and D (scale-free, hierarchical). 23
Figure 2.9 Overview of our data-extraction and data-processing toolchain. . . . 28
Figure 3.1 Example of a C-burst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 3.2 Example of the C-curve and the E-curve of a pair of developers. . . . 34
Figure 3.3 Example of an E-burst. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 3.4 Illustration of our upper-bound approach and of our lower-bound

approach for determining coordination. . . . . . . . . . . . . . . . . . 40
Figure 3.5 Box plots of the response times for each pair of developers. . . . . . . 45
Figure 3.6 Overview of our hypotheses and sub-hypotheses. . . . . . . . . . . . . 48
Figure 3.7 Linearmodel fitting for the relationship between the number ofC-bursts

and the number of E-bursts using the upper-bound approach. . . . . 55
Figure 3.8 Linearmodel fitting for the relationship between the number ofC-bursts

and the number of E-bursts using the lower-bound approach. . . . . . 55
Figure 4.1 Graphical representation of our assumptions: Unobserved “tasks”

drive co-editing and communication, causing overlapping group be-
havior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.2 Our central data structure: Two developers are connected at time 𝑡 if
they have either communicated (𝑘 = 𝑀, mail) or co-edited (𝑘 = 𝐶,
cochange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.3 The current trend of the weights of the 𝑟-th factor (e.g., a certain task
shared among the developers) is extrapolated to future time ranges
for prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.4 The canonical decomposition of the four-dimensional tensor Z into
𝑅 rank-one tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xiii



xiv list of figures

Figure 4.5 Current number of mail (𝑛𝑀,𝑡) and cochange (𝑛𝐶,𝑡) edges, correlation
between mail and cochange 𝜙𝑡, and number of active developers (𝑁𝑡)
for ownCloud over time. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.6 Current number of mail (𝑛𝑀,𝑡) and cochange (𝑛𝐶,𝑡) edges, correlation
between mail and cochange 𝜙𝑡, and number of active developers (𝑁𝑡)
for BusyBox over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.7 Results of the canonical tensor decomposition for BusyBox and 𝑅=8. 98
Figure 4.8 AUC𝑡 by type of interaction and time for BusyBox, ℎ = 1, for 𝑅 = 2. . 101
Figure 4.9 AUC𝑡 by type of interaction and time for BusyBox, ℎ = 1, for 𝑅 = 3. . 101
Figure 4.10 AUC𝑡 by type of interaction and time for BusyBox, ℎ = 1, for 𝑅 = 5. . 101
Figure 4.11 AUC by forecast horizon ℎ and rank 𝑅 of reduction for BusyBox. . . . 102
Figure 4.12 AUC measures by interaction channel, subject project, model, and

forecast horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 5.1 A hierarchical structure in OSS projects, with few developers on top

of the hierarchy and many developers lower in or even outside the
hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 5.2 Comparison of Erdős-Rényi (ER) random networks and hierarchical
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 5.3 Log-transformed vertex degree and log-transformed clustering coeffi-
cient of all developers who were active in a specific time range. . . . . 124

Figure 5.4 Candidate breakpoints for a single time range of project LLVM. . . . 125
Figure 5.5 Change of position in the hierarchy of developer 874 in project Node.js

over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 5.6 Neighborhood of a selected developer at two different time ranges

(𝑡 = 1 and 𝑡 = 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 5.7 Evolution of the number of developers, the fraction of developers with

no, one, or more than one contacts, and the fraction of developers in
the hierarchical part in project GCC. . . . . . . . . . . . . . . . . . . . 133

Figure 5.8 Hierarchical structure of the 25th analyzed 6-months time range of
project Angular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 5.9 Change of position in the hierarchy of developer 1610 in project LLVM
over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 5.10 Neighborhood of developer 7507 in project U-Boot over time. . . . . 140
Figure 5.11 Tenure of the active developers of a specific time range in

project LLVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 5.12 Number of edited files of the active developers of a specific time range

in project LLVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 6.1 Overview of our approach: Data extraction fromGitHub, identification

of a set of core developers based on the events in issues and pull
requests, validation with project-reported lists, and assessment of the
accuracy of state-of-the-art unsupervised classification methods. . . . 153

Figure 6.2 Symbolic example of the usage of privileged events by a single devel-
oper in different time ranges. . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure 6.3 Visualization of our notions of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). . . . . . . . . . . . . . . . 164



Figure 6.4 Cumulative distribution of themedian time difference in days between
privileged events of a single developer. . . . . . . . . . . . . . . . . . . 167

Figure 6.5 F1, precision, and recall for each classification method with respect to
the set of privileged developers 𝐷𝑝𝑟𝑖𝑣. . . . . . . . . . . . . . . . . . . 169

Figure 6.6 Distribution of the rank of the different classification methods. . . . . 170
Figure 7.1 Exemplary visualization of how we visualize the results of our study

for the evolution of a single network characteristic of a single project
over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Figure 7.2 Scale-freeness and small-worldness of the cochange, issue, and mail
networks for projects ownCloud and Nextcloud over time. . . . . . . 196

Figure 7.3 Scale-freeness and small-worldness of the cochange and issue net-
works for projects Gogs and Gitea over time. . . . . . . . . . . . . . . 198

Figure 7.4 Scale-freeness and small-worldness of the cochange and issue net-
works for project htop in its original repository over time. . . . . . . . 199

Figure 7.5 Scale-freeness and small-worldness of the cochange, issue, and mail
networks for project Node.js over time. . . . . . . . . . . . . . . . . . . 200

Figure 7.6 Commit activity and e-mail activity in project Qt over time. . . . . . . 201
Figure 7.7 Scale-freeness and small-worldness of the cochange andmail networks

for project Qt over time. . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 7.8 Scale-freeness and small-worldness of the cochange, issue, and mail

networks for projects MySQL and MariaDB over time. . . . . . . . . . 203
Figure 7.9 Scale-freeness and small-worldness of the cochange, issue, and mail

networks for projects LibreOffice and Apache OpenOffice over time. 205
Figure 7.10 Scale-freeness and small-worldness of the cochange, issue, and mail

networks for project OpenSSL over time. . . . . . . . . . . . . . . . . . 206

List of Tables

Table 2.1 Extracted metadata from the different interaction channels. . . . . . . 26
Table 3.1 Examples of the synchronicity degree degsync. . . . . . . . . . . . . . . 38
Table 3.2 Analyzed time range and size of the subject projects. . . . . . . . . . . 43
Table 3.3 Independent and dependent variables of our empirical study. . . . . . 44
Table 3.4 Paired, one-tailed Wilcoxon signed-rank test for comparing empirical

simulated numbers of C-bursts per developer pair (H1.1). . . . . . . . 51
Table 3.5 Paired, one-tailed Wilcoxon signed-rank test for comparing empirical

simulated numbers of C-bursts per developer pair (H1.1) only for
developer pairs that have, at least, one C-burst. . . . . . . . . . . . . . 51

xv



xvi list of tables

Table 3.6 One-tailed Mann-Whitney U test for comparing synchronicity degrees
(H1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 3.7 One-tailed Mann-Whitney U test for comparing the code growth Δ𝐿
of synchronous commits and non-synchronous commits (H1.3). . . . 53

Table 3.8 One-tailed Mann-Whitney U test for comparing the implementation
effort Δ𝑊 of synchronous commits and non-synchronous commits
(H1.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 3.9 Overview of the results regarding H2 and its sub-hypothesis. . . . . . 55
Table 3.10 The results of testing H3.1 for different abstraction levels of coor-

dination for the upper-bound approach and for the lower-bound
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 3.11 The results of testing H3+H3.1 for comparing message and conversa-
tion level using lower-bound or upper-bound approach, respectively. 57

Table 3.12 The results of our qualitative analysis using our mention rate. . . . . 58
Table 3.13 The results of determining the percentage of commits of C-bursts

whose commit messages map with the subject of, at least, one e-mail
of an E-burst of the same developer pair. . . . . . . . . . . . . . . . . . 59

Table 4.1 Overview of our models for performance comparison. . . . . . . . . . 85
Table 4.2 Numbers of developers (𝑁) in our 10 subject projects, with start of

the first and end of the last 3-months time range, number of analyzed
time ranges (𝑇), and project domain. . . . . . . . . . . . . . . . . . . . 87

Table 4.3 Characterization of the amount of mail and cochange activity in our
10 subject projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 4.4 Overview of the average performances of the different models. . . . . 103
Table 5.1 Overview of our subject projects. . . . . . . . . . . . . . . . . . . . . . 132
Table 5.2 Frequency of directions of positional change in the hierarchy for the

10 most active/10 randomly selected developers for mail networks. . 137
Table 5.3 Frequency of directions of positional change in the hierarchy for the

10 most active/10 randomly selected developers for issue networks. . 137
Table 5.4 Descriptive statistics for the 10 most active and 10 randomly selected

developers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 5.5 Frequency of the position of neighborhood contacts in the hierarchy

for for mail networks for the 10 most active/10 randomly selected
developers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Table 5.6 Frequency of the position of neighborhood contacts in the hierar-
chy for issue networks for the 10 most active/10 randomly selected
developers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Table 6.1 Classification data and network types used for core-developer identi-
fication in the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Table 6.2 Classification metrics used for core-developer identification in the
literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Table 6.3 GitHub issue events and the role permissions needed to be able to
trigger them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Table 6.4 The network-construction methods and network centrality metrics
that we use in our study. . . . . . . . . . . . . . . . . . . . . . . . . . . 163



Table 6.5 Descriptive statistics of our subject projects. . . . . . . . . . . . . . . . 166
Table 6.6 Validation of the procedure to extract privileged developers for the

12 projects for which we found project-reported lists. . . . . . . . . . . 168
Table 7.1 Overview of the network characteristics that we investigate with re-

spect to the occurrence of organizational events. . . . . . . . . . . . . 187
Table 7.2 Overview of the different organizational events that we investigate in

our study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 7.3 Descriptive statistics of the investigated projects on 6-months ranges

and overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

List of Algorithms

Algorithm 3.1 Identification of C-bursts. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Algorithm 3.2 E-mail filtering in the upper-bound approach. . . . . . . . . . . . . . . 41
Algorithm 3.3 E-mail filtering in the lower-bound approach. . . . . . . . . . . . . . . 41
Algorithm 3.4 Generation of simulated C-bursts. . . . . . . . . . . . . . . . . . . . . . 46
Algorithm 3.5 Generation of simulated E-bursts. . . . . . . . . . . . . . . . . . . . . . 47
Algorithm 5.1 Division of developers into a hierarchical and a non-hierarchical part. 128

List of Abbreviations

API application programming interface
AUC area under curve
CLA contributor licensing agreement
CSV comma-separated-value
DTW dynamic time warping
ER Erdős-Rényi
FDR false-discovery rate
FP false positives

xvii



xviii list of abbreviations

FPR false-positive rate
FN false negatives
LOC lines of code
OSS open-source software
PR pull request
RAM random-access memory
REST representational state transfer
RMSE root-mean-square error
RO research objective
ROC receiver operating characteristic
RQ research question
TP true positives
TPR true-positive rate
TN true negatives
VCS version-control system
UTC coordinated universal time



1Introduction

Software engineering is an increasingly important discipline in the era of digitalization. Many
people all over the world rely on software in their daily life, being it in their spare time (e.g.,
entertainment applications), for their jobs (e.g., web services), or for organizational tasks
(e.g., services of government offices). In the near future, software will become even more
essential in everyday life in the face of upcoming developments such as artificial intelligence,
robotics, or autonomous cars. That is, people depend on software [Far19] (e.g., life without
online payment or online stores is not imaginable any more), and people are influenced by
software (e.g., through personalized advertising [CVL+22; RU20; WPA+18] or automatically
proposed news articles1 [ZW17]). For this reason, it is important for software developers to
develop and deploy high-quality and highly reliable software to fulfill people’s requirements
and also to prevent software causing serious damage. This becomes even more important
when software interacts with humans, such as self-driving cars, which need to watch out for
pedestrians, or surgery robots, which need to perform medical surgeries without causing
damage. Only a small deviation from the expected behavior that is caused by a bug in the
software can already be very harmful. In the past, several accidents happened in which people
died because of software bugs: A pedestrian was killed by a self-driving car, several people
were killed or injured by software-caused overdoses of radiation, and hundreds of airplane
passengers died because of software-caused crashes of airplanes, etc.2 Previous research has
shown that software bugs, in general, are often caused (among others) by chaotic project
management, missing quality control, lack of coordination, or problems in the organizational
structure of the project [HKA+23; LMV+14; MHP05; ZCC+19].

As software is often created by several parties, proper coordination among software de-
velopers is necessary, to avoid as many bugs as possible [BCD+12; MHP05; ZCC+19], and
to improve software quality [MHP05; MKA+16; SFS+17]. For example, in the Linux kernel
development project (a large open-source operating system), more than 10 000 developers
contributed to the source code already. Hence, it is not uncommon that multiple developers
independently contributed to interrelated source-code fragments. If not coordinated, unin-
tentional side effects, bugs, and vulnerabilities can be introduced into the code base [CH13;
GHP99; KSD11; SMW+11]. Therefore, it is imperative that developers coordinate before they
change related source-code fragments [CWH+06; HMR06; MC90]. Depending on the organi-
zational structure of a software project and the used means of communication, coordination

1 Paul Farhi: “A news site used AI to write articles. It was a journalistic disaster.”, 2023:
https://www.washingtonpost.com/media/2023/01/17/cnet-ai-articles-journalism-corrections/

(accessed at 2023-06-29)
2 Keri Savoca: “When Software Kills”, 2019:

https://medium.com/swlh/when-software-kills-ab6f48a15825/ (accessed at 2023-05-05)

1
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requirements among developers are not always fulfilled. Fulfilling the coordination require-
ments is expensive and could also end up in an increased maintenance overhead [WXY+18].
Consequently, tools are necessary that assist developers to improve the project workflow
and to reduce maintenance costs. In particular, tools must guide developers for improving
collaboration and coordination within software projects.

Nowadays, many of the everyday-life software products are developed by open-source
software (OSS) projects (e.g., web browsers such as Firefox, office software such as LibreOf-
fice, or pandemic contact-tracing mobile apps such as the Corona Warn App). Even beyond
that, OSS projects are widely used for software development [RSA+19; Rie19]. A benefit
of OSS projects is that their source-code is publicly available, reusable, and testable, such
that voluntary developers can contribute to the project (e.g., search or fix a bug, implement
enhancements, etc.) [BR03; KU12; MČ15; MD14]. While there is typically a clearly defined
organizational hierarchy among software developers in commercial, closed-sourced projects,
this does not necessarily apply to OSS projects [HC14; LBG+16; NKU17; PAR14; SSR02].
Because of the public availability of source code and corresponding communication channels,
and because of the participation of volunteers, OSS projects sometimes are even seen as
self-organizing communities [CLW+07; MFT02; Yu08]. This is also reflected in the different
kinds of developers that contribute to OSS projects: On the one hand, there are develop-
ers who take central roles in the project, often called “core” developers, lead developers,
or maintainers. On the other hand, there are developers who contribute only occasionally
to the project, called “peripheral” developers [JAH+17; MFH02; NYN+02]. As peripheral
developers usually do not contribute regularly and are typically only active for a short period
of time, they have to be up to date regarding the source-code changes of other developers and,
thus, should coordinate with the core developers to avoid unwanted changes. As the number
of participating developers often increases over time, it is even more difficult to maintain large
software projects and check whether all changes of all developers still guarantee the intended
behavior of the software [GHI21; SMS16]. Due to the global digitalization, the number of
software developers increases steadily, which also affects global interactions of developers.
Also, different cultural backgrounds and custom habits of developers may play a vital role
when developers communicate with each other [LK06; MLB18; ZLS22]. As a consequence,
it is essential to understand the organizational structure of software projects to improve
developer coordination and ease software maintenance in large OSS projects.

In this thesis, we shed light on developers’ programming and communication activities and
their coordination, how these activities are related to each other, and how they change over
time. By means of multiple empirical studies on several widely-used and well-known OSS
projects, we analyze the organizational structure of OSS projects and their evolution with
regard to various different factors, such as developer roles or external events that influence
the organizational structure. Through our studies, we provide valuable insights into the
development and organizational processes of various OSS projects, which shall serve as a
basis for devising guidelines and improved processes for developer coordination in the future.
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1.1 Goals of the Thesis

In this thesis, we pursue the overall goal of obtaining an understanding of the organizational
structures in OSS projects. Only if these structures are understood, informed recommen-
dations on how to improve coordination processes and organizational structures in OSS
projects can be made, which, in turn, is supposed to lead to an improvement of software
quality [CH05; CH13; NMB08; SFD05]. To this end, we investigate the collaboration processes
of developers with respect to their source-code changes, as well as the communication processes
of developers on the major communication channels of a project, such as mailing lists or issue
trackers. More generally speaking, we analyze social and socio-technical aspects of software
engineering, as software development is not only a technical activity but also involves human
interaction in a technical setting. In particular, we analyze the coding activity as well as the
communication activity in OSS projects, using various data analysis techniques and methods
from social-network analysis (since interacting software developers also form a social network
and a network perspective can reveal information that is not directly observable from the
plain data). This way, we aim at identifying and extracting organizational patterns that can
provide new insights into the underlying development processes.

We subdivide our overall research objective (RO) into three sub-objectives:

RO1: Understand the evolution of collaboration and communication processes, how they are temporally
and content-wise related, and how the underlying group structures evolve.
Over time, the organizational structure in an OSS project may change, since also the
number of developers changes and developers take on different tasks during the course
of their participation in a project. At project initiation, when only a few developers are
contributing, the structures may be different than for a project that lasts already for
several years. Different group structures may arise or vanish over time, for instance,
when new core developers join or new development tasks emerge, or when established
core developers leave the project. In such cases, communicating project knowledge from
established to new developers is imperative, to avoid a loss of implicit project knowledge
during the changes of the group structure. But not only global project evolution matters,
also the temporal and content-wise alignment of collaboration and communication
activity is important. According to the “mirroring hypothesis” [CB16; KCD12], organi-
zational structures in collaboration and coordination should align due to their common
tasks. Previous work assumed that the collaboration and communication activities of
two developers are aligned on common tasks when they collaborate on the source
code and communicate at the same time [XF14]. However, using such an assumption,
we do not know whether the temporally aligned communication of the developers
covers the topics of their joint coding activities. This is why also a content-wise relation
between collaboration on the source code and communication should be present to
fulfill the “mirroring hypothesis”. Therefore, we aim at obtaining an understanding of
how collaboration and communication in OSS projects are temporally and content-wise
related and how the corresponding organizational structures evolve over time.
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RO2: Devise and investigate means for identifying core developers and potential candidates
for maintainers.
As developers in OSS projects take different roles, identifying these roles is pivotal
for understanding organizational structures, especially with respect to leadership
roles [CLL+17; Lon06; YHH04]. However, in OSS projects, core developers are not
always clearly distinguishable from peripheral developers, which is why classification
methods have been devised in the literature to identify core developers. Nevertheless,
different state-of-the-art developer-classification methods may lead to different results.
Hence, investigating the state-of-the-art classification methods and assessing their accu-
racy leads to identifying their strengths and limitations. Knowing about the strengths
and limitations of developer-classification methods helps understanding the developers’
roles and can also be used for selecting an appropriate classification method to identify
potential candidates for core developers in a project. Identifying potential candidates
for core developers, in turn, may help stabilize the project’s organizational structure,
avoiding organizational vacuum and knowledge loss. For this purpose, we aim at devis-
ing a method to identify core developers and at informing researchers and practitioners
about the performance of state-of-the-art methods for identifying core developers.

RO3: Investigate how organizational events influence the organizational structure of an OSS project.
Organizational events, such as emerging forks, core developers who leave, or a company
taking over a project, can influence the project’s organizational structure dramatically.
For instance, when a core developer leaves a project, this could imply a loss of project
knowledge if the remaining developers do not know about particular specifics of the
project that only the leaving developer knows. This, in turn, could lead to the intro-
duction of bugs in the future. Investigating the organizational structure and developer-
network characteristics before and after such events could reveal the existence of such
specifics, which could be used to start counteractions or to develop an early-warning
mechanism to avoid such problems in other projects or future situations. We aim at
obtaining an understanding of the influence of organizational events on the organiza-
tional structure of OSS projects, which could further be used to develop mechanisms to
avoid critical consequences of organizational events with negative connotation.

1.2 Contributions

The contributions of this thesis are multifaceted. In what follows, we summarize them inde-
pendently for our three research objectives. Figure 1.1 provides an overview of our different
contributions and how they are related to each other.

Insights into the Evolution of Collaboration and Communication To address RO1, we
perform an in-depth analysis of developer interaction in OSS projects, using different analysis
methods. This includes an investigation of synchronous development at different abstraction
levels of coordination, to find out whether developers collaborate and communicate tempo-
rally close by, and, if so, whether their communication is content-wise related to their joint
coding activity. In particular, we provide a method for measuring the synchronization of ac-
tivities and for raising the abstraction level of exploring synchronization between developers’
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Figure 1.1: Overview of our contributions and their interplay.

collaboration and communication activities to a conversation-based level. We introduce a
continuous measure to quantify the synchronicity of co-editing source-code artifacts, and we
provide insights into whether and to what extent developer communication is content-wise
related to temporally close-by collaboration activities.

Furthermore, we use a multi-modal network perspective to examine how collaboration
and coordination activities between developers can be explained by each other, whether
the developers form stable group structures, and how these groups evolve over time. This
information can be used for developing prediction models for future coordination, but also to
detect instabilities in the organizational structure of an OSS project and search for potential
causes of these instabilities. To that aim, we devise a modular, multi-step method to detect
developer groups and provide a measurement and modeling framework that can be used to
analyze group stability and to predict future interactions of developers. Using our framework,
we are able to provide insights into the strength and stability of group structures in highly
active OSS projects. While we are able to detect stable group structures in OSS projects, we are
also able to identify distortions in the network structure. In this regard, our method provides
the capability to analyze such distortions with respect to different interaction channels of
developers and also with respect to different dynamic importances and developer roles.

Finally, we investigate the hierarchical structure of OSS projects over time to identify
evolutionary patterns in the developers’ communication. For that purpose, we develop a
method to identify hybrid and hierarchical structures in developer networks, and we provide
insights into the activities of developers with respect to their position in the hierarchical
structure. In particular, we examine the distribution of tasks among the developers and
the developers they interact with. This way, we obtain additional, general insights into the
evolution of the organizational structure of OSS projects.

Means for Identifying Core Developers To address RO2, we provide an overview of the
core-developer identification methods that have been used in the literature, and we devise a
method to automatically identify core developers based on the privileges they have in GitHub
issues and pull requests. We validate this method with officially documented lists of core
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developers, and we compare the outcomes of this method to the results of state-of-the-art
unsupervised developer-classification methods. Our results indicate that the choice of the
interaction channel that is used for developer-role classification matters more than the actual
classification metric. Furthermore, we provide perspectives on how our automatic method to
identify core developers can be used to develop supervised classification methods.

Insights into the Relation Between Network Characteristics and Organizational Events
To address RO3, we investigate different organizational events in popular OSS projects, such
as the emergence of project forks, the investment of a company, or the abandonment of an
important core developer. In particular, we analyze whether and how these events have influ-
enced the organizational structure of the projects and the characteristics of the corresponding
developer networks. By means of an explorative study, we obtain insights into the evolution of
OSS projects. Notably, we observe different changes in different network characteristics with
respect to different organizational events. Based on our observations, we develop hypotheses
that shall guide future research on the relationship between organizational events and the
characteristics of developer networks. Thus, with our investigations, we lay foundations for the
future development of means to detect structural distortions and to devise countermeasures
that could be applied before a project takes harm of particular events.

1.3 Outline

This thesis is structured as follows: In Chapter 2, we provide the necessary background on
OSS projects and their different interaction channels, on different roles in OSS projects, and
on the construction and analysis of socio-technical developer networks.

To address RO1, we conduct three different studies: In Chapter 3, we describe our em-
pirical study on synchronous development in OSS projects. In Chapter 4, we investigate
group dynamics and group stability in OSS projects. In Chapter 5, we look at hierarchical
organizational structures of OSS projects.

To address RO2, in Chapter 6, we provide an overview of how core developers have been
identified in the literature, we devise an automatic method to identify core developers based
on GitHub issues and pull requests, and we conduct an empirical study to validate our
method and assess the accuracy of state-of-the-art developer-classification methods.

To address RO3, in Chapter 7, we investigate the relationship between organizational events
and changes in developer-network characteristics of OSS projects.

Finally, in Chapter 8, we summarize our findings and provide perspectives on future work
that is based on our contributions. Appendix A contains links to supplementary materials
(e.g., data, scripts, results, visualizations) related to all the empirical studies that we present.
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This chapter shares material with Bock et al. [BAJ+23; BHJ+22] and Joblin et al. [JEB+23].

In this chapter, we provide the background information and definitions that are relevant for
several chapters of this thesis. First, we describe how developers coordinate in OSS projects
and define the terms collaboration, communication, and coordination. Then, we characterize
the different roles developers can take in OSS projects based on the literature. Afterwards,
we introduce the concept of developer networks and the techniques and metrics that we use
to analyze them. Last, we elaborate on how we extract data from OSS projects and describe
the toolchain that we use to process the data.

2.1 Developer Coordination in Open-Source Software Projects

Open-source software (OSS) projects are software projects inwhich the source code is publicly
available and licensed in such a way that any person can use, change, and redistribute it.1

In large OSS projects, often numerous globally distributed and independent developers
contribute [Her07]. While this demonstrates the openness of OSS projects toward new de-
velopers and helps attracting new developers, this could also be problematic with respect
to coordination issues. For example, when multiple developers contribute to interrelated
source-code fragments, changes that lack coordination can introduce unintentional side ef-
fects. Consequently, developers must coordinate their interdependent activities to prevent
conflicting changes, to avoid bugs, and to keep the code simple and maintainable [Bir11;
CHC08; CMR+09; KSD11]. Hence, coordination is one of the key factors toward project
success. Previous work has shown that both, collaboration and communication, are necessary.

2.1.1 Collaboration, Communication, and Coordination

The terms collaboration, communication, and coordination are widely used in the literature
on studying socio-technical aspects of software projects [e.g., Bir11; CH08; CH13; CWH+06;

1 The Open Source Initiative provides a formal definition of “open source” and clearly states the requirements for
the source code and its license to be considered as “open source”: https://opensource.org/osd/ (accessed at
2023-05-31). In the context of this thesis, however, we consider projects to be “open source” when the source
code of the project is publicly available and everyone can contribute to the project, while we neglect all the
other licensing requirements, for the sake of simplicity, as the concrete license does not matter for investigating
developers’ coordination in such projects.

7
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EKL+01; GHP99; HM03b; HMR06; HSA20; JAM17; KS95; KSD11]. Nevertheless, as there are
different interpretations of these terms, let us define a precise meaning of these terms, which
we use throughout this thesis:

Definition: Collaboration
Collaboration means that two developers work together by contributing to (i.e., co-
editing), at least, one common source-code artifact. A source-code artifact can be a file
or function, for instance.

Definition: Communication
Communication means that two developers talk to one another, also in written form
(e.g., exchanging e-mails on a mailing list, or commenting on the same issue of an issue
tracker).

Note that we define collaboration and communication each as an interaction between
two individual developers. Nevertheless, in OSS projects, where source code and discussion
platforms are publicly accessible, also more than two developers can interact with each other,
of course, either via collaboration or via communication. Yet, we treat such cases as pairwise
interactions between all the developers who collaborate or communicate with each other,
respectively, in accordance with our definitions that we have given above.

Based on literature from organizational science, Malone and Crowston [MC94] define
coordination as “managing dependencies between activities”. In accordance with that, since
there are communication activities that are related to developers’ collaboration activities, we
define the term coordination as follows:

Definition: Coordination
Coordination means that two developers are collaborating and communicating in
(content-wise related) temporally aligned manners.

That is, coordination captures that developers communicate temporally close-by to their
collaboration activities. Ideally, but not necessarily, in coordination, communication covers
a topic that is related to what the developers are collaborating on [Bir11; HM03b; HMR06;
KS95; KSD11]. This is in line with general definitions of coordination from sociology, which
define coordination as “integrating or linking together different parts […] to accomplish a
collective set of tasks” [VDK76]. For example, when two developers edit the same file within
a couple of days (i.e., they collaborate) and when they also exchange e-mails on the mailing
list (i.e., they communicate) to discuss their contemporary edits to this file, we consider this
as coordination, since collaboration and communication activities are temporally aligned
and content-wise related. In Figure 2.1, we provide some examples that visualize the terms
collaboration, communication, and coordination.

2.1.2 Coordination Requirements and Socio-Technical Congruence

According to Cataldo et al. [CWH+06], there are coordination requirements in OSS projects,
which determine “who must coordinate with whom to get the work done.” [CWH+06].
Consequently, they stated that fulfilling these coordination requirements via coordination
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Figure 2.1: Overview of different interaction channels in OSS projects: (left) collaboration on the source
code, and communication on issue tracker and mailing list; (right) coordination between
two developers who collaborate and communicate temporally close-by.

activities reduces the development time and increases developer productivity. There is a sub-
stantial corpus of research in which coordination requirements are analyzed, which conclude
that coordination requirements emerge when two developers work on the same source-code
artifacts, such as the same file, to reduce the risk of introducing dysfunctional source code and
to resolve interrelated dependencies [CWH+06; HM03a; HMR06; HSA20; MC90; XGD+12].
As coordination captures collaboration and communication activities that are related to
each other, Cataldo and Herbsleb [CH13] and Cataldo et al. [CHC08; CWH+06] coined the
term socio-technical congruence. That is, to fulfill the coordination requirements, the technical
activities (i.e., collaboration) and the social activities (i.e., communication) in the project
should be in accordance with each other. In this context, “Conway’s Law” [Con68] states
that the architecture and design of software follows the organizational structures of the com-
munication activities. Even more, according to the “mirroring hypothesis” [CB16; KCD12],
organizational structures in technical and social activities should align due to their common
tasks. Noteworthy, the relationship between technical and social activities in OSS projects
has been analyzed frommany different perspectives in an extensive body of empirical research
[e.g., BGK+13; BMF+13; Bir11; HG99; HSA20; Kam19; MJT+22; RAN+21; SH13; VHE+07].

2.1.3 Interaction Channels in Open-Source Software Projects

When developers perform technical or social activities, in OSS projects, they usually interact
with other developers (be it intentionally or unintentionally, due to the nature of OSS projects).
To interact with each other, there are usually different interaction channels in OSS projects,
which cover different types of interactions:

Collaboration Channels On the one hand, there is the version-control system (VCS) of a
project, in which the source code of the project is managed. The VCS, in which the source
code of the project is stored, often is also referred to as repository. In particular, developers can
access the source code from the VCS,modify the source code, and submit themodified version
of the source code back to the VCS [AKM08; DP03; Som10]. Such source-code modifications
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can implement bug fixes, refactorings, or further enhancements of the software, for instance.
The VCS stores all the source-code modifications as uniquely identifiable commits, which
are “atomic changes done on the source code” [GM10]. In a commit, the particular source-
code modifications are stored together with metadata such as author information (name
and e-mail address) or modification timestamps [AKM08]. The most frequently used VCS
today is Git2 [DPK+20], which is a distributed system that allows the developers to work on
their local clones of the repository offline as well as synchronizing their changes with other
developers’ changes in a remote repository [Spi12]. Beside Git, there are also other VCSs:
For instance, the Mozilla Foundation uses Mercurial3 as VCS for the development of their
browser Firefox,4 Canonical uses the VCS Bazaar5 to maintain Ubuntu packages,6 and the
Apache Software Foundation uses the VCS Subversion (SVN)7 for the development of their
web server Tomcat.8 Due to the prevalent usage of Git in today’s software development, in
this thesis, we only analyze projects that use Git as their VCS. Yet, other VCSs behave very
similarly to Git in how they store developers’ commits [KT11; ZND18], which is why the
methods and analyses that are proposed in this thesis are easily transferable to projects that
use other VCSs.

Communication Channels On the other hand, there can be multiple communication
channels in an OSS project, in which the source-code modifications and other project-related
topics are discussed [EGW22; KGB+18; SSF+17; TNK+19]. In this thesis, we mainly consider
two established communication channels: mailing lists and issue trackers.
Mailing lists are usually used by OSS projects that date back more than 10 years and,

therefore, are a historically rich and well-established source of communication data [RGS08;
RLM19]. On the developer mailing lists of OSS projects, usually software architecture and
source-code modifications are discussed. Particularly, numerous projects have policies9 that
force developers to send source-code patches (i.e., drafts of commits) to the mailing list for
discussion and code review before the patches are committed to the VCS [RLM19]. A recent
study has shown that about 89% of code-review discussions in such projects take place on
the mailing list [MAJ+20]. In addition, mailing lists also contain discussions of the outcomes
of developer conferences (or similar events) where complex issues and long-term plans for
the future development of the project are addressed. Even developers in OSS projects who
work for corporations may use mailing-list discussions to communicate their intentions to
others, as public communication is one of the basic concepts in OSS projects [Rie15].

Issue trackers are more recently used communication channels that are dedicated to report
and discuss project-related issues on specialized, software-development specific web inter-
faces [BLJ+13]. During the last decade, social coding platforms such as GitHub10 or Gerrit11

2 https://git-scm.com/ (accessed at 2023-06-08)
3 https://www.mercurial-scm.org/ (accessed at 2023-06-08)
4 https://firefox-source-docs.mozilla.org/contributing/vcs/mercurial.html (accessed at 2023-06-08)
5 https://bazaar.canonical.com/ (accessed at 2023-06-08)
6 https://wiki.ubuntu.com/UbuntuDevelopment#Revision_control_.28Bazaar.29 (accessed at 2023-06-08)
7 https://subversion.apache.org/ (accessed at 2023-06-08)
8 https://people.apache.org/~pidster/tomcat/site-2011/svn.html (accessed at 2023-06-08)
9 As an example, we refer to the contribution policy of the project QEMU:
https://www.qemu.org/docs/master/devel/submitting-a-patch.html (accessed at 2023-06-08)

10 https://github.com/ (accessed at 2023-06-08)
11 https://www.gerritcodereview.com/ (accessed at 2023-06-08)

https://git-scm.com/
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https://wiki.ubuntu.com/UbuntuDevelopment#Revision_control_.28Bazaar.29
https://subversion.apache.org/
https://people.apache.org/~pidster/tomcat/site-2011/svn.html
https://www.qemu.org/docs/master/devel/submitting-a-patch.html
https://github.com/
https://www.gerritcodereview.com/
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have established [BB13; DST+12; PT22]. These platforms host the source code of a project
in the VCS together with dedicated communication channels (e.g., issue trackers or code
reviews), in which discussions can be directly linked to source code and commits, and vice
versa. To this end, GitHub provides issues12 and pull requests (PRs)13 as communication
channels for developers. Whereas issues are mainly used to discuss potential bugs or request
new features, pull requests are used to review source-code modifications before they are
finally integrated into the project’s code base [RR14]. Note that GitHub internally treats pull
requests as a special form of issues.14 For that reason, in this thesis, when we talk about
issues this always also includes pull requests. As already discussed for VCSs above, GitHub
issues are not the only used means to track issues and bugs. Many projects use separate issue
trackers such as Bugzilla15 (e.g., Mozilla uses Bugzilla to track bugs in Firefox16) or Jira17(e.g.,
the Apache Software Foundation uses Jira to track issues in their projects18) [HZ13; MLM22].
Due to the prevalence of GitHub, we stick to the analysis of projects that use GitHub issues as
their issue tracker when analyzing issue trackers, in this thesis. Yet, the processes of reporting
and discussing bugs and issues are similar in other issue trackers [DML16; QST22], which is
why we assume that our methods and results are transferable to other social coding platforms
as their purpose and usage scenarios are equivalent.

Among others, there are also additional communication channels such as direct commu-
nication between developers (e.g., sending personal e-mails, using chat systems, or online
forums) [EGW22; KGB+18; SSF+17]. Whereas some of these channels are not publicly ac-
cessible (e.g., personal e-mails), others may be available for the public (e.g, online forums).
However, in this thesis, we analyze only mailing lists and GitHub issues, as they are a widely
used and publicly available data source of developers’ communication that, in addition, is
directly related to their source-code modifications [GBL+13; PT22; RR14; SSF+17]. That is,
in projects that use mailing lists, source-code modifications are discussed on the mailing
list before they are integrated into the code base [RLM19], and, in projects that use GitHub
issues, commits are reviewed and discussed in pull requests prior to being merged into
the main branch [RR14]. We chose to cover mailing lists and GitHub issues to analyze two
different communication channels that are used in many projects and that are related to the
source-codemodifications, to obtain amore holistic view on communication and coordination
in OSS projects. In Section 2.4, we describe how we extract the corresponding data from the
different sources of information.

Altogether, in this thesis, we consider the VCS as a collaboration channel, and we consider
issues as well as mailing lists as communication channels. To provide an overview of all the
different developer interaction channels that we cover in this thesis, we have depicted them
in the left part of Figure 2.1 (page 9).

12 https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues/ (accessed at 2023-
06-08)

13 https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-

your-work-with-pull-requests/about-pull-requests/ (accessed at 2023-06-08)
14 https://docs.github.com/en/rest/issues/issues?apiVersion=2022-11-28/ (accessed at 2023-06-29)
15 https://www.bugzilla.org/ (accessed at 2023-06-08)
16 https://www.bugzilla.org/contributing/reporting_bugs.html (accessed at 2023-06-08)
17 https://www.atlassian.com/software/jira/ (accessed at 2023-06-08)
18 https://issues.apache.org/jira/ (accessed at 2023-06-08)
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https://docs.github.com/en/rest/issues/issues?apiVersion=2022-11-28/
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Figure 2.2: Overview of the different developer roles that we use in this thesis.

2.2 Developer Roles in Open-Source Software Projects

When developers contribute to software projects (either via contributions to the source code
or via discussions on the communication channels), they undertake different kinds of tasks.
This especially holds for OSS projects, in which volunteers can participate and in which
developers are globally distributed [GHP99; Rie15; XJS09]. For instance, some developers
perform maintenance tasks and are involved in the project in a long-term manner, whereas
other developers participate in the project only to implement a specific feature. Consequently,
developers in OSS projects have different roles.

Nakakoji et al. [NYN+02] proposed the so-called “onion model” distinguishing eight
different roles of community members: There are several roles for project users (passive
user, reader, bug reporter), who do not contribute to the project’s source code. Five roles are
directly related to source-code contributions: bug fixer, peripheral developer, active devel-
oper, core member (also called maintainer), and project leader (who are mostly the project
initiators). Xu et al. [XGC+05] proposed a similar model composed of four developer roles.
As the distinction into four or five different developer roles is rather fine-grained and their
boundaries are blurred, researchers often conflate them into just two roles: Whereas bug
fixers and peripheral developers only contribute occasionally and sporadic, according to the
“onion model”, active developers, core members, and project leaders contribute regularly. As
a consequence, the occasionally and sporadically contributing developers are called peripheral
developers, whereas the remaining ones are called core developers or maintainers [CH05;
CWL+06; JAH+17; JAM17;MFH02; TRC10]. Researchers sometimes additionally consider the
role of one-time contributors (also called newcomers), who contribute only once to a project
(e.g., provide a single bug fix) [CZS+20; LC17]. One-time contributors, though, are consid-
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ered to be part of the group of peripheral developers [LCB17; PSG16; SRS+12]. In Figure 2.2,
we provide an overview of the developer roles between which we distinguish in this thesis.

In addition to the above mentioned developer roles, there are also other approaches on
how developer roles can be defined. For example, Cheng et al. [CLL+17] distinguish be-
tween developmental core developers and collaborative core developers. However, such a
distinction is not disjoint, as highly active developers may also collaborate with many others.
Constantino et al. [CZS+20] differentiate between project roles and committer roles. Whereas
the project roles represent various organizational and potentially overlapping tasks (devel-
oper, maintainer, team leader, project promoter, reviewer, or coordinator), the committer
roles encompass what we consider as core and peripheral developer roles. Montandon et al.
[MVS21] distinguish technical roles of GitHub users across projects, driven by the variety
of technical tasks a developer mostly takes across all the projects a developer contributes to
(e.g., contribute to the frontend, to the backend, or to the continuous integration), whereas
we study the activity role of a developer within a specific project.

Furthermore, Trinkenreich et al. [TGW+20] found, by means of an interview study, that
beside “project-centric roles” (such as programming or system administration), in OSS
projects, there are also “community-centric roles” that are not related to programming tasks
at all, such as strategic managing tasks “to make projects more welcoming, inclusive, and
sustainable”. As such management tasks are often not visible in the source-code repositories,
contributors that take on such roles are also called “hidden figures” [TGW+20]. While these
management tasks are important for the sustainability of an OSS project, in this thesis, we
mainly focus on developers’ activities that are related to source-code changes and investigate
how they are reflected in communication activities.

2.3 Analyzing Developer Networks

To detect developer roles or to obtain insights into the organizational structure of an OSS
project, researchers often use a network perspective of the project [e.g., AW18; BC14; BGD+06;
CWL+06; DKS+10; EKB+17; GLM06; HAT+21; JAH+17; JAM17; LRG+06; MGJL21; MW11;
PT21; TPS+19]. Previous work has shown that adopting methods and concepts from social-
network analysis is also beneficial for a socio-technical analysis of OSS projects. A network
perspective enables researchers and project stakeholders to model and visualize the relation-
ships and connections between different developers and their activities in the project. For
example, if a developer is connected to many other developers, this could be an indicator that
this developer should be treated to be a core developer. Besides, the network perspective also
allows to measure different network characteristics and their evolution over time, which can
be valuable information to detect changes in the organizational structure of an OSS project.
In the following, we introduce the different types of networks that we use in this thesis,
as well as the network characteristics and network metrics that we employ in our analyses.

2.3.1 Building Developer Networks

We model a developer network as a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 is the
set of edges [BE05; Ste10]. In our setting, the set of vertices consists of all developers who
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have participated in the project, and the set of edges consists of the connections between the
developers. That is, an edge 𝑒 = (𝑑1, 𝑑2) ∈ 𝐸 with 𝑑1, 𝑑2 ∈ 𝑉 exists if there is a connection
between developers 𝑑1 and 𝑑2. These connections can model different relationships between
the developers, which is why we differentiate between different network types:
cochange: In a cochange network, an edge between two developers represents the collabora-

tion between these two developers. That is, the developers have both edited a common
source-code artifact (e.g., file or function) [GHJ98; JMA+15; JSS11; PBD+14; PD08;
ZZW+05].

mail: In a mail network, an edge between two developers represents the communication
between these two developers on the mailing list. That is, the developers both sent an
e-mail to the same e-mail thread [BGD+06; BPD+08; PBD+14; SFD05; SSS17].

issue: In an issue network, an edge between two developers represents the communication be-
tween these two developers on the issue tracker. That is, the developers both contributed
to the same issue, for instance, by commenting on or reviewing the issue [CWL+06;
HKC+11; MJT+22; OHM+18; PBD+14; SGR11].

In addition,we build combined network types that consist ofmultiple of the above described
relationships. For instance, the cochange+issue network consists of edges that represent the
collaboration between two developers on the source code and of edges that represent the
communication between two developers on the issue tracker. In such combined networks,
we keep the information which edge has originated from which individual network type.
However, in this thesis, we do not make use of this information and, thus, ignore the type of
an edge in combined networks, as we analyze the combined networks only in addition to the
individual network types. Using combined network types, we can analyzemultiple interaction
channels together and can get a more general view on how the developers interact with each
other, may it be collaboration or communication, independent of the concrete channel.

To emphasize the underlying data source and the activities the developers perform, we
sometimes refer to cochange networks as collaboration networks and to mail or issue networks
as communication networks.

When we consider only a subset of the vertices 𝑉 of a network 𝐺 = (𝑉, 𝐸) (i.e., a subset of
the developers) and the edges between the vertices of the subset, the resulting network is
called a subgraph or a sub-network [Ste10].

During the construction of networks, one needs to decide on two network properties,
namely directedness and simplicity, which both affect the way how edges are constructed.

Directedness If a network is undirected, its edges do not have a direction. That is, (𝑑1, 𝑑2) =
(𝑑2, 𝑑1). So, the edges (𝑑1, 𝑑2) and (𝑑2, 𝑑1) are considered to be identical as both model a
relationship between 𝑑1 and 𝑑2. Sometimes, this is also denoted by {𝑑1, 𝑑2} ∈ 𝐸 to show that
the order of the vertices when defining an edge is arbitrary in undirected networks [BE05].
In a directed network, however, (𝑑1, 𝑑2) ≠ (𝑑2, 𝑑1) holds, which means that it matters who has
initiated the relationship [BE05]. In our developer networks, if we use directed networks, the
direction of an edge describes a temporal order of two events. For example, if developer 𝑑1
replies to an e-mail of developer 𝑑2, then 𝑑1 initiates the relationship between them, and,
therefore, we model their relationship by an edge from 𝑑1 to 𝑑2. Similarly, when developer 𝑑1
changes a file that has been changed by developer 𝑑2 beforehand, we model this relationship
in the developer network as an edge from 𝑑1 to 𝑑2. In Figure 2.3, we visualize an example of a



2.3 Analyzing Developer Networks 15

𝑑1 𝑑2

directed

𝑑1 𝑑2

undirected

Figure 2.3: Directed and undirected developer networks: (left) vertices 𝑑1 and 𝑑2 are connected by
an undirected edge; (right) vertices 𝑑1 and 𝑑2 are connected by a directed edge, that is,
𝑑1 is the initiator of the interaction (e.g., 𝑑1 changes a file that 𝑑2 has already changed
beforehand).

𝑑1 𝑑2

simplified

𝑑1 𝑑2

unsimplified

Figure 2.4: Simplified and unsimplified developer networks: (left) vertices 𝑑1 and 𝑑2 are connected
by multiple edges and, thus, the network is unsimplified (by definition); (right) ver-
tices 𝑑1 and 𝑑2 are connected by a simplified edge.

directed and an example of an undirected network. When modeling developers’ interactions,
the choice of using directed or undirected networks depends on whether the temporal order
between two events should be considered or not. However, it is worth to note that, in many
cases, and also for many network metrics that we will introduce below, the direction of edges
is ignored even when the network is directed.

Simplicity Beside the direction, one also needs to decide whether the frequency of inter-
actions between two developers matters, or whether just the fact that there is an interaction
between the two developers at all should be modeled, no matter to which extent. In the latter
case, in which only one edge between any two developer is allowed, the network is called
simplified, since multiple edges become simplified to a single edge. In this case, the original
number of edges between these two developers can be stored as an additional edge attribute,
called edge weight, if necessary. In simplified networks, also loop edges (i.e., edges from a vertex
to itself) are removed, as such edges do not model an interaction between two vertices [Ste10].
Opposed to that, when we allow a network to have multiple edges between a pair of vertices
or to contain loops, the network is called an unsimplified network. In Figure 2.4, we provide an
example of a simplified and an example of an unsimplified network. In general, simplification
matters when the number of connections from one vertex to another is analyzed: It makes a
difference whether a developer has 100 connections to 100 different developers or 100 connec-
tions to the very same developer. In an unsimplified network, we cannot differentiate between
these two cases by simply counting edges, whereas, in a simplified network, the latter 100 con-
nections would be conflated into one single edge. Thus, using simplified networks helps avoid
that a network is distorted by a pair of developers that has extraordinarily many activities
(e.g., many replies to each other in a single issue or mailing-list thread) that would lead to an
extraordinary high number of edges. However, by simplification, we also lose information
about the number of interactions (e.g., communication events), which could be a useful
piece of information when assessing developers’ roles based on their activities in a project.
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In this thesis, we cover both, simplified and unsimplified, aswell as directed and undirected
networks, as all four combinations of these properties provide different views on the network
structure and allow us to abstract from OSS projects in different ways.

2.3.2 Subsequent and Sliding Time Windows

When analyzing the collaboration and communication of large and long-lasting OSS projects,
it is important to think about the time period that is used to build a developer network. For
example, if two developers have edited the same file but with a temporal distance of 20 years,
the therefrom resulting edge might not really capture a collaboration activity between these
developers. This is whywe expect developers’ activities to be temporally close-by in order to be
treated as collaboration (as already mentioned above in Section 2.1). To account for temporal
proximity of developers’ activities when constructing developer networks, we split networks
into subsequent windows that capture a specific time period of length 𝑙, such as 6 months, for
example, as common in the literature [e.g., HKC+11; MW11; PBD+14]. More formally, let
𝑇 = [𝑡0, 𝑡max] be the whole time period of a project that we analyze (for which we were able
to extract collaboration and communication data), where 𝑡0 denotes the earliest point in time
for which we have data (e.g., the first commit or the first e-mail), and 𝑡max denotes the latest
point in time (e.g., the last commit or e-mail that we analyze in our dataset). Then, we get the
set of subsequent time windows of length 𝑙 (in months), 𝑇𝑙, subsequent, as follows:19

𝑇𝑙, subsequent = { [(𝑡0 + 𝑥 ⋅ 𝑙), (𝑡0 + (𝑥 + 1) ⋅ 𝑙)[ ∣ 𝑥 ∈ {0, 1, … , 𝑛},

𝑡0 + (𝑛 + 1) ⋅ 𝑙 ≤ 𝑡𝑚𝑎𝑥, 𝑛 ∈ ℕ}
(2.1)

We refer to the elements of 𝑇𝑙, subsequent as time windows or time ranges. For example, when
𝑙 = 6 months, we also talk about 6-months ranges. When we build developer networks, we
build a separate network for each of the time ranges that are contained in 𝑇𝑙, subsequent. This
way, we can make sure that the activities that cause an edge in the network have a maximal
temporal distance of 𝑙. However, using this condition for the edge construction, we miss edges
that cross the borders of two subsequent time ranges. Therefore, we sometimes also use sliding
windows, in which we add overlapping time ranges that capture half of the preceding and half
of the succeeding time window, not to miss the edges that cross the time windows [JAM17].
Accordingly, the set of sliding windows of length 𝑙, 𝑇𝑙, sliding, is defined as follows:

𝑇𝑙, sliding = 𝑇𝑙, subsequent ∪

{ [(𝑡0 +
1
2𝑙 + 𝑥 ⋅ 𝑙), (𝑡0 +

1
2𝑙 + (𝑥 + 1) ⋅ 𝑙)[ ∣ 𝑥 ∈ {0, 1, … , 𝑛′},

𝑡0 +
1
2𝑙 + (𝑛′+ 1) ⋅ 𝑙 ≤ 𝑡𝑚𝑎𝑥 ,

𝑛′ ∈ ℕ}

(2.2)

19 We consider 0 to be part of ℕ. This holds throughout the whole thesis.
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(A) complete time range 𝑇:

(B) subsequent windows 𝑇𝑙, subsequent:

(C) sliding windows 𝑇𝑙, sliding:

𝑡0 𝑡max

complete time range

time range 1 time range 2 time range 3 time range 4 time range 5

𝑡0 𝑡maxc2c1

𝑡0 𝑡maxc2c1

time range 1 time range 3 time range 5 time range 7 time range 9

time range 2 time range 4 time range 6 time range 8

Figure 2.5: Assume that 𝑡0 is the initial commit of a software project and 𝑡max represents today.
(A) The complete time range of all available data is covered by the interval [𝑡0, 𝑡max].
(B) When we use subsequent time windows, in this example, we get 5 time ranges of equal
length 𝑙 between 𝑡0 and 𝑡max, namely the time ranges 1, 2, 3, 4, and 5. If there is a relationship
between activity 𝑐1 and activity 𝑐2, we are not able to cover this relationship as an edge
in any network, as there is no time range that contains both activities. (C) When we use
sliding windows, we end up in 9 overlapping time ranges of the same length 𝑙, where the
time ranges 2, 4, 6, and 8 cover the second half of their preceding and the first half of their
succeeding time range. If there is a relationship between the activities 𝑐1 and 𝑐2, we are
able to relate them to each other by an edge in the network of time range 8, as this time
range contains both activities.

Again, we refer to the elements of 𝑇𝑙, sliding as time windows or time ranges without explicitly
mentioning the sliding windows if it is mentioned beforehand that, in a specific study, sliding
windows are used to construct the ranges.

In Figure 2.5, we exemplarily visualize 𝑇, 𝑇𝑙, subsequent, and 𝑇𝑙, sliding. Moreover, in this figure,
we demonstrate that we might miss some edges between two activities that cross time ranges
when we use subsequent time ranges, while we are able to cover these edges when we
use sliding windows. Note that the last time range may end earlier than 𝑡max (see also the
corresponding ≤ conditions in Equations 2.1 and 2.2). That is, if the time period between the
end of the last time range and 𝑡max does not sum up to a full time range of length 𝑙 any more,
we ignore this time period and do not take it into account for our analyses, as considering
this time period would distort our results due to considering incomplete time ranges or time
ranges of unequal lengths.
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2.3.3 Characteristics of Networks

When analyzing networks, it may be worth looking for specific characteristics of these net-
works. In particular, when analyzing the evolution of networks, specific characteristics of
these networks and their changes can be used to reveal how the networks change over time.
Especially in the context of developer networks, their characteristics can provide valuable
information about the organizational structure of the underlying OSS project, about the roles
of the individual developers in the project, and also about the alignment of collaboration and
communication in the project [e.g., AW18; EKB+17; HSA20; JAH+17; JAM17; ZYW11].

When analyzing network characteristics, we differentiate between characteristics that cover
the whole network (i.e., the whole project, within a given time range) and characteristics
that are specific for individual vertices (i.e., developers in the networks that we analyze).
Let us begin with the characteristics of the whole network, which describe the structure and
connectedness of a network in its entirety:

Average Degree The degree of a vertex 𝑣 is the number of edges a vertex has [Bar16;
Ste10]. That is, in an undirected, simplified network, the vertex degree represents the number
of vertices to which a vertex is connected. Remember that, in a directed or unsimplified
network, there can be more than one edge between a pair of vertices. While the vertex degree
is computed separately for each vertex, the average degree is a network characteristic that
describes how many edges a vertex in the network has on average [Bar16]. Thus, the average
degree is a rough indicator for the number of interactions an average developer is involved in.

Density When analyzing networks, the number of existing edges in the network plays
a vital role. Therefore, the density of a network is defined to be the ratio of the number of
existing edges compared to the maximum number of possible edges [WF94]:

#𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑒𝑑𝑔𝑒𝑠
#𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠 (2.3)

Note that the density is only well-defined for simplified networks, in which there can be
either no or exactly one edge (per direction in case of directed networks) between each pair
of vertices. If every vertex is connected to every other vertex in the network, the density of
the network is 1. However, if the network does not contain any edges, its density is 0. In a
developer network, the density indicates the general level of developer interaction. Whereas
a high density shows that many different developers interact with many others, a low density
reveals that there are only few interactions between the developers [KG13].

Clustering Coefficients According to Brandes and Erlebach [BE05], clustering means
putting the vertices of a network into “natural groups” [BE05]. So, the clustering coefficient
is a metric that indicates how clustered, that is, how tightly connected specific parts of a
network are. This information about a network can be valuable for assessing the developers’
embeddedness in the project community and how interconnected the developers are (i.e.,
whether they interact with different developers that are not interacting with each other, or
whether they interact with developers that are well connected with each other) [e.g., JAM17;
LRG04; XCM06; ZG13].
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A B

Figure 2.6: Networks A and B both have 16 vertices. The global clustering coefficient of network A
is 0.07 because there is only one triangle in it, but it contains numerous connected triples.
Opposed to that, network B consists of a lot of triangles and tightly-connected clusters,
resulting in a global clustering coefficient of 0.72.

There are different means of how to compute clustering coefficients, for example, global or
local clustering coefficients. Usually, the direction of edges is ignored while computing the
clustering coefficient. The global clustering coefficient (sometimes called transitivity) can be
calculated by relating the number of triangles in the network and the number of connected
triples to each other [WF94]. For better understanding, a triangle in a graph 𝐺 is a subgraph
of 𝐺 consisting of exactly three vertices that are pairwise connected [BE05]. Further, a con-
nected triple is a set of three vertices that lie on a path of length two, that is, the first vertex is
connected to the second one and the second one in turn to the third one. With that, the global
clustering coefficient is calculated as follows [WF94]:

3 × #𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠
#𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 (2.4)

The global clustering coefficient tends to be 1 if the considered network is tightly connected:
Since each triangle can be considered as three different entities of connected triples, the
numerator of the above fraction becomes equal to the denominator if the whole network
consists almost entirely of triangles. In Figure 2.6, we show two example networks, to provide
a visual perspective on what the global clustering coefficient describes. Whereas network A is
weakly connected and, thus, results in a low global clustering coefficient of 0.07, network B is
highly clustered and, therefore, has a comparably high global clustering coefficient of 0.72. As
we can clearly see from the example network’s visualization, the highly clustered network B
contains multiple groups of developers (i.e., clusters) that are strongly interconnected. That
is, within these tightly-connected groups, most of the developers directly interact with each
other and, therefore, make a fast and easy exchange of information possible [GM07].

While the global clustering coefficient provides one number that indicates how the network
is clustered, it does not allow any conclusions to be drawn about the role of the individual
vertices in the network. The local clustering coefficient, however, is calculated for each vertex in
the network, and it states how many neighbors of a vertex (i.e., vertices that are connected to
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Figure 2.7: Four examples of the local clustering coefficient: 𝑐𝑣1
to 𝑐𝑣4

are calculated for four different
vertices 𝑣1 to 𝑣4 according to the definition of the local clustering coefficient in Equation 2.5.
If the neighbors of a vertex are not connected at all, the local clustering coefficient is 0. If
the neighbors of a vertex are fully connected, the local clustering coefficient is 1.

the considered vertex) are connected with each other as well, compared to the maximum
possible number of edges between these neighbors [WS98]. That is, the local clustering
coefficient of a vertex is the ratio of the number of edges in the network that exist among all
the neighbors of the considered vertex to the maximum number of edges that are possible
among these neighbors. Thus, for a vertex 𝑖, the corresponding local clustering coefficient 𝑐𝑖
is defined as follows:

𝑐𝑖 =
2 ⋅ 𝑛𝑖

𝑘𝑖 ⋅ (𝑘𝑖 − 1) , (2.5)

with 𝑛𝑖 being the number of edges between the 𝑘𝑖 neighbors of vertex 𝑖. Again, as for the
global clustering coefficient, the local clustering coefficient 𝑐𝑖 of a vertex 𝑖 is 0 if none of its
neighbors are connected and 1 if all of its neighbors are connected with all other neighbors. In
Figure 2.7, we illustrate four examples of the values of the local clustering coefficient. As there
is an individual local clustering coefficient for each vertex, this metric lacks a general view
on the network as a whole. Nevertheless, to obtain a general metric for the whole network
from the local clustering coefficients, they can be aggregated to form such a general metric.
More specifically, to provide an example of such a general network metric, the network average
clustering coefficient is the mean of the local clustering coefficients of all vertices in the network.

In general, there also exist manymore different definitions of clustering coefficients than the
ones we have presented above. They are not all equal, but the overall interpretation is almost
the same for each definition of a clustering coefficient [BE05]. Yet, the different definitions of
clustering coefficients focus on slightly different aspects of the connections in a network. In
particular, there are other network characteristics (some of which we present below) that are
determined based on the different definitions of clustering coefficients presented above.

Modularity When a network consists of multiple clusters (i.e., a group of vertices that are
tightly connected), network scientists also call these clusters communities [Bar16]. According
to Barabási [Bar16], “a community is a locally dense connected subgraph in a network”.
This definition is in line with the work of Newman and Girvan [NG04], who coined the
term community structure, which they defined as a “division” of the network’s vertices “into
groups” for which the vertices within a group are densely connected with each other, but for
which there are only sparse connections between the groups. To measure the quality of such
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divisions,20 Newman and Girvan [NG04] defined a metric called modularity, which basically
checks for each determined community whether the number of edges between the vertices
that belong to the community is greater than the number of edges that would be expected
from a random network with the same number of edges, the same number of vertices, and
the same degree distribution (i.e., the distribution of the number of edges a vertex in the
network has) [Bar16]. For a more thorough description of the computation of modularity
and for a concrete mathematical definition, we refer to Clauset et al. [CNM04] and Newman
and Girvan [NG04]. The higher the modularity, the better is the community structure in the
network [Bar16]. Values above 0.3 indicate a “significant community structure” [CNM04].
Negative values indicate that the network lacks a community structure at all (i.e., each vertex
is seen as a separate community) [Bar16].

Thus, a high modularity of a developer network would be an indicator for the existence of a
community structure in the organizational structure of the software project. The existence of
a significant community structure in a developer network reveals that individual developers
form groups of developers who tightly interact with each other.

Average Path Length Average path length is a metric that computes the mean of the shortest
path lengths between each of two pairs of vertices. In turn, a path between two vertices 𝑣1
and 𝑣𝑠 is a sequence of vertices and edges 𝑣1, 𝑒1, 𝑣2, 𝑒2, ..., 𝑒𝑠, 𝑣𝑠 with 𝑒𝑖 = (𝑣𝑖, 𝑣𝑖 + 1) ∈ 𝐸, 𝑣𝑖 ∈
𝑉, 𝑖 ∈ ℕ, in which an edge 𝑒𝑖 appears, at most, once [BE05]. The length of a path is the
number of edges within the path. Hence, the shortest path between two vertices is the path
between them with minimal number of edges. In directed networks, both directions between
the two vertices are considered to calculate the average path length. In general, the average
path length represents the average number of vertices that are necessary to reach any other
vertex in the network. In developer networks, it indicates the average number of developers
that need to pairwisely interact with each other to pass information from one developer to
any another developer in the network. Instead of interpreting the average path length for
developers directly on its own, we use average path length in combination with other metrics
to obtain more advanced characteristics of the structure of a developer network, such as
small-worldness, which we describe next.

Small-Worldness In the literature, not only numeric metrics (such as clustering coefficient
or average path length) are used to characterize networks and their structure, but also classes
of different networks have been defined. According to Watts and Strogatz [WS98], there exist
three different classes of networks: regular networks, small-world networks, and random
networks. One central characteristic of regular networks is a high (local) clustering coefficient.
Random networks, on the other hand, do have small average shortest path lengths. As small-
world networks lie between regular and random networks, they have both characteristics,
namely high clustering coefficient and small average path length [BE05].

Humphries and Gurney [HG08] developed a technique to express small-worldness in
terms of numbers. According to their approach, the network to analyze is compared to
an Erdős-Rényi (ER) random network [ER59] of the same size, that is, a random network

20 To identify such divisions, there are many different algorithms for community detection, which might lead to
detecting different communities. For the sake of simplicity, in this thesis, when we refer to modularity, we simply
rely on the walk-trap community-detection algorithm, which is well-established [SZF+20; YAT16] and traverses
the network by randomly walking along its edges. For more details on that, we refer to Pons and Latapy [PL05].
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having exactly the same number of vertices and the same number of edges as the network
to analyze. To do so, the (global) clustering coefficients 𝐶 and the average path lengths 𝐿 of
both the random network and the network to analyze are computed. With that, they build
the following fraction 𝑆, which is a fraction of two other fractions:

𝑆 =
𝛾
𝜆 , with 𝛾 =

𝐶𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝐶𝑟𝑎𝑛𝑑𝑜𝑚
and 𝜆 =

𝐿𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝐿𝑟𝑎𝑛𝑑𝑜𝑚
(2.6)

In these fractions, the subscript 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 denotes the corresponding value of the network that
is analyzed, and 𝑟𝑎𝑛𝑑𝑜𝑚 denotes the respective value of the generated random network. The
analyzed network is assumed to be small-world if 𝑆 > 1 holds [HG08]. In this case, the
clustering coefficient of the network that is analyzed is apparently higher than the one of
the random network, and the respective average path length is smaller than the respective
average path length of the random network.

Let us have a look at the example networks in Figure 2.6 again: For network A, 𝑆 = 0.77 < 1
holds. Consequently, network A is not a small-world network. In contrast, for network B,
𝑆 = 2.98 > 1 holds. So, network B has the small-world property. Due to the high clustering
coefficient and the small average path length, every vertex can be reached from every other
vertex via a short path, which is why this kind of network is called “small world”. Singh
[Sin10] suggested that small-worldness would be beneficial for developer networks since
the small average path length and the high clustering coefficient allow a fast and efficient
information flow between the developers that eases coordination among the developers.

Scale-Freeness Scale-freeness is a network metric that considers the degree distribution of
the vertices in a network. The degree distribution of a network models the probability that a
vertex has a specific degree [JNB03]. If a network is scale-free, its degree distribution obeys a
power law [JNB03]. That is, in a scale-free network, there usually are many vertices that have
a low degree, but few vertices that have a very high degree. This phenomenon is related to
the so-called “heavy tail” of the power-law distribution: While for a random network, whose
degree distribution is exponential, it is “extremely unlikely” that there is a vertex with an
exceptionally high degree, it is likely in networks whose degree distribution obeys a power
law [Job17]. In network theory, degree distributions are also used to build network growth
models, that is, to build models that describe the evolution of a network over time and that
model the probability for a vertex of a specific degree that it receives a new edge during the
next evolution step [JNB03]. Barabási and Albert [BA99] found out that scale-free networks
follow the principle of preferential attachment. That is, if a new vertex is added to a scale-free net-
work, it will probably be connected to vertices that are already highly connected (i.e., that have
a high vertex degree). In otherwords, scale-freenessmeans that theremay be some central hub
vertices due to the preferential-attachment principle. Suchlike hub vertices may play an impor-
tant role within the network, and, thus, also in the system (i.e., OSS project) that is modeled by
the network. The networks A and B in Figure 2.6 are scale-free, since their degree distributions
follow a power law. Indeed, they have few vertices with very high degree, and many vertices
with a rather low degree. However, in network C in Figure 2.8, we show a network that
is not scale-free: All vertices have a similar, low degree, but no vertex has a high degree.

To determine whether a network is scale-free or not, one needs to check whether its degree
distribution follows a power law. Usually, this is done by power-law fitting and a Kolmogorov-
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C D

Figure 2.8: Networks C and D both have 16 vertices. Network C is not scale-free since its degree
distribution does not follow a power law: All vertices have a similar degree, and there is
no vertex that has a very high degree. In contrast, network D is scale-free. In addition,
network D is hierarchical: There are only few vertices that have a very high degree (in
particular, there is only one such vertex: the central vertex) but a low local clustering
coefficient; and there are many vertices that have a low degree but a high local clustering
coefficient (all the outer vertices that are tightly connected with each other). Furthermore,
the central vertex in network D is the only vertex that connects the clusters, which are down
in the hierarchy, with the central vertex, which is top in the hierarchy. This shows that there
is a layered, hierarchical structure in network D.

Smirnov test. If the 𝑝-value of the Kolmogorov-Smirnov test is ≥ 0.05, then it cannot be rejected
that the degree distribution of the network “is drawn from a power-law distribution” [CSN09]
and, thus, the network is scale-free [DC13].

According to Dorogovtsev and Mendes [DM03], scale-free networks are robust to changes
and, especially, if a random vertex is removed, the network stays connectedwithout being split
into separate sub-networks. However, this may not necessarily hold if a very central vertex is
removed [CEA+01; JAM17]. For developer networks of OSS projects, scale-freeness is achiev-
able, as there are steadily developers leaving or joining, which should not distort the informa-
tion flow or coordination principles but should allow a successful continuation of the coordina-
tion and information flow in the project. Joblin et al. [JAM17] have shown that, for OSS projects
that have considerably more than 50 developers, the corresponding developer networks
usually are scale-free (after some initial turbulences at project initiation have disappeared).

Hierarchy Ravasz and Barabási [RB03] dealt with layered structures and detected a re-
lationship between local clustering coefficient and vertex degree. Hierarchical networks are
characterized by few vertices having high degree, but small local clustering coefficient, and a
huge number of locally highly clustered vertices with small degree. More generally speaking,
hierarchy describes how local groups of vertices are placed to each other [JAM17]. Similar
to scale-freeness, the high-degree vertices also play a central role here, as they are in the
upper part of the hierarchy. In network D in Figure 2.8, we show an example of an ideal
form of a hierarchical network. Note that the concept of hierarchy in networks differs from a
strict hierarchy in which there are only connections between different layers but not within
layers [RB03]. That is, in a hierarchical network, there usually are edges between vertices on
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the same layer of the hierarchical structure, which lead to the high local clustering coefficient
of the small-degree vertices that is inevitable for a hierarchical network by definition.

Hinds and McGrath [HM06] have shown that hierarchical organizational structures are
beneficial for the coordination among geographically distributed people. For developer
networks, Joblin et al. [JAM17] expected that hierarchy “indicates a centralized governance
structure where decisions are primarily made at the top and passed down through a chain of
command.” That is, if developer networks exhibit hierarchical structures, this could be an
indicator for the presence of organizational mechanisms to coordinate source-code changes
among different groups of developers [JAM17].

In this thesis, we dedicate an entire chapter to hierarchical structures, in which we also pro-
vide additional background information on higher-order network structures (see Chapter 5).

Vertex Centrality In contrast to the above described network metrics that describe the
structure and connectedness of a network in its entirety, we also consider network character-
istics that characterize individual vertices (i.e., developers): An important characteristic for a
vertex (and, in our setting, for a developer) is its centrality in the network, which captures
the embeddedness and the importance of a vertex in the network [GNL16; NG04].

In the literature, many different network centrality metrics have been defined (see Grando
et al. [GNL16]). From the large corpus of network centrality metrics, we selected three metrics
that are established in the literature and which cover different aspects of centrality:
Degree centrality is a local centrality metric. It is equal to the total degree of a developer in

the network, that is, the number of edges a developer has to other developers. The more
connections a developer has, the higher their degree centrality [BE05; BEJ18].

Eigenvector centrality is a global centrality metric. It incorporates the centralities of the
developers connected to a developer, to weight the importance of developers by the
importance of others they are interacting with. Hence, a developer can have a high
eigenvector centrality by either being connected to many other developers or by being
connected to developerswho also have a high eigenvector centrality [BE05; BEJ18; Bon07;
Bon72]. For a vertex 𝑖, its eigenvector centrality 𝑥𝑖 can be computed as 𝑥𝑖 = 1

𝜆 ∑𝑗∈𝑁(𝑖) 𝑥𝑗
where 𝑁(𝑖) is the set of neighbors of 𝑖 (i.e., the vertices that are connected to 𝑖 via an
edge) and 𝜆 is a constant [BEJ18; Job17]. Using a vector x that stores all the centrality
values 𝑥𝑖 for all vertices in the network, we can rewrite this equation as x = 1

𝜆Ax, where
A is the adjacency matrix of the network. The equation can then be transformed to the
“eigenvector equation” Ax = 𝜆x [Job17]. For details on how to solve this equation, we
refer to Bonacich [Bon87].

Hierarchy centrality considers the community structure of a network. It is calculated by
dividing the degree of a vertex by the local clustering coefficient of the vertex [RB03].
A high value in hierarchy centrality represents a developer having many connections to
other developers, which in turn are loosely connected amongst each other. A low value
stands for a developer down in the hierarchy, having only few connections to other devel-
opers but which are tightly connected among each other. Core developers should have
a high hierarchy centrality due to their coordinative role [JAH+17; JAM17; JMA+15].

Hence, using network centrality metrics, we are able to assess the role and importance of a
developer in the network, which represents the role of the developer in the organizational
structure of the project.
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In summary, all the described network characteristics, among others, help analyze devel-
oper networks with respect to the organizational structure of a project and the roles individual
developers play in the project. Using these characteristics also eases the investigation of how
developer networks change over time, which is also part of our research objectives.

2.4 Data Extraction and Data Processing

To perform our analyses on the coordination of OSS developers, we need to extract collab-
oration and communication data from the version-control system and the communication
channel of interest. In the literature, many different tools have been proposed to extract
collaboration data from source-code repositories [e.g., BKZ10; DP03; GSS21; SAB18]. For our
purposes, we rely on a couple of tools that combine the extraction of collaboration data and
communication data and also easily allow network constructions from the collected data. In
particular, we rely on the tool Codeface21 and its companion tool codeface-extraction22.

Commit Data Codeface is able to extract commit metadata from a VCS, such as the author
name and author date of a commit, as well as the committer name and committer date.23
In addition, the extracted commit metadata also contain information about which files are
changed in the commit, how many lines of code have been added or deleted, and what the
corresponding commit message is, etc.

E-Mail Data Beside gathering commit metadata, Codeface is also able to extract e-mail
header data from mbox24 files, namely information about the author, the e-mail subject, and
the date at which the e-mail was sent. To obtain the mbox files from the developer mailing
lists that we want to analyze via Codeface, we use the tool nntp2mbox25, which downloads the
mbox files from the public mailing-list archive Gmane26. We then provide the mbox files as
input to Codeface. In addition to the abovementioned header information, Codeface identifies
e-mail threads by cross-referencing e-mail headers. That is, it considers the <In-Reply-To>
and <References> tags in e-mail headers to group e-mails belonging to the same thread.27

21 https://github.com/se-sic/codeface/ (accessed at 2023-06-28).
Codeface has already been used in previous work [e.g., HSA20; JA22; JAH+17; JAM17; JMA+15; MJT+22].

22 https://github.com/se-sic/codeface-extraction/ (accessed at 2023-06-28)
23 The author date of a commit represents the point in time at which the author has created the commit. However,

the committer date represents the point in time at which the committer has integrated the commit into the main
repository. Whereas author and committer often differ when patches are sent to the mailing list and integrated
into the repository by another developer later, they mostly are equal when commits are integrated via GitHub
pull requests, for instance. In most of our analyses we only consider the author and the corresponding author
date, as it represents the point in time at which the commit was initially created by the author.

24 The mbox file format is a file format that allows to store multiple e-mails (including their header information and
attachments, etc.) in a single text file. Mailing-list archives such as Gmane allow to download a complete mailing
list in mbox format. The mbox format is defined by the standard RFC 4155:
https://datatracker.ietf.org/doc/html/rfc4155/ (accessed at 2023-06-28)

25 https://github.com/xai/nntp2mbox/ (accessed at 2023-06-28)
26 https://gmane.io/ (accessed at 2023-06-23). To search for archived mailing lists and find out which mailing lists

are available on Gmane, their admin interface can be used: https://admin.gmane.io/ (accessed at 2023-06-28)
27 In particular, Codeface uses the threading algorithm of the R package tm-plugin-mail in a fixed version taken

from https://github.com/bockthom/tm-plugin-mail/ (accessed at 2021-05-22), which basically implements
the standard RFC 5256: https://datatracker.ietf.org/doc/html/rfc5256/ (accessed at 2017-03-27)

https://github.com/se-sic/codeface/
https://github.com/se-sic/codeface-extraction/
https://datatracker.ietf.org/doc/html/rfc4155/
https://github.com/xai/nntp2mbox/
https://gmane.io/
https://admin.gmane.io/
https://github.com/bockthom/tm-plugin-mail/
https://datatracker.ietf.org/doc/html/rfc5256/
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Table 2.1: Extracted metadata from the different interaction channels.

Commit Data E-mail Data Issue Data

– Commit hash
– Commit message
– Author date
– Author name
– Author e-mail address
– Committer date
– Committer name
– Committer e-mail address
– Changed files
– Number of changed lines
– …

– Message id
– E-mail subject
– Author date
– Author name
– Author e-mail address
– E-mail thread
– …

– Issue id
– Issue title
– Event date
– Author name
– Author e-mail address
– Event type
– Additional information

depending on event type
– Whether it is a PR
– Issue state (open/closed)
– …

The commit data are extracted from the VCS, the e-mail data are extracted from mailing lists, and the issue data
are extracted from GitHub. We only provide a selection of the extracted information that is relevant for this thesis.

Issue Data Codeface is also capable of extracting data from Jira issue trackers; yet, we do
not extract Jira issues in this thesis, as already explained in Section 2.1.3.

For extracting issue data, we developed the tool GitHubWrapper28, which queries metadata
from GitHub’s REST API29. Our tool runs separate queries for a single project to crawl data
for issue events, reviews, review comments, and remaining comments from pull requests, as
GitHub’s REST API provides them via different interfaces of their API. Afterwards, GitHub-
Wrapper combines the data from the different interfaces and performs additional postprocess-
ing steps to unify the data (e.g., correctly determine the actual actor of a “subscribed” event, as
onGitHub such an event can either be actively triggered by a user subscribing themselves to an
issue or, passively, by being mentioned by someone else) or to gather additional information
(e.g., extracting names and e-mail addresses from referenced commits). The extracted issue
metadata contain information on which GitHub user has triggered which event (commented,
labeled, merged, etc.), on which issue or pull request, and at which point in time. Note that we
remove all events that have been triggered by the “ghost” user, because it is an replacement
for all GitHub users that have been deleted.30 Keeping the “ghost” user would distort our
analyses, as its activities correspond to all deleted users together and not to a single user.31

In Table 2.1, we provide an overview of the different information that we extract from
the VCS (commit data), from the mailing lists (e-mail data), and from GitHub issues (issue
data) via the aforementioned tools.

BotDetection When analyzingGitHub issue data, one also needs to take care of automated,
non-human actors, sincemanyGitHub projects use automatic bots, which, for instance, submit
comments to issues or review pull requests. Bots often also close abandoned issues, execute
automatic code refactorings, run continuous-integration tasks, or perform similar tasks [BP19;
GLD+20; MUD+19; WB19; WS20; WSS+18]. Previous research has shown that about 20% of

28 https://github.com/se-sic/GitHubWrapper/ (accessed at 2023–06-28)
29 https://docs.github.com/en/rest/ (accessed at 2022-03-14)
30 https://github.com/ghost/ (accessed at 2024-01-22)
31 https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-

on-github/managing-your-personal-account/deleting-your-personal-account/ (accessed at 2024-01-22)

https://github.com/se-sic/GitHubWrapper/
https://docs.github.com/en/rest/
https://github.com/ghost/
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-your-personal-account/deleting-your-personal-account/
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-your-personal-account/deleting-your-personal-account/
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issue comments are posted by bots and about 31% of pull requests involve bots [GDL+21].
Not to distort developer-network characteristics and the analysis of issue data with respect
to developer’s collaboration and communication activities, in general, we must detect and
remove bots’ activities from the extracted issue data.Whereas some bots are labeled byGitHub
to be bots or use a “bot” suffix in their usernames, research has found that many bots are not
labeled as such and also human users can use the “bot” suffix, which makes bot detection a
non-trivial task [GDL+21]. For that reason, Golzadeh et al. [GDL+21] have developed the
tool BoDeGHa32 to automatically detect bots based on the total number of comments and
commenting patterns, as bots’ comments are created automatically and follow certain patterns.
Unfortunately, many projects use predefined issue or pull-request comment templates33,
making BoDeGHa misclassify human users as bots when they mostly use templates or post
stereotyped comments. As a consequence, after using BoDeGHa for automatic bot detection
on GitHub users that have posted, at least, 2 000 comments in a project, we perform some
manual adjustments on a sample basis. For example, we classify 83 users that are widely-used
bots as a bot even if the automatic bot detection did not classify the user to be a bot (e.g.,
the “lockbot”34, which is a bot that automatically locks issues but usually does not post
comments and, therefore, is not detectable by BoDeGHa). In particular, we manually checked
all usernames that had a “bot” substring (such as the “lockbot”) whether they are marked as
a bot by GitHub. If so, we added them to the set of bots identified by BoDeGHa.

Combining Data As Codeface stores the commit data and e-mail data in a database,
whereas GitHubWrapper and BoDeGHa have their own output files, there is a need to com-
bine the data from the different sources and unify the different data formats via some post-
processing. To do so, we use the tool codeface-extraction, which ends up in dumping unified
comma-separated-value (CSV) files for author, commit, e-mail, issue, and bot data. codeface-
extraction is also able to dump all these data in a pseudonymized form thatwe use tomake the
collecteddata available in replication packages for the individual studies that we perform.35

Developer Disambiguation To match developers, Codeface and codeface-extraction
use a common id service to match developers who use the same name or the same e-mail
address.36 This way, we can match developers that use another name on GitHub than they
use to create commits in the VCS, but use the same e-mail address in both interaction chan-
nels, for example. Developers found in only one of the data sources are kept, though. To
match developers via names and e-mail addresses, Codeface and codeface-extraction use
the disambiguation heuristic of Oliva et al. [OSO+12], which has been proved to be accu-
rate [WSS+16]. On top of this, we perform additional sanity checks and manual corrections

32 https://github.com/mehdigolzadeh/BoDeGHa/ (accessed at 2023-06-28)
33 There are various different means of how issue templates can be used and enforced by a project,

which also varies during project evolution. One example can be found in the official documen-
tation of GitHub: https://docs.github.com/en/github/building-a-strong-community/about-issue-and-

pull-request-templates/ (accessed at 2022-03-14)
34 https://github.com/apps/lock/ (accessed at 2023-06-28)
35 For our studies that we describe in the following chapters, we provide the pseudonymized raw data on the

corresponding supplementary websites. We collect all the links to the supplementary websites in Appendix A.
36 As some GitHub users keep their real names or e-mail addresses private, we only use their public usernames if

no name or e-mail is available on GitHub.

https://github.com/mehdigolzadeh/BoDeGHa/
https://docs.github.com/en/github/building-a-strong-community/about-issue-and-pull-request-templates/
https://docs.github.com/en/github/building-a-strong-community/about-issue-and-pull-request-templates/
https://github.com/apps/lock/
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Figure 2.9: Overview of our data-extraction and data-processing toolchain: Codeface processes mail-
ing lists (which we have downloaded from publicly accessible archives via nntp2mbox)
and the source-code repository, whereas our GitHubWrapper and the bot-detection tool
BoDeGHa [GDL+21] extract data from the GitHub issues REST API. Then, codeface-
extraction combines and postprocesses all the data. Afterwards, coronet processes all
the data and constructs networks. Finally, we use the data processed by coronet in our
specific analysis scripts.

in cases where the automatic disambiguation heuristic is not able to match developers (e.g.,
due to special characters in their names or misspelled names).

Developer Network Analysis To perform our actual analyses on developer coordination
and organizational structures in OSS projects, we use the network library coronet37, which
basically reads the CSV files that were generated by codeface-extraction beforehand, pro-
cesses all the data, and provides functionality to build various kinds of developer networks
(as already described in Section 2.3). Within coronet, we also remove all bot-triggered events
from the extracted GitHub issue data.38 Finally, we use different analysis scripts that use the
functionality offered by coronet for the specific analyses that we perform in this thesis.

In Figure 2.9, we provide an overview of our entire data-extraction and data-processing
toolchain for the different sources of information (i.e., the different interaction channels) that
we analyze throughout this thesis.

37 https://github.com/se-sic/coronet/ (accessed at 2023-06-28)
38 Note that bot removal is not part of the default configuration of coronet (at least, not up to its version 4.4) and

needs to be specifically enabled in coronet’s project configuration.

https://github.com/se-sic/coronet/


3Synchronous Development in
Open-Source Software Projects

This chapter shares material with Bock et al. [BHJ+22].

The success of large software projects relies on the extent to which developers coordinate
their efforts. This is especially true for large-scale open-source software (OSS) projects, to
which often numerous globally distributed and independent developers contribute [Her07].
When multiple developers contribute to interrelated source-code fragments, changes that
lack coordination often introduce unintentional side effects. Developers must coordinate
their interdependent activities to prevent conflicting changes, to avoid bugs, or to keep
the source code simple and maintainable [Bir11; CHC08; CMR+09; KSD11]. In large-scale
projects, developer coordination is absolutely crucial to ensuring high-quality software and
to supporting high developer productivity [CH13].

Since software developers in OSS projects are often globally distributed, they mostly com-
municate via the Internet to discuss software issues or enhancements or to review source-code
changes [WGS03].Mailing lists, issue trackers, and instantmessengers are themost commonly
used communication channels for coordination of developers in OSS projects [SSF+17]. In
this study, we dedicate attention to analyzing developer communication on mailing lists
because they are historically rich and well-established sources of data for discussions re-
garding software architecture and reviewing of source-code changes [RGS08; RLM19]. In
a recent study on 37 OSS projects, Mannan et al. [MAJ+20] have shown that about 89% of
such discussions take place on the project’s mailing list. Mailing lists are a greater source
of longitudinal data than more recently introduced social coding platforms (e.g., GitHub),
because their usage dates back more than 10 years (see Table 3.2). Mailing lists are also used
to discuss the outcomes of developer conferences and similar events where complex issues
and long-term plans for feature development are discussed. Even developers in OSS projects
who work for corporations may use mailing-list discussions to communicate their intentions
to others as public communication is one of the basic concepts in OSS projects [Rie15].

To obtain deeper insights into the fundamentals of developer coordination and the role
communication plays in OSS projects, we investigate the relationship between co-editing
activities on source-code artifacts and communication activities on the developer mailing list.
For this purpose, we replicate and extend an empirical study of Xuan and Filkov [XF14] on
synchronous development in OSS projects, which we will refer to as the original study. The
authors of the original study identified pairs of developers co-editing files to explore the rela-

29



30 Synchronous Development in Open-Source Software Projects

tionship between developer productivity and communication activities. Their major finding
was that time intervals rich in co-editing activities are correlated with time intervals rich in
e-mail activities and, more importantly, that during these synchronized periods developer
productivity was higher.

The original study already provided interesting and useful insights on developer collabora-
tion and developer communication. Nonetheless, they relied on a rather low-level, simplistic
view on communication, as all e-mails sent to the mailing list within a specific time period are
considered equally likely to be related to each other. Compared to the original study, we take
a more nuanced view on communication activity by grouping individual e-mails together
according to the thread of communication they belong to. That is, we extend the original study
by lifting the message-based view of developer communication to a conversation-based view,
which incorporates the context of e-mails by grouping e-mails according to threads. Since
e-mails belonging to the same thread address a relatively narrow topic space, the likelihood
of these e-mails being content-wise related is higher [BPD+08]. A heuristic solely based on
temporally close-by e-mails sent to the mailing list likely misses meaningful communicative
associations between developers. Hence, we investigate the question of whether there is a
difference in the dependence of social and technical activities using a message-based or a
conversation-based view of the complex processes involved in developer coordination.

By means of an empirical study, we investigate whether the different abstraction levels of
developer communication (message-based vs. conversation-based) affect the relationship
between commit activity and e-mail communication observed in the original study using
state-of-the-art time-series analysis. Knowing about differences between abstraction levels
could be exploited for improving developer coordination (e.g., to predict on which parts of
the source code a developer is likely to work on next). In particular, we investigate whether
synchronous development is temporally aligned with coordination on the mailing list. To
find out whether developers working on the same file contemporaneously also communicate,
that is, to measure synchronization, we use dynamic time warping [RJ93], a state-of-the-art
time-series analysis technique.

It is important to note that, when we investigate whether co-editing activity is accompanied
by communication on the mailing list, we cannot be sure that the mailing-list communication
is related to the co-editing activity. However, it is a difficult task to find out which e-mails
are related to the co-editing activity and which not, as e-mails sent by a developer shortly
before or after a commit could also cover completely unrelated topics (especially if there are
many commits and e-mails within a short period of time); when relating only e-mails whose
subject is related to the commit, we may omit related e-mails that have a different subject. For
that reason, we propose two different approaches, which we call the lower-bound approach
and the upper-bound approach: Whereas the upper-bound approach considers all e-mails sent
to the mailing list to identify time intervals rich in e-mail activities (as in the original study),
the lower-bound approach considers only e-mails whose subject is topically related to the co-
editing activity following a very strict matching procedure. We call them upper-bound and
lower-bound because the former considers all messages without restrictions, ending up in
the maximum amount of considering communication activity, and the latter considers only
messages related to co-editing activity, which is a very small subset of the total set of e-mails.
Hence, the actual amount of the communication that is content-wise related to the co-editing
activity lies in-between these bounds. For the upper-bound approach, we additionally perform
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manual checks to explore to which extent the content of e-mail communication is related to
temporally close-by collaboration on the source code.

For the purpose of the study, we analyze a combined history of 40 years of data for three
highly active and widely deployed OSS projects: QEMU, BusyBox, and OpenSSL. We inves-
tigate synchronous collaboration on source code and coordination on mailing lists using
different abstraction levels. Overall, we found evidence that a more abstract and higher-level
view of developer communication describes developer coordination more accurately than a
less abstract and more simplistic view.

In summary, we make the following contributions:
• A replication of the original study on a different dataset: three highly active and widely

deployed OSS projects. Regarding the existence of synchronous development, we are
able to confirm the results of the original study. However, we cannot confirm the results
of the original study regarding code growth and implementation effort in synchronous
development nor the relationship between the number of synchronous collaboration
activities and the number of synchronous communication activities.

• A method for raising the abstraction level of exploring synchronization between de-
velopers’ collaboration and communication activities: We lift the view of developer
communication from a message-based model, which treats each e-mail individually, to
a conversation-based model, which is semantically richer due to grouping e-mails that
represent conceptually related discussions.

• A continuous variable synchronicity degree to quantify the significance of co-editing
artifacts. (Previously only binary variables were used.)

• An upper bound and a lower bound for determining whether e-mail communication is
related to co-editing activity, as relating e-mail communication to co-editing activity is
not trivial.

• Amanual investigationwhether e-mail communication is content-wise related to tempo-
rally close-by collaboration activities. The results of our qualitative analysis indicate that
only between 29% and 47% (depending on the subject project) of temporally aligned
collaboration and communication activities are content-wise related.

• A novel technique based on dynamic time warping (DTW) to measure synchronization
of activities across source code and mailing lists to adequately take care of the dynamic
nature of socio-technical congruence.

• An extensive empirical study of three highly active and widely deployed OSS projects.
Our results indicate that a more abstract and higher-level view on communication leads
to a stronger statistical dependence between developers’ pairwise technical activities
than a less abstract, simplistic view.

• A replication package including pseudonymized raw data, analysis scripts, and results
on a supplementary website:1
https://se-sic.github.io/paper-coordination-bursts/ and
https://zenodo.org/record/5131282 .

1 Note that the way in which the replication package is presented on the supplementary website slightly deviates
from what we present in the following sections, since the website belongs to Bock et al. [BHJ+22], which also
covers additional research questions that are out of scope of this thesis. Nevertheless, beside presenting additional
data and analyses that are not present in this chapter, the results that we present on the supplementary website
and the ones we present in this thesis are identical.

https://se-sic.github.io/paper-coordination-bursts/
https://zenodo.org/record/5131282
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3.1 Background & Related Work

Xuan and Filkov [XF14] defined synchronous development as the situationwhere two developers
contribute to the same source-code file within a short period of time. In the original study,
they considered two different kinds of synchronous activities: co-commit bursts and e-mail
bursts. To explore the temporal relationship between co-commit bursts and e-mail bursts, they
constructed continuous curves by smoothing time series of bursts. In the end, they calculated
the correlation between these curves tomeasure the synchronization of collaboration activities
and communication activities.

In this section, we first introduce the algorithms and concepts of co-commit bursts and
e-mail bursts as well as the corresponding continuous curves in detail, as used by the authors
of the original study. Afterwards, we provide an overview of related work in which the
relationship between source-code changes and communication activities has been investi-
gated. Thereafter, we briefly introduce the concept of dynamic time warping, which is an
established time-series analysis technique, which we apply in our study to investigate the
temporal correlation between co-commit bursts and e-mail bursts.

3.1.1 C-Bursts, E-Bursts, and the Corresponding Curves

Co-Commit Bursts (C-Bursts) When two developers commit to the same source-code
artifact (i.e., file) within a short period of time, Xuan and Filkov [XF14] called this a co-
commit burst (short, C-burst). For two commits to be included in a burst, the time difference
between the commits must not exceed a specified time window, denoted by 𝜉. The time window
resembles the fact that developers may have different preferences of how quickly and how
often they contribute code. Note that looking at only pairs of developers is not a limitation,
as groups of more than two collaborating developers end up in separate C-bursts for each
pair of developers that are part of such a group. Hence, group-wise collaboration can be
considered as the composition of the collaborations of individual developer pairs.

As we describe in Algorithm 3.1 (adapted from Xuan and Filkov [XF14]), for each pair
of developers (Lines 2–22), it is checked whether the two developers are authors of mutual
commits to the same source-code artifact that have a time2 distance of, at most, 𝜉, and whether
these commits have been made to, at least, one common artifact (Line 7). If so, these commits
form a C-burst (Lines 4–10), where each burst is represented by a start time and an end
time. Finally, overlapping bursts of the same developer pair are merged (Lines 11–19). This
algorithm has a complexity of 𝒪(|𝐷|2 ⋅ |𝑐𝑚𝑎𝑥|2), with |𝐷| being the number of developers and
|𝑐𝑚𝑎𝑥| being the maximum number of commits of a single developer in the project.

In Figure 3.1, we show an example of four commits made by one pair of developers, 𝐷1
and 𝐷2. In the commits 𝑐1 and 𝑐2, both 𝐷1 and 𝐷2 change artifact 𝐴3. Using a time window
𝜉 = 5 days, 𝑐1 and 𝑐2 were created within the time window and form a C-burst. Analogously,
𝑐2 and 𝑐3 form a C-burst due to the change of artifact 𝐴5. Since both bursts overlap at 𝑐2, they
are merged into one burst. 𝑐4 also changes the same artifact as 𝑐3, but these commits have a
time distance that is larger than the time window. Hence, 𝑐3 and 𝑐4 do not form a C-burst.

2 All timestamps are transferred to the Coordinated Universal Time (UTC) first.
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𝐷1 𝐷1𝐷2 𝐷2

commit 𝑐1 commit 𝑐2 commit 𝑐3 commit 𝑐4

A1
A2
A3

A3
A4
A5

A5 A5

day 4 day 8 day 11 day 17

C-burst

time

< 5 days < 5 days > 5 days

Figure 3.1: An example containing four commits made by one pair of developers, 𝐷1 and 𝐷2.
Commits 𝑐1, 𝑐2, and 𝑐3 form a C-burst: In 𝑐1 and 𝑐2, both developers change one arti-
fact synchronously within the time window 𝜉 of 5 days; commits 𝑐2 and 𝑐3 also form a burst
for the same reason. Since these two bursts overlap at 𝑐2, they are combined to one burst.
𝑐3 and 𝑐4 do not form a C-burst as their temporal distance is larger than the time window.

Algorithm 3.1 Identification of C-bursts
Input: list of commits 𝑐 (annotated with timestamps and developer names)
1: bursts ← ∅
2: for each pair of developers {𝐴,𝐵} do
3: bursts𝐴𝐵 ← ∅
4: for each commit 𝑐𝐴 ∈ 𝑐 authored by developer 𝐴 do
5: burst ← {𝑐𝐴}
6: for each commit 𝑐𝐵 ∈ 𝑐 authored by developer 𝐵 do
7: if |time(𝑐𝐴) − time(𝑐𝐵)| ≤ 𝜉

and artifacts(𝑐𝐴) ∩ artifacts(𝑐𝐵) ≠ ∅ then
8: burst ← burst ∪ {𝑐𝐵}
9: end if

10: end for
11: if burst ≠ {𝑐𝐴} then
12: for each burst 𝑏 ∈ bursts𝐴𝐵 do
13: if overlap(burst, 𝑏) then
14: burst ← merge(burst, 𝑏)
15: bursts𝐴𝐵 ← bursts𝐴𝐵 \ {𝑏}
16: end if
17: end for
18: bursts𝐴𝐵 ← bursts𝐴𝐵 ∪ burst
19: end if
20: end for
21: bursts ← bursts ∪ {bursts𝐴𝐵}
22: end for
Output: bursts containing lists of C-bursts for all developer pairs

In addition to identifying C-bursts, the original study analyzed how C-bursts are related
to code growth Δ𝐿 and implementation effort Δ𝑊, defined as follows: Let 𝐿Add denote the
number of added lines of code (LOC) per commit and 𝐿Delete the number of deleted LOC per
commit. Then, Δ𝐿 = 𝐿Add − 𝐿Delete and Δ𝑊 = 𝐿Add + 𝐿Delete [XF14].



34 Synchronous Development in Open-Source Software Projects
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Figure 3.2: Example of the C-curve and the E-curve of a pair of developers. The horizontal axis
represents the time dimension (days), the vertical axis the intensity of the bursts (number
of commits and e-mails, respectively, within the burst).

E-Mail Bursts (E-Bursts) Xuan and Filkov [XF14] used amessage-basedmodel to identify
e-mail bursts. An e-mail burst (short, E-burst) arises if two persons each send an e-mail to the
mailing list within a defined time window 𝜉. For determining E-bursts, Xuan and Filkov used
almost the same approach as for identifying C-bursts: For each pair of developers, iterate over
all the e-mails sent by one developer and search for all e-mails of the other developer whose
creation dates have an absolute time difference of less than or equal 𝜉 to the e-mail of the
first developer. As opposed to the C-burst identification, there are no further conditions to be
checked. Hence, all detected e-mails of two different developers within the time window 𝜉
form an E-burst, where each burst is represented by a start time and an end time. Similar to
C-bursts, overlapping E-bursts of the same developer pair are merged.

C-Curves and E-Curves To check whether two developers coordinate their collaboration,
that is, to check whether C-bursts and E-bursts of a developer pair are synchronized, Xuan
and Filkov [XF14] introduced the notions of C-curves and E-curves. They computed a C-
curve (or E-curve, respectively) for each developer pair denoting the number of commits (or
e-mails, respectively) that are part of a burst, aggregated for each day of the time series, as
we illustrate in Figure 3.2. By comparing the C-curve and the E-curve of a developer pair,
they investigated whether synchronous development and communication activities of the
developer pair are temporally related. Since coding collaboration and e-mail communication
do not take place at exactly the same time, it is not useful to directly compute the overlap of
the resulting curves. Therefore, they applied Gaussian smoothing on each of the curves to
also be able to align slightly off-set C-bursts and E-bursts. To compare the smoothed curves,
they used the Pearson correlation coefficient to check whether the C-curve and the E-curve of
a developer pair are dependent or independent of each other.

3.1.2 Investigating the Relationship Between Coding and Communication

Beside the study of Xuan and Filkov [XF14], which we reproduce and extend, there has
been various research on the relationship between coding and communication. Herbsleb and
Grinter [HG99] conducted a study on coordination in geographically distributed software
projects. They found that communication between developers is one of the most important
parts of today’s well-working software development. Related studies [CH05; CH13; HM03b;
MFH02; SFD05] showed that coordination in software projects affects software quality and
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that considering social aspects, such as communication of developers, is essential for under-
standing OSS projects. We extend on these by considering the temporal and content-wise
dependency between communication and technical activities from a higher-level perspective.

The authors of the original study enhanced their work by identifying “work-talk pat-
terns” [XDF16] on the time series of working activities (i.e., commits to the source code)
and communication activities (i.e., response e-mails on the mailing list) for developer pairs.
Their identified patterns indicate that collaboration on source-code artifacts and coordinating
events on the mailing list are temporally related [XDF16].

Gharehyazie and Filkov [GF17] extended the original study by not investigating pairs of
developers but groups of developers working on the same source-code artifacts temporally
close-by. In their work, they analyzed whether the size of such groups is purely random and
how often developers work in groups rather than working alone. Contrary to our work, they
chose an even more coarse-grained level of abstraction and analyzed source-code changes on
package level. Similarly to our qualitative analysis, they manually checked for a content-wise
relationship between e-mails and source-code changes of a developer group. To do so, they
searched for file names of temporally close-by edited files within e-mails of the developer
group (which is also one of the three approaches that we use in our qualitative analysis). As
a result, they found that there is actual coordination of source-code changes on the mailing
list. In addition, they performed developer surveys which confirmed their results, which is
also in line with the hypotheses of our study. They also analyzed if the code growth is higher
and the corresponding effort is lower for developers working in groups than solely. In line
with our results, they identified only rare projects where this hypothesis holds [GF17].

Researchers also used network approaches to describe the collaboration and coordination
of developers: López-Fernández et al. [LRG+06] constructed networks representing mutual
contributions of developers to the same software module (i.e., files contained in the same
directory). Jermakovics et al. [JSS11] built networks based on co-editing files, and Toral et al.
[TMB10] analyzed social communities on e-mail networks that arose from software develop-
ment. Joblin et al. [JMA+15] constructed developer networks based on co-commits on source-
code artifacts, especially at themore fine-grained level of functions, and used network analysis
techniques to gainmore information on collaboration. Joblin et al. [JAM17] also used a network
approach to analyze evolutionary trends of developer coordination. However, synchronicity
between collaboration at the code level and communication on the mailing list was not in their
focus. Bacchelli et al. [BDL10] investigated the e-mail communication of OSS projects, deter-
mined the much discussed source-code artifacts, and investigated their defect-proneness. Bird
et al. [BGD+06; BPD+08] analyzed e-mail social networks and examined whether coding
activities on files within sub-communities are related to communication on the mailing list.
In our study, we measure the synchronicity of co-edits and directly compare synchronous
development on files to e-mail communication using state-of-the-art time-series analysis.

Jiang et al. [JAK+14] linked commits to specific e-mails on the mailing list by comparing
commits to previously submitted patches on the mailing list. Also, Ramsauer et al. [RLM19]
used a similar approach. Compared to our study, they explicitly traced back commits (i.e.,
changed source-code lines) to e-mails that contain these changed source-code lines as part
of a patch, whereas we are interested in all kinds of e-mails that are in some way related to
specific code changes, not necessarily containing patches that change exactly the lines that are
changed in a commit. Coordination of specific changes may cover more discussions and high-
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level design decisions than just submitting or discussing patches. Ali et al. [AGA13] mined
software repositories to build traceability links between source code and textual requirements
documents using advanced information-retrieval techniques. As we look for relationships
between code changes and communication among developers, we also link textual documents
(sets of e-mails) to source-code changes, but as we are more interested in the coordination
activities than the concrete content, we do not use advanced information-retrieval techniques.

3.1.3 Dynamic Time Warping and Sakoe-Chiba Band

To investigate the relationship between two time series (such as the C-curve and E-curve
displayed in Figure 3.2), the technique of dynamic time warping (DTW) has been developed in
the context of speech recognition (e.g., to quantify differences in pronunciation of spoken lan-
guage), but has also been applied in other contexts, such as biometrics analysis or time-series
analysis inmedical settings [BC94; Gio09; KP01; RJ93]. In general, DTW tries to align two time
series of equal lengthwith each other by traversing amatrix 𝐷 beginning in 𝐷(0, 0) and ending
in 𝐷(𝑛, 𝑛), where 0 and 𝑛 are the earliest and latest time of the two time series. Using dynamic
programming and calculating cumulative sums of distances on the path, DTW explores the
whole matrix space to find the path of the shortest distance [BC94; KP01; RJ93] (for more de-
tails, see Rabiner and Juang [RJ93] or Giorgino [Gio09]). As a further restriction to DTW, the
Sakoe-Chiba band only allows exploring cells in the matrix at which the absolute distance of the
compared data is less than or equal to the chosen band-window size. So, only data points of
the two time series get matched that have an absolute distance less than or equal to the chosen
band-window size [SC78]. In our study, we use DTW to compare C-curves and E-curves, and
the Sakoe-Chiba band prohibits that a C-burst and an E-burst that occur temporally extremely
distant to each other get matched by the DTW algorithm. We provide more details on how we
apply DTW and the Sakoe-Chiba band below in the description of our research approach.

3.2 Research Approach

In our study, we extend the original study by lifting the abstraction level of mailing-list
communication and by changing the methodology of comparing C-curves and E-curves.
Additionally, we introduce a metric to quantify the synchronicity of C-bursts.

On mailing lists, we differentiate between message-based communication (considering all
synchronously sent e-mails from two developers) and conversation-based communication
(considering only e-mails belonging to the same thread). When identifying E-bursts, we use
two different approaches to determine a lower-bound and an upper-bound for identifiable
coordination. Finally, we use a sophisticated time-series analysis technique to check whether
C-bursts and E-bursts of a pair of developers are synchronized.

3.2.1 Research Questions

To obtain deeper insights into the fundamentals of developer coordination in OSS projects,
we investigate the relationship between co-editing activities on source-code artifacts and com-
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munication activities on the mailing list. The idea is that developers rely on the characteristic
information conveyed by conversation threads for building a mental model of the software
and the processes around it, which in turn drives the communication and coordination with
other developers [CSC93; EKL+01; SCE+08]. So, the overarching question is whether there is
a difference in the statistical dependence of social and technical activities between a semantic,
high-level view and a rather simple, low-level view of the complex processes involved in
developer coordination. That is, we investigate whether a conversation-based representation
of developer coordination reveals a statistically stronger relation to co-editing source-code
artifacts than a sole message-based representation. Specifically, we will address the following
research question regarding the abstraction level of coordination:

RQ:

Which abstraction level of the mailing list captures the coordination of develop-
ers best: message-based communication or conversation-based communication?
That is, which of the two abstraction levels of the mailing list leads to identi-
fying a stronger statistical dependence between technical activities and social
activities on the mailing list?

To answer our research question, we make use of the concepts of C-bursts and E-bursts
from the original study, since C-bursts depict synchronous technical activities and E-bursts
depict synchronous social activities of a developer pair. Nevertheless, as we use another set
of projects than the original study, we first need to demonstrate that their approach also
works on our set of projects, before we can lift their approach to different abstraction levels of
developer communication. Therefore, as in the original study [XF14], we investigate whether
C-bursts or E-bursts are just artifacts of a purely random process (and, thus, uninteresting
for us, as we expect that collaboration and communication are dependent and correlated
processes). Following the research questions from the original study, we check whether
empirically observed C-bursts occur more frequently than purely random. While the original
study relied on only the existence of C-bursts, we also check whether the empirically ob-
served C-bursts have a higher synchronicity degree than they would have by chance. As the
original study examined whether synchronous development leads to a higher code growth
and less implementation effort than in non-synchronous development, we also investigate
these phenomena in our study. Similar to the original study, we also analyze whether the
relationship between the number of C-bursts and the number of E-bursts differs from a purely
random process. We provide more information on how we perform all these checks and how
we address our new research question below in Section 3.3. Prior to this, we explain in the
following which concepts and methods we use for answering our research question.

3.2.2 File-Based C-Bursts

To extract C-bursts for a developer pair, as defined in Section 3.1.1, we rely on the abstraction
level of files as jointly edited source-code artifacts. That is, the commits from two developers
within a specific time window form a C-burst if the commits change the same file. One could
also think of considering a C-burst if the commits just change a file in the same folder, as files in
the same folder may be semantically related to each other. However, projects differ in how they
organize files into folders. Folders may be deeply nested, having files at different nesting levels.
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Table 3.1: Examples of the synchronicity degree degsync for different numbers of added LOC by
developers 𝐴 and 𝐵 in C-burst 𝑐.

add(A, syncArt(c)) add(B, syncArt(c)) add(A, art(c)) add(B, art(c)) degsync(c)

10 10 10 10 1.00
10 10 20 20 0.50
10 10 15 2 010 0.06

High-level folders may be too coarse-grained (co-editing source code in the same folder may
be not related at all), whereas low-level folders may be too fine-grained (missing the relations
between files at different levels of nested folders). As it is not obvious and mostly project-
dependent which nesting level of folders would be appropriate for C-burst identification, we
stick to a file-based analysis, which has been established in the original study.

3.2.3 Synchronicity Degree

The method to identify synchronous development described in Section 3.1.1 is limited be-
cause it does not quantify the magnitude of the overlap among the commits of a C-burst.
Essentially, the variable denoting synchronous development is binary. To gain precision, we
model the overlap of synchronously changed artifacts within a burst using a continuous
variable. This is beneficial because synchronous commits from two developers can contain
changes to one common artifact while most of the other changes are to artifacts that are
touched by only one of the developers [BNM+11]. For this reason, we introduce the syn-
chronicity degree, a metric capturing the overlap based on the number of LOC each of the
two developers adds to the artifacts changed in a C-burst. We calculate the synchronicity
degree individually for each C-burst. Formally, we define the synchronicity degree degsync
for a C-burst 𝑐 of the developers 𝐴 and 𝐵 as follows:

degsync(c) = √add(A, syncArt(c))
add(A, art(c)) ⋅

add(B, syncArt(c))
add(B, art(c)) , (3.1)

where add(A, x) denotes the number of code lines added by developer 𝐴 to the list of code
artifacts 𝑥 in C-burst 𝑐, syncArt(c) denotes the list of synchronously changed artifacts in C-
burst 𝑐 (i.e., the set of all artifacts changed by both 𝐴 and 𝐵 in their respective commits),
while art(c) is the set of all artifacts changed in C-burst 𝑐. In other words, to determine the
synchronicity degree, we calculate the geometric mean of the code changes made by the two
developers involved in a C-burst. Specifically, the metric incorporates the size of changes to
synchronously changed artifacts of each developer, normalized by the changes to all artifacts
in the C-burst. To let the synchronicity degree assign high values only to C-bursts that have a
high portion of synchronously changed artifacts, and to down-weight C-bursts that have a
highly imbalanced number of changes to non-synchronously changed artifacts, we use the
geometric mean, this way reducing the weight of higher values compared to the arithmetic
mean (as we also show in the following examples).

In Table 3.1, we provide examples of how the synchronicity degree treats the size of mutual
contributions in a C-burst: If both developers change all artifacts touched in the commits of
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Figure 3.3: An example containing three e-mails to the mailing list sent by three different developers
𝐷1, 𝐷2, and 𝐷3. All three e-mails were sent on the same day; therefore, each pair of
e-mails forms amessage-based E-burst of the involved developer pair. Incorporating thread
information, we see that 𝑒1 and 𝑒3 belong to the same thread since 𝑒3 is sent in reply to 𝑒1.
Therefore, 𝑒1 and 𝑒3 form a conversation-based E-burst.

a C-burst synchronously, degsync = 1. When both developers change synchronous artifacts
and individually changed artifacts of the C-burst in a balanced way, degsync = 0.5. Finally, if
the proportion of synchronously added lines over all added lines is highly imbalanced, the
synchronicity degree is very low (e.g., degsync = 0.06).3

3.2.4 Message-Based and Conversation-Based E-Bursts

We analyze the mailing list of the selected software projects by identifying message-based E-
bursts, as described in Section 3.1.1. For identifying conversation-based E-bursts, we introduce
the additional constraint that only e-mails belonging to a common thread can appear in an
E-burst. The rationale is, if two e-mails belong to the same e-mail thread, then this is a more
reliable indicator of coordination due to the topical scope in e-mail threads. We identify e-mail
threads by cross-referencing e-mail headers, as described in Section 2.4.

For example, consider the situation illustrated in Figure 3.3: Developers 𝐷1, 𝐷2, and 𝐷3 each
write an e-mail to the mailing list on the same day. Without considering thread information,
each pair of e-mails forms a message-based E-burst of the corresponding developer pair, as
all three e-mails were sent on the same day. However, e-mail 𝑒2 may address a completely
different topic than 𝑒1 and 𝑒3; 𝑒2 may not be related to 𝑒1 and 𝑒3 at all. When considering
thread information, we see that 𝑒1 and 𝑒3 belong to the same thread since 𝑒3 is sent in reply
to 𝑒1. Therefore, these e-mails can be considered as content-wise related (as defined by the
thread). As a consequence, we consider 𝑒1 and 𝑒3 as a conversation-based E-burst, which is a
more robust indicator of coordination between developers 𝐷1 and 𝐷3 due to the conceptual
relation of their e-mails. In this example, there is no conversation-based E-burst including 𝑒2.

3 In this example, only about 0.5% of developer 𝐵’s changed lines are made to a synchronously changed artifact,
meaning that there is almost no synchronicity. If we would use the arithmetic mean instead of the geometric mean
for the calculation of the synchronicity degree, we would get a value of 0.34 instead of 0.06, as the imbalance of
the non-synchronously changed lines would not be respected. As a consequence, we use the geometric mean,
since a value of 0.06 better describes that there is almost no synchronicity.
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Figure 3.4: Workflow for one pair of developers using the upper-bound approach (black, solid arrows
only) and the lower-bound approach (red, dashed, and black, solid arrows, together).
Commit data are used to identify C-bursts. For the upper-bound approach, all e-mail data
are used to identify E-bursts. For the lower-bound approach, the e-mails are first filtered
based on the commit messages, which are extracted from the identified C-bursts of the de-
veloper pair. Only those e-mailswhose subjectsmatch one of the extracted commitmessages
are kept. Then, E-bursts are extracted from the filtered e-mails. In the end, independent of
the approach, C-bursts and E-bursts of a developer pair are temporally aligned.

3.2.5 Upper-Bound and Lower-BoundApproach for Determining Coordination

To search for coordination between two developers, we checkwhether C-bursts and E-bursts of
a developer pair are temporally aligned. However, we cannot be certain whether temporally
aligned C-bursts and E-bursts are related to each other or whether they are completely
unrelated and just are temporally aligned by coincidence. We elaborate on this later in detail
and manually check in Section 3.5 for a small sample of our data whether and for which
percentage of the E-bursts such relationships exist. As it is prohibitively time-consuming to
manually decide for each pair of temporally aligned C-bursts and E-bursts whether they are
related, we use two automatic approaches here, which we illustrate in Figure 3.4:

There is an upper bound for coordination, that is, we assume that all the temporally aligned
C-bursts and E-bursts are content-wise related and therefore represent coordination (see
Algorithm 3.2 for the trivial e-mail filtering in the upper-bound approach).
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Algorithm 3.2 E-mail filtering in the upper-bound approach
Input: list of e-mails of a developer pair {𝐴,𝐵} 𝑒{𝐴,𝐵}
1: ⊳ no filtering needs to be performed
2: 𝑒{𝐴,𝐵},filtered ← 𝑒{𝐴,𝐵}

Output: list of e-mails of a developer pair {𝐴,𝐵} 𝑒{𝐴,𝐵},filtered

Algorithm 3.3 E-mail filtering in the lower-bound approach
Input: list of e-mails of a developer pair {𝐴,𝐵} 𝑒{𝐴,𝐵},

list of C-bursts of the developer pair {𝐴,𝐵} 𝑐𝑏{𝐴,𝐵}
1: 𝑒{𝐴,𝐵},filtered ← ∅
2: for each C-burst 𝑐𝑏 ∈ 𝑐𝑏{𝐴,𝐵} do
3: 𝑚𝑐𝑏 ← extract commit messages from all commits belonging to 𝑐𝑏
4: for each e-mail 𝑒 ∈ 𝑒{𝐴,𝐵} do
5: 𝑠𝑒 ← extract subject from e-mail 𝑒
6: 𝑠𝑒 ← remove auto-generated prefixes like ’Re:’ or ’Fwd:’ or ’[PATCH]’ from 𝑠𝑒
7: for each commit message 𝑚 ∈ 𝑚𝑐𝑏 do
8: if 𝑚 starts with 𝑠𝑒 then
9: 𝑒{𝐴,𝐵},filtered ← 𝑒{𝐴,𝐵},filtered ∪ 𝑒

10: break
11: end if
12: end for
13: end for
14: end for
Output: filtered list of e-mails of a developer pair {𝐴,𝐵} 𝑒{𝐴,𝐵},filtered

Alternatively, in many OSS projects, there is information on the relation between e-mails
and commits. For example, if code changes (which form a commit) have to be submitted to
the mailing list in form of a patch (like in QEMU), the e-mail subject is often automatically
generated out of the heading of the commit message. This way, we can learn that contents
of e-mail threads whose subject is also the beginning of a commit message are related to
the respective commit. Therefore, temporally aligned C-bursts and E-bursts for which one
e-mail of the E-burst has a subject which belongs to a commit message of the temporally
aligned C-burst are content-wise related and, hence, indicate coordination. Nevertheless,
this might not be the only kind of coordination as e-mails that do not follow this convention
could also contain content-wise related information. This is why we call the approach lower-
bound approach (see Algorithm 3.3 for the e-mail filtering based on commit messages in the
lower-bound approach). E-mail filtering in the lower-bound approach has a complexity of
𝒪(|𝐷|2 ⋅ |𝑐𝑚𝑎𝑥| ⋅ |𝑒𝑚𝑎𝑥|), with |𝐷| being the number of developers, |𝑐𝑚𝑎𝑥| being the maximum
number of commits of a single developer, and |𝑒𝑚𝑎𝑥| being the maximum number of e-mails
of a single developer in the project.

Both the upper-bound and the lower-bound approach will not represent the actual amount
of coordination, but by using an upper-bound and a lower bound we are able to narrow down
the problem and know that the truth must be somewhere in-between these bounds.
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3.2.6 Time-Series Analysis of C-Curves and E-Curves

To check whether C-bursts and E-bursts of a developer pair are synchronized, we need to
measure the similarity between both sequences of bursts. For this purpose, we construct
C-curves and E-curves for each developer pair. The curves denote the number of commits
and e-mails that are contained in a burst aggregated for each day of the time series. That
is, we build a histogram of the numbers of these commits and e-mails per day and derive a
curve from that, as depicted in Figure 3.2.

Since commit activities and e-mail activities rarely occur at the same instant of time, the
comparison of C-curves and E-curves needs to be error-tolerant such that we are able to
tolerate slight temporal shifts between C-bursts and E-bursts. For example, as developers
need some time to create a commit and also some time passes until an e-mail is written, we
aggregate the number of commits or e-mails belonging to a burst on a daily basis so that
we can perceive bursts of developer activity more clearly. To incorporate also latent times of
activity (such as time for implementation, testing, or planning) into this line of thought, we
use rectangular smoothing, which achieves two objectives: (1) We reduce noise in the curves
and alleviate the intensity of a burst at a specific day (as the aggregation on a daily basis is
sensitive to the distribution of the commits or e-mails among several days), and (2)we slightly
broaden bursts in the curve to cover that developers may prepare or deal with source-code
changes or communication activity longer than the actual work on commits and e-mails lasts,
to be robust to a shift of several days between C-bursts and E-bursts. We use a smoothing
parameter of 2𝜉 (with 𝜉 being the time-window parameter used for burst identification). That
is, we also take 𝜉 days before and after a burst into account to check whether C-bursts and
E-bursts are synchronized. (We also tried other smoothing parameters, which led to similar
results, though. For more information, please refer to the supplementary website.)

To compareC-curves and E-curves,we use dynamic timewarping (DTW) [RJ93], effectively
calculating their distances (as introduced in Section 3.1.3). TheDTWalgorithm transforms one
time series (the query) into the other (the reference) and measures the transformation costs.
The higher the resulting transformation costs, the greater the distance between the compared
time series. In addition, we use a Sakoe-Chiba band [SC78] to constrain themaximum allowed
time deviation between two matched data points. The Sakoe-Chiba band prohibits global
deformations to match the time series restricting the optimization algorithm to only local
transformation operations. With that, we have a global constraint that allows only close-by
bursts of the two time series to get matched. Consequently, when using a band-window size
of 2𝜉, we restrict C-bursts and E-bursts to get matched when their data points have a maximal
distance of 2𝜉 days.

The outcome of theDTWcalculation is a distance value describing howdifferent the C-burst
time series and the corresponding E-burst time series are under the defined transformation
restrictions. So, using theDTW,we canmeasure the temporal correlation between the C-bursts
and the E-bursts of a developer pair.



3.3 Study Design 43

Table 3.2: Analyzed time range and size (in terms of numbers of developers, commits, LOC, files,
e-mails, and e-mail threads) of the subject projects.

QEMU BusyBox OpenSSL

Analyzed time range Start: 2003-02-18 2003-01-14 2002-02-18
End: 2016-07-27 2016-02-19 2016-02-19

# developers 951 230 168
# developer pairs 451 725 26 335 14 028
Average # developers active per year 151 34 26
# commits 35 608 10 087 7 887
Average # commits per year 3 484 831 791
# LOC (at the latest analyzed commit) 1 106 794 229 087 334 149
# files 3 165 1 362 1 378
# e-mails (messages) 374 815 23 527 10 228
# e-mail threads (conversations) 52 170 7 320 6 280

3.3 Study Design

In our empirical study, we consider coordination in synchronous development on different
abstraction levels, namelymessage-based communication on themailing list and conversation-
based communication on the mailing list. For this purpose, we analyze the OSS projects
QEMU, BusyBox, andOpenSSL. In this section, we provide information on our subject projects,
describe our data-extraction procedure, give a description of the experiment variables, and
formulate our hypotheses.

3.3.1 Subject Projects

We analyze three different OSS projects: QEMU, BusyBox, and OpenSSL. QEMU is a virtual-
machine emulator. Within the analyzed time range of more than 13 years, QEMU had 951 de-
velopers. QEMU has a policy4 that forces developers to send patches to the mailing list first.
BusyBox is a UNIX command-line tool suite, to which 230 developers contributed within
the analyzed time range. OpenSSL is an encryption library to secure Internet connections,
having 168 developers in the analyzed time range. For all projects, we analyze all commits and
e-mails (sent by developers who also contributed to the source code) between 2002 and 2016.
This sums up to about 54 000 commits and 409 000 e-mails across all projects. We provide
more details and descriptive statistics for each project in Table 3.2. All projects used a mailing
list as well-established and—in the time range we analyze—persistent contribution system to
discuss patches and share developer knowledge. As the three projects differ in size, commit
policies, and application domain, they already provide substantial insights into developer
coordination. Although, due to high computation time and high memory consumption when
identifying bursts, we cannot analyze more projects with reasonable effort.

4 https://wiki.qemu.org/Contribute/SubmitAPatch/ (accessed at 2019-02-12)

https://wiki.qemu.org/Contribute/SubmitAPatch/
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Table 3.3: Independent and dependent variables of our empirical study.

Independent Variables Dependent Variables

– Time window 𝜉
(1 day, 5 days, 10 days, 15 days)

– Abstraction of communication
(message-based, conversation-based)

– Filtering of the e-mails
(none (upper-bound), by C-bursts’ commit
messages (lower-bound))

– Number of C-bursts
– Synchronicity degree degsync
– Classification of commits

(synchronous and non-synchronous)
– Code growth Δ𝐿
– Implementation effort Δ𝑊
– Number of E-bursts
– DTW distances describing the temporal correlation

between C-curves and E-curves

3.3.2 Data Extraction

For each of the subject projects, we use Codeface to gather commit data from the corre-
sponding Git repository and e-mail data from the publicly available mailing-list archive
Gmane, as explained in Section 2.4. We limit the extraction of commit data to files that are
implementation-related, so header files, documentation files, and build files are not consid-
ered in our study. Also, we only downloaded the e-mails of the corresponding developer
mailing list (not user mailing lists) for each subject project, as we focus on investigating the
coordination of source-code changes of developers. In our study, we only include e-mails of
developers who also appear in commits, because we want to investigate the relation between
C-bursts and corresponding E-bursts.

3.3.3 Variables

In Table 3.3, we provide an overview of independent and dependent variables of our study.
As independent variables, we vary the time window for burst identification. We consider

time windows 𝜉 of 1 day, 5 days, 10 days, and 15 days, based on a response-time analysis.
In Figure 3.5, we show the response times for subsequent e-mails and subsequent commits
to a common artifact for each pair of developers, for each level of abstraction and subject
project considered in our study. Depending on project, interaction channel (source-code files
vs. mailing-list communication), and abstraction level of communication (conversations vs.
messages), at least, 70% of the different response times are shorter than 15 days. Especially
on mailing lists, at least, 70% of the response times are even shorter than 1 day. Hence, our
chosen time windows 𝜉 are reasonable time distances that synchronous development can
deliberately last, because developers mostly reply to e-mails or commits within a few days.

For identifying E-bursts, we distinguish between message-based E-bursts and conversation-
based E-bursts. On top of that, we also vary the e-mail filtering: Whereas we use all e-mails
and perform no filtering for our upper-bound approach, we filter the e-mails by commit
messages of the C-bursts before identifying E-bursts for the lower-bound approach.

The results of our study depend on the variations of the above described independent
variables (see Table 3.3). In particular, the number of bursts, the synchronicity degree of C-
bursts, the differentiation of commits into synchronous and non-synchronous, as well as code
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Figure 3.5: Box plots of the response times for each pair of developers; outliers are omitted. File-based
response times represent the time distances between subsequent commits to a common file
of a developer pair. Message-based response times represent the time distances between
subsequent e-mails of a developer pair, conversation-based response times only represent
the time distances between subsequent e-mails of a developer pair within the same thread.
The red, dashed vertical lines represent the time windows 𝜉 chosen for our study.

growth and implementation effort depend on the time window 𝜉. Notice that we consider
a commit to be synchronous if, at least, one of its changed artifacts (i.e., files) is mutually
changed within a C-burst. The number of E-bursts as well as the temporal correlation between
C-bursts and E-bursts depend not only on the time window, but also on the abstraction of
communication and on the e-mail filtering.

3.3.4 Null Model

To determine whether the bursts and their synchronicity degrees are just artifacts of a purely
random process, we use a simulation technique based on synthetic datasets drawn from a null
model. The null models, which represent random time series, allow us to test whether empir-
ically observed bursts are significantly different from purely random bursts (i.e., whether
they convey information). That is, by using a null model, we check whether our results are
dependent on our variables or arise randomly. Specifically, we use the null models of the
original study, as we explain next [XGD+12].

For commit data, we generate synthetic data based on a null model by purely randomizing
the time intervals between two successive commits for each developer. The randomization
operation is performed by randomly permuting the time intervals between all commits of
the considered developer, as we describe in Algorithm 3.4. This way, for each developer, the
distribution of the time intervals, the order of the commits, and the artifacts changed by this
developer are preserved. C-bursts generated from the purely randomized time series are
referred to as simulated C-bursts.



46 Synchronous Development in Open-Source Software Projects

Algorithm 3.4 Generation of simulated C-bursts
Input: list of commits 𝑐 (annotated with timestamps and developer names)
1: ⊳ generate simulated commit time series
2: 𝑐𝑠𝑖𝑚 ← ∅
3: for each developer 𝐷 do
4: 𝑐𝐷 ← commits in 𝑐 authored by 𝐷
5: 𝑡(𝐷) ← sorted list of timestamps of 𝑐𝐷
6:
7: ⊳ create an ordered list intervals to store the lengths
8: ⊳ of intervals between two subsequent commits of 𝐷
9: for each 𝑖 ∈ 2..length(𝑡(𝐷)) do

10: interval ← 𝑡(𝐷)𝑖 − 𝑡(𝐷)𝑖−1
11: intervalsi ← interval
12: end for
13:
14: ⊳ randomize the order of the intervals, but keep the same distribution
15: 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 ← shuffle the elements in intervals
16:
17: ⊳ generate simulated list of timestamps 𝑠(𝐷)
18: 𝑠(𝐷)1 ← 𝑡(𝐷)1
19: for each 𝑖 ∈ 2..length(𝑡(𝐷)) do
20: 𝑠(𝐷)𝑖 ← 𝑠(𝐷)𝑖−1 + randomizedIntervalsi−1
21: end for
22: 𝑐𝐷,𝑠𝑖𝑚 ← update the timestamps in the list of commits 𝑐𝐷 according to 𝑠(𝐷)
23: 𝑐𝑠𝑖𝑚 ← 𝑐𝑠𝑖𝑚 ∪ 𝑐𝐷,𝑠𝑖𝑚
24: end for
25:
26: ⊳ extract simulated C-bursts
27: apply Algorithm 3.1 to the simulated commit list 𝑐𝑠𝑖𝑚
Output: simulated C-bursts for each pair of developers

For e-mail data, we use a similar approach. The only difference is that we do not randomize
the time intervals between the e-mails of each developer, but the time intervals between
successive e-mails of each pair of developers to preserve the order of e-mails sent by two
different developers. So, each pair of developers has their own simulated e-mail time series,
as we describe in Algorithm 3.5. E-bursts of the purely randomized time series are referred to
as simulated E-bursts.

Generating a simulated commit time series (without burst detection) has a complexity of
𝒪(|𝐷|⋅|𝑐𝑚𝑎𝑥|), and generating a simulated e-mail time series has a complexity of𝒪(|𝐷|2⋅|𝑒𝑚𝑎𝑥|2),
with |𝐷| being the number of developers in the project, |𝑐𝑚𝑎𝑥| being the maximum number
of commits of a single developer in the project, and |𝑒𝑚𝑎𝑥| being the maximum number of
e-mails of a single developer in the project.

For both, commit and e-mail time series, we generate 100 simulated time series each, except
for one subject project. For QEMU, we only generate 2 simulations of the e-mail time series
due to computational limitations.5 See Section 3.7 for a discussion of threats to validity.

5 To identify E-bursts in 100 simulations of QEMU for four different time windows and two abstraction levels, we
would need about 22 months using 40 nodes, having a 2.2 GHz processor, with 20 cores each in parallel and
128GB RAM per node.



3.3 Study Design 47

Algorithm 3.5 Generation of simulated E-bursts
Input: list of e-mails 𝑒 (annotated with timestamps and developer names)
1: ⊳ generate a simulated e-mail time series for each pair of developers
2: for each pair of developers {𝐴,𝐵} do
3: 𝑒{𝐴,𝐵} ← e-mails in 𝑒 sent by 𝐴 or 𝐵
4: 𝑡(𝐴, 𝐵) ← sorted list of timestamps of 𝑒{𝐴,𝐵}
5:
6: ⊳ create an ordered list intervals to store the lengths
7: ⊳ of intervals between two subsequent e-mails sent by 𝐴 or 𝐵
8: for each 𝑖 ∈ 2..length(𝑡(𝐴, 𝐵)) do
9: interval ← 𝑡(𝐴, 𝐵)𝑖 − 𝑡(𝐴, 𝐵)𝑖−1

10: intervalsi ← interval
11: end for
12:
13: ⊳ randomize the order of the intervals, but keep the same distribution
14: 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 ← shuffle the elements in intervals
15:
16: ⊳ generate simulated list of timestamps 𝑠(𝐴, 𝐵)
17: 𝑠(𝐴, 𝐵)1 ← 𝑡(𝐴, 𝐵)1
18: for each 𝑖 ∈ 2..length(𝑡(𝐴, 𝐵)) do
19: 𝑠(𝐴, 𝐵)𝑖 ← 𝑠(𝐴, 𝐵)𝑖−1 + randomizedIntervalsi−1
20: end for
21: 𝑒{𝐴,𝐵},𝑠𝑖𝑚 ← update the timestamps in the list of e-mails 𝑒{𝐴,𝐵} using 𝑠(𝐴, 𝐵)
22:
23: ⊳ extract simulated E-bursts
24: apply E-burst extraction to pair {𝐴,𝐵} using 𝑒{𝐴,𝐵},𝑠𝑖𝑚, as described in Section 3.1.1
25: end for
Output: simulated E-bursts for each pair of developers

3.3.5 Hypotheses

Next, we introduce our hypotheses. Each hypothesis is evaluated by varying time window
(1 day, 5 days, 10 days, 15 days) and, when related to E-bursts, by varying the abstraction level
of coordination (message-based communication vs. conversation-based communication).

Before introducing our hypotheses, let us explain our numbering scheme for hypotheses:
Our main hypotheses (i.e., H2 and H3) are related to the comparison of the different ab-
straction levels of communication. However, before comparing abstraction levels, we first
check whether the underlying hypotheses of the original study hold. To check that the oc-
currence of C-bursts is not a purely random process, we introduce the four corresponding
sub-hypotheses H1.1, H1.2, H1.3, and H1.4. Moreover, with regard to the comparison of the
different abstraction levels of coordination, we introduce the underlying hypotheses of the
original study as sub-hypotheses of our main hypotheses (i.e., H2.1, and H3.1). To answer our
main hypotheses (i.e., to compare the different abstraction levels), we compare the outcomes
of the corresponding sub-hypotheses on the different abstraction levels. So, for comparing
abstraction levels, we lift the particular sub-hypotheses and define composed hypotheses
(i.e., H2+H2.1, and H3+H3.1). In Figure 3.6, we provide an overview of all (sub-)hypotheses.
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Figure 3.6: Overview of our hypotheses and sub-hypotheses.

Hypotheses Related to C-Bursts First, we define hypotheses regarding the collaboration
of developers. To examine that developer collaboration is not a purely random process and
has an effect on the number of C-bursts and their characteristics, we formulate the following
four hypotheses:

H1.1: The number of empirical C-bursts is higher than the number of simulated
C-bursts.

H1.2: The synchronicity degree of empirical C-bursts is higher than the one of
simulated C-bursts.

H1.3: The code growth Δ𝐿 is higher in synchronous commits than in non-
synchronous commits.

H1.4: The implementation effort Δ𝑊 is lower in synchronous commits than in
non-synchronous commits.

All of the above hypotheses are derived from the the original study. Nevertheless, since code
growth and implementation effort might be highly project-dependent measures, H1.3 and
H1.4 do not necessarily need to be fulfilled even if developer collaboration does not follow a
purely random process. Therefore, and in contrast to H1.1 and H1.2, we added H1.3 and H1.4
here only for the sake of completeness with respect to the original study.

Hypotheses Related to E-Bursts Second, as developers converse via mailing lists, we for-
mulate hypotheses regarding which abstraction level of mailing-list communication captures
coordination of developers best. That is, we expect that conversations capture the coordination
activity among developers more accurately than considering individual messages only, as
e-mail conversations represent the conceptual relationship between e-mails.

H2: Conversation-based communication captures developer coordination
more accurately than message-based communication.
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In particular, we check the following sub-hypothesis for both conversation-based andmessage-
based communication, as a high amount of collaboration activity should be aligned with a
high amount of coordination:

H2.1: The relation between the number of C-bursts and the number of E-bursts
is described by a linear relationship.

For this hypothesis, we consider only developer pairs that have, at least, one C-burst and, at
least, one E-burst, since we aim at analyzing developer pairs that contribute to the source code
and communicate on themailing list. Here, we use both our upper-bound and our lower-bound
approach and evaluate the hypothesis separately for both approaches. After checking this sub-
hypothesis for all abstraction levels separately, we compare the strengths of the linear relation-
ships of message-based and conversation-based coordination to answer H2 conclusively:

H2+H2.1:
The linear relation between the number of C-bursts and the number of
E-bursts has a higher goodness of fit for conversation-based E-bursts than
for message-based E-bursts.

Here, we evaluate the hypothesis separately for the upper-bound approach and for the
lower-bound approach.

Hypotheses Related to C-Bursts and E-Bursts Finally, we investigate the temporal
relationship between C-bursts and E-bursts of developer pairs with the following hypothesis:

H3: The temporal correlation between C-bursts and E-bursts is higher for
conversation-based E-bursts than for message-based E-bursts.

If a C-burst and an E-burst of the same developer pair are temporally related, this is an
indicator of a relationship between these bursts. That is, an E-burst that appears right before
or after a C-burst may address the discussion of the code changes applied in the C-burst. To
answer H3, we check the following sub-hypothesis for each abstraction level of mailing-list
communication to examine that the empirical DTW distances are not purely random and
empirical C-bursts and E-bursts are dependent processes:

H3.1:
C-bursts and E-bursts are temporally correlated, that is, the DTW dis-
tances between empirical C-curves and empirical E-curves are smaller
than between simulated curves.

That is, we expect related C-bursts and E-bursts to appear temporally close to each other,
resulting in smaller DTW distances than for simulated bursts. Again, we analyze the temporal
correlation only for developer pairs that have, at least, one C-burst and, at least, one E-burst.

After checking the sub-hypothesis, we compare the empirical DTWdistances of the different
abstraction levels with each other to answer H3 conclusively:

H3+H3.1: The DTW distances between C-curves and E-curves are smaller for
conversation-based E-bursts than for message-based E-bursts.

We use the E-bursts of our two different approaches separately and evaluate our hypothesis
for both the upper-bound and the lower-bound approach.
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Statistical Tests To test the hypotheses, we use a suite of statistical methods. All the above
stated hypotheses are alternative hypotheses.

For H1.1, we use a one-tailed, paired Wilcoxon signed-rank test to compare the numbers
of empirical and simulated C-bursts for each pair of developers. Therefore, for each of the
developer pairs, we compute themedian of the numbers of C-bursts of the 100 simulations and
compare this median with the empirical number of C-bursts of the developer pair. (We use an
aggregated measure of the 100 simulations to be able to use a paired test for comparing the
real and empirical numbers of C-bursts per developer pair. To be robust to outliers, we use the
median.) Here, we consider also developer pairs that have no C-burst at all, since the number
of developer pairs having no burst can be different and, therefore, can affect the comparison.
In addition to the Wilcoxon signed-rank test, we compute the corresponding effect size 𝑟.6

For H1.2, H1.3, and H1.4, we use a one-tailed, unpaired Mann-Whitney U test: We compare
the whole population of the synchronicity degrees of all empirical bursts with the whole
population of the synchronicity degrees of all 100 simulations together. We also compute
Cliff’s Delta, which quantifies the effect size that corresponds to the Mann-Whitney U test.

For H2 and H2.1, we fit a linear regression model and compare the fitted models by
comparing their adjusted R-square values and p-values.

For H3.1, we use a one-tailed, unpaired Mann-Whitney U test to compare the empirical
DTW distances of all considered developer pairs with the simulated DTW distances of all
simulations together. Note that we use aMann-WhitneyU test because the number of available
data points can be rather small (especially when using the lower-bound approach, we have
only few developer pairs that have, at least, one C-burst and, at least, one E-burst in some
cases), and the data are not necessarily normally distributed, which we measured using the
Shapiro-Wilk test. Corresponding to the Mann-Whitney U test, we again use Cliff’s Delta to
quantify the effect size.

Finally, for the comparison of the different abstraction levels of mailing-list communication
in hypothesis H3, we use a Mann-Whitney U test in combination with false-discovery rate
(FDR) correction to account for multiple testing.

3.4 Results

Next, we present our results.7 To generate the results (including simulations), we used the
following hardware in parallel over several weeks: 40 computation nodes having a 2.2 GHz
processor, with 20 cores each and 128GB RAM per node.

3.4.1 C-Bursts

As we show in Table 3.4, we see that the file-based C-bursts per developer pair occur signifi-
cantly more frequently than purely by chance (𝑝 < 0.05), for all subjects projects, independent
of time window 𝜉. However, the corresponding effect size is very low (absolute values be-

6 https://www.rdocumentation.org/packages/rcompanion/versions/2.3.7/topics/wilcoxonPairedR/

(accessed at 2019-02-12)
7 When we state that we accept a certain hypothesis (all our hypotheses are alternative hypotheses, as stated above),

we actually mean that we reject the corresponding null hypothesis.

https://www.rdocumentation.org/packages/rcompanion/versions/2.3.7/topics/wilcoxonPairedR/
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Table 3.4: Paired, one-tailed Wilcoxon signed-rank test for comparing empirical simulated numbers
of C-bursts per developer pair (H1.1). (We use the median of all simulations to get one
value per developer here.) 𝑠 denotes the standard deviation. 𝑉 represents the V-statistic of
the Wilcoxon signed-rank test, the corresponding 𝑝-value indicates whether the alternative
hypothesis H1.1 is accepted (𝑝 < 0.05) or not. 𝑟 denotes the effect size corresponding to the
paired Wilcoxon signed-rank test.

# Bursts (mean± 𝑠)

Project 𝜉 Empirical Simulated 𝑉 𝑝-value 𝑟

QEMU

1 0.005 ± 0.117 0.002 ± 0.079 706 200 < 0.05 −0.041
5 0.011 ± 0.235 0.007 ± 0.213 2 948 700 < 0.05 −0.045

10 0.017 ± 0.305 0.012 ± 0.280 5 925 700 < 0.05 −0.047
15 0.022 ± 0.340 0.015 ± 0.310 8 491 000 < 0.05 −0.048

BusyBox

1 0.012 ± 0.345 0.003 ± 0.132 6 213 < 0.05 −0.053
5 0.018 ± 0.482 0.009 ± 0.327 9 034 < 0.05 −0.050

10 0.020 ± 0.467 0.012 ± 0.360 11 769 < 0.05 −0.045
15 0.020 ± 0.405 0.014 ± 0.347 13 247 < 0.05 −0.038

OpenSSL

1 0.027 ± 0.574 0.008 ± 0.197 4 983 < 0.05 −0.069
5 0.057 ± 0.963 0.029 ± 0.583 21 636 < 0.05 −0.090

10 0.067 ± 1.046 0.047 ± 0.780 24 502 < 0.05 −0.066
15 0.071 ± 1.035 0.055 ± 0.859 26 400 < 0.05 −0.055

Table 3.5: Paired, one-tailed Wilcoxon signed-rank test for comparing empirical simulated numbers of
C-bursts per developer pair (H1.1) only for developer pairs that have, at least, one C-burst.
(We use the median of all simulations to get one value per developer here.) 𝑠 denotes the
standard deviation. 𝑉 represents the V-statistic of the Wilcoxon signed-rank test, the corre-
sponding 𝑝-value indicates whether the alternative hypothesis H1.1 is accepted (𝑝 < 0.05)
or not. 𝑟 denotes the effect size corresponding to the paired Wilcoxon signed-rank test.

# Bursts (mean± 𝑠)

Project 𝜉 Empirical Simulated 𝑉 𝑝-value 𝑟

QEMU

1 1.578 ± 1.515 0.474 ± 1.353 660 460 < 0.05 −0.822
5 1.864 ± 2.352 0.987 ± 2.488 2 533 500 < 0.05 −0.705

10 1.901 ± 2.559 1.126 ± 2.652 4 927 400 < 0.05 −0.659
15 1.889 ± 2.560 1.168 ± 2.612 6 903 100 < 0.05 −0.642

BusyBox

1 2.802 ± 4.514 0.613 ± 1.918 5 974.0 < 0.05 −0.857
5 3.207 ± 5.651 1.545 ± 4.092 8 276.0 < 0.05 −0.758

10 2.994 ± 4.952 1.712 ± 4.088 9 845.5 < 0.05 −0.672
15 2.628 ± 3.894 1.635 ± 3.642 9 721.5 < 0.05 −0.599

OpenSSL

1 3.519 ± 5.595 0.934 ± 2.042 4 465 < 0.05 −0.841
5 3.299 ± 6.580 1.620 ± 4.133 19 662 < 0.05 −0.767

10 3.019 ± 6.381 1.930 ± 4.864 19 694 < 0.05 −0.614
15 2.766 ± 5.863 1.981 ± 4.973 20 038 < 0.05 −0.522
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Table 3.6: One-tailed Mann-Whitney U test for comparing synchronicity degrees (H1.2). 𝑠 denotes
the standard deviation. 𝑈 represents the U-statistic of the Mann-Whitney U test, the corre-
sponding 𝑝-value indicates whether the alternative hypothesis H1.2 is accepted (𝑝 < 0.05)
or not. Cliff’s Delta denotes the corresponding effect size.

degsync (mean± 𝑠)

Project 𝜉 Empirical Simulated 𝑈 𝑝-value Cliff’s Delta

QEMU

1 0.466 ± 0.352 0.340 ± 0.306 169 020 000 < 0.05 0.207
5 0.369 ± 0.325 0.296 ± 0.284 1 403 200 000 < 0.05 0.123

10 0.332 ± 0.308 0.270 ± 0.269 3 296 700 000 < 0.05 0.110
15 0.307 ± 0.297 0.254 ± 0.260 5 078 600 000 < 0.05 0.097

BusyBox

1 0.605 ± 0.354 0.320 ± 0.300 2 416 800 < 0.05 0.450
5 0.470 ± 0.346 0.248 ± 0.249 9 497 500 < 0.05 0.387

10 0.434 ± 0.341 0.233 ± 0.243 13 510 000 < 0.05 0.357
15 0.411 ± 0.339 0.225 ± 0.239 14 568 000 < 0.05 0.326

OpenSSL

1 0.423 ± 0.336 0.302 ± 0.284 3 616 500 < 0.05 0.209
5 0.342 ± 0.299 0.248 ± 0.241 24 001 000 < 0.05 0.180

10 0.316 ± 0.286 0.227 ± 0.226 40 996 000 < 0.05 0.183
15 0.304 ± 0.277 0.220 ± 0.221 51 711 000 < 0.05 0.183

tween 0.03 and 0.09). The reason for the low effect size is that most of the developer pairs have
no C-burst at all. For example, in QEMU, only ∼1% of the developer pairs have, at least, one
C-burst, due to the combinatorial explosion of developer pairs. Nevertheless, when we restrict
our analysis to developer pairs that have, at least, one C-burst, then we still get significant
results (empirical C-bursts occur more frequently than purely by chance), but we get higher
effect sizes (absolute values between 0.52 and 0.86, see Table 3.5). Regardless of that, also
the overall number of empirical C-bursts is higher than the overall number of simulated
C-bursts (using the median of the 100 simulations to get one number per developer pair). For
example, for QEMU with 𝜉 = 5, there are 5 185 empirical C-bursts, but only 3 122 simulated
ones. There are similar results for BusyBox and OpenSSL. Consequently, we accept H1.1.

Also, the synchronicity degrees of the empirical C-bursts are significantly higher than the
synchronicity degrees of the simulated C-bursts (see Table 3.6; 𝑝 < 0.05) for all abstraction
levels and time windows. This holds for each subject project; for BusyBox and OpenSSL the
corresponding effect sizes are even higher than for QEMU. Hence, we accept H1.2.

Next, we have a look at the code growth in synchronous and non-synchronous commits.
In Table 3.7, we observe that, according to the Mann-Whitney U test (𝑝 < 0.05), only for
QEMU with 𝜉 = 1 or 𝜉 = 5 the code growth (Δ𝐿) is higher in synchronous commits than
in non-synchronous commits. For the other time windows of QEMU and also for the other
projects, the code growth in synchronous commits is not higher than the code growth in
non-synchronous commits. As we can observe a higher code growth in synchronous commits
than in non-synchronous commits only in some rare cases, but not in general, we reject H1.3.

When we look at the implementation effort (see Table 3.8), we find that Δ𝑊 is not lower in
synchronous commits than in non-synchronous commits, in all cases for all three projects.
Hence, as there is no statistically significant difference, we reject H1.4.
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Table 3.7: One-tailed Mann-Whitney U test for comparing the code growth Δ𝐿 of synchronous com-
mits and non-synchronous commits (H1.3). 𝑠 denotes the standard deviation. 𝑈 represents
the U-statistic of the Mann-Whitney U test, the corresponding 𝑝-value indicates whether
the alternative hypothesis H1.3 is accepted (𝑝 < 0.05) or not. Cliff’s Delta denotes the
corresponding effect size.

Δ𝐿 (mean± 𝑠)

Project 𝜉 Synchronous Non-synchronous 𝑈 𝑝-value Cliff’s Delta

QEMU

1 42.647 ± 732.059 39.235 ± 263.358 96 963 000 < 0.05 0.059
5 34.986 ± 515.489 42.769 ± 285.679 152 310 000 < 0.05 0.023

10 34.232 ± 448.141 46.100 ± 308.759 158 750 000 0.22 0.005
15 32.979 ± 415.286 51.160 ± 339.906 147 620 000 0.91 −0.009

BusyBox

1 34.277 ± 210.011 47.879 ± 683.844 4 371 200 0.34 0.008
5 47.072 ± 546.765 46.474 ± 679.660 8 416 800 0.52 −0.001

10 45.972 ± 497.104 46.865 ± 710.348 10 410 000 0.96 −0.022
15 54.172 ± 688.270 42.260 ± 633.610 11 448 000 0.99 −0.028

OpenSSL

1 68.612 ± 578.951 64.724 ± 1 258.090 3 095 900 0.90 −0.026
5 57.875 ± 418.904 68.003 ± 1 388.579 6 277 300 0.41 0.003

10 111.117 ± 1 941.316 37.665 ± 203.151 7 286 000 0.48 0.001
15 98.601 ± 1 781.892 38.369 ± 209.825 7 679 800 0.51 −0.000

Table 3.8: One-tailed Mann-Whitney U test for comparing the implementation effort Δ𝑊 of syn-
chronous commits and non-synchronous commits (H1.4). 𝑠 denotes the standard deviation.
𝑈 represents the U-statistic of the Mann-Whitney U test, the corresponding 𝑝-value indicates
whether the alternative hypothesisH1.4 is accepted (𝑝 < 0.05) or not. Cliff’sDelta denotes the
corresponding effect size.

Δ𝑊 (mean± 𝑠)

Project 𝜉 Synchronous Non-synchronous 𝑈 𝑝-value Cliff’s Delta

QEMU

1 87.903 ± 764.969 74.342 ± 318.517 99 455 000 1.00 0.086
5 78.643 ± 563.798 75.551 ± 326.277 158 850 000 1.00 0.067

10 72.276 ± 493.614 78.330 ± 349.167 166 410 000 1.00 0.053
15 72.550 ± 460.570 83.605 ± 378.551 155 570 000 1.00 0.045

BusyBox

1 127.371 ± 362.982 140.350 ± 982.852 4 655 300 1.00 0.074
5 165.359 ± 1 366.644 132.183 ± 792.284 9 114 400 1.00 0.082

10 162.381 ± 1 179.108 129.249 ± 820.708 11 488 000 1.00 0.079
15 172.254 ± 1 222.082 120.152 ± 734.427 12 707 000 1.00 0.079

OpenSSL

1 743.601 ± 16 919.798 107.340 ± 1 326.779 3 667 200 1.00 0.153
5 382.264 ± 10 903.567 102.872 ± 1 432.185 7 201 600 1.00 0.151

10 369.613 ± 9 619.071 67.960 ± 242.243 8 425 100 1.00 0.157
15 323.459 ± 8 825.309 66.634 ± 242.605 8 851 400 1.00 0.152
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Overall, we conclude that the empirically observed C-bursts are significantly different
from purely random C-bursts, as the empirically observed C-bursts occur more frequently
(H1.1) and with a higher synchronicity degree (H1.2). Regarding code growth (H1.3)
and implementation effort (H1.4), we do not observe any significant differences between
synchronous and non-synchronous commits.

3.4.2 E-Bursts

For the comparison of message-based and conversation-based E-bursts, we first test for H2.1
whether the number of C-bursts and the number of E-bursts for a developer pair (having, at
least, one burst each) are linearly dependent. We do this separately for the E-bursts extracted
with our lower-bound approach and with our upper-bound approach, respectively. In the
plots that follow, we present the results of our largest and, therefore, most representative
subject projectQEMU, for 𝜉 = 5, which also exemplifies the results of the other timewindows.8

Using the upper-bound approach, fitting a linear model on the message-based E-bursts
results in a very small adjusted R-square value of 0.06 (see left plot in Figure 3.7), that is, only
6%of the variance is described by the linearmodel. Only a high adjusted R-square valuewould
indicate that the model describes the data points well. In contrast, still using the upper-bound
approach, the linear model of conversation-based E-bursts and C-bursts fits significantly
better, as the adjusted R-square value of 0.55 in Figure 3.7 (right) illustrates. That is, 55% of
the variance is described by the linear model, and hence there is a stronger linear relationship
between the number of C-bursts and the number of E-bursts for conversation-based E-bursts
than for message-based E-bursts.

Switching to the lower-bound approach, we get significant linear models for both message-
based and conversation-based E-bursts, as the adjusted R-square values of 0.71 (message-
based) and 0.37 (conversation-based) indicate (see Figure 3.8).

This result holds only for QEMU, though. In BusyBox and OpenSSL, there are too few data
points to fit a significant linear model, especially in the lower-bound approach. Instead of
fitting a linear model, we also tried to compute Spearman’s rank correlation, which also led
to similar, non-significant results for these subject projects.

Based on our results, we accept H2.1 for conversation-based E-bursts, as we obtain significant
linear models for both the upper-bound and the lower-bound approach for project QEMU.
However, we are inconclusive regarding H2.1 for message-based E-bursts, as for these we obtain
a significant linear model only for the lower-bound approach.

Eventually, comparing the results for message-based and conversation-based E-bursts shows
that conversation-based E-bursts have a better linear relationship to the number of C-bursts
than message-based E-bursts for most of the cases when we use the upper-bound approach
(see adjusted R-square values in Figure 3.7). Nevertheless, when we use the lower-bound
approach, it is the other way round (see adjusted R-square values in Figure 3.8). So, overall,
we are inconclusive regarding H2 (see Table 3.9).

8 The corresponding plots for the other time windows and also for the other subject projects are available on our
supplementary website: https://se-sic.github.io/paper-coordination-bursts/

https://se-sic.github.io/paper-coordination-bursts/
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Figure 3.7: Upper-bound approach: Linear model fitting for the relationship between the number of
C-bursts (𝑁𝐶) and the number of message-based E-bursts (𝑁𝐸) (left) and conversation-
based E-bursts (right). Every data point represents one developer pair. Model fitting was
applied only to developer pairs having, at least, one C-burst and, at least, one E-burst (data
points above and right, respectively, of the red horizontal and vertical lines, respectively).
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Figure 3.8: Lower-bound approach: Linear model fitting for the relationship between the number of
C-bursts (𝑁𝐶) and the number of message-based E-bursts (𝑁𝐸) (left) and conversation-
based E-bursts (right). Every data point represents one developer pair. Model fitting was
applied only to developer pairs having, at least, one C-burst and, at least, one E-burst (data
points above and right, respectively, of the red horizontal and vertical lines, respectively).

Table 3.9: Overview of the results regarding H2 and its sub-hypothesis. 3 denotes that we accept a
(sub-)hypothesis, 7 the denotes that we reject a (sub-)hypothesis, and ? denotes that we are
inconclusive.

Lower-Bound Approach Upper-Bound Approach H2.1

Messages 3 7 ?
Conversations 3 3 3

Lower-Bound Approach Upper-Bound Approach H2+H2.1

Messages vs. conversations 7 3 ?
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Table 3.10: The results of testing H3.1 for different abstraction levels of coordination for the upper-
bound approach and for the lower-bound approach. 3 denotes that the empirical DTW
distances are smaller than the corresponding simulated ones, 7 the opposite. ? denotes
that there are insufficient data (no E-bursts at all).

𝜉 QEMU BusyBox OpenSSL

Messages Conversations Messages Conversations Messages Conversations

1 3 3 3 3 3 7

Upper-bound 5 3 3 3 3 3 3

approach 10 3 3 3 3 3 3

15 3 3 3 3 3 3

1 3 3 3 3 7 ?
Lower-bound 5 3 3 3 3 7 7

approach 10 3 3 3 3 7 7

15 3 3 3 3 3 7

3.4.3 Temporal Correlation Between C-Bursts and E-Bursts

Finally, we search for a temporal correlation between C-bursts and E-bursts by computing the
DTW distances of the C-curves and E-curves of each developer pair.

First of all, we investigate whether the temporal correlation between empirical C-bursts and
empirical E-bursts is different from the temporal correlation between C-bursts and E-bursts
in the null model. We state the corresponding results in Table 3.10, for both the upper-bound
approach and the lower-bound approach. First, we have a look at the upper-bound approach:
For QEMU, BusyBox, and OpenSSL, message-based E-bursts have significantly smaller DTW
distances to C-bursts than in the null model, for all time windows. For conversation-based
E-bursts, we also obtain significantly smaller DTW distances to the C-bursts than in the null
model, except for OpenSSL with 𝜉 = 1. When we use the lower-bound approach, also in all
cases of QEMU and BusyBox the empirical DTW distances are smaller than the simulated
ones. For OpenSSL, this holds only for message-based E-bursts with 𝜉 = 15. The reason
for that is that there are too few data points: When using the lower-bound approach, we
often have zero E-bursts per developer pair in OpenSSL, resulting in empty DTW curves.
Taken all together, when we neglect the cases where we have insufficient or few data, the
empirical DTW distances are (with few exceptions) shorter for empirical bursts than for
the null model, for both the upper-bound and the lower-bound approach. Consequently,
we accept H3.1 for message-based and also for conversation-based E-bursts.
After comparing the empirical DTW distances with our null models, we now compare

the outcomes of the different abstraction levels of the empirical data with each other. As
we can see in Table 3.11, in which we provide an overview of the corresponding results for
the comparison of message-based E-bursts and conversation-based E-bursts, we obtain a
complex picture for H3+H3.1: When analyzing QEMU with the upper-bound approach,
using conversation-based E-bursts leads to significantly lower DTW distances than using
message-based E-bursts, independent of 𝜉. However, when using the lower-bound approach,
this does not hold at all. Also for BusyBox, no matter which approach is used, this does not
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Table 3.11: The results of testing H3+H3.1 for comparing message and conversation level using lower-
bound or upper-bound approach, respectively. 3 denotes that the DTW distances using
conversation-based E-bursts are smaller than the DTW distances using message-based
E-bursts, 7 the opposite. ? denotes that there are insufficient data (no E-bursts at all).

𝜉 QEMU BusyBox OpenSSL

1 3 7 3

Upper-bound 5 3 3 7

approach 10 3 7 3

15 3 7 3

1 7 7 ?
Lower-bound 5 7 7 7

approach 10 7 7 7

15 7 7 7

hold (except for C-bursts with 𝜉 = 5 in the upper-bound approach). As we have seen for
H3.1, there are too few data points to state valid results regarding H3+H3.1 for OpenSSL.

Since only in the upper-bound approach (and there also not for all time windows of all
projects) conversation-based E-bursts do have significantly lower DTW distances with the C-
bursts than message-based ones, but not in general, we have inconclusive results regarding H3 .

3.5 What Is Discussed Within E-Bursts?

In Section 3.4, we presented the results of our quantitative analysis of the relation of C-bursts
and E-bursts. The weakness of our quantitative analysis is that it does not capture whether
there is actual coordination of source-code changes in temporally close-by discussions on the
developer mailing list. To alleviate this threat to validity, we conducted a qualitative analysis
to investigate whether our notion of coordination is reliable. We performed this qualitative
analysis only for E-bursts identified via our upper-bound approach, but not for E-bursts
identified via our lower-bound approach. The reason is that, in the lower-bound approach,
for each developer pair, we filter the e-mails already by comparing the commit messages of
temporally close-by C-bursts with the e-mail subjects. Hence, in the lower-bound approach,
we only get E-bursts that are content-wise related to the C-bursts of the developer pair. As we
cannot assume anything regarding the relation of C-bursts and E-bursts for the upper-bound
approach, we perform this qualitative analysis to find out to which extent temporally close-by
C-bursts and E-bursts are indeed content-wise related.

In a first step, we manually checked for all developer pairs with, at least, five C-bursts
and five E-bursts whether the content of e-mails of an E-burst is related to the commits of
the temporally close-by C-bursts. As this is a very time-consuming manual task, we only
performed this for conversation-based E-bursts and only for 𝜉 = 15. So, we manually looked
at 56 E-bursts of BusyBox, 49 E-bursts of OpenSSL, and 766 E-bursts of QEMU. In BusyBox,
29% of these E-bursts are content-wise related to a C-burst of the same developer pair; in
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Table 3.12: The results of our qualitative analysis using our mention rate, that is, the percentage of
C-bursts whose artifacts (i.e., file names) are mentioned in a temporally close-by E-burst
of the same developer pair.

𝜉 QEMU BusyBox OpenSSL

Messages Conversations Messages Conversations Messages Conversations

1 34% 9% 10% 5% 1% 0%
5 50% 13% 15% 8% 4% 1%

10 55% 15% 19% 10% 6% 1%
15 59% 17% 24% 12% 9% 2%

OpenSSL we found that 41% of the E-bursts are related to a C-burst, and in QEMU this holds
even for 47%. Throughout our manual analysis, we identified different kinds of how C-bursts
and E-bursts are related: In most cases, the e-mail subject is related to the commit message or
the e-mail content even contains parts of the commit message or the patch itself. Also, certain
key words are often used in commit messages or code patches that are also used in the content
or subject of an e-mail. In addition to that, we also were able to match C-bursts and E-bursts
by inspecting the file names of the changed files and searching for them in the e-mail subject
or content. However, in cases where we decided that all the e-mails of an E-burst are not
related to C-bursts of the same developer pair, we had a closer a look at the content of these
E-bursts to find out what these conversations are about. It turned out that these conversations
are mostly about future plans of the software project or organizational matters (e.g., coding
conventions, contribution guides, workflows, or future releases). However, there are also lots
of discussions regarding bugs or problems identified by users (even though we analyzed only
developer mailing lists). This is also supported by the results of previous research: Guzzi
et al. [GBL+13] analyzed the communication in mailing lists of OSS projects and found that
only about 35% of the discussions are related to actual source-code changes. Nevertheless, in
our study, up to one half of all the E-bursts are directly related to co-edits, which justifies our
assumption that the developer mailing lists are used to coordinate source-code changes.

In a second step, we used an automatic approach to determine whether C-bursts and
E-bursts are content-wise related. Similar to Gharehyazie and Filkov [GF17], who searched
for file names of temporally close-by edited files in e-mail contents, we searched for file names
of C-bursts in temporally close-by E-bursts. Using this approach, we calculated a mention rate
for file names in E-bursts. That is, we determine the percentage of C-bursts whose artifacts
(at least, one) are mentioned in temporally close-by E-bursts. In Table 3.12 we present the
results of this analysis. As we can clearly see, the results differ between subject projects
and abstraction levels. The mention rates are higher for message-based E-bursts than for
conversation-based E-bursts. This is not surprising as the message-based E-bursts contain
also single e-mails that are not related to other e-mails and, therefore, the chance for a file of
a C-burst to be mentioned is higher than for conversation-based ones, due to the potentially
higher number of e-mails that are contained in message-based E-bursts. Overall, we can see
that the mention rate ranges from 0 to 59%, which indicates that temporally close-by C-bursts
and E-bursts are related in many cases. However, the exact file names need not be mentioned
when coordinating software changes. Sometimes, developers may paraphrase which file or
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Table 3.13: The results of determining the percentage of commits of C-bursts whose commit messages
map with the subject of, at least, one e-mail of an E-burst of the same developer pair.

𝜉 QEMU BusyBox OpenSSL

Messages Conversations Messages Conversations Messages Conversations

1 86% 31% 0% 0% 0% 0%
5 97% 43% 2% 2% 0% 0%

10 98% 44% 28% 23% 2% 0%
15 98% 45% 24% 21% 5% 0%

feature they are talking about without directly stating the name of the corresponding file.
Hence, our mention rate only covers a part of the actual relation of C-bursts and E-bursts.

In a third step, we evaluated whether the e-mail filtering of our lower-bound approach
is reasonable. So, we automatically checked for each commit of a C-burst whether there is,
at least, one e-mail in the E-bursts of the same developer pair whose subject is equal to the
beginning of the commit message. (Notice that we removed auto-generated prefixes of the
e-mail subjects that match standard patterns like Re: or Fwd: or [PATCH] and alike before
performing this analysis). We present the results of this check in Table 3.13: For QEMU,
almost all commits of a C-burst are related to, at least, one e-mail of an E-burst of the same
developer pair, using message-based e-mails. When only investigating e-mails belonging to
the same thread, as in conversation-based E-bursts, the percentage of commits of C-bursts
whose commit messages match the subject of, at least, one e-mail of an E-burst is much lower.
This might be the case because we neglect single e-mails not belonging to a thread: Some of
the automatically generated e-mails, whose subjects match commit messages, just contain the
patch, whereas the discussion of this patch can take place in an e-mail thread different from
the patch. So, the corresponding thread for the discussion of the patch can have a slightly
different subject, which cannot be matched in this analysis. For BusyBox and OpenSSL, it is
only rarely the case that commit messages and e-mail subjects can be mapped to each other,
as these projects do not have such a strict commit policy to send patches to the mailing list
as QEMU. As a consequence, our lower-bound approach (in which we also map commit
messages with e-mail subjects) seems to be a reasonable filtering of the e-mails before E-burst
identification, at least, for the subject project QEMU.

3.6 Discussion

In this section, we discuss our results regarding C-bursts, E-bursts, and their temporal corre-
lation. Moreover, we address our main research question, open up perspectives, and discuss
the practical value of our findings.

3.6.1 C-Bursts

Our study confirms that, for all time windows, synchronous development is not a purely
random process where developers’ activities are statistically independent. Knowing that our
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operationalization of synchronous development does not occur purely by chance, we analyze
the synchronicity degree of the identified C-bursts, which is also higher than for randomly
generated C-bursts. Altogether, our results show that considering the concept of synchronous
development in OSS projects is well-founded. This is in line with the original study.

Code growth in synchronous development is, in most cases, lower than in non-synchronous
development. This is contrary to the outcomes of the original study. The reason for this is
that, in synchronous development, not only the number of added lines is higher, but also the
number of deleted lines. H1.3 ignores that high coding activity in synchronous development
does not necessarily incur high code growth. This also affects the implementation effort,
which is, in most cases, higher in synchronous commits than in non-synchronous commits.
This is in contrast to H1.4 and, therefore, also in contrast to the results of the original study.
As code additions and deletions are both higher in synchronous commits, we conclude that,
in synchronous development, more lines are changed than in non-synchronous development.
Hence, due to higher coding activity in terms of LOC, analyzing synchronous development
is useful for understanding developer collaboration.

3.6.2 E-Bursts

According to our results, the number of C-bursts and the number of E-bursts per developer
pair correlate only weakly. We use the goodness of the linear fit to assess whether message-
based or conversation-based E-bursts lead to identifying a stronger statistical dependence
between the amount of collaboration and the amount of communication. Contrary to the
original study (which only consideredmessage-based E-bursts of the upper-bound approach),
the goodness of the linear fit is lower in our analysis, but when we use conversation-based
E-bursts, we get a similar linear fit as the original study reported for message-based E-bursts.
The difference between our message-based results and the message-based results of the
original study may be due to different sizes of the projects in terms of developers and in terms
of e-mails, as our largest subject projects has 951 developers and 374 815 e-mails, whereas the
largest subject project of the original study had 72 developers and 11 865 e-mails. As there is
huge difference in the size of the projects, there may be also differences in the organizational
structure of the projects, resulting in different numbers of E-bursts.

In the following, we compare message-based and conversation-based communication. We
discuss our outcomes regarding H2 here only based on the results of QEMU, as we cannot
draw reliable conclusions from BusyBox and OpenSSL. See Section 3.7 for the discussion of
the corresponding threats to validity.

When we look at message-based E-bursts arising from the upper-bound approach, where
we keep all e-mails for E-burst identification, we see that the number of resulting E-bursts
is too high, as the goodness of fit of the linear model is rather weak. Keeping the upper-
bound approach but identifying E-bursts only among e-mails that are content-wise related
(conversation-based), we get a lower number of E-bursts, resulting in a better goodness of fit
with the number of C-bursts than for message-based E-bursts.

When using the lower-bound approach, we recognize the opposite behavior: Conversation-
based E-bursts lead to a lower goodness of fit than message-based E-bursts. An explanation
might be that, in the lower-bound approach, we filter the e-mails before E-burst identification
by checking whether their subject is part of the beginning of a commit message of a C-burst
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of the same developer pair. Due to this filtering, we already narrowed down the number of
E-bursts to keep only those for which we are sure that they are related to a C-burst. When
we then construct conversation-based E-bursts, the number of E-bursts is narrowed down
again as e-mails need to belong to the same thread to form an E-burst. Hence, the number of
E-bursts may be too small in the end.

As a lesson learned, only focusing on conversations of e-mails, of which we can be sure that
they are related to C-bursts, is a too severe restriction of the view of coordination. The actual
truth with respect to the identification of E-bursts is somewhere in-between our lower-bound
and upper-bound approach.

When looking at the goodness of fit in general, the linear model fitted on conversation-
based E-bursts in the upper-bound approach describes only less than 59% of the variance,
and the linear model fitted on the message-based E-bursts in the lower-bound approach
describes between 39% and 86% (depending on the time window). Such low percentages
are not unexpected since developers may often send e-mails to the mailing list without
contributing to the source code at temporally close time. For instance, they can comment
on other issues or discuss topics independent of the source code [GBL+13]. Furthermore,
multiple C-bursts may be discussed in one E-burst, whereas several E-bursts can address one
single C-burst. That is, the number of C-bursts does not necessarily need to correlate with the
number of E-bursts, as bursts can last differently long and discussions on interrelated topics
among co-edits are possible. For the lower-bound approach, in particular, we can draw two
subsequent conclusions from that: (1) Coordination of co-edits may not always happenwithin
the same e-mail thread, as using thread information leads to a lower correlation with the
number of C-bursts, and (2) coordination may not only take place via e-mails that are related
to specific commits indicated by the e-mail subject and the commit message, as considering
only commit-related e-mails is a strong restriction, which drastically reduces the number of
E-bursts compared to the upper-bound approach.

3.6.3 Temporal Correlation Between C-Bursts and E-Bursts

Even though we found that a more nuanced view on e-mail communication (a message-
based view for the lower-bound approach; a conversation-based view for the upper-bound
approach) is valuable (H2), we often cannot find significant differences between the DTW
distances on different abstraction levels (H3). Albeit, the empirical DTW distances are signif-
icantly smaller than the corresponding simulated ones, which is in line with the results of the
original study, where the authors used correlation coefficients instead of DTW distances.

In the lower-bound approach, a lot more C-bursts than E-bursts occur per developer pair,
so the number of matched C-bursts and E-bursts is comparably small. Even though there
are more message-based E-bursts than conversation-based ones, the differentiation between
message-based abstraction and conversation-based abstraction does not matter, since, for
both abstraction levels, many C-bursts do not have a corresponding E-burst.

For the upper-bound approach, in most cases, conversation-based E-bursts lead to iden-
tifying a stronger statistical dependence between collaboration and communication than
message-based E-bursts. Thus, if there are enough communication data, a more nuanced
view on the communication of developers describes coordination among developers more
precisely than simply looking at single messages.
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Nevertheless, the temporal correlation between C-bursts and E-bursts is for both the upper-
bound and the lower-bound approach higher than in the null model. This demonstrates a
significant statistical dependence between collaboration and communication, which implies
that developer coordination is actually taking place, but depends on many variables.

3.6.4 Research Question and Perspectives

In our main research question, we looked for the best abstraction level of developer coordi-
nation in terms of a stronger statistical dependence between the technical activities and the
social activities on the mailing list. Our results suggest that lifting the study of developer
coordination to a conversation-based model is worthwhile and sometimes even required.
However, for the temporal alignment of coding and communication, many different aspects
matter, which shall be explored in further studies.

To summarize, the correlation of collaboration with communication activities depends
on many variables. We did not observe any universal developer behavior when comparing
the coordination using message-based and conversation-based E-bursts. To some extent, the
relationship between collaboration and communication is project dependent, which needs to
be taken into account to refine the general measurement method toward a specific setting.

As the null model essentially captures the case in which developers’ technical activities
and social activities are performed independently at random and, since we see a departure
from the null model in our empirical data, there is a stochastic dependence between devel-
opers’ technical activities and their social activities. This is in line with the outcomes of the
original study and indicates some extent of alignment in terms of time and structure between
the technical realm and the social realm, which is sometimes referred to as socio-technical
congruence [CH13; CHC08; CWH+06; MJT+22]. Our approach relies on a more dynamic in-
terpretation of socio-technical congruence than in most previous work: We use dynamic time
warping to identify the alignment of technical and social activities, whereas previous work
adequately ignored the dynamic nature of the phenomenon and searched for an alignment
within static time windows, as, for instance, in the work of Joblin et al. [JAM17].

The stochastic dependence between collaboration and coordination that we have identified
has practical value because it helps to reduce the uncertainty when making predictions. For
example, if we know that a pair of developers was involved in a huge number of C-bursts and
we know that C-bursts and E-bursts are dependent, we may build a model that predicts for
their joint technical activity the need for coordinating their work. In addition, we could think
about exploiting the relationship between two developers represented by a C-burst to predict
which files a developer is likely to work on next by considering past C-bursts. We could also
search for missing dependences between collaboration and coordination and investigate how
the quality of the development process and the developed artifacts are affected. For instance,
one could check whether there are more bugs and other issues on a specific artifact if there is
no E-burst related to a C-burst on the considered artifact, to get an even more detailed view
on how software development is influenced by coordinating activities. Finally, as we have
identified stronger statistical dependences when using higher-level views on the abstraction
level of coordination (i.e., a more content-related view), it is more feasible to execute the
described ideas using higher-level views.
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3.7 Threats to Validity

As always in empirical studies, the validity of the results of our study may be threatened by
different factors. As suggested by Wohlin et al. [WRH+12], we have grouped the potential
threats into the four categories that were introduced by Cook and Campbell [CC79].

Internal Validity In our study, we do not consider changes to header files, documentation
files, and build files. This affects our results only barely, though, as build files or documenta-
tion files are changed comparatively rarely. As the studied projects predate the existence of the
version-control system Git, the commits in the Git history at the beginning of the analyzed
time range of all three subject projects had originally been imported from the previously used
version-control system SVN, which had a slightly different operationalization of commits.
However, to the best of our knowledge, this does not threaten our notion of C-bursts, as the im-
port of SVN commits into Git did preserve authoring timestamp, author, and code changes.

Construct Validity Our results depend on the algorithms that we use to identify C-bursts
and E-bursts, and also on the techniques that we use to measure their synchronicity. To
quantify the significance of C-bursts, we designed a metric that considers the size of commits
and allows to quantify themagnitude of the overlap among commits of a C-burst. This way, we
were able to demonstrate that C-bursts are not artifacts of a purely randomprocess. Tomeasure
the synchronicity of C-bursts and E-bursts, we rely on the well-established DTW technique
(see Section 3.1.3), which can be properly restricted regarding the distance measurement (i.e.,
the Sakoe-Chiba band [SC78]). By comparing our empirical observations to null models,
we showed that the observed curves convey information that is significantly different from
purely random information, which justifies the choice of our measuring techniques.

We rely on mailing lists as the only communication channel, although developers may
happen to use further channels (e.g., personal e-mails or verbal communication) [SSF+17].We
mitigate this threat by selecting only projects that have a historically rich and well-established
mailing list for discussing code changes andwhich havemandates regarding patch submission
to the mailing list prior to being accepted [DP03; RGS08; RLM19; Som10]. In addition, more
recently introduced social coding platforms (e.g., GitHub) are too young for history analysis,
whereas the mailing lists of our subject projects date back more than 10 years (see Table 3.2).
Also, recent research has shown that a substantial number of OSS projects still uses mailing
lists as primary channel for developer communication [MAJ+20; RLM19; SSF+17; YZF23].

Conclusion Validity For both commit and e-mail time series, we generated 100 simulated
time series each per project. Due to the sheer size and complexity (i.e., generating an individual
simulation of the e-mail time series separately for each developer pair), we were not able to
achieve this for the e-mail time series of QEMU (which has 451 725 developer pairs). While
this threatens the validity of the results of H3.1, all other results confirm that the involved
processes are significantly different from the null model and, thus, not purely random.

The sparseness of the data threatens the validity of our study: The number of developer
pairs having, at least, one C-burst and, at least, one E-burst is low (∼ 0.2%). Yet, this is expected
since not all developers actually collaborate. Particularly, BusyBox and OpenSSL have only few
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developer pairs involved in, at least, one C-burst and one E-burst. So, we cannot draw reliable
conclusions from these projects regarding the relationship between the number of C-bursts
and the number of E-bursts. Nonetheless, as the number of E-bursts is narrowed down to
zero with the lower-bound approach in some cases of OpenSSL, we should take a closer look
at the different code-contribution practices of the different projects: Whereas there is a policy
in QEMU4 to send patches to the mailing list and discuss them there, other projects, such
as OpenSSL, do not have such a strict code-contribution policy. As a consequence, on the
QEMU mailing list, there are lots of e-mails that contain a patch and, therefore, automatically
contain the title of the corresponding commit message in their e-mail subjects, whereas in
other projects like OpenSSL this is not the case that often. Hence, our lower-bound approach
is limited to the strictness of the patch-contribution policy of the respective subject project.

Finally, we did not perform a linguistic analysis of the e-mail data. Hence, the communica-
tion on themailing list may partly concern other issues than coordinating source-code changes.
We alleviate this by considering only e-mails of developers who also contributed to the source
code of the project. Moreover, we performed a qualitative analysis to check whether there is a
content-wise correlation between temporally close-by C-bursts and E-bursts (see Section 3.5).

External Validity We have analyzed three different OSS projects, which differ in size,
commit policies, and application domain. Due to the high computation time and hugememory
consumption of our approach, we cannot analyze more than these three subject projects
within a reasonable amount of time and memory. While one cannot generalize our findings
arbitrarily—as always in such a study—we have substantial data for three large, highly active,
and widely deployed OSS projects, which gives us relevant insights into the behavior of
collaboration and coordination at different abstractions levels of communication.

3.8 Conclusion

The success of software projects, in particular, large-scale, globally distributed projects,
relies essentially on the coordination of co-edits to the source code, as previous work has
shown [CH05; CH13; KSD11]. Co-editing source code is a common way of performing
bug fixes, refactorings, enhancements, and adding new features concurrently [Sin10]. We
investigated the relationship between co-editing activities and communication on the mailing
list for three highly active and widely deployed OSS projects using different abstraction levels.

We found that a more nuanced view of communication substantially increases the correla-
tion between co-editing and coordinating e-mail activities compared to a simple message-
based view, which is reasonable since coordination of developers comprises collections of
conceptually related e-mails. We did not observe a general picture regarding the temporal cor-
relation between co-editing source code and e-mail communication, though, which depends
to a good extent on the project setting at hand.

Overall, we found evidence that a more abstract and higher-level perspective captures
developers’ coordination activities more accurately than a rather low-level and sole message-
based perspective. This is not unexpected because developers typically think in terms of topics
when building mental models of software rather than in terms of individual text messages.
Further studies in this area should take this perspective into account.



4Group Dynamics and Group Stability
in Open-Source Software Projects

This chapter shares material with Bock et al. [BSA22].

Open-source software (OSS) projects often depend on a relatively small group of develop-
ers who are accountable for a large share of code contributions and coordination efforts. These
core developers are supported by a large number of peripheral developers, who invest less time
and effort individually, but together add a substantial part of the value in OSS projects [CS17;
JAH+17; SRS+12]. Peripheral developers often pursue a particular aim, such as fixing a par-
ticular bug or getting a feature they need [KJR+16]. This way, core and peripheral developers
form communities, which make significant contributions. Within the communities, shifting
priorities and tasks leads to the formation of temporary sub-groups, working on a topic or task
for a limited time only [Bir11].

Social sciences and software-engineering researchers, as well as practitioners who strive
for the optimal software development process, seek to understand and predict the social
dynamics of OSS projects. Metrics that operationalize social dynamics correlate with the
emergence of code deficiencies and bugs [CTB+15; WCR+14] and help predict project
success [CB16]. For example, a high stability of a project’s organizational structure can
result in several beneficial characteristics, including robustness and scalability [DM03];
tensions between single developers can cause significant distortions in group structures and
substantial developer turnover [JS05].

Network analysis can help to investigate structural distortions and assess the stability of
a project’s organizational structure: Innes et al. [IRP+17] used network analysis of com-
munication data to understand the genesis of conflicts in social networks. In general, net-
work and graph mining methods can help understand social phenomena in OSS develop-
ment [BGD+06; Duc05; JMA+15]. In this chapter, we devise a measurement and analysis
method that relies on graphminingmethods to explore two facets of the social coding process:
the strength and stability of sub-groups, and the relationship between communication and
collaboration (i.e., co-editing source code). Methodologically, we map a multiplex network
structure to a four-dimensional data structure (i.e., a tensor). Multiplex networks consist of
several networks that share the same set of vertices but differ in types of interaction [IB16]. A
multiplex network takes several modes of interaction simultaneously into account without
mixing them up—such as communication and co-editing source code in our case. We apply a
tensor decomposition to detect temporary sub-groups in the networks. We visualize the result
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of the decomposition to simplify the detection of groups and anomalies. Finally, we use
a trend extrapolation to investigate whether we can leverage the sub-group dynamics to
predict future interaction events. With this last step, we also validate whether our assumed
overlapping group structure describes the OSS group structure well. Network analysis is a
powerful tool for studying organizational structures in a non-intrusive way, without changing
or influencing the observed organizational structure or system [KC18]. We seek to contribute
a methodology to investigate the effects of social structures and their emergence in more
detail, to support research on organizational stability like research on the re-emergence of
sub-groups in self-organizing OSS communities after major disruptions [WS21].

To demonstrate the practicability of our method, we use mailing-list data and file-editing
data from 10 substantial, popular OSS projects of varying size. Ultimately, we seek to lay tech-
nical and methodological foundations for research on social dynamics in OSS development,
which can complement other approaches to social-network analysis in OSS research [JPW17].

Our results show different levels of stability of social relationships across different OSS
projects. We found significant improvements in predictive accuracy when concentrating on
the central sub-groups and reducing the weight of peripheral developers—which means that
stable sub-groups arise that last for a couple of years in all projects that we investigated. In
some of the projects, we also saw high levels of congruence between the groups that discussed
via the mailing list and the groups that were collaborating on the source code. When we
augment the target number of groups that the decomposition is supposed to identify, more
detailed insights into role differentiation are possible. Our method is capable of identifying
single developers who complement either the programming groups or the discussion groups
only. In some projects, we identified a stable group of people that take over communication
and programming activities right from the beginning, and that persisted in later phases and
took over the coordination activity.Moreover, we find that growth in the number of developers
and co-editing events is usually not complemented by communication activity growth. Our
results imply that, even though all of our subject projects are successful and have a vivid
contribution history, they differ structurally in the strength of social relationships and the
coherence of communication and collaboration. This can be related to different ways of using
mailing lists. We found stable social structures in all projects, and a consistent improvement
of link prediction performance when concentrating on the particular sub-groups instead of
all developers. However, against common belief, our results indicate that, in many projects,
the sub-group structure that arises from developer communication does not align with the
sub-group structure that arises from co-editing source code, indicating that the congruence
between communication activities and co-editing activities is not always pronounced.

In summary, we make contributions in four areas:
1. From a methodological perspective, we advance the use of multiplex network modeling

of the organizational dynamics of software projects: We devise a modular, multi-step
method to detect developer groups using established community-detection algorithms
and predict their behavior using widely-used forecast algorithms. In particular, we use
a canonical tensor decomposition and combine it with a state-space trend extrapolation
to detect temporary sub-groups and predict future developer interactions. With this
exploratory approach, we lay the foundations for further inductive research for finding
patterns in social networks.
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2. From a software-engineering perspective, we provide insights into the strength and
stability of group structures in OSS development, as well as into the diversification of
roles and the congruence of communication and collaboration behavior.

3. From a practitioner perspective, we propose a method to track important changes in a
project’s organization, identify sources of problems and change, and thereby recognize
instabilities and irregularities in project and process management. Such irregularities
or changes in the group structure of OSS projects could arise when, for example, core
developers leave or join a project, or when they pursue other tasks than they did before.

4. From a research perspective, we provide a measurement and modeling framework in
form of a replication package (consisting of analysis scripts as well as links on how to
gather the raw data used for our study) on our supplementary website:
https://se-sic.github.io/paper-groupdynamics-oss-tensordecomposition/ and
https://zenodo.org/records/10556710 .

4.1 Background & Related Work

In this section, we first provide an overview of related work that investigated the stability of
organizational structures in OSS projects and explain the research gap we seek to fill. There-
after, we provide background information on the statistical tools and concepts that we use for
our method to detect group structures in developer networks and to validate their stability.

4.1.1 Investigations of Organizational Stability in the Literature

Researchers in management science early started to investigate the emergence of governance,
communities, and organizational stability in OSS projects [OF07; OJ07]. Previous work in
software-engineering research has shown that the organizational structure of a software
project, in particular the coordination among software developers, has an influence on soft-
ware quality [e.g., CH13; GHP99; HMR06; KS95; KSD11; NMB08; TLV13; ZCM+17]. However,
Mauerer et al. [MJT+22] have recently shown that socio-technical congruence is a “complex
and multi-faceted phenomenon”, that varies across projects and their evolution. In general,
there is a growing corpus of research on coordination and collaboration of developers in OSS
projects [CS17; RCO19; STG19].

Network representations are core to the analysis of OSS projects: Developers constantly
create connections when communicating or changing code. From a graph or network per-
spective, this means that developers are represented as vertices, and interactions between
developers as edges (which are also called links). Social and socio-technical network analysis
helps analyze the determinants of software quality [MW11], track the evolution of OSS project
organization [JAM17], for learning about code deficiency [CTB+15; WCR+14], and under-
standing OSS success [GLM06; TKL+15]. As many disciplines in organization science seek
to learn from the self-organizing nature of OSS projects, there is a substantial corpus of work
that investigates network structures to explore developer characteristics and organizational
structures in OSS projects [e.g., CLL+17; HKC+11; HSA20; JAH+17; JSS11; LRG+06; PD08;
SSS17; TMB10; TZF20; ZYW11]. For example, Palomba and Tamburri [PT21], and Tamburri
et al. [TPS+19] investigated network characteristics to discover community patterns and to

https://se-sic.github.io/paper-groupdynamics-oss-tensordecomposition/
https://zenodo.org/records/10556710
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predict community smells (e.g., developer groups that do not communicate with each other
or developers who dominate discussions regarding almost every topic). They found that
social-network characteristics, in particular socio-technical metrics, are most valuable for
predicting community smells in OSS projects. We will use a network approach to investigate
the dynamic stability of social ties and sub-groups of OSS projects. For this purpose, we look
at both communication (social) and co-editing (socio-technical) among developers, modeling
developers as vertices and interactions (communication and co-editing) as edges. Co-editing
is, in our context, the joint creation or joint edits of a software artifact (e.g., file).

With this operationalization, Joblin et al. [JAM17] investigated the collaborative dynamics
of 18 large OSS projects. They found that, over time, “the organizational structure of large
projects is constrained to evolve toward a state that balances the costs and benefits of developer
coordination”. As one of the typical long-term patterns, Joblin et al. found that modular group
structures tend to emerge in developer collaboration [JAM17]. The “mirroring hypothesis”
suggests that the social structure of a software project mirrors its code structure because
of the coordination needs that software modules create [CB16]. This means that group
structures among developers may reflect modular structures in code. For example, there are
several sub-modules in the Linux kernel. Each of these sub-modules involves different files
and developers, but single developers can also contribute to more than one sub-module.
Basing on the theory of mirroring, we assume that groups are generally overlapping, and one
voluntary developer can be part of several groups.

Previous findings on the strength of social structures in OSS projects are contradictory. One
stream of research sees relatively weak social structures, and a high degree of flexibility. Bird
et al. [BPD+08] found that developer networks of OSS projects show a high degree of volatil-
ity and that communication tends to adapt ad hoc to current tasks in programming instead of
forming a stable organizational structure. Bird et al. [BGD+06; BPD+08] and Shihab et al.
[SBA+10] did not find any structure beyond the ad-hoc collaboration on current tasks, which
led them to the conclusion that there is little long-term stable organizational structure in OSS
projects. In contrast, Howison et al. [HIC06] showed that, in OSS projects, the degree of group
strength and stability also depends on whether developers are core or peripheral members:
Independently of project size, the core groups are more stable than peripheral, temporary
coalitions. In combination with the large share of peripheral developers in OSS projects, this
may explain why measures that do not differentiate between core and peripheral developers
fail to identify stable social relationships. Both the presence and absence of long-term col-
laboration foster a strong congruence of communication and collaboration tasks. Previous
research found that collaboration creates communication needs, as it requires the exchange of
information on the source code and coordination of programming tasks [CH13; CWH+06].

Mauerer et al. [MJT+22] explored whether and how socio-technical congruence affects
software-quality metrics. In particular, they investigated whether the number of bugs or
code churn (the number of changed lines) are statistically related to socio-technical motif
congruence (which is a notion of socio-technical congruence that incorporates that developers
whowork on the same file should communicatewith each other). Their findings reveal that the
degree of socio-technical congruence is not related to the number of bugs, nor to code churn.

Ashraf et al. [AMM+21] investigated whether developer groups derived from socio-
technical issue networks of OSS projects are related to sets of developers contributing code to
the same subsystem of an OSS project. Their results indicate that the developer groups arising
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in communication, in general, do not overlap with the developer groups derived from jointly
editing source code in the same subsystem. Furthermore, they identified that developer groups
in communication are rather task-driven and unstable over time and, thus, communicate with
varying developers that prematurely work on other subsystems, whereas developer groups
derived from the joint contribution to the source code of a subsystem are rather stable.

The multi-dimensionality of group structures is also related to a role differentiation that
may arise in social organizations. Depending on tenure, experience, and personality, devel-
opers may prefer to contribute only to the collaboration or the communication mode of the
network or to do both simultaneously. If developers can freely choose their focus, they can
also be active in whatever way they want. They may prefer programming, coordinating, or
merely discussing ideas and technical solutions or organizational issues without actually
contributing code [LC03]. Consequently, it is advantageous to look at different forms of
interaction simultaneously to understand the social structure of a project. Tymchuk et al.
[TML14] showed that relying on a single data source for measuring collaboration can be
problematic. This simplification can lead to false conclusions on group structures, the strength
of relationships, and the importance of single developers. Gandhi et al. [GKD+19] showed
that multi-layer modeling of different types of relationships of developers adds value to the
analysis of OSS developer interaction by revealing relationships that would be undiscovered
in the analysis of uni-dimensional links among developers.

Previous research lets us expect a partial congruence of communication and co-editing.
Looking at the content of communication, researchers have found that indeed a large share of
communication in OSS projects is centered on ad-hoc needs of programming tasks. Guzzi et
al. [GBL+13] conducted a text analysis of mailing-list communication to analyze the interplay
of co-editing and communication in OSS projects at a content level. Their insights suggest that
an important part of communication efforts goes into activities that are not directly related
to programming tasks. In particular, Guzzi et al. found that mailing lists are an important,
though not the only, medium of developer communication. They categorized the topics of
communication and found that only 16% of all threads were treating technical infrastructure.
Communication about project status (e.g., planning and communication about releases and
due dates) is accountable for around 7% of all mailing-list communication. This part of the
communication is independent of direct implementation issues. Moreover, social interaction
(i.e., threads about topics such as social norms, contributors, acknowledgment, and coordina-
tion) is accountable for about 6% of all threads. So, a significant share of communication is not
on implementation issues and reflects social relationships that go beyond the urgent technical
needs of collaboration and programming [GBL+13]. Mannan et al. [MAJ+20] showed that
roughly 89% of the technical discussions of an OSS project appear to take place on the mailing
list of the project. Not only the core developers, but also peripheral developers participate in
these implementation-related discussions, which is an indicator that various kinds of devel-
opers having different roles in the project are involved in such discussions. Thus, mailing
lists are an important and comprehensive communication channel when investigating the
relationship between communication and programming activities among developers.
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4.1.2 Tensor Decomposition, Spectral Stability, and State-Space Extrapolation

For our method to detect group structures in OSS projects and to validate their stability, we
rely on multiple established statistical concepts, which we briefly introduce in the following.

Tensor To obtain a multiplex network view on OSS projects, in which we can investigate
several interaction channels simultaneously without mixing the different channels up, we
use the concept of a tensor. A tensor is a higher-order array: An array of order zero is a scalar,
an array of order one is a vector, an array of order two is a matrix, and a higher-order array is
a tensor [KB09; WD16]. We use the tensor as a four-dimensional data structure to model the
edges between developers on different interaction channels over time.

Latent Factor Model Latent factors (also called latent variables) are unobserved variables
that are “hypothetical constructs” which have an effect on observable variables [Eve13]. Latent
factor models are used to describe the dependencies of observable variables by a small number
of latent factors [Eve13; LX23; Thu31]. Thus, latent factors usually are displayed as a linear
combination of observable variables [LX23].

Canonical Tensor Decomposition Tensor decomposition is a latent factor model that is
a well-established and fast method to detect group structures when multiple networks are
assumed to have a common underlying group structure (as, for instance, in communication
and programming activities of developers); it is robust to various statistical data distribu-
tions [CCZ+19]. Canonical tensor decomposition, also known as CANDECOMP/PARAFAC or
CP decomposition [CC70; Har70; Hit27; KB09; Kie00], is “one of the most popular tensor
decomposition methods” [FFG18] and has the goal to represent a tensor “as the sum of a
finite number of rank-one tensors” [KB09]. In particular, tensor decomposition plays a vital
role in knowledge discovery in multi-dimensional networks where computational complex-
ity quickly grows, and matrix-based methods miss the dependency of different network
modes [FFG18]. As Gauvin et al. [GPC14] pointed out, a matrix-based approach would
require the aggregation of all data in time, which leads to the loss of temporal information.
Alternatively, in a matrix-based approach, several interaction channels could be aggregated to
keep temporal information, but then there is a loss of interaction-channel information. A tensor
decomposition avoids this loss of information. For that reason, we use tensor decomposition
to map developer-interaction data to a higher-dimensional tensor structure and decompose
it into time, person, and channel-related patterns with a higher-order tensor decomposi-
tion [SCA+12]. The tensor-based approach has the advantage of keeping time ranges and
interaction channels separate. The perception that overlapping sub-groups in developer net-
works arise or vanish can be translated into a dynamic low-rank factor model [AGH+14a; Hof09]
that is based on the assumption that collaboration and communication activities are driven
by unobserved “tasks” or groups, which lead to developer clustering, and cross-channel and
dynamic dependency.

Rank Reduction The combination of a tensor decomposition with a selection of a sub-
set of the available factors is called rank reduction or low-rank latent factor model [HRH02;
Hof07; Hof09; Hof11]. By restricting the number of factors, the data is projected into a
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lower-dimensional space, making the data more concise and reducing noise [SH05]. Thus, a
reduced-rank tensor decomposition makes sure that the entries of the tensor “are expressed
as products of low-dimensional latent factors” [Hof11]. The low-rank factor model has been
used in the field of data mining for link prediction [AFH+12; AGH+14b; Hof09; KBV09;
SCA+12], as well as for community detection [AGH+14b].

Canonical Tensor Decomposition vs. Principal Component Analysis As we expect
many readers to be familiar with the factorization of matrices via principal components, we
explain the similarities and differences between canonical tensor decomposition and principal
component analysis via spectral matrix decomposition. A principal component analysis is
a method to infer two-dimensional latent factors from a matrix [Jol02]—like a canonical
decomposition is a method to infer higher-dimensional latent factors from a tensor. The
low-rank tensor decomposition is similar to a principal component analysis in that it projects
ormaps 𝑛-dimensional data into a lower-dimensional coordinate system spanned by rank-one
components, which is one way to infer latent factors. Like in matrix decomposition, the number
of possibly extracted components or factors is equal to the rank of the matrix or tensor, respec-
tively. There are, however, two main differences in the choice of the number of components to
extract. First, the computation of the rank of a tensor is NP-hard [SH05]. Second, the spectral
decomposition of a matrix always produces the same first factors (ordered by importance),
no matter how many latent factors are being extracted [Jol02]. The latent factors in tensor
decomposition, however, depend on the total specified number of factors. When the specified
number of factors (which we call 𝑅 in the remainder of this chapter) is chosen too small,
interesting patterns will be overlaid. When 𝑅 is chosen too big, then spurious patterns arise,
which have nothing to do with real-world group dynamics. In the case of tensor decom-
position, “repeatedly subtracting the dominant rank-1 tensor is not a converging process”
[SH05, p.794]. Therefore, the number of components influences the results, unlike in principal
component analysis, and the choice of 𝑅 is non-trivial and is prone to overfitting. For repeated
estimation, the tensor decomposition can find different solutions for the same 𝑅, as its results
depend on the random initiation. Therefore, it is important to set a seed (when doing the
computations). To summarize, the tensor decomposition is an exploratory instrument to
find interesting patterns, which should then not be over-interpreted (especially for large 𝑅).

Spectral Growth & Stability When extracting latent factors via tensor decomposition
from a tensor that consists of a time dimension, it can happen that the importance of a
latent factor (i.e., in our case, the importance of the corresponding group structure) can
be subject to dynamic change. The assumption of constant factorial patterns with trends
in dynamic importance has been discussed by Kunegis et al. [KFB10] under the name of
“spectral stability”: They developed a spectral evolution model and proposed to infer the effects
(i.e., latent factors) that affect the vertices in the network from two consecutive time slices
of a network (via matrix decomposition), and to extrapolate the changes in the dynamic
weights to predict future links. The designation “spectral” results from the fact that their
argumentation bases on spectral matrix decomposition as a factor extraction method. Kunegis
et al. find that, the more stable the interaction between the vertices, the better an extrapolation
of the temporal importance to the future performs for link prediction.



72 Group Dynamics and Group Stability in Open-Source Software Projects

To evaluate their spectral evolution model, they compared the performance of their method
to more restrictive growth models. Such restrictive growth models include the assumption of
constant relative importance of the single unobserved components such as triangle-closing
kernels and path-length models [LBK+08]. Kunegis et al. found that their method performs
better in link prediction if the relative performance of the single underlying growth-driving
patterns (whatever these patterns are) changes over time. They attribute the gains in predictive
performance to the additional freedom that there is no parametric growth curve imposed
on the temporary weights of the decomposition [KFB10]. As we base our methodology on
tensor decomposition, we can profit from more information and adapt their extrapolation
strategy in several regards.

State-Space Time-Series Prediction Models State-space models are statistical tools
to analyze time series of data, which are widely-used to estimate parameters or perform
forecasting [DK12]. In this regard, a time series is a set of observations that is temporally or-
dered [DK12]. In particular, state-space models assume that unobserved variables determine
the evolution of a system (i.e., its state) over time. These unobserved variables are assumed
to be related to observable variables, and the state-space model specifies the relationship
between the unobserved and the observed variables [DK12]. This relationship is usually
characterized by a trend, which is “a slowly varying component”, and by a general level of
the relationship [DK12]. In this context, estimating the unobserved variables based on the
total set of observations is called smoothing. However, a multitude of different smoothing
functions can be used for this process, which makes state-space models flexible for different
application scenarios. For further details on state-space models, especially from amore formal
and statistical point of view, we refer to the literature [e.g., Aok13; CK07; DK12].

Simply said, the state-space model is a time-series model that estimates that current in-
formation is more valuable than old information for the prediction of a time series. This
estimation is in line with our assumptions on developer collaboration, as knowing about the
current collaboration of developers might bemore valuable for predicting future collaboration
than knowing that certain developers had collaborated several years ago. To avoid overfitting
and vulnerability to a small forecast horizon, we use additive double exponential smooth-
ing, which is a state-space extrapolation method proposed by Hyndman et al. [HKS+02].
For details on additive, multiplicative, and other models, see Hyndman et al. [HKS+02].

4.2 Research Questions, Method, and Models

In this section, we translate our assumptions on the nature of group structures in OSS de-
veloper networks into statistical models. For this purpose, we first formulate three research
questions and then explain our method and the models that we use to answer them.

4.2.1 Research Questions

In our study, we aim at answering three research questions regarding group structures in OSS
projects and their stability. We encode different facets of developer interactions into different
models and use statistical tools to model these facets. The facets we model include repeated
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interaction, stable social groups, and dynamic development of groups. The core modules of
our method consist of a clustering of the developers, and a time-series approach to predict the
future level of activity of the identified developer groups. We use tensor decomposition and
a state-space time-series prediction model to implement these modules. While the individual
statistical tools we use are well established, their combination to validate assumptions on de-
veloper behavior is novel. Our research questions consequently include both the capability of
our method to model developer behavior and the insights into the developer behavior itself.

First of all, we are interested in whether stable group structures do emerge in OSS projects,
leading us to our first research question:

RQ1:

Are there stable group structures in OSS projects? That is, are there groups of
developers that steadily interact with each other during the project’s evolution?
Or are there no stable group structures, merely developers who just rally round
certain tasks and vanish afterwards?

As we model different interaction channels simultaneously, namely co-editing source code
and communication, there might be commonalities or differences of the group structures of
the different channels. According to the “mirroring hypothesis” [CB16], there shall emerge a
state of socio-technical congruence between organizational structures (e.g., communication
among developers) and structures arising from programming activities, which results in joint
group structures. This brings us to our next research question:

RQ2:

Does the communication behavior of developers result in the same group
structures as arises from co-editing behavior? To what extent do the group
structures that emerge from communication and from co-editing source code
overlap in terms of developers who participate?

To identify group structures and to obtain insights into their emergence and evolution, we
devise a method combining different statistical tools. We suggest four models addressing
different facets of the interaction of developers in OSS projects (such as past interactions
of developers, which might still be present in the future due to acquaintance and common
working topics). In addition, we propose two baseline models for comparison. To answer our
research questions, we compare the models’ predictive performance on 10 subject projects,
covering different project sizes and project domains, to demonstrate how well the different
models perform in different situations. The predictive performance of the different models
helps us to judge the stability and importance of the detected group structures: If a certain facet
of developer interaction is present, the corresponding models should have a better predictive
performance compared to the models which do not consider this facet. As we use predictive
performance to evaluate our models, we aim at answering the following research question to
get a better understanding of the stability and endurance of interactions among developers:

RQ3:

Does considering past activity in co-editing or communication improve the
prediction of future co-editing or communication? Following the “mirroring
hypothesis”, can the prediction on one channel be improved by incorporating
past activity on the other channel respectively?
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To explore the capability of our method to model developer behavior, we use descriptive
insights and decomposition insights from the application of ourmethod to our subject projects.
Our research questions on the insights into developer behavior will mainly be answered by
analyzing the predictive performance of our models, as the predictive performance helps us
to figure out whether a certain facet of developer interaction is present in OSS projects.

4.2.2 Overview of the Method

We devise a methodology to study sub-group stability. Previous studies, such as the studies
by Joblin et al. [JAM17], Bird et al. [BPD+08], and Shihab et al. [SBA+10], considered a single
mode of interaction, such as e-mail communication, for finding social coalitions. In contrast, we
consider dynamic group structures in the joint communication and co-editing behavior of OSS
developers.Weuse amodel that assigns a probability of interacting for every pair of developers
in a specific way at a specific time. This probability depends on whether the two developers
are part of a sub-group, and whether this sub-group is currently active or not. We define a
group to be a temporal coalition among developers that manifests in communication and
co-editing activity, where groups are non-exclusive, and every developer can be “fractionally”
involved in an unlimited number of groups. By co-editing, we mean collaborative source-code
creation or editing within a certain time window, which can be tracked and assessed via
version-control data, as introduced by Joblin et al. [JMA+15] as a notion of collaboration.
So, co-editing captures all the edits developers make to a commonly changed source-code
artifact (i.e., file) within a certain period of time. We expect that co-editing will manifest,
at least, to a certain degree in the developers’ communication. That is, we expect a positive
correlation between co-editing and communication events. We operationalize communication
by tracking the exchange of information via mailing lists. In our operationalization, we speak
of communication when two developers contribute to the same mailing-list thread within
a certain period. Unlike Gandhi et al. [GKD+19], we emphasize a dynamic view of these
multi-layer structures, and discretize the network into multiple time ranges of 3 months
duration and track changes over time.

We base our models and analysis on the following assumptions, as illustrated in Figure 4.1:
In some projects, alliances may arise ad hoc depending on spontaneous coordination require-
ments, whereas in others, strong social bonds may prevail, leading to more stable long-term
group structures. We assume that there are overlapping groups in OSS projects, that manifest
in co-editing and communication behavior. The more regularly developers contribute, the
more critical their role for the single group. Given observed communication and co-editing
activities, we can infer the groups even if we do not have explicit information on group
structures. When designing our analysis, we seek to cover three main facets discussed above:
First, if group structures are more stable among core developers than among peripheral
developers [HIC06], an algorithm that seeks to identify stable group structures can benefit
from concentrating on the core group of developers and down-weighting the importance of
peripheral developers. Second, we want to assess the stability of coalitions over time, instead
of describing a group structure descriptively. Third, we want to consider multiple channels
of developer interaction simultaneously.
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Task 1 Task 2
“repeated” “occasional”

Figure 4.1: Graphical representation of our assumptions: Unobserved “tasks” drive co-editing (solid
lines) and communication (dashed lines), causing overlapping group behavior. Our defini-
tion of groups involves (a) a subset of developers, (b) the usage of the interaction channels
communication and co-editing, (c) within a limited period. Every developer can be part of
multiple groups with varying intensity.

4.2.3 Network Representation of Open-Source Software Development

Group structures describe the state of a network for a certain period and shed a topological
perspective on the network. To operationalize these periods, we choose to use subsequent time
windows (to avoid that a specific developer interaction appears in more than one time range),
as described in Section 2.3.2. Like Zimmermann et al. [ZZW+05] and Gall et al. [GHJ98], we
call the act of two edits to the same source-code artifact (i.e., file) by two developers within a
specific time window a cochange event. Further, we call the act of mailing-list communication
between developer 𝑖 and developer 𝑗 a mail event if 𝑖 and 𝑗 both sent an e-mail to the same
thread on the mailing list within some time window. Many OSS projects rely on mailing lists
for communication and the discussion of new patches and code [MAJ+20; RLM19; SSF+17].
In some projects, every patch must be sent to a mailing list for general discussion before the
developers’ proposed changes are incorporated into the software. In the project policy of
QEMU1, for example, the process of submitting a patch to the mailing list is strictly regulated.
The need to communicate to get changes rolled out leads to a close relationship between
development and mailing-list communication [BPD+08; XF14]. The mail network does not
cover all facets of communication, though. It is possible that data from other communication
channels, such as issue data from GitHub or other version-control platforms, could bring
additional information about communication. In the ideal case, we would include all available
means of communication, which would provide the most detailed insights into the interplay
of communication and co-editing. However, mailing lists have high coverage, and researchers
showed that they play a non-negligible role in OSS development [MAJ+20; SSF+17], and a
dominant role in our subject projects (see Section 4.3.1).

We denote a cochange event between developers 𝑖 and 𝑗 in time range 𝑡 by a scalar binary
value 𝑧𝑖𝑗C𝑡 ∈ 𝔹. If developers 𝑖 and 𝑗 have co-edited (at least) one source-code artifact in 𝑡,
then let 𝑧𝑖𝑗C𝑡 = 1, and 𝑧𝑖𝑗C𝑡 = 0 otherwise.2 If developers 𝑖 and 𝑗 have contributed to (at least)

1 https://wiki.qemu.org/Contribute/SubmitAPatch/ (accessed at 2019-02-15)
2 In this chapter, we denote scalars by lowercase italic letters, vectors by bold lowercase letters, matrices by bold

capital letters, and higher-order arrays by underlined bold capital letters.

https://wiki.qemu.org/Contribute/SubmitAPatch/
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𝑧𝑖𝑗𝑀𝑡 = 1 𝑧𝑗ℎ𝐶𝑡 = 1

i

j

h

Figure 4.2: Our central data structure: Two developers are connected at time 𝑡 if they have either
communicated (𝑘 = 𝑀, mail, dashed line) or co-edited (𝑘 = 𝐶, cochange, solid line).

one common e-mail thread within 𝑡, let 𝑧𝑖𝑗M𝑡 = 1, and 𝑧𝑖𝑗M𝑡 = 0 otherwise. More generally,
𝑧𝑖𝑗𝑘𝑡 is an interaction event, where 𝑘 = 𝐶 stands for cochange and 𝑘 = 𝑀 stands for mail events.
Much like previous work, we do not distinguish who wrote the message first or contributed
first, therefore, 𝑧𝑖𝑗M𝑡 = 𝑧𝑗𝑖M𝑡 and 𝑧𝑖𝑗C𝑡 = 𝑧𝑗𝑖C𝑡. The event 𝑧𝑖𝑖𝑘𝑡 is not defined, since a vertex
cannot have a relationship with itself. For the tensor decomposition, these values are set to 0.
We illustrate our notation in Figure 4.2 for better comprehensibility.

The binary cochange andmail events 𝑧𝑖𝑗𝑘𝑡 ∈ 𝔹 can be arranged in a fourth-order binary tensor
Z ∈ 𝔹𝑁×𝑁×𝐾×𝑇, where 𝑁 is the number of developers, 𝐾 is the number of interaction channels
(here: mail and cochange, 𝐾 = 2), and 𝑇 is the number of time ranges. When 𝑧𝑖𝑗𝑘𝑡 = 𝑧𝑗𝑖𝑘𝑡 (as
in our case, because we do not distinguish senders and receivers of e-mails), it is said that
the tensor is symmetric in the first and second mode. Z⋅⋅𝑘𝑡 ∈ 𝔹𝑁×𝑁 is a two-dimensional tensor
slice—a matrix that contains all interactions at time 𝑡 in channel 𝑘. As 𝑧𝑖𝑖𝑘𝑡 has been set to 0,
the main diagonal of every tensor slice Z⋅⋅𝑘𝑡 contains only zeros.

4.2.4 Predicting Interaction

To approximate communication and co-editing structures in OSS networks, we mine interac-
tion behavior of developers. The observed data allow us to infer the probability of interaction
among developers in several interaction channels for future interactions. For inference, we
combine the observed data with a model, and the fit and predictive performance of this combina-
tion provide information on the correctness of our assumptions on the behavior of developers.
So, the main goal of our model is not prediction of future states, but the validation of our as-
sumption on developer interaction behavior. Our basic model is the overlapping group structure
with dynamic importance, as illustrated in Figure 4.1: Developers work together in overlap-
ping groups or sub-groups. A group’s activity level varies, affecting both the developers’
propensity to write to the mailing list and to contribute to source-code files. If our model
approximates the reality better than other assumptions, it will perform well in predicting
the links that arise in a network, compared to models that involve more parameters or are
over-simplified. In what follows, we explain howwe translate the idea of overlapping dynamic
groups into a statistical model and combine it with the observed data.

In link prediction, the probability of a link being there or not is usually expressed with a
score. We denote the score for 𝑧𝑖𝑗𝑘𝑡 = 1 by 𝜃𝑖𝑗𝑘𝑡. The score is monotonically positively related to
𝑃(𝑧𝑖𝑗𝑘𝑡 = 1), that is, if 𝜃𝑖𝑗𝑘𝑡 is large, then also the probability of 𝑖 and 𝑗 to connect via channel 𝑘
at time 𝑡 is large: 𝑃(𝑧𝑖𝑗𝑘𝑡 = 1) ∼ 𝜃𝑖𝑗𝑘𝑡, where ∼ denotes a monotonic positive relationship. For
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simplicity, we assume that the monotonic relationship is linear, that is, 𝑃(𝑧𝑖𝑗𝑘𝑡 = 1) is a linear
transformation of 𝜃𝑖𝑗𝑘𝑡.3 When the probability of an edge to exist is known, the edges are
stochastically independent, and the probability of all events happening at the same time is
just the product of the probabilities of the single events happening. Therefore, conditional on
knowing all interaction probabilities, the probability of observing the given entire network
reduces to the product of the probabilities of the single edges. This conditional independence is
expressed in the following equation [FH15; Hof09]:

𝑃(Z|Θ) = ∏
𝑖≠𝑗

𝑃(𝑧𝑖𝑗𝑘𝑡|𝜃𝑖𝑗𝑘𝑡), (4.1)

where 𝑃(Z) is the probability of observing a specific network and its tensor Z ∈ 𝔹𝑁×𝑁×2×𝑇.
Then, Θ ∈ ℝ𝑁×𝑁×2×𝑇 is the fourth-order tensor that contains the scores 𝜃𝑖𝑗𝑘𝑡. ∏𝑖≠𝑗 denotes
the product of all probabilities of all the links 𝑧𝑖𝑗𝑘𝑡, 𝑖 ≠ 𝑗. The score 𝜃𝑖𝑗𝑘𝑡 contains all known and
unknown information about developers 𝑖 and 𝑗 that influences their interaction in medium 𝑘
at time 𝑡. Examples include whether developers 𝑖 and 𝑗 are currently collaborating on a task,
whether they are interested in the same topics, and how much they currently contribute to
the project. As we cannot observe Θ, we make assumptions about its nature and try to infer it
from the observed network. In likelihood maximization, we choose Θ such that it maximizes
the probability of observing the given network Z. If we can choose between two different
sets of values Θ, we choose the set that leads to the higher probability 𝑃(Z|Θ), that is, the set
of 𝜃-values that would have most likely resulted in the observed network. This way, we can
compare different theories on the emergence of a network by comparing which theory was
most likely to produce the observed outcome—and performed best in link prediction.

Every link has an unobserved probability of being existent, as no pair of developers is equal
to another pair. Consequently, without further restricting assumptions, we would have to
estimate just as many 𝜃-values as there are different entries in Z, that is, ((𝑁 −1) ⋅𝑁 ⋅𝐾 ⋅𝑇)/2.4
We need some restricting assumptions on the structure of the scores to reduce the number of
parameters in the model. Moreover, restrictive assumptions improve the model’s predictive
power, as they reduce the influence of chance on the parameter estimation. The assumptions
are equal to different models that describe developer behavior, and the one that best fits the
observed data will be considered the most likely model in our analysis.

A relatively simple assumption to combine with our statistical rule is that the same de-
velopers that communicate or co-edit in time range 𝑡 will communicate or co-edit in time
range 𝑡 + 1 again. This assumption is naïve, as there is developer turnover in OSS projects,
and developer participation depends also on other factors such as the release cycle of the
project [FPB+15; KAD+15; LRS17]. Moreover, working on different features could also end
up in changing interactions with different developers. Nevertheless, for simplicity, we will
use this simple assumption on sustained developer interactions as a baseline model: If more
complex models (which we will introduce later on) do not perform better than this most
simple model, we will conclude that the more complex models do not add explanatory value.
For baseline model naive, assume that we have observed the network up to time range 𝑇,
and want to look ℎ time ranges into the future. Let ̂𝜃 naive

𝑖𝑗𝑘,𝑇+ℎ|𝑇 designate the estimated score for

3 An alternative would be to assume a logistic relationship. Such change would complicate the inference of model
parameters but not change the model’s basic intuition. See Hoff [Hof09] for an explanation in a matrix context.

4 Remember that Z is symmetric, and 𝑧𝑖𝑖𝑘𝑡 is not defined.
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time range 𝑇 + ℎ with information up to time range 𝑇. Then, the estimated score at time 𝑇 + ℎ
is equal to the observed value at time 𝑇:

̂𝜃 naive
𝑖𝑗𝑘,𝑇+ℎ|𝑇 = 𝑧𝑖𝑗𝑘𝑇 (4.2)

For baseline model naive, we do not assume stable long-term cohesion. Instead, we assume
short-term alliances between developers that finish the tasks and discussions they have
started. Consequently, the naïve model says that there is perfect stability of inter-personal
links from time 𝑡 to 𝑡 + ℎ, but no group behavior or long-term stability of interaction. We
will compare this model’s performance with the performance of a model that assumes that
developers have a longer memory and that they are more likely to interact, the more often
they have interacted before. To express this idea, we introduce a second baseline model,
model sum. Here, the score of two edges is equal to the sum of all edges:

̂𝜃 sum
𝑖𝑗𝑘,𝑇+ℎ|𝑇 =

𝑇
∑
𝜏=1

𝑧𝑖𝑗𝑘𝜏 (4.3)

The scores in this model can be any integer from 1 to 𝑇 if two developers have communicated
or co-edited previously, else, it is 0. Two developers have a positive probability to co-edit if
they have co-edited before, no matter when they co-edited.

As our baseline models naive and sum are rather simple, one could also come up with more
sophisticated baseline models. For example, instead of simply summing up the previous
edges, one could up-weight edges present in more recent time ranges or down-weight edges
present only in older time ranges. However, such considerations would give rise to many
additional questions (e.g., how many time ranges to consider and how to determine which
weights would be appropriate), which would need to be explored and evaluated separately.
The models we propose next are independent of such questions.

4.2.5 The Reduced-Rank Latent Factor Model

Neither of the two baseline models naive and sum pays particular attention to similar interests
among developers, sub-groups, congruence of communication and co-editing, or time effects
arising from long-term tasks and stable social relationships. Therefore, even if we assumed
the conditional independence for these models, we would likely be wrong, as there are effects
of reciprocity and other phenomena that disturb the assumption of independence in the
model. To address RQ1 (i.e., whether there are stable group structures in OSS projects), we
introduce a model that translates the assumption of overlapping groups and a core-periphery
structure into a statistical network model—the reduced-rank latent factor model (see Section 4.1.2
for the corresponding statistical background). We will evaluate this model later against the
baseline models naive and sum by checking which one provides better predictions and fit.

Recall our assumption from Figure 4.1: We assume that developers work in overlapping
temporal groups that are driven by tasks. These tasks affect the probability of edges among
particular developers in a specific channel 𝑘 at time 𝑡. We can restrict 𝜃𝑖𝑗𝑘𝑡 such that it reflects
the idea of overlapping dynamic sub-groups. One way to do so is to express 𝜃𝑖𝑗𝑘𝑡 as a sum of
latent factors that consist of three different elements:



4.2 Research Questions, Method, and Models 79

(1) Assume that a project involves programming a feature. We call the creation of this feature
“Task 1”. Depending on her motivation and knowledge, some developer 𝑖 may consider
contributing to “Task 1”. Denote her motivation/interest in “Task 1” by 𝑢𝑘

𝑖1 ∈ ℝ, where
the superscript 𝑘 means that we look at sub-groups only within communication (M)
or co-editing (C) separately. If developer 𝑖 is indifferent to working on “Task 1”, then
𝑢𝑘

𝑖1 = 0. If she has an aversion against working on “Task 1”, or if she is currently busy in
a different task, 𝑢𝑘

𝑖1 < 0. If she is interested, 𝑢𝑘
𝑖1 > 0.

(2) The probability of developers 𝑖 and 𝑗 to interact is monotonically related to the product
of 𝑢𝑘

𝑖1 and 𝑢𝑘
𝑗1. If developer 𝑖 is indifferent, 𝑢𝑘

𝑖1 = 0, then “Task 1” has no influence on her
likelihood to co-edit or communicate with 𝑗 on a task, as any number 𝑢𝑘

𝑗1 multiplied by
𝑢𝑘

𝑖1 = 0 is 0. If developer 𝑖 is interested, and 𝑗 has a strong aversion against task “Task 1”,
then they have 𝑢 values with opposed signs. Then, 𝑢𝑘

𝑖1 ⋅ 𝑢𝑘
𝑗1 < 0, and “Task 1” decreases

their likelihood to interact.
(3) The task is worked on in time ranges 20 to 25. Let 𝑑𝑘

𝑡1 be the importance of “Task 1”
at time 𝑡. Then, 𝑑𝑘

20,1, … , 𝑑𝑘
25,1, the dynamic weight of “Task 1” from time range 20 to time

range 25, is relatively large.
Using these three insights, we assume that “Task 1” can be fully described by u𝑘

𝑟=1 ∈ ℝ𝑁

and d𝑘
𝑟=1 ∈ ℝ𝑇: These vectors contain the 𝑁 developers’ and 𝑇 time ranges’ values 𝑢𝑘

1,1, … 𝑢𝑘
𝑁1

and 𝑑𝑘
1,1, … , 𝑑𝑘

𝑇1 regarding “Task 1”. As any multiple of Θ is equally valid as a score, u𝑘
𝑟=1

and d𝑘
𝑟=1 are not identified, that is, there are several equally valid solutions for the concrete

values in the vectors. One way to fix the values is to restrict the vectors to length 1, |u𝑘
𝑟=1|2 = 1

and |d𝑘
𝑟=1|2 = 1, where ||2 is the Euclidean norm. “Task 1” is the first latent factor, that is, the

first unobserved reason why developers 𝑖 and 𝑗 communicate and co-edit at a specific time.
However, there may be more than one task. If there is a second task, we need to give a weight
to both tasks to fix the importance of the tasks. Let the weights of “Task 1” and “Task 2” be
𝜆𝑘

1 and 𝜆𝑘
2. Then, the score is 𝜃𝑖𝑗𝑘𝑡 = 𝜆𝑘

1 ⋅ 𝑢𝑘
𝑖1 ⋅ 𝑢𝑘

𝑗1 ⋅ 𝑑𝑘
𝑡1 + 𝜆𝑘

2 ⋅ 𝑢𝑘
𝑖2 ⋅ 𝑢𝑘

𝑗2 ⋅ 𝑑𝑘
𝑡2. Say that in total, there

are 𝑅 ∈ ℕ latent factors or tasks. The score of two developers in a specific interaction channel
at a specific time is determined by the sum of the 𝑅 factors. This results in model 3d, which
uses a third-order tensor decomposition with rank reduction, looking at the information of a
specific interaction channel:

𝜃 3d
𝑖𝑗𝑘𝑡 =

𝑅
∑
𝑟=1

𝜆𝑘
𝑟 ⋅ 𝑢𝑘

𝑖𝑟 ⋅ 𝑢𝑘
𝑗𝑟 ⋅ 𝑑𝑘

𝑡𝑟 (4.4)

with 𝜃 3d
𝑖𝑗𝑘𝑡, 𝜆

𝑘
𝑟 , 𝑢𝑘

𝑖𝑟, 𝑢𝑘
𝑗𝑟, 𝑑𝑘

𝑡𝑟 ∈ ℝ, 𝑟 ∈ {1, … , 𝑅}, 𝑅 ∈ ℕ.

Developer 𝑖 can be described by 𝑅 scores that describe how involved he or she is in task
𝑟 ∈ {1, … , 𝑅}. These 𝑅 values are encoded in a vector u𝑘

𝑖 ∈ ℝ𝑅. The same is true for developer 𝑗.
This common interest is multiplied with a time weight, which we call d𝑘

𝑡 ∈ ℝ𝑅. Every factor 𝑟
influences 𝑁 developers and 𝑇 time ranges. Let u𝑘

𝑟 ∈ ℝ𝑁 be the vector of all developers
regarding the 𝑟-th latent factor and d𝑘

𝑟 ∈ ℝ𝑇 be the dynamic weights of the 𝑟-th latent factor
within interaction channel 𝑘.

We can use this model for link prediction, by assuming that the future importance of tasks
at time 𝑇 +ℎ is likely to be equal to the importance of tasks in the current time range 𝑇. Should
this model perform better than the baseline models, there is evidence for group behavior,
but no evidence about the stability of the group importance over time yet. Note that more
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than one of the tasks can currently be important, so we have overlapping group behavior.
The current level of activity of the overlapping groups describes the project at time 𝑇. Future
activity levels are most likely to be equal to the current weights of the factors:

̂𝜃 3d
𝑖𝑗𝑘,𝑇+ℎ|𝑇 =

𝑅
∑
𝑟=1

𝜆𝑘
𝑟 ⋅ 𝑢𝑘

𝑖𝑟 ⋅ 𝑢𝑘
𝑗𝑟 ⋅ ̂𝑑𝑘

𝑇+ℎ,𝑟|𝑇 (4.5)

We can now make an assumption on the future importance of the 𝑟-th task. In model 3d,
we assume that the importance of the component will stay the same as it is currently:

̂𝑑𝑘
𝑇+ℎ,𝑟|𝑇 = 𝑑𝑘

𝑇𝑟 (4.6)

The model has an additional advantage compared to naive and sum: It increases the weight
of developers with many edges to other developers by concentrating on the most influen-
tial patterns in the data. When we infer only a few factors from the observed data (𝑅 is
small), then the model is forced to focus on meaningful coalitions and groups. Concen-
trating on fewer groups reduces the risk of over-interpreting spurious patterns. This re-
duced risk, together with the relatively low number of parameters, improves interpretabil-
ity and link prediction performance. The model concentrates on the more “important”
developers, where “important” has a multi-layer interpretation: If developer 𝑖 (a) inter-
acts with a large number of other developers, (b) over several time ranges, she receives
higher weights in the developer effects u𝑘

𝑖 . Her scores will likely be higher—but the sin-
gle score 𝜃𝑖𝑗𝑘𝑡 also depends on u𝑘

𝑗 , the scores of the potential partner. The rank reduction
“considers” occasional interaction to be “noise” and reduces their weight in the prediction.
This noise reduction is useful for prediction.

4.2.6 Congruence of Sub-Groups in Coordination and Programming Work

Previous research has shown that, in OSS projects, core developers often take over both the
bulk of communication and programming work [CH08; JSW11; MFH02; TRC10]. This brings
us to RQ2, in which we ask whether communicative tasks and co-editing tasks result in
the same group structures. If there is no distinction between both types of tasks, then the
sub-groups should be similar in both interaction channels, since the “mirroring hypothesis”
states that there shall emerge joint group structures due to a socio-technical congruence
between communication and programming activities. Estimating only one group structure
for both interaction channels may reduce noise and estimation uncertainty even more, and it
helps to measure the congruence of group structures in both channels. Thus, we assume that
the developer 𝑖’s interest in a task is the same for communication and co-editing (𝑢𝑘

𝑖𝑟 sim-
plifies to 𝑢𝑖𝑟 in both channels). Moreover, when estimating only a joint group structure for
both communication and co-editing, we assume that a task is similarly important for both
communication and co-editing at time 𝑡. So, we estimate only one weight for latent factor 𝑟 at
time 𝑡, instead of separate weights for communication and co-editing (𝑑𝑘

𝑡𝑟 simplifies to 𝑑𝑡𝑟).
Also the relative importance of the tasks is assumed to be the same (𝜆𝑘

𝑟 simplifies to 𝜆𝑟).
Instead, we assume that a task can require more or less communication and co-editing and
add a 𝑐𝑘𝑟 parameter to the equation.



4.2 Research Questions, Method, and Models 81

Let 𝑐𝑘1 ∈ ℝ be the channel effect of “Task 1”. Assume that, to fulfill “Task 1”, developers
have to co-develop code, but no communication is necessary. Then, let 𝑐M1 = 0, and 𝑐C1 > 0.

Similar to the previous specifications, there is a 𝑐𝑘𝑟 for every task 𝑟, and c𝑟=1 ∈ ℝ2 are the
two interaction channels’ strengths of relationship to the task 𝑟 = 1. The length of the vector
is, again, normalized: |c𝑟=1|2 = 1. Model 4d extends model 3d by one more dimension:

𝜃 4d
𝑖𝑗𝑘𝑡 =

𝑅
∑
𝑟=1

𝜆𝑟 ⋅ 𝑢𝑖𝑟 ⋅ 𝑢𝑗𝑟 ⋅ 𝑐𝑘𝑟 ⋅ 𝑑𝑡𝑟 (4.7)

with 𝜃 4d
𝑖𝑗𝑘𝑡, 𝜆𝑟, 𝑢𝑖𝑟, 𝑢𝑗𝑟, 𝑐𝑘𝑟, 𝑑𝑡𝑟 ∈ ℝ, 𝑅 ∈ ℕ.

̂𝜃 4d
𝑖𝑗𝑘,𝑇+ℎ|𝑇 =

𝑅
∑
𝑟=1

𝜆𝑟 ⋅ 𝑢𝑖𝑟 ⋅ 𝑢𝑗𝑟 ⋅ 𝑐𝑘𝑟 ⋅ ̂𝑑 4d
𝑇+ℎ,𝑟|𝑇, (4.8)

̂𝑑 4d
𝑇+ℎ,𝑟|𝑇 = 𝑑𝑇,𝑟 (4.9)

The parameter 𝑐𝑘𝑟 describes the effect of a task 𝑟 on the interaction channel 𝑘, that is, whether
the task requires a lot of cochange activity or mail activity. 𝜃𝑖𝑗𝑘𝑡 can now also be higher when
a task affects multiple (in our case, two) interaction channels.

The core assumption of the low-rank factor model is the separability of the three forms of
dependency. Inter-personal dependency describes relationships and groups among developers,
which are due to common interests, common tasks, or other unobserved developer charac-
teristics, denoted by u𝑟. Temporal dependency describes that developers are likely to work on
specific topics at a specific time. The static aspect of “Task 𝑟” is described by user effects and
channel effects. d𝑟 denotes the current importance of “Task 𝑟”. This separability assumption
is less ambitious than the models above but not harmless: When the requirements of a task
change over time, or when groups change only incrementally over time, the model is likely
not to describe the real situation well. Cross-channel dependency describes the integration of
co-editing and communication interaction channels. Independently of who contributes and
independently of time, the task requires a certain amount of communication and co-editing.
c𝑟 denotes this effect of the task on the interaction channel. In other words, the model is based
on fixed inter-personal relationships and cross-channel patterns, and allows only the current
importance of these patterns to change. If one task is done, the respective factor’s dynamic
weights will revert to 0. Changing coalitions manifest only in changes in the weights of the
groups. The group structures themselves are assumed to be constant in time. While this limits
the applicability of the model for tracking changes in a group, it is useful for identifying
groups and helps in link prediction due to the noise reduction effect.

4.2.7 Spectral Growth

𝑑𝑡𝑟 in model 4d, as well as 𝑑𝑘
𝑡𝑟 in model 3d, describe the current activity level of latent factor 𝑟

at time 𝑡. So far, we assumed that in the future, this importance will be constant: ̂𝑑𝑇+ℎ,𝑟 = 𝑑𝑇𝑟
and ̂𝑑𝑘

𝑇+ℎ,𝑟 = 𝑑𝑘
𝑇𝑟. However, if factor 𝑟 has been growing more important in the last few time

ranges, it can be a reasonable assumption that the group’s importance will further increase in
the next time ranges. Therefore, the trend in d𝑟 can be extrapolated to the future, to make a
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dynamic forecast. This can be used to address RQ3, in which we ask whether considering past
activity in co-editing or communication does improve the prediction of future activities.

The assumption of constant factorial patterns with trends in dynamic importance has been
discussed by Kunegis et al. [KFB10] under the name of “spectral stability” (see Section 4.1.2).
They proposed to infer u1, … ,u𝑅 from two consecutive time slices of a network (via matrix
decomposition), and to extrapolate the changes in the dynamic weights to predict future
links. According to Kunegis et al. [KFB10], the more stable the inter-personal alliances,
the better an extrapolation of d𝑟 to the future performs for link prediction. Suppose we
want to predict developer interaction ℎ time ranges ahead (ℎ stands for forecast horizon).
For a window length of 3 months, ℎ = 1 is equivalent to predicting interaction within the
next 3 months. Consequently, ℎ = 5 is equivalent to predicting interaction in the 3-months
window that lies 1 year in the future. We can make a prediction at any time range 𝑡, but
use only information from the past. Therefore, 𝑑𝑇+ℎ,𝑟 is the unobservable weight of com-
ponent 𝑟 at time 𝑇 + ℎ, whereas ̂𝑑𝑇+ℎ|𝑇 denotes the predicted value of 𝑑𝑇+ℎ,𝑟 given all infor-
mation at time 𝑇. Kunegis et al. [KFB10] calculate 𝑑𝑡𝑟 and 𝑑𝑡−1,𝑟 by matrix decomposition
and vector matching, and calculate the growth of a latent factor as Δ𝑑𝑡𝑟 = 𝑑𝑡𝑟 − 𝑑𝑡−1,𝑟.
Assuming that this is the current change in the importance of latent factor 𝑟, they assume
that this change will repeat itself for each of the ℎ steps we go into the future:

̂𝑑𝑇+ℎ,𝑟|𝑇 = 𝑑𝑇𝑟 + ℎ ⋅ (𝑑𝑇𝑟 − 𝑑𝑇−1,𝑟) = 𝑑𝑇𝑟 + ℎ ⋅ Δ𝑑𝑇𝑟 (4.10)

Aswe base ourmethodology on tensor decomposition, we can profit frommore information
and adapt the extrapolation strategy in several regards. First, we want to make use of data
from more than one time range ago, that is, we want to use the information in the vector
d𝑟 ∈ ℝ𝑇. Second, we have enough information to infer a “current trend” and a “current level”
that we can extrapolate to the future. To estimate 𝑑𝑡+ℎ with all information up to time range 𝑡,
that is, to calculate ̂𝑑𝑡+ℎ|𝑡, we use a double exponential smoothing. This model bases on the
state-space model for univariate time series proposed by Hyndman et al. [HKS+02] (see
Section 4.1.2), which estimates that current information is more valuable than old information
for the prediction of a time series. This estimation is in line with our assumptions on the
collaboration of developers, as knowing about the current collaboration of developers might
be more valuable for predicting future collaboration than knowing that certain developers
had collaborated several years ago. This means that 𝑑𝑇 receives a higher weight than 𝑑1 when
predicting 𝑑𝑇+ℎ. To avoid overfitting and vulnerability to small 𝑇, we use an additive double
exponential smoothing extrapolation (see Hyndman et al. [HKS+02]).

We treat d𝑟 = 𝑑1𝑟, … , 𝑑𝑡𝑟, … , 𝑑𝑇𝑟 as a univariate time series. This time series can look like
the green solid line in Figure 4.3, which indicates that the importance of component 𝑟 (e.g., a
certain task shared among the developers) increased until time range 15, and then declined.
At time 𝑇, the time series has reached a kind of stable level, with a slightly decreasing trending
behavior. We call the current level of the time series at time 𝑇 𝑙𝑇, and we call the slightly
decreasing trend 𝑏𝑇. When predicting the future of this time series, we extrapolate the current
behavior to the future and assume that the level and trend will continue. The predicted
value of 𝑑𝑇+ℎ is denoted by ̂𝑑𝑇+ℎ,𝑟|𝑇, the estimated value with all information available at
time 𝑇. We call the correspondingmodels 3d-ext and 4d-ext for “extrapolated”: The predicted
(extrapolated) values can be multiplied with the values 𝑢𝑘

𝑖𝑟 and 𝑢𝑘
𝑗𝑟 in model 3d-ext, and

𝑢𝑖𝑟, 𝑢𝑗𝑟, and 𝑐𝑘𝑟 in model 4d-ext, respectively, to obtain an estimate for future scores of the
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𝑑 𝑡
𝑟
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̂𝑑𝑇+ℎ,𝑟|𝑇

𝑇 + ℎ𝑇

Figure 4.3: The current trend of the weights of the 𝑟-th factor (e.g., a certain task shared among the
developers) is extrapolated to future time ranges for prediction.

developer pairs. Using 3d-ext, we aim at answering RQ3, whether past activity in co-editing or
communication, respectively, improves the prediction of future co-editing or communication
when compared to the simpler model 3d. Using 4d-ext, we investigate whether the prediction
on one communication channel can be improved by incorporating past activity on the other
channel, as compared to the simpler models such as 4d.

The combination of d𝑟 with a time-series smoothing method for extrapolation to the future
reduces the vulnerability of the method to short time windows and provides additional
stability. Combining the two methods—tensor decomposition and the state-space model—
has been shown to be effective for link prediction [Sch22]. When we observe new information,
that is, as soon as 𝑑𝑡+1,𝑟 becomes observable, we can update our beliefs about the level and the
trend of the time series 𝑑𝑡,𝑟. Let 𝜖𝑡+1 describe the difference between our predicted value ̂𝑑𝑡+1,𝑟|𝑡
and the observed 𝑑𝑡+1,𝑟. We react to the mistake we made by updating 𝑙𝑡,𝑟 to 𝑙𝑡+1,𝑟 and by
updating 𝑏𝑡,𝑟 to 𝑏𝑡+1,𝑟. Two parameters determine the strength of the adaptation of the estimate
to new information, 𝛼𝑟 and 𝛽𝑟. 𝛼𝑟 describes how strong our adaptation of the level 𝑙𝑡,𝑟 is, and
𝛽𝑟 describes how strong our adaption of the trend 𝑏𝑡,𝑟 is. Below, our updating equations and
the prediction for a factor 𝑟’s weight at time 𝑡 + ℎ with information from time 𝑡 are given:

𝑙𝑡,𝑟 = 𝑙𝑡−1,𝑟 + 𝑏𝑡−1,𝑟 + 𝛼𝑟𝜖𝑡,𝑟, (4.11)
𝑏𝑡,𝑟 = 𝑏𝑡−1,𝑟 + 𝛼𝑟𝛽𝑟𝜖𝑡,𝑟, (4.12)

̂𝑑𝑡+ℎ,𝑟|𝑡 = 𝑙𝑡,𝑟 + ℎ ⋅ 𝑏𝑡,𝑟 (4.13)

̂𝑑𝑡+ℎ,𝑟|𝑡 is the predicted future weight of the 𝑟-th factor, assuming that the current trend 𝑏𝑡,𝑟
and the current level 𝑙𝑡,𝑟 describe the future dynamics of the 𝑟-th factor. This estimated ̂𝑑𝑡+ℎ,𝑟|𝑡
can then be put back into the prediction formulas for models 3d-ext and 4d-ext.

In model 3d-ext, this results in the following prediction equations for the prediction of the
scores 𝜃𝑖𝑗𝑘,𝑇+ℎ at the last observed time range 𝑇:

̂𝜃 3d-ext,𝑘
𝑖𝑗𝑘,𝑇+ℎ|𝑇 =

𝑅
∑
𝑟=1

𝜆𝑘
𝑟 ⋅ 𝑢𝑘

𝑖𝑟 ⋅ 𝑢𝑘
𝑗𝑟 ⋅ ̂𝑑3d-ext,𝑘

𝑇+ℎ,𝑟|𝑇, (4.14)

̂𝑑 3d-ext,𝑘
𝑇+ℎ,𝑟|𝑇 = 𝑙3d-ext,𝑘𝑇𝑟 + ℎ ⋅ 𝑏3d-ext,𝑘𝑇𝑟 (4.15)
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As the 𝑅 groups are estimated separately for themail and cochange channel, also the prediction
for the future weights of the 𝑅 groups are computed separately.

In model 4d-ext, there are 𝑅 groups estimated for both channels. So, the dynamic of every
group is the same in both channels:

̂𝜃 4d-ext
𝑖𝑗𝑘,𝑇+ℎ|𝑇 =

𝑅
∑
𝑟=1

𝜆𝑟 ⋅ 𝑢𝑖𝑟 ⋅ 𝑢𝑗𝑟 ⋅ 𝑐𝑘𝑟 ⋅ ̂𝑑 4d-ext
𝑇+ℎ,𝑟|𝑇, (4.16)

̂𝑑 4d-ext
𝑇+ℎ,𝑟|𝑇 = 𝑙 4d-ext𝑇𝑟 + ℎ ⋅ 𝑏 4d-ext

𝑇𝑟 (4.17)

Model 3d-ext assumes that the two modes of interaction have separate groups and group
dynamics. Instead, model 4d-ext assumes that both modes of interaction share a joint group
structure. This assumption is based on the “mirroring hypothesis” [CB16], saying that there
is a socio-technical congruence between organizational structures (e.g., communication) and
structures arising from programming activities, which results in joint group structures.

The extrapolation of the current changes in the group weights brings additional parameters
𝛼𝑟 and 𝛽𝑟 that need to be estimated and can bring additional uncertainty to the estimations.
This additional uncertainty can be harmful especially for small 𝑇, as then the parameters have
to be estimated from a small sample size. However, it can also lead to improved predictions
by better assessing recent group dynamics. It can predict growth where group weights are
currently growing, and shrinkage where group weights are currently shrinking.

4.2.8 Summary of the Proposed Models

Every pair of developers has an individual probability of communicating or co-editing
in a given time range. To estimate these probabilities, we need to restrict the number of
parameters—especially if we want to predict future developer interactions. The insight that
overlapping sub-groups in developer networks arise can be translated into a dynamic low-rank
factor model [AGH+14a; Hof09] that bases on the assumption that co-editing and communi-
cation are driven by unobserved “tasks” or groups, which lead to developer clustering as
well as cross-channel and dynamic dependency. Thus, we map interaction data to a higher-
dimensional tensor structure and decompose it into time, person, and channel-related patterns
via higher-order tensor decomposition [SCA+12]. The tensor structure retrieves group struc-
tures from communication and co-editing without aggregating both modes of interaction.

Deprived of the possibility to do classical statistical hypothesis testing, we base our valida-
tion strategy on relatedmeasures of predictive performance:We quantify temporal stability by
measuring howmuch information on past collaboration events increases the performance of a
prediction of future developer interaction. Furthermore, we investigate whether information
on communication is useful for predicting co-editing and vice versa. Our method reduces
the complexity level of group dynamics to two dimensions and allows us to visualize the
dynamic group structures in simple plots.

We will compare our proposed models to verify the value of historical information and
the group model for understanding the data structure. In Table 4.1, we summarize the six
models and prediction strategies (including the two baseline models naive and sum). Models
3d, 4d, 3d-ext, and 4d-ext are based on the assumption of unobserved, independent latent
factors that explain the correlation structure among the interaction events. These latent factors
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Table 4.1: Overview of our models for performance comparison.

Model Description Equations

naive Developers who interact in channel 𝑘 at time 𝑡 are likely to interact at time 𝑡 + 1
in channel 𝑘 again.

(4.2)

sum All information from time ranges 1, … , 𝑡 at equal importance, developers who
collaborated in three time ranges are three times as likely to collaborate again
in the future compared to developers who collaborated in only one time range.

(4.3)

3d Developer interaction is driven in both channels independently by dynamic,
non-overlapping group behavior (also described above as “tasks”). The current
activity level of a single group in one mode of interaction will be the same in
the next time range.

(4.4), (4.5), (4.6)

4d Developer interaction is driven in both channels simultaneously by dynamic,
overlapping group behavior (also described above as “tasks”). The current
activity level of a single group will be the same in the next time range.

(4.7), (4.8), (4.9)

3d-ext Based on 3d. However, activity levels of groups in co-editing or communication
context have trends and levels, and a time-series model can extrapolate these
trends to future time ranges.

(4.14), (4.15)

4d-ext Based on 4d. However, activity levels of groups have trends and levels, and a
time-series model can extrapolate these trends to future time ranges.

(4.16), (4.17)

can be seen as “tasks”, but are not limited to tasks: They also cover dynamic patterns of
homophily and other reasons for inter-personal relationships. It does not matter whether it is
a function that needs to be programmed, a discussion on a specific topic, or some other reason
for co-editing or communicating. The latent factor is just some unobserved phenomenon that
drives co-editing and communication activity of the developers, and that will manifest in the
network topology and the tensor Z [KFB10].

So, how are tensor decomposition and extrapolation linked to verifying stability in group
structures among developers? We base our empirical validation strategy on four arguments:
(a) If the factorial structure adequately reflects real-world group structures, we should

see major events like the drop-out of an important developer disturb the project in
the decomposition. The decomposition attributes high weights to developers who are
well integrated into the community structures of the project. Hence, the drop-out of a
well-connected developer can—in a very active group—lead to the identification of a
completely separated new group after the drop-out.

(b) If there are sub-groups in the network that describe the social network structure reason-
ablywell (see RQ1), then a latent factormodel (3d, 4d, 3d-ext, and 4d-ext) should perform
better in link prediction than naive and sum. The reason is that not very well integrated
developers are not identified to be part of the important sub-groups and are attributed
a minor role in the prediction. Should the contribution behavior of these not very well
integrated developers be just as stable and continuous as the identified group structures,
we will not see a benefit for the models 3d, 4d, 3d-ext, and 4d-ext: These models attribute
a weight to developers according to their position in the network—developers who are
integrated into important sub-groups receive a higher weight than peripheral develop-
ers, who contribute only temporarily and add little contribution to the project. The two
baseline models, instead, do not take a developer’s position in the network into account
and only count the absence or presence of an interaction with another developer.
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(c) If the same sub-groups that exchange e-mails do also collaborate in programming (see
RQ2), then 4d-ext should perform better than 3d-ext, and 4d should perform better
than 3d. When the group structures are congruent in both interaction modes, the estima-
tion will be more reliable in the models 4d-ext and 4d than in their three-dimensional
counterparts as more evidence on the groups is provided.

(d) If the alliances are of changing importance (see RQ3), then the weight extrapolation
(3d-ext and 4d-ext) should perform better than a non-dynamic prediction method (3d
and 4d). The state-space time-series prediction method allows the groups to continue
growing or shrinking over time, whereas the models without a time-series component
are more vulnerable to temporarily different weights in the last time range and assume
constant importance of tasks or groups.

The predictive performance of the models will help us to judge the stability of sub-group
importance and collaboration dynamics. The insights of the decomposition reveal the social
integration of developers and the changes in social relationships, as opposed to vertex central-
ity measures or simply event counts. By validating the fit of an assumption with the predictive
accuracy of the corresponding model, we proceed like Dong et al. [DTW+12]: They use the
assumption that people engage similarly inmultiple social contexts as an argument to estimate
similar interaction structures for link prediction in these different contexts. Then, they interpret
the improvement of the link prediction as evidence for the correctness of the assumption.

Concerning argument (a), we will look for significant events that involved a drop-out or
change of core developers and see whether these events have a corresponding manifestation
in the factor structure. Concerning argument (b), we will use the rank reduction for link
prediction and verify whether the reduced-rank prediction performs better than the non-
reduced models. Concerning argument (c), we will compare the predictive performance of
the respective models on third-order tensors Z𝑀 and Z𝐶 against the predictive performance
of the respective models on the fourth-order tensor Z. Concerning argument (d), we will
compare the predictive performance of the rank-reduced model with extrapolation of group
dynamics with simpler models that do not use the time-series state-space model.

4.3 Implementation and Study Design

Having laid out our models and our validation strategy, wewill now proceed to its application
to a series of subject projects. The main purpose is to demonstrate the practicability of our
measurement and analysis method. We start with a detailed overview of how and fromwhich
sources we retrieve and operationalize data on communication and co-editing (Section 4.3.1).
Then, we introduce some descriptive measures that help us in getting an overview of the
interaction dynamics and the congruence of communication and co-editing (Section 4.3.2).
Next, we explain how we retrieve the parameter estimates for the models 3d, 4d, 3d-ext,
and 4d-ext with a canonical tensor decomposition (Section 4.3.3) and how we apply time-
series extrapolation for the models 3d-ext and 4d-ext (Section 4.3.4). Finally, we discuss
how to measure the performance of the models in time, and we verify the robustness of our
models regarding discretionary decisions regarding the implementation (Section 4.3.5).
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Table 4.2: Numbers of developers (𝑁) in our 10 subject projects, with start of the first and end of the
last 3-months time range, number of analyzed time ranges (𝑇), and project domain.

Project 𝑁 Start End 𝑇 Project Domain

Jailhouse 17 2013-11-20 2016-08-24 11 Hypervisor abstracting from hardw. & operating syst.
OpenSSL 153 2002-04-21 2016-02-19 55 Encryption library to secure Internet connections
BusyBox 217 2003-01-14 2016-02-16 52 UNIX command-line tool suite
ownCloud 471 2010-03-24 2018-05-20 32 File hosting service
QEMU 919 2003-04-29 2016-07-27 52 Virtual machine emulator
Git 943 2005-04-13 2017-03-12 47 Version-control system
Wine 1 092 2002-04-06 2017-11-16 62 Runtime env. for Windows programs on UNIX systems
Django 1 131 2005-08-01 2017-12-04 49 Web framework
FFmpeg 1 256 2003-01-06 2017-12-12 59 Audio and video encoding tool suite
U-Boot 1 356 2000-01-01 2017-12-18 71 Boot loader mostly used in embedded systems

4.3.1 Study Design and Implementation Overview

To evaluate our method on differently shaped projects and to demonstrate that and to which
extent it is applicable, we apply our method to 10 well-established OSS projects from different
project domains (see Table 4.2). Our subject projects cover a broad range of project sizes,
ranging from a total of 17 individual developers for Jailhouse to 1 356 individual developers
for U-Boot. All our subject projects used mailing lists as the main channel for coordination in
the investigated time period, and most of them have strict regulations to submit patches to
the mailing list for discussion before integrating them into the repository.5 Hence, in all the
projects, mailing lists are a historically rich and well-established communication channel.6

For this study, we extract commit data from Git repositories and e-mail data from the
mailing-list archive Gmane, using the tools Codeface and nntp2mbox, which we have intro-
duced in Section 2.4. We use only mailing lists that involve primarily developers, and not
lists that are addressing users. Additional information regarding the downloaded mailing
lists and the analyzed Git repositories are available on our supplementary website.7 For
the construction of the developer networks (i.e, cochange networks and mail networks), we
use the library coronet, as explained in Section 2.4. Noteworthy, in this study, we consider
e-mail communication only among developers that have also contributed to the source code.
That is, we do not consider communication among users or between users and developers.
Consequently, there may be developers in our networks who have edited source code but not
communicated, but not vice versa. We use time windows of 3 months, indicating in a binary
decision whether there has been mail interaction or not between vertices 𝑖 and 𝑗, and whether
there has been cochange interaction between vertices 𝑖 and 𝑗. Meneely and Williams [MW11]

5 The only exception here is project Django, which uses pull requests, which are not discussed on the mailing list,
instead of patch submissions to the mailing list. We include this project as it is a highly active project and we are
interested whether the group structures arising from the discussions on the mailing list are, even though not
containing patch discussions, similar to the group structures arising from co-editing activities.

6 This holds for all the analyzed time ranges of all our subject projects except for project ownCloud, which has
abandoned the use of its mailing list in 2016. We discuss this issue for project ownCloud in Section 4.4.1.

7 https://se-sic.github.io/paper-groupdynamics-oss-tensordecomposition/

https://se-sic.github.io/paper-groupdynamics-oss-tensordecomposition/
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as well as Joblin et al. [JAH+17] have shown that 3-months time windows are a good aggre-
gation level to describe topological features of socio-technical developer networks. We further
count repeated cochange ormail contact within a 3-months time window as a single interaction.
The developers (i.e., vertices) are tied to one another if they have edited the same file or re-
sponded to the same mailing-list thread within one time range. As described in Section 4.2.3,
this results in a binary 𝑁 × 𝑁 × 2 × 𝑇 -dimensional array of two modes of interaction between
𝑁 developers; Z ∈ 𝔹𝑁×𝑁×2×𝑇. As the collaborative editing of source code does not imply a
natural direction for relationships, we use only undirected, unweighted, simplified networks.
All preprocessing and analysis scripts are available on our supplementary website.7

4.3.2 Exploratory Congruence Analysis

To explore the data, we compare the activity level as the number of interaction events for both
channels. Let 𝑁𝑡 be the number of developers that have either communicated or co-edited at
time 𝑡. Furthermore, let 𝑛𝑀,𝑡 be the number of mail events at time 𝑡, and 𝑛𝐶,𝑡 be the number
of cochange events at time 𝑡:

𝑛𝑀,𝑡 =
1
2 ∑

𝑖𝑗
𝑧𝑖𝑗𝑀𝑡 (4.18)

𝑛𝐶,𝑡 =
1
2 ∑

𝑖𝑗
𝑧𝑖𝑗𝐶𝑡 (4.19)

The average numbers of mail and cochange events over all time ranges are defined as:

̄𝑛𝑀 =
1
𝑇 ∑

𝑡
𝑛𝑀,𝑡 (4.20)

̄𝑛𝐶 =
1
𝑇 ∑

𝑡
𝑛𝐶,𝑡 (4.21)

Tomake themeasure comparable across projects, we normalize ̄𝑛𝑀 and ̄𝑛𝐶 with the number
of potential edges in the network. The number of possible edges within a single channel of
interaction is 1

2𝑁(𝑁 − 1), as the edges are undirected. We define the measures ̄𝑛%
𝐶 and ̄𝑛%

𝑀
and call them average density of the mail and cochange network, respectively:

̄𝑛%
𝑀 =

̄𝑛𝑀
1
2𝑁(𝑁 − 1)

⋅ 100 (4.22)

̄𝑛%
𝐶 =

̄𝑛𝐶
1
2𝑁(𝑁 − 1)

⋅ 100 (4.23)

To provide some first impressions about the relationship between mail and cochange events,
we compute the number of edges that are present in both interaction channels at time 𝑡, and
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call this measure 𝑛11,𝑡, where 𝑛11,𝑡 is the number of edges that are present both in the mail
network and in the cochange network at time 𝑡:

𝑛11,𝑡 =
1
2 ∑

𝑖𝑗
(𝑧𝑖𝑗M𝑡 ⋅ 𝑧𝑖𝑗C𝑡). (4.24)

𝑛11,𝑡 is bounded: Its minimum is 0 and its maximum is equal to the minimum of the two
values 𝑛𝑀,𝑡 and 𝑛𝐶,𝑡. Themaximum of 𝑛𝑀,𝑡 and 𝑛𝐶,𝑡 is the number of edges that can be present
within a time range 𝑡 and within a single channel: 𝑁(𝑁 − 1)/2. If 𝑛11,𝑡 is close to its maximum,
there is a high temporal congruence of interaction across channels. However, the measure
depends on the number of vertices and interaction events.

To provide a more comparable measure for the congruence of mail and cochange events, we
use the “phi”-coefficient 𝜙 [RN88] as a measure for the correlation of the binary events in
the mail and cochange networks. As we measure it for every time range, we index it with 𝑡. To
compute the measure, let 𝑛00,𝑡 be the number of events that are neither present in one nor
the other channel. Similarly, 𝑛01,𝑡 is the number of edges that are only present in the cochange
network, and 𝑛10,𝑡 is the number of events that is only present in the mail network.

𝑛00,𝑡 =
1
2 ∑

𝑖𝑗
(1 − 𝑧𝑖𝑗𝑀𝑡) ⋅ (1 − 𝑧𝑖𝑗𝐶𝑡) (4.25)

𝑛01,𝑡 =
1
2 ∑

𝑖𝑗
(1 − 𝑧𝑖𝑗𝑀𝑡) ⋅ 𝑧𝑖𝑗𝐶𝑡 (4.26)

𝑛10,𝑡 =
1
2 ∑

𝑖𝑗
𝑧𝑖𝑗𝑀𝑡 ⋅ (1 − 𝑧𝑖𝑗𝐶𝑡) (4.27)

𝑁(𝑁 − 1)/2 − 𝑛𝑀,𝑡 is the number of “absent”mail events and 𝑁(𝑁 − 1)/2 − 𝑛𝐶,𝑡 is the number
of “absent” cochange events at time 𝑡. Then, 𝜙𝑡 is the product of the “congruent” number of
events minus the product of the “different” events, scaled by the square root of the number
of all four groups of events:

𝜙𝑡 =
𝑛11,𝑡 ⋅ 𝑛00,𝑡 − 𝑛01,𝑡 ⋅ 𝑛10,𝑡

√𝑛𝑀,𝑡 ⋅ 𝑛𝐶,𝑡 ⋅ (1
2𝑁(𝑁 − 1) − 𝑛𝑀,𝑡) ⋅ (1

2𝑁(𝑁 − 1) − 𝑛𝐶,𝑡)
(4.28)

𝜙𝑡 is equal to 1 if all the edges in cochange are present also in mail and vice versa (100%
overlap), and −1 if none are present in both channels (0% overlap). It is equal to 0 if there
is a random overlap between both groups, the measure can therefore be interpreted like a
correlation (𝜙 is equal to the Pearson correlation when the variables of interest are binary).
The four measures of interest, 𝑛𝑀,𝑡, 𝑛𝐶,𝑡, 𝑛11,𝑡 and 𝜙𝑡 are visualized for every project, as for
example in Figure 4.5. Only some of the plots (the best suited for explaining and interpreting
our findings) are included in this chapter, the others can be found on our supplementary
website. Our findings take all the plots and values into consideration, though. Additionally,
we provide and discuss the time averages of every measure, ̄𝑛𝑀 = ∑𝑡 𝑛𝑀,𝑡/𝑇, ̄𝑛𝐶 = ∑𝑡 𝑛𝐶,𝑡/𝑇,
𝑛11 = ∑𝑡 𝑛11,𝑡/𝑇, and ̄𝜙 = ∑𝑡 𝜙𝑡/𝑇 for every subject project.
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Figure 4.4: The canonical decomposition of Z: The four-dimensional data structure is reduced to
𝑅 rank-one tensors, which are composed of the vectors u𝑟, c𝑟, and d𝑟 of length 𝑁, 2, and 𝑇,
respectively.

4.3.3 Canonical Tensor Decomposition

The multiplicative latent factor model translates the assumption of overlapping cross-channel
dynamic groups (see Figure 4.1) into a statistical model. None of the parameters can be
observed (which is why the factors are latent), but we can estimate them from the data with a
tensor decomposition: u𝑟, c𝑟, and d𝑟 can be inferred from the observed network Z: When the
data are organized as a tensor Z, we can use a canonical decomposition to infer the individual
latent factors from the observed interaction events [AGH+14b], as illustrated in Figure 4.4.
Via canonical tensor decomposition, Z is decomposed into 𝑅 four-dimensional rank-one
tensors, each consisting of the vectors u𝑟, c𝑟, and d𝑟, and a scalar weight 𝜆𝑟, where 𝑟 ∈ 1, … , 𝑅.
In our implementation, we use the cp() function from the rTensor package [LBW15] for the
canonical tensor decomposition.
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4.3.4 Time-Series Extrapolation

After applying the canonical decomposition, we proceed to the extrapolation of trends in d𝑟.
For this purpose, we use function holt() from package forecast [HAB+18]. The function
optimizes the parameters 𝛼 and 𝛽 autonomously.8 As we assume that single latent factors
describe individual groups or “tasks”, treating each series of weights separately makes more
sense than multivariate techniques. We do the estimation separately for the 𝑅 latent factors.
The exponential smoothing method is commonly used as a data-driven prediction method
for univariate time series [HKS+02]. It is optimized to adapt to slowly-varying trends and
changes in the level. Note that exponential smoothing can be inadequate when there are only
few time ranges (small 𝑇), as it requires a certain burn-in period to perform well. If 𝑇 is small,
simpler models or a pre-specified 𝛼 and 𝛽 should be used. In our cases, the time series are
reasonably long, and, therefore, we let the algorithm optimize the parameters by itself.

4.3.5 Cross-Validation

To validate changes in stability of the network’s social structure, the predictive performance
needs to be measured over time. We use a cross-validation technique inspired by time-
series analysis and the area under curve (AUC) performance measure to make changes in the
performance visible. AUC is the evaluation metric of choice when the analyzed link data are
sparse.9 Sparsemeans that there are less existing edges between vertices in a network than non-
existing edges between vertices (e.g., when there are more zero elements in the corresponding
adjacency matrix than non-zero elements). As there are only few edges in a sparse network,
the prediction of the non-existence of edges between vertices does not really matter for the
predictive performance, as we are interested into predicting edges, of which only few exist.
AUC is indifferent to class imbalances of existing and non-existing edges in a network.

For validating predictive performance, we start the computation of predictions and per-
formance measures with half of all available time ranges, that is, with a tensor of order
𝑁 × 𝑁 × 2 × ⌈1

2𝑇⌉. Then, we extrapolate the time weights that result from this decomposition
to ⌈1

2𝑇⌉ + ℎ, and measure predictive performance. We then extend the tensor by one time
range. That is, at the second iteration, the tensor is of order 𝑁 × 𝑁 × 2 × (⌈1

2𝑇⌉ + 1). This cross-
validation strategy adequately honors the dynamic structure of the data. While updating
the tensor decomposition becomes advisable and even mandatory for larger tensors than
the ones that we are dealing with [VVL17], our network sizes allow us to generate a new
decomposition for every cross-validation iteration.10

Next, we choose a performancemeasure. The receiver operating characteristic (ROC) curve bal-
ances specificity (penalizes false positives) and sensitivity (penalizes “missed” positives, that is,
false negatives) of a prediction method. The ROC curve depends on the true-positive rate (TPR)
and the false-positive rate (FPR). This is advantageous in the case of sparse networks, where true
negatives are of limited importance [ME11]. The ROC curve has been criticized for ignoring

8 The optimization uses the Akaike Criterion, for details see Hyndman et al. [HAB+18].
9 An explanation of why this is the case and of the intuition behind the AUC measure has been provided by

Chen et al. [CHY+18].
10 We ignore 𝑧𝑖𝑖𝑘𝑡, that is, the main diagonal of the tensor slices Z⋅⋅𝑘𝑡, as self-links are not defined. Nevertheless, the

values 𝜃𝑖𝑖𝑘𝑡 for these links are positive, as 𝑢2
𝑖𝑟 simply expresses the importance of developer 𝑖 for component 𝑟.
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the predicted probability values and the goodness-of-fit of the model [e.g., LJR08], and some
researchers recommend the average precision rather than ROC and AUC [YLC15]. Still, ROC
and AUC are the most widely accepted metric [CHY+18]. A single-number summary of the
shape of the ROC curve is the area under curve (AUC). The expected AUC for random guessing
is 0.5, and the lower and upper limit of theAUC are 0 and 1, respectively [Zhu04].We compute
an AUC measure for our models, separately either for the prediction of mail or for the predic-
tion of cochange events. The performance of the models indicated by the AUC provides evi-
dence on the beneficial effect of simultaneous consideration of co-editing and communication,
of rank reduction, and of the extrapolation of trends in group weights. For the computation
of the performance measures, we use the roc() function from the pROC package [RTH+11].

To aggregate the performance curves to a single number per project and prediction method,
we average the performance measures and directly compare the methods. As we start the
cross-validation at ⌈1

2𝑇⌉, and calculate it up to 𝑇 − ℎ,11 the aggregated performance measure
per subject project and method is:

AUC =
1

(⌊1
2𝑇⌋ − ℎ)

𝑇−ℎ
∑

𝑡=⌈ 1
2 𝑇⌉

AUC𝑡 (4.29)

We distinguish different prediction horizons for seeing at what forecast horizon ℎ the
rank reduction leads to the highest benefit compared to the baseline models. We expect the
general performance to decrease with a growing forecast horizon ℎ. However, we expect rank
reduction to be beneficial for prediction as it decreases the noise in the data, and, therefore,
we expect that the advantage of the rank reduction will show more in a 12-months-ahead
than in a 3-months-ahead prediction.

We need to validate not only the performance in time, but also the performance for different
values of 𝑅. As we lack a ground truth on the number of groups in the data, we need to assume
that when the “right” groups have been identified, the predictive performance of the model
is high. The risk of finding spurious patterns increases with 𝑅, and with it, the risk to find
different interpretations for repeated estimation. Depending on whether the interpretation of
group structures is very important, there are three possible approaches: (a) Checking the
interpretation for repeated estimation with different seeds, (b) analyzing the variance in the
time components, and (c) checking the predictive performance of the choice of 𝑅.
(a) If the interpretation of the patterns changes with the random seed, this is a sign for a too

large rank 𝑅 that leads to spurious patterns.
(b) The canonical decomposition does not treat the time dimension differently than the other

dimensions. This means that in the “eyes” of the algorithm, 𝑡 is as “close” to 𝑡 + 1 as to
𝑡 + 5. As we expect group constellations not to change too abruptly every time range, we
are looking for an 𝑅 value that produces relatively smooth time patterns in d𝑟.

(c) To avoid overfitting looking for the perfect 𝑅, we check the robustness of the predictive
performance of the choice of 𝑅 by cross-validating 𝑅 in the range between 1 and 20. We
visualize the outcomes and discuss their implications for the project’s social structure.

All three robustness checks are important to avoid interpreting spurious correlations. A
small 𝑅 can underfit, a large 𝑅 can overfit the data. This has implications for the different use

11 Remember that, to measure the predictive performance for forecast horizon ℎ, 𝜃𝑖𝑗𝑘,𝑇+ℎ|𝑇, we can only use infor-
mation up to ℎ time ranges before the final time range.
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Table 4.3: Characterization of mail and cochange activity in our 10 subject projects. 𝑁 is the total num-
ber of developers involved in each project. 𝑛max

𝑀𝑡 is the maximum number of mail edges
per time range (Equation 4.18), ̄𝑛𝑀 is the average of the number of mail edges over time
(Equation 4.20), and ̄𝑛%

𝑀 is the average density of the mail network (Equation 4.22). The
definitions are equivalent for 𝑛max

𝐶𝑡 , ̄𝑛𝐶, and ̄𝑛%
𝐶 . 𝑛11 is the average number of intersecting

edges (Equation 4.24), and ̄𝜙 is the average 𝜙𝑡 coefficient (Equation 4.28).
𝑁 𝑛max

𝑀𝑡 𝑛̄𝑀 𝑛̄%
𝑀 𝑛max

𝐶𝑡 𝑛̄𝐶 𝑛̄%
𝐶 𝑛11 𝜙̄

Jailhouse 17 27 11.8 8.69 27 9.8 7.22 4.6 0.39
OpenSSL 153 159 20.3 0.17 737 94.5 0.81 6.8 0.15
BusyBox 217 150 62.6 0.27 300 110.7 0.47 16.2 0.19
ownCloud 471 111 29.2 0.03 1 964 929.3 0.84 12.8 0.08
QEMU 919 1 651 723.3 0.17 9 888 2 586.3 0.61 368.0 0.20
Git 943 1 892 750.0 0.17 3 855 2 270.1 0.51 230.8 0.18
Wine 1 092 912 446.5 0.07 5 567 3 671.1 0.62 218.3 0.18
Django 1 131 266 131.7 0.02 9 370 1 991.5 0.31 48.4 0.18
FFmpeg 1 256 1 595 569.5 0.07 8 572 3 888.6 0.49 279.4 0.21
U-Boot 1 356 1 139 455.4 0.05 3 643 1 197.3 0.13 163.4 0.18

cases of the analysis: A large 𝑅 can detect more granular changes in group constellations, thus,
a large 𝑅 can help to understand known problems in the past. However, a small 𝑅 can be better
for predicting future interaction, as it is less prone to over-interpret changes from the past.

4.4 Results

For the purpose of presenting our results, we mainly focus on a single case study:12 BusyBox.
This project was, based on chance, the first we investigated. We chose it for its relatively
small size and number of developers. With this case study, we investigate the exploratory
value of our method. We will then answer our research questions by comparing the models’
predictive performance and generalize our findings over 10 subject projects. We start with an
exploratory perspective on the data in Section 4.4.1. Then, we proceed with the description of
the canonical decomposition in Section 4.4.2. The ensuing question is how much our results
depend on the choice of 𝑅. Thus, we continue with the results of the cross-validation of 𝑅 in
Section 4.4.3. Then, we discuss the models’ performance for a fixed 𝑅 in Section 4.4.4. Finally,
we summarize our results and answer our research questions in Section 4.4.5.

4.4.1 Descriptive Insights

To provide a first impression of the congruence of mail and cochange activity, we discuss the
descriptive statistics of the activities in our subject projects that we show in Table 4.3.

Relationship Between the Number of Developers and Interaction Frequency First,
the mail and cochange activity are not—as one might expect due to the quadratic relationship

12 Beside BusyBox, we also present a single figure on our subject project ownCloud to discuss exceptional cases. For
visualizations of the results of our remaining subject projects, we refer to our supplementary website.
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Figure 4.5: Current number of mail (𝑛𝑀,𝑡) and cochange (𝑛𝐶,𝑡) edges, correlation between mail and
cochange 𝜙𝑡, and number of active developers (𝑁𝑡) for ownCloud over time. As the number
of edges grows quadratically with 𝑁𝑡, we use a square root transformation for the 𝑦 axis
in the second panel. From time range 14 on, the mailing list seems to be abandoned.
Accordingly, 𝜙𝑡 and 𝑛𝑀,𝑡 as well as 𝑛11,𝑡 go down. When there is no mailing-list activity,
𝜙𝑡 cannot be computed.

between possible edges and vertices—monotonically related to the number of developers in a
project. ownCloud is twice as large as BusyBox in terms of number of developers, and has
fewermaximum and averagemail edges, but roughly eight times asmany cochange interactions,
on average. There is very littlemail activity in ownCloud and Django, with an average density
of only 0.03% and 0.02%, respectively. Yet, Django has more than twice as many developers.
With 0.84% average density in cochange, ownCloud seems to have a vivid co-editing culture,
where many developers edit the same code files. ownCloud has little communication among
the developers via the mailing list, though. It has a lower 𝑛max

𝑀𝑡 , yet more than six times as
many cochange edges 𝑛max

𝐶𝑡 as BusyBox. Another project with very little density in the mail
network is Django, which is the third largest project in our study, having 1 131 developers in
total. For this project, also the density in the cochange network is lower than average. Another
large project where both mail density and cochange density are low is U-Boot, with a ̄𝑛%

𝑀
of 0.05 and ̄𝑛%

𝐶 of 0.13. In general across all projects, there is approximately 30% to 150% more
interaction per developer in the cochange network than in the mail network.

Relationship Between Mail and Cochange Modes ( ̄𝜙) The correlation between mail
and cochange interaction is surprisingly stable across the projects, with values between 0.15
and 0.21. There is consistent evidence that communication activity on the mailing list is
positively related to co-editing. Two exceptions apply: Jailhouse with its 17 active developers
has a strong positive correlation (0.39) and ownCloud has a weak positive correlation (0.08).
Together with the very low mail activity in ownCloud, this suggests that the mailing list is
not strongly related to development activities here. In Figure 4.5, we can see that there is no
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Figure 4.6: Current number of mail (𝑛𝑀,𝑡) and cochange (𝑛𝐶,𝑡) edges, correlation between mail and
cochange 𝜙𝑡, and number of active developers (𝑁𝑡) for BusyBox over time. As the number
of edges grows quadratically with 𝑁𝑡, we use a square root transformation for the 𝑦 axis in
the second panel. About one fourth of all mail edges is usually present in both channels.
There are no common edges in 𝑡 = 16 despite normal activity in both interaction modes.

ongoing activity on the mailing list from time range 14 on.13 During the active usage of the
mailing list (time ranges 6 to 14), 𝜙𝑡 was in the expected range. For Jailhouse, the smallest
of our subject projects in terms of number of developers, the correlation is very strong. For
Django, both the density of the mail network and the density of the cochange network are
rather low. Nevertheless, the correlation is within the typical range of the subject projects.

Relationship Between Descriptive Measures and Project Phase In Figure 4.6, we show
the evolution of the descriptive measures for BusyBox over time. In the early phases of the
project (up until time range 30), the number of interaction events per developer grows
quadratically with the number of active developers. After time range 30, the number of edges
in the network and the number of simultaneous edges in both channels stagnate, despite
continued growth in the number of developers. At the same time, 𝜙𝑡 is constant between
0.1 and 0.2. A maximum in the correlation of 0.31 at time range 29 happens in a phase of
growing mail activity. 𝑁𝑡 shows that BusyBox experiences strong growth from the 25𝑡ℎ time
range on. At the same time, 𝑛𝑀,𝑡 and 𝑛𝐶,𝑡 start growing, where cochange activity grows faster
than mail activity. An interesting particularity of BusyBox can be seen in 𝑛11,𝑡 and, as a direct
consequence, in 𝜙𝑡: With the sharp drop of mail activity at time ranges 14–16, 𝑛11,𝑡 drops to 0:
In time range 16, not a single edge is present in both channels—a sign for a major distortion
around that time. Shortly before this drop, there has been a peak inmail activity. The distortion

13 This goes well with decisions of the ownCloud community to no longer use the mailing list:
https://central.owncloud.org/t/replace-mailing-lists/875/ (accessed at 2020-09-26). We, though, have
decided to investigate this project as it has a comparably high amount of commit activity but a comparably low
amount of e-mail activity (even before abandoning the mailing list). Therefore, we explore how our analysis
method performs with respect to such anomalies in the data.

https://central.owncloud.org/t/replace-mailing-lists/875/
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is also visible in 𝜙𝑡: There is a moderate correlation between mail and cochange events, except
for 𝑡 = 16, where 𝜙𝑡 drops to 0. 𝜙𝑡 is pretty volatile for early phases of the project, but stabilizes
to a value of between 0.10 and 0.20 in later time ranges. The phase of stability coincides with
a rise in the number of active developers from time range 33 on.

General Observations Across All Projects When evaluating all projects in a similar way,
we see that some projects show a strong relation between the general number of co-editing and
communication events, whereas in others, both modes of interaction seem to be decoupled.

In the following list, we describe the findings for the projects in which mail and cochange
activity seem to be relatively independent, and the mail activity does not follow general
growth trends:

• For FFmpeg, the mailing-list traffic drops around time range 35. Only the number of
cochange events grows as expected with the number of developers. This may indicate
that only a constant subset of developers communicate via the existing mailing list
after this change in trend behavior at time range 35. 𝜙𝑡 then stabilizes at a value of
approximately 0.15, after a plateau of 0.25 before.

• In Wine, the number of edges in the mail networks slowly declines over time.
• For Django, the usage of the mailing list is constant along the whole time line. It is

completely independent of the strong growth in the number of developers and cochange
events. Accordingly, the more developers join, the smaller 𝜙𝑡 becomes. Themail network
has very little in common with the cochange network from there on.

• For project U-Boot, the pattern is similar as for BusyBox and FFmpeg: The number of
cochange events closely quadratically follows the number of developers, whereas the
number of mail events stagnates.

In other projects, we observe that both means of interaction (mail and cochange) are closely
related to each other:

• For Jailhouse, the mailing-list activity closely follows general growth trends. The corre-
lation between both channels of interaction is strong. However, the maximum 𝜙𝑡 of 0.8
occurs at a time when there are only 4 developers in the project—of the 9 cochange events
at that time, 8 (and only these 8) edges are also present in themail network. The number
of actively co-editing developers never exceeds 𝑁𝑡 = 13.

• In OpenSSL, mail and cochange activity follow equally the general trend in the number
of developers—the number of cochange edges follows more directly while the number
of mail edges leaks a bit behind. Due to the moderate size of the project, all numbers
are relatively volatile—𝜙𝑡 meanders strongly around a general mean of 0.1 from time
range 20 on.

• For Git, the number of cochange and mail edges does not follow the growth trend in the
number of developers, rather, both values stagnate or decrease from time range 14 on.
This is a sign of decreasing per-capita interaction with growing number of developers.
Together with mail activity, 𝜙𝑡 slowly decreases from around 0.20 to around 0.15 over
time.

• QEMU shows the opposite behavior of ownCloud: The mailing list that we retrieve
for modeling the mail edges seems to be in usage only from time range 25 on, and
then consistently with a 𝜙𝑡 that slightly decreases from around 0.30 to 0.25, as the mail
activity does not grow as much as the cochange activity.



4.4 Results 97

Our results suggest that, usually, only in early phases of the projects, there can be moremail
activity than cochange activity. The correlation between the presence ofmail and cochange edges
is relatively stable for most projects, never exceeding values of 0.5 and usually fluctuating
around 0.2 to 0.3. The relationship between mail and cochange edges is weakest for ownCloud
and strongest for Jailhouse, which can be partially explained by the small number of active
developers in Jailhouse. ownCloud turned out to be an exception as the mailing list is
abandoned in later phases of the project, and we expect that this will influence the results of
the decomposition and prediction that we will discuss in the next sections.

4.4.2 Decomposition Insights

Next, we seek to extend the insights from the descriptive statistics in Table 4.3 and the time-
based investigations of the correlation between mail and cochange activities that we have
discussed in the previous paragraph. We apply a canonical tensor decomposition and see
whether it helps to understand the project dynamics even better by making group constella-
tions visible. These group constellations are of exploratory nature and can (with our chosen
decomposition methodology) not be tested statistically, but they may help to identify the
sources and dynamics of project changes.

In particular, we computed the tensor decomposition for different numbers of groups 𝑅,
ranging from 1 to 20. For the purpose of discussion, we had a look at the decomposition results
for values of 𝑅 between 2 and 9 (all of which are available on our supplementary website)
and chose the ones that reveal interesting patterns to us. These patterns are therefore prone
to overfitting. For description and exploration, large values of 𝑅 can be helpful, whereas for
prediction, the influence of𝑅 can be cross-validatedwith regard to predictive performance and
usually is chosen smaller, as patterns in the past are usually not very indicative for the future.

For illustration, we discuss the canonical decomposition of the four-dimensional tensor Z
for BusyBox with 𝑅=8 (Figure 4.7). The decomposition results in estimates for 𝜆𝑟=1, … , 𝜆𝑟=8,
u𝑟=1, … ,u𝑟=8, c𝑟=1, … , c𝑟=8, and d𝑟=1, … ,d𝑟=8, which are visualized in panels (a) to (d) of
Figure 4.7, respectively. In what follows, we discuss some selected observations on this
decomposition:
(a) Figure 4.7(a) shows theweights of the latent groups, 𝜆1, … , 𝜆8. While these values should

not be interpreted in absolute terms, their relative size is important. The second (r=2)
and eighth (r=8) factors have largest 𝜆𝑟 and therefore the strongest correlation with the
probability of developers to interact. The sixth component is the least influential for the
overall number of interaction events.

(b) Figure 4.7(b) shows which developer 𝑖 is involved in which component 𝑟, 𝑢𝑖𝑟. The plot
shows a selection of the five most central developers14 per component, which results in
15 developers for BusyBox as sometimes the top 5 are overlapping. The figure reveals
aspects such as that developer 158 is relevant only for components 𝑟=1 and 𝑟=4. In the
other components, this developer does not play an outstanding role. The most clear-cut
group can be seen in component 𝑟=6, where the contrast between important and non-
important developers is most pronounced. Developer 45 is a special person who seems
to be involved in all the different phases and topics except component 𝑟=6.

14 Because of ethical considerations, we do not state the names of developers, but use pseudonymized developer ids.
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Figure 4.7: Results of the canonical tensor decomposition for BusyBox and 𝑅 = 8. Panel (a) shows
the weights of the factors 𝜆𝑟. Panel (b) shows the developer effects 𝑢𝑖𝑟 for a selection of
developers with the highest values in the first five factors. Panel (c) shows the interaction
channel effects 𝑐𝑘𝑟. Panel (d) shows the dynamic weights 𝑑𝑡𝑟 and thereby which factor was
important at what time.

(c) Figure 4.7(c) shows which interaction channels are affected by the eight components (i.e.,
groups of developers). Components 𝑟=1, 𝑟=3, 𝑟=4, and 𝑟=6 describe predominantly
mail activity. That is, the respective developer groups arise from joint e-mail activity. Their
𝑐𝑀𝑟 is large in absolute value compared to their 𝑐𝐶𝑟 value. The other four components
describe mostly cochange activity (i.e., groups of developers connected by joint editing
activity), with varying shares of mail activity.

(d) Figure 4.7(d) reveals that the component 𝑟=6 describes developer interaction activity in
the early phase of the project, time ranges 10–15. Remembering the observations from
Figure 4.6, we look more closely at the time period between 𝑡 = 14 and 𝑡 = 16: At this
time, a sudden decrease in activity in component 𝑟=6 can be seen. This component relates
predominantly to mail activity, as we learned from Figure 4.7(c). Most components cover
a time period of 15 to 25 time ranges, that is, approximately 4 to 6 years.

Let us now synthesize the information from the different panels of Figure 4.7 and investigate
the distortion between 𝑡 = 14 and 𝑡 = 16 more thoroughly: At time 𝑡 = 14, the activity level
of component 𝑟 = 6 has a peak, as we can see in Figure 4.7(d). Shortly before, component
𝑟=5 starts growing, with two new developers 16 and 45, without developers 194 and 212,
as Figure 4.7(b) reveals. Figure 4.7(c) finally tells us that the new group is glued mainly by
cochange activity whereas the “old” group had intensive exchange via the mailing list. After
𝑡 = 15, a new mailing group arises (𝑟=3), which describesmail exchange between developers
16, 45, 131, 167, 194, and 212. That is, mainly developers 49, 149, and 164 dropped out and
developer 45 joined compared to component 𝑟=6.
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While it is not advisable to prematurely draw conclusions from these insights, as the insights
depend on 𝑅 and on previous assumptions, they can still provide useful information for
further investigation. Like for BusyBox, we visualized the tensor decompositions for different
numbers of groups 𝑅 between 2 and 9 for each subject project and screened the decomposition
results for interesting findings about the developers and group constellations:

• Jailhouse: As expected, the strong association between cochange andmail leads to a poor
differentiation betweenmail- and cochange-related groups. For 𝑅 = 3, however, a specific
mail pattern arises that excludes two of the developers that are usually involved in the
cochange activities. This pattern can be used to investigate what the discussion in time
ranges 7 and 8 was about, and why some of the core developers did not participate. As
Jailhouse is a small project, spurious patterns are likely to arise with growing 𝑅, and
we found signs for overfitting already for 𝑅 = 4.

• OpenSSL: 𝑅 = 2 and 𝑅 = 4 reveal that, for the first 40 time ranges, the project has been
dominated by developers 8, 13, 18, 119, and 134. Thereafter, new developers joined.
𝑅 = 4 suggests that these new joiners were active on the mailing list, whereas mail
activity excluded developer 18.

• ownCloud: As expected, mail activity plays a subordinate role. But at 𝑅 = 3 already,
the mail activity is separated in the component 𝑟 = 1, and the time trend shows that
this sub-group indeed phases out later. Also, developer 320 seems to have influenced
the project mainly in the time ranges 15 to 25.

• QEMU: When going with 𝑅 = 5, the two mail-related sub-groups 𝑟 = 3 and 𝑟 = 4
were dominated by the developers 75, 245, 594, and 621 (for 𝑟 = 3) and 65, 89, and 115
(for 𝑟 = 4). Also, the bulk of the discussions of the fourth group, 𝑟 = 4, happened before
the discussions of the third group, 𝑟 = 3. It can also be seen that the social dynamics in
the project have probably been most affected by the decrease in activity of developers
89 and 115, who were active mostly between time ranges 25 and 40. This is a valuable
insight for investigating the stability of the project’s group structure over time.

• Git: 𝑅 = 6 reveals that the mailing list was heavily used from time range 𝑡 = 5 on,
and its activity level peaked at 𝑡 = 14. While the social relationships in the mailing list
remain constant, their importance declined over time.

• Wine: The decomposition for 𝑅 = 6 reveals that, in early phases of the project, especially
developers 38, 254, 301, 351, 619, 684, 691, and 833 were forming strong bonds, mostly
performing cochange activity. When using larger 𝑅, more distinguishable sub-groups
show up. 𝑅 = 9, for example, reveals a particular communication component 𝑟 = 7.

• Django: Here, mail and cochange networks are tightly integrated. Only for 𝑅 = 9, a mail
component (𝑟 = 4) reveals itself with a very clear-cut sub-group. In combination with
the relatively small value for 𝜆4, it becomes clear why this component shows up only
for large values of 𝑅: This component affects only few mail interaction edges.

• FFmpeg: There is no differentiation between mail and cochange activity for 𝑅 = 4. The
sub-group that involves a clear-cut subset of developers, 𝑟 = 4, shows an activity peak
between time ranges 18 and 25.

• U-Boot: At 𝑅 = 5, a specific mail component can be distinguished from the other
components. This communication sub-group gradually augments its activity from time
range 45 on. The other sub-groups contain mainly cochange events. The interpretation
of the mail patterns becomes more detailed at 𝑅 = 9.
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The results meet our expectations: In phases of strong correlation of mail and cochange
activity, the modes of interaction do not split into separate components. Larger projects,
which can be expected to have more complex social dynamics and structures, often profit
from higher values of 𝑅. When interpreting the results and looking for interesting findings,
it is worth trying different values for 𝑅. In our cases, 𝑅 = 3 for small projects was usually
enough. Also, when there was much more cochange activity, the mail patterns were partially
hidden in lower-rank decompositions, whereas the higher-rank decompositions revealed
more detailed social dynamics at the risk of overfitting.

4.4.3 Predictive Performance by 𝑅

As shown in Section 4.4.2, a large rank 𝑅 of decomposition may reveal more detailed insights
into group evolution in a project. In what follows, we also verify whether these insights
are useful for prediction. As explained, if the sub-groups really describe long-term stable
social relationships, they should be helpful for predicting future interaction. As mentioned in
Section 4.2, a strong rank reduction can lead to overlaid patterns and reduced information
content, hiding important information on dynamics. A high value for 𝑅, however, can lead to
spurious patterns and interpretations. One way to assess whether patterns are spurious is to
see whether they help in predicting the future. All results of this section (for all projects and
for different values of 𝑅) can be checked on our supplementary website.

We start with a comparison of the predictive performance of our models for BusyBox
over time. In Figures 4.8, 4.9 and 4.10, we show the predictive performance for BusyBox for
𝑅 = 2, 𝑅 = 3, and 𝑅 = 5. Especially, before 𝑡 = 40, that is, before BusyBox started into the
growth phase identified in Figure 4.6, a large rank for the decomposition severely affects the
prediction performance and lets them drop below the performance of the models naive and
sum. A rank-2 reduction for the third-order tensor (i.e., model 3d) provides very good scores
for predicting mail events right from time range 26 on. For 𝑅 = 2, all reduced-rank models
consistently outperform naive and sum. That is, a strong focus on the core developers helps
in identifying future pairs of developers that will interact again. A differentiated perspective
on the overlapping groups, however, appears to add more noise to the prediction and seems
not to be very helpful.

Next, we validate the interplay of choice of 𝑅 and 𝐴𝑈𝐶 for BusyBox. Only the four models
3d, 4d, 3d-ext, and 4d-ext involve a rank reduction, sowe visualize the changes in performance
only for these models. In Figure 4.11, we show the predictive performance of the models for
BusyBox by forecast horizon and the choice of the number of components 𝑅 between 1 and 20.

While the forecast performance for ℎ=1 seems to be invariant to the choice of 𝑅, a longer
forecast horizon profits from a weaker rank reduction. That is, while the shorter forecast
horizon profits from a stronger reduction of noise, the long-term prediction profits from
the identification of more specific patterns. The optimum seems to be reached at around
10 components. This observation is relatively consistent for cochange and mail data, however,
𝑅 = 2 performs better for predicting ℎ = 5 than 𝑅 = 5 for the mail data (independently of
whether mail and cochange are analyzed simultaneously or separately—the identification of
group structures and trends in the weights of these structures does not seem to help to predict
mail interaction in BusyBox).
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Figure 4.8: AUC𝑡 by type of interaction and time for BusyBox, ℎ = 1, for 𝑅 = 2.
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Figure 4.9: AUC𝑡 by type of interaction and time for BusyBox, ℎ = 1, for 𝑅 = 3.
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Figure 4.10: AUC𝑡 by type of interaction and time for BusyBox, ℎ = 1, for 𝑅 = 5.

For the other projects, the results are similar. For small 𝑅, 3d and 3d-ext, as well as 4d and
4d-ext are similar in performance, and differentiation only happens when 𝑅 is increased. This
speaks in favor of the exponential smoothing to reduce noise in the decomposition of quickly
changing time trends. In general, the decomposition models’ performance improves over
time, while naive and sum perform similarly all the time. In some projects, such as Django,
model 3d-ext performs a lot better than the models without extrapolation for high 𝑅 values.
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Figure 4.11: AUC by forecast horizon ℎ and rank 𝑅 of reduction for BusyBox. As expected, a small
number of components is beneficial for prediction. The relative performance of model 4d
decreases with higher 𝑅 values, consistently for both forecast horizons and communication
channels.

The extrapolation seems to smooth out some of the disadvantages of choosing higher 𝑅 by
smoothing the relatively volatile time weights.

The results imply that, while a rank reduction and the encompassing concentration on
core developers is beneficial, the group patterns themselves change only slowly, and five
latent factors are enough to describe the underlying structure of mail and cochange interaction.
Small values for 𝑅 usually result in good prediction results that outperform naïve predictions
(models naive and sum). However, 𝑅 = 3 can already lead to overfitting, and larger values
of 𝑅 lead to instability in prediction performance and are only suitable for description, not
for extrapolating group structures to the future.

4.4.4 Overall Performance for Fixed 𝑅

To avoid overfitting and discussions about 𝑅, we conduct the next analyses with a fixed 𝑅 = 3.
In Table 4.4, we show the average performance, first averaged over time by project, and then
averaged over all projects (separate for two different forecasting horizons—1 year ahead or in
the next time range). The results are also shown on our supplementary website.

In Figure 4.12, we show the overall performance averaged across time, for each subject
project. The figure reveals that the averaged measures are highly influenced by a few outliers
where the method makes no sense given the data quality. The three-dimensional decomposi-
tion with time-series extrapolation (model 3d-ext) fails for the mail network for ownCloud
and Wine. For ownCloud, this problem is due to the non-usage of the mailing list. This
phenomenon is also responsible for the 100% accuracy that Figure 4.12 reveals for ownCloud
(model 3d). In the case of the 𝐴𝑈𝐶 values for method 3d for both forecast horizons, the
numbers show that this instability is valid only for 𝑅 = 2 and 𝑅 = 3. For values larger or
equal to 4, it performs similar to the other methods. Except for this instability, the results
look like what we expected. Social relationships among developers seem to be least stable for
project U-Boot, where edges are hardest to predict and the 𝐴𝑈𝐶 values are smallest.

In general, model naive performs worst. Table 4.4 shows that, for ℎ = 1, AUC
naive

is, at
least, 0.10 points lower than any other method for the prediction of cochange events, and, at
least, 0.11 points lower than any other method for the prediction of mail events (neglecting
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Table 4.4: Overview of the average performances of the different models. ∅ indicates the arithmetic
mean of all AUCmeasures bymodel and forecast horizon ℎ = 1 or ℎ = 5, for 𝑅 = 3. Model 3d
performs best for all four combinations of interaction mode and forecast horizon.

cochange mail
naive sum 3d 4d 3d-ext 4d-ext naive sum 3d 4d 3d-ext 4d-ext

∅ (ℎ = 1) .70 .80 .87 .85 .85 .86 .68 .81 .86 .83 .66 .79
∅ (ℎ = 5) .63 .70 .90 .88 .83 .88 .62 .73 .89 .87 .68 .83
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Figure 4.12: AUC measures by interaction channel, subject project, model, and forecast horizon.
Projects are ordered by the involved number of developers (see Table 4.2) and orga-
nized in rows. Columns represent prediction methods, and the four main blocks represent
interaction channel (horizontally) and forecast horizon ℎ (vertically). 𝑅 = 3 in all models
that involve a rank reduction (3d, 4d, 3d-ext, and 4d-ext).

model 3d-ext due to the above described problems regardingmail events in projects ownCloud
and Wine). The low performance of model naive is also true for the long-term forecast, ℎ = 5,
where AUC

naive
leaks behind the other models. Model sum achieves the second last position,

but its performance is relatively close to the rank-reduction-based models 4d-ext, 3d-ext,
and 4d. Model 3d-ext performs bad for the prediction of mail events, but Figure 4.12 shows
that this is due to the instabilities of the model in ownCloud and Wine. As can be seen in
Figure 4.12, for the models naive and sum, it is harder to predict interaction 1 year ahead than
in the next 3 months: The AUC values are consistently smaller for the forecast horizon ℎ=5
than for ℎ=1. However, this does not hold for the tensor-decomposition-based models (3d,
4d, 3d-ext, and 4d-ext): Here, the AUC values for the forecast horizons ℎ = 5 and ℎ = 1 are
relatively close to each other, in many cases even higher for ℎ=5.

In many cases, the models 3d and 3d-ext perform similar to 4d and 4d-ext, as can be
seen in Figure 4.12. Averaging over all projects, 3d performs better than 4d, whereas 4d-ext
performs better than 3d-ext (see Table 4.4). Hence, we are inconclusive whether sub-groups
that exchange e-mails do also collaborate in programming tasks. We also do not see a clear
difference between the weight extrapolation models (3d-ext and 4d-ext), which are robust to
alliances of changing performance, and the non-dynamic prediction models (3d and 4d).
This inconclusiveness might also be introduced by overfitting.
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The intuition that there is low congruence ofmail and cochange activity (an intuition derived
from the 𝑛11,𝑡 measure) is confirmed by this analysis: Model 4d-ext performs only slightly
better than model 3d-ext for cochange prediction, and is inconclusive for mail prediction. The
consideration of information on one interaction channel is of little to no predictive power for
predicting the other interaction channel. The performance of the reduced-rank decomposition
without extrapolation (i.e., models 4d and 3d) is equal to or sometimes even better than the
reduced-rank decomposition with state-space extrapolation (i.e., models 4d-ext and 3d-ext).

4.4.5 Answers to the Proposed Research Questions

When evaluating the predictive power of the different models, we can clearly see that all
the models that are based on tensor decomposition perform better than the simpler baseline
models. Hence, by using tensor decomposition and rank reduction, we can identify more
stable, latent group structures in the communication and co-editing activity of OSS projects.
This answers RQ1:

Answer to RQ1: With our method, we are able to identify stable group structures in OSS
projects. That is, we identify groups of developers that steadily interact with each other
during the project’s evolution. Our results show that there can be distortions in the group
structure (e.g., some developers joining the project take over the core work whereas, at the
same time, previous core developers tend to restrict their activity to communication only).

The manifestation of these group structures varies in the different subject projects. In
particular, co-editing group structures and communication group structures are project-
specific and do not necessarily overlap. This answers RQ2:

Answer to RQ2: The overlap between the group structures that emerge from communication
and the group structures that emerge from co-editing source code is project-specific: In some
projects, there is a high overlap between co-editing and communication group structures (i.e.,
communication behavior and co-editing behavior of developers seem to be very similar),
whereas in others, the overlap is small or even not recognizable.

Finally, regarding RQ3, in which we ask whether considering past activities improves the
prediction of future co-editing or communication activities, we cannot provide a single answer,
as the predictive performances of the models that use tensor decomposition together with
state-space time-series extrapolation perform differently on different projects when compared
to the models that use tensor decomposition without state-space time-series extrapolation.
Consequently, the emergence of group structures on different interaction channels is project-
specific, and considering dynamic weights improves prediction of future activities in some of
the investigated projects whereas it does not in other projects.

Answer to RQ3: Considering past activity performs similarly well as without. In some
projects, considering past activity slightly improves the predictive performance compared
to not considering past activity. Some alliances seem to be of changing importance, whereas
others seem to maintain a consistent importance. It also is project-specific whether the pre-
diction on one channel can be improved by considering past activity on the other channel.
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In summary, our method is capable of identifying stable group structures. Relying on past
activities for prediction or expecting similar group structures for co-editing and communica-
tion activities sometimes leads to an improvement in prediction. This indicates that it cannot
be assumed that the “mirroring hypothesis” is fulfilled, in general, as many project specific
characteristics may influence the relationship between co-editing and communication. Our
approach, though, can help to investigate questions of modularity and organizational patterns
in several modes of interaction simultaneously. The tensor structure can easily be extended to
three or four channels of interaction. Alternatively, interaction in different contexts can be
one of the modes of the tensor.

4.5 Discussion

Our work has two main areas of contribution: methodology and empirical insights into
developer behavior. We will start with a discussion of the strengths and weaknesses of our
method and models in Section 4.5.1, and then continue with the discussion of our insights
into developer behavior from a research perspective in Section 4.5.2 and from a practitioner’s
perspective in Section 4.5.3.

4.5.1 Methodology

We have transformed a multiplex network with event-driven edges into a tensor structure
and applied a tensor decomposition as a clustering algorithm for visualizing group dynamics
over time. We added a prediction model to quantify the predictive strength of different model
variants. For analyzing the dynamics of group structures in socio-technical networks, we
adapted the framework of Kunegis et al. [KFB10] to a multi-dimensional tensor structure. As
this results in a relatively long vector of dynamic weights d𝑟 for every latent component, we
were able to combine the tensor decomposition with a state-space time-series framework for
predicting future weights of the components, and thereby future interactions. Our exploratory
and descriptive approach provides insights into sub-groups and temporary priorities in social
networks with multiple types of interaction.

The method we have proposed has a few caveats that are due to its aim to simplify the
understanding of processes and to make the dealing with large, multi-modal networks
computationally feasible. The first noticeable simplification of our modeling approach is that
event data (the creation of a commit or the response to an e-mail thread) is considered as a
prolonged state of the network lending itself to a topological description. This simplification
allows us to discretize time and to explore the current state of a network. We understand our
approach as a heuristic to understand group dynamics in an exploratory way. Due to the lack
of statistical hypothesis tests, most of our conclusions are built on the validation of predictive
performance instead of testing. Another simplification is the usage of binary, unweighted
edges. Tensor decompositions require relatively equal weight of every mode to bring insights
into all interaction modes. In general, we found fewer mailing-list activities than co-editing
activities. We could have standardized the single modes, but decided to use a binary edge,
as it kept the weights of the modes up. When searching for groups in both modes, it can be
adequate to use weighted edges and standardize by mode instead.
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Our results show that the denoising of the networks via rank reduction, as well as the
overlapping, dynamic group model describes the networks better than a simple assumption
on repeated collaboration. For small values of 𝑅, a comparison with a rank reduction without
state-space time series (model 4d) showed that this improvement is likely to be due to the rank
reduction, not the state-space time-series model and exponential smoothing. For large values
of 𝑅, the time-series method smoothed out the volatility that we first introduced with the
many sub-groups that the method was allowed to look for. In combination, a large 𝑅 can bring
more detailed insights into group structures, and the extrapolation smooths out the volatility,
and the combination of both a rank reduction and extrapolation brings more robustness.

In the following, we emphasize and demonstrate that our method is based on a modular
concept of combining different statistical tools.

ModularConcept ofCombiningStatistical Tools Ourmethod combineswell-established
statistical tools and methods that express our assumptions on the communication and co-
editing behavior of developers. One of our core aims was high robustness and transferability
of our method to contexts in which multiple types of interaction behavior need to be explored
over time. Our method scales well to multiple types of interactions and also to large projects
withmany developers. To achieve this, we used tensor decomposition and predictionmethods
that make little assumptions on statistical distributions. At the same time, these methods
are not suitable for testing statistical hypotheses (e.g., whether the grouping behavior of
developers is a significant driver of developer behavior). Neither are these methods suitable
for calculating prediction intervals (e.g., by validating whether observed group growth lies
within the predicted range of values). We think of our method as a chain of modules that, if
needed, can be replaced by different clustering and prediction algorithms.

In general, we base our approach on the assumption that it makes sense to represent com-
munication and co-editing events in a time-slice tensor structure, as the observed events
describe a temporal, enduring relationship. Other types of link prediction models such as ex-
ponential random graph models forgo this simplification and try to detect whether grouping
behavior would, indeed, lead to networks that look like the observed network [LKR12]. These
models do not detect clusters in a specific network but rather test hypotheses on the drivers of
interaction behavior. Foundational work on this alternative logic was done by Quintane et al.
[QCT+14]. Our approach, however, seeks to identify clusters in observed networkswithmulti-
ple types of interaction, it does not seek to prove that clustering behavior is a generative pattern
of the networks. Clustering is an unsupervisedmachine-learning technique. That is, it seeks to
find a set of vertices in a network that are close to each other in the same cluster and far away
from different clusters [CCZ+19]. In multiplex networks, common cluster (i.e., community
or group) structures can emerge across the different types of interaction [DKK11; KBK05].

Under the assumption that the tensor representation has been accepted as a useful represen-
tation of developer networks, and that the groups we look for manifest in the temporal slices
of the tensor structure, tensor-decomposition methods can be used for clustering. Chen et al.
[CCZ+19] provide an overview of the most commonly used variants of tensor decomposition
for clustering in multiplex networks. They also propose a clustering method that allows to
estimate different groups across two modes of interaction. This approach would compli-
cate the visual representation and interpretation of the decomposition outcomes, but could
provide an alternative approach for model 3d to capture channel-specific group structures.
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As we wanted to avoid any dependency between the identified groups in both channels in
model 3d, we have chosen to cluster both interaction modes separately. The method proposed
by Chen et al. [CCZ+19] differentiates between groups in both contexts, still using the entire
tensor (instead of, as in our model 3d, decomposing two three-dimensional tensors to allow
for separate group structures). As our method consists of a modular concept of combining
statistical tools, the outcome of their decomposition approach would be compatible with the
next steps of our method: There are cluster weights for a time range and stable groups over
time that could be combined with a time-series prediction to extrapolate the current activity
level of the groups and to predict future interaction.

As with the clustering step, also the prediction step can be easily changed to model addi-
tional assumptions on the development of group weights. For example, our current approach
allows group weights to increase without bound. But—in real life—a developer’s capacity
and time are limited. Hence, an extrapolation method that includes a damping factor for
growth could be more suitable. When using multivariate techniques (i.e., methods that model
relationships between the single groups’ weights and predict them simultaneously), one
should keep in mind that the time series are actually related through their origin from a tensor
decomposition. Therefore, we recommend to use univariate methods that do not involve
assumptions on the statistical properties of the error term.

The above stated examples, on the one hand, relate central parts of our method to state-
of-the-art work and, on the other hand, demonstrate the benefits of our overall method as
a modular concept of combining statistical tools. In particular, these examples exhibit how
certain parts of our modular concept can be replaced by other statistical tools and that our
method could be easily applied and adjusted to additional assumptions in practice.

4.5.2 Perspectives for Empirical Software-Engineering Researchers

A key question of this work is how strong social ties and group structures in OSS projects are,
and how congruent interaction via communication and co-editing is. We found substantial dif-
ferences between the projects, which appearmainly related to the size and growth of a project.

The Identifiability and Stability of Group Structures The rank-reduction-based models
(3d, 4d, 3d-ext, and 4d-ext) perform better than the non-reduction-based models (naive and
sum). This confirms that ignoring occasional contributions helps in predicting future developer
interaction and that there are core and peripheral developers. The canonical decomposition
is able to identify groups of developers, where every developer can be member of several
groups, and reduces the weight of peripheral developers (including developers who only in-
teracted with others for a single time range). With that, our method determines the important
developers based on their involvements in specific latent tasks as well as on the importance of
these tasks. As our results indicate, this improves the prediction of future developer interac-
tions. Therefore, our method can also be used to identify core developers of a project from a
more nuanced view than state-of-the-art classification techniques do, which are merely based
on standard network centrality measures and possibly ignore the latent group dynamics.

Interestingly, our results show that relatively long phases of stable weights 𝑑𝑡𝑟 arise in
the canonical decomposition, which can be interpreted as evidence in favor of stable social
relationships. These social relationships lead to repeated collaboration over a limited period.



108 Group Dynamics and Group Stability in Open-Source Software Projects

That is, there are interactions among developers that persist for a specific period of time
(e.g., while developers jointly work on a new feature), but as soon as these relationships may
appear, that soon such relationships also can come to an end (e.g., the implementation of
the new feature is finished). For instance, our decomposition insights for QEMU showed
that a group of developers mostly participating in discussions on the mailing list for a time
period of about 3.5 years mainly has affected the social dynamics of the project in this
time period. At the beginning and end of this time period, structural changes in the project
organization might have emerged due to the changes in the communication activity of these
developers. Hence, this could be used as a starting point for analyzing the causes and effects
of structural changes (perhaps driven by specific organizational events) on project success.
So, this could be helpful for better understanding social dynamics and improving a project’s
software-development process.

The Correlation Between Communication and Co-Editing Our results also show that
communication and co-editing have a consistent positive correlation (positive values 𝜙𝑡
between 0.15 and 0.21, omitting one outlier in each direction). This is, to some extent, in line
with “Conway’s Law” [Con68] or the “mirroring hypothesis” [CB16], in which it is assumed
that the social structure (i.e., communication) of a software project mirrors its technical
structure (i.e., co-editing) because of the coordination requirements that arise from co-editing
software modules [CHC08; CWH+06; MC90]. This lets us assume that there is a (weak)
socio-technical congruence, as the occurrences of communication and co-editing activities are
positively correlated. Researchers have argued that the state of socio-technical congruence
arises from the decomposition of programming activity into work items or tasks [KCD12;
Par72]. In our setting—we are even more abstract—such work items can also be the latent
factors 𝑟 which we treat as unobserved tasks. When choosing larger values of 𝑅, usually the
decomposition identified one or two specific sub-groups in communication. That is, most of
the identified sub-groups are mainly related to co-editing, but with a high enough rank of
decomposition, at least, one communication-related sub-group appears in our subject projects.
Thus, mainly communication-related sub-groups are harder to detect. This could be an
indication that there are only few pure communication-related sub-groups andmost of the co-
editing-related sub-groups also cover the corresponding communication part. Nevertheless,
we need further investigations to find out whether the developers that are mostly involved in
the communication-related sub-groups do also appear to be important in one of the co-editing-
related sub-groups, and, if not, what this means with respect to socio-technical congruence.

Our results and our method can inspire research on software development with regard to
different aspects. One important stream of research is to understand what developers usually
discuss about, and how their communication is related to joint programming activities. Our
study contributes to this field of research by showing that communication (at least, in terms
of e-mail exchange on public mailing lists) and co-editing are only weakly simultaneously
related. This result is in line with our results from Chapter 3, in which we have analyzed
the synchronicity of cochange events and e-mail activity on the mailing list. Moreover, this
result is also supported by the preceding study on synchronous development of Xuan and
Filkov [XF14]. However, they identified a stronger correlation than we do, which might be
specific to the chosen subject projects. The difference in the correlation between co-editing and
communication activity might also be caused by the different operationalizations: They used
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simple time-series event data of 6 OSS projects, whereas we construct developer networks
from a richer history of 10 OSS projects and apply a tensor decomposition on it with the aim
of being more accurate in identifying latent structures. There might be multiple reasons why
socio-technical congruence seems to be rather weak in the projects we analyzed (e.g., related
co-editing and communication activities could be shifted such that they do not take place
temporally close-by, or developers who mainly coordinate may not show up in co-editing
activities any more, etc.). This observation has also been discussed in the literature [e.g.,
GBL+13; GKD+19; LC03] and needs further attention in future work.

Evolutionary Patterns inOpen-Source Software Projects Research in empirical software
engineering can profit from our method and models for finding patterns in the relationship
between developers, without the need to explicitly specify all mechanisms and reasons that
lead to the formation of modules, or hierarchy. Joblin et al. [JAM17], for example, investigated
the emergence of scale-freeness, modularity, and hierarchy in OSS developer networks. While
they used descriptive measures for showing these network characteristics, their approach
could be combined with our probabilistic model of seeing the mentioned characteristics as
latent phenomena that drive the emergence of edges in the networks. This could help to better
understand the evolution of software projects and to identify changes in (latent) network
characteristics, which might have influenced the organizational structure and coordination
processes of anOSS project. Such a better understanding could be used to prematurely identify
potentially harmful changes in the organizational structure of OSS projects and to be able to
launch potential countermeasures for retaining project success. Especially modularity has a
direct interpretation in terms of latent factors, and understanding and measuring modularity
can provide important information to decision taking in OSS development: Modularity helps
to keep coordination needs among developers reasonable, and often arises naturally due to
common capabilities and interest in a common problem or challenge [JAM17].

While describing the topology of a network, factorization provides insights into the genera-
tion process, by carving out the latent patterns that have led to the observed structure. Latent
factors, extracted for example via spectral decomposition, inherently represent clustering,
local heterogeneity, and other characteristics such as maximum distance across the network,
bottlenecks, and degree of randomness [Hof09; SR03]. Knowing about such latent factors,
researchers can get new insights into growth processes in OSS projects and draw new con-
clusions regarding whether and how such characteristics of growth processes can influence
project success. For example, as we have seen in the decomposition insights of BusyBox,
the latent information regarding dynamic weights of sub-groups can be used to identify
which latent factors (and, therefore, which sub-groups) are responsible for the temporary
sharp drop of communication activity and to identify which developers are related to these
sub-groups. In addition, the decomposition insights can also reveal which latent factors (i.e.,
sub-groups and developers) are responsible for the anew increase of communication activity
after the sharp drop (e.g., whether these sub-groups are the same as before or whether
other sub-groups have gained importance). Such investigations cannot only be undertaken
to examine activity patterns, but also to investigate network distortions or formation pro-
cesses, etc. [LHH17]. Besides, finding latent factors can also be used for community detection:
As a latent factor describes a certain group of developers that work on a joint unobserved
task, all the latent factors already represent overlapping groups of developers. However, the
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tensor decomposition does not only show us the groups but also provides us with further
information on group importance, kind of involved activity (co-editing vs. communication),
and dynamic importance over the complete project time span. Such information can pro-
vide more insights into the organizational structure of OSS projects than detecting groups
based on simple network classification metrics. For example, in ownCloud, we can see that,
when decomposing the tensor into three latent factors, there is a high overlap among the
three developer groups (showing that many of the core developers have a stable position in
the project structure over time). However, we can also see that a specific developer is only
important for one of the three groups that only played a central role in a rather early project
stage. This way, the decomposition provides us with more information about the groups,
which could be used to examine the reasons why specific groups gain or loose importance.

In summary, our method can be used by researchers as an easy means to investigate project
evolution. Later on, this can be helpful for project maintainers to get a deeper knowledge on
the ongoing, past, and potential future activities and on the importance of specific developer
groups that have emerged and vanished during project history. This information could be
exploited to reveal coordination needs and improve the coordination of developers’ activities
with respect to specific organizational events (e.g., to coordinate knowledge sharing when a
central long-term developer of the project is about to leave).

4.5.3 Perspectives for Practitioners

Our study also provides potential insights for practitioners: The information on the role of
specific groups, on coordination needs, and on knowledge sharing could be collected and
visualized in a dashboard, which could help developers to improve their coordination based
on the knowledge about group structures and their importances. For instance, (potentially
unexpected) instabilities or irregularities in the group structures of collaborating developers
could be detected by our method. Project managers could then use the decomposition insights
to identify sources of problems and develop concrete ideas on how to mitigate or even solve
the problems identified via irregularities in the group structures. For example, in BusyBox,
we recognized irregularities when new developers joined the project, when previous core
developers left the project, and when the remaining group of previous core developers
discontinued their co-editing activities but started concentrating on communication tasks
only. These irregularities can be detected when having a closer look at our decomposition
results (see Figure 4.7): The dynamic weight of the latent component that describes the main
tasks of a group of previous core developers had a sudden decrease, while the dynamicweight
of another component (which also contains some of these previous core developers, but only
consists of communication activity) suddenly started to increase. At around the same time,
a new group of developers (including two recently joined developers) emerges and takes
over most of the co-editing activity. However, this new group has almost no communication
activity, as the interaction-channel effects of the corresponding latent component reveal. Such
an irregularity could be further investigated to uncover whether there is a potential lack of
coordination. Knowing about such a collaboration issue could be beneficial for successfully
integrating new developers (e.g., project managers could detect such issues and discuss them
with the developers early).
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4.6 Threats to Validity

The above presented results of our study may be threatened in many regards, as always
in empirical studies. In the following, we discuss the potential threats to validity from two
different perspectives: We first discuss methodological threats to validity. Thereafter, we
elaborate on the potential threats to the validity of the empirical data that we have used in
our study to evaluate our proposed models.

Methodological Threats to Validity (Construct Validity) One threat to the validity of
our findings is the specification of the length of the time windows for our method. We chose
3-months time windows and an aggregated approach as we seek to describe the evolution of
a topological pattern of the network: developer grouping or vertex clustering. The analysis
can neglect the importance of people that replied to some messages only after the switch
from one time range to another. The naïve baseline (naive) is most vulnerable with regard
to the time-window length, as it contains ever less information per time range when the
time-window length decreases. The tensor decomposition is less vulnerable, as it always
looks at the entire tensor. However, the time weights become more noisy, with more ups and
downs in d𝑟. Experimental work by González-Bailón et al. [GWR+14] illustrates the biases
that arise when sampling network data: As we sample repeatedly and keep the edges that
cross ranges, we have this risk of interpreting common changes as an interaction where there
is actually no collaboration. For example, in our setting, two events can count as an interaction
if the person who edited the file first has already left the project. This might be problematic
for interpreting the identified group structures and using them for link prediction as we
assume that this person was active all the time (and, therefore, had lots of interactions with
various developers) whereas it never was active (except for the beginning). When discretizing
interactions between developers into time ranges, in general, we can either lose interactions
that go beyond the ranges of a time window or we can keep edges that go beyond time ranges
and take the risk that some of these edges actually do not constitute a real interaction due
to the potentially long time span between the two corresponding events, which leads to a
distorted picture on the relationship between developers’ activities. Torn between these two
poles, we decided to keep interactions that go beyond time ranges, not to lose potentially
important edges between developers.

Second, we have chosen a relatively simple decomposition method, which infers latent
factors without indication of standard errors, probabilities, or similar quality criteria that
would help assessing the fit of the decomposition and the group structures. The probabilistic
model discussed in Anandkumar et al. [AGH+14a] describes in more detail how tensor
decomposition can be used to infer group structures on the basis of the assumption of a
Dirichlet distribution of the observed interactions. The method relates community detection
to the mixed-membership community model of Airoldi et al. [ABF+08]. Much like their
model, our models assume stochastic independence of single edges given the group members
of the vertices in the network. However, to keep our calculations computationally feasible
also for large projects, we decided to use a non-probabilistic decomposition method, to the
disadvantage of hypothesis testing and precision estimation. When applying our method
as a prediction method, the cross-validation procedure has to be adapted. We did not hold
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back a test sample to test the best 𝑅 or model. This was not necessary because we wanted
to describe the fit of the models for the given dataset: Which of the models with their basic
assumptions best fits the observed data? Usually, sparser models perform better for prediction,
and, therefore, we expect lower numbers of 𝑅 to perform even better in a setting where the
rules of holding back a part of the sample are being followed.Within the tool set of exploratory
clustering of vertices, there may be better approaches. For example, including a penalty for
the simultaneous membership in more than one group may help to achieve better results.

A third point worth discussing is the assumption of constant group patterns that vary
over time only in their relative importance. Much like the models of Airoldi et al. [ABF+08]
and Anandkumar et al. [AGH+14a], our models assume vertices to be members of different
overlapping groups that can be described statically in strength of inter-personal relationships.
We use the tensor decomposition to find patterns that describe a stable group behavior—
groups that are active for a certain span of time and that collaborate via joint programming
and communication activities. Only the relative importances of the groups change, through
their 𝜆𝑟 weights. A different approach is to model the change in some few central groups via
a clustering that results in one developer being member of only one group, but changing
groups over time. This alternative result could also provide a parameter that estimates the
speed of group-structure adaptation, measuring the changes from one time range to the next.
We found our constant group understanding easier to use for a description of the entire
project history—when a current state of the network is all that is needed, the other approach
may be more helpful.

In future work, our analyses could be easily extended by modeling directed and weighted
edges. For example, it is known who contributes to a mailing-list thread first, and who edits
a source-code artifact first [JMA+15]. The binary values can be replaced by weights, such
as the number of contributions within time range 𝑡, the number of code lines edited in the
cochange events, or the number of responses of developers 𝑖 and 𝑗 on a mailing list.

Threats to Data Validity (Internal and External Validity) We used data extracted from
10 well-established OSS projects from different domains to validate our models empirically.
Nonetheless, the validity of our data is threatened by several aspects.

As we identify developers by their names and e-mail addresses, one potential threat is that
developers may use different spellings of their names and use various e-mail addresses, which
makes it hard to impossible to precisely track the co-editing and communication events for
each developer correctly. However, we use the heuristic for name and e-mail disambiguation
from Oliva et al. [OSO+12], which matches developers by their names and e-mail addresses
and which has turned out to work well in empirical studies [WSS+16].

Another potential threat is our general assumption that edges between two vertices in the
network describe the co-editing or communication of these developers. This does not threaten
our methodological outcomes, but is a potential risk to the interpretation of our empirical
results, as two developers who reply to the same mailing-list thread or work on the same file
might not necessarily work on a common task and might also not be aware of each other and
each other’s actions. However, many related studies in the literature also rely on this assump-
tion and base their analysis of developer networks on this operationalization [e.g., BGD+06;
BPD+08; Bir11; GHJ98; HSA20; JAM17; JMA+15; LRG+06], which also has previously been
validated via developer surveys to be accurate and meaningful [JAH+17]. Nonetheless,
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even if there is no explicit common task and the developers do not really interact with each
other, the edges between them in the network describe some latent interaction. Hence, such
edges represent implicit interactions of developers and their contributions, arranging them
in groups of developers working on similar tasks, which still is an important facet when
investigating the evolution of a software project and its group dynamics.

To increase the external validity of our results, more subject projects have to be considered,
and also other forms of communication, such as communication via chat or GitHub issues.
Communication on a project’s mailing list is not the only communication channel, and group
patterns may also extend to other interaction channels. Nevertheless, we evaluated the perfor-
mance of our models on 10 well-established OSS projects from different domains to provide
some initial insights in how our models perform when looking at two different interaction
channels, which already allows us to synthesize some implications on the performance of
our models as well as for empirical software-engineering researchers.

4.7 Conclusion

OSS projects have a reputation for being anarchic compared to commercial software de-
velopment. Some assume that this is one of their major strengths as it fosters for flexible
organizational structures and integration of peripheral developers, who contribute a sig-
nificant share of the value of OSS projects. Nevertheless, researchers found that repeated
collaboration and stable social relationships are essential drivers of the quality and success
of software development. In this chapter, we asked how strong social relationships in OSS
projects are and how congruent sub-groups in communication and programming are. To
provide an answer to these questions, we developed a modular, multi-step method to detect
developer groups. We departed from a model that assumes groups in OSS projects to be
overlapping, both across tasks and in time, and operationalized this model with a tensor data
structure, a decomposition to find the groups, and a time-series extrapolation to predict the
future behavior of the groups.

Furthermore, we proposed a probabilistic model to analyze the strength and dynamics
of group behavior in OSS development. We model the groups as latent factor structures
in a low-rank factorial structure, and assume that the social structure of a project contains
𝑅 sub-groups. As any developer can work on multiple tasks, there is no restriction of one
developer belonging only to one specific group. Instead, groups are overlapping. One latent
factor consists of (1) developer effects that reflect the involvement of developer 𝑖 in one
particular group 𝑟, (2) interaction-channel effects that reflect how much this group involves
either co-editing or communication (𝑘 ∈ {1, 2}), and (3) time effects that contain the current
weight of the sub-group for a particular time range 𝑡. This way of thinking and modeling is
similar to collaborative filtering approaches, where correlations and similarities are mined
without strong hypotheses on the nature and properties of the underlying group-forming
mechanisms. We infer the latent factors from the observed data with the help of canonical
tensor decomposition. To do so, we discretized the event data into 𝑇 non-overlapping time
ranges. Finally, we combined the decomposition with a state-space time-series model and
exponential smoothing to extrapolate a trend and a current level of the relative importance of
the single latent factors to future time ranges.
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To assess the appropriateness and predictive performance of our models, we defined a
series of baselinemodels. Baseline naive assumes that everyonewho co-edits or communicates
at time 𝑇 will also do so at time 𝑇 + ℎ. Baseline sum sums up all the past interaction behaviors,
putting more emphasis on older information and repeated interaction than naive. Model 3d
looks at communication and co-editing information separately, using third-order tensor
decomposition, which resembles the state-of-the-art approach of analyzing the social and
technical dimensions separately. Model 4d uses fourth-order tensor decomposition and
simultaneously models groups in co-editing and communication. Both models 4d and 3d
assume that the current relative weights of the patterns will be constant in the future. Finally,
to account for changing group weights, in the models 4d-ext and 3d-ext, we use a time-
series method to extrapolate the current group-weight growth or shrinkage to the future.
The models 4d-ext and 3d-ext outperform the baseline models in the prediction of future
edges. However, the extrapolation leads to instabilities when compared to the remaining
approaches. Consequently, themodels 3d and 4d turned out to bemore robust to abnormalities
in communication usage, such as the decreasing use or abandonment of mailing lists, and had
a slightly better mean performance for prediction. While rank reduction and the incumbent
concentration on the more central developers indeed benefit predictions, the state-space time-
series model and trend extrapolation did not significantly improve predictive performance.

Our research shows that there is evidence that rank reduction is able to identify valid
group structures and correctly describes the social structure of OSS projects. Our method
is a relatively intuitive and exploratory way to investigate group structures in social and
socio-technical networks, as it consists of a modular concept of combining different statistical
tools. This way, our method can be easily adjusted to investigate various assumptions on
developer behavior in OSS projects. Consequently, it can be used to better understand group
dynamics in a computationally feasible way, even in huge networks with more than two types
of interaction.

In empirical software-engineering research, our method can be used to explore the group
structure in more detail and to understand collaboration structure, role diversification, and
the usage of different modes of interaction. For example, we found that shortly before a
temporary decrease in the communication activity of project BusyBox, there is a peak in the
activity of a sub-group which had extensive e-mail exchange via the mailing list, whereas
thereafter a sub-group mainly driven by co-editing activities started to be active. After the
temporary decrease of the communication activity, a new sub-group arises that takes over
only communication activity. However, recently joined developers (who are part of the sub-
group that mainly performs co-editing activities) are not involved in the communication
activity, which could point to a potential lack of coordination. Using our method, we are able
to identify such distortions in the network structure and to easily analyze the underlying
changes with respect to interaction channel, dynamic importance, and developer importance.
We have investigated the group dynamics of co-editing and mailing-list communication
in 10 well-established and long-running OSS projects and, via canonical tensor decompo-
sition, we identified stable group structures (consisting of groups being stable for several
years) as well as periods of sub-group instability in all the investigated projects. Some of
these sub-groups are mainly related to programming activity, whereas others are mainly
related to communication, and some are taking over the coordination activity (showing both
communication and programming activities). While some sub-groups are persisting since
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the beginning of the project, others emerge in the course of project growth. Interestingly,
project growth in terms of increasing programming activity is usually not complemented by
increasing communication activity, as we detected only a weak correlation between co-editing
and communication events. This phenomenon shows that there might be a need to improve
developer coordination. Our method can help to detect patterns of instability in specific
sub-groups (such as the abandonment or joining of important developers) by considering
multiple interaction channels all at once, and to assess their effects on project success and
potential coordination needs within or among specific sub-groups. Such insights can drive
the improvement of virtual coordination platforms like GitHub by helping to determine the
collaborators for a specific task or discussion (e.g., recommending project contributors who
may be able to answer a question or should be informed about some specific aspect).





5Hierarchical Organizational Structures
in Open-Source Software Projects

This chapter shares material with Joblin et al. [JEB+23].

Many software systems are developed either as open-source software (OSS) or rely on OSS
libraries, frameworks, etc. [Wei18]. OSS developers actively contribute to an OSS project by
means of coding and by issuing and discussing bug reports, feature requests, etc. OSS devel-
opers typically organize in a decentralized and self-organized manner [BPD+08; CLW+07;
Yu08]. Despite the absence of a formal process and a central command-and-control structure,
prior studies have shown that developer organization is far from being a purely random
process. Studies of developer organization based on network models have been accumulating
growing evidence that multiple organizing principles are simultaneously at play [BPD+08;
JAH+17; JAM17; JMA+15]. There are two important organizing principles: (1) The probability
that a randomly selected developer has 𝑘 connections to other developers in the network
is described by a power law—the scale-freeness principle—and (2) developers organize into
densely connected groups—the community principle. It has been shown that, to simultane-
ously reconcile these two principles under one roof, the groups must arrange according to a
hierarchy (see Figure 5.1) [RB03]. Hierarchical organization induces a dependence between
the number of connections to a developer (vertex degree) and the density of local connections
(clustering coefficient), which can be used to test for the presence of hierarchy [RB03].

developers on top
of the hierarchy

Figure 5.1: Even without formal process or mandated developer roles, a hierarchical structure emerges
in OSS projects, with few developers on top of the hierarchy (blue, large vertices) and
many developers lower in or even outside the hierarchy (white, small vertices) [JAH+17].
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Recently, Joblin et al. [JAM17] found indications that, over time, highly successful OSS
projects develop a hybrid organizational structure that comprises a hierarchical part and a
non-hierarchical part. This observation is consistent with previous findings reported in the
literature [CH06; MFH02] and is intriguing for two reasons: (1) it implies that hierarchi-
cal organization is not necessarily a global organizing principle and that a fundamentally
different principle is at play below the lowest positions in the hierarchy; (2) the vast ma-
jority of developers often occupy non-hierarchically organized positions in the developer
network. In this vein, previous work suggests a connection between role stratification and
the emergence of organizational structure [JAM17]. Role stratification is the process of the
emergence of developer roles arising from differences in the developers’ behavior. Role strati-
fication limits coordination overhead and improves information flow, this way, influencing
project quality and performance [HR09; JAM17; LS07; OF07; TLV13; TPK19]. In particular,
Joblin et al. [JAH+17] provide evidence that developer roles and hierarchy in developer
networks are connected such that core developers occupy upper positions in the hierarchy and
peripheral developers occupy lower positions [JAH+17], where core developers play an essential
role in developing the system architecture, programming, and forming the general leadership
structure, with long-term involvement, and peripheral developers help with bug fixes or small
enhancements, with irregular or short-term involvement.

Given the influential role of developers in the hierarchical part, it is important to understand
the interactions between the hierarchical part and the non-hierarchical part. To this end, we
want to learn whether the hybrid structure is universal and how it evolves with project life
cycles. In addition, we adopt the perspective of individual developers and investigate how
they traverse through the organizational structure from on-boarding to off-boarding, how
their support contacts (i.e., co-developers) are structurally distributed within the organi-
zation, and how tenure and programming activity relate to their structural position. An
improved understanding of these aspects is important for two main reasons: (1) it provides
insight into the organizational mechanisms that large successful OSS projects use to manage
coordination and communication, which is ultimately useful for any large-scale, globally
distributed software development project; (2) our insights lay the foundation to derive mea-
sures that encourage a project toward known successful organizational structures to increase
the likelihood of success. On the one hand, hierarchy has certain functional advantages when
it comes to efficiency, but the lack of information-channel redundancy makes it vulnerable
in volatile conditions (e.g., high developer turnover). On the other hand, non-hierarchical
structures with lots of built-in redundancy tend to be robust to volatile conditions, but are less
efficient. By better understanding the dynamics and relationships between parts of the project
that are organized differently, we can begin to understand which organizational structures
are ideal given the behavior of members or groups and how they interact with each other. For
example, it is plausible that newly on-boarded developers (which are likely more volatile)
would not be ideal candidates to be positioned higher in a hierarchy, but rather begin outside
the hierarchy and then become members of the hierarchical part over a period of time once it
is clear they are a consistent contributor.

To address these questions, we conduct a longitudinal study on 20 popular OSS projects of
various application domains and sizeswith a total of 831 6-months snapshots.We explore their
organizational structure as a network of developers who are connected by communication
ties [LRG04]. Based on these developer networks, we divide the set of developers into a
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hierarchical part and a non-hierarchical part and explore their evolutionary trends (RQ1),
we track the neighborhood of individual developers to understand their placement and
progression in the hierarchy (RQ2, RQ3), and we characterize the roles of developers in the
hierarchy with information on tenure and activity (RQ4).

In our study, we make a number of notable observations, including that (1) hierarchy is
a pervasive structural feature of developer networks of OSS projects, (2) OSS projects tend
to form hybrid organizational structures, consisting of a hierarchical and a non-hierarchical
part, and (3) the positional trajectory of a developer is to start loosely connected in the non-
hierarchical part and then tightly integrate into the hierarchical part, which is associated with
acquisition of experience (tenure), in addition to coordination and coding activities. Further-
more, our study (a) provides a methodological basis for further investigations of hierarchy
formation, (b) suggests a number of hypotheses on prevalent organizational patterns and
trends in OSS projects to be addressed in further work, and (c) may ultimately help to guide
the governance of organizational structures.

In summary, we make the following contributions:
• Insights regarding the presence and evolution of hierarchical and hybrid organizational

structures in OSS projects and a method to identify these structures.
• Findings regarding the nature of the relationship between members of the hierarchical

and non-hierarchical parts.
• A comparison of the developers in the hierarchical and non-hierarchical parts regarding

tenure and activity level.
• A discussion of practical implications and hypotheses that shall guide further research.
• A replication package including analysis scripts, pseudonymized raw data, and results

on a supplementary website: https://hierarchypaper.bitbucket.io/public/ and
https://zenodo.org/record/7199267 .

5.1 Background & Related Work

In this section,we provide background information on different forms of higher-order network
structure and related work that studied organizational aspects of software projects using
developer networks.

5.1.1 Higher-Order Structure in Networks

Depending on the underlying organizational principles that influence the formation of edges
in a network, the types of structural features the networks possess can differ significantly. For
example, if the existence of each edge is determined purely by chance (i.e., by flipping an un-
biased coin where heads corresponds to an edge and tails does not) then an Erdős-Rényi (ER)
random network is generated as shown in Figure 5.2 (left) [ER59]. Due to the independent
formation of each edge, these networks lack higher-order structure (e.g., communities or hier-
archy). To achieve a departure from these purely random network structures, an underlying
organizing principle must induce a dependence between the edges. For example, if groups of
vertices exist such that forming edges among members of the same group is more likely than
forming edges with members of different groups, then higher-order structure in the form of

https://hierarchypaper.bitbucket.io/public/
https://zenodo.org/record/7199267
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ER random network Hierarchical network
with 25 vertices: with 25 vertices:

ER random network Hierarchical network
with 625 vertices: with 625 vertices:

0.001

0.010

0.100

1.000

1 10 100
vertex degree

lo
ca

lc
lu

st
er
in
g
co

effi
ci
en

t

0.001

0.010

0.100

1.000

1 10 100
vertex degree

lo
ca

lc
lu

st
er
in
g
co

effi
ci
en

t

Figure 5.2: Comparison of Erdős-Rényi (ER) randomnetworks (left) and hierarchical networks (right).
Upper part: Visualizations of an exemplary ER random network and an exemplary hierar-
chical network with only 25 vertices each (for the sake of visualization). Lower part: Scatter
plots that reveal the relationship between vertex degree and local clustering coefficient
on a logarithmic scale in an exemplary ER random network and in an exemplary hierar-
chical network with 625 vertices each. The ER random networks are constructed using an
edge probability of 0.1 for a pair of vertices, and the hierarchical networks are constructed
according to the corresponding algorithm of Ravasz and Barabási [RB03]. This figure is
based on Joblin [Job17, p.44] and inspired by Barabási [Bar16, pp.336–337].

communities arises [GN02]. Some real-world networks are also known to be scale-free, which
implies that the degree distribution of vertices follows a power-law distribution [New05].
One way this property occurs is through a dependence between degree and the probability of
edge formation, such that vertices with a higher degree are more likely to gain new edges than
a vertex with a lower degree, which is known as preferential attachment [New05]. A third
example of non-random structure is hierarchy. Hierarchical structure in networks can be
achieved by inducing a dependence between the local clustering coefficient and the degree
of the vertices in the network [RB03], as introduced in Section 2.3.3. Network hierarchy
manifests as local clustering within a global tree-like arrangement of these clusters, which is
shown in Figure 5.2 (right). Due to the stochastic nature of complex networks, the concept of
hierarchy differs slightly from a strict hierarchywhich forbids relationships between entities at
the same layer. Moreover, hierarchy is distinct from community and core/periphery structures
which do not require a dependence between the clustering coefficient and degree [RB03].
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5.1.2 Using Developer Networks for Studying Organizational Aspects

For studying socio-technical aspects of software development, networks are used to represent
relationships between developers induced by their development activities. Typically, networks
are constructed by considering information from the version-control system (VCS) by extract-
ing relationships from the commit activity [e.g., CHC08; CMR+09; CPT+19; JAH+17; JAM17;
JMA+15; MW11; NMB08], from communication activity through issue trackers or mailing
lists [e.g., BPD+08; HMR06; WSD+09], or a combination of both [e.g., BNG+09; MJT+22].

Network representations of software projects have proven to be a powerful abstraction in
numerous applications. Multiple studies have demonstrated that developer networks can
successfully predict software defects [BNG+09; MWS+08] and build failures [WSD+09].
Nagappan et al. [NMB08] found that organizational metrics are even more predictive of
software-quality factors than traditional source-code metrics. Shin et al. [SMW+11] showed
that developer-activity metrics extracted from networks are predictive of security vulnera-
bilities. When it comes to developers roles, Joblin et al. [JAH+17] found that the structural
position of developers within the network is reflective of developer perception. These studies
show evidence that developer networks contain rich structure that is related to several highly
relevant socio-technical dimensions of a software project. Inspired by these results, our pri-
mary focus is on achieving a deeper understanding what fundamental structures exist, how
they evolve over time, and how developers embed within them.

Determining whether the edge formation in developer networks is driven primarily by
a purely random process or by non-random organizational principles has received some
attention. Bird et al. [BPD+08] found that developer communication networks contain a
latent community structure that is consistent with non-random edge formation. Similarly,
in Chapter 4, we identified latent group structures in communication and co-editing. In
developer networks constructed from commit activity, Joblin et al. [JMA+15] found that
developers form communities that are statistically significant and align with developers’
perceptions of team collaboration. Also, the scale-freeness property appears to be pervasive
among projects that achieve sustained long-term growth, and there is initial evidence of
hierarchy existing in OSS projects [JAM17]. Given that hierarchy functions as a unifying
principle of two other important structures, communities and scale-freeness, it is imperative
to better understand the role hierarchy plays is OSS projects.

5.2 Research Questions

Before we describe our method, we discuss the research questions that motivated us to
develop the method in the first place.

RQ1:
Are there patterns in terms of structure and evolution that exist in OSS projects
with respect to hierarchy?

Hierarchy and role stratification emerge in times of project growth and increased coordination
overhead [HM06; TLV13; YK03], and organizational structure is closely related to project
sustainability and scalability [ZCM+17]. As a consequence, the fundamental organizing
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principles at play must evolve throughout the project life cycle. It remains an open ques-
tion, however, whether hierarchical, non-hierarchical, and hybrid structures are a pervasive
phenomenon governing organization in OSS projects and at which points in the project life
cycle these structures exist. Answering RQ1 sheds light on hierarchy and hybrid structure as a
global network property that co-evolves with the different project phases and growth regimes.
Since each type of organizational structure exhibits certain strengths and weaknesses, by
knowing what organizational structures exist and when, we would be able to asses whether
the observed structures make appropriate accommodations to the current project conditions.

RQ2: Howdoes an individual developer’s position in the hierarchy change over time?

While the perspective of RQ1 is rather global, we now peer through the lens of individual
developers to understand their personal journey through the organizational structure. Sim-
ilar to the organizational structure of a project, the roles of developers evolve along with
their activity in the project [ZM10]. Understanding the social dynamics in OSS projects re-
quires understanding the relationship between on-boarding of developers and their later
roles [CDO+12; ZM12] and the determinants of the chances to reach an influential posi-
tion [CLL+17; ZM11]. In our study, we look for typical “trajectories” of developers through a
project’s hierarchy. Clearly, different roles imply different experience levels, consistency of
involvement, and level of commitment. Since certain organizational structures are not well
suited for high volatility (e.g., hierarchy), the inconsistent involvement exhibited by some
roles posses a risk, unless the roles are organized differently. By answering this question,
we are able to observe how large-scale and successful OSS projects integrate new devel-
opers and how their progression is reflected in their structural position. This information
is useful to identify problematic on-boarding, off-boarding, and developmental progres-
sion practices occurring in a project, and to apply corrective measures to ensure a higher
probability of success.

RQ3:
How are a developer’s contacts distributed over the organizational structure of
an OSS project?

One way how network hierarchy can benefit project quality and success is through improved
communication and information flow. Consequently, it is important to understand who a
developer’s social contacts and cooperation partners are. Canfora et al. [CDO+12] investigated
who is responsible for on-boarding new community members in OSS projects. They found
that whether a developer’s first contact is an isolated or a well-integrated community member
has an important influence on information flow and knowledge sharing. Afsar and Badir
[AB15] and Zhou and Mockus [ZM15] provide more evidence for knowledge sharing of
colleagues and especially newcomers during their on-boarding phase. Steinmacher et al.
[SSG14] analyzed the extent to which social contacts into the group of an OSS community’s
core developers simplify on-boarding into new projects. We expect that developers who
communicate early with other developers from the top of the hierarchy will eventually rise in
the hierarchy, which we will verify by tracking their positions in the hierarchy over time.
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RQ4:
How do tenure and programming activity of developers affect their position in
the project’s organizational structure?

Since different positions in the organizational structure enable different functions, in a healthy
project, the position a developer has should ideally support the developer’s role and should
not expose the project to unnecessary risk. In OSS projects, important developers are often
responsible for both, coordination and the bulk of the programming work [EZZ19; RGH09;
YK03]. By analyzing e-mail data and data from issue trackers in combination with commit
data, we are able to investigate the relationship of coordination and programming tasks
with respect to a developer’s position in the hierarchical structure of the project. The entire
process usually takes time: Developers become core developers and project leaders only
with sufficient experience in the project [BGD+07; ZM12]. In combination, these aspects
may explain why tenure has only a weak relation to the number of code contributions: The
number of code contributions increases only in the starting phase of a project and caps after
around 3 years [ZM10]. It is beneficial to understand the relationship between function and
structural position in large-scale OSS projects, because it helps us to establish practices that
are conducive to successful outcomes. For example, if developers with primarily coordination
tasks are positioned outside of the hierarchy, that could be an indication that there is a
mismatch between the function and structural position. In that case, policies and practices
should be revised to induce a healthier project structure.

5.3 Methodology

We now describe the data and developer networks that we use, as well as the corresponding
statistical methods that we use to identify the hierarchical and the non-hierarchical part.

5.3.1 Data Extraction & Construction of Developer Networks

For this study, we extract communication data from OSS projects and build developer net-
works from it. To cover two different kinds of communication channels, we investigate projects
that use a mailing list for communication among developers, as well as projects that use the
GitHub issue tracker for developer communication. We extract mailing-list data from Gmane
and issue data (including pull-request data) from GitHub’s official REST API1, using the
tools nntp2mbox, Codeface, and GitHubWrapper, which we have introduced in Section 2.4.
As previous research has shown that GitHub issue data could be distorted by bots that auto-
matically comment on issues but are not human beings [GLD+20; WSS+18], we detect bots
with the tool BoDeGHa and remove comments created by bots from the issue discussions, as
described in Section 2.4.

Depending on whether a project uses mailing lists or issue discussions, we either build
mail networks or issue networks (see Section 2.3.1). For the construction of issue networks, in
this study, we only consider comments in the issue and pull-request discussions. That is, we
consider the initial comment authored by the issue creator, all subsequent comments to this

1 https://docs.github.com/en/rest/ (accessed at 2022-03-14)

https://docs.github.com/en/rest/
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Figure 5.3: The plot shows the log-transformed vertex degree and the log-transformed clustering
coefficient of all developers who were active in this time range. Each dot represents one
developer. There is a division into a hierarchical and a non-hierarchical part (dashed line).
We mark variance (C), angle (B), and percentage of vertices in the hierarchical part (A).

issue, as well as pull-request review comments and all their replies.2 Independently of the
network type, we build undirected, simplified networks, since the hierarchy measure we use
is defined on undirected networks without edge weights [RB03]. To build and analyze the
developer networks, we use the library coronet, which we have introduced in Section 2.4.

To capture the temporal dimension of a project’s history and to allow for smooth transitions
between adjacent time windows, we use sliding windows with a length of 6 months (i.e., an
overlap of 3 months), as explained in Section 2.3.2. This choice balances between fluctuation
and noise in short time ranges (prohibiting us from observing any non-spurious patterns,
plus randomly losing communication activity that happens across time-range borders) and
losing detail in long ranges due to aggregation [MW11].3

To investigate the relationship between organizational structure and programming activity
in RQ4, we also extract the commit metadata of the projects from the corresponding Git
repositories using Codeface. We match the commit metadata with the communication data
of the corresponding time ranges using coronet.

5.3.2 Typical Structure and Evolution

To answer RQ1, we visualize, for each network, the hierarchical position of all developers
in one plot, as we do in Figure 5.3. The plot covers a single time range and shows for every
developer 𝑖 the vertex degree 𝑘𝑖 (i.e., the number of developers a developer is connected
with) on the 𝑥 axis (using logarithmic transformation) and the corresponding local clustering

2 Other events in GitHub issues, such as labeling or merging, are ignored in this study, to focus on actual commu-
nication activities only. This is in line with the construction method of mail networks, which are by construction
based on communication activities only.

3 We also performed a sensitivity analysis and tried sliding windows with a length of 3, 6, 9, and 12 months.
However, in this thesis, we present and discuss only the results of using 6-months time windows, as justified
above. Nonetheless, we provide all results for using the remaining time windows on our supplementary website.
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Figure 5.4: Candidate breakpoints for a single time range of project LLVM (2008-06 to 2008-12). Each
vertical line denotes one possible split into a hierarchical part and a non-hierarchical part.

coefficient 𝑐𝑖 (i.e., the connectedness of the neighbors of a vertex) in this time range on the
𝑦 axis (using logarithmic transformation). To the right of the dashed line in Figure 5.3, we show
the relationship between log(𝑐𝑖) and log(𝑘𝑖) that is typical for a hierarchical network: a linear
relationshipwith negative slope [RB03]. To the left of the dashed line, the relationship appears
fundamentally different in that there is certainly no linear relationship and even appears to
be no relationship between log(𝑐𝑖) and log(𝑘𝑖). The absence of a linear relationship with a
negative slope indicates that hierarchical organization is not present and is consistent with the
random network introduced in Figure 5.2. Determining the hierarchical and non-hierarchical
parts corresponds to identifying a breakpoint between the linearly related segment and the
remaining unrelated segment (i.e., identifying an optimal position for the dotted line in
Figure 5.3). In Figure 5.4, we illustrate the decision space for this problem, where each vertical
line corresponds to a candidate breakpoint. Our method for automating the identification of
this breakpoint relies on a mixed approach of human labeling and combinatorial optimization.
The human labeling is used to learn rules for trimming the candidate space, making the
combinatorial optimization procedure more efficient. As a secondary use of the human
labeled data, we test how well our automated method generalizes to decisions made by
human annotators that were not used to find parameters for the method.

Manual Data Labeling We used human annotation to obtain labels for 289 randomly
selected developer networks from a subset of our subject projects (see Section 5.4.1). In this
case, a labeled data point corresponds to a network and the position of a breakpoint for
decomposing the network into hierarchical and non-hierarchical parts. The division into a
hierarchical and non-hierarchical part was done in a majority vote based on visual inspection
by three of the researchers that were involved in this study; no specialized domain knowledge
was required for this task. As no bias should be introduced into this judgment, no information
on the project and its members was used during the process.

To perform this labeling task, we showed a figure with 20 candidate breakpoints (see
Figure 5.4) to the human annotators and asked them to select one. We formed candidate
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groups by dividing the range of log vertex degrees into 20 buckets (intervals) of equal
length 𝑏1..𝑏20. This choice provided a reasonable compromise between granularity and com-
putational cost. The first candidate group for the hierarchical part contained the developers in
the bucket with the highest vertex degrees (𝑏1), with a minimum of two developers, while the
remaining 19 buckets (⋃𝑖=2..20 𝑏𝑖) formed the non-hierarchical part. The second candidate
group contained developers of the two buckets with the highest vertex degrees (𝑏1∪𝑏2), while
the developers of the remaining 18 buckets (⋃𝑖=3..20 𝑏𝑖) were seen as the non-hierarchical
part. This was continued until all developers are included in the candidate group for the hier-
archical part, resulting in 20 candidate groups in total. The annotation instructions indicated
that the breakpoint should be chosen such that points to the right exhibit a linear relationship
with a negative slope and points to the left do not. Each network to be labeled was shown
to multiple annotators, and an average of the chosen buckets was taken afterwards. For the
example in Figure 5.4, the annotators chose the buckets 𝑏10, 𝑏11, and 𝑏13, resulting in 𝑏11 as
the average bucket in this case.

We used 80% (231) of the labeled examples for fitting parameters in our automatedmethod,
described in detail below. The remaining 20% (58) of the labeled examples were used to
test the agreement between our automated method and human annotators on networks
not used during parameter fitting. The results indicate that the automated method and
human annotation differ on average by 10% (i.e., an error of two buckets). For the example in
Figure 5.4, our automated method (which we describe in what follows) selects 𝑏13.

Combinatorial Optimization In what follows, we describe our automated method for
determining the hierarchical and the non-hierarchical part of a developer network.

Step 1: Compute metrics of the candidate groups. To choose the optimal split of the developers
into a hierarchical and a non-hierarchical part, we start from 20 equally-sized candidate
groups, which was a reasonable compromise between granularity and computational cost for
our dataset. Three metrics (also visualized in Figure 5.3 as dashed line and arrows) for every
candidate group served as input to an optimization procedure:

(A) the percentage of vertices of the hierarchical part (perc);
(B) the angle between regression line (red solid line in Figure 5.3) and 𝑥 axis (angle);
(C) and the residual variance of the regression fit (var).

The percentage of developers in the hierarchical part (perc) is defined as the number of
developers (black dots) to the right of the dashed line divided by the number of all developers
in the plot (all developers in the time range with two or more interactions). The solid line is
the fitted regression line from a least-squares single linear regression of the log clustering
coefficient on the log vertex degree. The angle between this line and the 𝑥 axis (the bent arrow)
is related to the hierarchical part, such that a higher angle indicates a stronger hierarchical
structure [JAM17; RB03]. If this angle is zero, no hierarchy is present. The goal is to find the
largest possible angle. We compute the residual variance (var) for the hierarchical part of the
candidate group as the average squared deviation of the black dots right of the dashed line
(illustrated by the double-sided arrows in Figure 5.3). The regression line should be as close
to each black dot (developer) as possible. Thus, the variance should be as low as possible. As
result of Step 1, we know perc, angle, and var for each of the 20 candidate groups.
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Step 2: Apply thresholds to candidate groups. We aim at identifying the most suitable set of
developers comprising the hierarchical part. To this end, the decision on whether to keep
a candidate group or not is based on thresholds that we determined from the manual data
labeling (as described above in Section 5.3.2), which we have performed on a sample of our
subject projects, to filter degenerate cases (e.g., a large variance that blurs the hierarchical
structure). Hence, based on all the selected buckets that resulted from the manual data
labeling, we computed the following thresholds, which we now apply to all candidate groups:

(A) the hierarchical part must contain more than 5% of the developers (𝑝𝑒𝑟𝑐 > 5%);
(B) the angle between 𝑥 axis and regression line must be greater than 35∘ (𝑎𝑛𝑔𝑙𝑒 > 35∘);
(C) and the residual variance of the regression fit must be smaller than 0.5 (𝑣𝑎𝑟 < 0.5).

All candidate groups that satisfy these three requirements are the input for the third step.
Formally, we denote the set of remaining candidate groups for time range 𝑡 ∈ 1..𝑇 as 𝑆𝑡.

Step 3: Select optimal candidate group. We select one of the candidate groups 𝑠 ∈ 𝑆𝑡 per time
range that best describes the hierarchical and the (remaining) non-hierarchical part. To this
end, we compute 𝑆 = ⋃𝑡∈1..𝑇 𝑆𝑡, the union of the sets of candidate groups of all time ranges
per project. As the range of the three criteria varies from project to project, we first stan-
dardized the values from Step 2 project-wise by subtracting the project-specific means of the
criteria (Equation 5.1) and by dividing by the standard deviation of the criteria (Equation 5.2).
If 𝑚𝑠 represents any of the three measures for candidate group 𝑠 ∈ 𝑆 in time range 𝑡 ∈ 1, … , 𝑇,
and 𝑁 = |𝑆| is the number of all candidate groups for one project across all time ranges, the
calculus is:

𝑚 =
1
𝑁 ⋅ ( ∑

𝑠 ∈ 𝑆

𝑚𝑠) (5.1)

𝑠𝑑 = √
1

𝑁 − 1 ⋅ ( ∑
𝑠 ∈ 𝑆

(𝑚𝑠 − 𝑚)2) (5.2)

𝑚std
𝑠 =

𝑚𝑠 − 𝑚
𝑠𝑑 . (5.3)

This results in a standardized percentage measure percstd𝑠 , angle anglestd𝑠 , and residual variance
varstd𝑠 . To solve the optimization problem of finding the best candidate group, we use the three
standardized measures. We aggregate them by computing a weighted sum, giving higher
priority (three times) to the percentage of developers in the hierarchical part. We determined
this priority based on the manual data labeling, which we have performed on a sample of
our subject projects. Then, one candidate 𝑠 ∈ 𝑆𝑡 is selected per time range 𝑡 ∈ 1..𝑇, such that
the weighted sum of the three criteria is maximal:

argmax
𝑠∈𝑆𝑡

(3 ⋅ percstd𝑠 + anglestd𝑠 − varstd𝑠 ) (5.4)

This way, our method favors high values for criteria (A) and (B), but penalizes high values
for criterion (C). This procedure results in one split per time range and project.

Synopsis. In Algorithm 5.1, we summarize the above described steps of our automated
method for determining the hierarchical and the non-hierarchical part of a developer network.
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Algorithm 5.1 Division of developers into a hierarchical and a non-hierarchical part
Input: networks net𝑡 for each time range 𝑡 ∈ 1..𝑇
1: for each 𝑡 ∈ 1..𝑇 do
2:
3: ⊳ compute basic statistics
4: for each developer 𝑖 in net𝑡 do
5: 𝑘𝑖 ← vertex degree of 𝑖
6: 𝑛𝑖 ← number of edges between the neighbors of 𝑖
7:
8: ⊳ clustering coefficient
9: 𝑐𝑖 ← 2 ⋅ 𝑛𝑖/(𝑘𝑖 ⋅ (𝑘𝑖 − 1))

10: end for
11:
12: ⊳ compute candidate groups 𝑆𝑡 for hierarchy
13: divide range of log(𝑘𝑖) into 20 buckets 𝑏1..𝑏20
14: 𝑠 ← 𝑏1, 𝑆𝑡 ← {𝑠}
15: for each 𝑧 ∈ 2..20 do
16: 𝑠 ← 𝑠 ∪ 𝑏𝑧, 𝑆𝑡 ← 𝑆𝑡 ∪ {𝑠}
17: end for
18:
19: ⊳ Step 1
20: for each 𝑠 ∈ 𝑆𝑡 do
21: compute perc𝑠, angle𝑠, and var𝑠
22:
23: ⊳ Step 2
24: if ¬(perc𝑠 > 0.05 ∧ angle𝑠 > 35∘ ∧ var𝑠 < 0.5) then
25: 𝑆𝑡 ← 𝑆𝑡 \ {𝑠}
26: end if
27: end for
28:
29: end for
30:
31: ⊳ Step 3
32: 𝑆 ← ⋃𝑡∈1..𝑇 𝑆𝑡
33: for each 𝑠 ∈ 𝑆 do
34: compute standardized values varstd𝑠 , percstd𝑠 , anglestd𝑠
35: end for
36:
37: ⊳ selection of optimal candidate group 𝑠𝑡
38: for each 𝑡 ∈ 1..𝑇 do
39: 𝑠𝑡 ← argmax𝑠∈𝑆𝑡

(3 ⋅ percstd𝑠 + anglestd𝑠 − varstd𝑠 )
40: end for
Output: sets of developers of the hierarchical part 𝑠𝑡 for each time range 𝑡 ∈ 1..𝑇

5.3.3 Change of Position in Hierarchy

To address RQ2, we track how a developer’s position in the organizational structure changes
over time. To track the position of individual developers in the hierarchy, we compare their
position across different time ranges. For this purpose, to prevent distorting effects, we
normalize the log vertex degree and the log clustering coefficient to analyze the position
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Figure 5.5: The considered developer of the project Node.js (developer 874) starts in the non-
hierarchical part (dark blue triangle) with a low number of contacts and a high clustering
coefficient. Later, the developer moves to the hierarchical part, having many contacts and a
low clustering coefficient, until the developer leaves the project (light blue rectangle). The
color of the big rectangles in the background denotes the count of how many time ranges
the developer has held a certain position; the darker the rectangle, the longer the developer
has held the position.

independently of the network size (i.e., number of developers) across the networks of the
entire project history. The clustering coefficient ranges between [0, 1], so its log ranges from
−∞ to 0. We normalize the smallest clustering coefficient over a time range and project to a
value of −1, by dividing all log clustering coefficients by the absolute value of the smallest log
clustering coefficient. This way, the developer with the highest vertex degree and the lowest
clustering coefficient of a time range is always on the same position in the hierarchy plot,
irrespective of the network size. The closer the normalized clustering coefficient is to −1, the
more important is the respective developer’s role as hub. The log vertex degree is a positive
number. We normalize it to a value in [0, 1] by dividing all log vertex degrees by the highest
log vertex degree in the given time range. Thus, the developer with the highest vertex degree
has a normalized vertex degree of 1 (see Figure 5.5).

We describe the developer’s change of position as changes in the developer’s normalized
position in the organizational structure. In Figure 5.5, we show such a change with a trajectory
and a heat map for a developer of the project Node.js. The considered developer starts (dark
blue triangle) with a low vertex degree and a high clustering coefficient. Then, the devel-
oper’s vertex degree increases while the clustering coefficient decreases (movement to the
hierarchical part), until the developer reaches a very high position (bottom right of the plot)
in the project community, which is stable for several time ranges. Thus, the developer has
acquired many neighbors who do not interact a lot with each other, until the developer leaves
the project (light blue rectangle).

We restrict our analysis to the 10 most active developers per project, as understanding the
typical contribution and activity cycle of them allows us to analyze the on- and off-boarding
process of socially active developers. To detect the 10 most active developers, we compute
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Figure 5.6: Neighborhood of a selected developer (blue, large vertex) at two different time ranges
(𝑡 = 1 and 𝑡 = 2). The red vertices (which are connected to the selected developer via
dashed lines) form the neighborhood of the selected developer. The proportion of edges
among the neighbors (solid lines) determines the local clustering coefficient of the selected
developer. As the local clustering coefficient changes over time, also the position of the
selected developer in the hierarchy changes over time.

the total number of interaction partners per developer over the project history. To achieve a
more complete perspective, we also select 10 developers randomly and analyze their changes
of position. In addition, we also provide descriptive statistics for the selected developers
(number of commits, number of e-mails or issue comments, respectively, the number of active
time ranges, and how many of these time ranges the developer was part of the hierarchical
part), to give an impression of their activity.

5.3.4 Developers’ Neighborhood

To answer RQ3, we extract the direct neighbors (i.e., first-order neighborhood) of the devel-
opers selected in RQ2 and analyze the distribution of the neighbors regarding their position
in the hierarchical or non-hierarchical part. Since the networks evolve over time, we extract
the neighborhood of a selected developer separately for each time range (see Figure 5.6) and
investigate how the distribution of neighbors regarding their position in the hierarchical or
non-hierarchical part changes over time. Based on the network type, a neighbor is a developer
who participated in, at least, one common communication activity (i.e., an e-mail thread for
mail networks or an issue discussion for issue networks, respectively) within the 6-months
time range on which the network has been constructed.

5.3.5 Tenure and Programming Activity

To answer RQ4, for each developer and time range, we compute tenure as the time between
the first communication activity of a developer and the end date of the investigated time
range. In addition, to investigate programming activity, we compute the number of files edited
by each developer within a time range. To that aim, we extract the number of edited files per
developer from the version-control system of the project. For both, tenure and programming
activity, we compare the developers of the hierarchical part and the non-hierarchical part,
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globally as well as their trends over time. We use a one-tailed, unpaired Mann-Whitney U test
for the global comparisons and report the corresponding 𝑝-values as well as Cliff’s Delta 𝑑,
which quantifies the effect size corresponding to the statistical test.

5.4 Longitudinal Study

To answer our research questions, we conducted an exploratory, longitudinal study on 20 pop-
ular and widely-used OSS projects. In this section, we summarize and discuss the most
important results and observations of our study, and we derive a number of hypotheses to
guide further work. As we generated a large amount of data, we present only selected cases
and representative figures here (e.g., we use only results from the 6-months time ranges, as
justified in Section 5.3.1). The remaining data are available on our supplementary website.4

5.4.1 Subject Projects

For our study, we selected 20 subject projects. Since OSS projects are of different age and use
a wide array of communication channels [EGW22; KGB+18; SSF+17; TNK+19], we focus on
projects that either use a mailing list or an issue tracker as their main communication channel,
from which we construct developer networks. Half of our subject projects uses a mailing
list as their main communication channel (see the upper half in Table 5.1), and the other
half of them mainly uses GitHub issues (see the lower half in Table 5.1); none of our subject
projects uses both communication channels simultaneously. Both kinds of communication
channels that we investigate, developer mailing lists and GitHub issues, are used for public,
technical discussions among developers and for reviewing code changes (in terms of patches
on mailing lists, in terms of pull requests on GitHub issues). Hence, both communication
channels contain similar content and are used for similar purposes, which is why only either
of the channels is used in each of our subject projects.

We cover projects from various domains (including compilers and virtualization soft-
ware), programming languages (e.g., C, Python, JavaScript), and sizes (from 132 kLOC to
10 988 kLOC; see Table 5.1). To reduce bias due to noisy and incorrect data, we limited our se-
lection of projects: For projects with publicly accessible mailing lists, we only selected projects
that have already been studied in Chapter 4 or in the related literature [JAH+17; JAM17;
JMA+15]. For the selection of projects that use the GitHub issue tracker, we considered the
list of most starred GitHub projects in 2020.5

In Table 5.1, we show the maximum and minimum number of developers within a time
range per project, as well as the number of developers at a project’s start and end times. In all
projects, the number of developers increases, reaches a peak, and then decreases. An exception
is project Wine. There, we observe only a decrease. The typical behavior happens in four
patterns: (1) a slow and steady increase is followed by a short decrease: for Electron, LLVM,
QEMU, and React; (2) a steeper increase is followed by a slower and smooth decrease (with
possible bumps): for Angular, Atom, Django, GCC, Moby, Node.js, ownCloud, Qt, and

4 https://hierarchypaper.bitbucket.io/public/

5 https://www.attosol.com/top-50-projects-on-github-2020/ (accessed at 2020-09-09)

https://hierarchypaper.bitbucket.io/public/
https://www.attosol.com/top-50-projects-on-github-2020/
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Table 5.1: Overview of our subject projects.

Project Period1 # Global2 # Max2 # Min2 # First2 # Last2 kLOC3 Project Domain

Django 2005–2017 4 458 601 139 174 139 657 Web application framework
FFmpeg 2002–2017 5 668 531 213 213 285 1 431 Video/audio conversion
GCC 2000–2018 9 086 1 295 2 2 262 10 988 C compiler suite
Git 2004–2017 9 151 951 2 2 579 742 Version control
LLVM 2002–2017 6 230 982 2 27 2 2 883 Compiler framework
ownCloud 2009–2018 1 487 389 26 26 30 588 File hosting
QEMU 2003–2016 7 131 781 38 38 551 1 430 Visualization software
Qt 2008–2018 1 312 358 3 11 145 7 461 GUI toolkit
U-Boot 2000–2017 7 684 735 9 9 449 1 942 Boot loader
Wine 2002–2017 3 436 424 12 298 12 4 864 Compatibility layer

Angular 2014–2020 22 304 4 248 5 5 2 177 1 050 Web development platform
Atom 2012–2020 20 646 3 655 8 8 626 242 Text editor
Bootstrap 2011–2021 23 602 3 413 631 1 782 631 132 Web frontend framework
Electron 2013–2020 15 017 2 139 15 15 1 622 225 Application framework
Flutter 2015–2020 33 800 11 493 27 27 10 325 1 145 UI development kit
Moby 2013–2020 27 777 4 691 386 386 1 151 1 636 Software containerization
Node.js 2014–2020 12 165 2 197 865 1 422 865 7 234 JavaScript runtime
React 2013–2020 15 220 2 062 135 135 958 402 JavaScript library
TypeScript 2014–2020 17 703 3 165 491 491 2 573 3 350 JavaScript language
webpack 2012–2020 12 324 2 199 9 9 814 200 Bundler for modules
1 Period: time period of availability of e-mail data (upper 10 projects) and issue data (lower 10 projects)
2 # Global: number of active developers; # Max, # Min: maximal and minimal number of active developers (incl.
developers with 1 or 0 contacts) in a 6-months time range; # First, # Last: number of active developers in the
first and last investigated 6-months time range

3 kLOC: number of lines of code (LOC) in thousands, including comments and blank lines, at the end of the
investigated time period

webpack; (3) increase, decrease, increase: for Bootstrap, FFmpeg, and Git; (4) increase: for
Flutter, TypeScript, and U-Boot. An example of the most frequent pattern (2) is project GCC
(see Figure 5.7 (top)).

5.4.2 Typical Structure and Evolution

To address RQ1, we investigate whether there are patterns in terms of structure and evolution
that exist in OSS projects with respect to hierarchy.

Results With an increasing number of developers, the proportion of developers in the
hierarchical part decreases in most projects; and, with a decreasing number of developers, the
proportion of developers in the hierarchical part increases (Angular, Atom, Bootstrap, Elec-
tron, Flutter, GCC, Git, LLVM, Moby, Node.js, ownCloud, Qt, QEMU, React, TypeScript,
U-Boot, and webpack). We illustrate this in Figure 5.7 (bottom) for GCC: The percentage of
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Figure 5.7: Project GCC shows a typical evolution pattern: The number of developers increases, and
after a certain period of time, the number decreases (top). The fractions of developers with
no, one, or more than one contacts become stable (middle). The fraction of developers in
the hierarchical part slowly increases (bottom).
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Figure 5.8: Hierarchical structure of the 25th analyzed 6-months time range of project Angular: The
plot shows the log-transformed vertex degree and the log-transformed clustering coefficient
of all developers who participated in the issue discussions of this time range. We identified
a hierarchical structure (to the right of the dashed line).

developers in the hierarchical part grows from 7% to 25%, while the number of developers
falls from around 1 300 developers to around 260 developers. For FFmpeg and Django, the
portion of the hierarchy and the number of developers are independent of each other. The
portion of hierarchy ofWine is mainly stable, but in the end, we find an increase of the portion.

Only in a low number of the analyzed time ranges, we do not find a hierarchical struc-
ture: Angular (range 1), Atom (range 1), Flutter (ranges 16 and 17), GCC (ranges 1, 2,
and 3), Git (ranges 1 and 2), ownCloud (range 31), Qt (ranges 1–6), U-Boot (range 1),
webpack (range 1), and Wine (range 61). This mostly happens in the very first time ranges
of a project, where only very few developers are communicating yet, ending up in a loosely
connected network where most developers have less than three connections to others.

Nonetheless, for almost all ranges of the above stated projects and all ranges for the projects
Bootstrap, Django, Electron, FFmpeg, LLVM, Moby, Node.js, QEMU, React, and TypeScript,
we are able to identify a hierarchical structure for all analyzed time ranges. To provide an
example, we show the hierarchical part of project Angular in Figure 5.8 (to the right of the
dashed line). Over time, the residual variance of the regression fit and the angle between
regression line and 𝑥 axis (see Section 5.3.2) stay relatively stable for each project.

Answer to RQ1: We observe the presence of a hierarchical part for all analyzed projects.
A pervasive phenomenon is that the proportion of developers in the hierarchy changes
over time: At the beginning, when projects have few developers, almost all developers tend
to be positioned within the hierarchical part; as the project matures and grows, the vast
majority of developers exist outside of a hierarchy (up to 90%). Thus, we see evidence of
temporal patterns that indicate a fundamental shift in the organizing principles at play in
OSS projects. The fundamental shift is from hierarchy as a global organizing principle at
an early project stage to a local hierarchical part with the vast majority not hierarchically
organized in later project stages.
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Discussion As we were able to identify a hierarchical structure in almost all time ranges
for all subject projects, independent of the number of developers and independent of the
communication channel (issue tracker ormailing list), ourmethod on decomposing developer
networks into a hierarchical and a non-hierarchical part is generalizable to projects of different
sizes, different ages, different domains, and different communication channels. Our findings
support previous indications that successful OSS projects develop a hybrid organizational
structure composed of a hierarchical and a non-hierarchical part, with most of the developers
being part of the non-hierarchical part.

The presence of a hierarchical part tends to be unaffected by variations in the numbers of
developers of a project; variation tends to be limited to fluctuations in its relative size as the
project matures. Developers who enter or leave the hierarchical part change its composition.
Despite this developer turnover, the slow change in residual variance and in the angle between
the regression line (red solid line in Figure 5.8) and the 𝑥 axis over time, as indicators for
stable hierarchical structure, suggests that the subject projects have a stable organizational
structure. This finding is in line with the hypothesis that the hierarchical part is principally
responsible for coordination supporting information exchange [JAH+17]. In this case, one
would indeed expect that successful projects achieve a stable hierarchy, since large structural
shifts disrupt coordination.

5.4.3 Change of Position in Hierarchy

To address RQ2, we analyze for individual developers how their position in the hierarchy
changes over time.

Results In Figure 5.9, we show how the position of an exemplary developer changes during
the evolution of project LLVM. The developer starts in the upper left of the plot, that is, at
the bottom of the hierarchy or already in the non-hierarchical part. Then, the clustering
coefficient decreases as the developer moves down in the plot toward the hierarchical part,
where the developer stays for around 12 time ranges. Then, the developer moves back to
the non-hierarchical part and potentially leaves the project (if this is not yet the end of our
analyzed time period).

We find notable patterns of positional change, which we summarize in Table 5.2 for mail
networks and in Table 5.3 for issue networks. In total, we analyze 200 developers per data
source (i.e., 200 developers for issue networks and 200 developers for mail networks)—the
10 developers with maximum vertex degree and 10 random developers per project, as de-
scribed in Section 5.3.3. We provide descriptive statistics for both, the most active and the
randomly selected developers, in Table 5.4. In general, the majority of the randomly selected
developers contributed no commit to the project and only few e-mails or issue comments,
whereas the most active developers were not only highly active in communicating, but were
also highly active code contributors. (Project GCC is an exception, where even none of the
most active communicators contributed any commit to the source code; we discuss this phe-
nomenon further below in Section 5.4.5.) As expected, the most active developers appear to
be active in more time ranges than the randomly selected developers do. In line with that,
the most active developers are mostly part of the hierarchical part, whereas the randomly
selected developers are only rarely part of the hierarchical part.
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Figure 5.9: The considered developer of the project LLVM (developer 1610) starts with a low number
of contacts and a high clustering coefficient in the non-hierarchical part (dark blue triangle).
The developer has many contacts in the middle of the project’s analyzed time ranges, then
they move to back to the non-hierarchical part, until they leave the project (light blue
rectangle). Hence, the corresponding movement pattern for this developer is “down →
up”. The color of the big rectangles in the background denotes the count of how many
time ranges the developer has held a certain position; the darker the rectangle, the longer
the developer has held the position.

The mail and issue networks exhibit largely similar movement patterns for the selected
developers. Thus, we focus on the details ofmail networks. Themovement patterns in Table 5.2
describe different starting points and directions of position changes in the organizational
structure. Themost frequent pattern occurs in all projects: 40 out of 100 most active developers
start at the non-hierarchical part’s upper left region in the hierarchy plot, then move down to
the upper levels of the hierarchical part (lower right), to finally return to the non-hierarchical
part again (pattern “down → up”). An example of this pattern is developer 1610 of the project
LLVM (see Figure 5.9). The two second-most frequent patterns (18 out of 100) describe
developers who move from the non-hierarchical part to the upper levels of the hierarchical
part (that is, down to the right in the hierarchy plot, pattern “down”) and developers moving
in the opposite direction (18 out of 100), that is, they start in the hierarchical part and then
move to the non-hierarchical part (pattern “up”). The five remaining patterns play only a
secondary role and do not occur often. In the end, we find 11 developers over all projects
who have other (individual) movement patterns.

For the randomly selected developers, we find the same patterns, but with different fre-
quencies. Often, developers remain relatively constant in one area in the hierarchy (35 out
of 99, pattern “constant”) and they move only slightly. We find also that developers move
horizontally (i.e., they have more neighbors, but the connectivity between the neighbors stays
constant, 18 out of 99, “horizontal”) and remain active only for few time ranges.
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Table 5.2: Frequency of directions of positional change in the hierarchy for the
10 most active/10 randomly selected developers for mail networks.
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Down → up 5/1 4/– 2/– 4/1 6/2 7/1 6/2 –/4 3/3 3/3 40/17 57
Constant –/5 1/3 –/5 1/2 –/4 –/– –/6 2/3 –/5 1/2 5/35 40
Down 2/1 1/– 1/– 2/– 2/1 1/3 3/– 1/– 5/– –/1 18/6 24
Up 1/– 3/– 1/– 1/– –/– 1/2 1/– 6/1 1/– 3/2 18/5 23
Horizontal –/– –/5 –/1 –/5 –/1 –/1 –/2 –/1 –/2 –/– –/18 18
Down → up → down 2/– –/– 1/– 2/1 1/– 1/– –/– –/– –/– –/– 7/1 8
Up → down –/1 –/– 1/1 –/1 –/– –/– –/– –/– –/– –/– 1/3 4
Up → down → up –/1 –/– –/– –/– –/– –/1 –/– –/– –/– –/– 2/– 2
Other –/1 1/2 4/3 –/– 1/2 –/1 –/– 1/1 1/– 3/2 11/12 23
1 There are only 9 randomly selected developers in ownCloud.

Table 5.3: Frequency of directions of positional change in the hierarchy for the
10 most active/10 randomly selected developers for issue networks.
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∑ ∑all devs

Down → up 2/1 7/– 4/– 4/– 1/– 7/– 3/– 4/1 3/– 6/– 41/2 43
Constant –/6 –/9 1/6 –/7 1/7 –/7 1/4 –/7 4/7 1/8 8/68 76
Down 3/1 –/– 2/– 5/– 7/– 2/– 4/– 3/– 1/– 1/– 28/1 29
Up –/– 1/– 2/– –/– –/– 1/– 2/– 2/– –/1 –/– 8/1 9
Horizontal –/1 –/1 –/3 –/2 –/2 –/2 –/3 –/2 –/2 –/– –/18 18
Down → up → down –/– –/– –/– –/– –/– –/– –/– –/– –/– –/– –/– –
Up → down –/– –/– –/– 1/– –/– –/– –/– –/– –/– –/– 1/– 1
Up → down → up –/– –/– 1/– –/– 1/– –/– –/– –/– –/– –/– 2/– 2
Other 5/1 2/– –/1 –/1 –/1 –/1 –/3 1/– 2/– 2/2 12/10 22

For the issue networks, we end up in largely similar pattern occurrences (see Table 5.3),
but we obtain much more occurrences of pattern “constant” for the randomly selected
developers (68 out of 100) than we do for the randomly selected developers from the mail
networks (35 out of 99).

Answer toRQ2:Weobserved patterns of transitions regarding developers’ trajectory through
positions in the organizational structure. In the two most frequent patterns, developers
move from the non-hierarchical to the hierarchical part. In one, they move back, and in the
other, they stay. Other transitions tend to be rare.
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Table 5.4: Descriptive statistics for the 10 most active and 10 randomly selected developers: Commit
count, event count, number of active time ranges (i.e., overlapping 6-months ranges within
the period denoted in Table 5.1 in which the developer contributed to the mailing list or
commented on an issue), and number of time ranges in which the developer was part of the
hierarchical part. For each of the two groups of developers, we report the minimum value
and the maximum value per project as well as the 25%, 50%, and 75% quantiles.

Project
Commit Count Event Count1

Most active developers Random developers Most active developers Random developers
min max 25% 50% 75% min max 25% 50% 75% min max 25% 50% 75% min max 25% 50% 75%

Django 34 1 231 209 462 1 051 0 3 0 0 0 482 2 895 682 995 1 438 1 47 6 13 23
FFmpeg 0 13 339 19 592 1 093 0 215 0 1 3 1 061 47 411 2 166 5 429 6 990 44 1 064 9 26 37
GCC 0 0 0 0 0 0 0 0 0 0 2 425 18 070 3 158 6 100 13 998 11 568 17 46 193
Git 0 1 674 35 365 792 0 6 0 0 1 2 695 55 548 4 149 6 469 12 096 1 76 15 30 58
LLVM 0 1 558 557 775 917 0 195 0 6 24 2 862 28 885 3 146 4 060 7 061 15 337 27 43 118
ownCloud 0 2 452 1 77 374 0 1 0 0 0 213 874 252 420 468 5 75 9 20 34
QEMU 13 1 891 325 464 659 0 182 0 1 10 2 839 23 188 7 049 8 874 12 751 4 946 24 31 213
Qt 0 647 1 14 155 0 193 0 0 3 229 5 157 371 466 620 5 144 15 20 55
U-Boot 5 2 723 121 392 811 0 87 2 10 28 1 517 28 549 4 597 5 792 16 803 6 594 30 90 148
Wine 81 10 928 546 1 663 2 528 0 761 0 0 27 1 098 7 771 1 354 1 667 2 870 5 398 13 57 162

Angular 0 785 9 78 460 0 0 0 0 0 1 245 13 078 1 877 3 227 8 096 1 16 1 3 9
Atom 0 3 657 45 100 983 0 0 0 0 0 1 307 5 558 2 174 3 004 3 714 1 23 1 2 3
Bootstrap 3 437 22 168 314 0 0 0 0 0 350 19 279 1 943 3 477 7 087 1 17 3 5 7
Electron 0 3 915 27 539 689 0 9 0 0 0 907 10 224 2 224 3 759 5 904 1 38 1 4 9
Flutter 0 1 317 0 7 220 0 0 0 0 0 2 817 28 958 4 008 6 271 9 945 1 29 1 4 16
Moby 0 850 91 222 474 0 2 0 0 0 2 294 46 674 4 312 6 793 8 653 1 28 1 5 13
Node.js 70 1 391 128 336 890 0 1 0 0 0 5 169 25 990 7 732 8 590 18 114 1 125 1 10 19
React 13 941 54 72 545 0 0 0 0 0 929 19 158 2 771 3 954 5 921 1 71 1 3 7
TypeScript 0 2 223 113 1 012 1 194 0 0 0 0 0 1 686 21 174 2 424 7 778 10 199 1 23 1 4 12
webpack 0 3 275 3 38 123 0 0 0 0 0 274 12 935 552 1 099 1 795 1 23 2 5 11

Project
Active Time Ranges Time Ranges in Hierarchical Part

Most active developers Random developers Most active developers Random developers
min max 25% 50% 75% min max 25% 50% 75% min max 25% 50% 75% min max 25% 50% 75%

Django 19 49 29 44 47 2 24 3 5 8 15 45 28 33 40 0 5 1 2 4
FFmpeg 22 60 30 39 52 2 28 3 8 19 19 60 28 33 42 1 15 1 2 6
GCC 54 69 61 66 69 3 65 8 9 38 23 69 46 55 59 0 6 0 0 2
Git 32 52 41 48 51 2 19 8 12 15 26 52 33 43 45 0 5 0 1 4
LLVM 28 59 34 41 50 5 20 6 13 16 22 47 28 35 41 0 4 0 1 2
ownCloud 8 26 14 17 18 3 13 4 9 11 7 23 13 15 16 1 8 2 4 7
QEMU 25 40 29 37 38 2 39 7 9 19 21 36 25 29 33 0 9 0 1 3
Qt 20 28 26 28 28 4 19 10 12 15 15 27 18 22 26 0 7 0 0 3
U-Boot 29 71 34 39 52 6 34 9 15 18 21 70 28 30 45 0 13 1 3 5
Wine 14 61 41 48 60 4 34 6 10 14 12 59 30 40 54 0 16 1 3 6

Angular 6 25 18 20 24 2 10 2 2 5 5 25 14 17 23 0 2 0 0 1
Atom 12 31 14 19 23 2 15 2 2 4 10 26 13 16 21 0 2 0 0 1
Bootstrap 6 37 15 23 30 1 7 2 4 5 3 37 12 19 25 0 3 0 1 2
Electron 14 30 15 20 26 2 13 2 2 5 12 30 14 17 24 0 5 0 0 1
Flutter 4 22 7 10 15 2 8 2 2 5 4 20 4 5 12 0 1 0 0 1
Moby 18 31 20 28 28 2 11 2 3 7 9 31 18 23 28 0 3 0 1 2
Node.js 18 21 21 21 21 2 13 2 4 7 17 21 19 21 21 0 4 0 0 2
React 14 30 22 26 28 2 10 2 3 4 9 27 14 17 22 0 3 0 0 2
TypeScript 11 25 21 23 25 2 11 2 3 5 11 25 18 22 24 0 2 0 1 2
webpack 7 34 13 18 21 2 9 2 3 7 5 33 7 12 15 0 2 0 0 0

1 E-mail count (upper 10 projects) or count of issue comments (lower 10 projects), respectively
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Discussion The high number of occurrences for pattern “constant” for the randomly
selected developers in the issue networks might be caused by the much higher number of
project “users” participating in issue discussions only for a short time period, compared to
the mail networks (see Table 5.1). When neglecting the pattern “constant” for the randomly
chosen developers in issue networks, the most frequent pattern among all developers (most
active and randomly chosen developers) is that developers enter the project with only few
contacts (pattern “down → up”). Over time, the number of interaction partners rises and the
developer climbs the project’s hierarchy. This may be indicative of their role changing and
gaining coordination responsibilities. Then, the number of interactions decreases again and the
developer returns to a small number of contacts. The second-most frequent pattern is similar
to the first one in that non-hierarchical developers move to the hierarchical structure’s upper
regions—however, either they stay or we run out of data before we see them leaving (pattern
“down”). This might be caused by the much higher number of project “users” participating
in issue discussions only for a short time period (see Table 5.1).

Developers starting in the hierarchical part and moving to the non-hierarchical part are
often founders or leaders of the project, who then stopped contributing. We confirmed this
for each project that had mailing lists by consulting its website (e.g., for Git, Linus Torvalds
is listed as founder; over time, he moved to the non-hierarchical part).

Hypothesis 1: Developers who move up in the hierarchy tend to take more
coordination tasks.

5.4.4 Developers’ Neighborhood

To address RQ3, we investigate for individual developers how their neighborhood is dis-
tributed over the hierarchical structure.

Results We illustrate an example in Figure 5.10 and summarize the results for all projects
in Table 5.5 for mail networks and in Table 5.6 for issue networks. First, we explore the most
active developers in a project who have a static neighborhood. These developers interact
during their entire life cycle with developers of the hierarchical part (2 out of 100 developers
in mail networks, pattern “hierarchical part”) or both (61 out of 100 in mail networks, pattern
“both”). Second, the most active developers’ neighborhood may change, too, which happens
in two ways: Either a developer starts their career with contacts mainly from the hierarchical
part, and then they interact with developers from both parts (17 out of 100 in mail networks,
pattern “hierarchical part → both”), or they start with contacts from both parts and then
restrict their interaction to developers of the hierarchical part (19 out of 100 in mail networks,
pattern “both → hierarchical part”). Issue networks exhibit similar patterns as described for
mail networks.

We also evaluate the neighborhood of randomly selected developers. Their neighborhoods
are more stable. These developers interact during their entire life cycle with developers of the
hierarchical part (47 out of 99 in mail networks, pattern “hierarchical part”) or both parts (34
out of 99 in mail networks, pattern “both”). Only 18 out of 99 randomly selected developers
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Figure 5.10: Neighborhood of a developer (developer 7507) of the project U-Boot over time. That is,
the percentage of the developer’s contacts that are from the hierarchical part (light blue)
or from the non-hierarchical part (dark blue) at the respective time range.

in mail networks have a dynamic neighborhood. For issue networks, similarly, only 10 out of
100 randomly selected developers have a dynamic neighborhood.

Answer to RQ3: The 10 most active developers interact (via e-mails or issues) with de-
velopers of the hierarchical part and sometimes, additionally, with developers of the non-
hierarchical part, but rarely exclusively with developers of the non-hierarchical part. This
also holds for the randomly selected developers, who mostly interact with developers of
only the hierarchical part.

Discussion If a project is assumed to have proficient leadership (which cannot be guaran-
teed for every project), then it is not unexpected that randomly selected developers of the
non-hierarchical part mostly interact with developers of the hierarchical part or both groups,
but not solely with developers of the non-hierarchical part: In any discussion, a developer of
the hierarchical part can join to add clarifications or to make a decision, which is not unlikely
given the role of the developers of the hierarchical part. Consequently, developers of the non-
hierarchical part are expected to interact with developers of the hierarchical part in projects
that have a well-functioning leadership. Also, it is worth mentioning that the developers of
the non-hierarchical part do not deliberately choose their interaction partners, as they cannot
influence who is replying to their messages. Developers from the hierarchical part, however,
take the role of maintainers and, most likely, decide which discussions they reply to.

Especially the dynamic patterns of the most active developers’ neighborhoods are interest-
ing, as these shed light on on- and off-boarding processes. During on-boarding, developers
start with interactions from the hierarchical part, and later extend their interaction to de-
velopers of both parts. This dynamic might suggest that, when developers enter a project,
they start accumulating knowledge from developers of the hierarchical part and only later
transfer knowledge to the non-hierarchical part. During off-boarding, we observe that de-
velopers focus their interaction to developers of the hierarchical part. Interaction with the
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Table 5.5: Frequency of the position of neighborhood contacts in the hierarchy for each subject project
for mail networks for the 10 most active/10 randomly selected developers.

Neighborhood
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Static:
Both 5/2 6/4 5/3 5/4 7/5 6/3 4/3 9/3 5/3 9/4 61/34 95
Hierarchy –/8 –/4 1/6 –/5 –/3 –/4 –/3 1/4 –/6 –/4 2/47 49

Dynamic:
Both → hierarchy 4/– 2/1 3/1 1/– –/– 4/1 4/4 –/1 1/1 –/2 19/11 30
Hierarchy → both 1/– 2/1 1/– 4/1 3/2 –/1 2/– –/2 4/– 1/– 17/7 34
1 There are only 9 randomly selected developers in ownCloud.

Table 5.6: Frequency of the position of neighborhood contacts in the hierarchy for each subject project
for issue networks for the 10 most active/10 randomly selected developers.
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Static:
Both 6/1 7/1 7/1 10/2 7/1 6/- 10/- 8/3 9/3 6/2 76/14 90
Hierarchy –/8 –/9 –/7 –/6 –/9 3/8 –/9 –/6 –/6 –/8 3/76 79

Dynamic:
Both → hierarchy 2/– 3/– 3/1 –/– 2/– 1/2 –/– 1/1 –/1 4/– 16/5 21
Hierarchy → both 2/1 –/– –/1 –/2 1/– –/– –/1 1/– 1/– –/– 5/5 10

non-hierarchical part or, more specifically, newcomers seems to be present, though. This
finding suggests that, when central developers leave, they focus on bringing their ongoing
topics to an end, but avoid opening new ones.

Hypothesis 2:
When developers enter a project, they start accumulating knowledge
from hierarchical developers and only later transfer knowledge to
non-hierarchical developers.

Hypothesis 3: Developers who will leave the project do this step-by-step, finishing
their ongoing tasks and answering questions to avoid knowledge loss.
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5.4.5 Tenure and Programming Activity

Finally, to address RQ4, we have a look at tenure and programming activity of developers
with respect to their position in the hierarchy.

Results In Figure 5.11, we show the developers’ tenure and their position in the hierarchy
for LLVM: The upper plot encodes tenure in terms of size and color (larger and lighter dots
denote shorter tenure values); the middle plot compares the distributions of tenure values of
developers in the hierarchy with developers outside the hierarchy; the lower plot shows the
progression of average tenure values over time. Overall, the developers in LLVM’s hierarchy
have, on average, higher tenure values than the developers outside the hierarchy (𝑝 ≪ 0.001;
𝑑 = 0.39). This difference in tenure between developers inside and outside the hierarchy is
consistent across all projects that use a mailing list (𝑝 ≪ 0.001; 0.25 ≤ 𝑑 ≤ 0.52). Interestingly,
the difference between tenure values of hierarchical and non-hierarchical developers increases
over time. Remarkably, also this is consistent across all projects that use a mailing list, except
for Qt, where the difference stays constant over time.

For issue-based projects, we obtain slightly different results: Developers in the hierarchy
have, on average, higher tenure values than the developers outside the hierarchy. This holds
for all projects. However, only for projects Flutter, Node.js, and TypeScript, this difference
(𝑝 ≪ 0.001; 0.23 ≤ 𝑑 ≤ 0.42) has a similar effect size than in the projects that use mailing
lists. For these three projects, also the difference between the tenure values increases over
time, as we already have identified for the projects that use mailing lists. For the remaining
seven issue-based projects, the difference in tenure between developers inside and outside
the hierarchy still is significant, but with a smaller effect size (𝑝 ≪ 0.001; 0.10 ≤ 𝑑 ≤ 0.18)
and without notable patterns over time.

Much like for tenure, we show the results for programming activity for developers of
LLVM in Figure 5.12. Developers in the hierarchical part edit most files (𝑝 ≪ 0.001; 𝑑 = 0.40).
This difference in programming activity remains existent over time but is fluctuating with
regard to its extent. For most projects, we find that, overall, the number of edited files of
the non-hierarchical developers is significantly lower than the number of edited files of the
hierarchical part. Only for GCC we cannot find any significant difference between developers
inside and outside the hierarchy. As already seen for tenure, the difference between the
number of edited files of developers inside and outside the hierarchy has a stronger effect
on projects that use mailing lists (and project Node.js) (𝑝 ≪ 0.001; 0.12 ≤ 𝑑 ≤ 0.47) than on
projects that use the GitHub issue tracker (𝑝 ≪ 0.001; 0.03 ≤ 𝑑 ≤ 0.10).

The dynamics of the individual projects show different patterns, though, which we group
into four categories: In the first category, the upper hierarchical part contains developers who
edit many files as well as developers who edit no files or only a few files (Angular, Atom,
Django, FFmpeg, Flutter, Git, LLVM, ownCloud, React, TypeScript, U-Boot, and Wine).
In the second category, the distribution of the number of files edited is split between the
hierarchical and the non-hierarchical part: The hierarchical part contains the developers who
edit many files, whereas the non-hierarchical parts contains the developers who edit only few
files (Bootstrap, Electron, Moby, Node.js, and webpack). In the third category, the pattern is
dynamic (QEMU and Qt). For example, in early phases of QEMU, mainly developers of the
non-hierarchical part edited files. In later phases, most files were edited by developers of the
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Figure 5.11: Top: tenure of the active developers of LLVM (03-2009 to 09-2009). The bigger and lighter a
dot, the longer the developer is already active in the project; middle: distribution of tenure
values per group; bottom: average tenure over time.
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hierarchical part. In the fourth category is only GCC, for which the developers who edit the
files are mainly located in the non-hierarchical part of the network.

Interestingly, for several projects (e.g., GCC, Git, ownCloud, U-Boot, and Wine), the
number of developers who program a lot is very low: A maximum number of five developers
are responsible for most of the changes. These developers often have a relatively low vertex
degree. Furthermore, for some projects and time ranges, we found that developers of the
hierarchical part have very few edited files and mainly communicate (GCC, Git, and Qt).

Answer to RQ4: We found a relationship between developers’ tenure and their position in
the hierarchy: Developers in the hierarchy have a longer tenure than developers outside
the hierarchy. Regarding programming activity, developers of the hierarchical part perform
most file edits. For some projects, this changes over time: In early project phases, mainly
developers of the non-hierarchical part or both parts edit files; later, only developers of the
hierarchical part edit files.

Discussion Our data suggest that developers in the hierarchy stay longer in the project.
The patterns are consistent with a system where gaining experience through consistent
involvement is important for advancement of responsibilities and influence. This finding
is interesting in the light of the conjecture that hierarchy reflects role stratification, since
developers with the behavior of a core developer consistently appear within the hierarchical
part and not in the non-hierarchical part.

Hypothesis 4: Developers move quickly up the hierarchy when they take on
coordination tasks early.

Hypothesis 5: Consistent contribution, coordination with other project members,
and knowledge are important to role advancement in OSS projects.

The number of edited files seems to affect the position in the hierarchy more than the devel-
oper’s tenure: The more files a developer edits, the more embedded they appear to be in the
hierarchy, probably because a higher number of edited files increases the probability that their
activity affects many other developers. The interesting cases are when the number of edited
files and the position in the hierarchy are unrelated. This could be an indicator for a modular
project structure, in which developers of the non-hierarchical part edit files of a certain part of
the project, whereas the files that developers of the hierarchical part edit are scattered across
many parts of the project. In project GCC, which is an outlier with respect to the programming
activity, there could also be an additional explanation forwhy the developers who edit the files
are mainly located in the non-hierarchical part: As GCC is a rather low-level, technical project,
which is dependent on technical features that rely on a certain hardware support [HDB18],
developers from different hardware manufacturers may add their specific hardware support
to the code base, being in the non-hierarchical part of the project communication although
accounting for many file edits. Table 5.4 shows that none of the 10 most active developers on
GCC’s mailing list, who often are also in the hierarchical part, contributed any commit to the
source code. This indicates that these most active developers on the mailing list take rather or-
ganizational coordination tasks than programming tasks in GCC, which is why the developers
who edit files in this project are mainly from the non-hierarchical part of the mail network.
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Figure 5.12: Top: number edited files of the active developers of LLVM (03-2009 to 09-2009). The bigger
and lighter a dot, the more files the developer has edited; middle: distribution of the
number of edited files per group; bottom: average number of edited files over time.
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The relationship between developers’ positions in the hierarchy and programming activity
or tenure occurs to be less pronounced in issue-based projects than in projects that use mailing
lists. One possible reason for that could be that there are lots of “users” of issue-based projects
who participate in discussions for a large amount of time (e.g., reporting bugs, etc.), which
also is represented in the sheer number of participants in the discussions (see Table 5.1).
By contrast, there are many developers in the hierarchical part who perform merely project
maintenance and pull-request reviews and, therefore, edit only a smaller number of files.
Nevertheless, even if the effect is lower for issue-based projects, both kinds of projects have
in common that the number of edited files and tenure are higher for developers inside the
hierarchical part than outside the hierarchical part.

The fact that the relationship of the number of edited files with the hierarchical part is
subject to change speaks in favor of a strong relationship between temporal focus and social
contacts. At times when active developers are in the non-hierarchical part, a rather discussion-
based group structure seems to establish. At times when the most active developers are at the
top of the project’s organizational structure, operational activity seems to be the main focus.

Hypothesis 6:

When the most active developers are in the non-hierarchical part,
they primarily participate in detailed, technically focused discussions
with a specific group of developers. Whereas, when the most active
developers are at the top of the hierarchy, they primarily take on
coordination-related tasks and perform operational maintenance.

5.5 Perspectives

Overall, we found that the organizational structure co-evolves with OSS projects, despite the
absence of external pressure to form any specific kind of structure. Specifically, it (a) regularly
splits into a hierarchical and a non-hierarchical part, consistent with anecdotal evidence first
seen by Joblin et al. [JAM17]. Over time, the number of developers increases until reaching a
peak, followed by a decrease, which is accompanied by a restructuring process. Growth in
the number of developers usually leads to a decrease in the portion of developers who are
organized hierarchically. From the perspective of individual developers, (b) the on-boarding
of the most active developers follows typical patterns. We could confirm the belief that
developers often start loosely connected in the non-hierarchical part [SSG14], then tightly
integrate into the hierarchical part, until they move to the non-hierarchical part again and
most likely leave the project. During this process, (c) developers’ coding activity and their
tenure can drive their hierarchical position. That is, on the one hand, early pioneers of a
project are as likely to be in the upper ranges of the hierarchy as new members of a project.
On the other hand, developer roles can adapt flexibly to changing project situations. This is
relevant for research on success factors for climbing the social ladder of OSS projects [e.g.,
HHB+18; TGW+22] and helps to better understand the social dynamics integrating project
newcomers. Padhye et al. [PMS14] found that core developers are open to accept bug fixes
and documentation changes from peripheral developers, but not to proposed feature en-
hancements from peripheral developers. This habit appears inefficient—our method, when
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combined with a content analysis on the kind of contribution by the developers of the two
parts, can help to identify such community smells [PT21; TKL+15; TPK19].

Second, also at the group level, we observed considerable flexibility with regard to the
number of groups in which developers want to engage. The prevalent hybrid structure that
we observed contains developers whose clustering coefficient and vertex degree do not
match the rules of hierarchical organization. Combining our approach with dynamic group
analysis [e.g., HAT+21]might provide insights into the hub function of central developers. For
example, we observed thatmany former top developers leave the project with a high clustering
coefficient, that is, their last interaction partnerswere from awell-connected subgroup. Further
research on these groups shall complement analyses of developer tenure and knowledge
conservation [e.g., RCO19]. Moreover, our method can be used to further investigate the role
of developers within stable or dynamic subgroups of the project (see Chapter 4), with respect
to their position in the hierarchy to get more insights into how developers in the hierarchical
part are connected to the different subgroups, and to investigate their role with respect to
programming activity and communication activity. This might provide further insights into
group dynamics and may be used to derive recommendations for project managers on how
to reduce developer turnover, knowledge loss, and maintain a project successfully. There is
already evidence that socio-technical factors derived from network representations contain
highly relevant information about the future success of a project [JA22]. The patterns found
in our study are useful for providing additional context for predictive models to increase their
effectiveness. Currently, predictive models lack the temporally rich patterns that we have
identified. We believe that a coherent treatment of the temporal dimension is likely necessary
to move beyond predictive analytics to achieve the end goal of prescriptive analytics.

Third, we found that structural changes, such as losing a substantial number of developers,
manifest in the hierarchy directly. At times of change, developers who do not edit many
files in the respective time range dominate the hierarchical structure. An interesting case is
ownCloud, where we observed a breakdown of the hierarchical structure 2 years before the
fork of Nextcloud, only emerging again afterwards. This possibly hints at the organizational
disturbances that eventually led to the fork. We will have a closer look at such disturbances in
Chapter 7. These insights illustrate that our analysis can add to the methodological toolbox
for research in change management. Since our study focused on popular projects, which may
be a proxy for success, a promising future direction is to explore these structural changes for
projects that became deprecated.

5.6 Threats to Validity

As always in empirical studies, and especially due to the exploratory nature of our study, the
validity of our results may be threatened. Therefore, we have grouped the potential threats
into two different categories and discuss them in the following.

External Validity We selected 20 OSS projectswith awide range of domains, programming
languages, and sizes (see Table 5.1), so our results appear generalizable to similar projects. For
generalization to different communication channels, we investigated projects that use mailing
lists as their main communication channel as well as projects that use an issue tracker for com-
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munication, and we ended up in similar results for both types of projects. Clearly, 20 projects
cannot cover the diversity of OSS projects out there, and our study is naturally not meant to
generalize to any OSS project. Still, some patterns and trends that we found are surprisingly
pronounced and consistent across our subject projects. This demonstrates the fundamental
power of our method to reveal such complex patterns and to study them in depth.

Another threat arises from our selection of only the 10 most active developers and 10 further
random developers for analyzing how individual developer behavior affects the position in
the hierarchy. However, since the 10 most active developers cover a considerable amount of
interaction, our results are, nevertheless, relevant for the project as a whole.

Construct Validity The fact that we set the parameters of our classification algorithm
for decomposing developer networks into a hierarchical and a non-hierarchical part only
with a manually labeled sample threatens construct validity. To gain further confidence, we
triangulated our classification with the dichotomous core–peripheral classification of Joblin
et al. [JAM17], which relies on eigenvector centrality. We found that the two classifications
are consistent: In most projects, the set of core developers and the set of developers in the
hierarchical part overlap to a large extent, but the core developers’ number is often smaller
than the number of developers in the hierarchical part. Core developers are usually in the
hierarchical part, but their percentage usually decreases as the project evolves.

A further threat to construct validity is the way we build our networks. As mailing lists or
issue discussions, respectively, are the predominant communication channels in our subject
projects, there was no need to consider further communication channels, such as chat systems
or online forums. To learn about the relative influence of different types of developer interac-
tion, we constructed not only pure issue or mail networks, respectively, but also combined
cochange+issue or cochange+mail networks, respectively, which consist of communication edges
and cochange interactions based on contributions to a common file (see Section 2.3.1). This
way, we obtain a more comprehensive view on the community, since we include more infor-
mation about the project than only considering activities on a single communication channel.
Using the combined networks that consist of information from two interaction channels, we
found that these networks receive their structural properties mainly from the communication
activities (which are much more in number). Overall, we obtain the same results, regardless
of whether we use pure communication networks or the combined networks that consist of
communication and cochange information. We provide the results using these combined
networks that convey communication and cochange information for all our research questions
in a separate section on our supplementary website.6

Another threat is the definition of tenure: We do not explicitly consider extended phases of
developers’ inactivity, during which developers do not contribute to the project. The tenure’s
end date is always the end of the time range, since we assume the developer’s ongoing
activeness. Our definition of programming activity also poses a threat: Defining it as the
number of edited files may be too simple, because the changes can be of different size (in
terms of LOC) and of different complexity. Giving weights to the changes accordingly would
make our analysis much more complex, though. Zhou and Mockus [ZM10] describe another
method based on edited files that could improve a follow-up study.

6 https://hierarchypaper.bitbucket.io/public/#results-by-research-questions-combined-networks-

with-e-mailissue-communication-and-co-change

https://hierarchypaper.bitbucket.io/public/#results-by-research-questions-combined-networks-with-e-mailissue-communication-and-co-change
https://hierarchypaper.bitbucket.io/public/#results-by-research-questions-combined-networks-with-e-mailissue-communication-and-co-change
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5.7 Conclusion

Prior work indicated that, over time, highly successful OSS projects develop a hybrid organi-
zational structure that comprises a hierarchical part and a non-hierarchical part. To study this
phenomenon systematically, we conducted a longitudinal study of 20 popular OSS projects.
In particular, we searched for structural patterns with respect to hierarchy in OSS projects.
Therefore, we developed an automated method to determine the hierarchical and the non-
hierarchical part in developer networks. We tracked the neighborhood and movement of
individual developers to understand their placement and trajectory through the hierarchy,
and we analyzed the relationships of the developers’ organizational position with their tenure
and programming activity.

Most notably, we found that, with an increasing number of developers in our subject
projects, the portion of developers in the hierarchical part decreases to as little as ∼10%, in
some projects even less than that. Essentially, in almost all cases, a hybrid organizational
structure emerged that consists of a hierarchical part and a non-hierarchical part, independent
of project size, domain, or used communication channel. A deeper investigation lets us link
network hierarchy more closely to actual developer behavior: Very active developers are
well connected in the hierarchy, starting during their on-boarding phase, and stabilizing this
connection over time. Surprisingly, tenure is also associated with hierarchical position—any
developer can quickly and flexibly take over responsibility in the projects, a promise of OSS
development. The high correlation between programming activity and hierarchical position
confirms that, often, OSS developers have a dual role for contributing code and taking over
coordination efforts.

Whereas early pioneers of a project are likely to be in the upper ranges of the hierarchy,
developer roles adapt flexibly to changing project situations. The organizational structure of
OSS projects is subject to constant change, which manifests itself in developer turnover and
changing developer roles, and therefore provides the possibility to newcomers to climb up in
the organizational hierarchy with increasing tenure and increasing project involvement. Our
method can be used to gain further insights into structural changes in project organization
and hierarchy, to identify potential organizational community smells, and, eventually, to
develop countermeasures against potential knowledge loss in OSS projects (e.g., when a core
developer in the top of the hierarchy is moving to the non-hierarchical part and is potentially
about to leave).

In summary, our study (a) provides a methodological basis for further investigations
of hierarchy formation, (b) suggests a number of hypotheses on prevalent organizational
patterns and trends in OSS projects to be addressed in future work, and (c) may ultimately
help to guide the governance of organizational structures.





6Identifying Core Developers in
Open-Source Software Projects

This chapter shares material with Bock et al. [BAJ+23].

Coordination among software developers is critical to ensure software quality and to
drive software evolution [CH13; HMR06; KS95; KSD11]. This holds especially for open-
source software (OSS) projects, in which volunteers can participate and developers are
globally distributed, often not knowing each other personally [Bir11; GHP99]. With increasing
project size and popularity, developers who hold leadership roles (i.e., who take care of the
project’s health and are highly involved in its long-term maintenance) are crucial for a
thriving evolution of the project [CLL+17; Lon06; XJS09; YHH04]. As opposed to closed-
source software projects, where leadership positions are typically established by mandated
organization structures and well-determined within the organization, OSS projects often
do not provide explicit, publicly recognizable information regarding group structures and
project responsibilities. Still, in OSS projects, hierarchical group structures among developers
do exist [see Chapter 5; TLV13; YK03; ZCM+17], but they are typically not determined by a
centralized authority but rather emerge following principles of self-organization [CLW+07;
Yu08]. So, despite the lack of predefined hierarchical group structures in OSS projects, certain
developers take particular responsibilities in the project, such as performing maintenance
tasks or implementing core functionality. Such developers, often called maintainers or core
developers [JAH+17; JSW11; MFH02; NYN+02], become crucial to these projects, as they
hold key knowledge about source code and software architecture [RZD+16] and shape
the character and culture of the project [AKH+16; WFW+20; ZM12], especially when OSS
projects grow fast in terms of developers and amount of source code [EZZ19]. As a prominent
example, the Linux kernel maintains a public list of maintainers, who are responsible for
specific subsystems and who have deep knowledge about the project [ZCM+17]. Using
this list, external and internal developers can find out whom to contact for any matters.
Unfortunately, many OSS projects do not maintain such a public, curated list. Especially for
newcomers in a software project, but also for developers that are not consistently active (also
called peripheral developers [CH05; JAH+17; MFH02; NYN+02]), it is important to know who
is playing the role of a core developer, who is making decisions and maintaining the code
base, andwhowill finally accept or reject code contributions [LS07; STG19]. In well-organized
projects, this might not be an actual problem for newcomers, as one can easily check who
has recently reviewed or merged pull requests. Some projects even use bots to automatically
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assign developers for reviewing a new pull request [WSS+18]. However, in projects that are
badly organized and which do not use such well-structured code-review processes, it might
be not that easy to find out whom to contact in the case of questions, for instance. Knowing
how developers organize is also important for companies, to decide whether and how to invest
in a project or how to efficiently contribute to an OSS project [BGL+21; DSP18; ZMM+16;
ZZM+19]. For researchers, knowing about core developers also aids the investigation of
a project’s hierarchical structure, which helps avoid high developer turnover and identify
organizational smells that could endanger project success [CDO+12; CS17; CVS+18; GLM06;
KSD11; RCO19; TKF23].

There is a growing corpus of research that attempts to automatically extract information
about the core developers of a project. A state-of-the-art approach is to construct a developer
network from various data sources (e.g., commits, e-mails, issue comments) and to apply
network-based centrality metrics. The assumption is that core developers are responsible
for about 80% of the contributions and activities in the project [JAH+17; JAM17; JMA+15;
LS07; MW11; YMK+15; ZYW11], attaining central positions within the network due to the
high number of contributions and many interactions with other developers. While this is an
appealing approach, the actual performance of such classification methods on the identifi-
cation of core developers is largely unclear, especially as there are various ways on how to
construct developer networks and also many, possibly contradicting classification methods
can be applied thereafter.

Therefore, we devise a method to automatically derive a set of core developers and main-
tainers from privileged events in GitHub issue discussions and pull requests. The rationale
is that GitHub permits triggering certain events (e.g., merging a pull request) only to user
accounts that have been assigned to a certain role. Nevertheless, these privileged events
cannot be used to identify potential candidates for future core developers before they get any
privileges in the project and also not for projects that use other social coding platforms than
GitHub issues. Therefore, other classification methods for identifying core developers are
still essential, which is why it is also our goal to assess the accuracy of the state-of-the-art
classification methods. In an empirical study on 25 widely-used and well-known GitHub
projects, we (1) validate our automatically derived set of core developers based on privileged
issue events with publicly available, project-reported lists of maintainers or core developers
for projects that provide such lists, and we (2) use our set of core developers to assess the
accuracy of various state-of-the-art unsupervised developer-classification methods based on
well-established count-based metrics (e.g., commit count) or network-based metrics (e.g.,
degree centrality).

Our results indicate that our automatically identified set of core developers is sound and
that the accuracy of state-of-the-art unsupervised developer-classification methods depends
mainly on the data source (commit data vs. issue data) rather than the network-construction
method (e.g., directed vs. undirected). Combining issue data and commit data behaves
similarly to just using issue data. Our results hold the potential to help researchers and OSS
communities choose the appropriate unsupervised classification method for identifying core
developers or potential maintainers.

Moreover, our method can help create reliable ground-truth data for training supervised
classification methods, as—to the best of our knowledge—the lack of sufficient volumes
of ground-truth data has prevented supervised learning methods from being developed.
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Figure 6.1: Overview of our approach: ( 0©) extract data from GitHub, ( 1©) identify a set of core devel-
opers based on the events in issues and pull requests, ( 2©) validate it with project-reported
lists, ( 3©) assess the accuracy of state-of-the-art unsupervised classification methods.

Although we devise a method to automatically derive a set of core developers from privileged
events in GitHub issues, there is still a need for supervised classification methods: On the one
hand, it is more tedious to get the necessary data for the extraction of privileged events than
for the state-of-the-art count-based or network-based classification methods, as privileged
events may not be available for projects that use other social coding platforms than GitHub.
On the other hand, supervised classification can be used to identify potential future core
developers and maintainers from activity data before the developers get any privileges in the
project. Of course, becoming a core developer might not only be a matter of participation, but
also a matter of trust [ABW+13; CLN17; SMS11]. As trust, however, cannot be quantified in
the accessible data, using activity data can be a first step toward finding potential candidates,
especially since accepted commits and intensive involvements in issue discussions can be
used as a first indicator for the trustworthiness of a candidate [DST+12].

In summary, we make the following contributions:
• An overview of literature on how core developers have been identified in previous work

(see Tables 6.1 and 6.2).
• A method to automatically identify a set of core developers based on role permissions of

events triggered in GitHub issues and pull requests (see step 1© in Figure 6.1).
• A validation of our automatically identified set of core developers based on privileged

issue events with official, publicly available maintainer or committer lists (see step 2©
in Figure 6.1).

• An assessment of the accuracy of several state-of-the-art unsupervised developer-role clas-
sification methods that use count- and network-based metrics (see step 3© in Figure 6.1).
We found that network-construction methods do not make a substantial difference,
whereas the data source plays a more vital role: Classification methods using commit
data perform better than classification methods using issue data. Combining issue and
commit data behaves similarly to just using issue data, as the combination is dominated
by the issue data.
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• A small explorative experiment on how our automatically identified set of core devel-
opers can be used for training supervised classification methods, from which we derive
two hypotheses that should serve as a starting point for future research on this topic.

• A replication package including pseudonymized raw data, classification data, tooling,
analysis scripts, and results on a supplementary website:
https://se-sic.github.io/paper-developer-classifications/ and
https://zenodo.org/record/7775882 .

6.1 Background & Related Work

In this section, we provide background information and related work on how core developers
can be identified, as well as information on GitHub’s user permissions, which we use for
automatically identifying core developers in our study. For background information on
different developer roles, we refer to Section 2.2, in which we have introduced the roles of
core and peripheral developers and have discussed also different role models that have been
proposed in the literature. In Chapter 4, we have already looked at groups of developers
that form up around latent tasks and determined the importance of developers based on the
importance of the latent tasks in which the developers are involved. In what follows, we focus
on different methods that have been used in the literature to identify core developers (or, in
other words, to classify developers into core and peripheral).

6.1.1 Core-Developer Identification in the Literature

Researchers have developed and investigated various unsupervised, manually tunedmethods
to identify core developers in OSS projects. To obtain an overview of how core developers
have been identified in previous work, we performed a series of searches on multiple different
search engines (GoogleScholar, IEEEexplore, ACM Digital Library) using the search terms
“core developer” and “identification of core developers”, without restricting venue and
publication year. We manually checked the papers of the search results and looked for core-
developer identification techniques that were described, mentioned, or referenced in these
papers. Moreover, we collected such techniques also from papers that have been referenced in
these papers in a backward-search fashion. In what follows, we summarize the core-developer
identification techniques that we have collected from the literature. Additionally, we manually
extracted the used data sources and classification metrics from all the collected papers. In
Table 6.1, we provide an overview of the data sources and network types that have been used
in the literature to identify core developers; in Table 6.2 we summarize the used metrics.

Mockus et al. [MFH02] proposed that highly active developers (in terms of the number of
contributions) should be considered as core developers. They investigated the projectsMozilla
and Apache Web Server and identified that only a small number of 10–15 developers are
responsible for around 80% of the source-code contributions. Dinh-Trong and Bieman [DB05]
replicated their study on FreeBSD and showed that even more than 15 developers contribute
80% of the code base. Follow-up research showed that Zipf’s law holds for the number of
commits that are authored by a developer and, consequently, the top 20% of the developers
are responsible for 80% of the commits [CWL+06]. Using this 80% threshold is a commonly

https://se-sic.github.io/paper-developer-classifications/
https://zenodo.org/record/7775882
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Table 6.1: Classification data and network types used for core-developer identification in the literature.

Data / Network Type Papers

Count-based Commits [ARK+18; CBO+20; CVS+18; FSV20; RG06; RGH09; RH07;
RZD+16; TRC10; VVH18; YMK+15]

E-mails [KJR+16]
Issues [CWL+06; TPS+19]
Commits, e-mails [JAH+17; KS02; OSG+15; OSO+12]
Commits, e-mails, issues [DB05; MFH02]

Network-based Cochange [CLL+17; JAM17; LRG+06; PBD+14; PT21]
E-mail [BGD+06; JEB+23; PBD+14; SSS17]
Issue [AW18; CH05; CWL+06; JEB+23; LM13; LM14; PBD+14]
Cochange, e-mail [BGD+06; BGD+07; Bir11; JAH+17; JEB+23; OSG+15;

OSO+12; ZYW11]
Cochange, issue [BC14; EKB+17; JEB+23; TPS+19]

Table 6.2: Classification metrics used for core-developer identification in the literature.

Metrics Papers

Count-based Commits [ARK+18; CVS+18; FSV20; JAH+17; OSO+12; RG06; RGH09;
RH07; SFD05; TRC10; VVH18; YMK+15]

Lines of code (LOC) [JAH+17; KS02; MFH02; RZD+16; YMK+15]
Authored files [CBO+20]
E-mails [KJR+16]
Modification requests [MFH02]
Issue comments [CWL+06]
Pull-request comments [TPS+19]

Network-based Degree centrality [AW18; BC14; BGD+06; Bir11; CH05; CLL+17; EKB+17;
JAH+17; LRG+06; OSG+15; PBD+14; SFD05; SSS17; TMB10;
ZYW11]

Betweenness centrality [AW18; BC14; BGD+06; Bir11; CH05; CLL+17; EKB+17;
LRG+06; OSG+15; SSS17; TMB10; ZYW11]

Eigenvector centrality [AW18; BC14; EKB+17; JAH+17; JEB+23; OSG+15; OSO+12;
SSS17]

Closeness centrality [AW18; BC14; CLL+17; EKB+17; LRG+06; OSG+15; SSS17]
PageRank [AW18; BC14; EKB+17; ZYW11]
Clustering coefficient [JAH+17; JAM17; LRG+06]
Hierarchy centrality [JAH+17; JAM17; JEB+23]
Density [LM13; LM14]
Modularity [BGD+07; JAM17]
Eccentricity [AW18]
Graph partitioning [CWL+06]
HITS [ZYW11]
Scale-freeness [JAM17]
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used approach when classifying developers based on their commit count [ARK+18; CVS+18;
CWL+06; DB05; FSV20; KS02; MFH02; RG06; RGH09; RZD+16; TRC10; YMK+15]. For this
reason, we also use this threshold in our validation study for the developer classification
based on commit count when we compare our approach with the state-of-the-art classifi-
cation methods (see Section 6.2.4). Valiev et al. [VVH18] even used a threshold of 90% of
contributions per month, which was selected based on empirical observations on the Python
Package Index ecosystem. Coelho et al. [CVS+18] and Ferreira et al. [FSV20] extended this
approach by adding the additional restriction that a core developer has to have authored, at
least, 5% of the total number of commits in the project. Instead of considering the number of
commits, Canedo et al. [CBO+20] required a core developer to have authored, at least, 50% of
the files in the project. Nonetheless, relying on count-based operationalizations for developer
classification provides only limited insights into organizational matters of OSS projects, as
relationships among developers (possibly varying over time) are neglected [JAH+17].

To incorporate relationships among developers, Crowston et al. [CWL+06] suggested three
different approaches on how to classify developers into core and peripheral: For some of
their analyzed projects, they found project-reported lists on the projects’ websites, containing
formal roles of developers (e.g., who is allowed to check-in source code to the version-
control system). This approach is similar to how we validate our set of core developers
(see Section 6.2.3). Using project-reported lists to determine core developers has also been
adopted by other researches [CS17; KJR+16; WCE+17]. However, such project-reported lists
are only available for few projects. In their second approach, Crowston et al. [CWL+06]
considered developers to be core if they contribute, at least, one third of the total number
of comments on bug-tracker data from SourceForge. This approach is similar to the count-
based classification mentioned above and is based on the sheer number of posted comments.
In their third approach [CWL+06], they built communication networks on bug reports
and applied graph partitioning algorithms, treating the tightly interconnected group as
core developers. All three approaches led to different results as the project-reported list
seemed to be incomplete and count-based and network-based classification focus on different
characteristics of core developers.

Network-based developer classification has been gaining considerable momentum in
software-engineering research. De Souza et al. [SFD05] created networks based on developers’
contributions to the same modules. Bird et al. [BGD+07] built networks based on mailing-list
communication, and they used basic social-network analysis techniques to identify develop-
ers’ roles [BGD+06; BPD+08; Bir11]. Licorish and MacDonell [LM13; LM14] used networks
built from the communication on tasks in IBM’s Rational Jazz development environment
and considered a developer to be core if they had contributed to the communication of, at
least, one third of the tasks. Oliva et al. [OSG+15; OSO+12] identified core developers in
developer networks based on mailing lists and version-control systems. They used centrality
metrics combined with a quartile analysis to determine core developers, but they investigated
only a short time period of a small project. We, thus, investigate a history of several years
for 25 projects. Moreover, in our validation study, we build developer networks based on
version-control systems and communication in issues, not based on mailing lists.

Joblin et al. [JAH+17] constructed developer networks from the version-control system
data and mailing lists of 10 OSS projects. They applied the network centrality metrics degree
centrality, eigenvector centrality, and hierarchy centrality, which capture structural differ-
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ences in the relationships among developers. To evaluate the classification outcomes, they
conducted a survey among 166 developers of the examined projects. According to the survey,
the network-based developer classifications outperformed the simpler count-based developer
classifications. Notably, there is a substantial corpus of work that relies on network-based
developer classifications to investigate characteristics of core and peripheral developers and
organizational structures in OSS projects [AW18; BC14; CLL+17; EKB+17; JAM17; LRG+06;
PBD+14; PT21; SSS17; TMB10; TPS+19]. Naturally, this work depends on the accuracy of the
classifications, which is exactly the motivation of our validation study, in which we assess the
accuracy of a selection of the above mentioned classification methods.

Zhang et al. [ZYW11] investigated whether the social-network metrics vertex degree (i.e.,
degree centrality), PageRank [LM06] (a variant of eigenvector centrality), HITS [GKR98]
(an algorithm to detect hubs and authorities), and betweenness of vertices in the network
are capable of identifying core developers in OSS projects. They assessed the accuracy of
their classification methods against a self-created ground truth based on “the right to post
messages” on the developer mailing list of the project ArgoUML, considering only developers
that had regular contributions to source code and mailing list. All four network metrics
performed similarly well in detecting core developers, having a recall of more than 60% and
a precision of about 60%. Similarly to their study, we also assess the accuracy of classification
metrics using a ground truth that is based on the permissions to perform privileged events
on GitHub issues. We improve over their study by investigating a variety of GitHub projects,
constructing different types of developer networks, and using network-based centrality
metrics that have been used in state-of-the-art research on developer classification.

Closest to our automatic core-developer identification approach, Wang et al. [WFW+20]
define the role of an elite developer as a developer havingwrite permission in aGitHub project.
They identify elite developers within time ranges of 3 months based on performed tasks
that require write permission. This approach is similar to how we identify core developers.
However, there are a couple of differences between their approach and our approach:Whereas
they access GitHub’s event API to gather the performed tasks of a project (e.g., whether
somebody has forked a project or starts watching a project) and merge it with additional
information from other data sources, we directly access GitHub’s issues API, which contains
more detailed information on the events that happen specifically in issues and pull requests
(e.g., a comment was added, an issue was labeled, a pull-request was merged, etc.). Another
difference is that they needed to classify the gathered data into a complex taxonomy of event
types (communicative, organizational, typical, supportive), whereas we just use GitHub’s
official description of all the possible issue event types, which contains information on the
user permission that is needed to trigger a specific issue event. Finally, while Wang et al. use
fixed time ranges of 3 months, we study the time difference between certain issue events and
investigate different time ranges between 3 and 12 months.

6.1.2 User Permissions on GitHub

Aswe identify core developers based on user permissions, we briefly describewhich user roles
and permission levels exist on GitHub. First of all, GitHub distinguishes between organization
(shared account across many projects) and user accounts. Repositories (also called projects)
can be created from either an organization or a user account. Each organization on GitHub
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has, at least, one organization owner (which is a normal user). Organization owners and
project admins can set the user permission individually for each project and user. At the
project level, GitHub users can have one of the following permissions:1

• Read: default permission for any user seeing a project, “recommended for non-code
contributors who want to view or discuss your project”1. Users with read permission
can open issues or pull-requests, submit reviews on pull requests, write comments, and
close issues or pull requests that have been opened by themselves.

• Triage: “recommended to proactively manage issues and pull requests without write
access”1. In addition to read permission, a user with triage permission can set labels,
close and reopen issues, assign issues to users, and request reviews from users.

• Write: “recommended for contributors who actively push to your project”1. In addition
to triage permission, a user with write permission can push to a repository (i.e., directly
push source code to the repository), merge pull requests, publish releases, and submit
reviews that “affect a pull request’s mergeability”1.

• Maintain: “recommended for project managers who need to manage the repository
without access to sensitive and destructive actions”1. In addition to write permission, a
user with maintain permission can protect branches, decide on how pull requests can
be merged, and restrict which other users can open issues or pull requests, etc.

• Admin: “recommended for peoplewho need full access to the project, including sensitive
and destructive actions like managing security or deleting repository”1. When creating
a project, the user creating the project has admin permission. Organization owners
implicitly have admin permissions on all projects of the organization.

In our study, we make use of these permissions to automatically identify a set of core
developers by mapping GitHub’s user permissions to our developer roles (see Section 6.2.2).
Unfortunately, it is not publicly accessible which user has which permission in a GitHub
project. Instead, we need to infer the users’ permissions from certain actions GitHub users
perform on the issues and pull requests of a specific project.

6.2 Methodology

As illustrated in Figure 6.1 (page 153), our validation study proceeds in four steps: In the
initial step ( 0©), we extract commit and issue data from GitHub. Then ( 1©), we identify the
developers who have triggered a privileged issue event. Following this ( 2©), we validate
this set of developers with official, project-reported committer lists. Finally ( 3©), we perform
unsupervised developer classifications and assess their accuracy.

6.2.1 Data Extraction

For this study, we extract commit metadata (including author name, e-mail address, author
date, and the names of the changed files of a commit) from Git, and we extract issue and
pull-request data (including review data, review comments, and all other comments of a pull

1 https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-

permission-levels-for-an-organization#repository-access-for-each-permission-level (accessed at
2020-09-09)

https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization#repository-access-for-each-permission-level
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization#repository-access-for-each-permission-level
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Table 6.3: GitHub issue events and the role permissions needed to be able to trigger them.

Privileged Events Extended Events Common Events
(write, maintain, or admin permission) (at least, triage permission) (at least, read permission)

added_to_project,

converted_note_to_issue, deployed,

deployment_environment_changed,

locked, merged,

moved_columns_in_project,

pinned, removed_from_project,

review_dismissed, transferred,

unlocked, unpinned, user_blocked

assigned,

demilestoned, labeled,

marked_as_duplicate,

milestoned,

unassigned, unlabeled,

unmarked_as_duplicate

automatic_base_change_failed,

automatic_base_change_succeeded,

base_ref_changed, closed,

comment_deleted, commented,

committed, connected,

convert_to_draft, created,

cross_referenced,

disconnected, head_ref_deleted,

head_ref_force_pushed,

head_ref_restored, mentioned,

ready_for_review, referenced,

referenced_by, renamed, reopened,

review_request_removed,

review_requested, reviewed,

subscribed, unsubscribed

request) from GitHub’s official REST API2, using the tools Codeface and GitHubWrapper,
which we have introduced in Section 2.4. Afterwards, we combine the data from both sources
and perform developer disambiguation as well as bot detection as explained in Section 2.4.

The extracted issue metadata contain information on which user has triggered which event
(commented, labeled, merged, etc.), onwhich issue or pull request, and at which point in time.
After bot detection, we remove all bot-triggered events from the extracted GitHub issue data.

6.2.2 Identifying Core Developers Based on Issue Events

To identify core developers, we analyze the events that appear in the above extracted issue
data. For each of the events, we look up in GitHub’s official event documentation3 which
user permission on GitHub is needed to trigger the event (e.g., write permission is needed to
merge a pull request). This way, we form three categories of events: Common events, which
can be triggered by everyone (e.g., write a comment), extended events that can be triggered
only when having, at least, triage permission (e.g., apply a label), and privileged events that
can be triggered only when having, at least, write permission (e.g., merge a pull request). In
Table 6.3, we provide an overview of all events and the categories we assigned them to.

As a next step, we analyze which user has triggered which event. Each user who has
triggered a privileged event is considered a core developer (at least, in the time range that
contains the event). All remaining users are considered peripheral developers. We base this
decision on the fact that events that require, at least, write permission are either related to
critical tasks for project maintenance (blocking users or locking issues) or to decision making

2 https://docs.github.com/en/rest/ (accessed at 2022-03-14)
3 GitHub provides a list of possible events here: https://docs.github.com/en/developers/webhooks-and-

events/issue-event-types/ (accessed at 2020-09-09)

https://docs.github.com/en/rest/
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types/
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types/
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Privileged events of developer Alice:

time range 1 time range 2 time range 3 time range 4 time range 5

merged locked pinned

core core core peripheral peripheral

Figure 6.2: Analyzing the issue events of developer Alice: For each time range, check whether Alice
has triggered privileged events. If so, Alice is considered core (time ranges 1 and 3). For
the remaining ranges, check whether Alice has triggered privileged events in the directly
preceding and in the directly succeeding time range. If so, then also consider Alice core
(time range 2), otherwise peripheral (time ranges 4 and 5).

tasks that require deep project knowledge (e.g., merging or rejecting a pull request), and,
therefore, distinguish a core developer.4

It is important to note that we cannot know from the data when exactly a developer has
received write permission, nor whether or when the write permission may have been revoked.
Instead, we only see when the developer happened to trigger an event that requires write
permission. So, when considering a developer as core based on the triggered privileged
events in a certain time range, we might potentially overlook core developers who only rarely
trigger privileged events. Tomitigate this risk, we explore how regularly core developers make
use of privileged events. This way, we test whether time ranges of 3 to 12 months are long
enough—and therefore justified—to identify core developers based on the usage of privileged
events within the time range. Therefore, we investigate the following research question:

RQ1:
How long is the typical time difference between a developer’s events that
require, at least, write permission?

As developers might be absent for a particular time range (e.g., due to illness or vacation,
etc.), we will exploit a temporal smoothness assumption to improve the accuracy of our
method. That is, we treat developers also as core even when they are not triggering privileged
events in the current time range but do so in both the previous and succeeding time range (see
time range 2 in Figure 6.2). We call the resulting set of core developers privileged developers or
𝐷𝑝𝑟𝑖𝑣, for brevity.

As our approach to identify core developers does not require any manual effort (except for
determining which event belongs to which category), it can be performed for each GitHub
project fully automatically.

6.2.3 Validating Our Set of Core Developers

After identifying the privileged developers, we need to validate this selection. For this purpose,
we ask the following research question:

4 We have conducted a sensitivity analysis to explore whether we should consider extended events in addition, as
users with triage permission can already make some minor decisions (e.g., decide which issue is labeled as a
bug). We discuss this in Section 6.3.3.
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RQ2:
Is the set of privileged developers 𝐷𝑝𝑟𝑖𝑣 a sound approximation for the set of
core developers?

To answer this question, we need to obtain a reliable set of core developers for a project. Al-
though there are many state-of-the-art classification methods for identifying core developers
(as presented in Section 6.1.1), all these methods might end up in different classifications,
making it hard to validate our approach with respect to them. Moreover, as we do not know
the accuracy of these methods, we also cannot rely on them for the validation of our approach.
Instead, we search for projects that provide publicly available, project-reported maintainer
or committer lists, because the developers listed in such lists are (as an official source of
information) reliably considered as core developers by the project itself. As projects that
collect and provide this information are rare, we can perform this assessment only on a
subset of our subject projects. Even if such lists are available, there are different formalisms to
publish them. Whereas some projects provide lists with different team-member categories in
their repositories and keep them up to date (e.g., Node.js provides a steadily updated list of
“technical steering committee”, “collaborators”, and “triagers”5), other projects just provide
a static list of contributors on external project websites (e.g., as for project Angular6) without
any historic resolution. Another issue with the latter is to find out who is really a developer
and who is just organizational staff, especially if there is a company behind the OSS project.
Due to these inconsistencies, we take manual efforts to determine which parts of which lists
are relevant for our study. We do not obtain time-resolved lists, but consider only the most
recent time range that we analyze for a project. We call the set of developers that have their
mandates publicly documented in project-reported lists documented developers or 𝐷𝑑𝑜𝑐.

Note that neither 𝐷𝑝𝑟𝑖𝑣 nor 𝐷𝑑𝑜𝑐 are guaranteed to be complete: We cannot be sure that the
project-reported lists are regularly updated and really contain all core developers (e.g., some
core developers might not want to be listed there), and we can also not be sure that 𝐷𝑝𝑟𝑖𝑣 is
complete as there could also be core developers that do not have the respective permissions
or do not trigger corresponding events. To investigate whether our automatic procedure of
extracting 𝐷𝑝𝑟𝑖𝑣 is sound, we cross-check it with 𝐷𝑑𝑜𝑐. For this purpose, we use the Jaccard index
as a similarity measure and the measures completeness and soundness as defined as follows:

jaccard(𝐷𝑑𝑜𝑐, 𝐷𝑝𝑟𝑖𝑣) = |𝐷𝑑𝑜𝑐 ∩ 𝐷𝑝𝑟𝑖𝑣| / |𝐷𝑑𝑜𝑐 ∪ 𝐷𝑝𝑟𝑖𝑣| (6.1)

The Jaccard index lies between 0 and 1, higher values indicating higher similarity.

complete(𝐷𝑝𝑟𝑖𝑣 | 𝐷𝑑𝑜𝑐) = |𝐷𝑑𝑜𝑐 ∩ 𝐷𝑝𝑟𝑖𝑣| / |𝐷𝑑𝑜𝑐| (6.2)

complete(𝐷𝑝𝑟𝑖𝑣 | 𝐷𝑑𝑜𝑐) is the completeness of 𝐷𝑝𝑟𝑖𝑣 with respect to 𝐷𝑑𝑜𝑐, that is, the proportion
of developers in 𝐷𝑑𝑜𝑐 that are also part of 𝐷𝑝𝑟𝑖𝑣.

sound(𝐷𝑝𝑟𝑖𝑣 | 𝐷𝑑𝑜𝑐) = |𝐷𝑑𝑜𝑐 ∩ 𝐷𝑝𝑟𝑖𝑣| / |𝐷𝑝𝑟𝑖𝑣| (6.3)

sound(𝐷𝑝𝑟𝑖𝑣 | 𝐷𝑑𝑜𝑐) is the soundness of 𝐷𝑝𝑟𝑖𝑣 with respect to 𝐷𝑑𝑜𝑐, that is, the proportion of
developers in 𝐷𝑝𝑟𝑖𝑣 that are also part of 𝐷𝑑𝑜𝑐.

5 https://github.com/nodejs/node/blob/master/README.md#current-project-team-members (accessed at
2022-03-14)

6 https://angular.io/about?group=Angular (accessed at 2022-03-14)

https://github.com/nodejs/node/blob/master/README.md#current-project-team-members
https://angular.io/about?group=Angular
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In addition to validating 𝐷𝑝𝑟𝑖𝑣 with respect to 𝐷𝑑𝑜𝑐, we also need to compare 𝐷𝑝𝑟𝑖𝑣 to the
outcomes of state-of-the-art classification methods, to obtain a deeper understanding of how
our approach performs (see Section 6.2.5). However, before we do so, let us first introduce
the state-of-the-art classification methods that we investigate.

6.2.4 Developer Classification

Since the set of privileged developers cannot be used to identify potential future maintainers
before they get any privileges in the project, and since the necessary data for identifying
the set of privileged developers is not necessarily available for projects that use other social
coding platforms than GitHub, other classification methods for identifying core developers
are still essential. As discussed in Section 6.1.1, many unsupervised classification methods for
identifying core developers do exist. For the network-based methods, there are also various
network-construction methods. This yields our main research question:

RQ3:
Which metrics and network-construction methods are most accurate in
classifying developers into core and peripheral?

On the one hand, we investigate established count-based metrics. Particularly, we choose the
two most frequently used metrics of this sort (based on our overview of the classification
metrics used in the literature in Table 6.2):
Commit count: the number of commits a developer has made in a certain time range.
LOC count: the number of lines of code (LOC) a developer has changed in a time range.
The more central a developer is, that is, the more commits a developer has made or the more
LOC the developer has changed, the more likely the developer is a core developer.

On the other hand, to capture the co-coding and co-communication activities of developers,
we investigate network-based metrics and different network-construction methods, which we
describe in what follows.

Network Types & Network Construction We investigate three different types of devel-
oper networks. All three of them have in common that the vertices represent developers and
the edges represent relations among them. However, the different network types differ in the
type of relations:
Cochange: Two developers are connected by an edge when they have edited the same file

within the same time window, as introduced in Section 2.3.1 [GHJ98; JMA+15; JSS11;
PBD+14; PD08; ZZW+05]. This network type provides a pure technical view.

Issue: Two developers are connected by an edgewhen they have contributed to the same issue
or pull request (e.g., commenting, reviewing, closing, labeling, etc.) within the same
time window, as introduced in Section 2.3.1 [CWL+06; HKC+11; MJT+22; PBD+14;
SGR11]. This network type provides a social view.

Cochange+issue: Contains edges from both above mentioned relations. This network type
provides a socio-technical view.
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Table 6.4: The network-construction methods and network centrality metrics that we use in our study.

Network Type Network Vertices Directedness Simplicity Time Time Centrality Metric
Range Windows

Cochange
Issue
Cochange+issue

All contributors
Code contributors

Directed
Undirected

Simplified
Unsimplified

3 months
6 months
9 months

12 months

Sliding
Subsequent

Degree centrality
Eigenvector centrality
Hierarchy centrality

As also users of a project (not being developers) can contribute comments to issues, we
investigate two different cases (i.e., sets of vertices) when constructing issue networks:
All contributors: Construct networks with all users participating in issues, regardless of

whether they contributed to the source code.
Code contributors: Only users are considered who have contributed to the source code (i.e.,

who have authored a commit either in the current or in any previous time range). All
other users are removed from the network.

Note that the differentiation between all contributors and code contributors affects only the
network types issue and cochange+issue, as cochange networks by construction contain only
developers who contributed to the source code.

To construct the networks, we split the project data into subsequent time windows of
the same length, as common in the literature. We chose to investigate time windows of
3 months [BGD+07; JAH+17; MJT+22; TPS+19], 6 months [HKC+11; MW11; PBD+14],
9 months, and 12 months [RG06]. Shorter time windows would be threatened by short-term
fluctuations (e.g., developers being ill or on vacation). Using larger time windows would
neglect project dynamics and developer turnover [FSV20]. As edges that cross time-window
boundaries are neglected, we additionally investigate sliding windows, that is, instead of
using subsequent time windows only, we shift the subsequent window by half the time
window, such that subsequent windows overlap and cover the edges that are neglected when
not using such a sliding-window approach [JAM17], as described in Section 2.3.2.

When constructing networks, we vary between the network-construction parameters direct-
edness and simplicity (see Section 2.3.1): In a directed network, we consider the order of interac-
tions (e.g., who replies towhom, including transitive relationships as separate edges),whereas
in an undirected network, we ignore the temporal relationship. In a simplified network, only
one edge per direction is allowed between one pair of developers (no loops), whereas in an un-
simplified network, multiple edges between one pair of developers and loops are allowed. In
Table 6.4, we provide an overview of all possible choices during network construction as well
as the network-based classification metrics that we use, which we explain in the following.

Network-Based Classification To classify developers into core and peripheral, we use
three established network metrics, which are widely used in the literature (as can be seen
in Table 6.2) and which cover different aspects of centrality. In particular, we selected the
following network centrality metrics, which we have introduced in Section 2.3.3:

• degree centrality, a local centrality metric,
• eigenvector centrality, a global centrality metric that considers the importance of the

developers a developer is interacting with, and
• hierarchy centrality, a metric that considers the community structure of a network.
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core peripheral

Dpriv
TP
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Figure 6.3: Visualization of true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN). The ellipsis represents the set of privileged developers 𝐷𝑝𝑟𝑖𝑣, the two rectangles
represent the core/peripheral classification of the used classification method (i.e., the sets
of developers that are classified as core or peripheral, respectively).

For background information on these three centrality metrics, we refer to Section 2.3.3.
All the three network centrality metrics we use have already been used in previous work
on developer classification and received a high agreement in the perception of surveyed
developers [JAH+17].

On each of the metrics, for each time range, we apply the 80% threshold, which is widely
used (see Section 6.1.1). That is, developerswhose centrality value is in the upper 20%quantile
are considered as core, the remaining ones as peripheral. For data processing, network con-
struction, and centrality computation, we use the library coronet, which we have introduced
in Section 2.4.

6.2.5 Assessing the Classification Accuracy

To assess the accuracy of the classification methods, we use the set of privileged developers
𝐷𝑝𝑟𝑖𝑣 as a point of reference. There are multiple reasons behind this choice. On the one hand,
there are practical reasons: As identifying privileged developers is not applicable on projects
that use other social coding platforms than GitHub, and since the set of privileged developers
cannot be used to identify potential future core developers before they get any privileges, the
state-of-the-art classification methods are still necessary. In such cases, it would be helpful to
know for practitioners and researchers which of the state-of-the-art methods are closest to
our approach on identifying privileged developers. On the other hand, 𝐷𝑝𝑟𝑖𝑣 is constructed
based on the privileges developers made use of in issue events. Hence, these developers must
have received the corresponding permissions in the project from the project’s maintainers,
which incorporates trustworthy information that comes from a project itself, whereas the
established state-of-the-art classification methods do not consider such information.

For assessing the classification accuracy, we compute precision, recall, and F1 score, based
on the following notions (see also Figure 6.3):
True positives (TP): developers that are classified as core and are part of 𝐷𝑝𝑟𝑖𝑣.
False positives (FP): developers that are classified as core but are not part of 𝐷𝑝𝑟𝑖𝑣.
True negatives (TN): developers that are classified as peripheral and are not part of 𝐷𝑝𝑟𝑖𝑣.
False negatives (FN): developers that are classified as peripheral but are part of 𝐷𝑝𝑟𝑖𝑣. In

addition, developers that are part of 𝐷𝑝𝑟𝑖𝑣 but that are neither classified as core nor
peripheral are also considered to be a false negative (e.g., developers who did never
commit but are part of 𝐷𝑝𝑟𝑖𝑣 due to triggering privileged issue events are missing in
commit-data-based classifications).
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Note that the definitions of FN and FP are specific to our setting: FN and FP are not de-
fined with respect to 𝐷𝑝𝑟𝑖𝑣, but with respect to the classification. “negative” corresponds
to “peripheral”; “positive” corresponds to “core”. With that, we compute the following
evaluation measures:

precision = TP / (TP + FP) (6.4)
recall = TP / (TP + FN) (6.5)

F1 = 2 ⋅ (precision ⋅ recall) / (precision + recall) (6.6)

Also note that the choice of the point of reference for the comparison of 𝐷𝑝𝑟𝑖𝑣 and the
classification results is arbitrary in our case: If we would take the results of the state-of-the-art
classification methods as point of reference for assessing the accuracy of 𝐷𝑝𝑟𝑖𝑣, the values
of precision and recall would only be swapped (since FP would become FN then, and vice
versa), and, consequently, the F1 score would stay the same. Nevertheless, for the reasons
stated above, we chose 𝐷𝑝𝑟𝑖𝑣 to be the point of reference in our comparison, to assess the
accuracy of the state-of-the-art classification methods.

6.3 Validation Study

In this section, we present the results of our empirical study. We start with an overview of our
subject projects, provide the results of our validation of 𝐷𝑝𝑟𝑖𝑣, and report on the assessment
of the accuracy of the unsupervised developer-classification methods.

6.3.1 Subject Projects

We investigate 25 highly active software projects hosted on GitHub, covering various project
sizes, domains, and numbers of contributors and participants in issues, as the descriptive
statistics in Table 6.5 indicate. We primarily selected very popular projects that are among
the most starred GitHub projects in 2020.7 Most of these projects have also been considered
in previous work on GitHub-related research topics. In order not to only analyze popular
projects that have a high developer activity, but also cover projects that have a comparably
small number of developers, we added project DTP.

6.3.2 Time Difference Between Privileged Events

In RQ1, we ask how long the typical time difference is between a developer’s privileged
events. In most of the projects, the median time difference is between 0 and 4 days; even the
upper quartile of the time differences is below 10 days (except for jQuery, for which it is about
3 weeks). Although there are extreme outliers, for which there are up to 2 000 days between
the privileged events of a developer, in most cases, developers make use of privileged events,
at least, multiple times a month. As we can see in Figure 6.4, for more than 88% of the
privileged developers the median time difference between privileged events is smaller than

7 https://www.attosol.com/top-50-projects-on-github-2020/ (accessed at 2020-09-09)

https://www.attosol.com/top-50-projects-on-github-2020/
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Table 6.5: Descriptive statistics of our subject projects.

Subject Investigated #Commit # Issue #Commits # Issues Project Domain Programming
Project Time Period Authors Participants incl. PRs Languages

Angular 2014-09–2020-09 667 22 859 12 349 38 502 Web dev. platform TypeScript
Atom 2012-01–2020-12 298 21 047 15 627 21 138 Text editor JavaScript
Bootstrap 2011-08–2020-12 219 24 744 2 266 31 735 Web frontend framew. JavaScript, HTML

Deno 2018-05–2020-12 348 3 070 3 417 8 760 Runtime for JavaScript Rust, JavaScript,
TypeScript

DTP 2018-01–2020-04 16 73 633 859 Framew. f. data transf. Java
Electron 2013-05–2020-12 392 15 559 10 664 26 733 App. dev. framew. C++, TypeScript
Flutter 2015-03–2020-12 683 34 460 13 367 72 504 UI dev. kit Dart
jQuery 2010-09–2020-12 244 3 118 2 675 4 723 JavaScript library JavaScript
Keras 2015-03–2019-11 716 12 688 3 471 13 468 Deep learning API Python
Kubernetes 2014-06–2020-12 2 408 23 220 38 619 97 218 Container managem. Go
Moby 2013-01–2020-12 1 154 29 083 14 072 41 731 Softw. containerization Go
Nextcloud 2016-06–2020-09 355 9 510 9 718 22 689 Cloud server PHP, JavaScript

Next.js 2016-10–2020-12 867 11 087 3 891 15 344 React framew. JavaScript,
TypeScript

Node.js 2014-11–2020-02 1 793 13 190 12 118 31 372 JavaScript runtime env. JavaScript, C++,
Python

OpenSSL 2013-05–2019-12 400 3 303 8 722 10 639 Crypto library C, Perl
ownCloud 2012-08–2019-10 393 10 141 18 274 36 178 Cloud server PHP, JavaScript
React 2013-05–2020-12 796 16 056 6 921 20 252 JavaScript library JavaScript

Redux 2015-06–2020-12 228 4 123 701 3 931 Container f. JavaScript TypeScript,
JavaScript

reveal.js 2011-06–2020-10 141 2 861 1 090 2 762 HTMLpresent. framew. JavaScript, HTML
TensorFlow 2015-11–2020-12 1 519 35 781 55 499 45 652 Machine learn. framew. C++, Python
three.js 2010-04–2020-12 954 8 280 15 999 20 845 JavaScript library JavaScript, HTML
TypeScript 2014-07–2020-12 467 18 397 17 934 40 973 JavaScript language TypeScript
VS Code 2015-11–2020-12 1 001 67 882 49 814 111 073 Integrated dev. env. TypeScript
Vue 2016-04–2020-11 217 8 754 2 256 9 325 JavaScript UI framew. JavaScript
webpack 2012-05–2020-12 501 13 091 5 671 11 710 Bundler for modules JavaScript

6 months. This holds for all projects except for Vue, for which this time difference is only for
75% of the developers smaller than 6 months, but also reaches 88% at about 7.5 months.

Answer to RQ1: The majority of privileged developers trigger privileged events, at least,
once within a couple of weeks. More than 75% of these developers have a median time
difference less than 3 months between their privileged events.

As a consequence, determining the set of privileged developers 𝐷𝑝𝑟𝑖𝑣 based on privileged
events with time windows of 3–12 months is justified. That is, due to applying our tem-
poral smoothness assumption (i.e., also looking at the previous and subsequent range, see
Figure 6.2), our approach is robust to time differences of up to three times the window size,
ending up in covering core developers who use their permission only once in 9–36 months. As
for all but one project more than 88% of the developers using privileged events have a median
time difference of less than 6 months between these events, we focus on presenting the results
using 6-months ranges. For other time ranges, we refer to our supplementary website.8

8 https://se-sic.github.io/paper-developer-classifications/

https://se-sic.github.io/paper-developer-classifications/
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Figure 6.4: Cumulative distribution of the median time difference in days between privileged events
of a single developer. Each line represents the developers of one subject project.

6.3.3 Validity of the Set of Privileged Developers 𝐷𝑝𝑟𝑖𝑣

To answer RQ2, we check for the validity of the set of privileged developers 𝐷𝑝𝑟𝑖𝑣. For this
purpose, we compare 𝐷𝑝𝑟𝑖𝑣 in the most recent time range with project-reported lists (𝐷𝑑𝑜𝑐).
We were able to obtain 𝐷𝑑𝑜𝑐 for 12 out of our 25 subject projects.

In Table 6.6, we report the sizes of 𝐷𝑑𝑜𝑐 and 𝐷𝑝𝑟𝑖𝑣 for the last-analyzed 6-months time
range of each project. When considering only privileged events to detect core developers,
we can see that the size of 𝐷𝑝𝑟𝑖𝑣 is, in most projects, smaller or nearly equal to the size of the
project-reported lists. However, when considering privileged and extended events (see 𝐷𝑝𝑟𝑖𝑣+
in Table 6.6) to detect core developers, in most projects, we are able to extract a much higher
number of core developers than reported by the projects’ lists. This reinforces our decision
that core developers are the developers that have the permission to trigger privileged events.
Nevertheless, the similarity of 𝐷𝑝𝑟𝑖𝑣 and 𝐷𝑑𝑜𝑐 is highly project-dependent, as the Jaccard
Indices between 0.03 and 1.0 indicate. There are two outliers, though: Whereas Kubernetes
has way more developers in 𝐷𝑑𝑜𝑐 than in 𝐷𝑝𝑟𝑖𝑣, the list reported by Next.js only contains very
few developers. When looking at completeness, we can see that we are able to gather up
to 67% of the project-reported developers in 𝐷𝑝𝑟𝑖𝑣 (for reveal.js, where only one developer
is reported, we reach even 100%). Soundness, on the other hand, reaches up to 94% (for
reveal.js even 100%), showing that the vast majority of developers in 𝐷𝑝𝑟𝑖𝑣 are also in 𝐷𝑑𝑜𝑐.
We obtain similar results when extracting 𝐷𝑝𝑟𝑖𝑣 using other time-window lengths; for more
details, we refer to our supplementary website.8

Answer to RQ2: The completeness of 𝐷𝑝𝑟𝑖𝑣 with respect to 𝐷𝑑𝑜𝑐 seems to be rather small.
This is to be expected as we cannot be sure that the project-reported lists are up to date.
More importantly, the vast majority of developers in 𝐷𝑝𝑟𝑖𝑣 is documented in 𝐷𝑑𝑜𝑐, which
shows that our procedure of extracting 𝐷𝑝𝑟𝑖𝑣 is sound.

6.3.4 Classification-Method Accuracy

Finally, to answer RQ3 about which unsupervised classification methods are most accurate in
automatically classifying developers into core and peripheral, we assess their accuracy using
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Table 6.6: Validation of the procedure to extract privileged developers for the 12 projects for which
we found project-reported lists. (We collected the lists only once per project, temporally
close-by to the end of the latest 6-months time range that we analyzed.)
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|𝐷𝑑𝑜𝑐| 30 17 5 238 21 6 108 18 9 1 3 4
|𝐷𝑝𝑟𝑖𝑣| 20 12 5 51 9 25 34 11 10 1 3 6
|𝐷𝑝𝑟𝑖𝑣+| 40 22 10 1125 9 27 63 199 392 2 3 7

jaccard(𝐷𝑑𝑜𝑐, 𝐷𝑝𝑟𝑖𝑣) 0.43 0.61 0.43 0.08 0.36 0.03 0.29 0.53 0.46 1.00 0.20 0.25
complete(𝐷𝑝𝑟𝑖𝑣 | 𝐷𝑑𝑜𝑐) 0.50 0.65 0.60 0.09 0.38 0.17 0.30 0.56 0.67 1.00 0.33 0.50
sound(𝐷𝑝𝑟𝑖𝑣 | 𝐷𝑑𝑜𝑐) 0.75 0.92 0.60 0.43 0.89 0.04 0.94 0.91 0.60 1.00 0.33 0.33

jaccard(𝐷𝑑𝑜𝑐, 𝐷𝑝𝑟𝑖𝑣+) 0.49 0.63 0.25 0.08 0.36 0.03 0.50 0.09 0.02 0.50 0.20 0.22
complete(𝐷𝑝𝑟𝑖𝑣+ | 𝐷𝑑𝑜𝑐) 0.77 0.88 0.60 0.44 0.38 0.17 0.53 0.94 0.78 1.00 0.33 0.50
sound(𝐷𝑝𝑟𝑖𝑣+ | 𝐷𝑑𝑜𝑐) 0.58 0.68 0.30 0.09 0.89 0.04 0.90 0.09 0.02 0.50 0.33 0.29

𝐷𝑑𝑜𝑐: project-reported list,
𝐷𝑝𝑟𝑖𝑣: core developers based on privileged events,
𝐷𝑝𝑟𝑖𝑣+: core developers based on privileged+extended events

precision, recall, and F1. It turned out that there is only a small-to-zero difference between
using time windows of 3, 6, 9, or 12 months or using sliding or subsequent windows. Also
the difference of the results when using directed or undirected or simplified or unsimplified
networks is marginal. For this reason, we present here only the results for subsequent 6-month
windows, using unsimplified and directed networks, and briefly put each of the different
parts of these results into context; all other results are available on our supplementary website.

In Figure 6.5, we provide an overview of the accuracy of the different classification meth-
ods across all subsequent time ranges of all 25 subject projects. The precision is higher for
count-based classifications (median precision between 0.6 and 0.8) and cochange-network-
based classifications (median precision around 0.5) than for issue-based (median precision
around 0.04) or cochange+issue-based classifications (median precision around 0.04). That is,
classifications based on commit data (as in the count-based approaches and on the cochange
network) contain a higher percentage of correctly classified core developers over all classified
core developers, as compared to the classifications using networks derived from issue data.
This may be due to core developers extensively contributing to the source code, whereas
in issue networks there are also highly active commenting developers, who appear central
in the issue network and are, therefore, wrongly classified as core. In contrast, the recall
is higher for classifications based on issue (and cochange+issue) networks (median recall
around 1.0) than for commit-data-based classifications (median recall between 0.3 and 0.55).
That is, the proportion of developers from 𝐷𝑝𝑟𝑖𝑣 that are contained in the classified set of core
developers is high, sometimes even close to 100%. This is not unexpected as 𝐷𝑝𝑟𝑖𝑣 was derived
from issue data. More interestingly, these results indicate that the developers who trigger
privileged events also are central in issue networks and may also extensively participate in
issues. In general, the number of developers classified as core is higher on issue networks
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Figure 6.5: F1, precision, and recall for each classification method with respect to 𝐷𝑝𝑟𝑖𝑣.

than for commit-data-based classifications, and also higher than in 𝐷𝑝𝑟𝑖𝑣. This coincides with
the overall number of developers, which is in issue data way higher than in commit data,
which may be a reason for the low precision of the approaches that use issue data.

It is also worth noting that the recall for methods that rely on commit data is lower than for
the remaining methods, as there are developers in 𝐷𝑝𝑟𝑖𝑣 that are not part of the commit data
and, therefore, neither classified as core nor as peripheral. To account for that, we investigated
how many of the developers in 𝐷𝑝𝑟𝑖𝑣 are not classified, at all. Across all projects, a median of
about 17% of the developers of 𝐷𝑝𝑟𝑖𝑣 are not classified by commit-data-based methods. This
mainly happens because of two reasons: (1) Core developers may focus on maintenance tasks
(such as reviewing and merging) and do not contribute to the source code at all. (2) Some
developers only contribute to documentation files (such as README.md), which are not
covered in our commit data, as we only keep track of files that contain source code.

To compare the overall performance of the different classification methods, we look at the
F1 score. The commit-data-based classification methods have comparably high median F1
scores between 0.4 and 0.5, whereas all the remaining classification methods have much lower
median F1 scores of about 0.07. There is almost no difference in the accuracy between issue
networks (median F1 around 0.07) and cochange+issue networks (median F1 around 0.07).
The reason is that the issue network dominates the cochange+issue network, as there are
way more issue discussions than commits (which can also be seen in Table 6.5). Also the
difference in the accuracy of degree centrality, eigenvector centrality, or hierarchy centrality
is marginal, which is moreover independent of the network type (mostly degree centrality
performs best, in some projects hierarchy centrality performs best). So, in what follows, we
neglect the different network metrics and also the cochange+issue networks to focus on
comparing count-based, cochange-based, and issue-based classification methods.

To obtain an overview of the overall performance on different projects, we ranked the F1
score (using themedian to aggregate across time ranges) of each classificationmethod for each



170 Identifying Core Developers in Open-Source Software Projects

1

3

5

7

9

11

co
mm

it c
ou
nt

LO
C co

un
t

de
gre

e c
oc
ha
ng
e

eig
en
-ce

nt.
co
ch
an
ge

hie
rar

ch
y c
oc
ha
ng
e

de
gre

e i
ssu

e

eig
en
-ce

nt.
iss
ue

hie
rar

ch
y i
ssu

e

de
gre

e c
oc
ha
ng
e+
iss
ue

eig
en
-ce

nt.
co
ch
an
ge
+i
ssu

e

hie
rar

ch
y c
oc
ha
ng
e+
iss
ue

ra
nk

di
st
rib

ut
io
n

6 months, unsimplified, directed, all contributors

Figure 6.6: Distribution of the rank of the different classification methods. That is, for each project,
we ranked the median F1 scores of all classification methods. The classification method(s)
that had the highest median F1 on the project receive rank 1, the method(s) that had the
lowest median F1 in the project receive rank 11.

project. The classificationmethods that resulted in the highest aggregated F1 score on a project
received rank 1, the ones that resulted in the lowest aggregated F1 score on a project received
rank 11 (as we investigate 11 different classification methods). In Figure 6.6, we show the
distribution of the ranks of the classification methods across all projects. In most projects, the
commit-count-based method or the cochange-based methods perform best. However, there
are also projects, in which the issue-based classifications yield higher F1 scores (e.g., projects
Flutter or DTP; we illustrate accuracies for each project on our supplementary website).
These projects have a comparably low number of commits as opposed to a comparably high
number of issues.

The overall picture slightly changes when restricting the issue data to code contributors (see
Section 6.2.4). In this case, the issue-based classifications end up with a lower recall (median
values around 0.8) but a higher precision (median values around 0.3) and also a higher
F1 score (median values around 0.4) than when considering all contributors (see median
values stated above). So, when considering only code contributors, the issue-based methods
are almost as accurate as the commit-data-based methods, sometimes even more accurate.

Answer to RQ3: In summary, using commit data or cochange networks for classifying core
developers performs best. Though, which of these classification methods performs best, is
project-dependent. Issue networks often are distorted by users who intensively participate
in discussions. Different network-construction methods or time-window lengths do not
make a substantial difference for classifying developers into core and peripheral.
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6.4 Discussion

As our results for RQ1 indicate, privileged developers make use of their privileges very often,
mostly multiple times within a couple of weeks. Therefore, extracting privileged events within
time ranges of several months is sufficient to identify the set of privileged developers. Our
results for RQ2 demonstrate that the set of privileged developers is a sound approximation
for the set of core developers, which might not be complete, though, as there can be core
developers that do not make use of their privileges or that did not obtain the respective
privileges. This is the point at which our approach is stretched to its limits: We cannot identify
core developers before they receive privileges. Here, state-of-the-art classifications methods
become necessary again, which is why we evaluated their accuracy with respect to our
approach, to provide researchers and practitioners the option for selecting an appropriate
method for their specific use case. Our results for RQ3 indicate that unsupervised classification
methods that use commit data perform slightly better than methods that use issue data.
This demonstrates that issue discussions are dominated by users who ask questions or use
issues to retrieve knowledge about the project. Using the commit count, which is known to
provide only a limited view on organizational structure [JAH+17], seems to perform similarly
accurate for classifying core developers than various network-based classification methods.
This indicates that developers’ work on the source code (i.e., having a high coding activity)
is, at least, as relevant for becoming a core developer as their interaction with other people.
We arrive at a similar conclusion when looking at the used network-construction methods
and classification metrics, since they do not make a substantial difference. Sometimes, a
more simple, local centrality metric (such as degree centrality) performs even better than
eigenvector centrality as a global centrality metric. Nevertheless, these classification metrics
perform all pretty similarly, and it is also project dependent as well as data-source dependent
which one performs most accurate with respect to the set of privileged developers. The
fact that the different methods perform similarly well with respect to our set of privileged
developers also indicates that our approach of identifying privileged developers, indeed, is a
reasonable approximation for the set of core developers. All in all, instead of recommending a
specific method, our main goal is to inform researchers and practitioners about the accuracy
of the state-of-the-art unsupervised classification methods.

Our approach provides a viable basis for future research. On the one hand, since receiving a
higher level of permissions in a project is also a sign of trust within the community, using the
set of privileged developers, we can obtain more information about the characteristics that a
developer needs to become a core developer. In particular, we can identify in which time range
developers have received their privileges (or, at least, when they have used it for the first time)
and search for relevant characteristics of these privileged developers (also considering the
role within the network and community structure) before becoming a privileged developer.
Such information can be used to improve the search for future candidates to take on more
responsibility in the project. In addition, we can also check how the relevant characteristics
and the position in the network change after a developer has become part of the set of
privileged developers, allowing future researchers to investigate how the activities of a core
developer alter aftermoving up the ladder. This allows for improving community engagement,
identification of future project maintainers, and project stability and evolution.
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On the other hand, our automatic approach to identify core developers could be used for the
development of supervised learningmethods for identifying core developers. Up until today, to
the best of our knowledge, the lack of sufficient volumes of ground-truth data has prevented
supervised learning methods from being developed. Most of the developer-classification meth-
ods used in the literature are either unsupervised or have manually configured thresholds.
Hence, project data is only used for evaluation but not for model fitting. Yet, our automatic
approach to identify core developers based on privileged issue events could be used for
supervised learning methods. To demonstrate the possible benefit of our approach with
respect to this research direction, we provide a perspective on supervised classification in the
following section by means of a small explorative experiment.

6.5 A Perspective on Supervised Classification

As already explained in Section 6.4, state-of-the-art unsupervised developer-classification
methods mostly rely on manually configured thresholds or other manual steps. Although
we devise an automatic approach to identify core developers based on privileged issue
events, it is not capable of identifying potential future core developers before they get any
privileges, and it is also not suitable for projects that do not use social coding platforms such
as GitHub. Hence, there is still a need for supervised classification methods. Therefore, using
our automatic approach to identify core developers based on privileged issue events opens the
door for future research to obtain a higher level of maturity when identifying core developers
by automated means: Whereas manually configuring the optimal classification thresholds
would be a tedious task, supervised learning can be used to automatically learn classification
thresholds. Also, combining different classification methods (that use different data and
classification metrics) by hand would be impracticable. Instead, learning the weights for
combining multiple methods and automatically detecting which combinations are beneficial
and which ones not would be possible in a holistic supervised-learning approach. To sketch
out the possible benefit of using our automatic core-developer identification approach as a
foundation for future research in this direction, we conducted a small explorative experiment
on how to learn the classification threshold in a binary classification task for a single project
or for a set of projects, which we describe and report on in what follows.

Experiment Setting As a preliminary exploration of the potential that supervised learning
offers, we pose the problem of role identification as a binary classification task. Instead of
using manually configured thresholds, our idea is to learn a function 𝑓 ∶ 𝑑 → {0, 1} that maps
a developer 𝑑 to the core or peripheral class. While some of the classification methods that we
used in our validation study are certainly better than others, it is plausible that each of them
captures a different dimension of developer roles. For this reason, we construct the input to
the classification model to be a combination of all data and metrics used in our validation
study. We experimented with several classification models but found that the random-forest
classifier [CG16] with a maximum depth of five has the best generalization performance.
Due to highly imbalanced classes, we augment the minority class in the training dataset
by created synthetic data points using the SMOTE technique [CBH+02]. To evaluate the
generalization performance of the model, we apply standard cross validation and split the
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data into separate training and testing sets. We report results in terms of F1 score on the test
set for the random-forest classifier.

Prediction Scenarios We explore two different prediction scenarios. In the first scenario,
we apply k-fold cross validation by splitting the developers randomly into ten groups. We
then train ten different models such that each model is trained on nine groups and tested on
the remaining tenth group. The prediction performance is then averaged over the ten models.
This scenario tests how well the model can generalize to a new developer when the model
is able to learn from training examples of the roles from every project. For this purpose, we
made sure that the test set contains only developers that have not been part of the training
set. In the second scenario, we split the developers according to projects so that the training
set consists of developers from all projects except the one which forms the test set. In total,
25 models are trained, where each project appears once in the test set and the prediction
metrics are averaged. This scenario is more difficult because it tests the model’s ability to
learn general knowledge about roles in other projects.

Experiment Results For the first scenario, we get an F1 score of 0.73 for our combined
model, whereas for the unsupervised methods based on a single metric we get lower F1 scores
(0.3–0.5). Similarly, for our second scenario, our combined model (0.62) clearly outperforms
each of the unsupervisedmethods (0.2–0.4). Thus, our explorative small experiment indicates
that combining various data sources and socio-technical metrics can help learning promising
classification models.

Summary As our explorative experiment showed, our approach holds the potential to
become a foundation for future work on training supervised classification models for the
identification of core developers. Consequently, based on the outcomes of this experiment,
we formulate two hypotheses that should serve as a starting point for future research on this
topic, to sum up our perspective on supervised classification:

Hypothesis 1:
Developer-classification models that leverage supervised learning
are significantly more accurate than state-of-the-art developer-
classification methods.

Hypothesis 2:

Automatically combining data from different data sources (e.g.,
commits and issues) and different classification metrics (e.g., the
metrics described in Section 6.2.4) as well as learning appropriate
weights for combining multiple methods outperforms state-of-the-art
developer-classification methods.

6.6 Threats to Validity

The validity of the results of our validation study may be threatened in various directions (as
always in empirical studies). We have grouped the potential threats into four categories that
were introduced by Cook and Campbell [CC79], as suggested by Wohlin et al. [WRH+12].



174 Identifying Core Developers in Open-Source Software Projects

Construct Validity Different GitHub projects assign permission levels differently: Some
are more liberal, others are more strict. Also individual users use their permissions to a
different extent. Thus, relying on the use of privileged events could threaten the validity of
computing the set of privileged developers 𝐷𝑝𝑟𝑖𝑣. To mitigate this threat, we investigated two
different permission groups (privileged vs. privileged+extended) and four different lengths
for the time ranges.

Another threat concerns the way we construct issue networks, as users who do not con-
tribute to the source code may still be part of the issue data. We alleviate this by investigating
two cases: When considering only code contributors, the issue-based classification methods
perform better than on all contributors, but the overall picture only varies slightly.

Moreover, the network-construction procedure per se may affect our results. To account for
that, we investigated different network-construction methods (i.e., directedness, simplicity,
time ranges, and time windows, as summarized in Table 6.4). Our results confirm that the
choice of the network-construction method does not make a substantial difference.

Conclusion Validity Based on the outcomes related to RQ2, we conclude that 𝐷𝑝𝑟𝑖𝑣 is a
sound approximation for the set of core developers (that might not be complete, though).
This conclusion relies on the reliability of 𝐷𝑑𝑜𝑐 (i.e., project-reported lists). As these project-
reported lists are maintained by the project itself, they are an official source of information
declaring who is acting as a core developer in a project. Such project-reported lists may be
out of date or incomplete (as already discussed in Section 6.2.3), though. This is why we put
on manual efforts to search for these lists and check their relevance for our study. In most
cases, when these lists are maintained even within the repository, the commit history shows
that they get regularly updated. Still, these lists do not directly map to the time ranges that
we used for validating 𝐷𝑝𝑟𝑖𝑣. Since this mapping incorporates substantial manual effort, we
performed this validation step only for the last analyzed time range of a subject project. While
this might decrease conclusion validity, our manual checks as well as the choice for analyzing
the most recent time range ensure that our conclusions are valid, at least, for the time ranges
that are close to the last analyzed time ranges, as the project workflows were mostly stable.

Whereas our conclusion that 𝐷𝑝𝑟𝑖𝑣 is a sound approximation for the set of core developers
is mainly derived from the comparison with 𝐷𝑑𝑜𝑐 (which is an official source of information),
the comparison of 𝐷𝑝𝑟𝑖𝑣 with the classification outcomes of the state-of-the-art methods
(which do not build on officially stated information) provides corroborating evidence.

Internal Validity We do not track non-source-code files such as documentation files in
our commit data. This is intended, since we aim at identifying core developers who work on
the source code. Yet, non-source-code files usually amount only to a small fraction of the files
in a software repository.

When we identify developers, we rely on their names and e-mail addresses, to assign them
commits and issue events. This could be problematic if developers use different spelling
variants for their names or different e-mail addresses (e.g., when they have configured the
name or e-mail address in their GitHub account other than in their Git commit configuration).
To address this threat, we use the disambiguation heuristic of Oliva et al. [OSO+12], which
has turned out to be reliable in empirical studies [WSS+16], to consider instances that use
the same name or the same e-mail address being the same developer, in combination with
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manual sanity checks. If GitHub users keep their names and e-mail addresses private, we
rely on their usernames and on the data that is stored in the commits that are associated with
the usernames.

In a similar vein, the detection of bots is a non-trivial task. Therefore, we combine two
approaches: We first use the tool BoDeGHa [GDL+21] to automatically detect bots based on
their commenting behavior in issues, and then we perform manual adjustments in which we
also investigate “bot” substrings in usernames and bot marks visible on GitHub. Nevertheless,
even if there are bots that we did not detect, this does not threaten our results significantly.
The main incentive for detecting and removing bots is to get rid of the bots that are very active
and, therefore, distort the network structure or activity counts. If some bots remain in our
data that are as active as a usual developer, there is only a low probability that they would
distort our results significantly, since we can handle such bots as we handle real developers.

External Validity As there are various project shapes, one cannot generalize our results
arbitrarily to all OSS projects, at large. Though, we analyzed the complete history of 25 subject
projects (starting at the earliest point in time for which all the data sources for a project
were available). That is, summing up the investigated time periods of all our 25 projects, we
analyzed the data of a combined history of about 160 months, which is a substantial amount
of data. Due to the high number of network-construction methods that we investigated (since
there are 192 possible combinations of the choices in Table 6.4), our comprehensive validation
study was computationally expensive, which was the reason for limiting the number of
subject projects to 25. Albeit, we analyzed 25 projects of different sizes, project domains, and
programming languages, which provides already detailed insights.

The results of RQ2 are potentially threatened by the fact that we were able to obtain the set
of documented developers 𝐷𝑑𝑜𝑐 only for 12 out of our 25 subject projects. That is, we validated
the set of privileged developers 𝐷𝑝𝑟𝑖𝑣 only for these 12 projects with respect to a project-
reported list of core developers. We deliberately decided to keep the remaining 13 projects
in our study, though, because, this way, we explicitly account for the fact that there are also
projects that do not provide such project-reported lists and that, for such projects, it would
be beneficial to automatically identify core developers. Nevertheless, using the 12 projects for
which we obtained 𝐷𝑑𝑜𝑐 already shows for a multitude of different projects that our approach
of identifying core developers based on privileged events is sound and promising. Note that,
for answering RQ1 and RQ3, and also for conducting the experiment on supervised learning
methods that we have presented in Section 6.5, we used all our 25 subject projects to base the
corresponding results on a broader dataset. We did not detect any significant differences in
the results between the projects for which we were able to obtain 𝐷𝑑𝑜𝑐 and those for which
we did not, which also alleviates this threat.

Our method to construct the set of privileged developers 𝐷𝑝𝑟𝑖𝑣 is not directly applicable to
other platforms than GitHub. Albeit, other platforms might use similar permissions, so the
underlying idea of our method should also be transferable.
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6.7 Conclusion

Identifying core developers in OSS projects is beneficial in various occasions: (1) in large-
scale software projects, to improve developer coordination and software quality by revealing
who makes decisions and who has consolidated project knowledge; (2) for newcomers
and peripheral developers, to get in touch with maintainers and core developers; (3) for
companies, to decide whether and how to invest in a project or how to efficiently contribute to
anOSS project; (4) and for researchers, to obtain deeper insights into organizational structures
of OSS projects and their evolution. Identified core developers that are unknown yet to the
project leaders may be candidates to take on more responsibility in the project.

As explicit information on who is core developer is rarely available, we devise an automatic
method for identifying core developers in GitHub projects based on privileged issue events as
well as an assessment of the accuracy of state-of-the-art unsupervised classification methods.
Even more than recommending a specific method, we aim at informing researchers and prac-
titioners about the performance of the available methods. Our empirical study on 25 GitHub
projects reveals that the choice of data source (commit data vs. issue data) matters more than
the actual classification metric (e.g., the centrality metric), which is a non-obvious result.
Our results shall guide practitioners and researchers to choose an appropriate unsupervised
classification method and provide a solid foundation for future supervised learning methods.
For this purpose, we have formulated two hypotheses that should serve as guidance for future
work on developer-classification methods.



7Investigating Organizational Events in
Open-Source Software Projects

In open-source software (OSS) projects, the success and sustainability of a project may not
only depend on the quality of source code and the corresponding maintenance work, but may
also be influenced by external factors that are not directly under the control of the developers.
Such external factors could be different kinds of organizational events that happen during
the evolution of a software project. For example, this can be forks of a project that emerge
during the project’s evolution, which can attract users and developers more than the original
project, for various reasons, and leads to a competitive situation between the different project
forks [NM11; RG12; ZVK20]. A prominent example of such a situation are the projects own-
Cloud and Nextcloud, where Nextcloud has emerged as a fork of ownCloud in 2016.1 Also
core developers who leave the project can potentially cause serious trouble, for instance, when
they take important project knowledge with them, which hinders further advancements of
the project and prevents future core developers from keeping the project in business [FSV20;
IRO+09; MTM+19; Moc10]. For example, the lead maintainer of project Gogs disappeared
for more than a month, which temporally hindered the project development and eventually
led to the creation of its fork Gitea.2 To provide a third example, companies that take over an
OSS project or cease their support for a project, such as IBM’s withdrawal from OpenOffice
in 2014,3 can also affect the success and sustainability of a project. All these different kinds of
organizational events have in common that they can cause changes in the developer participa-
tion and, thus, in the organizational structure of the project. Leaving developers and missing
project knowledge can, for example, lead to the introduction of bugs or to unmaintained
projects [NR17; RGM05]. In theworst case, these organizational events can even lead to project
abandonment or failure [CV17]. Therefore, investigating such organizational events, their
causes, and their implications can be beneficial for understanding and improving OSS devel-
opment, and, thus, can be seen as a first step toward avoiding project failure eventually.

In this chapter, we aim at obtaining an understanding of the influence of organizational
events on the organizational structure of OSS projects. Understanding how such events
influence the organizational structure could further be used to develop mechanisms to avoid
critical consequences of events with negative connotations (such as the introduction of bugs
or, in the worst case, project failure and project abandonment). In particular, we leverage

1 Frank Karlitschek: “Nextcloud”, 2016: https://karlitschek.de/2016/06/nextcloud/ (accessed at 2023-11-08)
2 GitHub issue: “Is Gogs dead?”, 2015: https://github.com/gogs/gogs/issues/1304/ (accessed at 2023-11-08)
3 Bruce Byfield: “LibreOffice, OpenOffice, and rumors of unification”, 2014: https://www.linux-magazine.

com/Online/Blogs/Off-the-Beat-Bruce-Byfield-s-Blog/LibreOffice-OpenOffice-and-rumors-of-

unification/ (accessed at 2023-11-30)

177

https://karlitschek.de/2016/06/nextcloud/
https://github.com/gogs/gogs/issues/1304/
https://www.linux-magazine.com/Online/Blogs/Off-the-Beat-Bruce-Byfield-s-Blog/LibreOffice-OpenOffice-and-rumors-of-unification/
https://www.linux-magazine.com/Online/Blogs/Off-the-Beat-Bruce-Byfield-s-Blog/LibreOffice-OpenOffice-and-rumors-of-unification/
https://www.linux-magazine.com/Online/Blogs/Off-the-Beat-Bruce-Byfield-s-Blog/LibreOffice-OpenOffice-and-rumors-of-unification/


178 Investigating Organizational Events in Open-Source Software Projects

the network representation of developers’ collaboration and communication activities to
obtain insights into how different kinds of organizational events influence the organizational
structure of a project. By means of an exploratory empirical study on a diverse set of case
studies [RHR+12], we investigate exemplary cases of organizational events and analyze
whether and how these events are reflected in various developer-network characteristics. In the
long run, developer network-characteristics could be used to reveal particular specifics (e.g.,
a reduced information flow and a lack of robustness to developer turnover in consequence of
a sudden loss of scale-freeness) that potentially threaten the organizational structure of the
project and, thus, the success and sustainability of the project. Knowing about such specifics
could be used to develop an early-warning mechanism or even to develop counteractions
against critical organizational events, to avoid negative consequences of such events.

All in all, we make the following contributions:
• An exploratory investigation of different kinds of organizational events on an exemplary

basis for 8 case studies (i.e., 8 OSS projects and some of their forks), analyzing whether
organizational events are reflected in various characteristics of developer networks.

• Insights into the evolution of developer-network characteristics, which could be useful
for answering various research questions on the organizational structure of OSS projects.

• Hypotheses regarding which network characteristics might be promising indicators for
detecting specific organizational events that affect the structure of developer networks.

• A foundation for future work on developing measures to detect organizational events
and to develop early-warning mechanisms and countermeasures to avoid potentially
negative consequences of organizational events.

• A replication package including pseudonymized raw data, analysis scripts, and results
on a supplementary website: https://se-sic.github.io/website-event-analysis/
and https://zenodo.org/records/10614399 .

Of course, the results of our explorative empirical study are not yet suited to be used in prac-
tice, since the hypotheses that we develop need to be evaluated by additional studies, ideally
at large scale. Yet, with our preliminary investigations and by devising hypotheses, we open
the door for future investigations in this direction that can follow-up on our investigations.

7.1 Background & Related Work

Before we describe our methodology, we first provide background information and related
work that addresses organizational events in OSS projects as well as the success or failure
of an OSS project. At the end of this section, we provide an overview of related studies that
either pursue a similar objective to our study or that use a similar notion of organizational
events to investigate various aspects of project sustainability.

7.1.1 Organizational Events

During the course of an OSS project, specific events can happen that may affect the evolution
of the project. In this study, we consider different kinds of organizational events, namely
(1) the emergence of forks, (2) the take over or withdrawal of an OSS project by a commercial
company, (3) the abandonment of individual developers who had maintainer roles in the

https://se-sic.github.io/website-event-analysis/
https://zenodo.org/records/10614399
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project, (4) and other technical and organizational changes in the project (e.g., a change
of the version-control system or a license change). In the following, we provide general
background information on the different kinds of events and how they can affect the social
and organizational structure of OSS projects.

The Emergence of Forks Fogel defined a fork as a “copy of the source code” that can be
used “to start a competing project” [Fog05]. Similarly, Nyman et al. [NML+12] characterized
a fork of a software project as a “version which seeks to continue to exist apart from the
original”. While the possibility to fork a project is generally seen as a positive aspect of
software development since it allows replicability, customizability, and extendability of a
project, it is also seen as a threat to the sustainability of a software project [Fog05; NML+12].
In case of a strong deviation between a fork and the original project, there is a risk that users
and developers leave the original project (i.e., they stop using it and stop contributing to it)
and move to the fork instead [Fog05; NML+12].

However, not every fork of a software project leads to amigration of users and developers, as
there are different types of forks that fulfill different purposes. Zhou et al. [ZVK20] distinguish
between hard forks and social forks, which show significant differences in their amount of activ-
ity [HGF+22]. While hard forks lead to a splitting of the project into separate development
communities [ZVK19], social forks are usually created to temporarily develop new features in
a fast and efficientway, oftenwith the goal tomerge them, in the long run, back into the original
project [ZVK20]. Especially since the emergence of social coding platforms, such as GitHub,
forks are frequently used as ameans of distributed coding, in which developers independently
work on their own fork and submit pull requests (PRs) to the original project for integrating
their code changes into the original project [DST+12; GPD14; KGB+16; ZVK20]. Therefore,
in our study, we do not consider the creation of social forks as organizational events, as this
type of forks is part of the standard contribution model of social coding platforms [JLH+17].
Consequently, when we talk about the emergence of forks as organizational events, we always
refer to hard forks. Nevertheless, Zhou et al. [ZVK20] found that it is not trivial to distin-
guish between social forks and hard forks. In particular, nowadays, hard forks occur only
rarely, but if they occur, they are potentially costly for the project’s community [ZVK19].

A substantial corpus of research has already investigated the reasons and motivations why
hard forks emerge. One reason could be the intention to provide different variants of a single
software product for different hardware or different use cases [FLL+14; RBB+22; ZVK20].
Such forks are often maintained together and are also called a “software family” [BON+22],
since the original project and its forks only deviate slightly to serve slightly different purposes.
Hence, “software families” are also not considered in our study. Another motivation for
creating a fork could be that the original project is or seems to be abandoned, and a new
development team (may it be only a single developer or multiple developers) tries to continue
the unmaintained or abandoned project [NM11; RG12; ZVK20]. According to Zimmermann
[Zim20], such forks are called “friendly forks”. Furthermore, sometimes there are legal
reasons for forks (e.g., changes in licenses), or companies create their own forks of a project
to make it compatible with their closed-source features or to build a branded version of
it [RG12; ZVK20]. Finally, hard forks can also be motivated by disputes (of technical or
inter-personal nature) among developers [GL14; NM11; RG12; ZVK20]. Interestingly, hard
forks are often not created intentionally, but start as soft forks, having the goal to merge
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changes back to the original project. For example, if developers receive answers to their pull
requests too slowly, or if their pull requests are rejected, or if they face technical or personal
issues (e.g., issues with external libraries, or features that are undesired by the maintainers
of the original project), developers continue working on their soft forks, eventually turning
them into hard forks [ZVK20]. When the hard forks gain more and more supporters, who
also desire these technical solutions, hard forks often change their name to highlight that the
fork has diverged from the original project [ZVK20]. Sometimes, the emergence of a hard
fork is even community driven, for instance, when a substantial fraction of the developer
community does not agree with the decisions of the maintainer of the original project [RG12].

The emergence of hard forks can have different effects on the original project. According to
a study by Zhou et al. [ZVK20], in most cases in which an active project had been forked, no
interaction between the fork and its origin happened. Evenmore, in 47.6%of their investigated
cases, the forks live longer than the original project, whereas in 43.6%, the original project
outlived the fork. Only in 8.8% of the cases, both, the original project and the fork, stayed
active. When an inactive project had been forked, more than 60% of the forks were successful,
and in 5% of the investigated inactive projects, the original project even became active again
after the fork had emerged [ZVK20].

All in all, as demonstrated by the previous research presented above, the emergence of a
hard fork can drastically influence the reputation, the developer behavior, and, in the worst
case, even the existence of the original project.

The Role of Companies As we have already seen above, the involvement of companies
can lead to forks. However, companies not only create their own forks of OSS projects to
satisfy their own requirements on the project [ZVK20], but can also participate in the original
project without forking it. Nevertheless, the involvement of a company in the original project
can also cause organizational changes. For example, when the Oracle Corporation took over
Sun Microsystems, which was the owner of OpenOffice, Oracle restricted the community
participation of OpenOffice (e.g., by forcing developers to sign a new contributor licensing
agreement (CLA)), which discontented and frustrated the developers and eventually led to
the emergence of LibreOffice as a separate fork [GL14; MCD19]. Although we have already
considered the emergence of forks as a kind of organizational events, we treat the new
involvement of a company in an OSS project as a separate kind of organizational events,
which not always lead to forks, but also can affect the developer participation (e.g., loss of
developers or attraction of new developers) directly without the emergence of forks. In fact,
the role of companies in OSS is different, depending on the intention of the company and
the underlying governance structures of a particular OSS project [ZSL+22]. While some
companies accept the existing governance structures and only contribute to the OSS project
for a limited amount of time to get a specific feature implemented, other companies want
to gain strategic influence in the project and plant their employees as paid core developers
in the OSS project [BGL+18; BGL+21; Lee12]. This, again, can influence the participation of
voluntary developers [HR17; ZMM+16]. Also when companies cease the support of an OSS
project, that can influence the developer participation, either leading to project inactivity in
consequence of its unmaintained state or to an increase in developer activity due to the end
of the domination by the company [ZSL+22]. Not only the organizational structure can be
influenced when a company takes over an OSS project or withdraws from an OSS project, but
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also the software quality can be directly affected. Sato et al. [SWF+13] showed that, in OSS
projects that have been taken over by multiple companies one after the other, source-code
files that have been changed by multiple companies or organizations contained more bugs
than files that have been changed by only one company or organization, respectively.

The Abandonment of Developers Beside the consequences of forks and the involvement
of companies, there are also other (possibly unknown) reasons why developers leave a
project. According to Marsan et al. [MTM+19], the “loss of contributors” is “one of the most
important social problems”[MCD19; MTM+19] in OSS projects. In their interview study, they
identified multiple factors that can cause a loss of contributors: On the one hand, conflicts
between developers, but also toxic and aggressive communication behavior (especially from
maintainers) can cause developers to stop contributing to the project. On the other hand,
a general loss of motivation or the emergence of other projects that are more attractive to a
specific developer may make them leave the project [MTM+19]. Miller et al. [MWK+19]
found by means of a survey that also occupational reasons (such as “getting a new job”)
are often mentioned as the main reason for quitting project engagement, among other social
reasons (such as “personal circumstances”).

The reasons and consequences of developer turnover have already been investigated in
previous research [e.g., FPB+15; FSV20; JYF24; LRS17; RG06; RGH09; SHD12]. Mockus
[Moc10] found that the abandonment of developers can cause “gaps in knowledge” that
may affect software quality negatively and increase the defect-proneness of a project. The
issue-fixing time tends to be longer, accompanied by slower implementation progress, in
projects with a high rate of leaving core developers in contrast to stable projects [FSV20].
Izquierdo-Cortazar et al. [IRO+09] showed that the amount of knowledge loss in case of
leaving core developers is project dependent: It ranges from projects that continue as without
any developer turnover to projects that rewrite parts of the source code with a new developer
team. In the latter case, the rewriting has become necessary because the needed knowledge
about these parts of the source code has been lost after the respective developer had left the
project. Moreover, Izquierdo-Cortazar et al. [IRO+09] provide measures to mitigate the risks
of knowledge loss by recommending that multiple core developers should work on each part
of the project, to enforce that multiple developers acquire knowledge on these parts.

Closely related to the abandonment of developers and the corresponding knowledge loss is
the concept of the “truck factor”. Williams and Kessler [WK03] introduced the truck factor as
“the number of people on your team that have to be hit by a truck [...] before the project is in
serious trouble”. Thus, a low truck factor in a project indicates a serious risk of knowledge loss
if one or few developers suddenly abandon or are not available any more, for instance, due to
an unexpected death [APH+16]. Although there are different computation algorithms for the
truck factor [e.g., APH+16; FMV+19; RM10; RZD+16], the general concept of the truck factor
helps quantify the risk of knowledge loss in consequence of the abandonment of central and
important developers. Therefore, if core developers leave a software project, we consider this
an organizational event that can heavily impact the organizational structure of the project.

Other Organizational Events Finally, there are also other organizational events that
belong to neither of the above described kinds of events. For example, a change of the project’s
main communication channel (e.g., switching issue trackers) may affect the organizational
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structure of a software project and may influence the project’s success [ZC19]. Also, changes
in the used contribution technologies (e.g., a switch from the version-control system SVN
to Git) can lead to developers struggling with the new technologies or complaining about
them and, in turn, affect project sustainability [AS09; MBN+14; RA12; SH17]. Moreover, even
license changes can affect the contribution behavior of developers, leading to project failure
if a license is too restrictive, for instance [MS20; SH17; VR15]. Furthermore, also scheduled
events such as release dates, at which a new revision of the software product is planned
to be rolled out, can affect the organizational structure of an OSS project, since developers
usually show different amounts of activity with respect to different development phases in a
release cycle [ACM+21; KAD+15]. Thus, the list of organizational events that may potentially
influence the organizational structure, the developers’ contribution behavior, or the projects’
sustainability could be continued endlessly. Consequently, our division of organizational
events into different kinds of events is not exhaustive, and the list of events that we consider
in our study is only an exemplary selection from the variety of organizational events that can
potentially occur in an OSS project.

7.1.2 Success and Failure of Open-Source Software Projects

Closely related to the occurrence of organizational events is also their influence on the
success of an OSS project, as already indicated above while describing the different kinds
of organizational events. As our motivation for the investigation of organizational events is
driven by the potentially negative consequences of specific organizational events that need
to be avoided—in the worst case, the abandonment or failure of the project—we provide, in
what follows, an overview of different notions of success and failure of OSS projects and how
OSS projects are evaluated with respect to success or failure.

Reasons for Project Failure In the literature, the success and failure of OSS projects has
been investigated from different points of view, using different measures. While Trinkenreich
et al. [TGW+22] investigated the success of individual developers and their contributions
in OSS projects, which often is perceived subjectively, we instead look at the success or fail-
ure of a project itself. Ewusi-Mensah and Przasnyski [EP91] found that, when projects are
abandoned, behavioral and organizational issues usually play a more significant role than
pure technical issues. Coelho and Valente [CV17] conducted a survey among maintainers
of abandoned OSS projects (i.e., projects without any commits during the last year) and
collected nine reasons for project failure (which they equate with project abandonment). The
majority of projects have been abandoned because the project itself was considered “obsolete”
or competitor projects (that were often initiated or dominated by commercial companies)
have emerged and have become more popular, or companies even took over the project.
Besides, “outdated technologies” and maintainability problems were mentioned as reasons
for project failure. Also social issues, such as the lack of time or interest or conflicts with other
developers, are seen as reasons for the failure of a project. Finally, legal problems (e.g., caused
by licensing issues) and also the lack of expertise are considered to be causes for project
failure [CV17]. To mitigate the risk of project failure, their survey participants proposed to
improve the attractiveness of a project to attract new developers, and also to admit additional
core developers and maintainers to which the project can be transferred if the initial maintain-
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ers are unable to deal with the amount of maintenance work or decide to abandon [CV17].
Also, Fang et al. [FHV23] discussed that project attraction is important for project success.

Raja and Tretter [RT12] identified failed OSS projects as projects on the platform Source-
Forge that are labeled as inactive and showed that different measures, such as the frequency
of software releases, the reaction time on reported bugs, or the rate of problems that are
addressed by appropriate specialists can be used to differentiate between failed and success-
ful projects. Further research has shown that restrictive licenses and periods of inactivity or
reduced activity threaten the success of an OSS project [CMP07; SAM06; SSN09]. Also, an
increasing number of developers is beneficial for project success, whereas a too large number
of developers can also threaten the success if coordination problems arise [CMP07].

Project Success and the Characteristics of Developer Networks Joblin and Apel [JA22]
investigated whether socio-technical aspects are related to project failure or project success
and used simple network characteristics (such as vertex degree or clustering coefficient)
to predict the success or failure of an OSS project based on the developer activity in early
stages of a project. As in previous studies, they defined failed projects as abandoned projects.
Notably, their approach was able to generalize to unseen projects (which were not involved
in the training process of their prediction model). Comparing the prediction performance of
developer networks (in which developers are connected with each other when they contribute
to the same function) to the prediction performance of developer-artifact networks (in which
developers are connected to the artifacts, that is, functions, they have worked on) revealed
that developer-artifact networks had a higher prediction performance in their study. In
addition, they also were able to identify early indicators of project success: Developers need
to have comparably low degrees, meaning that they only have few other developers they are
collaborating with, but they need to have a high local clustering coefficient, meaning that
the developers they are collaborating with are also collaborating with each other. This way,
coordination processes are easily satisfiable and developers work in groups that are densely
connected and concentrate on similar parts of the source code. Moreover, stable groups of
developers that work on the same artifacts, having a low amount of developer turnover, seem
to be beneficial for project success [JA22].

Recently, researchers tried to examine whether developer communication related to gover-
nance policies inOSS projects is associatedwith project success. Yin et al. [YCY+22] found that
failed and successful projects show different patterns of communication activity. In addition,
Yin et al. [YZF23] investigated organizational changes in Apache Incubator4 projects, in which
every project that leaves the incubator is labeled as “graduated (sustainable)” or “retired (un-
sustainable)” by committees of the Apache Software Foundation. Thus, “retired (unsustain-
able)” projects can be seen as failed projects, whereas “graduated (sustainable)” are successful
projects. For their study, they constructed developer networks based on e-mail communication
as well as on cochange information, using ranges of 1 month, and analyzed episodic (i.e., un-
typical, sporadic) changes of specific network characteristics (e.g., average degree, network
average clustering coefficient, or density). They found that successful projects have shorter
intervals of organizational changes than failed projects, and the developers in successful

4 The Apache Software Foundation helps auspicious and innovative software projects, usually when they stand
at their beginning, to grow and progress within the Apache Incubator by providing services, mentoring, and
technical infrastructure as well as guiding them on applying the governance policies of the Apache Software
Foundation, as stated on their official website: https://incubator.apache.org/ (accessed at 2023-11-20)

https://incubator.apache.org/
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projects generally show more engagement and respond faster than in failed projects [YZF23].
Although they investigate similar network characteristics thanwe do and search for significant
changes in these characteristics, they do neither investigate these changes at specific points
in time, nor do they relate identified changes in these characteristics to specific events.

7.1.3 Studying the Role of Organizational Events in the Literature

Having introduced general background information on organizational events and the success
or failure of OSS projects above, we now present related work on investigating the role of
organizational events in OSS projects.

First of all, let us distinguish organizational events, which we use in our study, from other
kinds of events in OSS projects. There are studies that investigate other kinds of events, for
instance, activity events in issues (i.e., commented events, see also Chapter 6) to identify
patterns in sequences of developers’ activities [e.g., DR21; RD15]. Li et al. [LCQ21] considered
events as the heaped occurrence of negative comments in issue discussions and grouped them
into specific categories (e.g., disagreement or third-party problems). Although analyzing the
activities of developers can be helpful to identify factors for project success or failure, we aim
at analyzing how specific, sometimes even drastic, organizational events that happen at a
specific point in time (e.g., external events such as company acquisitions, as well as internal
events such as developer abandonment) affect the network structure of an OSS project.

Other research focused on identifying organizational events in OSS projects from a pure
technical perspective, whereas we analyze how these events influence the interaction between
developers. For example, Yilek et al. [YRS+09] considered a severe security vulnerability in the
DebianOpenSSL package thatwas identified in 2008. In their study, they investigated how long
it took until the vulnerability was fixed on web servers all over the world and how certificate
authorities dealt with servers that have not been fixed, but they did neither consider social
aspects nor developer interactions. In a similar vein, Durumeric et al. [DLK+14] investigated
how the Heartbleed5 vulnerability in OpenSSL, which was detected in 2014, has been fixed.
They monitored how and how fast the corresponding software patches have been applied
to web servers, and they analyzed the notification behavior about the vulnerability and its
technical consequences.

Also investigating the Heartbleed vulnerability, but closer to our study, Walden analyzed
the organizational consequences of Heartbleed [Wal20]. That is, they analyzed how the
number of developers, the number of commits, the number of lines of code, and general
software engineering practices have changed after Heartbleed. Regarding the analysis of
software engineering practices, they studied information on web sites, mailing lists, and the
source-code repository and interviewed a central developer who joined OpenSSL shortly
after Heartbleed to support the community in changing the processes. In their study, they
not only considered the detection of Heartbleed, but also other organizational events later
on (e.g., the announcement of new coding guidelines, or the publication of a general code
cleanup). In particular, they compared several code andproject characteristics in the 25months
prior to and the 25 months after each of the events (based on visual observations in plots,
but also statistically confirmed by using regression discontinuity models) as well as across

5 “The Heartbleed Bug”: https://heartbleed.com/ (accessed at 2023-11-30)

https://heartbleed.com/
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multiple releases on the complete evolution time period of the project. Overall, they identified
substantial improvements in OpenSSL after the detection of Heartbleed, regarding code
quality as well as regarding development processes. For example, OpenSSL established
GitHub issues as an issue tracker and changed their release strategy after Heartbleed. While
OpenSSL was a largely inactive project prior to Heartbleed, the developer activity in the
project has steadily increased thereafter. Thus, according to Walden [Wal20], the project has
turned into a sustainable project after all the organizational changes have been applied in
consequence of the severe Heartbleed event.

Karus transformed time series of descriptive project statistics (e.g., number of active devel-
opers) into wavelets and applied filters afterwards [Kar13]. Then, they checked for anomalies
in these wavelet-representations of time series and identified evolutionary patterns, that is,
points in time were a specific event must have happened that has led to anomalies in different
project statistics. In contrast to our study, they only look at changes in the statistics to detect
possible dates for events without relating them to documented events, whereas we search for
documented events and investigate whether we can find anomalies in the statistics around
the point in time at which the event happened.

Similar to our study, also other studies detected organizational events in OSS projects that
could have an influence on the developer activity or organizational structure in the project.
Ververs et al. [VBJ11] collected 116 events from websites related to the Debian project and
grouped them into 15 categories of events (e.g., releases, incidents, major bugs, conferences
related to Debian taking place, etc.). Then, they investigated whether changes in the number
of developers or in the average number of commits per developer are correlated with the
occurrence of these events. Asmultiple events occurred temporally close-by to each other, they
combined multiple of the events into one event, as otherwise it would be difficult to associate
observed changes over time to any of the individual events. Particularly, they also considered
changes that occurred up to four weeks before or after an event, to account for time-shifted
consequences. In summary, they found that only in less than 11% of the events there was a
correlation between the event and a change in developer activity. The most influential events
in this regard were dependency issues, problems with releases, or general incidents.

Shaikh and Henfridsson [SH17] extracted 10 events (mostly related to technology changes,
such as the change of the used version-control system) in early phases of the Linux kernel
project, based on manual inspections of the discussions on the corresponding mailing list.
Then, they analyzed the evolution of the project’s governance by characterizing the different
coordination processes that were used in the time periods between the events. Different from
our study, they investigated only the contents of selected e-mail discussions from a theoretical
point of view but did not analyze any practical collaboration or communication data.

To focus on company involvement and the long-term sustainability of forks, Gamalielsson
and Lundell [GL14] investigated the evolution history of OpenOffice, LibreOffice, andApache
OpenOffice, which all originated from the same project. In particular, they analyzed how
developer activity and developer retention evolve with respect to the emergence and co-
existence of forks and how knowledge is transferred among the three interrelated projects.
While we investigate similar events, our focus is on how such events affect the organizational
structure and particular characteristics of developer networks.

Zanetti et al. [ZST+13] analyzed the bug tracker of project Gentoo and identified that,
starting at a certain point in time, a single central developer was involved in most of the
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interactions with other developers. However, when this developer had left the project unex-
pectedly, the project’s developer community was struggling with problems. To investigate
the consequences of the developer’s abandonment on the organizational structure as well
as on the bug handling performance, Zanetti et al. [ZST+13] constructed developer net-
works for 30-days time ranges based on assigned–assignee relationships on bugs, using a
sliding-window approach, and analyzed how the characteristics of the developer network
(centrality, clustering coefficient, connectivity) have changed over time. As long as the con-
sidered developer was active in the project, the networks had a high clustering coefficient as
all others were centered around this one developer, but when this developer left the project,
the network became sparse and had only a small clustering coefficient. In our study, we use
a similar approach using slightly different notions and time ranges of developer networks,
investigating an even more diverse set of different network characteristics on a variety of
different kinds of events.

As different interaction channels are involved in OSS projects, it is possible that some
events influence only some of the channels. Therefore, Huang et al. [HCQ+22] developed an
event-monitoring model which helps to identify organizational events on different interaction
channels and data sources. Also in our study on organizational events, we investigate differ-
ent interaction channels and examine whether and how the characteristics of collaboration
networks and communication networks are affected by organizational events.

7.2 Methodology

With our exploratory empirical study, we want to find out whether there are specific network
characteristics that could be used as indicators for specific kinds of organizational events (see
Section 7.1.1 for the different kinds of events). Thus, we ask the following research question:

RQ:
Do particular network characteristics reflect changes in the network structure
when specific organizational events (such as fork creation, company acquisition,
the abandonment of core developers, etc.) happen?

To answer our research question, we take publicly known organizational events in specific
OSS projects and investigatewhether and howparticular network characteristics have changed
in their values around the points in time at which the events happened. This way, we aim at
identifying network characteristics that might be sensitive to such organizational events.

In the following, we provide information on our data-extraction procedure, we describe
which network characteristics we investigate, and howwe identify whether changes in specific
network characteristics could be related to organizational events.

7.2.1 Data Extraction

For all the projects that we analyze in our case studies, we use Codeface to gather commit data
from the corresponding Git repository. Depending on whether a project has used mailing
lists or GitHub issues as communication channel for developers, we extract the corresponding
e-mail data from the publicly available mailing-list archive Gmane or the corresponding issue
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Table 7.1: Overview of the network characteristics that we investigate with respect to the occurrence
of organizational events.

Network Characteristic Description

Average degree Captures with how many other developers a developer interacts on
average.

Average eigenvector centrality Provides an overview of whether there are many developers that have a
high centrality or only few ones.

Average path length Indicates how many developers, on average, need to pairwisely interact
with each other to pass information from one developer to any other
developer in the network.

Density Is a general indicator of the level of activity (i.e., the interactions between
the developers) in the project.

Global clustering coefficient Indicates whether the network contains tightly connected clusters or
rather loosely connected individuals.

Network average clustering coefficient Indicates whether the developers, on average, are tightly connected with
many others and, thus, well integrated into the project community.

Hierarchy Indicates whether the project has “a centralized governance structure”.
Modularity Indicates whether there is a strong community structure in the network.
Scale-freeness Indicates that a network is robust to changes.
Small-worldness Indicates a fast information flow due to small average path length and

high clustering coefficient.

discussions from GitHub using our tool GitHubWrapper, as described in Section 2.4. For
projects that have used both communication channels extensively (independent of whether
they have been used one after the other or in parallel), we extract data from both of them.

In addition, we extract organizational events and the dates at which they have happened
via an extensive web search in blog posts, news articles, issue discussions, or on the project’s
website. We provide more information on that when we describe the specific events that we
have extracted for our case studies (see Section 7.3.1).

7.2.2 Obtaining Network Characteristics in Relation to Events

From the obtained project data, we build undirected, simplified developer networks using
the network library coronet, as explained in Section 2.3.1. In particular, we build cochange
networks as well as communication networks (i.e., mail networks or issue networks), to
account for both, the organizational structure behind the source-code changes and the or-
ganizational structure behind the communication activities. Similar to the methodology
that we have used in Chapters 5 and 6, we split the data into overlapping time ranges of
6 months [HKC+11; MW11; PBD+14], using the sliding-window approach that we have in-
troduced in Section 2.3.2.6 For each of the 6-months networks, we extract various established
network characteristics, similar to previous studies that analyzed the evolution of developer
networks [e.g., JAM17; Job17]. In Table 7.1, we provide an overview of the network character-
istics that we use in our study; all of them have already been explained in Section 2.3.3. To

6 In a sensitivity analysis, we also tried time ranges of 3, 9, and 12 months. While 9-months ranges yield similar
results to 6-months ranges, 3-months ranges are too noisy, and 12-months ranges only seldomly reveal changes.
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Figure 7.1: Exemplary visualization of how we visualize the results of our study for the evolution of a
single network characteristic of a single project over time: For each time range, we plot the
value of the investigated network characteristic (here as a triangle, but we also use other
shapes in our result plots). The values can be different for each time range, but we neglect
this here in the exemplary visualization for simplicity reasons. As one value of the network
characteristic represents not only a single point in time, but the network of a complete time
range, we highlight the corresponding time range in this exemplary visualization. From
that, we can see that the point in time at which the actual value is depicted corresponds to
the end of the time range it represents. This is reasonable, as the network of a time range
captures all the activities up to the end of the time range. The blue vertical line represents
an organizational event that happened at a certain point in time. Note that the event can
occur within any time range, not necessarily at the beginning or end of a time range.

account for general changes in the amount of activity in a project, independent of the network
structure, we also determine the number of developers, the number of commits, the number of
e-mails, and the number of issue comments for each time range.

For each of the extracted network characteristics and numbers, we plot their respective
values over time. On the time line, each value refers to the end of the respective 6-months
window, to depict that the corresponding value considers the activities up until that point in
time at which we show it in the plot. In Figure 7.1, we provide an exemplary visualization
of how we plot the evolution of a specific network characteristic over time. In addition to
plotting the respective values for each time range, we also visualize the occurrence of an
organizational event by a vertical line at that point in time at which the event happened.
Note that the events typically do not fall on the same date as the end of our time ranges do.
Thus, the events usually happen within one of the 6-months time ranges for which we depict
the corresponding values of the respective network characteristic, as we demonstrate in our
exemplary visualization in Figure 7.1. Also note that one value of a network characteristic for
a specific time range only belongs to one specific network type. That is, we depict different
values for different network types (e.g., the cochange network and the issue network) for the
same time range using different shapes and colors.

7.2.3 Assessing the Influence of Events on Network Characteristics

To assess whether a specific network characteristic may potentially indicate changes in the
organizational structure of an OSS project, we investigate whether we can spot any differences
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in the respective network metric before and after the event happened. As the event does not
necessarily separate two time ranges, we cannot make a clear cut between time ranges before
and after an event has happened. Nevertheless, this is not desirable, though, as we do not
expect that organizational changes affect the network structure suddenly. While there may
be events that might be foreseeable and show themselves in gradual changes to the network
structure until the actual event happens (e.g., longstanding core developers who plan to leave
the project might already become inactive or less active in the months or weeks before they
actually leave or announce to leave), other events might affect the network structure only in
the ranges after the event (e.g., if a core developer passes away in an accident, this cannot
be visible before the event happens). Therefore, we look for general changes in the network
characteristic that are clearly visible, independent of whether they happen close to the event
or shortly before or after it.

Notice that with our exploratory empirical study, we aim at investigating whether we can
find changes in the network structure that might be indicators for organizational events.
Therefore, due to the preliminary nature of our study, we do not apply any statistical methods
to determine significant differences. Instead, we look for clearly visible, evident changes in the
network characteristics (similar to the initial observations of changes in project characteristics
in the study of Walden [Wal20]), without questioning their significance from a statistical per-
spective. As we consider our study to be a preliminary study on whether developer-network
characteristics reflect organizational events, we leave any statistical checks open to future
studies which need to evaluate our results at large-scale using appropriate statistical methods.
Consequently, as a result of our study, we devise hypotheses based on our visual insights.
These hypotheses shall serve as entry points for future studies in which the hypotheses need
to be evaluated. For more details on the different possibilities of how our study needs to be
continued, we refer to Sections 7.4 and 7.5.

7.3 Exploratory Study

In our exploratory empirical study, we investigate 53 selected organizational events of various
kinds in 8 different case studies. A case study, the way we use the term in this study, either
consists of a single OSS project, or of multiple OSS projects that have a common history
(e.g., one project being a fork or the continuation of the other project). We start with a brief
description of our case studies and the various events that we investigate in a particular case
study. Thereafter, we present our observations from analyzing the different, above mentioned
network characteristics with regard to potential changes around the points in time at which
an organizational event has occurred.

7.3.1 Case Studies and Events

For this study, we have selected well-known, long-standing projects as our case studies, for
which we were able to extract events from official websites, news articles, or blogs, etc. In
what follows, we briefly describe each of our case studies and summarize the corresponding
events. As already stated above, all the information about the events has been collected from
blog posts, news articles, the projects’ websites, or similar sources on the Internet. We provide
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references to the respective sources of information for each event in Table 7.2, in which we
provide a comprehensive overview of all the organizational events that we investigate in our
study. Note that we assign a unique identifier Exy to each event, where x denotes the number
of the case study in which the event occurs and y denotes the number of the specific event.
Within each case study, the events are temporally ordered.

ownCloud & Nextcloud Our first case study consists of the projects ownCloud and
Nextcloud, which are cloud platforms for sharing files. In 2016, the founder and main
maintainer of ownCloud resigned and left the project, which represents our event E11. Five
weeks later, Nextcloud was created as a fork of ownCloud (E12). Another six weeks after
that, a new CEO and new financial investors joined ownCloud (E13).

Gogs & Gitea In our second case study, we look at the projects Gogs and Gitea. Gogs
is a hosting service for Git repositories written in the programming language Go. In 2015,
the main developer of Gogs was unresponsive (i.e., he did not respond to any comments
and did not merge any pull request, etc.) and disappeared for more than a month (E21).
As a consequence, the Gogs community continued the development on a new fork called
Gitea (E22). Even after the main developer came back, he announced that he will not merge
the changes from Gitea back into Gogs, which led to an eventual divergence of the two
projects (E23).

htop Third, and similarly to the previous case study, we have a look at project htop, which
is a process manager for Linux environments. In February 2019, the original creator of the
project became inactive in the project (E31). As he did not react to anything in the project
up until August 2020, the community wondered whether he still maintains the project.
Consequently, a team of developers decided to continue the project in a new repository and
created a fork of htop, also migrating all the open pull requests to the new fork (E32). Finally,
in September 2020, the maintainer of the original project informed the community that he
did not have a look at the project since his last activity and that he has thought about handing
over the maintainership to someone else. Nevertheless, he noticed that this was no longer
necessary as a new team has continued the project in a new fork anyway. Thus, he officially
announced that the project is continued in the new fork (E33).

Node.js Our fourth case study is project Node.js, which is a JavaScript runtime environ-
ment. As, in 2014, a substantial group of developers was dissatisfied with the governance
structure of the project (e.g., how the community can solve problems efficiently), they created
io.js as a fork of Node.js (E41). After intensive discussions between the leaders of the original
project and the fork, roughly half a year later, they agreed on changes to the governance
structure in Node.js and decided to cooperate again (E42). However, a little over two years
later, again a new fork of Node.js was created, namely Ayo.js, as there were ongoing, con-
troversial debates in Node.js regarding potential behavioral code-of-conduct violations by
specific developers (E43). Nevertheless, also this time, the new fork was discontinued 1 year
later (E44).
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Qt As our fifth case study, we investigate project Qt, which is a toolkit for the development
of graphical user interfaces. Qt had started as a primarily commercial project and switched
to a fully open governance model in 2011 (E51). During the course of the existence of Qt, it
belonged to different companies, which restructured or closed some of its departments (E52)
or divested Qt to other companies (E53, E54).

MySQL & MariaDB The database management systems MySQL and MariaDB form our
sixth case study. First, Sun snapped MySQL (E61, E62) in 2008, and, less than 2 years later,
Oracle, in turn, bought Sun (E65, E67). In between, one of the co-founders of MySQL left
the project and created, together with colleagues, MariaDB as a fork of MySQL (E64, E66).
Later on, a MariaDB foundation was established and merged with another foundation (E69,
E610, and E612), leading to a stabilized coexistence of MySQL and MariaDB. Moreover, also
another famous developer ofMySQL left the project (E68). Beside all these company-related or
developer-abandonment-related events, also changes of the version-control system (E63, E613)
or communication channel (E611) occurred in MySQL.

OpenOffice & LibreOffice & Apache OpenOffice In our seventh case study, we look at
the office software OpenOffice and its successors LibreOffice and Apache OpenOffice [GL14].
As OpenOffice was owned by Sun, also in this case study the acquisition of Sun by Oracle is
present (E71, E72). Since a substantial part of the OpenOffice community assumed that Oracle
is not interested to continue in the long run, LibreOffice was created as a fork of OpenOffice
in 2010 (E73). Noteworthy, the Brazilian government decided to support the development of
both OpenOffice and LibreOffice (E76). Just over six months after the creation of LibreOffice,
Oracle indeed announced that it will discontinue OpenOffice (E74) and donated the project
to the Apache Software Foundation (E75), which made a license change and continued the
project under the name Apache OpenOffice (E77). First, IBM actively participated in the
development of Apache OpenOffice, but then silently withdrew from the project in 2012 (E78).
Then, in 2016, discussions about a potential retirement of Apache OpenOffice started (E79).
In 2019, Apache OpenOffice changed its version-control system (E710). Eventually, in 2021, a
critical security vulnerability in Apache OpenOffice became known (E711).

OpenSSL A critical security vulnerability is also relevant in our last case study OpenSSL,
which is a widely-used encryption library. In 2014, OpenSSL made headlines with the serious
Heartbleed vulnerability (E81). As a consequence of this vulnerability, comprehensive changes
in the organizational processes of OpenSSL (such as changes to the release strategy, coding
style, and code base, but also license changes and changes of the communication channel or
the introduction of continuous integration) were carried out later on (E82– E87) [Wal20]. In
2017, OpenSSL introduced a specific management committee (E88). Later on, co-founders of
OpenSSL left the project (E89), while new members of the management committee and new
committers have been appointed (E810, E811).

For more details on all the individual events in the different case studies, we refer to
Table 7.2 and the corresponding footnotes.
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Table 7.2: Overview of the different organizational events that we investigate in our study.

Case Study Event Description Occurrence

ownCloud &
Nextcloud

E11 Resignment of the founder of ownCloud7 2016-04-27
E12 Start of Nextcloud as a fork of ownCloud8 2016-06-02
E13 New CEO and finance investments for ownCloud9 2016-07-14

Gogs & Gitea E21 Disappearance of the main developer of Gogs10 2015-06-01
E22 Start of Gitea as an official fork of Gogs10 2015-06-30
E23 Comeback of the main developer of Gogs & refusal to merge changes from Gitea10 2015-07-24

htop E31 Start of inactivity of the creator and maintainer of htop (last commit in repository)11 2019-02-10
E32 Start of migration from the original repository to a new repository12 2020-08-17
E33 Official statement about project continuation by another team in another repository13 2020-09-07

Node.js E41 Emergence of io.js fork due to dissatisfaction with the governance structure14 2014-12-03
E42 Cooperation between io.js and Node.js15 2015-05-15
E43 Start of Ayo.js as a fork of Node.js caused by behavioral code-of-conduct violations16 2017-08-23
E44 Abandonment of Ayo.js17 2018-08-31

Qt E51 Switch to an open-governance model18 2011-10-21
E52 Announcement that the Qt development department in Brisbane will be closed19 2012-08-03
E53 Announcement that Digia will acquire Qt from Nokia20 2012-08-09
E54 Takeover of Qt business and copyrights by Qt company (spin-out from Digia)21 2014-09-16

This table is continued on the next page.
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Case Study Event Description Occurrence

MySQL &
MariaDB

E61 Announcement that Sun takes over MySQL22 2008-01-16
E62 Acquisition of MySQL by Sun completed23 2008-02-26
E63 Migration of MySQL from BitKeeper to Bazaar24 2008-06-19
E64 Leaving of MySQL co-founder Monty Widenius from Sun25 2009-02-05
E65 Announcement that Oracle will buy Sun26 2009-04-20
E66 First release of MariaDB (as a fork of MySQL) by Monty Widenius and colleagues27 2009-10-29
E67 Completion of the acquisition of Sun by Oracle28 2010-01-27
E68 Leaving of MySQL developer Zack Urlocker29 2010-01-28
E69 Announcement that a MariaDB Foundation will be established30 2012-12-04
E610 Merger of SkySQL Ab and Monty Program Ab31 2013-04-23
E611 MySQL joining GitHub32 2014-09-26
E612 Renaming of SkySQL Ab to MariaDB Corporation Ab33 2014-10-01
E613 Migration of MySQL from Bazaar to Git34 2015-01-05

OpenOffice &
LibreOffice &
Apache
OpenOffice

E71 Announcement that Oracle will buy Sun (which owned OpenOffice)35 2009-04-20
E72 Completion of acquisition of Sun by Oracle28 2010-01-27
E73 Creation of LibreOffice as a fork of OpenOffice36 2010-09-28
E74 Announcement that Oracle will stop the development of OpenOffice37 2011-04-15
E75 Takeover of OpenOffice from Oracle by the Apache Software Foundation37 2011-06-14

This table is continued on the next page.

22 Patrick Thibodeau: “MySQL needs us to expand, says Sun CEO Schwartz”, 2008: https://www.computerworld.com/article/

2538783/mysql-needs-us-to-expand--says-sun-ceo-schwartz.html (accessed at 2023-11-30)
23 Paula Rooney: “Sun completes MySQL buy, guns for Microsoft ... but not Oracle?”, 2008: https://www.zdnet.com/article/

sun-completes-mysql-buy-guns-for-microsoft-but-not-oracle/ (accessed at 2023-11-30)
24 Kaj Arnö: “Version Control: Thanks, BitKeeper ? Welcome, Bazaar”, 2008: https://planet.mysql.com/entry/?id=13334

(accessed at 2023-11-30)
25 Chris Kanaracus: “MySQL co-founder quits Sun”, 2009: https://infoworld.com/article/2676082/ (accessed at 2023-11-30)
26 Adena Schutzberg: “Oracle Buys Sun: What Happens to MySQL?”, 2009: https://www.directionsmag.com/article/2357/

(accessed at 2023-11-30)
27 “MariaDB 5.1.38 Release Notes”, 2009: https://mariadb.com/kb/en/mariadb-5138-release-notes/ (accessed at 2023-11-30)

and XperLab: “What is MariaDB?”, 2021: https://xpertlab.com/what-is-mariadb/ (accessed at 2023-11-30)
28 Alex Handy: “Oracle completes Sun acquisition”, 2010: https://sdtimes.com/mysql/oracle-completes-sun-acquisition/

(accessed at 2023-11-30)
29 Zack Urlocker: “New beginnings for Sun, MySQL – and me”, 2010: https://infoworld.com/article/2629448/ (accessed at

2023-11-30)
30 Rasmus Johansson: “MariaDB Foundation to Safeguard Leading Open Source Database”, 2012:

https://mariadb.org/mariadb-foundation-to-safeguard-leading-open-source-database/ (accessed at 2023-11-30)
31 Colin Charles: “SkySQL merges with Monty Program Ab, makers of MariaDB”, 2013:

https://mariadb.org/tag/monty-program-ab/ (accessed at 2023-11-30)
32 Yngve Svendsen: “MySQL on GitHub”, 2014: https://dev.mysql.com/blog-archive/mysql-on-github/ (accessed at

2023-11-30)
33 Michael “Monty” Widenius: “Why SkySQL becoming MariaDB Corporation will be good for the MariaDB Foundation”, 2014:

https://monty-says.blogspot.com/2014/10/why-skysql-becoming-mariadb-corporation.html (accessed at 2023-11-30)
34 Yngve Svendsen: “Heads up: Going 100% GitHub at the End of January ”, 2015:

https://dev.mysql.com/blog-archive/heads-up-going-100-github-at-the-end-of-january/ (accessed at 2023-11-30)
35 Andrew Brown: “The Sun ain’t gonna shine on OpenOffice any more”, 2009:

https://www.theguardian.com/technology/2009/apr/30/sun-oracle-openoffice/ (accessed at 2023-11-30)
36 Italo Vignoli: “Celebrating 5 years of LibreOffice”, 2015: https://opensource.com/life/15/9/libreoffice-turns-5/

(accessed at 2023-11-30)
37 Archived News from Apache OpenOffice: https://www.openoffice.org/news/ (accessed at 2023-11-30)

https://www.computerworld.com/article/2538783/mysql-needs-us-to-expand--says-sun-ceo-schwartz.html
https://www.computerworld.com/article/2538783/mysql-needs-us-to-expand--says-sun-ceo-schwartz.html
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https://www.directionsmag.com/article/2357/
https://mariadb.com/kb/en/mariadb-5138-release-notes/
https://xpertlab.com/what-is-mariadb/
https://sdtimes.com/mysql/oracle-completes-sun-acquisition/
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Case Study Event Description Occurrence

E76 Declaration of the Brazilian government to develop OpenOffice & LibreOffice38 2011-07-01
E77 First release of Apache OpenOffice & license change to Apache License 2.039 2012-05-08
E78 Withdrawal of IBM from Apache OpenOffice40 2014-08-21
E79 Discussion about the potential retirement of Apache OpenOffice41 2016-09-01
E710 Migration of Apache OpenOffice from SVN to Git42 2019-08-01
E711 Disclosure of a serious security vulnerability in Apache OpenOffice43 2021-09-18

OpenSSL E81 Disclosure of the Heartbleed vulnerability44 2014-04-07
E82 Begin of a new release strategy45 2014-12-23
E83 Large changes to the code base & introduction of a new coding style46 2015-02-11
E84 Completion of code cleanup47 2015-07-28
E85 Start of using Travis CI for continuous integration48 2015-09-03
E86 Announcement of transition from RT issue tracking to GitHub issues49 2016-10-12
E87 License change to Apache License 2.050 2017-03-22
E88 Start of OpenSSL management committee51 2017-06-13
E89 Leaving of two co-founders of OpenSSL52 2017-10-24
E810 Awarding of Levchin Prize to OpenSSL53 2018-01-10
E811 Commencement of new members in management committee & new committers54 2018-08-22
E812 Commencement of new committers55 2019-05-20

38 DjWalker-Morgan: “Brazilian government signs up to develop OpenOffice and LibreOffice”, 2011: http://www.h-online.com/

open/news/item/Brazilian-government-signs-up-to-develop-OpenOffice-and-LibreOffice-1275068.html (accessed at
2023-11-30)

39 Martin Brinkmann: “Apache OpenOffice 3.4, New Name, New Version”, 2012:
https://www.ghacks.net/2012/05/08/apache-openoffice-3-4-new-name-new-version/ (accessed at 2023-11-30)

40 Bruce Byfield: “LibreOffice, OpenOffice, and rumors of unification”, 2014: https://www.linux-magazine.com/Online/Blogs/

Off-the-Beat-Bruce-Byfield-s-Blog/LibreOffice-OpenOffice-and-rumors-of-unification/ (accessed at 2023-11-30)
41 Dennis E. Hamilton: “ Contemplating the possible retirement of Apache OpenOffice”, 2016:

https://lwn.net/Articles/699047/ (accessed at 2023-11-30)
42 https://openoffice.apache.org/source.html (accessed at 2023-11-30)
43 Thomas Claburn: “Apache OpenOffice can be hijacked by malicious documents, fix still in beta”, 2021:

https://www.theregister.com/2021/09/20/apache_openoffice_rce/ (accessed at 2023-11-30)
44 “The Heartbleed Bug”: https://heartbleed.com/ (accessed at 2023-11-30)
45 Matt Caswell: “The New Release Strategy”, 2014:

https://openssl.org/blog/blog/2014/12/23/the-new-release-strategy/ (accessed at 2023-11-30)
46 Matt Caswell: “Code Reformat Finished”, 2015:

https://openssl.org/blog/blog/2015/02/11/code-reformat-finished/ (accessed at 2023-11-30)
47 Rich Salz: “Beyond Reformatting: More Code Cleanup”, 2015:

https://openssl.org/blog/blog/2015/07/28/code-cleanup/ (accessed at 2023-11-30)
48 GitHub issue: “Add initial Travis CI configuration”, 2014:

https://github.com/openssl/openssl/pull/373/ (accessed at 2023-11-30)
49 Rich Salz: “Face to Face: Goodbye RT, Hello GitHub”, 2016:

https://openssl.org/blog/blog/2016/10/12/f2f-rt-github/ (accessed at 2023-11-30)
50 Rich Salz: “Licensing Update”, 2017: https://openssl.org/blog/blog/2017/03/22/license/ (accessed at 2023-11-30)
51 Tim Hudson: “New Committers”, 2017: https://openssl.org/blog/blog/2017/06/13/committers/ (accessed at 2023-11-30)
52 Matt Caswell: “Steve Henson”, 2017: https://openssl.org/blog/blog/2017/10/24/steve-henson/ (accessed at 2023-11-30),

TimHudson:“SteveMarquess”, 2017: https://openssl.org/blog/blog/2017/10/27/steve-marquess/(accessed at 2023-11-30)
53 Matt Caswell: “OpenSSL Wins the Levchin Prize”, 2018: https://openssl.org/blog/blog/2018/01/10/levchin/ (accessed at

2023-11-30)
54 Tim Hudson: “New OMC Member and New Committers”, 2018: https://openssl.org/blog/blog/2018/08/22/updates/

(accessed at 2023-11-30)
55 Tim Hudson: “New Committers”, 2019: https://openssl.org/blog/blog/2019/05/20/committers/ (accessed at 2023-11-30)

http://www.h-online.com/open/news/item/Brazilian-government-signs-up-to-develop-OpenOffice-and-LibreOffice-1275068.html
http://www.h-online.com/open/news/item/Brazilian-government-signs-up-to-develop-OpenOffice-and-LibreOffice-1275068.html
https://www.ghacks.net/2012/05/08/apache-openoffice-3-4-new-name-new-version/
https://www.linux-magazine.com/Online/Blogs/Off-the-Beat-Bruce-Byfield-s-Blog/LibreOffice-OpenOffice-and-rumors-of-unification/
https://www.linux-magazine.com/Online/Blogs/Off-the-Beat-Bruce-Byfield-s-Blog/LibreOffice-OpenOffice-and-rumors-of-unification/
https://lwn.net/Articles/699047/
https://openoffice.apache.org/source.html
https://www.theregister.com/2021/09/20/apache_openoffice_rce/
https://heartbleed.com/
https://openssl.org/blog/blog/2014/12/23/the-new-release-strategy/
https://openssl.org/blog/blog/2015/02/11/code-reformat-finished/
https://openssl.org/blog/blog/2015/07/28/code-cleanup/
https://github.com/openssl/openssl/pull/373/
https://openssl.org/blog/blog/2016/10/12/f2f-rt-github/
https://openssl.org/blog/blog/2017/03/22/license/
https://openssl.org/blog/blog/2017/06/13/committers/
https://openssl.org/blog/blog/2017/10/24/steve-henson/
https://openssl.org/blog/blog/2017/10/27/steve-marquess/
https://openssl.org/blog/blog/2018/01/10/levchin/
https://openssl.org/blog/blog/2018/08/22/updates/
https://openssl.org/blog/blog/2019/05/20/committers/
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Table 7.3: Descriptive statistics of the investigated projects on 6-months ranges and overall.

Project
Commit Authors Issue Contributors E-Mail Senders

Range Range Overall Range Range Overall Range Range Overall
min max min max min max

ownCloud 11 91 471 0 1 740 9 975 2 377 1 468
Nextcloud 11 90 626 0 2 158 7 482 — — —

Gogs 3 45 292 97 922 5 021 — — —
Gitea 25 99 705 0 1 107 6 946 — — —

htop 0 35 145 0 189 1 447 — — —

Node.js 3 484 2 196 0 2 154 12 061 0 1 145 7 052

Qt 2 181 541 — — — 0 346 929

LibreOffice 9 197 1 401 0 6 26 0 496 4 261
Apache OpenOffice 3 28 57 0 16 34 0 526 2 649

MySQL 8 133 420 0 31 223 0 3 622 16 517
MariaDB 8 73 442 0 94 439 — — —

OpenSSL 4 75 410 0 610 3 024 0 489 4 834

7.3.2 Observations Regarding Network Characteristics

For each of the above introduced case studies, we investigate each network characteristic that
we have listed in Table 7.1 in Section 7.2.2. Due to the sheer amounts of network characteristics,
network types, and events, we present only the results for a selection of them in this section.
That is, in what follows, we focus on the network characteristics and network types for which
we observe the most noticeable changes with respect to the occurrence of organizational
events. For the remaining network characteristics, we refer to our supplementary website.56

In Table 7.3, we provide an overview of how many developers are active in each of the
investigated interaction channels of each investigated project, by providing the minimum
and maximum number of developers in a 6-months range, as well as by providing the total
number of unique developers that participated in a channel over the complete observation
period of a project. This way, we describe the sizes of the different projects.

ownCloud & Nextcloud For project ownCloud, the number of developers as well as the
number of activities (i.e., commits, issue comments, and e-mails) reached their maximum
during the year before E11 and started to decrease already before it has happened. After E13,
the strong decrease in the numbers of developers and activities continued for more than a
year, while Nextcloud started to grow.

In Figure 7.2,we show the scale-freeness and small-worldness for ownCloud andNextcloud
over time. While the cochange network started to be scale-free only from the sixth time range
on, the issue and mail networks were almost always scale-free (ignoring the late time ranges,

56 https://se-sic.github.io/website-event-analysis/

https://se-sic.github.io/website-event-analysis/
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Figure 7.2: Scale-freeness and small-worldness of the cochange, issue, and mail networks for projects
ownCloud and Nextcloud over time. The blue vertical lines denote events E11–E13.

in which themail network started to be abandoned). Beginningwith the fourth range after E13,
there were fluctuations in the scale-freeness of the cochange network, and also the mail net-
workwas not scale-free anymore since then. The latter comes alongwith the starting abandon-
ment of the mailing list for the benefit of GitHub issues. Opposed to ownCloud, the cochange
network of Nextcloud consistently stayed scale-free after E13 (with some exceptions more
than 2 years later). Furthermore, themail and issue networks of ownCloudwere always small-
world (except for the mail network in late ranges, in which the usage of the mailing list was
decreased). This also holds for the issue network of Nextcloud (except for the initial range at
fork creation). Noteworthy, the cochange network of ownCloudwas never small-world, except
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for the time range that contains the events E11 and E12. Opposed to ownCloud, the cochange
network of Nextcloud was, after fork creation, sometimes small-world, sometimes not.

When looking at the other network characteristics, we can see that the average degree
for ownCloud has already reached its maximum in the cochange and in the mail network
about 2 years before E11 and was decreasing since then (and also decreased in Nextcloud
afterwards). Around the investigated events, we cannot identify noticeable changes. The
density in the cochange network started to decrease already 1 year before E11. Also, the
average path length in the cochange network started to decrease before E11 and started to
increase again two time ranges after E13. In contrast, the average path lengths of the mail
and issue networks of ownCloud reached their maximum values around E11–E13 or shortly
thereafter. The global clustering coefficient of the cochange network reached its minimum
around these events and increased again thereafter, while the mail and issue networks already
had their minimum values around 1.5 years before these events. The hierarchical structure
does not show any noteworthy changes, except for the mail network, in which there was a
breakdown in the hierarchical structure around 2 years before E11, which may be related to
ownCloud’s shift of communication from the mailing list to the issue tracker.

Gogs & Gitea For projects Gogs and Gitea, the number of developers as well as the
number of commit activities stayed largely constant around E21–E23. The number of issue
comments and issue contributors was growing from the initialization of Gogs, and even
continued growing in the year after E23. Only then, we can observe a decrease when the
issues of Gitea started to exist about a year after E23.

In Figure 7.3, we show the scale-freeness and small-worldness for Gogs and Gitea over
time. While the cochange network of Gogs started to become scale-free around 9 months
before E21, it lost its scale-freeness property shortly after E23 and did not regain the scale-
freeness property for the rest of its evolution (except for a few time ranges about a year
after E23). In contrast to Gogs, the cochange network of Gitea became scale-free again and
stayed scale-free in most of the subsequent time ranges. The issue networks of Gogs and Gitea
were scale-free in almost all time ranges. Regarding small-worldness, Gogs and Gitea show
similar results: While the issue networks of both projects were small-world almost all the
time (with an exception of three time ranges in Gogs almost 5 years after E23), the cochange
networks were not small-world in most of the time ranges, except for a single time range that
contains E21–E23 and a few time ranges some years later.

Regarding other network metrics, we observe a constant decrease in the average degree, for
the cochange and for the issue network of Gogs, around 1 year after E23. Although there was
a short decrease in the cochange network already shortly after this event, the degree started
to grow again after two time ranges until it decreased 1 year later. The average path length of
the cochange network of Gogs is largely fluctuating, beginning two ranges after E23, but was
merely constant before. Moreover, the density of the cochange network decreased in the year
before E21 and increased after E23 for more than a year, before it decreased again. The global
clustering coefficient shows similar changes, for both the cochange and the issue network,
while the network average clustering coefficient remained largely constant. Furthermore,
the cochange network of Gogs started with a hybrid hierarchical structure, but the structure
changed its shapemore than a year after E23: The number of developers in the hierarchical part
as well as in the non-hierarchical part drastically decreased, while the cochange network of
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Figure 7.3: Scale-freeness and small-worldness of the cochange and issue networks for projects Gogs
and Gitea over time. The blue vertical lines denote events E21–E23.

Gitea roughly continued the structure that Gogs showed until E23 and shortly thereafter. The
issue network of Gogs evolved similarly to its cochange network. In contrast, the issue network
of Gitea, which was created about 1 year after E23, started with the majority of developers in
the hierarchical part, while the non-hierarchical part strongly grew during the first 2 years of
its existence, until it reached a similar structure to what Gogs had in the year after E23.

htop The project htop in its original repository showed few activities and only few code-
contributing developers, while the number of participants in the issue discussions increased
and reached itsmaximumof almost 200 participants about 1 year before E31. Then, the number
of issue participants and activities decreased until the migration of the project to another
repository was finished in E33, but there was still issue activity after the cochange activity
has stopped at E31. Even in the new repository, during the first year after the migration, there
were a similar number of issue participants than at the maximum of the original repository,
and the number of code contributors even was higher than in the original repository.
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Figure 7.4: Scale-freeness and small-worldness of the cochange and issue networks for project htop in
its original repository over time. The blue vertical lines denote events E31–E33. Missing
values at the beginning correspond to a time period in which only a single developer was
active. Missing values at the end correspond to the time period in which the project was
continued in another repository.

In Figure 7.4, we show the scale-freeness and small-worldness characteristics of htop in its
original repository. As there was only one developer at the beginning of the project, scale-
freeness and small-worldness cannot be determined at early project stages. Later on, the
cochange network was not scale-free, while the issue network was mostly scale-free (with a
few outliers). Regarding small-worldness, we observe a similar picture: The issue networkwas
almost always small-world, while the cochange network became small-world only in the last
few time ranges before E31. Even in the new repository (for which we provide visualizations
on our supplementary website), after E33, the cochange network was neither scale-free nor
small-world, while the issue network remained scale-free and mostly small-world.

Prior to E31, the average eigenvector centrality of the cochange network was largely fluc-
tuating between 0.2 and 1.0, and the average path length decreased from 20 (about 4 years
before E31) to 2 at E31. The respective characteristic of the issue network remained largely
constant, though, and decreased significantly between E31 and E33. Regarding hierarchy,
we can see in the issue network that, already about 2 years before E31, the hierarchical part
degenerated and mostly developers that have a high degree and a high clustering coefficient
(that is, developers that are located close to the upper right corner of the hierarchy plots that
we have introduced in Chapter 5, see Figure 5.3 on page 124) appeared. Although a hierar-
chical structure emerged again in the year before E31, it completely disappeared after E31. In
the cochange network, in most of the time ranges, there were too few developers active to
determine any hierarchical or hybrid structure.

Node.js In Node.js, the number of developers was very small until E42, and it slowly in-
creased afterwards, reaching itsmaximumvalue between E43 and E44. In contrast, the number
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Figure 7.5: Scale-freeness and small-worldness of the cochange, issue, and mail networks for project
Node.js over time. The blue vertical lines denote events E41–E44.

of mailing-list contributors was greater than 1000 at its maximum about 3 years before E41,
and then it steadily decreased. The GitHub issues were started shortly after E41 and reached
their maximum number of participants shortly after E43, before it also steadily decreased.
E41 marks a turning point in the number of commits, which was largely constant before, but
started to grow afterwards until the end of our observation period. For the number of issue
comments, we observe a different picture: After the project had started to use issues after E41,
we see a turning point in the middle between E43 and E44, where the number of issue com-
ments stopped increasing and started to decrease until the end of our observation period.

The cochange network of Node.js appeared to be scale-free almost all the time (except
for one range shortly after E42), as we show in Figure 7.5. However, this does not hold for
small-worldness. The cochange network was not small-world at the beginning. During the
year before E41, it became small-world, but then we observe four overlapping 6-months
time ranges of fluctuations around E42. Afterwards, the cochange network consistently held
the small-world property. In contrast, the issue network and the mail network were always
small-world, and almost always scale-free (with a few exceptions in the issue network shortly
after E42 and shortly after E44).

The average degree for the issue network started with its maximum directly after the
beginning of the use of issues and drastically decreased after E42, but then it remained
constant until the end of our observation period. This also holds for the global clustering
coefficient of the issue network. The modularity of the mail network increased between E41
and E43, whereas it stayed largely constant for the issue and cochange networks. Furthermore,
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Figure 7.6: Activity in project Qt: Before E51, there was mostly commit activity but almost no e-mail
activity. After E51, however, it was vice versa, which is a rather uncommon phenomenon.

the hierarchical structures of the issue network and of the mail network both started with a
large non-hierarchical part, which decreased over time (for the issue network after E42, for the
mail network already more than a year before E41). In the mail network, the non-hierarchical
part disappeared almost entirely around E43.

Qt Project Qt shows uncommon activity patterns (see Figure 7.6): While there were
many commits around 2 years before E51, the commit count decreased since then until E52. In
contrast, on themailing list, there was almost no activity until E51, and it reached its maximum
activity shortly after E53, before it decreased toward E54 and even thereafter. These opposed
activity patterns are also reflected in the numbers of commit authors and e-mail authors.

The cochange network appeared to be scale-free (except for three ranges in the beginning
and two ranges shortly before E54), but stopped being scale-free after E54 (see Figure 7.7).
However, the small-worldness property shows some fluctuations, especially shortly before E51
and between E53 and E54. For the mail network, we can see that it was scale-free and small-
world all the time in its activity period, starting at E51 until the end of our observation period.

The average degrees of cochange and mail networks follow the activity patterns of the
respective data source. In contrast, the global clustering coefficient of the cochange network
decreased from the beginning until E52, increased again until themiddle between E53 and E54,
and decreased again toward E54. While the cochange network started with a large non-
hierarchical part, the non-hierarchical part almost disappeared after E51. For the mail network,
we observe a different picture: Here, the non-hierarchical part increased after E51, and, later
on, it stayed largely constant until the end of our observation period.

MySQL & MariaDB On the mailing list of MySQL, we can see the highest number of
contributors in 2003. Afterwards, the number of contributors on the mailing list drastically
decreased until E61. Then, it increased again until shortly after E63, at which point in time it
started to decrease again. Independent of that, the usage of GitHub issues started after E612.
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Figure 7.7: Scale-freeness and small-worldness of the cochange and mail networks for project Qt over
time. The blue vertical lines denote events E51–E54.

The commit count evolved similarly to the e-mail activity: In the years before E61, we observe
the highest commit count. Between E61 and E68, we observe a decreased commit count. Then,
between E68 and E610, we again observe a higher commit count, but not as high as before E61.
After E610, the commit count fluctuated around an average size. MariaDB shows a slightly
higher commit count after its creation (E66) than before,57 but it decreased again until E610.
In two time ranges shortly after E610, we observe the highest commit count, which is about
four times higher than in the ranges before or thereafter. Then, also for MariaDB, the commit
count returned to an average size. After E613, the issue activity in MariaDB started to increase.

In Figure 7.8, we show that the cochange network of MySQL became scale-free many years
before E61. At around E61, it was not scale-free, and also not in a few ranges after E67/E68.
Opposed to that, the cochange network of MariaDB, shows more fluctuations: It was not
scale-free in the two time ranges after E63, and, moreover, after E613, the presence of the
scale-freeness characteristic changed very frequently. When looking at the small-worldness
property, we observe that, in the cochange network of MySQL, it was present only between
E63 and E65 and shortly thereafter, as well as once shortly after E610 and at the end of our
observation period. For the cochange network of MariaDB, however, we observe small-
worldness in some of the ranges after E67 until shortly after E613. The issue network of
MySQL was pretty much never scale-free and only sometimes small-world, while the mail
network was almost always scale-free (with an exception at E66) and always small-world (up
to its abandonment). A few ranges after its initiation, the issue network of MariaDB became
scale-free, while the small-worldness property was fluctuating from the beginning.

The average degree in the cochange network of MySQL shows high values before E61 and
after E613, while its lowest values can be observed after E63. However, the density of the
cochange network decreased from project begin until around E65, then it slightly increased

57 Note that the commit history of MariaDB differs from the history of the original project MySQL, as not all commits
from MySQL became part of MariaDB, following an unusual forking process.
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Figure 7.8: Scale-freeness and small-worldness of the cochange, issue, and mail networks for projects
MySQL and MariaDB over time. The blue vertical lines denote events E61–E613.

and stayed rather constant. This also holds for the global clustering coefficient. Instead, the
global clustering coefficient of the mail network of MySQL increased from its beginning
until the end of our observation period. The hierarchical structure of the cochange network
changed its shape between E61 and E62, that is, the non-hierarchical part decreased and
the hierarchical part increased. This trend continued afterwards, but stopped between E67
and E68. From then on, the non-hierarchical part tended to become greater again. InMariaDB,
we see similar results for the cochange network. However, while the decrease in density and
global clustering coefficient already ended at about E65 for MySQL, the decrease for MariaDB
ended later at about E610. Interestingly, the modularity of the cochange network of MariaDB
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slightly increased from 0 to about 0.18 between E68 and E69. Then, it decreased again (with a
few outliers after E610). In contrast to MySQL, MariaDB had a relatively sparse hierarchical
structure (only for very high degrees, there is a hierarchical structure detectable).

OpenOffice & LibreOffice & Apache OpenOffice While LibreOffice kept the commit
history of OpenOffice, Apache OpenOffice imported the complete history of OpenOffice in
a single commit at its creation. For LibreOffice, the commit activity was largely fluctuating
throughout its entire life time, as already in the history of OpenOffice before the creation of
LibreOffice. A few months before E71, we observe the highest commit count, and around E71,
we observe the lowest commit count. Afterwards, we can see some local maxima before E74
and before E78. The e-mail activity reached itsmaximumaround E77 and constantly decreased
afterwards. For Apache OpenOffice, we observe a high commit activity around its initiation,
then the activity decreased between E77 and E79, and eventually it remained constant at a
low level. For the e-mail activity of Apache OpenOffice, we observe a similar picture as for the
commit activity. Issues play a subordinate role in both LibreOffice and Apache OpenOffice.

In Figure 7.9, we can see that the cochange network of LibreOffice was not scale-free until
shortly before E72. From then on, it was scale-free (with one exception between E76 and E77).
In contrast, the cochange network of Apache OpenOffice was never scale-free. However, the
mail network was mostly scale-free for both LibreOffice and Apache OpenOffice (with an
exception in LibreOffice shortly before E711, and a few exceptions in Apache OpenOffice,
notably directly after E710). Only in some rare cases, the cochange network of LibreOffice
was small-world, especially between E73 and E77, and also before E711. For the cochange
network of Apache OpenOffice, we cannot draw any conclusions, as there was only low
activity in the project and, thus, small-worldness cannot be determined in most of the ranges.
Only around E79, we observe three small-world ranges, and, from then on, there occasion-
ally are ranges in which the cochange network was small-world. Due to low activity, the
small-worldness of the issue networks of LibreOffice and Apache OpenOffice cannot be
determined in most of the ranges. For mail networks, we can see that the mail network of
LibreOffice was always small-world, and that the mail network of Apache OpenOffice was
almost always small-world.

While OpenOffice started with a comparably high average degree in the cochange network,
it decreased toward E71. Then, in LibreOffice, we observe phases of high average degree
between E73 and E74, and also between E77 and E78. Even after E78, the average degree
remained at a comparably high level. Regarding hierarchy, we observe the increase of the
non-hierarchical part of the cochange network at about E71 or E72. In the mail network, we can
observe the opposite behavior: At fork creation, there was a large non-hierarchical part, but
after E77, the network tended to consist mostly of a hierarchical part. In Apache OpenOffice,
the average degree of the cochange network started with a comparably high value and
decreased between E77 and E79. However, on the mail network, the average degree increased
between E78 and E711. While global clustering coefficient and network average clustering
coefficient of the mail network of Apache OpenOffice largely stayed constant (with a slight
increase over time), the clustering coefficients of the cochange network strongly fluctuated
between 0 and 1. Notably, there were too few developers active in Apache OpenOffice to be
able to determine a hierarchical structure in the cochange network. However, in the mail
network, there is a clearly visible hybrid hierarchical structure.
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Figure 7.9: Scale-freeness and small-worldness of the cochange, issue, and mail networks for projects
LibreOffice and Apache OpenOffice over time. The blue vertical lines denote events
E71–E711. While LibreOffice forked the source-code repository from OpenOffice at E73
and, thus, kept the commit history of OpenOffice, Apache OpenOffice initially imported
the complete source code of OpenOffice in a single commit shortly after E75 and, thus, lost
the commit history of OpenOffice.
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Figure 7.10: Scale-freeness and small-worldness of the cochange, issue, and mail networks for project
OpenSSL over time. The blue vertical lines denote events E81–E812.

OpenSSL After E81, we observe a strong increase in the commit activity of OpenSSL, which
continued until shortly before E86. Then, the commit activity decreased until E812. For the
activity on themailing list, we see an increased e-mail count between E81 and E83 as well as be-
tween E85 and E86. Afterwards, the e-mail count decreased and reached a value of 0 after E811.
In contrast, from E84 on, the issue activity increased until the end of our observation period.

In Figure 7.10, we show that the cochange network of OpenSSL was not scale-free until
shortly after E81. For the remaining time, it was scale-free (except for one range after E85 and
another range shortly before E89). The cochange network was not small-world for almost all
the time. Nevertheless, there are a few exceptions shortly before E82, between E86 and E89,
and after E812, in which the cochange network was small-world. In contrast, the mail network
was small-world all the time, and it was also scale-free for most of the time. The ranges
between E85 and E86 and shortly before E89, in which the mail network was not scale-free,
coincide with the time ranges in which the cochange network was not scale-free. Remarkably,
from E81 on, the issue network was small-world and scale-free without any exception.

The average degree in the cochange network reached its maximum value between E85
and E86, while the average degree in the mail network as well as in the issue network reached
its maximum shortly after E810. While the average eigenvector centrality in the cochange
network was about 0.5 before E81, it went down to about 0.1 already a year before E81 and
continued decreasing until E82. This also holds for the density in the cochange network, which,
however, slightly increased after E82. A hierarchical structure in the cochange network started
to establish around 1.5 years before E81. After E81, the non-hierarchical part started to increase
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slightly over the next years. In contrast, the mail network had a hierarchical structure from the
beginning on, but the residual variance of the corresponding regression fit was comparably
large.58 After E81, the variance decreased, but also the non-hierarchical part started to increase.
Also, the issue network shows an hierarchical structure from the beginning on.

7.3.3 Discussion of the Observations

Above, we have presented our observations regarding network characteristics, for each case
study. Now, we briefly discuss them with a focus on the affected organizational events.

ownCloud & Nextcloud We observe changes in the number of developers and their
activities in project ownCloud already during the 2 years before the resignment of the
founder of ownCloud and the start of Nextcloud. These changes also affected the network
characteristics of the cochange network, as density, average degree, average path length, and
global clustering coefficient changewhen the number of activities change. For small-worldness
and scale-freeness, we observe changes only about a year after the investigated events. These
changes clearly show that ownCloud and Nextcloud have diverged, also in their network
structure: ownCloud lacks small-worldness and scale-freeness, while Nextcloud achieves
these properties. Regarding small-worldness, it is also remarkable that the cochange network
is small-world exactly at the point in time at which the fork was created.

Gogs & Gitea Although the creation of Gitea as a fork of Gogs displays a similar kind
of event as the creation of Nextcloud as a fork of ownCloud, the circumstances are differ-
ent: While there was already a breakdown in developer activity before the fork creation in
ownCloud, this phenomenon does not apply to Gogs, since its fork Gitea resulted from
a temporary unavailability of the main developer of Gogs.10 It also took more than a year
after fork creation until Gitea has established its own issue tracker, and also in the networks’
various characteristics, we observe changes only at that point in time, underlining that the
actual spin-off between fork and original project took place 1 year later than the actual an-
nouncement and start of the fork had happened. Shortly after the creation, but also in the
long run, the cochange network of Gitea achieves scale-freeness, and in some rare ranges,
even small-worldness, while the original project Gogs does not achieve these properties.

htop Project htop mainly relied on a single developer, who was inactive from time to time,
especially in the year before he stopped contributing. Therefore, the activity in the project
already decreased during this year, which also affected the network characteristics of the
cochange network (e.g., large fluctuations in average path length), while the communica-
tion activity was still going on and only decreased when the migration to a new repository
started. Noteworthy, the hierarchical structure of the issue network already started to change
during the years before the migration, which also might be caused by the temporary peri-
ods of inactivity of the founder of htop. Also worth to note is that the cochange network
became small-world in the year prior to the last activity of the founder, which needs further
investigation on how and why this has happened.

58 See Figure 5.3 on page 124 for an explanation of what we mean by variance and regression fit here.
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Node.js For Node.js, we see the creations of its forks io.js and Ayo.js at different points in
time as drastic events that affect the developer activity differently for commits and communi-
cation: While the commit activity is mostly unaffected (it even increases after the creation
of the forks, but this may have happened due to other reasons), the issue communication
was initiated after the first forking event and reached its maximum activity around the sec-
ond forking event. A reason for this could be that the potential behavioral violations, which
caused the forks, may have created a need for clarification and discussions about project
organization among the developers. Hence, it is also necessary to highlight that the forks
were caused by specific incidents in developer behavior, and that both forks only stayed active
for not longer than 1 year. While we observe some fluctuations on the small-wordness of the
cochange network around the time of the creation of the io.js fork, the network started to be
small-world already some time before io.js, which is why we assume that the change in the
small-worldness might have other reasons than just the emergence of the fork.

Qt The switch to an open-governance model in Qt affected that there suddenly was high
activity on its mailing list, but the commit activity continued to vanish. We hypothesize
that the switch of the governance model attracted new developers who started to discuss
their needs and how they would like to adjust the software product. However, we assume
that they merely laid out a plan for how to achieve these changes instead of implementing
them directly. This is in line with the fact that project version Qt4 was discontinued about
3 years after the switch and that its successor Qt5 was initiated using a completely new
implementation architecture in a new repository.59 Also the department closure in Brisbane
and the acquisitions of Qt by different companies may have led to the vanishing commit
activity and to the temporary loss of the small-worldness property of the cochange network,
contributing toward the new implementation architecture in Qt5.

MySQL & MariaDB MySQL had its highest project activity before it was taken over by
Sun. However, after the completion of its acquisition, there was also a temporary increase in
developer participation until the VCS was changed. Another temporary increase in commit
activity happened after the acquisition by Oracle and during the time at which a previous
core developer left the project. MariaDB started with a higher activity count thanMySQL had
directly before the fork creation. Also, after SkySQL was merged into MariaDB we observe a
temporarily increased commit activity.

The cochange network of MySQL was almost always scale-free, but not during the time
in which Sun performed the acquisition. During this time, also the hierarchical structure of
the project changed. Another change in the hierarchical structure happened when Oracle
performed the acquisition of Sun, which also led to a change in density and global clustering
coefficient. Also, after a longstanding core developer had left MySQL, the project lost its
scale-freeness for one time range, until the network structure has normalized again. The
small-worldness property was only present after switching VCS technologies, but only for a
short time until MariaDB was created. On the other hand, the technology switch also led to a
short-term decrease in average degree.

59 Lars Knoll: “Thoughts about Qt 5”, 2011: https://www.qt.io/blog/2011/05/09/thoughts-about-qt-5/

(accessed at 2023-11-30)

https://www.qt.io/blog/2011/05/09/thoughts-about-qt-5/
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The cochange network of MariaDB, however, shows different fluctuations thanMySQL and
shows spurious patterns. On the one hand, this might be caused by the fact that the commit
history of MariaDB misses several commits that are contained in the history of MySQL. On
the other hand, changes in the company structures behind MariaDB might be related to
the fluctuations. Remarkably, after MySQL has migrated its VCS to Git, the scale-freeness of
MariaDBwas largely disturbed.While thismight be just coincidence, this could alsomean that
someMariaDBdevelopers contributed toMySQL and temporarily decreased their activities in
MariaDB, as now both projects used Git. In general, the cochange network of MariaDB seems
to have a less pronounced hierarchical structure than the cochange network of MySQL.

OpenOffice & LibreOffice & Apache OpenOffice In general, the participation in
OpenOffice was highly fluctuating. We notice an activity decrease around the announcement
that Oracle will buy Sun, and an increased commit activity before the announcement of
the stop of OpenOffice development and also before the withdrawal of IBM from Apache
OpenOffice. We hypothesize that these announcements involve both, leaving developers who
worked on OpenOffice on behalf of the involved companies, and volunteer developers who
stopped contributing as they either expected the project to be discontinued or unmaintained
or as they disagreed with future development plans of the project.

The cochange network of OpenOffice became scale-free during the time period in which
Oracle performed the acquisition of Sun. Thus, the transition to the new company may have
involved a major change in the developer interaction. Indeed, during this time, also the hi-
erarchical structure of cochange and mail networks changed. Another major change to the
network structure happened after the creation of LibreOffice, as in this fork the cochange
network started to be small-world.60 However, this changed after the start of Apache OpenOf-
fice—maybe some developers moved from LibreOffice to Apache OpenOffice. There are also
some other fluctuations in the small-worldness in later stages of LibreOffice, but as they hap-
pened prior to unforeseeable events (e.g., security vulnerability disclosure) or are related to in-
ternal structures of Apache OpenOffice, we do not relate these fluctuations to these events.

As the number of contributors for Apache OpenOffice was comparably low (see Table 7.3),
the corresponding networks are too small (in terms of the number of vertices) to draw any
conclusions about changes in their network structure. Nevertheless, the average degree of its
cochange network decreases between the creation of Apache OpenOffice and the discussion
about potential retirement, which confirms the low activity and the necessity of such dis-
cussions in the project. Another interesting phenomenon is that the mail network of Apache
OpenOffice lost its scale-freeness property shortly after the migration from SVN to Git, which
might also have involved a change in the communication processes.

OpenSSL The disclosure of the Heartbleed vulnerability led to a strong increase in devel-
oper activity, as already indicated by previouswork [Wal20]. After code-cleanup and technical
migrations had been finished 2.5 years later, which had been started as a consequence of
Heartbleed, the developer activity decreased again. Later license changes or changes in the
management committee did not affect the activity in the project.

60 Note that we analyzed the source-code repository of LibreOffice, which contains the commit history of OpenOffice
before the creation of LibreOffice. To the best of our knowledge, the original source-code repository of OpenOffice
is not publicly available any more.
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While the cochange network ofOpenSSLwas not scale-freewhenHeartbleedwas detected, it
became scale-free roughly half a year thereafter, as first measures of organizational change had
already been applied to OpenSSL. Small-worldness, however, was only achieved temporarily
during the large changes of the code base, as well as later on after the license change when the
management committee was established and two co-founders left the project. Noteworthy,
about 1.5 years before the disclosure of Heartbleed, several network characteristics (e.g.,
density, average eigenvector centrality, etc.) decreased and a hierarchical structure started to
establish. After Heartbleed, especially the non-hierarchical part becomes more prevalent and
important in the network, which we attribute to the publicity of Heartbleed and its severity.
Since many other projects and tools were drastically affected by this vulnerability, we assume
that many outsiders started to join OpenSSL to make sure that they can close the security
gaps in their products and to prevent future vulnerabilities of this severity in OpenSSL.

7.4 Perspectives

Based on the observations from our exploratory study, we summarize our results, derive
hypotheses based on these results, and provide perspectives on how our research can be
continued and practically used.

Answer to ourRQ:Aswehave presented above in our exploratory study on 8 case studies,we
have seen that there are particular network characteristics that reflect changes in the network
structure around the points in time when specific organizational events happened. We
observed such changes mainly in the cochange networks, rather than in the communication
networks. However, we were not able to detect such changes in the network structure for
each organizational event, but only for a subset of the investigated events. Particularly,
it is important to note that our observations are of a preliminary nature and are very
project specific. Therefore, further investigations are necessary to confirm our observations
qualitatively and quantitatively in a more general setting.

As already indicated above, most of the changes in particular network characteristics that
we observed affected the cochange networks. While this could just be due to coincidence, we
also come upwith potential reasons for that: The cochange network contains all the developers
who contributed to the source code in a specific time range. Thus, the developers who are
part of a cochange network are the developers who are responsible for the entire source-code
implementation, which is the key part of the resulting software product. Therefore, essential
changes that affect the project’s success, of course, should affect the cochange network. In
contrast, communication channels—may it be a mailing list or an issue tracker—also contain
users and other developers who do not necessarily contribute to the source code but primarily
discuss the source code and who behave differently than actual developers who actively
contribute to the project’s source code [BLJ+13; DOB+18; GBL+13; MAJ+20; OHM+18;
TDH14]. Therefore, the number of vertices in the communication networks usually is much
larger than in the cochange network, as can be seen in Table 7.3. Consequently, structural
changes in the interaction of developers may merely affect the cochange network, as it is
smaller than the communication network and, thus, more susceptible to change. Moreover,
the cochange network is primarily composed of the core contributors, which play only a
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minor role in the communication networks by the sheer number of people involved in the
discussions. Therefore, we suggest that also future work on analyzing network characteristics
with respect to organizational events should focus on cochange networks.

Hypothesis 1:

Developer networks that reflect cochange interactions between de-
velopers are more susceptible to structural changes that are related
to organizational events than developer networks that reflect com-
munication among developers.

While our exploratory study revealed that many of the investigated network characteristics
change temporally close-by to organizational events, some of these characteristics simply
depend on the number of developers and their number of activities. For example, the average
degree, the average path length, or the density depend on the participants and activities in a
specific time range. That is, an increase in the commit count or in the developer count usually
leads to an increase in degree and density and to a decrease in average path length. As this
sounds rather obvious, and since these characteristics do not add additional value compared
to pure count-based characteristics, future work should focus on investigating rather complex
network characteristics that combine multiple different aspects into one characteristic, such
as scale-freeness, small-worldness, or hierarchy.

Our exploratory study showed that scale-freeness and small-worldness are two properties
that regularly are subject to fluctuations. However, there are also large time periods of consis-
tency in these properties. Thus, wewere able to notice that changes in scale-freeness and small-
worldness often go hand in handwith specific organizational events. Especially, events that are
related to strong developer turnover [FPB+15; FSV20; IRO+09; JYF24; Moc10] or developer
attraction [FHV23; SGR14] (e.g., acquisitions by companies, creations of forks, disclosure of
severe vulnerabilities, or switches of technologies) often lead to temporary or sometimes even
long-term changes in scale-freeness or small-worldness. In particular, we observed situations
in which projects gained these properties temporally close-by to such events, but we also
observed situations in which projects lost these properties temporally close-by to such events.
Albeit, the lack of small-worldness or scale-freeness potentially could have negative effects
on the coordination and information flow among developers in a software project, as both
properties are assumed to be beneficial for successful project coordination [JAM17; Sin10].

Hypothesis 2:
A change in the scale-freeness property of cochange developer net-
works is related to specific organizational events that affect the struc-
ture of the network.

Hypothesis 3:
A change in the small-worldness property of cochange developer
networks is related to specific organizational events that affect the
structure of the network.

Hypothesis 4:
The hybrid hierarchical structure of developer networks, consisting of
a hierarchical and a non-hierarchical part, changes as a consequence of
or in anticipation of the occurrence of specific organizational events.
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Another aspect that is worth to be discussed is the temporal dimension of organizational
events. While, for some of the investigated events, we observed changes in network charac-
teristics directly after the event has happened or during the subsequent year, for other events,
we observed changes in the network structure in the years or months before the event has
happened. Of course, we cannot reliably relate these changes in the network structure to a
specific event at a specific point in time—it can also be that multiple events are related to spe-
cific changes, and also unconsidered or unknown organizational events could have played an
important role. Nonetheless, we suggest that future research should consider organizational
events from two different points of view: On the one hand, organizational events can cause
changes in the network structure as a consequence of the event happening. On the other hand,
changes in organizational structure of a project (including changes to network characteris-
tics) can cause particular organizational events. Obviously, an organizational event can also
fulfill both views: It can be caused by structural changes and, at the same time, it can cause
additional structural changes that occur later on. Albeit, in general, it is not trivial to reliably
detect such cause-effect chains in OSS projects due to the sheer number of structural changes
and the number of potential (known and unknown) organizational events. While we lay the
foundations for such investigations in our exploratory study, it is necessary to complement
them by future studies that analyze the effect of organizational events more qualitatively.

Hypothesis 5:

Organizational events can be grouped into different categories based
on their temporal dimension: Some events show only short-term
effects, while others affect the project community in the long run. In
addition, some events happen as a consequence of structural changes
in the project community, while other events imply structural changes
in the developer network of the project.

Investigating the proposed hypotheses in future studies shall contribute toward a better
understanding of the organizational processes that drive and influence the evolution of the
developer network, and, thus, the evolution and sustainability of the project. In perspective,
our findings shall serve as foundations for the development of early-warning alarms or even
countermeasures of negative organizational trends that could affect the success of a project,
as indicated by the literature [e.g., CMP07; CV17; JA22; YZF23].

The observations from our exploratory study have practical value for both researchers and
practitioners: For researchers, we provide insights into network evolution and organizational
changes in OSS projects, which could be used to better understand contribution dynamics and
organizational events, not only with respect to early-warning mechanisms but also to obtain
an understanding of the cause and effects of different organizational events. For practitioners,
our results provide insights into the evolution of established projects and the organizational
structure behind, which could be used to avoid specific events that are negatively connotated.
Moreover, these insights can be used to get to know how specific network characteristics
have potentially been affected by organizational events and to look back on past events and
reappraise them from a network-theoretic point of view. This way, in perspective, one can
learn from past events and draw conclusions for the handling of potential events that might
happen in the future and might threaten the success of a software project.
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7.5 Threats to Validity

The validity of the results of our exploratory, empirical study may be threatened in various
ways. Below, we discuss the potential threats by grouping them, as suggested by Wohlin et al.
[WRH+12], into four categories that were introduced by Cook and Campbell [CC79].

Internal Validity The validity of our results highly depends on the case studies and corre-
sponding events that we have selected for our study. Due to the exploratory and preliminary
nature of our study, we selected projects for which the corresponding organizational events
are publicly known andwere discussed in themedia, specific to technical topics.We admit that
this could induce a selection bias for our events, but we tried to base our decisions on similar
events that have been investigated in the software-engineering literature (see Sections 7.1.1
and 7.1.3). While the different kinds of events and projects that we analyze contribute toward
generalizability, these differences may also affect the internal validity as the projects and
events are too different to be compared with each other. However, the choice to investigate a
diverse set of projects and events was made on purpose, to exploratively obtain insights into
a wide variety of projects and events, as a foundation for future studies in this context.

Also, the selection of interaction channels that we investigate may affect our results. There-
fore, we selected multiple interaction channels for each project, namely the collaboration
on the source code, as well as communication among developers. While some projects pri-
marily use mailing lists, others primarily use issues [EGW22; KGB+18; SSF+17]. There-
fore, we selected the communication channels that were publicly available and are exten-
sively used. As we already have seen in our results, multiple projects used mailing lists
and issues—some of them use both channels in parallel, while others fade-out the mailing
list in favor of issues, and still others started to use issues but still perform the majority of
their communication activities on the mailing list. As we were not aware of the amount
and kind of activity that takes place on either communication channel, we investigated
both of them, if publicly available, to be able to find interesting activity patterns in either
of the channels. This way, we base our exploratory study on a broad data basis. Still, we
might omit activities that take place on private communication channels (e.g., personal
e-mails) or on other communication channels that are not in the scope of our work (e.g.,
chat systems) [EGW22; KGB+18; SSF+17], but we selected very prominent and highly used
communication channels for each project, as the descriptive statistics in Table 7.3 indicate.

Another threat to internal validitymight be the way howwe preprocess the data. As already
discussed in previous chapters, we identify developers by matching their names or e-mail
addresses. Thus, we rely on the disambiguation heuristic of Oliva et al. [OSO+12], which is
reliable according to Wiese et al. [WSS+16]. Different to our previous studies (see Chapters 5
and 6), we did not filter bots in this exploratory study. This decision was made on purpose,
as bots might affect developer behavior with respect to specific organizational events. Thus,
removing bots could potentially hide changes in network characteristics that emerged due to
interactions with bots. However, as highly active bots might distort the network structure, it
might be interesting to repeat our study while removing bots in future work, to approach our
research question from a different point of view. Nonetheless, as we rely on GitHub issue data
for bot detection and since the detected bots usually do not contribute to the source code, this
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would only affect projects that use GitHub issues. Even in such projects, removing bots would
primarily affect the issue networks and, thus, should not distort our observations, which are
mainly based on the cochange networks. Finally, as in the previous chapters, when we analyze
the commit data, we only consider implementation files, neglecting documentation files, for
instance. While this might affect our results, in this thesis, we focus on the implementation-
related files. Also, the number of documentation files is much smaller than the number of
files that contain source code.

Construct Validity The way we construct our networks may affect the validity of our
results. In particular, we decided to construct networks for time ranges of 6 months. While
the results are different when using other time ranges, we settled for 6-months ranges, for
multiple reasons. On the one hand, time ranges of 6 months are quite established in empirical
studies in this context [see Chapters 5 and 6; HKC+11; MW11; PBD+14]. On the other
hand, we performed a sensitivity analysis and also tried time ranges of 3, 9, and 12 months,
for which we also provide our results for all case studies on our supplementary website.
However, 3-months ranges appeared to be too unstable and too noisy with respect to short-
term fluctuations, and 9- and 12-months ranges often were too long to reveal changes in the
network structure that might only be identifiable within a comparably short period of time,
temporally close-by to the investigated events.

It might also be that some of the selected network characteristics depend on each other
(e.g., small-worldness depends on the clustering coefficient). Albeit, this does not threaten
the results of our exploratory study, in which we aim at looking at developer networks from
different points of view. Using different characteristics helps identify and understand specific
changes in these characteristics and relating them to specific organizational events.

Furthermore, the dates that we determined for an event and the identification of events per
se could affect our study. Here, we relied on blog posts and other articles that are available via
web search. However, this does not mean that an event happened at exactly the point in time at
which the articlewas published or at the date thatwasmentioned in the article. Tomitigate this
threat, we did not arrange our time ranges with respect to the dates of the events, but created
them throughout the entire project history, in line with the exploratory nature of our study. In-
stead of looking at the exact date of an event, we looked for changes in network characteristics
that appeared also in the time before or after the date that was assigned to the event.

Conclusion Validity As we deliberately did not use any statistical methods to evaluate
our results, our results and conclusions might be inappropriate to some extent, as they
might be based on our subjective view on the selected projects and their evolution history.
However, we left over a statistical evaluation to future studies, in favor of our preliminary
and exploratory way of detecting changes in network characteristics. This way, we were able
to derive hypotheses that can and need to be evaluated in future studies.

Moreover, the observed changes and fluctuations in specific network metrics might not be
caused by the investigated events. Thus, there also might be other reasons or other events that
we did not consider that could cause these changes. Nonetheless, it was not our goal to directly
relate changes in network characteristics to certain events or vice versa, but to exploratively
check if there are observable changes that potentially could be related to organizational
events, to be able to investigate such changes and events in more detail in future research.
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External Validity While we try to draw conclusions from all of our 8 case studies and find
common characteristics with regard to organizational events, it is important to note that even
similar events can have different consequences in different projects. Consequently, our results
do not represent any universal characteristics of OSS projects, but provide potential starting
points for future investigations in that direction.

To mitigate generalizability issues, we investigated a diverse set of 53 events, 12 long-lasting
and highly active projects of various project sizes and different project ages (see Tables 7.2
and 7.3), and up to 3 different interaction channels. Although our empirical study has a
preliminary and exploratory character, we carried out 8 individual case studies to collect
insights from many different projects.

7.6 Conclusion

The success and sustainability of an OSS project not only depends on its implementation and
maintenance, but also can be influenced by external factors, such as organizational events.

In an exploratory study on 8 case studies, for which we investigated a total number of
53 events (including different kinds of events, such as company involvements, fork creations,
or technology switches), we obtained various valuable insights into the relationship between
the characteristics of developer networks and the occurrence of such organizational events.
First, we showed the evolution of different network characteristics for different kinds of
developer networks and analyzed noticeable changes. Most of these changes were found in
the collaboration network that is based on source-code changes, although also communica-
tion networks undergo recognizable changes. Second, we demonstrated that we are able to
observe changes in particular network characteristics that are temporally close-by to selected
organizational events. Although we could not detect a consistent set of changes in network
characteristics that apply to all organizational events, we examined a diverse set of different
changes in combination with a diverse set of organizational events that sometimes occur
prior to an event and sometimes after an event, notwithstanding that we cannot establish an
actual connection between event and change in the network characteristic. Third, we collected
a set of hypotheses regarding which network characteristics might be promising indicators
for detecting organizational events that could affect the structure and, thus, the success of
a project. Our exploratory study revealed that, especially, complex network characteristics
that combine multiple aspects, such as scale-freeness, small-worldness, or hierarchy, show
interesting phenomena with respect to the evolution of an OSS project.

With our exploratory analyses and detailed discussions, we lay the foundation for future
work on the analysis of socio-technical aspects of OSS projects, as the concrete roles of
particular organizational events in OSS projects still remain unexplored. Furthermore, we
open the door for future investigations on the relationship between organizational events
and project success, which can contribute toward a better understanding of external factors
in OSS projects as well as toward the development of early-warning mechanisms to avoid or
mitigate the consequences of negative organizational events.
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Many widely-used software projects are organized and developed as open-source software
(OSS) projects. Due to their publicly available source code, OSS projects often attract a
high number of contributors, also including volunteers [RSA+19; Rie19]. While this is a
major advantage of OSS development, previous research has indicated that problems in the
organizational structure of OSS projects and a lack of coordination can cause software bugs
and can also threaten the sustainability of an OSS project [CMP07; CV17; EP91; HKA+23;
ZCC+19]. Consequently, understanding the organizational structure of OSS projects and how
it evolves over time is pivotal for improving the coordination of developers in OSS projects.

In this thesis, we have conducted five different empirical studies with respect to the emerg-
ing organizational patterns in evolving OSS projects. Our studies consist of a mixture of
quantitative and qualitative methods to analyze developer activity and coordination from
different points of view with the goal to obtain a better understanding of the underlying or-
ganizational processes in OSS projects. In the long run, our investigations and corresponding
results shall contribute toward an improvement of organizational and coordinative socio-
technical processes in OSS projects.

Inwhat follows,we briefly summarize our contributions. Concluding this thesis, we provide
an outlook for future work that should be conducted to further progress in the research
direction of socio-technical aspects of OSS projects.

8.1 Summary of the Contributions

In essence, based on the five empirical studies that we have presented in this thesis, our
contribution is threefold:

1. Insights into the Evolution of Collaboration and Communication: In the first three studies,
we investigated the evolution of collaboration and communication from three different
points of view:
a) We investigated synchronous development on different levels of coordination, that

is, we analyzed whether developers collaborate and communicate temporally close-
by and whether their communication is content-wise related to their joint coding
activity. Therefore, we developed a new method for raising the abstraction level
of communication from a message-based model to a conversation-based model.
Moreover, we introduced a continuous variable synchronicity degree to quantify the
significance of co-editing artifacts, as well as an upper bound and a lower bound for
determining whether e-mail communication is related to co-editing activity. In an
extensive empirical study, we observed that a more abstract, higher-level perspective
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on communication captures the coordination activities of developersmore accurately
than a sole message-based perspective. Beside quantitative analyses, we qualitatively
investigated whether e-mail communication is content-wise related to temporally
close-by collaboration activities and found that only between 29% and 47% of tempo-
rally aligned collaboration and communication activities are content-wise related.

b) In our second study, we shifted the perspective on OSS projects from an activity-
based view to a multi-modal network view. That is, we examined how collaboration
and communication activities can be explained by each other, whether developers
form stable group structures, and how these group structures evolve over time.
Therefore, we devised a modular, multi-step method based on canonical tensor
decomposition in combination with a state-space trend extrapolation to detect de-
veloper groups using established community-detection algorithms. In addition, we
predicted the behavior of the detected developer groups using forecast algorithms.
Moreover, we proposed a method to track changes and irregularities in such group
structures, which could be beneficial for project stakeholders to identify potential
problems in the organizational structure of the project. By means of an empirical
study, we provided insights into the existence and stability of group structures in
OSS projects. We were able to identify stable groups as well as distortions in the
group structure. The extent to which group structures in collaboration and commu-
nication overlap is largely project specific. As our prediction of activities indicated,
some group structures seem to be of changing importance, while others stayed
consistently important.

c) Our third study centered around the concept of network hierarchy and a hybrid
network structure that consists of a hierarchical and a non-hierarchical part. In
particular, we proposed an automated method to detect hierarchical structures in a
developer network and identified developers in the hierarchical as well as devel-
opers in the non-hierarchical part. Using this method, we reported insights from a
longitudinal empirical study regarding the presence and evolution of hierarchical
and hybrid organizational structures in OSS projects. Notably, we observed different
patterns on how individual developers moved within the hierarchical structure
during project evolution. Furthermore, we compared the activities and interaction
partners of the developers from hierarchical and non-hierarchical parts, and we
developed hypotheses regarding developers’ roles within the hierarchical structure
that shall guide future research on the organizational structure of OSS projects.

All three studies devised new methods and provided empirical insights that contribute
toward a better understanding of how collaboration and communication activities of
developers are related to each other and how developers in OSS projects organize and
interact within the developer network.

2. Means for Identifying Core Developers: In our fourth study, we shifted our focus to different
developer roles. In this regard, we devised a method to automatically identify a set of
core developers based on privileged role permissions of events that are triggered by
the developers in GitHub issues and pull requests. By means of a validation study, we
validated our automatically derived set of privileged developers with publicly available
maintainer lists, resulting in that our derived set is sound (but not necessarily complete,
as not all privileged developers make use of their privileges regularly). Moreover, as
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our method cannot be used to determine potential future core developers before they
receive privileges, we performed an assessment of the accuracy of several state-of-
the-art unsupervised developer-role classification methods to help researchers and
practitioners to choose an appropriate classification method. In addition, we conducted
an explorative experiment to investigate how our automatic method of core-developer
identification can be used to train supervised classification methods. Our empirical
study revealed that the choice of data source (collaboration on the source code vs.
communication) matters more than the actual classification metric.

3. Insights into the Relation Between Network Characteristics and Organizational Events: In
our fifth study, we investigated whether organizational events in OSS projects (e.g.,
company acquisitions, fork creations, or technology switches) are reflected in partic-
ular characteristics of developer networks. While this study was explorative and of a
rather preliminary nature, we collected various insights into the evolution of network
characteristics of developer networks and their potential relation to organizational
events. Based on our observations from eight case studies, we developed hypotheses
regarding which network characteristics might be promising indicators for detecting
organizational events that affect the structure of developer networks. This way, we lay
the foundation for future work on understanding the causes and effects of organiza-
tional events, as well as for developing measures to detect potentially critical events
and for developing countermeasures to avoid potentially negative consequences for the
project’s sustainability.

All in all, this thesis contributes toward a better understanding of the organizational struc-
tures in OSS projects, considering the evolution of a project as well as the interactions among
humans in a technical setting. Our results are of practical value, for researchers and practi-
tioners: While researchers can build upon our studies and methods to develop mechanisms to
improve coordination processes, which eventually shall lead to an improvement of software
quality, practitioners (e.g., project managers) can use the insights from our studies to identify
sources of problems and develop ideas on how to mitigate them.

8.2 Future Work

As already indicated in the individual chapters of this thesis, our research needs to be
continued in various ways to fully harness its potential. Beside the individual suggestions
on how our work should be continued, which we have discussed already in the individual
chapters, we provide a selection of more general ideas on future work on the analysis of
emerging organizational patterns in evolving OSS projects.

Human Aspects The creation and maintenance of software highly depends on the interac-
tions among different human beings, as we have shown in this thesis. As already indicated by
some of the organizational events that we investigated in Chapter 7, the behavior of developers
and code-of-conduct violations can lead to serious problems and personal discussions in OSS
projects. For example, aggressive developer behavior could lead to developers abandoning the
project [JYF24] (going along with knowledge loss) or distorting the organizational structure
of a project (threatening the project’s success). Therefore, it is inevitable to investigate more
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carefully how individual developers’ well-being within the community is related to project
success and sustainability. However, this is challenging, as humans’ perception of emotions or
sentiment is individual and subjective. Studying different perceptions may help enlightening
the role of social factors in software engineering.

Combining Theoretical Concepts and Practical Application A second idea we would
like to direct to future work concerns the combination of theoretical concepts and practical
applications. While we have devised numerous methods for the analysis of developer coor-
dination in OSS projects, which we also applied to numerous OSS projects in our empirical
studies, our work lacks a practical application that makes our insights and contributions
available to actual project managers and software developers. In particular, we suggest that
future work should concentrate on developing dashboards and other technical means that
help project stakeholders to improve coordination and prevent activities that may harm the
project based on the insights from our studies, such as the early-warning mechanisms that
we have mentioned in Chapter 7.

Technological Advancement Finally, even technological progress does not stop at soft-
ware development. Tools that are based on artificial intelligence might advance software
development into new spheres. The methods and mechanisms that we have provided in our
thesis (e.g., developer-role classification methods or methods to identify structural changes
and irregularities in developer networks) could profit from automated learning techniques,
applied on huge datasets of OSS ecosystems, and from instant application to guide developers
in their development and coordination activities.

With the emergence of artificial-intelligence-assisted software-development practices in
recent years (e.g., GitHub Copilot [NN22] or ChatGPT [NPD23]), we expect that novel
collaboration and communication structures emerge in OSS projects. Thus, as developers are
supported by non-human actors (e.g., bots) to develop and maintain software, it is inevitable
to investigate the interactions between human and non-human actors and how they affect
the organizational structure and the developer networks of OSS projects—with respect to
collaboration and communication activities. Also, the roles and tasks developers take in OSS
projects may be subject to change when non-human actors become more and more involved
in common software-development processes. Therefore, future work needs to analyze how
the behavior of developers in OSS projects changes in consequence of the involvement of
non-human actors. For this purpose, future work can build upon the various methods and
insights that we have presented in this thesis. In summary, there are many starting points on
how to continue our research with practical value for the OSS community.

Having laid out ideas for future work, we conclude that further research on emerging
organizational patterns in evolving OSS projects will be beneficial for the improvement of
coordination processes in OSS projects, which eventually shall serve toward less flawed
software products. This thesis lays the foundations for that by enabling and obtaining a better
understanding of developer activity and coordination in OSS projects and opens the door for
the development of new methods to improve the organizational structures of OSS projects.



AAppendix

In this thesis, we have presented five different empirical studies to analyze developer activity
and coordination with respect to emerging organizational patterns in evolving open-source
software (OSS) projects. For each of the studies, we only have presented a selection of the
results, due to the high number of investigations that we have made and plots that we have
produced in each of our studies. Nevertheless, we provide supplementary material for each of
our studies on an individual supplementary website for each study, also including replication
packages, to enable traceability and reproducibility of our results. In what follows, we provide
an overview of all the supplementary material that is already referenced in the individual
chapters and refer to the corresponding websites.

Supplementary Material for Chapter 3

A replication package for our study on synchronous development in OSS projects, includ-
ing pseudonymized raw data, analysis scripts, and results, is available on the following
supplementary website:
https://se-sic.github.io/paper-coordination-bursts/ and
https://zenodo.org/record/5131282 .

Note that the way in which the replication package is presented on the supplementary website
slightly deviates from the content that we have presented in this thesis, since the website
belongs to Bock et al. [BHJ+22], which also covers additional research questions that are out
of scope of this thesis. Nevertheless, beside presenting additional data and analyses that are
not present in this thesis, the results on the supplementary website and the ones that we have
presented in this thesis are identical.

Supplementary Material for Chapter 4

A replication package for our study on group dynamics and group stability in OSS projects,
including analysis scripts, descriptions on how to gather the corresponding raw data, and
results, is available on the following supplementary website:
https://se-sic.github.io/paper-groupdynamics-oss-tensordecomposition/ and
https://zenodo.org/records/10556710 .
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Supplementary Material for Chapter 5

A replication package for our study on hybrid and hierarchical structures in OSS projects,
including analysis scripts, pseudonymized raw data, and results, is available on the following
supplementary website:
https://hierarchypaper.bitbucket.io/public/ and
https://zenodo.org/record/7199267 .

Supplementary Material for Chapter 6

A replication package for our study on identifying core developers in OSS projects, including
pseudonymized raw data, classification data, tooling, analysis scripts, and results, is available
on the following supplementary website:
https://se-sic.github.io/paper-developer-classifications/ and
https://zenodo.org/record/7775882 .

Supplementary Material for Chapter 7

A replication package for our study on organizational events in OSS projects, including
pseudonymized raw data, analysis scripts, and results, is available on the following supple-
mentary website:
https://se-sic.github.io/website-event-analysis/ and
https://zenodo.org/records/10614399 .
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