
University of Passau
Faculty of Computer Science and Mathematics
Chair of Software Engineering I

A Provident Abstraction Refinement Framework
for Multi-Path Refinements

Master Thesis in Computer Science

2018–03–08

Stephan Lukasczyk

Examiners: Prof. Dr.-Ing. Sven Apel
(Chair of Software Engineering I)
Prof. Dr. Gordon Fraser
(Chair of Software Engineering II)

Tutor: Andreas Stahlbauer, M. Sc.
(Chair of Software Engineering I)

Lukasczyk, Stephan:
A Provident Abstraction Refinement Framework for Multi-Path Refinements
Master Thesis, University of Passau, 2018.

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 3.0 Unported” license.

Abstract

We propose a generalised and configurable abstraction refinement
framework for provident and prescient refinements. Our procedure
therefore calculates the information gained from multiple paths to mul-
tiple error locations in a provident way. This means, it only calculates
the changes caused by the refinement but does not perform any changes
on the underlying abstraction, yet. The gained information, that is, the
precision update necessary to rule out a specific (possibly) infeasible
error path, can be used to come up with the best suiting refinement for
the current verification problem.

The provident refinement procedure is able to delay, estimate, com-
bine, and rank the possible refinements based on the calculated inform-
ation about their precisions. To achieve these goals, we developed an
extended, CEGAR-based, algorithm that allows us to implement our
provident refinement procedure.

Furthermore, we provide an empirical study on the performance
characteristics of our proposed technique using 250 kernel driver mod-
ules from the Linux 4.0-rc1 kernel and 14 safety properties modelling
the correct behaviour and correct API usage of those driver modules.

Contents

List of Terms and Abbreviations vii

List of Algorithms ix

List of Figures ix

List of Tables ix

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 2
1.3. Structure of the Thesis 3

2. Background 5
2.1. Software Model Checking 5
2.2. Program Representation 6
2.3. CPAchecker . 7

2.3.1. Configurable Program Analysis 8
2.3.2. The CPA Algorithm 8
2.3.3. Basic CPAs . 9

2.4. Counterexample-Guided Abstraction Refinement . . . 10
2.5. Precision Adjustment . 11
2.6. Craig Interpolation for Predicate Abstraction Refinement 12

3. Provident Abstraction Refinement 13
3.1. A Provident Strategy to Gain Information on Possible

Refinements . 13
3.2. The PCEGAR Algorithm 14
3.3. The Ranking Operator 17
3.4. Strategies to Select a Refinement 17

4. Evaluation 21
4.1. Research Questions . 21
4.2. Operators for PCEGAR 22

4.2.1. Ranking Operator Implementations 22
4.2.2. Selection Operator Implementations 23
4.2.3. Particular Operator Combinations 24

4.3. Hypotheses . 24
4.3.1. Multi-Path versus Single-Path Strategy 25
4.3.2. Influences of the Verification Tasks 26
4.3.3. Incorporating Domain Knowledge 26

v

4.3.4. Variables . 27
4.4. Case Studies for Evaluation 28
4.5. Evaluation Environment 28
4.6. Results . 30

4.6.1. Multi-Path versus Single-Path Strategy 30
4.6.2. Influences of the Verification Tasks 34
4.6.3. Incorporating Domain Knowledge 38

4.7. Discussion . 39
4.8. Threats to Validity . 40

4.8.1. Internal Validity 40
4.8.2. External Validity 40

5. Related Work 41
5.1. Related Approaches . 41
5.2. Types of Model Checking 42
5.3. Benchmarks . 43

6. Conclusion 45
6.1. Summary . 45
6.2. Future Work . 45

A. Bibliography 47

vi

List of Terms and Abbreviations

API Application Programming Interface

ARG Abstract Reachability Graph

BenchExec A framework for reliable benchmarking and resource meas-
urements, based on cgroups and built in Python

CEGAR Counterexample-Guided Abstraction Refinement

CFA Control-Flow Automaton

CPA Configurable Program Analysis

CPAchecker An open source tool and framework for software verifica-
tion and program analysis

JIT Just-in-Time

JVM Java Virtual Machine

LDV Linux Driver Verification

MathSAT A SMT solver supporting a wide range of theories and func-
tionalities

PCEGAR Provident Counterexample-Guided Abstraction Refinement

vii

List of Algorithms

2.1. CPA++(𝔻, reached, waitlist, abort) 9
2.2. CEGAR(𝔻, 𝑒INIT, 𝜋INIT) . 11

3.1. PCEGAR(𝔻, 𝑒INIT, 𝜋INIT) 15

List of Figures

2.1. Example of a control-flow automaton 7

4.1. Efficiency of multi-path versus single-path strategy . . 31
4.2. Comparison of speedups for different components and

operators . 32
4.3. Effectiveness of multi-path versus single-path strategy . 33
4.4. Comparison of speedups per property 35
4.5. Analysis CPU time comparison for property LDV_32_1a 36
4.6. Analysis CPU time comparison for property LDV_106_1a 37
4.7. Analysis CPU time comparison for property LDV_132_1a 37
4.8. Number of applied refinements for different operator

configurations . 39

List of Tables

4.1. Overview of the ranking operators 23
4.2. Overview over the selection operators 24
4.3. Overview over independent, dependent, and controlled

variables . 27
4.4. Safety properties for the Linux kernel modules 29
4.5. Numbers of provident and executed refinements 32
4.6. Number of relevant tasks for Hypothesis 3 34

ix

1
Introduction

If your specifications are ambiguous,
the greater the ambiguity, the easier
the specifications are to satisfy (if
the specifications are absolutely
ambiguous, every program will satisfy
them!).

(Edsger W. Dijkstra [Dij74])

Every non-trivial piece of software contains bugs. Steve McConnell
states that the industry average lies between 15 and 50 errors per 1 000
lines of delivered code [McC04]. By using special development tech-
niques it is possible to achieve rates between 0.1 and 3 defects per 1 000
lines of code [CM90]. Compared to the millions of lines of code, for
example, current operating systems consist of, it follows that there are
thousands to ten-thousand defects in such a piece of software.

1.1. Motivation

Therefore, techniques have been developed to reduce the number of
such errors or even mathematically prove that errors are absent. One
such well-established technique for formal verification is model check-
ing [CES83; CES86]. By using an abstract model of the system one
avoids the complexity of the original system during the process. The
model is then checked against a formal specification that, for example,
models the correct behaviour of a software system. In case the specific-
ation does not hold, a counterexample that describes the violation, is
produced.

Real-world software is complex, thus it is almost infeasible to con-
struct an exact model of the program. Hence, the usage of abstraction
techniques is a requirement when building the model. This makes the
abstract model small but has a major drawback: it is possible that the
abstract model is too coarse, that is, it does not contain enough informa-
tion to prove the correctness of the program regarding the specification.

Because of this it is possible that the model checker yields a false ver-
dict, that means, it detects a violation of the specification in the abstract
model, although this violation is not possible in the original system. In
order to keep the abstract model small without getting any false alarms,

1

the abstraction needs to be refined to rule out the infeasible counter-
example. A well-known and well-established technique to achieve this
is called Counterexample-Guided Abstraction Refinement (CEGAR) [CES83;
CES86].

In the CEGAR loop a found counterexample will be checked whether
it is real or spurious. A spurious counterexample means that the abstract
model is too coarse [CGJ+03]. Thus, a refinement of the abstract model is
needed to remove the found counterexample. For that, the information
from the found path will be used, for example, Craig interpolants for
predicate-based analyses.

Often there is more than one refinement possible as there is more than
one path through the program to an error location or even more than
one error location. The selection of a refinement to apply to the abstract
model, in order to remove a spurious counterexample, is crucial. The
quality of the information that is gained from the counterexample influ-
ences the quality of the analysis [BLW15c]. Many of today’s approaches
are based on lazy abstraction [HJM+02] and thus perform a refinement
each time an error location is found. This obviously limits the possible
range to select a refinement, as the order of found error locations is only
determined by the state-space exploration strategy, for example, depth-
first or breadth-first search on a control-flow graph. While refinement
strategies based on lazy abstraction work well in practice, this can be
limiting in case many properties are check checked at once, as it is the
case, for example, with multi-property verification [ABM+16].

Previous work already identified that there is often more than one
reason for the infeasibility of a spurious counterexample and proposed
heuristics to select the best-suiting refinement [BLW15b]. Nevertheless,
they only consider single paths to single error locations. Targeting this
problem is the main goal of our work. We want to incorporate the
information of all possible refinements. Although, we still rely on the
state-space exploration strategy, this allows us to consider more inform-
ation for our selection, in order to decrease the number of necessary
refinements and gain performance.

Furthermore, previous work often bases their evaluation on artifi-
cial benchmark sets or benchmark sets that are specifically created to
exhibit the proposed behaviour of a new approach. Hence, to avoid
such artificial benchmarks, we use a case study from a real-world soft-
ware project, namely the Linux kernel. We combine it with a set of
safety properties that model the correct usage of some of the kernel’s
Application Programming Interfaces (APIs).

1.2. Contributions

With our work, we provide the following contributions:

• We define a provident multi-path refinement framework, that is,
a framework that takes paths to more than one target state into

2 Chapter 1 Introduction

account. It is able to use information about the target states and
the calculated refinement candidates to rank these refinements
and combine them in, order to apply the best-suiting refinement
for the given verification task.

• We implement our approach in a custom fork of the software
verification framework CPAchecker 1. The framework is an open
source project and available under the terms of the Apache 2.0
license [BHT07; BHT08]. The code of the fork is available in a
(currently private) GitHub repository.

• We evaluate our multi-path refinement strategy and compare it
to a traditional single-path strategy in order to gain information
about the performance behaviour of a multi-path strategy. The
evaluation is done using a case study built of 250 Linux kernel
modules together with a set of 14 safety properties. The case study
was also used in prior work [ABM+16] and was created in collab-
oration with the Linux Driver Verification (LDV) project [KMP+09].

All data, as well as the case study, can be found on our supplementary
web page2.

1.3. Structure of the Thesis

Before we introduce our novel refinement framework (Chapter 3), we
give an overview over the relevant background (Chapter 2) that is ne-
cessary to understand the concept we use later on. In order to show the
effects of our concept, we provide an extensive evaluation (Chapter 4).
We shall provide an overview over related work (Chapter 5) and con-
clude our presentation with an outlook on possible future research
directions (Chapter 6).

1See https://cpachecker.sosy-lab.org for more information.
2See https://research.lukasczyk.me/provident-refinement

1.3 Structure of the Thesis 3

https://cpachecker.sosy-lab.org
https://research.lukasczyk.me/provident-refinement

2
Background

We present the relevant background for our work in this chapter. We ex-
plain the ideas of software model checking to the reader, give an insight
in the program representation we use, and introduce the CPAchecker
framework. Furthermore, we introduce CEGAR, precision adjustment,
and Craig interpolation. You might want to skip this chapter if you are
familiar with the presented concepts.

2.1. Software Model Checking

Software model checking is the algorithmic analysis of programs to prove
properties of the executions [JM09]. All information of this section is
taken from [JM09].

Model checking has its roots in logic and theorem proving. It is a
conceptual framework for the formalisation of verification problems
and provides algorithmic procedures for the analysis. Providing a
sound and complete algorithmic solution to the problem is generally
infeasible due to Turing’s undecidability theorem [Tur37]. Research
on verification starts with manual reasoning (see for example [Hoa69]).
Due to the increasing complexity of the verification problems auto-
matic tools became necessary. In the beginning, those tools needed
human guidance, such as the provision of loop invariants or pre- and
post-conditions [Dij76]. Modern tools often combine several differ-
ent techniques such as theorem proving, model checking, or dataflow
analyses.

Model checking tends to prove properties of program computations.
Such properties can, for example, be assertions, like a variable that is
guaranteed to have a certain value at a certain program location; the
property can also be a global invariant or a termination property. A
safety property can be expressed by the reachability of a certain program
location, the error location. By combining an input program 𝑃 and a
property 𝛱 a verification problem is built. The model checker returns
“safe” if every computation of 𝑃 is in 𝛱; otherwise it returns “unsafe”.

The path from the initial program location to the error location is
called counterexample or error path.

Jhala and Majumdar provide an extensive survey [JM09] on tech-
niques and tools for software model checking.

5

2.2. Program Representation

In this section we provide basic definitions taken from the literat-
ure [BDW18] on the representation of programs we use. We restrict our
presentation to a simple imperative programming languages that only
consists of assignments and assumptions, where all variables range
over integers1.

We represent a program as a Control-Flow Automaton (CFA), which is a
directed graph with program operations attached to its edges. A set 𝐿 of
program locations, an initial location 𝑙INIT, which represents the program
entry point, a set 𝑂𝑝𝑠 of program operations, and a set 𝐺 ⊆ (𝐿×𝑂𝑝𝑠×𝐿) of
edges between program locations forms a CFA 𝐴 = (𝐿, 𝑙INIT, 𝐺). Each
edge is labelled with a program operation that is executed, when the
control flow walks along the edge. We denote the set of all program
variables by 𝑋; these are the variables that occur in operations of a CFA.
A concrete data state 𝑐 ∶ 𝑋 → ℤ is a mapping from program variables to
integers. A set of such concrete states is called region and represented
by first-order formulæ 𝜓 over variables from 𝑋 such that the set ⟦𝜓⟧ of
concrete data states that is represented by 𝜓 is defined as ⟦𝜓⟧ = {𝑐 ∶ 𝑐 ⊧
𝜓}. A pair (𝑐, 𝑙) ∶ (𝑋 → ℤ) × 𝐿 of a concrete data state and a location is
called concrete state.

Each operation 𝑜𝑝 ∈ 𝑂𝑝𝑠 can either be an assignment of the form 𝑥 ∶=
𝑒, consisting of a variable 𝑥 ∈ 𝑋 and a side-effect free arithmetic ex-
pression 𝑒 over variables from 𝑋, or an assume operation [𝑝], consist-
ing of a predicate 𝑝 over variables from 𝑋. The strongest-postcondition
operator SP𝑜𝑝(⋅) defines the semantics of an operation 𝑜𝑝. For a for-
mula 𝜓 and an assignment 𝑥 ∶= 𝑒 the strongest-postcondition operator
is defined as SP𝑥∶=𝑒(𝜓) = ∃ ̂𝑥 ∶ 𝜓[𝑥→ ̂𝑥] ∧ (𝑥 = 𝑒[𝑥→ ̂𝑥]); for an assume
operation [𝑝] it is defined as SP[𝑝](𝜓) = 𝜓∧𝑝. The existential quantifier
in the strongest-postcondition operator for assignments can be avoided
in the implementation by skolemization.

We call a sequence of consecutive edges from 𝐺 a path, denoted
by 𝜎 = ⟨(𝑙𝑖, 𝑜𝑝𝑖, 𝑙𝑗), (𝑙𝑗, 𝑜𝑝𝑗, 𝑙𝑘), … , (𝑙𝑚, 𝑜𝑝𝑚, 𝑙𝑛)⟩. If a path starts in the
initial location 𝑙INIT, we call it program path. By the iterative application
of SP𝑜𝑝(⋅) we define the semantics of a path for each operation of the
path: SP𝜎(𝜓) = SP𝑜𝑝𝑚

(… (SP𝑜𝑝𝑖
(𝜓)) …). If SP𝜎(true) is satisfiable we

call a path 𝜎 feasible; otherwise it is called infeasible. We call a location 𝑙
reachable if there exists a feasible path from 𝑙INIT to 𝑙.

Listing 2.1 shows a small C program and Figure 2.1 a corresponding
CFA. The program contains a while-loop running a non-deterministic
number of iterations—given by the nondet() function. It contains a
reachable ERROR label, which indicates a specification violation.

1Our implementation, however, supports C programs.

6 Chapter 2 Background

1 extern int
nondet(void);↪

2

3 int main(void) {
4 int x = nondet();
5 int i = nondet();
6

7 while (i) {
8 ++x;
9

10 if (x % 2 == 0)
11 goto ERROR;
12 else
13 i = nondet();
14

15 }
16 return 0;
17 ERROR:
18 return -1;
19 }

Listing 2.1. A simple example pro-
gram in C

L1
20

23 INIT GLOBAL VARS

20 int nondet();

21 int main();

22 Function start dummy edge

2 int x;

3 x = nondet();

4 int i;

5 i = nondet();

6 while

INITIAL DUMMY EDGE

L7
10

L9
1

[i �� 0]

L8
9

[!(i �� 0)]

L0
0

return 0;

L10
8

x = x + 1;

L12
4

[(x % 2) �� 0]

13 i = nondet();

15

11

[!((x % 2) �� 0)]

17 Label: ERROR

18 return -1;

Goto: ERROR

Figure 2.1. A CFA for the program in List-
ing 2.1 as generated by CPAchecker

2.3. CPAchecker

CPAchecker is a tool and framework for software verification, espe-
cially for C programs [BK11]. It is an open-source tool written in Java
and available under the terms of the Apache 2.0 license. More on the
framework and its documentation can be found on the project’s web
site2.

2See https://cpachecker.sosy-lab.org

2.3 CPAchecker 7

https://cpachecker.sosy-lab.org

2.3.1. Configurable Program Analysis

The core concept of CPAchecker is based on Configurable Program Ana-
lysis (CPA) [BHT07] with dynamic precision adjustment [BHT08]. We
take the following definitions from the literature [ABM+16; BDW18].

A CPA with dynamic precision adjustment (note that this precisely is
called CPA+, but it is common to refer to CPA+ as CPA if the difference
is not important for the presentation) is of the form

𝔻 = (𝐷, 𝛱, ⇝, merge, stop, prec).

The abstract domain 𝐷 = (𝐶, ℰ, ⟦⋅⟧) defines the type of abstract rep-
resentation of concrete states from 𝐶. It consists of the set of all con-
crete states 𝐶 of the program, a semi-lattice ℰ = (𝐸, ⊑, ⊔, ⊤), and a
concretisation function ⟦⋅⟧ that maps each abstract-domain element
to the represented set of concrete states. 𝐸 denotes the set of abstract-
domain elements, this means, the abstract states; ⊑ denotes the lat-
tice’s partial order. An abstract state 𝑒 ∈ 𝐸 is called abstract error state
if it represents a concrete state at the error location 𝑙ERR, that is, if
∃𝑐 ∈ (𝑋 → ℤ) ∶ (𝑐, 𝑙ERR) ∈ ⟦𝑒⟧; we also denote it by 𝑒ERR.

The precision 𝜋 ∈ 𝛱 defines aspects of the state space that should
be represented by abstract states in a given abstract domain. The set
of successor abstract states for each abstract state is defined by the
transfer relation ⇝⊆ 𝐸×𝐸×𝛱. The merge operator merge ∶ 𝐸×𝐸×𝛱 → 𝐸
provides the ability to merge two abstract states under a given precision.
To determine whether an abstract state is covered by other abstract
states, the stop operator stop ∶ 𝐸 × 2𝐸 × 𝛱 → 𝔹 is used. Finally, the
precision-adjustment operator prec ∶ 𝐸 × 𝛱 × 2𝐸×𝛱 → 𝐸 × 𝛱 allows a
dynamic adjustment of the precision depending on the current set of
reachable abstract states.

Such CPAs are the central building blocks of this formalism. Several
CPAs are composed to form a composite analysis. We refer the reader to
the literature [BHT07; BHT08; BK11; BDW18] for further details on the
CPA formalism.

2.3.2. The CPA Algorithm

The CPA algorithm (see Algorithm 2.1) uses a combination of CPAs and
an initial abstract state with precision for a reachability analysis and
performs a classic fixed-point iteration by looping until the set waitlist
is empty, that is, all abstract states have been completely processed.
The algorithm returns the set of reachable abstract states (denoted
by reached). In each algorithm iteration, it takes one abstract state 𝑒
with precision 𝜋 from the waitlist, executes the precision-adjustment
operator prec, computes all abstract successors, and processes each of
those successors [BDW18].

We refer the reader to the literature [BHT07; BHT08; BK11; BDW18]
for further details.

8 Chapter 2 Background

Algorithm 2.1: The CPA++(𝔻, reached, waitlist, abort) algorithm,
taken from [BDW18]
Input: a CPA 𝔻 = (𝐷, 𝛱, ⇝, merge, stop, prec), with additional

operator fcover, where 𝐸 denotes the set of elements of the
semilattice of 𝐷,
a set reached ∈ 𝐸 × 𝛱 of reachable abstract states
a set waitlist ∈ 𝐸 × 𝛱 of frontier abstract states, and
a function abort ∶ 𝐸 → 𝔹 that defines whether the
algorithm should abort early

Output: the updated sets reached and waitlist

while waitlist ≠ ∅ do
pop (𝑒, 𝜋) from waitlist;
reached:= fcover(reached, 𝑒, 𝜋);
if (𝑒, 𝜋) ∉ reached then

continue
forall 𝑒′ with 𝑒 ⇝ (𝑒′, 𝜋) do

(̂𝑒, �̂�) ∶= prec(𝑒′, 𝜋, reached);
forall (𝑒″, 𝜋″) ∈ reached do

𝑒new ∶= merge(̂𝑒, 𝑒″, �̂�);
if 𝑒new ≠ 𝑒″ then

waitlist ∶= (waitlist ∪ {(𝑒new, �̂�)}) ∖ {(𝑒″, 𝜋″)};
reached ∶= (reached ∪ {(𝑒new, �̂�)}) ∖ {(𝑒″, 𝜋″)};

if not stop(̂𝑒, {𝑒 ∶ (𝑒, ⋅) ∈ reached}, �̂�) then
waitlist ∶= waitlist ∪ {(̂𝑒, �̂�)};
reached ∶= reached ∪ {(̂𝑒, �̂�)};
if abort (̂𝑒) then

return (reached, waitlist)
return (reached, waitlist)

2.3.3. Basic CPAs

We introduce some CPAs, which we refer to in the later presentation.
The following is taken from [BDW18].

As mentioned before, it is possible to combine several CPAs using
a Composite CPA [BHT07] in the style of the well-known Composite
Pattern [GHJ+95]. This allows to seperate concerns into different CPAs;
they can then be reused and flexibly combined to create new analyses,
instead of redefining them for every analysis.

Most kinds of program analysis need to track the program counter,
for example. The Location CPA 𝕃 [BHT08] tracks the program counter
and allows other CPAs to use the information without implementing a
program counter tracking on their own.

Furthermore, we define an additional ARG CPA 𝔸 that tracks the Ab-
stract Reachability Graph (ARG) over the abstract states in the set reached.
It stores the predecessor-successor relationship between abstract states
and allows to reconstruct abstract paths in the ARG. We call a se-

2.3 CPAchecker 9

quence ⟨𝑒0, … , 𝑒𝑛⟩ of abstract states an abstract path if for any pair (𝑒𝑖, 𝑒𝑖+1)
with 𝑖 ∈ {0, … , 𝑛 − 1} either 𝑒𝑖+1 is an abstract successor of 𝑒𝑖 or 𝑒𝑖+1
is the result of merging an abstract successor of 𝑒𝑖 with some other
abstract state(s). The combination of both Location CPA and ARG CPA
allows us to reconstruct from an abstract path the path that it represents
in the CFA. Unrolling the paths through the ARG forms an abstract
reachability tree.

2.4. Counterexample-Guided Abstraction Refinement

The main technical challenge for model checking, especially of larger
systems, is the state-space explosion problem [CGJ+03] It is the reason
why algorithms are not applied to all-embracing models of the systems,
but on simplified—abstract—models. The abstraction causes a loss of
information incurred by simplifying the model. Hence, verifying the ab-
stract model potentially leads to wrong results. These artificial specific-
ation violations are called spurious counterexamples [CGJ+03]. To thwart
these potentially wrong results a technique called Counterexample-Guided
Abstraction Refinement (CEGAR) has been proposed [CGJ+00; CGJ+03].
Information in the following paragraph is taken from [CGJ+03].

The technique starts with a small coarse model of the system to be
verified and automatically gains information from spurious counter-
examples in order to compute increasingly precise abstract models of
the system. Each abstract model is an over-approximation of the ori-
ginal model and thus of the original system. A specification that holds
in the abstract model will also hold in the concrete model. Neverthe-
less, a specification violation in the abstract model can either be caused
by missing information, that means, it is spurious, or it can be a real
violation. By refining the abstraction a spurious counterexample is
eliminated. These increasingly precise abstract models are created until
the specification is either proved or disproved by a counterexample.

CEGAR consists of several compontents: a state-space exploration al-
gorithm, that is, an algorithm that computes the abstract model, for
example, the CPA algorithm (see Section 2.3.2); a precision that determ-
ines the current level of abstraction; a feasibility check that decides on the
feasibility of a found path and a refinement procedure, which is used to
refine the precision of the abstract model [BLW15b]. The algorithm is
depicted in Algorithm 2.2.

The state-space exploration algorithm explores the reachable abstract
state space according to the current precision. The precision initially
is coarse or even empty. The algorithm returns the verdict true if the
state space was fully explored and no specification violation was found.
This result lets the CEGAR algorithm terminate and it reports the true
verdict. A found specification violation means that there is a path
through the program that leads to the error location. The feasibility
check decides whether this path is infeasible. For a feasible path the

10 Chapter 2 Background

Algorithm 2.2: CEGAR(𝔻, 𝑒INIT, 𝜋INIT), for CPAs, taken
from [BDW18]
Input: a composite CPA 𝔻 composed of a location CPA 𝕃, a ARG

CPA 𝔸, and possibly other CPAs;
for which 𝐸 denotes the set of abstract states and 𝛱 the set
of precisions;
with the additional operators fcover and refine;
and an initial abstract state 𝑒INIT = (𝑙INIT, ⋯) ∈ 𝐸
with initial precision 𝜋INIT ∈ 𝛱

Output: false if 𝑙ERR is reachable, true otherwise
Variables: two sets reached and waitlist of elements of 𝐸 × 𝛱 and a

function abortERR ∶ 𝐸 → 𝔹
reached := {(𝑒INIT, 𝜋INIT)};
waitlist := {(𝑒INIT, 𝜋INIT)};
// abortERR returns true at 𝑙ERR.
abortERR := {(𝑙, ⋯) ↦ (𝑙 = 𝑙ERR)};
while true do

(reached, waitlist) := CPA++(𝔻, reached, waitlist, abortERR);
if ∃((𝑙ERR, ⋯), ⋅) ∈ reached then

(reached, waitlist) := refine(reached, waitlist);
if ∃((𝑙ERR, ⋯), ⋅) ∈ reached then

// refine has detected a feasible error path
return false;

else
return true;

program is unsafe and the analysis terminates with a false verdict. In
case of an infeasible error path the refinement procedure refines the
precision in order to remove the infeasible error path from the abstract
states space. Afterwards, the algorithm restarts and repeats until either
a concrete error path is found or the abstract model is proven safe. The
latter means that also the program is safe due to the over-approximating
character of the analysis [BLW15b; BDW18].

2.5. Precision Adjustment

We call the information that determines the level of abstraction precision
of the abstract states. We denote the set of possible precisions by 𝛱
and use 𝜋 ∈ 𝛱 to denote an element thereof. We define a program
precision as a mapping 𝐿 → 𝛱 from the program locations 𝐿 to the set of
precisions in order to support different precisions at different program
locations.

The coarsest precision is called empty precision; it defines that all
information is abstracted. Two precisions can be united by an union

2.5 Precision Adjustment 11

operation. It is defined in an intuitive way; for example, the union of
two predicate precisions, that means, the precisions are a set of predic-
ates over program variables, is defined by the union of the predicate
sets [BLN+13].

The process of applying a new precision to an abstract state is called
precision adjustment and is done by the precision adjustent operator prec in
the CPA algorithm (see Algorithm 2.1).

2.6. Craig Interpolation for Predicate Abstraction Refinement

A widely used technique in (software) model checking is predicate ab-
straction [GS97]. A set 𝒫 of quantifier-free first-order predicates is used
to model the program variables. In such an analysis, the precision 𝜋 is
a set of predicates from 𝒫.

By using a SMT solver it is possible to reason over the predicates.
To refine such an abstract predicate-based model it is common to use
Craig interpolation [Cra57] in order to discover information that allows
the elimination of an infeasible error path. This information is called
interpolant. Its structure is defined by Craig’s interpolation theorem (see
Theorem 1).

Theorem 1 (Craig’s interpolation theorem [Cra57; BL13]): Let 𝜑−, 𝜑+

be a pair of formulæ, such that 𝜑− ∧ 𝜑+ is unsatisfiable. Then there exists a
formula 𝜓 (called Craig interpolant) that fulfils:

(i) the implication 𝜑− ⇒ 𝜓 holds,

(ii) the conjunction 𝜓 ∧ 𝜑+ is unsatisfiable, and

(iii) 𝜓 only contains symbols that occur in both 𝜑− and 𝜑+.

The existence of interpolants is guaranteed for many common SMT
theories; they can be computed by off-the-shelf SMT solvers [BDW18].

In traditional predicate abstraction refinement the atoms of the in-
terpolants are extracted as predicates. From these predicates, the re-
finement procedure creates a new precision 𝜋 that then can be used to
refine the abstract model.

12 Chapter 2 Background

3
Provident Abstraction Refinement
We now present our provident abstraction refinement technique. Our
presentation begins with the concept of a provident refinement. We
then introduce our modified CEGAR-based algorithm that allows us to
rank, select, delay, and combine possible refinements.

3.1. A Provident Strategy to Gain Information on Possible
Refinements

Extracting good precisions, that is, precisions that lead to a fast con-
vergence of the algorithm in as few steps as possible, from infeasible
error paths is key to the CEGAR technique [BLW15b]. The selection of
a refinement significantly influences the quality of the precision and
the effectiveness of the analysis [BLW15c]. In existing approaches, that
are based on lazy abstraction [HJM+02], the exploration of the state
space stops after the first error location was found. For this location
a refinement is performed. The quality of the retrieved precision lies
only in the interpolation engine because the used predicate abstraction
in CPAchecker relies on Craig interpolation. This is due to the fact that
there might be several reasons for infeasibility in one path. Some of
these reasons might be easier to track and can be more beneficial for the
further analysis progress [BLW15c; BLW15b]. The interpolation engine,
however, cannot decide which interpolants are best for the analysis
progress because it has no access to this information. Furthermore, for
an arbitrary interpolation problem the result cannot be controlled from
the outside. This all can lead to divergence of the analysis [BLW15b].

Many CEGAR-based refinement strategies are based on the principles
of lazy abstraction. Lazy abstraction [HJM+02] is a technique that allows
to refine only parts of the abstract state space and keep the rest of it.
This has the advantage that possibly expensive explorations of large
parts of the reachable states does not have to be done over and over
again. In order to achieve this, a refinement strategy based on lazy
abstraction will pause the state-space exploration as soon as the first
error location is found. If the path to this error location is feasible the
analysis can terminate. Otherwise, there is some abstract state in which
the abstract counterexample has an concrete counterpart; this state is
called pivot state. In lieu of building an entire new abstract model, the
current abstract model will be refined beginning from the pivot state.

13

The promise of this is that some parts of the abstract model are not
relevant for the verification of the desired property, hence there is no
need to re-explore them.

While refinement strategies based on lazy abstraction have proved
to be prosperous, our approach does not follow this principle. In case
an error location is found our state-space exploration algorithm shall
not pause. We continue until the full reachable state space is explored.
From this set of reachable abstract states we extract those that are error
locations. Obviously, there can be more than one such error location.
In the following, we can calculate a provident refinement for each such
error location. A provident refinement is a refinement that does not do
any changes to the set of reachable abstract states. Instead, we only
want to extract the precision information. To do so, our framework
reconstructs the error path from the abstract state’s space and calculates
interpolants—similar to the previously described approach. From these
interpolants, we calculate the precision increment, that is, the new
precision determined by the interpolants. The result of a provident
refinement for one error location is a pair (𝑒, 𝜋) from the relation 𝐸 × 𝛱
of abstract states and precisions.

In contrast to lazy abstraction, where a sequence of interpolants is
corresponding to a sequence of program locations and thus also the
precision, we break this relation and allow the precision to be applied to
any state with any scoping. That is, a precision can not only be applied
to a specific state and is only relevant for this state, but it can also be
applied to any state being valid globally. This allows our framework
to, for example, join the precisions of all found error paths into one
precision containing all information. The resulting precision can then
be applied to the root node of the ARG with a global scoping, that is, the
precision is valid for this node and all its children, that is, the full space
of reachable abstract states. After this is done, we restart the exploration
of the state space. Similar to lazy abstraction, the framework provides
an early exit in case a feasible counterexample is found.

In order to determine how this resulting precision shall look, our
framework defines two operators, namely rank and select, which we will
render more precisely in Section 3.3 and Section 3.4, respectively. Both
operators influence the resulting precision; rank influences the order in
which provident refinements are calculated for target locations while
select provides the ability to determine the precision increment that
will be applied to the abstract state space afterwards.

3.2. The PCEGAR Algorithm

We present the Provident Counterexample-Guided Abstraction Refinement
(PCEGAR) algorithm in this section. It is based on a classical CEGAR
algorithm similar to the one described in Section 2.4. The algorithm
is listed in Algorithm 3.1. Technically, it is a semi-algorithm because

14 Chapter 3 Provident Abstraction Refinement

Algorithm 3.1: PCEGAR(𝔻, 𝑒INIT, 𝜋INIT) for CPAs
Input: a composite CPA 𝔻 composed of a location CPA 𝕃, a ARG

CPA 𝔸, and possibly other CPAs;
for which 𝐸 denotes the set of abstract states and 𝛱 the set
of precisions;
with the additional operators extract_targets, rank,
provident_refine, select, and apply;
and an initial abstract state 𝑒INIT = (𝑙INIT, ⋯) ∈ 𝐸
with initial precision 𝜋INIT ∈ 𝛱

Output: false if 𝑙ERR is reachable, true otherwise
Variables: three sets reached, waitlist and candidates of elements of

𝐸 × 𝛱 and a function abortERR ∶ 𝐸 → 𝔹
reached := {(𝑒INIT, 𝜋INIT)};
waitlist := {(𝑒INIT, 𝜋INIT)};
// abortERR returns false to explore the full state space
abortERR := {(𝑙, ⋯) ↦ false};
candidates := ∅;
while true do

(reached, waitlist) := CPA++(𝔻, reached, waitlist, abortERR);
if ∃((𝑙ERR, ⋯), ⋅) ∈ reached then

targets := extract_targets (reached);
targets := rank (targets);
candidates := ⋃𝑡∈targets provident_refine(𝑡);
𝑠 := select (candidates);
(reached, waitlist) := apply(reached, waitlist, 𝑠);
if ∃((𝑙ERR, ⋯), ⋅) ∈ reached then

// refine has detected a feasible error path
return false;

else
return true;

termination cannot be guaranteed; this can be the case, for example, if
we choose PCEGAR’s operators in a way, it does not remove a spurious
counterexample. Still, we omit the prefix semi in our presentation for
simplicity, and call PCEGAR an algorithm in the following.

If we omit the additional operators extract_targets, rank, provident_refine,
and select for now, the algorithm is identical to the CEGAR algorithm
presented in Algorithm 2.2. The only difference is that we need to
replace PCEGAR’s apply operator by CEGAR’s refine operator.

In the following, we assume the operator rank to be an identity rela-
tion, and the select operator to always select the first element given in
its parameter list. This is for simplicity of the algorithm’s presentation.
We will discuss the rank operator in Section 3.3 and the select operator
in Section 3.4.

3.2 The PCEGAR Algorithm 15

First of all, PCEGAR is a refinement algorithm, that means, it only
refines the abstract state space explored by an external state-space
exploration algorithm. One such state-space exploration algorithm
is the CPA algorithm (see Section 2.3.2 for details). The exploration
algorithm is meant to explore a set of reachable abstract states, called the
reached set, and denoted by reached. Among the states in the reached
set, there can be states that symbolise a violation of a property, which
we call target states in the following. If there are no such states and
the state space was fully explored, the program is considered to be
safe. This leads to a termination of the refinement algorithm; hence, it
returns the verdict true.

In case there exists at least one such target state, it is necessary to
determine, whether it is a real violation of the property, or if it exists
just because of a too coarse abstract model. For that, our refinement
algorithm extracts all such target states using the operator extract_targets,
which simply filters the set of reachable abstract states for those that
fulfil the target-state criteria. The resulting list is then given to the
ranking operator rank.

For each such target state there exists a path through the ARG that con-
nects the target state with the entry point of the program, which is rep-
resented by the root node of the ARG. Let 𝐸 be the set of all reachable ab-
stract states. Also, let ⟨𝑒INIT, 𝑒1, 𝑒2, … , 𝑒ERR⟩ with 𝑒INIT, 𝑒1, 𝑒2, … , 𝑒ERR ∈
𝐸 be an infeasible path in the set of reached states. Then there exists
an abstract state 𝑒𝑚 ∈ 𝐸 with 𝑒𝑚 ∈ ⟨𝑒INIT, 𝑒1, 𝑒2, … , 𝑒ERR⟩, which causes
the infeasibility of this path in the program but not in the abstract
model. Using Craig interpolation, predicates can be generated fully
automatically from a proof of unsatisfiability for the formula represent-
ing such a spurious counterexample [HJM+04]. Because our analysis is
based on predicate abstraction, where a precision 𝜋 is a set of predic-
ates [BLN+13], we can use these predicates from Craig interpolation as
our new precision. Finally, there is a pair (𝑒, 𝜋) from the relation 𝐸 × 𝛱
for each such provident refinement, where 𝑒 is the pivot state as used in
lazy abstraction. Note that this does not limit our technique to analyses
based on predicate abstraction. It was shown, for example by Beyer
and Löwe [BL13], that also other analysis types, such as explicit-value
program analysis, benefit from abstraction, CEGAR, and interpolation.

The list of such pairs is then given to the selection operator select.
The operator returns a single pair (𝑒, 𝜋), which describes the actual
refinement, that is, the new precision that shall be added to the abstract
model in the next step. Finally, the operator apply adds the new precision
to the relevant abstract states like a standard CEGAR-based refinement
strategy does.

Afterwards, it is checked, whether the target state 𝑒ERR is still reach-
able. As we considered the error path to be infeasible, 𝑒ERR cannot be
reachable any more. Hence, the algorithm continues to explore the

16 Chapter 3 Provident Abstraction Refinement

state space again. If the error path was feasible in the first place, the
algorithm would have stopped here by returning the verdict false.

3.3. The Ranking Operator

The target ranking operator rank is the first of two operators defined
by our framework. As stated before, it is used to determine the order
in which provident refinements are calculated for the found target
locations. Formally, we define the operator as given by Definition 1.

Definition 1 (The Operator rank): Let 𝐼 be the non-empty list of abstract
target states in random order (as determined by the state space exploration
strategy), that is, each element 𝑖 of 𝐼 is an element of the set of abstract states 𝐸
and is a target state. Let further 𝑂 be non-empty sub-list of 𝐼, ordered by an
order relation ⪯.

We then define the operator rank⪯ as a surjection between the lists 𝐼 and 𝑂:

rank⪯ ∶ 𝐼 → 𝑂

This definition leads to two important remarks: we first note, that
neither 𝐼 nor 𝑂 shall be empty. The simple reason is that the provident
refinement algorithm uses 𝑂 as input for its calculations; for an empty
list it is not possible to calculate anything, thus, there would not be
a single counterexample removal during the refinement procedure,
which can lead to non-termination of the PCEGAR algorithm. In case 𝐼
was empty, the algorithm would already have stopped earlier, because
there was no target state in the reached set anyway. Second, if we refer
to the ranking operator for a specific order ⪯, we denote it by rank⪯; if
we refer to the ranking operator in general, where we are not interested
in the order, we omit the order and denote the operator only by rank.

The order ⪯ is necessary to determine the position of an element of 𝐼
in the output list 𝑂. It can, for example, use the smallest number of
abstract states that are on a path between two abstract states in the ARG.
The order is used for sorting the elements of 𝐼.

3.4. Strategies to Select a Refinement

Crucial to the provident refinement framework is the selection operator
that takes the calculated provident refinements and combines them
to a compound refinement that will then be applied to the abstract
state’s space. Before we can define the operator, we need some notation
convention:

Definition 2 (Notation): By ⟨𝐸 × 𝛱⟩ we denote a list of pairs (𝑒𝑖, 𝜋𝑖) of
abstract states and precisions. By ⟨(𝑒1, 𝜋1), … , (𝑒𝑛, 𝜋𝑛)⟩ we refer to a list of
length 𝑛 ∈ ℕ ∖ {0} of such pairs of ⟨𝐸 × 𝛱⟩. Core of this list is that it is an
ordered structure in contrast to, for example, a set.

3.4 The Ranking Operator 17

Using this notation, we can give a formal definition of the selection
operator in Definition 3.

Definition 3 (The Operator select): Let 𝐸 be the set of abstract states and
𝛱 be the set of precisions. We define the operator select as

select ∶ ⟨𝐸 × 𝛱⟩ → 𝐸 × 𝛱

The operator gets as input a list of pairs of abstract states and preci-
sions and returns one pair of abstract state and precision. It is important
to notice that neither input nor output value of the operator shall be
empty.

The selection operator select is the core of the PCEGAR framework. It
gives the possibility to combine, select, or delay refinements, by emitting
an appropriate result. When more than one pair from the input set is
used for calculating the output of the operator, we have the problem of
how to combine the information about the abstract states. In this case,
the operator uses the ARG’s root as the abstract state in the resulting
pair. There is only one root node in the ARG, which is effectively an
abstract reachability tree, because there can be only one abstract state
that corresponds to the initial program location. This is sound because
we apply the precision with a global scoping afterwards, that is, the
information gets propagated to every abstract state in the reached set
anyway.

Joining Provident Refinements Obviously, selecting only one pair
from the set of input pairs is trivial. Thus, we now focus on the combin-
ation of at least two of them. As stated before, in this case the abstract
state 𝑒𝑟 in the resulting pair will always be the ARG’s root node. The
resulting precision 𝜋𝑟 can simply be calculated by joining all precisions,
that is, 𝜋𝑟 = ⋃𝑖∈{1,…,𝑛} 𝜋𝑖 for a join of 𝑛 precisions. This leads to the
result (𝑒INIT, 𝜋𝑟) for such a join.

Delaying Provident Refinements As stated before, it can be reasonable
to prefer some refinements over others. For example, refining for a loop
counter can lead to expensive loop unrollings [BLW15b]; this can be
undesirable. Therefore, delaying such refinements can improve the
performance of the analysis. It might, however, still be necessary to
execute them at some point and, for example, unroll loops, but often
this can be avoided.

Delaying a refinement by the select operator means that it simply
will not incorporate the refinement’s precision information into the
operator’s result. Depending on the progress of the algorithm the
delayed refinement will be re-explored at some point or does not appear
at all if it is not necessary for the algorihm’s result. The latter is the case,
if paths to the target state corresponding to such a refinement, have
been ruled out by other refinements before.

18 Chapter 3 Provident Abstraction Refinement

Note on Implementation Note that the implementation of the selec-
tion operator differs from this formal definition, such that it does not
only get a list of tuples of 𝐸 × 𝛱. It furthermore gets additional in-
formation generated by the provident refinement, such as the related
ARG path, as well as information, whether the found counterexample
is spurious. This is an optimisation to guarantee early termination of
the PCEGAR algorithm and avoid expensive recalculations. Consider
a list of provident refinements where all except one counterexamples
are spurious. One counterexample is a real specification violation. A
selection operator that only takes a subset of the provided counter-
examples into account, might miss the feasible counterexample and
cause further refinements for the spurious ones. Although, the feas-
ible counterexample will be found at some point and the analysis will
terminate with the expected result, it is possible that this will occur
much later than necessary. In case the set of counterexamples contains
a feasible one, the selector always selects the feasible counterexample,
as this will lead to an early termination. This is sound, as the feasible
counterexample would be found at some point anyway.

3.4 Strategies to Select a Refinement 19

4
Evaluation

We provide an empirical study on our provident multi-path refine-
ment framework in this chapter. We start by our research questions
in Section 4.1. Thereafter, we define certain concrete operator imple-
mentations in Section 4.2 and present our hypotheses we want to check
during the evaluation in Section 4.3. Furthermore, we present our case
study in Section 4.4 and explain the environment we used in Section 4.5.
In Section 4.6 we present the results and discuss them in Section 4.7.
Finally, we conclude this chapter with a discussion of the threats to
validity in Section 4.8.

4.1. Research Questions

We now define questions that guide our evaluation. We evaluate each
question by using a set of verification tasks. A verification task is a
pair of a program and one or many properties. Some of our questions
target the performance of the verification tasks in terms of efficiency and
effectiveness. A configuration is considered to be more effective than
another one if it is able to provide verification result for more tasks than
the other analysis. It is considered to be more efficient if it can solve
given verification tasks by consuming less resources in terms of CPU
time.

Research has shown that even on a single path to an error location
there can be many reasons for the infeasibility of this abstract path.
Considering the information about every such reason for infeasibility
and selecting the most appropriate in the specific situation is targeted,
for example, with sliced path prefixes [BLW15c] or refinement selec-
tion [BLW15b]. These approaches consider only one path. It seems
probable that by incorporating the information of more than one path
into the selection process of a refinement, the results can even be im-
proved.

Research Question 1 (RQ1): Is there a multi-path refinement strategy that
performs better than a single-path refinement strategy in terms of efficiency
and effectiveness?

Not only do we expect that incorporating more information into the
refinement strategy can influence the performance of a verification

21

run, but it is also expected that the structure of a verification task has
an influence. Such an influence can be determined by the program,
obviously. A program consisting of neither loops nor recursion, for
example, cannot cause expensive loop unrolling during the refinement.
The same holds for the property. Properties with a scope that is very
local to only a few lines of code or a few functions cause different
behaviour, than properties with a wide scope over large parts of a
program [Dah17].

Research Question 2 (RQ2): Are there specific structures (characteristics)
in the verification tasks, for that multi-path refinement has considerably differ-
ent performance characteristics than single-path refinement?

Furthermore, it is expected that by incorporating domain knowledge
into an analysis, we can profit from this knowledge. By domain know-
ledge, we think, for example, of characteristics like many global vari-
ables or the intense usage of pointer arithmetics. Also the position of
target states in the ARG is an interesting characteristics. Using this
information when building an appropriate strategy influences its per-
formance.

Research Question 3 (RQ3): Does incorporating domain knowledge (char-
acteristics of the verification task) into a multi-path refinement strategy pay off
in terms of efficiency and effectiveness compared to a single-path refinement
strategy?

4.2. Operators for PCEGAR

Let us now define some operator implementations we refer to in the
following sections. We give implementations for the rank and select
operators in this section and assign symbols to identify the operator
implementations during the presentation. Formal definition and re-
quirements on these operators can be found in Sections 3.3 and 3.4.

4.2.1. Ranking Operator Implementations

We define some concrete examples of target ranking operators. This list
does not make a claim to be complete. We only present those operators,
we use in the presentation of our results. The most straightforward
ranker, which we call identity target ranker, is an identity operation. It
simply emits the given input list as output without touching it. We
refer to this identity target ranker by the symbol ℛID. A second possible
ranker always takes the first element from the operator’s input list and
returns a list with this single element; we refer to it as ℛF.

Finally, two further target rankers do effectively change the elements
of their input lists. Each abstract state has a property state level that de-
termines its distance to the ARG’s root. Both rankers order the elements
of their input lists based on this state level. The first (referred to as ℛT)

22 Chapter 4 Evaluation

Table 4.1. Overview over the introduced ranking operators

Symbol Description

ℛID The identity operation. Does no ranking at all. The input
list will be returned without any changes.

ℛF Does no ranking at all. The first element of the input list
will be returned as the resulting one-element list.

ℛT Takes the abstract states in the input list and sorts them as-
cending with regard to their state level. The result contains
the same states as the input but in a different order.

ℛB Takes the abstract states in the input list and sorts them
descending with regard to their state level. The result
contains the same states as the input but in a different
order.

does it in ascending order; the second (referred to as ℛB) does it in
descending order of the state level. Table 4.1 provides a comprehensive
overview over these four target ranking operators.

4.2.2. Selection Operator Implementations

In addition to the ranking operator, the PCEGAR framework defines
an operator to select a refinement that gets applied; the selection oper-
ator select. We define some possible implementations of this operator
without claiming completeness of this list. The presented implementa-
tions are only those that are used during the evaluation.

First, we introduce a simple select first operator, which we refer to
as 𝒮F. It selects the first element from its input list and returns it without
further ado. Formally, for a list of pairs of abstract state and precision,
denoted by ⟨(𝑒1, 𝜋1), … , (𝑒𝑛, 𝜋𝑛)⟩, the operator is defined as

𝒮F ∶ ⟨(𝑒1, 𝜋1), … , (𝑒𝑛, 𝜋𝑛)⟩ ↦ (𝑒1, 𝜋1)

The second operator we introduce, is a selector that joins together all
precisions from its input list of pairs of abstract states and precisions. It
uses the ARG’s root node as the abstract state in the resulting pair. We
denote this all-join selection operator by 𝒮∪. Formally, for a list of pairs
of abstract state and precision, denoted by ⟨(𝑒1, 𝜋1), … , (𝑒𝑛, 𝜋𝑛)⟩, and
the ARG root state 𝑒INIT ∈ 𝐸, we define the operator as

𝒮∪ ∶ ⟨(𝑒1, 𝜋1), … , (𝑒𝑛, 𝜋𝑛)⟩ ↦ ⎛⎜
⎝

𝑒INIT, ⋃
𝑖∈{1,…,𝑛}

𝜋𝑖
⎞⎟
⎠

Lastly, the third operator takes the first up to 𝑘 elements from the
input list and joins them together. Note that for input lists with a size 𝑚
less than 𝑘, that is, 𝑚 < 𝑘, only the 𝑚 elements are joined. As before, the
ARG’s root node is used as the abstract state in the resulting pair. We
denote this operator by 𝒮≤k, where 𝑘 ∈ ℕ∖{0} is the number of elements

4.2 Operators for PCEGAR 23

Table 4.2. Overview of the introduced selection operators

Symbol Description

𝒮F Selects only the one refinement from the list of all possible
refinements that is on the first position of the input.

𝒮∪ Takes all possible refinements into account and joins their
precisions to a new precision.

𝒮≤k Takes the first 𝑘 elements from the list of all possible refine-
ments and joins their precisions to a new precision. The
value 𝑘 ∈ ℕ ∖ {0} can be configured.

that shall be joined. We can formally define the operator for a list of
pairs of abstract state and precision, denoted by ⟨(𝑒1, 𝜋1), … , (𝑒𝑛, 𝜋𝑛)⟩,
a number of elements 𝑘 ∈ ℕ ∖ {0}, and the ARG root state 𝑒INIT ∈ 𝐸, as

𝒮≤k ∶ ⟨(𝑒1, 𝜋1), … , (𝑒𝑛, 𝜋𝑛)⟩ ↦

⎧{{
⎨{{⎩

(𝑒INIT, ⋃𝑖∈{1,…,𝑘} 𝜋𝑖) if 𝑘 ≤ 𝑛

(𝑒INIT, ⋃𝑖∈{1,…,𝑛} 𝜋𝑖) if 𝑘 > 𝑛

Table 4.2 gives a comprehensive overview over the presented and
implemented selection operators.

4.2.3. Particular Operator Combinations

In principle, it is possible to freely combine all ranking with all selection
operators. Obviously, not all combinations have different behaviours
from each other. For example, consider a combination of ℛID and 𝒮F;
this is equal to ℛF and 𝒮F because the selector takes in both cases only
the first element of its input list. The result is equivalent, independent
of the number of elements the ranking operator’s output list consists of.

Two combinations are outstanding for the following presentation.
We call a combination of ℛF and 𝒮F a single-path refinement strategy. We
further call the combination of ℛID and 𝒮∪ the multi-path refinement
strategy.

4.3. Hypotheses

We now introduce the hypotheses that guide the evaluation and give a
detailed insight into the relevant configuration settings of our frame-
work. Each experiment consists of two verification run sets, each con-
sisting of a number of verification tasks. Our run set consists only of
those tasks that caused at least one refinement because we are particu-
larly interested in refinement strategies. Hence, we omit tasks without
refinements from the experimental evaluation. We furthermore omit
verification tasks that caused a timeouts or other errors due to the fact
that these are incomplete verification runs.

24 Chapter 4 Evaluation

All configurations of our framework that are presented in the follow-
ing are derived from the same base configuration. They only differ in
the selection of the ranking operator (see Section 3.3) and the selection
operator (see Section 3.4). By single-path refinement strategy, we denote
a configuration that always takes the first found error path for preci-
sion calculation (ensured by operator ℛF) and only applies this single
precision increment (ensured by operator 𝒮F).

4.3.1. Multi-Path versus Single-Path Strategy

In the first group of hypotheses we are particularly interested in the
performance behaviour of a multi-path refinement strategy compared
to the single-path refinement strategy as a base line. Therefore, we con-
figure the multi-path refinement strategy in a way that it incorporates
all found information in each refinement step. This can be achieved by
the all-join selection operator 𝒮∪. As the operator simply joins all found
precisions to a final precision that is used for refining the state space,
a ranking is not necessary at all. To minimise the cost of the ranking
operator we use the identity operator ℛID, which does not affect the
found target states and their order at all.

For the evaluation of the first research question, we use verification
tasks, where a Linux kernel module is combined with all 14 safety
properties, that is, a multi-property verification [ABM+16]. Each prop-
erty has a specific structure, that is, it is relevant for different scopes
in the program. Some properties are only relevant for a few lines or
functions of the program, others are relevant for large parts of the pro-
gram [Dah17]. By virtue of the multi-property verification, we try to
cancel out the influence of a single property’s structure.

We anticipate that our multi-path refinement strategy will decrease
the CPU time that is needed for the verification compared to the single-
path refinement strategy. By (analysis) CPU time, we refer to the time that
is needed only for the verification process itself. This excludes steps like
parsing of the program and the specifications, building the framework’s
internal data structures, and so forth. It is valid to omit these steps,
as they occur both for multi-path and single-path refinement; they do
not influence the refinement strategy at all, because these steps happen
either before or after the refinement strategy is executed.

Hypothesis 1 (H1): There exists a multi-path refinement strategy that, for a
set of verification tasks, in general consumes less CPU time, than a single-path
refinement strategy.

Not only the efficiency of a configuration is a relevant metrics, but
also its effectiveness. Combining the insights on both, efficiency and
effectiveness, allows us to reason about the analysis’ performance. We
again use the multi-property verification tasks and the same operator
configurations like before; furthermore, all other settings are the same,

4.3 Hypotheses 25

too. Our presumption is that the multi-path refinement strategy can
solve more verification tasks correctly, than the single-path strategy
does.

Hypothesis 2 (H2): There exists a multi-path refinement strategy that, for a
set of verification tasks, in general, can solve more verification tasks, than a
single-path refinement strategy.

4.3.2. Influences of the Verification Tasks

The behaviour of a verification tool is also determined by the verific-
ation tasks. In particular, the performance can differ significantly by
verifying many properties in one run compared to verifying each inde-
pendently [ABM+16].

We also expect such behaviour for our multi-path refinement strategy,
when comparing it to a single-path strategy. Hence, we are not inter-
ested in the speedup we can gain from verifying the properties in one
run compared to verifying them seperately. Instead, we take a look at
how different properties affect the analysis. That is, we want to know,
whether it is possible to gain a speedup from a multi-path refinement
strategy independently of the used property.

In order to do our experiments, we again use the multi-path strategy,
consisting of the operators ℛID and 𝒮∪, and compare it to the single-path
strategy, consisting of the operators ℛF and 𝒮F. Our verification tasks
for this question consist of the 250 Linux kernel modules each combined
with one of the 14 properties, which leads to 3 500 verification tasks.
Again, we anticipate that our multi-path strategy consumes less CPU
time for the analysis, than the single-path strategy for all verification
tasks.

Hypothesis 3 (H3): For verification tasks consisting of different properties
our multi-path refinement strategy always consumes less CPU time than our
single-path refinement strategy.

4.3.3. Incorporating Domain Knowledge

The incorporation of domain knowledge in the analysis is expected to
improve its performance. We expect that preferring target states with
a small distance to the ARG’s root1 can safe refinements, compared to
preferring target states with large distance to the root. This expectation
is based on the assumption that a refinement for a target state near to
the root rules out paths through the ARG that lead to further target
states, because these paths branch from our refined path.

In the experiment we use the number of refinements from our single-
path and our multi-path strategy as base lines. The ranking operat-
ors ℛT and ℛB ensure that we have the target states sorted according

1By unrolling loops, the ARG is transferred into a tree.

26 Chapter 4 Evaluation

Table 4.3. An overview over independent, dependent, and controlled variables per
hypothesis

Variables
Hyp. Independent Dependent Controlled

H1 ranking and selec-
tion operators

CPU time verification tasks,
framework configur-
ation

H2 ranking and selec-
tion operators

number of solved
tasks

verification tasks,
framework configur-
ation

H3 verification tasks CPU time ranking and se-
lection operators,
framework configur-
ation

H4 ranking and selec-
tion operators

number of refine-
ments

verification tasks,
framework configur-
ation

to their state level. The former sorts the target states in ascending or-
der starting with the target state with the smallest distance from the
root, while the latter sorts the states in descending order. Using the
all-join selection operator 𝒮∪ is not reasonable here, because it does
not incorporate the order of the target states when joining all available
precisions. The different order of predicates given to the SMT solver
from this approach cannot be controlled, because the solver can reorder
the clauses for internal optimisations anyway. Hence, we join only frac-
tions of the possible precision information using the operator 𝒮≤k with
𝑘 ∈ {2, 4, 8}. Different values for 𝑘 enable us to get further insights on
how the number of necessary refinements changes, when incorporating
the information of a different number of provident refinements.

Hypothesis 4 (H4): By preferring target states having a small distance to
the ARG’s root, a multi-path refinement strategy saves refinements compared
to a multi-path refinement strategy that does not prefer any states.

4.3.4. Variables

For each research question, we identify a number of variables that de-
termine the experiments. We categorise the variables in independent,
dependent, and controlled variables. Table 4.3 provides an overview
over the variables for each hypothesis. Independent are those variables
we deliberately change throughout our experiments. Changes on in-
dependent variables affects the dependent variables, which are those
variables we use for our measurements. The controlled variables also
influece the results; we keep them fixed such that they do not influence
the results in incontrollable ways.

4.3 Hypotheses 27

The framework’s overall configuration is determined by options like
its abstraction strategy, the used abstract domains, the SMT solver,
and others. It is not changed throughout the experiments, hence, we
consider it to be a controlled variable.

We designed the experiments based on the hypotheses and these
variables to answer our research questions.

4.4. Case Studies for Evaluation

For our evaluation we used a set of 250 modules from the Linux kernel
version 4.0-rc1, which were also used in previous work [ABM+16]. The
benchmark files were created using the Linux Driver Verification (LDV)2
toolkit [KMP+09]. The LDV toolkit also enriches the kernel modules
with an environment model of the Linux kernel. The pre-processed
Linux kernel modules are licensed under GNU GPL 2.0.

Together with the kernel modules, we use a set of 14 safety prop-
erties (adjusted versions from the ones used in [ABM+16]) that are
relevant for the Linux kernel and describe the proper usage of its API.
We provide a detailed description of each property in Table 4.4.

From the 250 Linux kernel modules we only consider those for our
analysis where at least one refinement is necessary. This is due to the fact
that we compare refinement strategies and consider the performance
behaviour to be independent of the strategy if no refinement is necessary
at all. Due to this restriction we have a different number of verification
tasks for the evaluation of each hypothesis. Each benchmark task is a
combination of one Linux kernel module and one or all 14 properties.

4.5. Evaluation Environment

Our approach is implemented in a fork of CPAchecker; we use revision
e027976633 (GIT tag provident-refinement-thesis) from its GIT re-
pository3. The fork is based on CPAchecker’s version 1.6; an earlier
version of the fork was used before [ABM+16]. All files that are neces-
sary for reproducing the evaluation can be found on the supplementary
web page4.

All evaluation runs were performed on machines with two Intel®
Xeon® E5-2650 v2 CPUs, with 16 processing units each, and a clock
frequency of 3.40 GHz. Each machine is equipped with 135 GB RAM
and runs Ubuntu 16.04 (64 bit edition) based on a Linux 4.4 kernel. The
machines have the 64 bit Java Virtual Machine (JVM) OpenJDK 1.8.0_151
installed. We disabled Turbo Boost and Hyper Threading and, fur-
thermore, have bound each CPU to its local memory banks to reduce
possible effects of the NUMA shared memory architecture [MG11]. Our

2See http://linuxtesting.org/project/ldv/ for more information.
3See https://github.com/se-passau/pytheas
4See https://research.lukasczyk.me/provident-refinement

28 Chapter 4 Evaluation

http://linuxtesting.org/project/ldv/
https://github.com/se-passau/pytheas
https://research.lukasczyk.me/provident-refinement

Table 4.4. Safety properties for the Linux kernel modules (taken from [ABM+16])

Property Description

08_1a Each module that was referenced with module_get must be
released with module_put afterwards.

10_1a Each memory allocation that gets performed in the context of
an interrupt must use the flag GFP_ATOMIC.

32_1a The same mutex must not be aquired or released twice in the
same process.

43_1a Each memory allocation must use the flag GFP_ATOMIC if a
spinlock is held.

68_1a All resources that were allocated with usb_alloc_urb must be
released with usb_free_urb.

68_1b Each DMA-consistent buffer that was allocated with
usb_alloc_coherent must be released by calling
usb_free_coherent.

77_1a Each memory allocation in a code region with an active mutex
must be performed with the flag GLP_NOIO.

101_1a All structs that were obtained with blk_make_request must
get released by calling blk_put_request afterwards.

106_1a The modules gadget, char, and class that were re-
gistered with usb_gadget_probe_driver, register_chrdev,
and class_register must be unregistered by calling
usb_gadget_unregister_driver, unregister_chrdev, and
class_unregister correspondingly in reverse order of the
registration.

118_1a Reader-writer spinlocks must be used in the correct order.
129_1a An offset argument of a find_bit function must not be greater

than the size of the corresponding array.
132_1a Each device that was allocated by usb_get_dev must get re-

leased with usb_put_dev.
134_1a The probe functions must return a non-zero value in case of a

failed call to register_netdev or usb_register.
147_1a RCU pointer/list update operations must not be used inside

RCU read-side critical sections.

framework is built in the Java programming language. Because of the
JVM and its Just-in-Time (JIT) compiler we force the JVM to compile
most of the code already during its startup to mitigate the effects of its
JIT compiler.

For our evaluation, we set a CPU time limit of 300 s and a memory
limit of 15 GB. The Java heap of the JVM is set to 13 GB. Our analyses use
MathSAT 5.3.11 [CGS+13] as SMT solver. We use BenchExec [BLW15a;
BLW17] to achieve reliable benchmarking results.

For all runs we measured the amount of CPU time that is necessary
for the analysis only. This means, we omit the time for setting up the
analysis, parsing the verification task, and so forth, because they are not
relevant for the performance measures we are interested in. In all tables
and figures, we give the time in seconds and the memory consumption

4.5 Evaluation Environment 29

in megabytes with three significant digits unless stated other. Counted
numbers, like the number of algorithm iterations or the number of
refinements, are given in full precision. For the conversion of bytes we
use SI units, that is, 1 MB is composed of 1 000 kB.

4.6. Results

In the following we analyse the benchmark results in order to answer
our research questions and test our hypotheses. We dropped all runs
from the presentation, which did not pass with with verdict true. These
are all runs that did not finish within the timeout of 300 s, runs where
the framework crashed for whatever reason—parser errors, failures
of the SMT solver etc. We also omit all results with a false verdict;
this is because we assume the Linux kernel modules do not contain
specification violations even though we cannot verify whether false
verdicts are real violations or false positives.

Note that we add a line on the diagonal of scatter plots to get a
better insight on the distribution of the results. Furthermore, dashed
lines in scatter plots annotated with numbers like “×1.5” denote the
speedup—in this case a speedup of 1.5.

4.6.1. Multi-Path versus Single-Path Strategy

In the first research questions we are asking whether a multi-path
refinement strategy can outperform a single-path refinement strategy.
To evaluate this, we compare the results of both strategies on our Linux
kernel modules with all 14 specifications.

Efficiency In Hypothesis 1, we formulated the expectation that the
multi-path refinement strategy can benefit from the growth of informa-
tion, which is incorporated into the refinement; we expect that it can
solve given tasks in less CPU time. Figure 4.1 compares both strategies
in a scatter plot. The abscissa gives the CPU time (in seconds) for the
single-path refinement strategy; the strategy is determined by the op-
erators ℛF and 𝒮F. On the ordinate axis we give the CPU time (also
in seconds) for the multi-path refinement strategy; this strategy is de-
termined by the operators ℛID and 𝒮∪. As stated before, the line on
the diagonal gives a hint on equal values; we furthermore include lines
indicating speedups of factors 1.5 and 2, respectively. Each data point
shows the CPU times for one Linux kernel module for both strategies.
Data points on the diagonal indicate equal CPU times. Data points
in the lower right triangle indicate that the CPU time for multi-path
refinement was smaller than the CPU time for single-path refinement.
The vice versa holds for data points in the upper left triangle.

Out of the 250 Linux kernel modules in the benchmark set, we con-
sider only those that cause at least one refinement, result in a true

30 Chapter 4 Evaluation

0 50 100 150 200 250 300
0

100

200

300 ×2 ×1.5

×1.5

×2

Ranker: ℛF, Selector: 𝒮F, CPU time (s)

Ra
nk

er
:ℛ

ID
,S

el
ec

to
r:

𝒮 ∪
,C

PU
tim

e
(s

)

Figure 4.1. Comparison of the efficiency of multi-path versus single-path refinement
strategy in terms of analysis CPU time. Marks in the right lower triangle are better for
multi-path.

verdict, and where the verdict was the same for both the single-path
and multi-path configurations. This restrictions result in a number of
128 verification tasks we consider for our contemplations. From Fig-
ure 4.1 we can see that most of the data points lie in the lower right
triangle. This means, the multi-path strategy needs less CPU time than
the single-path strategy to solve them. The mean speedup of the multi-
path refinement strategy is 1.71; its median is 1.47. Remark: a speedup
of 2 between a configuration 𝐴 and a configuration 𝐵 connotes that 𝐴
is twice as fast as 𝐵, that is, it consumes half the CPU time for a task.

For only 11 of the 128 tasks (8.59 %) we encounter a slow-down, that
is, the single-path strategy is faster than the multi-path strategy. In the
worst case, the single-path strategy is 1.65 times faster than the multi-
path refinement strategy. The remaining 117 tasks get solved faster the
multi-path strategy with a maximum speedup of 5.59.

Most of the verification tasks (56, that is 43.8 %) can be solved with a
speedup between 1 and 1.50 by the multi-path strategy. For 34 verifica-
tion tasks (26.6 %) the speedup is between 1.50 and 2; in 27 cases (21.1 %)
the speedup is even larger than 2.

The refinement strategy has a significant impact on the performance
of an analysis. Particularly, the number of refinements is crucial—it is
assumed that an analysis benefits from saving refinements, hence will
be faster. We can see from Table 4.5 that our single-path refinement
strategy needs about five times as much executed refinements as the
multi-path strategy. Note that the equal numbers for provident and
executed refinement for the single-path strategy are expected because

4.6 Results 31

Table 4.5. Numbers of provident and executed refinements for single-path and
multi-path strategy

Name Min Median Average Max Sum

Single-path provident refine-
ments

1 5.00 6.10 29 781

Single-path executed refine-
ments

1 5.00 6.10 29 781

Multi-path provident refine-
ments

11 29.5 43.5 356 5 560

Multi-path executed refine-
ments

1 1.00 1.26 6 161

-10 -5 -3 -2 -1 0 1 2 3 5 10

overall
prec
merge
stop

Figure 4.2. Comparing the speedups for different components and operators of
the framework. Left of the middle bar is the single-path strategy, on the right side
the multi-path strategy Note that a speedup of 1 in the figure is a speedup of 100 %,
that is, execution time of the faster configuration is only half of the time the slower
configuration takes.

every calculated provident refinement will be applied to the abstract
state’s set immediately.

We can see that we benefit from doing a multi-path refinement when
only looking at the number of executed refinements. Nevertheless,
is it also possible to identify an operator of the CPA framework that
indicates the speedup? Thereto, we calculate the speedups of the oper-
ators stop, merge, prec, and the overall speedups. Figure 4.2 shows the
results. Values left of the vertical bar in the middle of the plot indicate
verification tasks where the single-path refinement strategy is faster
than the multi-path refinement strategy; it is vice versa for data points
right of the bar. For none of the operators we can see large speedups
on most of the verification tasks. Only for the precision-adjustment
operator prec we see a larger improvement. We expect this as the oper-
ator adjusts the precisions—a process that is done during refinement.
Hence, if we save refinements, the operator will not be called that often,
which results in the lower consumed time.

Overall we see an improvement in terms of consumed CPU time,
where our multi-path refinement strategy outperforms the single-path
refinement strategy.

32 Chapter 4 Evaluation

0 20 40 60 80 100 120 140
0

100

200

300

𝑛-th fastest result

C
PU

tim
e

(s
)

Ranker: ℛF, Selector: 𝒮F
Ranker: ℛID, Selector: 𝒮∪

Figure 4.3. Comparison of the effectiveness of multi-path versus single-path refine-
ment strategy in terms of analysis CPU time. Lower and more right data points are
better.

Summary (Hypothesis 1): On average, the single-path refinement
strategy needs 1.71 (median: 1.47) times the CPU time the multi-
path refinement strategy does for all correctly solved verification
tasks that cause at least one refinement, which are 128 of 250. In
conclusion, we accept Hypothesis 1.

Effectiveness In Hypothesis 2, we formulated the expectation that
the multi-path refinement strategy can solve more tasks in the same
CPU time than the single-path refinement strategy does. The quantile
plot in Figure 4.3 gives on its abscissa the number of solved tasks, that
is, the number of verification tasks that cause at least one refinement
and result in a true verdict. A data point indicates which quantile (value
on abscissa) of the runs needs less than the given measure (in this case
time in seconds on the ordinate axis) [BLW17].

From the plot we can see that at any time the multi-path refinement
strategy (ranker: ℛID, selector: 𝒮∪, plotted in blue colour) has solved
more verification tasks than the single-path strategy (ranker: ℛF, se-
lector: 𝒮F, plotted in green colour). Within the time limit of 300 s, the
single-path refinement strategy can successfully solve 130 tasks whereas
the multi-path strategy is able to solve 150 verification tasks. Both curves
end at around 250 s; the remaining time is needed for analysis set-up,
parsing of the input files etc.

Summary (Hypothesis 2): We see that the multi-path refinement
strategy cannot only solve more verification tasks overall but also
solves more tasks at any time if we would set the run-time limit to
such value. In conclusion, we accept Hypothesis 2.

4.6 Results 33

Table 4.6. Number of relevant tasks per property for Hypothesis 3

08
_1

a

10
_1

a

32
_1

a

43
_1

a

68
_1

a

68
_1

b
77

_1
a

10
1_

1a

10
6_

1a
11

8_
1a

12
9_

1a

13
2_

1a

13
4_

1a

14
7_

1a

171 108 163 120 169 181 86 186 163 0 6 152 86 187

4.6.2. Influences of the Verification Tasks

In the previous section we provided a comparison based on verifica-
tion tasks with all 14 properties combined. We are now interested in
the influences of the verification tasks. Therefore, we again use the
multi-path and the single-path refinement strategy like before. We
furthermore use the same selection of the 250 Linux kernel modules.
We do this to get comparable results; not only for results relevant in this
section but also to compare the results with those from the previous
section. Thus, the only variable we change in the experiments here is
the used property. For each verification task we combine the kernel
module with just one property; thus the number of verification tasks is
now 250 kernel modules combined with 14 different properties, that is,
3 500 verification tasks.

Not all properties are relevant for each tasks, obviously. Table 4.6
provides an overview for how many of the 250 kernel modules a specific
property is relevant, the verification framework yields a true verdict for
them, and at least one refinement was necessary.

Hypothesis 3 indicates the expectation that independent of the used
property in a verification task the multi-path refinement strategy is able
to outperform the single-path strategy in terms of use analysis CPU
time. From the box plots in Figure 4.4 we can already see that this is not
the case. Obviously, there are properties for that the hypothesis holds,
most prominent the properties LDV_106_1a and LDV_132_1a. For most
properties there is no significant speedup or slow-down for large parts
of the verification tasks; only outliers exist. Noticeable is the slow-down
for the properties LDV_08_1a, LDV_32_1a and LDV_43_1a. Verification
tasks consisting of a kernel module and one of these properties can
overall be solved faster by the single-path refinement strategy. Note that
due to a bug in the property LDV_118_1a there were only false verdicts,
hence, we omit this property for the further presentation. Note further,
that property LDV_129_1a is only relevant with a true verdict for six
kernel modules, which is too less to give any qualified insights for this
property.

Due to the fact that there is no significant change in terms of analysis
CPU time for many of the properties, we restrict our presentation to
those with considerable changes. We are particularly interested in
reasons for the shifts in consumed analysis CPU time.

34 Chapter 4 Evaluation

-2 -1 0 1 2 5 10 20

08_1a

10_1a

32_1a

43_1a

68_1a

68_1b

77_1a

101_1a

106_1a

118_1a

129_1a

132_1a

134_1a

147_1a

Figure 4.4. Comparison of speedups per property. Data points left of the vertical bar
indicate that the single-path strategy used less CPU time than the multi-path strategy
for the analysis; the opposite holds for data points right of the vertical bar. Note that a
speedup of 1 in the figure is a speedup of 100 %, that is, execution time of the faster
configuration is only half of the time the slower configuration takes.

Slowdowns As an example for the slowdown we take the results
achieved with property LDV_32_1a. We provide a scatter plot showing
the performance shifts in terms of analysis CPU times in Figure 4.5.
Again, on the abscissa we see the single-path refinement strategy’s
values and on the ordinate axis the values of the multi-path refinement
strategy.

We can clearly see that only few data points are in the lower right
triangle, that is, data points for which the multi-path strategy consumes
less analysis CPU time. A large portion of the data points is clustered
near the origin of the axes. They represent verification tasks where
both the single-path and the multi-path strategy can solve the task by
only one refinement step. Hence, we cannot expect large speedups in
either direction. The remaining data points indicate a faster single-path
strategy.

Speedups For other properties we can determine speedups from Fig-
ure 4.4, most notably for the properties LDV_132_1a and LDV_106_1a.
Detailed scatter plots showing the performance shifts in terms of ana-
lysis CPU times are provided; for the property LDV_106_1a in Figure 4.6
and for property LDV_132_1a in Figure 4.7.

4.6 Results 35

0 50 100 150 200 250 300
0

100

200

300 ×2 ×1.5

×1.5

×2

Ranker: ℛF, Selector: 𝒮F, CPU time (s)

Ra
nk

er
:ℛ

ID
,S

el
ec

to
r:

𝒮 ∪
,C

PU
tim

e
(s

)

Figure 4.5. Analysis CPU time comparison for property LDV_32_1a

For property LDV_106_1a we encounter a slowdown for only one
out of 163 tasks (that is 0.613 %). All other verification tasks result in a
speedup with an average value of 1.99 and a median of 1.83. The best
achieved speedup is 5.18.

The reason for these speedups lies again in the number of necessary
refinements. The single-path strategy in sum takes 1 211 refinements,
while 180 refinements are sufficient for all tasks with the multi-path
strategy. The median number of refinements necessary for a verification
task is 7 for the single-path strategy and 1 for the multi-path strategy.
At most, the single-path strategy needs 40 refinement steps for one
verification task, while the maximum number of refinement steps for
one verification task taken by the multi-path strategy is only 3.

For property LDV_132_1a we encounter a slowdown for 31 of 152
tasks (that is 20.4 %). The other verification tasks result in a speedup
with an average value of 1.52 and a median of 1.11. The best achieved
speedup is 15.3.

Again, the speedups are caused by the smaller number of refinements.
The single-path strategy takes a total of 567 refinements, while 171 re-
finements are suffcient for all tasks with the multi-path strategy. While
the median number (2 for single-path, 1 for multi-path) does not differ
too much, the single-path strategy causes at most 45 refinements for
one verification task, while at most 3 refinements for one verification
task are sufficient for the multi-path strategy.

In both cases, due to the smaller number of necessary refinements,
time can be saved during precision adjustment as well as during the re-
exploration of the state space after a refinement. Notwithstanding, such
effects can only be used if a larger number of refinements is necessary,
as we have seen, for example, for the property LDV_32_1a. It can be

36 Chapter 4 Evaluation

0 50 100 150 200 250 300
0

100

200

300 ×2 ×1.5

×1.5

×2

Ranker: ℛF, Selector: 𝒮F, CPU time (s)

Ra
nk

er
:ℛ

ID
,S

el
ec

to
r:

𝒮 ∪
,C

PU
tim

e
(s

)

Figure 4.6. Analysis CPU time comparison for property LDV_106_1a

0 50 100 150 200 250 300
0

100

200

300 ×2 ×1.5

×1.5

×2

Ranker: ℛF, Selector: 𝒮F, CPU time (s)

Ra
nk

er
:ℛ

ID
,S

el
ec

to
r:

𝒮 ∪
,C

PU
tim

e
(s

)

Figure 4.7. Analysis CPU time comparison for property LDV_132_1a

seen that the influence of the multi-path strategy largely depends on
the used property.

4.6 Results 37

Summary (Hypothesis 3): Whether a speedup can be achieved de-
pends strongly on the property. A property that causes only one
refinement for most of the tasks does not allow the multi-path re-
finement strategy to benefit from its information plus. For proper-
ties that cause larger numbers of refinements with the single-path
strategy, the multi-path strategy can profit from its information plus.
Although, for some properties the multi-path strategy is faster, it
cannot outperform the single-path strategy in all cases. In conclu-
sion, we reject Hypothesis 3.

4.6.3. Incorporating Domain Knowledge

We have discussed the efficiency and effectiveness increases as well as
the influence of the verification tasks on the analyses performance in
the previous sections. In this section, we will focus on the influence of
domain knowledge.

To get further insights, we use a multi-property approach again with
all 14 properties combined with the 128 Linux kernel modules for that
at least one refinement is necessary and the verification verdict is true.
We formulated the expectation in Hypothesis 4 that by preferring target
states with a smaller state level we can save refinements compared to
preferring target states with a larger state level. Reason is that we expect
the removal of more paths to target states by preferring short paths. In
our presentation we also give the number of refinements caused by the
single-path refinement strategy as well as by the multi-path refinement
strategy for comparison reasons.

Because we know that we can safe most refinement steps by always
combining all available information into a refinement, which is done
by the multi-path strategy, we expect this strategy to perform best. All
considered operator configurations where we sort the target states using
an appropriate ranking operator do combine the precision of two to
eight provident refinements. We present the number of refinements for
each operator configuration in Figure 4.8.

Looking at the numbers, note that incidentally the median number
of refinements is always the maximum of the third quartile, that is, the
right border of the box. Furthermore, we notice that the overall number
of refinements is quite small and most of the verification tasks can be
solved with at most five refinements even for the single-path refinement
strategy. Nonetheless, it is possible to save refinements when preferring
target states with a smaller state level.

Summary (Hypothesis 4): Preferring target states with a smaller state
level over such with a larger state level saves at least a few refine-
ments. However, the overall number of refinements is not very large
for most of the verification tasks, thus we cannot expect large sav-
ings in terms of refinement steps. Nevertheless, in conclusion, we
accept Hypothesis 4.

38 Chapter 4 Evaluation

1 2 3 5 10 20 30

F, F

ID,
T, 2

B, 2

T, 4

B, 4

T, 8

B, 8

Figure 4.8. Number of applied refinements for the different operator configurations.
Haphazardly, the median value of all configurations is always the maximum of the
third quartile, that is, the right border of the box.

4.7. Discussion

Our work studied different perspectives of the performance behaviour
of a multi-path refinement strategy. We were especially interested
whether we can benefit from our multi-path strategy when verifying a
real-work software system. For that we used 250 Linux kernel modules
and 14 safety properties that were also used in previous work [ABM+16].

The results show a differentiated picture. We accepted both Hy-
potheses 1 and 2, which gave us an insight on the effectiveness and
efficiency of our multi-path refinement strategy compared to a single-
path strategy. Multi-path refinement increases efficiency in terms of
analysis CPU time with an average speedup of 1.71 and a median spee-
dup of 1.47. In terms of effectiveness we can say that our multi-path
strategy strictly performs better than the single-path strategy. Thus,
we can given an answer to Research Question 1: there is a multi-path
refinement strategy that performs better than a single-path strategy.
The multi-path strategy consists of an identity ranker and an all-join of
the precisions that are found during the provident refinement steps.

We rejected Hypothesis 3 because our multi-path strategy did not
outperform the single-path strategy for all properties. This leads to the
result that the characteristics of the verification task has a considerable
impact on the performance of the analysis, which answers Research
Question 2.

Furthermore, we investigated in the influence of domain knowledge.
We accept Hypothesis 4, although we notice that our case study does
not provide tasks that cause a large number of refinements. It leads
to the result that we can answer Research Question 3: incorporating
domain knowledge in the analysis can pay off and save refinements.

Our results give a promising insight that extending refinement pro-
cedures to use the information of more than one counterexample path

4.7 Discussion 39

during a refinement can lead to a improvement. We evaluated our
approach using Linux kernel modules, a real-world software system,
which makes our claims independent from artificial benchmark sets
that where only constructed to show the alleged effects.

4.8. Threats to Validity

We are aware that no matter how careful one designs an empirical study
there always are circumstances that can invalidate the study’s results.
We face these threats and name countermeasures in this section.

4.8.1. Internal Validity

Since our analysis is based on predicate abstraction and uses a SMT
solver for handling the predicates the choice of this solver influences the
results. For our experiments we only use the MathSAT 5 SMT solver to
make our results comparable. Nevertheless, we cannot obviate that the
results differ significantly when using another SMT solver. Likewise
does the JVM and its JIT influence the results. We try to minimise
those effects by our benchmark setup; for example, we let the JVM
pre-compile all code to minimise such influences.

Moreover, we are not able to change characteristics of our verifica-
tion tasks. Control-flow and data dependences or the structure of the
kernel modules and the properties cannot be changed for the selected
case study, even if they cause variables that should be controlled or
considered independently.

4.8.2. External Validity

Generalising the results of our study is difficult due to the choice of our
subject systems. We only use a small set of Linux kernel modules, which
were selected randomly from the available modules of Linux 4.0-rc1.
Hence, we can only make claims for this set of kernel modules. It is likely,
that similar results can be achieved also for a wider selection of Linux
kernel modules because they have similar structures. Nonetheless, it is
impossible to claim this without further evaluation, which is not part
of the scope of this work.

The results, however, are definitely not generalisable to other tasks.
Furthermore, the properties used by us are specific to the Linux

kernel. They model expected behaviour of the kernel modules, which
is very specific and would not be expected in other software systems.

40 Chapter 4 Evaluation

5
Related Work

We give an overview over work that is related to ours in this chapter.

5.1. Related Approaches

Closest to our work is the work of Beyer, Löwe, and Wendler on refine-
ment selection [BLW15b]. For a path they do more than one interpola-
tion query and then select their refinement based on heuristics. Such
heuristics are, for example, that they prefer normal program variables
over loop counters. In contrast to our work they only focus on heuristics
to select refinements for only one error path and base their implementa-
tion on a standard CEGAR algorithm. Furthermore, we do not rely on
the principle of lazy abstraction [HJM+02] but do a restart after each
refinement, which is not done for refinement selection.

Lazy abstraction [HJM+02] is a key concept for many software model-
checking tools. The technique is implemented in tools like, for example,
Blast [HJM+02; HJM+03], which is also based on CEGAR and predicate
abstraction. The idea is to stop the state-space exploration once an error
location is found and immediately do a refinement; the exploration is
continued after the successful refinement. This leads to early removal
of spurious counterexamples and has been successfully used in practice.
In contrast, our framework does not stop state-space exploration as soon
as an error location is reached but always explores the full reachable
state space.

Impact [McM06] is an algorithm that is also CEGAR-based. It creates
an unwinding of the CFA where abstract states are labeled with for-
mulæ over the program variables. It never computes abstractions and
initializes all new abstract states to true. This is similar to our frame-
work—and to predicate-abstraction algorithms in general—while the
precision is still empty [Wen17]. The Impact algorithm does also use
interpolants for refining but it is based on lazy abstraction, which differs
from our framework.

IC3 [Bra11] is an algorithm for model-checking finite-state systems.
It is also known as property-directed reachability (PDR) [EMB11]. The
algorithm produces inductive invariants until they are strong enough
to prove safety of the program. It achieves this by incremental clause
learning, where new clauses are inductive with respect to the previously

41

learned clauses. These clauses are derived from counterexamples. PDR
can be understood as a different strategy for discovering predicates
during refinement, whereas we use Craig interpolation. The IC3 al-
gorithm can be extended to infinite-state systems by CTIGAR [BBW14],
which is an SMT-based IC3 algorithm incorporating CEGAR. A tool
implementing this CTIGAR approach for software model checking is,
for example, the Vienna Verification Tool [GLW16].

An automaton-based approach on model checking is presented in
the work of Heizmann, Hoenicke, and Podelski [HHP09]. A program
is considered a set of traces, which are words over the alphabet of the
CFA. Starting with the CFA as initial abstraction they construct further
abstractions in a CEGAR-style refinement loop [HCD+17]. The infeas-
ibility of a trace is iteratively proven by interpolation and represented
by Hoare triplets [Hoa69]. From an infeasible trace a interpolant auto-
maton is created that does not only accept the given error trace but
many other infeasible traces, too. The program is correct, if the Hoare
triplets are valid for every control flow trace [HHP13]. This approach
is implemented in the tool Ultimate Automizer [HCD+13; HDG+16;
HCD+17]. Common with our technique is that the approach does not
perform lazy abstraction but explores the full state space. In contrast
to them, our approach is not centred on abstract traces but on abstract
states. Nevertheless, similarities are in the fact that we treat the preci-
sion gained from the interpolants as independent from states, which is
achieved by the interpolant automata in their work.

5.2. Types of Model Checking

Model Checking dates back to the 1970’s beginning with the concept
of concrete enumerative model checking. The core idea is to traverse a
graph of program states and transitions where each program state is
represented exactly. Manipulations are done on individual states, as
opposed to symbolic model checking, which manipulates sets of states.
The technique grew out of testing and simulation [Sun78; STE+82].

Execution-based model checking is a special case of the enumerat-
ive principle. It uses the runtime systems of programming language
runtimes for an enumerative state space exploration. Tools like Ver-
isoft [God97] or JavaPathFinder [VHB+03] implement this approach.

In contrast to the enumerative concepts, symbolic model checking
represents the program as sets of states. Bounded Model Checking (BMC)
unrolls the control-flow graph for a fixed number of steps and checks
reachability of error locations within this number of steps [BCC+99]. It is
also related to symbolic execution [Kin76]. Well-known bounded model
checking tools are, for example, CBMC [CKY03] or Calysto [BH08].

Several approaches were proposed for unbounding. One such ap-
proach is called 𝑘-induction [SSS00; MRS03], which uses inductive
invariants. It is, for example, implemented in CPAchecker [BDW15].

42 Chapter 5 Related Work

Furthermore, invariant generation, incremental bounded model check-
ing, and incremental 𝑘-induction have been combined, for example, in
the tool 2LS [SK16].

Further techniques use abstract models for infinite state programs.
They use a reachability analysis on different abstract domains to capture
only necessary information [CC77]. In order to iteratively increment
the captured information, algorithms like CEGAR [CGJ+00; CGJ+03]
have been proposed. Such approaches are implemented, for example, in
tools like Slam [BR02], Blast [HJM+02; HJM+03], or CPAchecker [BK11].
The latter two extend the CEGAR approach further by using lazy ab-
straction [HJM+02].

5.3. Benchmarks

Unfortunately, many authors do not provide empirical studies or at
least some benchmark results on the success of their approaches.

An established benchmark set is provided by the International Com-
petition on Software Verification (SV-COMP) [Bey17]. It provides more
than 8 900 verification tasks consisting of a C program and a property
modelling reachability, memory safety, or termination. Regrettably,
many of those tasks are artificially created and not derived from real-
world software systems. There is, however, a category of Linux kernel
modules and programs from the BusyBox suite1. The competition does
not perform extensive empirical studies but introduces a custom score
schema, where a value gets assigned to correct and incorrect verifier ver-
dicts, which will then be accumulated to a resulting score—achieving
the highest score is considered to be best.

An extensive evaluation using a large corpus of verification tasks de-
rived from a real-world software system is used by Apel et. al. [ABM+16].
They use 4 336 Linux kernel modules, from which we use the presented
subset of 250 modules, and provide 14 safety properties, which we also
use.

1BusyBox is a collection of many common UNIX utilities into a small executable. They
are especially optimised for small and embedded systems. See busybox.net for
more details.

5.3 Benchmarks 43

https://busybox.net

6
Conclusion

Let us conclude this work with a summary and a prospect on possible
future work and research ideas.

6.1. Summary

We presented a novel approach and framework for provident abstrac-
tion refinements. Our framework extends traditional CEGAR-based
approaches and allows us to incorporate information about the pre-
cision gained from the provident refinement step in the selection of
an executed refinement. With this information we are able to delay,
estimate, combine, and rank the possible refinements.

After introducing the approach and formally define it, we conducted
an empirical study to get insights whether the approach is promising.
Thereto, we implemented our approach in a fork of the open source
model-checking framework CPAchecker. Our study is based on 250
modules from the Linux kernel together with 14 safety properties that
model correct behaviour of the kernel modules.

The results are promising and we were able to show that the multi-
path refinement approach is beneficial for efficiency as well as effect-
iveness in terms of analysis CPU time. Especially in cases where a
single-path refinement strategy causes large numbers of refinements,
the multi-path refinement strategy can be beneficial. This is due to the
fact that we incorporate the information of many possible refinements
and combine it, such that there is no need to execute them one after
another. This is possible because the calculation of the new precision
information is extremely cheap compared to exploring the abstract state
space or adjusting the precision of the states.

We concluded our presentation with a discussion of threats that
challenge the validity of our study and gave an overview over related
work.

6.2. Future Work

Solving a research problem almost always leads to new problems and
further open questions. In this final section of the thesis, we want to
discuss a few such questions that arose during the work on the thesis.

45

We leave them as future work because they would blast the scope of
this work.

We already stated in the discussion of Research Question 3 that our
case study did not provide tasks causing large numbers of refinements.
Likewise is the number of 250 kernel modules, which were selected
randomly from a larger pool of kernel modules, quite small. Hence,
extending the evaluation to a larger set of verification tasks is a natural
first idea. Although the previous work from which we took the kernel
modules [ABM+16] provides such a larger set of verification tasks,
namely 4 336 Linux kernel modules, we decided to omit them due
to time reasons. Furthermore, incorporating other case studies, such as
programs from the BusyBox tool suite is an idea to gain further insights
on the behaviour of our framework and make more general claims.

Model checking frameworks can also be used for test-case genera-
tion [HMR04; VPK04]. Using a CEGAR-based model checking frame-
work together with a multi-goal analysis improves the performance of
such an approach [BLB+15]. Our approach fits perfect into this concept
because of our focus on multiple paths through the ARG. Thus, it would
be interesting to combine the concepts of CPA/tiger [BHT+13; BLB+15]
with our refinement framework.

46 Chapter 6 Conclusion

A
Bibliography

[ABM+16] S. Apel, D. Beyer, V. O. Mordan, V. S. Mutilin, and A. Stahl-
bauer. “On-the-fly Decomposition of Specifications in Soft-
ware Model Checking”. In: Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016, Seattle, WA, USA, November 13–18).
Ed. by T. Zimmermann, J. Cleland-Huang, and Z. Su. ACM,
2016, pp. 349–361 (cited on pp. 2, 3, 8, 25, 26, 28, 29, 39, 43,
46).

[BH08] D. Babic and A. J. Hu. “Calysto: Scalable and Precise Exten-
ded Static Checking”. In: Proceedings of the 30th International
Conference on Software Engieneering (ICSE 2008, Leipzig, Ger-
many, May 10–18). Ed. by W. Schäfer, M. B. Dwyer, and V.
Gruhn. ACM, 2008, pp. 211–220 (cited on p. 42).

[BR02] T. Ball and S. K. Rajamani. “The SLAM Project: Debugging
System Software via Static Analysis”. In: Proceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2002, Portland, OR, USA,
January 16–18). Ed. by J. Launchbury and J. C. Mitchell.
ACM, 2002, pp. 1–3 (cited on p. 43).

[Bey17] D. Beyer. “Software Verification with Validation of Results.
Report on SV-COMP 2017”. In: Proceedings of the 23rd Inter-
national Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2017, Uppsala, Sweden,
April 22–29). Ed. by A. Legay and T. Margaria. Vol. 10206.
Lecture Notes in Computer Science. Springer, 2017, pp. 331–
349 (cited on p. 43).

[BDW15] D. Beyer, M. Dangl, and P. Wendler. “Boosting 𝑘-Induction
with Continuously-Refined Invariants”. In: Proceedings of
the 27th International Conference on Computer Aided Verifica-
tion (CAV 2015, San Francisco, CA, USA, July 18–24). Ed. by
D. Kroening and C. S. Pasareanu. Vol. 9206. Lecture Notes
in Computer Science. Springer, 2015, pp. 622–640 (cited on
p. 42).

47

https://dx.doi.org/10.1145/2950290.2950349
https://dx.doi.org/10.1145/2950290.2950349
https://dx.doi.org/10.1145/1368088.1368118
https://dx.doi.org/10.1145/1368088.1368118
https://dx.doi.org/10.1145/503272.503274
https://dx.doi.org/10.1145/503272.503274
https://dx.doi.org/10.1007/978-3-662-54580-5_20
https://dx.doi.org/10.1007/978-3-662-54580-5_20
https://dx.doi.org/10.1007/978-3-319-21690-4_42
https://dx.doi.org/10.1007/978-3-319-21690-4_42

[BDW18] D. Beyer, M. Dangl, and P. Wendler. “A Unifying View on
SMT-Based Software Verification”. In: Journal of Automated
Reasoning 60.3 (2018), pp. 299–335 (cited on pp. 6, 8, 9, 11,
12).

[BHT07] D. Beyer, T. A. Henzinger, and G. Théoduloz. “Configur-
able Software Verification: Concretizing the Convergence
of Model Checking and Program Analysis”. In: Proceedings
of the 19th International Conference on Computer Aided Verifica-
tion (CAV 2007, Berlin, Germany, July 3–7). Ed. by W. Damm
and H. Hermanns. Vol. 4590. Lecture Notes in Computer
Science. Springer, 2007, pp. 504–518 (cited on pp. 3, 8, 9).

[BHT08] D. Beyer, T. A. Henzinger, and G. Théoduloz. “Program
Analysis with Dynamic Precision Adjustment”. In: Pro-
ceedings of the 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008, L’Aquila, Italy,
September 15–19). IEEE Computer Society, 2008, pp. 29–38
(cited on pp. 3, 8, 9).

[BHT+13] D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. “Inform-
ation Reuse for Multi-Goal Reachability Analyses”. In: Pro-
ceedings of the 22nd European Symposium on Programming
Languages and Systems (ESOP 2013, Rome, Italy, March 16–
24). Ed. by M. Felleisen and P. Gardner. Vol. 7792. Lecture
Notes in Computer Science. Springer, 2013, pp. 472–491
(cited on p. 46).

[BK11] D. Beyer and M. E. Keremoglu. “CPAchecker: A Tool for
Configurable Software Verification”. In: Proceedings of the
23rd International Conference on Computer Aided Verification
(CAV 2011, Snowbird, UT, USA, July 14–20). Ed. by G. Go-
palakrishnan and S. Qadeer. Vol. 6806. Lecture Notes in
Computer Science. Springer, 2011, pp. 184–190 (cited on
pp. 7, 8, 43).

[BL13] D. Beyer and S. Löwe. “Explicit-State Software Model Check-
ing Based on CEGAR and Interpolation”. In: Proceedings of
the 16th International Conference on Fundamental Approaches
to Software Engineering (FASE 2013, Rome, Italy, March 16–
24). Ed. by V. Cortellessa and D. Varró. Vol. 7793. Lecture
Notes in Computer Science. Springer, 2013, pp. 146–162
(cited on pp. 12, 16).

[BLN+13] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and P. Wend-
ler. “Precision Reuse for Efficient Regression Verification”.
In: Proceedings of the Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE 2013,
Saint Petersburg, Russian Federation, August 18–26). Ed. by B.

48 Appendix A Bibliography

https://dx.doi.org/10.1007/s10817-017-9432-6
https://dx.doi.org/10.1007/s10817-017-9432-6
https://dx.doi.org/10.1007/978-3-540-73368-3_51
https://dx.doi.org/10.1007/978-3-540-73368-3_51
https://dx.doi.org/10.1007/978-3-540-73368-3_51
https://dx.doi.org/10.1109/ASE.2008.13
https://dx.doi.org/10.1109/ASE.2008.13
https://dx.doi.org/10.1007/978-3-642-37036-6_26
https://dx.doi.org/10.1007/978-3-642-37036-6_26
https://dx.doi.org/10.1007/978-3-642-22110-1_16
https://dx.doi.org/10.1007/978-3-642-22110-1_16
https://dx.doi.org/10.1007/978-3-642-37057-1_11
https://dx.doi.org/10.1007/978-3-642-37057-1_11
https://dx.doi.org/10.1145/2491411.2491429

Meyer, L. Baresi, and M. Mezini. ACM, 2013, pp. 389–399
(cited on pp. 12, 16).

[BLW15a] D. Beyer, S. Löwe, and P. Wendler. “Benchmarking and
Resource Measurement”. In: Proceedings of the 22nd Inter-
national Symposium on Model Checking Software (SPIN 2015,
Stellenbosch, South Africa, August 24–26). Ed. by B. Fischer
and J. Geldenhuys. Vol. 9232. Lecture Notes in Computer
Science. Springer, 2015, pp. 160–178 (cited on p. 29).

[BLW15b] D. Beyer, S. Löwe, and P. Wendler. “Refinement Selection”.
In: Proceedings of the 22nd International Symposium on Model
Checking Software (SPIN 2015, Stellenbosch, South Africa, Au-
gust 24–26). Ed. by B. Fischer and J. Geldenhuys. Vol. 9232.
Lecture Notes in Computer Science. Springer, 2015, pp. 20–
28 (cited on pp. 2, 10, 11, 13, 18, 21, 41).

[BLW15c] D. Beyer, S. Löwe, and P. Wendler. “Sliced Path Prefixes:
An Effective Method the Enable Refinement Selection”. In:
Proceedings of the 35th IFIP WG 6.1 International Conference
on Formal Techniques for Distributed Objects, Components, and
Systems (FORTE 2015, Grenoble, France, June 2–4). Ed. by
S. Graf and M. Viswanathan. Vol. 9039. Lecture Notes in
Computer Science. Springer, 2015, pp. 228–243 (cited on
pp. 2, 13, 21).

[BLW17] D. Beyer, S. Löwe, and P. Wendler. “Reliable Benchmarking:
Requirements and Solutions”. In: International Journal on
Software Tools for Technology Transfer (2017). Pre-published
(cited on pp. 29, 33).

[BCC+99] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
“Symbolic Model Checking Using SAT Procedures instead
of BDDs”. In: Proceedings of the 36th Annual ACM/IEEE
Design Automation Conference (DAC ’99, New Orleans, LA,
USA, June 21–25). Ed. by M. J. Irwin. ACM Press, 1999,
pp. 317–320 (cited on p. 42).

[BBW14] J. Birgmeier, A. R. Bradley, and G. Weissenbacher. “Counter-
example to Induction-Guided Abstraction-Refinement (CT-
IGAR)”. In: Proceedings of the 26th International Conference
on Computer Aided Verification (CAV 2014, Vienna, Austria,
July 18–22). Ed. by A. Biere and R. Bloem. Vol. 8559. Lecture
Notes in Computer Science. Springer, 2014, pp. 831–848
(cited on p. 42).

[Bra11] A. R. Bradley. “SAT-Based Model Checking without Un-
rolling”. In: Proceedings of the 12th International Conference on
Verification, Model Checking and Abstract Interpretation (VM-
CAI 2011, Austin, TX, USA, January 23–25). Ed. by R. Jhala

Appendix A Bibliography 49

https://dx.doi.org/10.1007/978-3-319-23404-5_12
https://dx.doi.org/10.1007/978-3-319-23404-5_12
https://dx.doi.org/10.1007/978-3-319-23404-5_3
https://dx.doi.org/10.1007/978-3-319-19195-9_15
https://dx.doi.org/10.1007/978-3-319-19195-9_15
https://dx.doi.org/10.1007/s10009-017-0469-y
https://dx.doi.org/10.1007/s10009-017-0469-y
https://dx.doi.org/10.1145/309847.309942
https://dx.doi.org/10.1145/309847.309942
https://dx.doi.org/10.1007/978-3-319-08867-9_55
https://dx.doi.org/10.1007/978-3-319-08867-9_55
https://dx.doi.org/10.1007/978-3-319-08867-9_55
https://dx.doi.org/10.1007/978-3-642-18275-4_7
https://dx.doi.org/10.1007/978-3-642-18275-4_7

and D. A. Schmidt. Vol. 6538. Lectures Notes in Computer
Science. Springer, 2011, pp. 70–87 (cited on p. 41).

[BLB+15] J. Bürdek, M. Lochau, S. Bauregger, A. Holzer, A. von Rhein,
S. Apel, and D. Beyer. “Facilitating Reuse in Multi-Goal
Test-Suite Generation for Software Product Lines”. In: Pro-
ceedings of the 18th International Conference on Fundamental
Approaches to Software Engineering (FASE 2015, London, UK,
April 11–18). Ed. by A. Egyed and I. Schaefer. Vol. 9033. Lec-
ture Notes in Computer Science. Springer, 2015, pp. 84–99
(cited on p. 46).

[CGS+13] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebasti-
ani. “The MathSAT 5 SMT Solver”. In: Proceedings of the
19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2013, Rome,
Italy, March 16–24). Ed. by N. Piterman and S. A. Smolka.
Vol. 7795. Lecture Notes in Computer Science. Springer,
2013, pp. 93–107 (cited on p. 29).

[CES83] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic
Verification of Finite State Concurrent Systems Using Tem-
poral Logic Specifications: A Practical Approach”. In: Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’83, Austin, TX,
USA, January 24–26). Ed. by J. R. Wright, L. Landweber, A. J.
Demers, and T. Teitelbaum. ACM Press, 1983, pp. 117–236
(cited on pp. 1, 2).

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic
Verification of Finite-State Concurrent Systems Using Tem-
poral Logic Specifications”. In: ACM Transactions on Pro-
gramming Languages and Systems 8.2 (1986), pp. 244–263
(cited on pp. 1, 2).

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
“Counterexample-Guided Abstraction Refinement”. In: Pro-
ceedings of the 12th International Conference on Computer Aided
Verification (CAV 2000, Chicago, IL, USA, July 15–19). Ed. by
E. A. Emerson and A. P. Sistla. Vol. 1855. Lecture Notes
in Computer Science. Springer, 2000, pp. 154–169 (cited on
pp. 10, 43).

[CGJ+03] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
“Counterexample-Guided Abstraction Refinement for Sym-
bolic Model Checking”. In: Journal of the ACM 50.5 (2003),
pp. 752–794 (cited on pp. 2, 10, 43).

[CKY03] E. M. Clarke, D. Kroening, and K. Yorav. “Behavioral Con-
sistency of C and Verilog Programs under Bounded Model
Checking”. In: Proceedings of the 40th Annual Design Auto-

50 Appendix A Bibliography

https://dx.doi.org/10.1007/978-3-662-46675-9_6
https://dx.doi.org/10.1007/978-3-662-46675-9_6
https://dx.doi.org/10.1007/978-3-642-36742-7_7
https://dx.doi.org/10.1145/567067.567080
https://dx.doi.org/10.1145/567067.567080
https://dx.doi.org/10.1145/567067.567080
https://dx.doi.org/10.1145/5397.5399
https://dx.doi.org/10.1145/5397.5399
https://dx.doi.org/10.1145/5397.5399
https://dx.doi.org/10.1007/10722167_15
https://dx.doi.org/10.1145/876638.876643
https://dx.doi.org/10.1145/876638.876643
https://dx.doi.org/10.1145/775832.775928
https://dx.doi.org/10.1145/775832.775928
https://dx.doi.org/10.1145/775832.775928

mation Conference (DAC 2003, Anaheim, CA, USA, June 2–6).
ACM, 2003, pp. 368–371 (cited on p. 42).

[CM90] R. H. Cobb and H. D. Mills. “Engineering Software under
Statistical Quality Control”. In: IEEE Software 7.6 (1990),
pp. 44–54 (cited on p. 1).

[CC77] P. Cousot and R. Cousot. “Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints”. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL ’77, Los Angeles, CA, USA,
January 17–19). Ed. by R. M. Graham, M. A. Harrison, and
R. Sethi. ACM, 1977, pp. 238–252 (cited on p. 43).

[Cra57] W. Craig. “Linear Reasoning. A New Form of the Herbrand-
Gentzen Theorem”. In: The Journal of Symbolic Logic 22.3
(1957), pp. 250–268 (cited on p. 12).

[Dah17] P. Dahlberg. “Assessing the Scope of Safety Properties”.
MA thesis. University of Passau, Germany, 2017 (cited on
pp. 22, 25).

[Dij74] E. W. Dijkstra. “On the role of scientific thought”. EWD447,
published in [Dij82]. Aug. 1974 (cited on p. 1).

[Dij76] E. W. Dijkstra. “A Discipline of Programming”. Prentice-
Hall, 1976. isbn: 013215871X (cited on p. 5).

[Dij82] E. W. Dijkstra. “Selected Writings on Computing. A Per-
sonal Perspective”. Texts and Monographs in Computer
Science. Springer-Verlag, 1982. isbn: 978-3-540-90652-0 (cited
on p. 51).

[EMB11] N. Eén, A. Mishchenko, and R. K. Brayton. “Efficient Im-
plementation of Property Directed Reachability”. In: Pro-
ceedings of the International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2011, Austin, TX, USA,
October 30–November 02). Ed. by P. Bjesse and A. Slobodová.
FMCAD Inc., 2011, pp. 125–134 (cited on p. 41).

[GHJ+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design
Patterns. Elements of Reusable Object-Oriented Software”.
Addison-Wesley, 1995. isbn: 0-201-63361-2 (cited on p. 9).

[God97] P. Godefroid. “Model Checking for Programming Lan-
guages using Verisoft”. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’97, Paris, France, January 15–17). Ed. by
P. Lee, F. Henglein, and N. D. Jones. ACM Press, 1997,
pp. 174–186 (cited on p. 42).

Appendix A Bibliography 51

https://dx.doi.org/10.1109/52.60601
https://dx.doi.org/10.1109/52.60601
https://dx.doi.org/10.1145/512950.512973
https://dx.doi.org/10.1145/512950.512973
https://dx.doi.org/10.1145/512950.512973
https://dx.doi.org/10.2307/2963593
https://dx.doi.org/10.2307/2963593
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
https://books.google.com/books?vid=ISBN013215871X
https://dx.doi.org/10.1007/978-1-4612-5695-3
https://dx.doi.org/10.1007/978-1-4612-5695-3
https://books.google.com/books?vid=ISBN0-201-63361-2
https://books.google.com/books?vid=ISBN0-201-63361-2
https://dx.doi.org/10.1145/263699.263717
https://dx.doi.org/10.1145/263699.263717

[GS97] S. Graf and H. Saïdi. “Construction of Abstract State Graphs
with PVS”. In: Proceedings of the 9th International Confer-
ence on Computer Aided Verification (CAV ’97, Haifa, Israel,
June 22–25). Ed. by O. Grumberg. Vol. 1254. Lecture Notes
in Computer Science. Springer, 1997 (cited on p. 12).

[GLW16] H. Günther, A. Laarman, and G. Weissenbacher. “Vienna
Verification Tool: IC3 for Parallel Software. Competition
Contribution”. In: Proceedings of the 22nd International Con-
ference on Tools and Algorithms for the Construction and Ana-
lysis of Software (TACAS 2016, Eindhoven, The Netherlands,
April 2–8). Ed. by M. Chechik and J. Raskin. Vol. 9636. Lec-
ture Notes in Computer Science. Springer, 2016, pp. 954–
957 (cited on p. 42).

[HMR04] G. Hamon, L. M. de Moura, and J. M. Rushby. “Generating
Efficient Test Sets with a Model Checker”. In: Proceedings of
the 2nd International Conference on Software Engineering and
Formal Methods (SEFM 2004, Beijing, China, September 28–30).
IEEE Computer Society, 2004, pp. 261–270 (cited on p. 46).

[HCD+17] M. Heizmann, Y. Chen, D. Dietsch, M. Greitschus, A. Nutz,
B. Musa, C. Schätzle, C. Schilling, F. Schüssele, and A.
Podelski. “Ultimate Automizer with an On-Demand Con-
struction of Floyd-Hoare Automata. Competition Contri-
bution”. In: Proceedings of the 23rd International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2017, Uppsala, Sweden, April 22–29). Ed. by
A. Legay and T. Margaria. Vol. 10206. Lecture Notes in
Computer Science. Springer, 2017, pp. 394–398 (cited on
p. 42).

[HCD+13] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke,
M. Lindenmann, A. Nutz, C. Schilling, and A. Podelski.
“Ultimate Automizer with SMTInterpol. Competition Con-
tribution”. In: Proceedings of the 19th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2013, Rome, Italy, March 16–24). Ed. by N.
Piterman and S. A. Smolka. Vol. 7795. Lecture Notes in
Computer Science. Springer, 2013, pp. 641–643 (cited on
p. 42).

[HDG+16] M. Heizmann, D. Dietsch, M. Greitschus, J. Leike, B. Musa,
C. Schätzle, and A. Podelski. “Ultimate Automizer with
Two-track Proofs. Competition Contribution”. In: Proceed-
ings of the 22nd International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS
2016, Eindhoven, The Netherlands, April 2–8). Ed. by M. Chechik
and J. Raskin. Vol. 9636. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 950–953 (cited on p. 42).

52 Appendix A Bibliography

https://dx.doi.org/10.1007/3-540-63166-6_10
https://dx.doi.org/10.1007/3-540-63166-6_10
https://dx.doi.org/10.1007/978-3-662-49674-9_69
https://dx.doi.org/10.1007/978-3-662-49674-9_69
https://dx.doi.org/10.1007/978-3-662-49674-9_69
https://dx.doi.org/10.1109/SEFM.2004.1347530
https://dx.doi.org/10.1109/SEFM.2004.1347530
https://dx.doi.org/10.1007/978-3-662-54580-5_30
https://dx.doi.org/10.1007/978-3-662-54580-5_30
https://dx.doi.org/10.1007/978-3-662-54580-5_30
https://dx.doi.org/10.1007/978-3-642-36742-7_53
https://dx.doi.org/10.1007/978-3-642-36742-7_53
https://dx.doi.org/10.1007/978-3-662-49674-9_68
https://dx.doi.org/10.1007/978-3-662-49674-9_68

[HHP09] M. Heizmann, J. Hoenicke, and A. Podelski. “Refinement
of Trace Abstraction”. In: Proceedings of the 16th International
Symposium on Static Analysis (SAS 2009, Los Angeles, CA,
USA, August 9–11). Ed. by J. Palsberg and Z. Su. Vol. 5673.
Lecture Notes in Computer Science. Springer, 2009, pp. 69–
85 (cited on p. 42).

[HHP13] M. Heizmann, J. Hoenicke, and A. Podelski. “Software
Model Checking for People Who Love Automata”. In: Pro-
ceedings of the 25th International Conference on Computer Aided
Verification (CAV 2013, Saint Petersburg, Russia, July 13–19).
Ed. by N. Sharygina and H. Veith. Vol. 8044. Lecture Notes
in Computer Science. Springer, 2013, pp. 36–52 (cited on
p. 42).

[HJM+04] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.
“Abstraction from Proofs”. In: Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2004, Venice, Italy, January 14–16). Ed. by
N. D. Jones and X. Leroy. ACM, 2004, pp. 232–244 (cited
on p. 16).

[HJM+02] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. “Lazy
Abstraction”. In: Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL 2002, Portland, OR, USA, January 16–18). Ed. by J.
Launchbury and J. C. Mitchell. ACM, 2002, pp. 58–70 (cited
on pp. 2, 13, 41, 43).

[HJM+03] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. “Soft-
ware Verification with Blast”. In: Proceedings of the 10th In-
ternational Workshop on Model Checking Software (SPIN 2003,
Portland, OR, USA, May 9–10). Ed. by T. Ball and S. K.
Rajamani. Vol. 2648. Lecture Notes in Computer Science.
Springer, 2003, pp. 235–239 (cited on pp. 41, 43).

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Pro-
gramming”. In: Communications of the ACM 12.10 (1969),
pp. 576–580 (cited on pp. 5, 42).

[JM09] R. Jhala and R. Majumdar. “Software Model Checking”.
In: ACM Computing Surveys 41.4 (2009), 21:1–21:54 (cited on
p. 5).

[KMP+09] A. V. Khoroshilov, V. S. Mutilin, A. Petrenko, and V. Za-
kharov. “Establishing Linux Driver Verification Process”.
In: Proceedings of the 7th International Andrei Ershov Memorial
Conference on Perspective of Systems Informatics (PSI 2009,
Novosibirsk, Russia, June 15–19). Ed. by A. Pnueli, I. Vir-
bitskaite, and A. Voronkov. Vol. 5947. Lecture Notes in

Appendix A Bibliography 53

https://dx.doi.org/10.1007/978-3-642-03237-0_7
https://dx.doi.org/10.1007/978-3-642-03237-0_7
https://dx.doi.org/10.1007/978-3-642-39799-8_2
https://dx.doi.org/10.1007/978-3-642-39799-8_2
https://dx.doi.org/10.1145/964001.964021
https://dx.doi.org/10.1145/503272.503279
https://dx.doi.org/10.1145/503272.503279
https://dx.doi.org/10.1007/3-540-44829-2_17
https://dx.doi.org/10.1007/3-540-44829-2_17
https://dx.doi.org/10.1145/363235.363259
https://dx.doi.org/10.1145/363235.363259
https://dx.doi.org/10.1145/1592434.1592438
https://dx.doi.org/10.1007/978-3-642-11486-1_14

Computer Science. Springer, 2009, pp. 165–176 (cited on
pp. 3, 28).

[Kin76] J. C. King. “Symbolic Execution and Program Testing”. In:
Communications of the ACM 19.7 (1976), pp. 385–394 (cited
on p. 42).

[MG11] Z. Majo and T. R. Gross. “Memory Systems Performance in
a NUMA Multicore Architecture”. In: Proceedings of the 4th
Annual Haifa Experimental Systems Conference (SYSTOR 2011,
Haifa, Israel, May 30–June 1). Ed. by P. Ta-Shma, J. Moreira,
and L. Shrira. ACM, 2011, 12:1–12:10 (cited on p. 28).

[McC04] S. McConnell. “Code Complete. A Practical Handbook of
Software Construction”. 2nd ed. Microsoft Press, 2004.
960 pp. isbn: 978-0-7356-1967-8 (cited on p. 1).

[McM06] K. L. McMillan. “Lazy Abstraction with Interpolants”. In:
Proceedings of the 18th International Conference on Computer
Aided Verification (CAV 2006, Seattle, WA, USA, August 17–
20). Ed. by T. Ball and R. B. Jones. Vol. 4144. Lecture Notes
in Computer Science. Springer, 2006, pp. 123–136 (cited on
p. 41).

[MRS03] L. M. de Moura, H. Rueß, and M. Sorea. “Bounded Model
Checking and Induction: From Refutation to Verification”.
In: Proceedings of the 15th International Conference on Com-
puter Aided Verification (CAV 2003, Boulder, CO, USA, July 8–
12). Ed. by W. A. H. Jr. and F. Somenzi. Vol. 2725. Lecture
Notes in Computer Science. Springer, 2003, pp. 14–26 (cited
on p. 42).

[SK16] P. Schrammel and D. Kroening. “2LS for Program Analysis.
Competition Contribution”. In: Proceedings of the 22nd Inter-
national Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2016, Eindhoven, The
Netherlands, April 2–8). Ed. by M. Chechik and J. Raskin.
Vol. 9636. Lecture Notes in Computer Science. Springer,
2016, pp. 905–907 (cited on p. 43).

[SSS00] M. Sheeran, S. Singh, and G. Stålmarck. “Checking Safety
Properties Using Induction and a SAT-Solver”. In: Proceed-
ings of the Third International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD 2000, Austin, TX,
USA, November 1–3). Ed. by W. A. Hunt and S. D. Johnson.
Vol. 1954. Lecture Notes in Computer Science. Springer,
2000, pp. 108–125 (cited on p. 42).

[Sun78] C. A. Sunshine. “Survey on Protocol Definition and Verific-
ation Techniques”. In: Computer Networks 2 (1978), pp. 346–
350 (cited on p. 42).

54 Appendix A Bibliography

https://dx.doi.org/10.1145/360248.360252
https://dx.doi.org/10.1145/1987816.1987832
https://dx.doi.org/10.1145/1987816.1987832
https://books.google.com/books?vid=ISBN978-0-7356-1967-8
https://books.google.com/books?vid=ISBN978-0-7356-1967-8
https://dx.doi.org/10.1007/11817963_14
https://dx.doi.org/10.1007/978-3-540-45069-6_2
https://dx.doi.org/10.1007/978-3-540-45069-6_2
https://dx.doi.org/10.1007/978-3-662-49674-9_56
https://dx.doi.org/10.1007/978-3-662-49674-9_56
https://dx.doi.org/10.1007/3-540-40922-X_8
https://dx.doi.org/10.1007/3-540-40922-X_8
https://dx.doi.org/10.1016/0376-5075(78)90013-2
https://dx.doi.org/10.1016/0376-5075(78)90013-2

[STE+82] C. A. Sunshine, D. H. Thompson, R. W. Erickson, S. L. Ger-
hart, and D. Schwabe. “Specification and Verification of
Communication Protocols in AFFIRM Using State Trans-
ition Models”. In: IEEE Transactions on Software Engineering
8.5 (1982), pp. 460–489 (cited on p. 42).

[Tur37] A. M. Turing. “On Computable Numbers, with an Applic-
ation to the Entscheidungsproblem”. In: Proceedings of the
London Mathematical Society s2-42.1 (1937), pp. 230–265.
issn: 1460-244X (cited on p. 5).

[VHB+03] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
“Model Checking Programs”. In: Automated Software Engin-
eering 10.2 (2003), pp. 203–232 (cited on p. 42).

[VPK04] W. Visser, C. S. Pasareanu, and S. Khurshid. “Test Input
Generation with Java PathFinder”. In: Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2004, Boston, MA, USA, July 11–14). Ed.
by G. S. Avrunin and G. Rothermel. ACM, 2004, pp. 97–107
(cited on p. 46).

[Wen17] P. Wendler. “Towards Practical Predicate Analysis”. PhD
thesis. University of Passau, Germany, 2017 (cited on p. 41).

Appendix A Bibliography 55

https://dx.doi.org/10.1109/TSE.1982.235736
https://dx.doi.org/10.1109/TSE.1982.235736
https://dx.doi.org/10.1109/TSE.1982.235736
https://dx.doi.org/10.1112/plms/s2-42.1.230
https://dx.doi.org/10.1112/plms/s2-42.1.230
https://dx.doi.org/10.1023/A:1022920129859
https://dx.doi.org/10.1145/1007512.1007526
https://dx.doi.org/10.1145/1007512.1007526
https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/509

Colophon:

This document was processed using LuaLATEX. The program’s ver-
sion info is: This is LuaTeX, Version 1.0.4 (TeX Live 2017). Fonts are
TeX Gyre Pagella, TeX Gyre Heros, Fira Code, and some mathematical
glyphs from Latin Modern Math. The document’s template can be
found on GitHub1. All figures are either created using TikZ or the Py-
thon libraries matplotlib, numpy, pandas, and seaborn combined with
matplotlib2tikz.

1See github.com/stephanlukasczyk/latex-thesis-template

https://github.com/stephanlukasczyk/latex-thesis-template

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, daß ich diese Masterarbeit selbst-
ständig und ohne Benutzung anderer als der angegebenen Quellen und
Hilfsmittel angefertigt habe und daß alle Ausführungen, die wörtlich
oder sinngemäß übernommen wurden, als solche gekennzeichnet sind,
sowie daß ich die Masterarbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegt habe.

Passau, 2018–03–08
Stephan Lukasczyk

	List of Terms and Abbreviations
	List of Algorithms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of the Thesis

	2 Background
	2.1 Software Model Checking
	2.2 Program Representation
	2.3 CPAchecker
	2.3.1 Configurable Program Analysis
	2.3.2 The CPA Algorithm
	2.3.3 Basic CPAs

	2.4 Counterexample-Guided Abstraction Refinement
	2.5 Precision Adjustment
	2.6 Craig Interpolation for Predicate Abstraction Refinement

	3 Provident Abstraction Refinement
	3.1 A Provident Strategy to Gain Information on Possible Refinements
	3.2 The PCEGAR Algorithm
	3.3 The Ranking Operator
	3.4 Strategies to Select a Refinement

	4 Evaluation
	4.1 Research Questions
	4.2 Operators for PCEGAR
	4.2.1 Ranking Operator Implementations
	4.2.2 Selection Operator Implementations
	4.2.3 Particular Operator Combinations

	4.3 Hypotheses
	4.3.1 Multi-Path versus Single-Path Strategy
	4.3.2 Influences of the Verification Tasks
	4.3.3 Incorporating Domain Knowledge
	4.3.4 Variables

	4.4 Case Studies for Evaluation
	4.5 Evaluation Environment
	4.6 Results
	4.6.1 Multi-Path versus Single-Path Strategy
	4.6.2 Influences of the Verification Tasks
	4.6.3 Incorporating Domain Knowledge

	4.7 Discussion
	4.8 Threats to Validity
	4.8.1 Internal Validity
	4.8.2 External Validity

	5 Related Work
	5.1 Related Approaches
	5.2 Types of Model Checking
	5.3 Benchmarks

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	A Bibliography

