
Bachelor’s Thesis in Computer Science

Communication of Core and Peripheral
Developers in OSS Projects: An

Exploratory Study

Sofie Kemper

2017-09-18

Advisors:
Prof. Dr. Sven Apel

Thomas Bock
Claus Hunsen

(Chair for Software Engineering I)

Kemper, Sofie:
Communication of Core and Peripheral Developers in OSS Projects: An Ex-
ploratory Study
Bachelor’s Thesis, University of Passau, 2017.

Abstract

As the developer community in open-source software (OSS) projects typi-
cally experiences little stability and may be geographically dispersed, coordi-
nation and communication among the developers are crucial for the success
of the software project and, thus, warrant further investigation. In this thesis,
we perform a long-term, empirical study of the communication in eleven
open-source software projects. We investigate how the notion of core and
periphery, i.e., the developer’s activity level regarding source-code contri-
butions, is reflected in the development-mailing-list communication. We
investigate not only the activity of the participant groups but focus mainly
on their interaction as this has not yet been extensively studied.

We find that core developers are generally the most active mailing-list
contributors, but that non-developers amount for a surprisingly large pro-
portion of the project communication. In addition, we observe a very strong
preference towards core members as communication partners in all contrib-
utor groups. The strength of this preference as well as the classes’ activity
level is project-specific but stays very consistent over time within projects.
Moreover, we observe that pair-wise core-core communication exhibits great
longevity but is generally less intensive than core-peripheral communication.
Peripheral-peripheral communication is characteristically short-lived. Our
data does not indicate that project communication changes qualitatively
during the project release cycle. In general, we observe that the project core
and periphery differ not only in their activity levels but also in how they
interact on the project’s mailing list, i.e., their preferences for communication
partners as well as the longevity and intensity of their interactions.

Contents

1 Introduction 1

2 Background 3
2.1 Characteristics of OSS Projects 3
2.2 Developer Networks . 5

2.2.1 Developer Networks for OSS Community Analysis . 5
2.2.2 Construction of Developer Networks 6

2.3 Core/Periphery Classification 8
2.3.1 Model of OSS Project Participant Roles 8
2.3.2 Core and Periphery in the Developer Community . . 9
2.3.3 Classification Metrics 10

2.4 Related Work . 11
2.4.1 Related Work regarding Developer Roles 11
2.4.2 Related Work regarding Developer Communication . 13
2.4.3 CombiningDeveloper Roles andCommunicationAnal-

yses . 14

3 Study Design 17
3.1 Research Questions . 17
3.2 Variables . 18

3.2.1 Independent Variables 18
3.2.2 Dependent Variables 21

3.3 Hypotheses . 28
3.4 Casestudies . 30
3.5 Implementation and Execution 31

4 Results 33
4.1 Preferences concerning Communication Partners (H1.1) . . . 33
4.2 Core Thread Participation (H1.2) 35
4.3 Peripheral and Unclassified Thread Participation (H1.3) . . . 35
4.4 Core-Peripheral Communication Episodes (H2.1) 41

4.4.1 Communication Longevity 41
4.4.2 Communication Intensity 42

4.5 Core-Core Communication Episodes (H2.2) 43
4.5.1 Communication Longevity 43
4.5.2 Communication Intensity 45

4.6 Peripheral-Peripheral Communication Episodes (H2.3) . . . 48
4.7 Comparison of Core-Core, Core-Peripheral, and Peripheral-

Peripheral Communication Episodes 49
4.7.1 Communication Longevity 49

v

4.7.2 Communication Intensity 53
4.8 Average Class Activity (H3.1) 54
4.9 Activity Level of the Core Class (H3.2) 54
4.10 Core Communication Activity during the Release Cycle (H3.3) 56
4.11 Peripheral and Unclassified Communication Activity during

the Release Cycle (H3.4) . 62
4.12 Class Interaction during the Release Cycle (H3.5) 63

5 Discussion 73
5.1 Discussion of our Findings 73

5.1.1 Research Question 1 73
5.1.2 Research Question 2 76
5.1.3 Research Question 3 79

5.2 Threats to Validity . 82
5.2.1 Internal Validity . 82
5.2.2 External Validity . 84

6 Conclusion 87
6.1 Summary . 87
6.2 Future Work . 89

A Additional Material 91

B Bibliography 95

vi Chapter 0 Contents

List of Figures

2.1 Examplary Mail-Based Developer Network 7
2.2 The Onion Model, taken from Jensen et al. [13] 9

4.1 Relative Edge Class Frequency Evolution in Ffmpeg 37
4.2 Relative Thread Class Frequencies in Chromium 39
4.3 Class Communication Longevity in Ffmpeg, not showing the

highest 20% of values . 51
4.4 Class Communication Longevity in U-Boot, not showing the

highest 20% of values . 51
4.5 Class Communication Link-Intensity in Wine, not showing

the highest 10% of values . 52
4.6 Class Communication Link-Intensity in ApacheHTTP, not

showing the highest 10% of values 52
4.7 Relative Class Activity in Qemu 59
4.8 Relative Class Activity in Busybox 59
4.9 Relative Class Activity in Ffmpeg 60
4.10 Absolute Class Activity in Ffmpeg 60
4.11 Relative Class Activity in Chromium 61
4.12 Absolute Class Activity in Chromium 61
4.13 Relative Edge Class Frequency Evolution in U-Boot 64
4.14 Absolute Edge Class Frequency Evolution in U-Boot 65
4.15 Relative Edge Class Frequency Evolution in Wine 66
4.16 Absolute Edge Class Frequency Evolution in Wine 67
4.17 Relative Edge Class Frequency Evolution in Chromium . . . 69
4.18 Absolute Edge Class Frequency Evolution in Chromium . . 70
4.19 Relative Edge Class Frequency Evolution in Qemu 71

A.1 Histogram of the Number of Ranges Threads Span in Qemu . 91
A.2 Histogram of the Number of Temporary Core Developers in

Qemu-Threads . 91
A.3 Histogram of the Number of Participants in Qemu-Threads

(logarithmic scales) . 92
A.4 Histogram of the Number of Mails in Qemu-Threads (loga-

rithmic scales) . 92
A.5 Histogram of the Temporal Distances between Subsequent

Messages in Qemu-Threads (in hours, logarithmic scales) . . 93

vii

List of Tables

3.1 Independent and Dependent Variables of our Study along
with their Corresponding Description 25

3.2 Overview of Subject Projects 32

4.1 Relative Developer Class Frequencies and Relative Link Fre-
quencies between Core and Periphery 36

4.2 Preference Factor for Communication Partner Classes 36
4.3 Proportion of Threads with Maximum 𝑛 Core Developers:

𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝐶, 𝑛) [%] . 38
4.4 Proportion of Threads with Maximum 𝑛 Peripheral Develop-

ers: 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑃, 𝑛) [%] . 38
4.5 Proportion of Threads with Maximum 𝑛 Unclassified Devel-

opers: 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑈, 𝑛) [%] 40
4.6 Variance of the Class Communication Longevity and Link-

Intensity . 40
4.7 Class Communication Link-Intensity, Quantiles 44
4.8 Class Communication Mail-Intensity, Quantiles 44
4.9 Class Communication Longevity, Quartiles, All Communica-

tion Episodes . 50
4.10 Class Communication Longevity, Quantiles, Only Answered

Communication Episodes . 50
4.11 Average Number of Mails and Average Number of Threads

Started per Class Member . 55
4.12 Relative Developer Class Activity 55

ix

1
Introduction

Human factors – most notably the collaboration between developers – are
an important factor in whether a software project succeeds as well as de-
termining the quality of the resulting software [17]. Large-scale, complex
software projects, in particular, require a great amount of communication
and coordination amongst the developers to guarantee that a coherent prod-
uct is produced [1, 17]. Although it might be possible to impose certain
coordination requirements, e.g., pair-programming or weekly meetings, and,
thus, guarantee adequate developer communication in traditional commer-
cial/closed source software (CSS) development [13], it is much more difficult
when regarding open-source software (OSS) projects [17].

OSS development has become an important part of the IT ecosystem and
is typically characterised by a very large, ever-changing developer commu-
nity [13]. Additionally, one notable characteristic of the social community of
an OSS project is its self-organising nature – its structure is not imposed by
any project leader but continually adapts to the development coordination
needs of the corresponding project. Hence, it is difficult to ascertain that
communication needs are met [17]. As this developer coordination is an
important aspect in the success of the software project, it warrants a closer
examination.

The communication between core developers – those who contribute con-
tinually and extensively to the software project in question – and other
developers is particularly interesting, as its characteristics remain mostly
unstudied. Since new members are extremely important for OSS projects due
to the high developer turnover, it is interesting in which capacity and how
they communicate with the more experienced contributors. This can serve
as an indicator of how well new developers are integrated in the project [6,
13]. Moreover, the health of its developer community directly influences the
success of an OSS software project as potential users may choose software not
only based on its features but also on the provided support which emerges
from the virtual community surrounding the project [25].

Understanding OSS developer communication, in particular the commu-
nication between core developers and developers new to the project, might
help us to recognise and combat deficiencies, e.g., coordination requirements
that are not met [17]. Similarly, it might be possible to formulate general
guidelines for the communication in OSS development as well as finding in-
dicators of developer communities’ health [13, 6]. As the global E-Commerce
structure heavily relies on OSS, e.g., Apache web servers as well as the Linux

1

and BSD operating systems, a better understanding of how OSS developer
communities function might help IT planners in establishing trust and de-
veloping more effective strategies regarding the usage of the corresponding
software [23]. Thus, we hope to gain a deeper understanding of OSS developer
communities through this study.

In this thesis, we perform a long-term empirical study of the communica-
tion in eleven open-source software projects, focusing on how the notion of
core and periphery, i.e. the developer’s activity level in the source code, is
reflected in their communication on the mailing list. We analyse not only the
activity of the participant groups but additionally investigate the nature of
their interactions, thus, supporting the evidence found in prior research that
the developer groups differ not only in their activity levels but also exhibit
qualitative differences in their behaviour.

We find that core members are generally the most active mailing-list
contributors. However, non-developers amount for a surprisingly large
proportion of the project communication. A very strong preference of core
members as communication partners is visible in all contributor groups in
all eleven subject projects. Although the distinctness of this preference as
well as the classes’ level of involvement in the mailing list varies greatly
among our casestudies, it stays very consistent over time within projects.
Moreover, we observe that pair-wise core-core communication exhibits great
longevity but is generally less intensive than core-peripheral communication.
Peripheral-peripheral communication is characteristically short-lived. Our
data does not indicate that project communication changes qualitatively
during the project’s release cycle.

This thesis is structured as follows: We start by presenting necessary back-
ground information in Section 2. This includes related work that has been
published in this area of research as well as the theoretical basis for our
study. For this purpose, we introduce some characteristics of OSS projects,
social networks representing developer collaboration, and the classification
of developers into core and periphery. In Section 3, we explain our study
design starting with our research questions. Then, we present the indepen-
dent, the dependent, and the confounding variables of our study. Thereafter,
we introduce the hypotheses as well as some characteristics of the chosen
casestudies and our implementation. Consequently, we present our findings
concerning each hypothesis in Section 4. In Section 5, we discuss these results
and disclose threats to the validity of our findings. We conclude our work
with a summary of our study and results as well as suggestions for future
work in Section 6

2 Chapter 1 Introduction

2
Background

In this section, we present the theoretical basis for our study. We begin
by introducing some characteristics of OSS development and its developer
communities. We further explain the social networks representing developer
collaboration as well as giving a brief overview of how they are constructed.
Then, the theoretical model of developer roles as well as the practical classifi-
cation of developers into core and periphery according to count-based and
network-based metrics are introduced. Additionally, we present some related
work and situate our study in relation.

2.1 Characteristics of OSS Projects

Open-Source Software (OSS) development has become an important part
of the IT ecosystem and, thus, merits a closer examination. OSS projects
are well-suited for studies of software development processes and developer
coordination as their version control systems as well as their mailing lists
are archives of the project history, providing all past correspondence as well
as the source-code authorship history [2]. Although OSS projects can vary
greatly – particularly in size, organisational structure, and the composition
of their developer community – there are some common characteristics that
apply to almost all OSS projects to some extent, manifesting in different
ways [31]. When investigating OSS developer communities, it is important
to keep these properties in mind to correctly interpret the findings.

Open Source Software or Free Software designates software products which
are made available to their users under a license which allows them to be
freely studied, modified, derived from, and redistributed. Thus, this software
development model is a major deviation from traditional or Closed Source
Software (CSS), as OSS projects allow anyone (read-)access to the software’s
sources [31]. This is based on the assumption that, by sharing source code, the
contributors cooperate within a model of rigorous peer-review and that the
parallel development process is ideal for evolving software products [18]. Al-
though the OSS development model has been used for decades, its importance
grew with the internet’s rise in popularity and, especially, the emergence of
E-commerce [23].

An OSS project is unlikely to flourish unless it is accompanied by a healthy
developer community which provides the basis for developer and user collab-
oration [33]. One of the characteristics of OSS projects is their lack of control
over the project contributors [31]. An OSS project’s developer community

3

typically consists of volunteers which are led to contribute by a combination
of intrinsic and extrinsic motives [30]. These developers are not assigned
to teams by a common manager, but volunteer instead to participate and
contribute to certain tasks [29]. This can lead to a continually shifting mem-
bership and high turnover in the developer community [10]. The developer
community is characteristically geographically distributed and larger than
that of a comparable CSS project as its members usually do not spend all
their time working on the project [31, 18].

In contrast to CSS projects, the OSS project’s developers are typically also
users of the software and all users are potential contributors. The symbiosis
of the developer and user community provides a quality control by use, which
has been shown to perform favorably for evolving software projects [10]. In
many cases, there are no explicit requirement documents as the developers
– through usage of the software – provide the requirements and can self-
assign these tasks [31]. In general, the participants employ an autonomous
mode of decision-making through which they define and work on their own
tasks as no central management with control over the developers’ activities
exists [10, 31]. Studies have indicated that OSS projects benefit from this
task-assignment process as it makes a developer’s productivity independent
of the number of project developers – a violation of Brooks’ law established
for CSS projects [18, 17].

Although different OSS projects possess different organisational structures,
e.g., the “benevolent dictatorship” of Linux which is in stark contrast to the
well-organised hierarchical governance structure of Lucene [11], its devel-
oper communities typically self-organise. One commonly employed imagery
is the comparison of OSS structures to an ever-changing “bazaar” without pre-
designed or explicit structure while equating CSS projects to organisational
“cathedrals” [2]. Placing communication at the center of this collaboration
mechanism, the structure typically adapts dynamically according to coordi-
nation requirements, the source code structure, and development tasks [7,
17]. Thus, the project may benefit from this lack of fixed organisational
structure as it allows for an ideal alignment of the software development and
the developer community [2].

The current version of the source code is at the core of any OSS project and
its knowledge base. Nonetheless, this knowledge base is also mirrored and
complemented in other parts of the project’s organisation system such as the
mailing list archive, the documentation and bug reports [10]. Additionally,
this partitioning is reflected in the project tasks: Despite the production of
code as apparent core task, other duties such as providing documentation,
testing and evaluating existing parts of the system as well as providing user
support all form valuable and necessary contributions to the project [2, 10].

Due to the lack of traditional management structure, communication is
a crucial factor in the developer coordination and, thus, the success of the
software project [1]. Characteristically, conversations in OSS settings are
conducted in a public manner and archived for later reference. For this pur-
pose, mailing lists (MLs) – of which there may exist several for a multitude of

4 Chapter 2 Background

different project matter discussions, e.g., development, patches, user support
– are used [11]. Mailing lists are public forums to which anyone can post
messages and, thus, allow people of all experience levels to communicate
about practically any topics pertaining to the OSS project [1, 13]. Although
several projects supplement these mailing lists with other communication
channels, such as issue trackers or features of the development platform, e.g.,
discussions of pull requests on GitHub, mailing lists are traditionally consid-
ered the hub of project communication [8, 11]. By community norms, these
lists host all discussions regarding the system and development tasks [2].
Admittedly, many projects shift the discussions and developer coordination to
other channels of communication in recent years. Nonetheless, newcomer’s
first interaction with the project’s community will usually take place on the
mailing list and they constitute a public archive of past decisions and the
communities culture [13]. Thus, we expect them to give valuable insights
into an OSS project’s community structure.

The source code – as indicated by the name open-source development –
is always available on the Internet, mostly in a publicly-accessible version
control system (VCS). Although the write-access to the code may be limited
to a privileged group of contributors, every potential contributor has read-
access to the repository and can provide his contributions in the form of
patches to the mailing list or by using features of the VCS hosting platform,
e.g., forks and pull requests in GitHub [31].

2.2 Developer Networks

One of the most natural and accurate ways of representing human interaction
in the form of developer communities are developer networks. This type of
social network as well as the network construction mechanism employed in
this work are presented in the following.

2.2.1 Developer Networks for OSS Community Analysis

Many parts of nature and culture – human interaction, in particular – are
organised in networks and, hence, can be represented and studied very
accurately via these structures [4]. Especially, social network theory has
received considerable attention in the research community. Social scientists
theorise that individuals are embedded in webs of social interactions and
relations which can be represented ideally through network structures. One
of the most important aspects that are examined with regards to these social
networks is the question how persons combine in networks, i.e., how they
interact and relate to one another, and how these interactions provide the
basis for enduring, functioning communitites [5]. Additionally, one of the
most potent ideas in social network analysis is the notion that the outcome
of individual actors, groups of actors, and the network in its entirety can be
explained – and even predicted – through measurable network properties
and the actors’ relative positions in the structure [4].

2.2 Developer Networks 5

Due to this natural representation of community structures via social
networks, developer networks have found many applications in studies of
developer communities, e.g. in the work of Bird et al. [1] and the studies of
Joblin et al. [17]. Developer networks are socio-technical networks, meaning
that the developers’ mutual activities are technical in nature but the network
constructed from these activities represents the corresponding relationships
between the developers [17]. These networks have been shown to accurately
reflect developer perception of developer communities’ structure as well as
its properties [16]. For many aspects of interest, a network perspective can
yield a richer understanding than mere count-based metrics, e.g., the number
of mails written between two individuals. [16].

The formal representation of these developer networks is a graph whose
nodes (or vertices) constitute the actors – i.e., the individual developers –
and whose edges (or ties) form the relations between these actors, typically
representing some type of collaboration among them. This collaboration can
either be direct, e.g., mails sent from one developer to another or one replying
to issue tracker comments of the other, or indirect, e.g., two developers
working simultaneously on the same source-code artifact or posting to the
same threaded mailing list discussion [17]. Nodes as well as the relations
among them may possess attributes [4]. In the investigation of developer
communities, exemplary vertex attributes could be the developer’s age as
well as his seniority or status in the project. Similarly, edges in developer
networks could be characterised via their creation date (i.e., the date of the
corresponding developer interaction) or their importance.

Using developers networks, we can investigate different aspects of the
developer community. In general, three levels of analysis are distinguished
in social network theory: (1) the study of individual edges – the dyad level –
constitutes the most fundamental level of analysis [4]. This would allow us
for instance to investigate whether developers that have participated in the
project for similar times are more likely to collaborate. (2) The second level –
the node level – consists mostly of aggregations of dyad-level properties such
as the actor’s number of ties [4]. A sample research question addressable at
the node level could be: “Is the number of actor’s outgoing ties positively
correlated to the probability of them staying active in the software project?”
(3) The third and most general level – the network level is about analysing
the network as a whole [4]. One application might be asking how densely or
sparsely connected the developer network is and in what ways this impacts
the community’s stability.

2.2.2 Construction of Developer Networks

To understand the implications of our findings, it is important to explain the
mechanisms we use for constructing our developer networks. For this work,
we consider two types of developer networks – email social networks and
source-code collaboration networks. Although we mainly analyse the social
networks that are constructed based on the OSS project’s mailing list, we

6 Chapter 2 Background

enrich our understanding of the mailing list data by using networks that
represent the developer collaboration on source code artifacts. Both classes
of networks are constructed in the same way, but based on different artifacts
– either source code artifacts or mails organised in threads.

For the construction of email social networks, we consider only the project’s
primary development mailing list. We assume that two developers commu-
nicate, i.e., should be linked via an edge in the network, when they post to
the same mailing-list thread. To accurately represent the information flow
as well as the “direction” of messages, i.e., which developer sends a message
to which other developer(s), we use a construction mechanism which, for
each mail written to a certain thread, establishes connections going from the
mail author to the authors of all previous contributions in this thread. As an
example, if 𝐴 initiates a thread, 𝐵 replies and 𝐶 writes a third message, the
resulting network will contain edges 𝐵 → 𝐴, 𝐶 → 𝐴, and 𝐶 → 𝐵. We show
an exemplary network which contains these edges in Figure 2.1

A

B

C

D

E

F

Thread 1

Thread 1

Thread 1
T

hread 2

Thread 2

Thread 2

Thread 3

Fig. 2.1 Examplary Mail-Based Developer Network

Source-code networks are constructed analogously, but using the history
of changes made to a source-code artifact instead of email threads. We only
consider the commit authors in the main development branch and construct
the networks based on function-level artifacts as these have been shown
to produce networks that agree with developer perception [16]. Hence,
if developer 𝐷2 makes changes to a function to which developer 𝐷1 has
previously contributed, the resulting cochange network will contain an edge
𝐷2 → 𝐷1.

We use this construction technique, as it allows us to represent not only
the existence of interaction among developers, but also the direction of the
information flow in this interaction. Through this, we gain a more accurate

2.2 Developer Networks 7

representation of the chronological sequence of collaboration events [1, 6].
For details of the data extraction process as well as the interpretation of the
constructed networks, the interested reader is referred to Joblin et al. [16,
17].

2.3 Core/Periphery Classification

The notion of core and periphery is an important one in social network theory
and seems to be a prevalent structure in human social networks [5]. OSS
developer networks, in particular, have been shown to follow this model,
allowing researchers to divide their members into a large, volatile peripheral
group and a significantly smaller group of core members [17]. The notion of
core and periphery in OSS was born from a model of OSS participation roles,
both of which will be explained in the following. Additionally, we explain
which operationalisations of the developer roles are used in this work.

2.3.1 Model of OSS Project Participant Roles

Although OSS developer communities may not possess any strict hierarchical
organisation, their structure ist not completely flat. The project members have
different levels of influence on the system based on the roles they play [33].
With regards to developer roles, the main difference between OSS and CSS
development is the role transformation of the stakeholders of the project. In
CSS projects, roles are typically assigned by managers and rarely change;
Users and producers are two clearly separated groups [33, 13]. In OSS, due to
the partial overlap and close contact between the developers and the users,
roles change constantly. Users may start to contribute and members may
change their roles based on how much they want to get involved in the
developer community [10, 33].

There are different approaches of distinguishing among different developer
roles. One easy classification metric is whether the developers have write
access to the project’s VCS. However, this formal list of developers usually
does not present an accurate representation of the contribution of project
members [10]. Thus, more complicated structures were introduced. One
of the most common models of these roles and role transitions is the onion
model. Although other models or refinements, such as the onion pyramid
suggested by Jensen and Scacchi [14], have been proposed, the onion model
is still widely used.

The onion model is based on eight roles that the stakeholders in the project
can assume. These roles – as illustrated in Figure 2.2 – range from passive
users to core developers and indicate concentric levels of distribution where
roles closer to the center possess a larger radius of influence [31, 33]. Thus,
the model corresponds to layered organisational structures prevalent in
management, economics, and software engineering literature [14].

Research has shown that, although not all eight types of roles exist in
all OSS communities and the exact community composition may vary, the

8 Chapter 2 Background

Fig. 2.2 The Onion Model, taken from Jensen et al. [13]

onion model aptly reflects the structures in OSS projects and substantial
size differences among the eight roles exist as indicated in Figure 2.2 [33,
16]. OSS developers have been observed to gravitate towards more central
roles with prolonged involvement in the project [14]. For the success of OSS
projects, it is important that the path from passive user to core member is
possible, although not many members of the project will follow this idealised
path [33].

This advancement of roles is typically meritocratic in OSS developer com-
munities – members advance by proving themselves through continued,
valuable contributions and social commitment to the project via involvement
on the mailing list, thus, gaining higher recognition in the developer com-
munity as well as more responsibilities and more central roles [14, 33]. The
formality and explicitness of this advancement process – especially the access
to the VCS – depends on the structure and size of the software project [31].
An interesting observation regarding this advancement process is that, as
members change roles, they change the social dynamics of the project and,
thus, reshape the structure of the community [33]. Therefore, the role ad-
vancement processes are important not only for the individual members and
their motivation, but also for the evolution of the community as a whole.

2.3.2 Core and Periphery in the Developer Community

The onion model with its eight different roles has been simplified to the
dichotomy of core and periphery [16]. In most OSS projects, one can ob-
serve the harmonious coexistence of a stable group of core members and a
fluctuating periphery [17].

The distribution of activities in OSS projects is generally highly skewed
with a very small fraction of the members responsible for a majority of
contributions [10]. This participation inequality has been observed in the
contribution of source code as well as the distribution of traffic on the mailing

2.3 Core/Periphery Classification 9

lists [8]. The phenomenon is very common in OSS projects and increases
with the system size [17].

Thus, the core/periphery dichotomy is based on the participation inequality
in OSS projects. Additionally, it reflects the network theory structure of
combining a dense, cohesive core with a sparse, unconnected periphery [3].
In some projects, such as Linux, the core/periphery dichotomy will even be
reflected in a tiered structure of mailing lists [20]. The two roles are defined
via certain characteristics and can be operationalised in different ways as we
describe in Section 2.3.3.

Core developers are characterised via their prolonged, consistent and
intensive involvement in the project. As they typically have an extensive
knowledge of the system architecure, they play an essential role in developing
the software. Additionally, they can exert a strong influence on project
decisions and, thus, form the general leadership structure of the project [16,
17]. Research suggests that the core consists of only a very small fraction of
project members, combining the two classes project leader and core member
in the original onion model (see Figure2.2) [8, 13].

Developers that are part of the periphery are distinguished by a rather short-
term, irregular involvement. They typically provide smaller contributions,
such as bug fixes or smaller enhancements of the system [16]. Most members
of an OSS project will be classified as peripheral as the periphery includes the
roles active developers, peripheral developers, bug fixers and bug reporters [13,
8].

2.3.3 Classification Metrics

There are different approaches to classifying developers according to the
core/periphery dichotomy. All metrics aim to quantify the amount of partic-
ipation a developer has in the project. One approach is based on counting
participation metrics, e.g., lines of codes contributed or commits made. Al-
though this method is widely used, it has been shown that count-based
metrics cannot reflect more complicated structures and do not necessarily
agree with developer perception [16].

Another approach of quantifying the developer’s amount of participation
relies on a network-based evaluation. Different measures of centrality can be
employed to quantify the developer’s structural importance or prominence
in the network. Centrality can be equated to the contribution the vertex
makes to the structure of the network [5, 4]. The simplest form of centrality
is degree-centrality which is defined as the number of vertices a given vertex
is linked to [4].

The measure of centrality used in this work is eigenvector centrality which
characterises a vertice’s centrality not only via the number of their links but
also reflects the centrality of the nodes they are linked to [4]. Hence, a high
eigenvector centrality can reflect not only that a developer coordinates with
many developers but also that he/she is connected to other important project
members [16].

10 Chapter 2 Background

After quantifying all developers’ amounts of participation either via count-
based or via network-based metrics, the classification proceeds as follows:
A developer is classified as member of the core group if his/her level of
participation is in the upper 20th percentile [17]. Thus, the core group is
made up of those most active developers who are responsible for 80% of the
project activity together. All other developers are classified as peripheral
members [16].

As classifications based on the network approach have been shown to
accurately reflect developer perception [16], we use eigenvector centrality
on the source code-based developer network (see Section 2.2.2 for the con-
struction of the networks) to classify project members in core and periphery
in this study. Additionally, we evaluated all our results using a commit-count
classification as a sanity check. We give more details on the classification
process in Secion 3.2.

2.4 Related Work

Considerable research has been done into the developer roles as explained in
Section 2.3 as well as the communication and coordination of developers in
OSS projects. We give an overview of this research in the following. Then,
we explain what little research exists combining the notion of developer roles
with an analysis of the project communication and situate this study with
regard to the existing work.

2.4.1 Related Work regarding Developer Roles

Crowston et al. [8] define and evaluate three analysis approaches to identi-
fying core members of OSS projects: (1) those individuals that are officially
named as developers of the project, (2) those developers who are responsible
for the bulk of the code contributions, and (3) those developers which form
the dense, strongly connected core of the developer network. They analyse
these operationalisations on bug-tracker data of 116 OSS projects. Although
the three measures do not agree with each other, all of them suggested that
only a small fraction of the project developers constitute the project core [8].

Ye and Kishida [33] study developer roles in the Gimp project, using the
publicly available, pre-defined roles in this project. They analyse the number
of code contributions as well as the number of emails sent to the mailing
lists for the core members, active developers, peripheral developers, bug fixers
and bug reporters. Ye and Kishida find that the most active participants on
the mailing list were mostly those developers who were defined as core
members or as active developers. In addition, the authors study the role
advancement processes in Gimp as well as investigating the motivation of
peripheral participants [33].

Similarly, Krogh et al. [19] study the role advancement processes in Freenet.
Classifying developers solely based onwhether they had access to the project’s
VCS repository instead of using a participative metric, e.g., lines of code

2.4 Related Work 11

contributed, they analyse how newcomers join the community and begin
contributing code. They construct different phases of the typical joining
process, finding that newcomers following a “joining script”, i.e., adapting
to a certain level and type of activity, as well as particular specialisation
mechanisms has a favorable influence on their role advancement [19].

Jergensen et al. [15] examine developer role advancement in open source
ecosystems – i.e., systems of OSS projects that share components, technolo-
gies and social norms – using the example of the ecosystem surrounding
Gnome. In contrast to other researchers, they find little support for the tra-
ditional “onion model” of developer role transition (see Section 2.3.1) when
applied to a single software project. The model is slightly more fitting when
regarding the entirety of the software ecosystem. Nonetheless, classical as-
sumptions regarding the “onion model” are disproven for the example of the
Gnome ecosystem, most interestinlgy the assumption that prior experience
(in the project or a project of the same ecosystem) would lead to a higher
centrality of the developer’s contribution. Thus, the authors find limitations
regarding the applicability of the classical role advancement model [15].

Joblin et al. [17] conduct research concerning the developer network struc-
ture of 18 large open-source projects. They use source code-based networks
which represent developer collaboration on code artifacts and classify the
developers into core and periphery according to network-based metrics (see
Section 2.3.3). Their findings indicate that the role stability of the core mem-
bers is much greater than that of peripheral developers. Additionally, Joblin
et al. show that even as the general developer community loses its hierarchi-
cal structure with the project growth, the core group remains hierarchically
arranged. This indicates that the two developer classes exhibit not only
different levels of participation but also possess structural and positional
differences [17].

Similarly, Terceiro et al. [31] investigate how the core and periphery differ
concerning their influence on the source code’s structural complexity. In
their study of 7 OSS web server projects, the authors find that core members
– possibly because of their deeper understanding of the code – introduce less
structural complexity and, in instances of complexity-reducing activities, such
as refactoring, remove more structural complexity than peripheral developers.
With these results, they demonstrate that the differences between core and
periphery lie not only in their activity level and behaviour but also in the
complexity of the code they contribute and, thus, illustrate the importance
of a stable core to OSS software projects [31].

The related work concerning OSS developer roles demonstrates that –
although not all software projects may fit all characteristics of common
models of developer roles – there is a clear distinction of core and periphery
in the developer communities with only a small fraction of developers in the
role of core members. This contrast is apparent in the number of email and
source-code contributions as well as the developers position in the network
and the quality of their contributions.

12 Chapter 2 Background

2.4.2 Related Work regarding Developer Communication

One of the most important reasons for communication in OSS projects is
knowledge sharing, which significantly affects the software project as a whole
because it ensures that (1) users are enabled to use the software and adequate
support is provided and that (2) developers gain a better understanding of
the source code, thus, being able to make better contributions. This aspect of
the communication in OSS projects has been studied extensively.

Hemetsberger and Reinhardt [12] as well as Lakhani and von Hippel [21]
examine user-to-user support on the Kde and Apache mailing lists, respec-
tively. Sowe et al. [30] investigate the role and identification of knowledge
brokers, i.e., those individuals that help users to find the resources from which
to extract the answers to their technical questions, in the example of three
non-developer mailing lists of Debian. They find that knowledge brokers are
connected across lists and perform a very important role in the project [30].

Regarding the knowledge sharing among developers, Lanzara andMorner [22]
study how artifacts help developers to gain technical, organisational, and
institutional knowledge of the project. Canfora et al. [6] as well as Jensen et
al. [13] analyse the mailing list interactions of new project members. Canfora
et al.’s findings indicate that mentoring is perceived as important by the
“newbies” and mentors alike. Additionally, they develope and evaluate a tool
for recommending suitable mentors [6]. Jensen et al. investigate mailing-list
discussions initiated by “newbies” to determine whether potential contribu-
tors are welcomed by polite, timely responses. They find that 80% of “newbie”
posts receive (mostly timely) replies, which is positively correlated with
poster’s future contribution [13]. Guzzi et al. [11] study the development
mailing list of Lucene and find that – albeit the list’s declared intent of being
the medium for discussions between developers – core developers participate
in less than 75% of the threads, implementation details only amount for a
third of the threads, and the mailing list is no longer the primary means of
project communication [11].

Several studies were performed concerning efficient coordination in OSS
developer communities despite the large number of possible communication
partners. Bird et al. [2] study how subcommunities spontaneously arise
in e-mail social networks of six OSS projects. Their findings indicate that
this phenomenon occurs most often concerning technical discussions. Addi-
tionally, a validation with VCS data indicates that the subcommunities are
strongly connected to collaboration on source code [2]. Mockus et al. [27] find
different mechanisms of minimising coordination requirements in the OSS
projects Apache and Mozilla. Kuk [20] investigates strategic interaction
and knowledge sharing in the Kde developer mailing list. His work indicates
that developers make strategic choices of which threaded discussions to join
and, thus, concentrate their participation on epistemic interactions [20].

2.4 Related Work 13

2.4.3 Combining Developer Roles and Communication Analyses

Although there has been considerable research into communication on OSS
mailing lists as well as the classification of OSS developers into core and
periphery, the combination of these two remains mostly unstudied.

Scialdone et al. [29] perform a qualitative study concerning the content
of emails sent to the mailing lists of two OSS instant messaging projects.
Focusing on the groupmaintenance behaviours, e.g., politeness and emotional
expressions, in decision-making episodes, they find that negative politeness
tactics are one of the most important instruments in assuring the health of
the developer community. Although the authors could not find significant,
consistent differences between the group maintenance behaviour of core and
periphery, their findings suggest that core members feel more comfortable
expressing their sense of belonging in the group than peripheral developers.
However, their results may not be representative of the entirety of OSS
projects due to the similarity of their two casestudies and the limited number
of decision episodes analysed [29].

Joblin et al. [16] evaluate different operationalisations of the core/periph-
ery classification on email as well as VCS data. Their findings reveal that
network-based classification metrics, e.g., degree centrality, agree more with
developer perception than count-based measures. Additionally, they suggest
that – although email classifications seems more reflective of the developer’s
perception – mail-based and code-based classifications are both suitable for
performing the classification. They find that core members show higher posi-
tional stability than other developer groups. Moreover, their results indicate
that – when analysing the same network that is used for the classification –
intra-core edges exhibit the highest edge probability and peripheral devel-
opers are more likely to coordinate with core developers than with other
members of the periphery [16]

Bird et al. [1] analyse email social networks of the Apache project. Study-
ing the topology of these developer networks, they find indicators of the
participation inequality thought to be characteristic for OSS projects as well
as indicators that an individual’s activity level positively correlates with the
number of people replying to him/her. Additionally, they find that the num-
ber of messages sent is strongly correlated to the level of activity regarding
source code and document changes and that developers, as opposed to email-
only contributors, hold important positions in the email social network. Most
interestingly, they found that developers who are influential in the email
network – measured through social network measures such as in-degree,
out-degree and betweenness – exhibit higher levels of source code change
activity [1]. Although this does not correspond exactly to our notions/op-
erationalisations of core and periphery as defined in Section 2.3.3, it might
indicate that being part of the email network core is positively correlated to
activity and, presumably, influence concerning the code.

This thesis extends the findings of the aforementioned work by providing
an in-depth look at the developer classes’ communication activity, their inter-

14 Chapter 2 Background

action, as well as studying the longevity and intensity of the different groups’
communication. By classifying developers according to code-based metrics
and analysing the email social networks, we evaluate how classification on
VCS data is reflected in the email developer communities.

We examine whether Bird et al.’s [1] findings of a positive correlation
between importance in the mail network and source code activity can be
extended to a correlation of importance in the code network and email activity
levels. Similar to Joblin et al. [16], we study the interaction of the different
developer classes but analyse not only the frequency of their interaction but
also characteristics, e.g., intensity, of the intra- and inter-class communication.
Additionally, our study combines classifications on one data source – the
VCS – with analyses of the mail data to provide a richer understanding of
the developer roles.

In order to allow for a better integration of our results into previous
findings, as well as an indicator that the chosen classification metrics fit the
data and reflect developer perception, several casestudies used by Joblin et
al. [16] as well as the ApacheHTTP project on which Bird et al. [1] base their
study are examined in this work. We give more detailed information on the
subject systems in Section 3.4.

2.4 Related Work 15

3
Study Design

In this section, we present details on our study design. We start by explaining
our research questions in Section 3.1. Thereafter, we describe the correspond-
ing dependent and independent variables in Section 3.2 and present our
hypotheses based on these operationalisations in Section 3.3. In Section 3.4,
we discuss our choice of casestudies and disclose characteristics of these
subject projects. Finally, we explain the implementation and execution of
this study in Section 3.5.

3.1 Research Questions

Research has shown many differences between core and peripheral project
members, e.g., structural complexity introduced in contributions [31] as well
as positional stability [16], apart from mere differences in activity levels.
Joblin et al. [16] have shown that – when evaluating the same data source as
used for classification – core developers coordinate most oftenwith other core
developer and members of the periphery prefer core developers over other
peripheral contributors as coordination partners. Thus, we expect differences
with which groups the core and peripheral developers – as classified based on
their code contributions – communicate primarily similar to the results of the
aforementioned study. In addition, it seems probable that this communication
is reflected in the composition of thread contributors, hence, we anticipate
that most threads contain at least one person with technical expertise, i.e.,
one or more of the dominant code contributors.

ResearchQuestion 1 (RQ1) – With developers from which group do core
(respectively peripheral) developers tend to communicate primarily?

Not only do we expect the preference for communication partners to be
tied to their group affiliation, but we also expect the inter- and intra-class
communication episodes to exhibit different characteristics. For this, we
study the communication between pairs of developers. It seems likely that,
due to their prolonged and consistent involvement in the project and the
need to coordinate long-term contributions, core-core communication is
more long-lived than other forms of communication. Another interesting
aspect we explore is the intensity of communication. This gives rise to our
second research question:

17

ResearchQuestion 2 (RQ2) – How do core-core, core-peripheral, and peripheral-
peripheral developer communication differ in longevity and intensity?

As research has shown that developers’ activity on the mailing list is pos-
itively correlated with their activity regarding code contributions [1], we
expect source-code activity to be reflected in elevated levels of mailing-list
activity, meaning that those developers that are classified as core based on
source-code networks, i.e., the most active and important committers, are
responsible for a majority of the activity on the mailing list. Additionally,
as we examine development mailing lists, we deem it likely that developers
(as opposed to mailing-list-only participants) contribute the bulk of the com-
munication. Moreover, we want to study how this level of activity changes
over the course of the release cycle as peripheral contributions might be
concentrated in certain phases of the cycle, e.g., directly after releases.

ResearchQuestion 3 (RQ3) – To what extent do the two developer groups
contribute to the total communication activity? Are there any changes over the
course of a release cycle?

3.2 Variables

In this section, we present the independent and dependent variables of our
study and explain how we operationalise them. We give an overview of all
variables in our study in Table 3.1.

3.2.1 Independent Variables

The independent variables for our study are the choices that we make con-
cerning the network construction as well as the developer classification and
our identification of communication episodes.

For our developer-developer relation, we use either subsequent contributions
to the samemailing-list thread or subsequent changes of the same source-code
artifact (see also Section 2.2.2). We consider function as the abstraction level
for artifacts, i.e., two developers in the source-code networks are connected
if they work on the same function in the source code. This fine-granular
information results in authentic social networks that agree with developer
perception [16].

Our classification is performed on the source-code cochange networks.
The classification metric used is eigenvalue centrality which reflects the devel-
opers’ structural importance in the network of contributors (see Section 2.3.3).
We use two types of classification granularity for different hypotheses: (1) On
the global level, we create one clasification for the entire network, i.e., span-
ning the entire analysed time span. (2) For the local classification level, we
split the available data into three-month windows and create cochange net-
works based on the split data. We use three-month activity ranges as research
has shown that, beyond this window size, the developer community does not

18 Chapter 3 Study Design

change significantly but some temporal details can be lost or obfuscated [16].
For each one of these activity ranges, a classification is created.

As the time ranges of the two data sources – mailing-list data and VCS
history – may not match, we compute mail-based activity ranges into which
we split both sources of data as the mailing-list data is the primary subject
of this study. In some cases, the commit-activity may start after the first
activity range or end before the last one. In these cases, we filter out all
activity ranges which are completely outside the commit-activity time span,
i.e., which begin and end before, respectively after, the commit time range.
Due to this filtering, we may not have complete VCS-data for the first and
last activity ranges. Thus, for these ranges, the classification may not match
the data as well and may distort the findings slightly. Nonetheless, we prefer
this approach to completely filtering out the activity ranges in question, as
we do not want to limit our analysed time ranges this strongly. Additionally,
for most projects, the missing classification data at the beginning of the
first, respectively end of the last, range is negligible and, hence, should not
significantly influence our findings.

As some core developers no longer provide (many) code contributions but
mainly coordinate other contributors’ work on the mailing list [17, 8], we
include mailing-list-core developers (ML-core developers) in the classification.
For this, we analyse the mailing list activity divided into three-month activity
ranges. After retrieving the classifications for these windows, we categorise
those developer as ML-core developers, who were classified as core members
in at least 50 % of the activity ranges or for 12 activity ranges, i.e., 3 years.
Consequently, we prevent temporary activity from distorting our results, but
ensure that we consider those developers who provide intensive support on
the mailing list over a prolonged period of time as core developers. These
ML-core developers are, then, added to the core of the global classification as
well as all ranges of the local classification and removed from the peripheral
and unclassified developer groups.

When studying communication between pairs of developers, we use the
algorithm shown in Algorithm 1 to identify communication episodes. For
this, we define the independent variable communication episode time window
as 7 days, 𝑐𝐸𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 7. Hence, each communication episode between
two developers corresponds to a sequence of contacts between the two de-
velopers where the time between two subsequent contacts is never longer
than 𝑐𝐸𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. These communication episodes are not based on thread-
level information but aggregate information of all contacts between these
developers. We choose this approach as some pairs of developers may ex-
change knowledge over multiple threads and a thread-level construction of
the communication episodes would obfuscate these complex communication
patterns.

We choose a value of 7 days for the communication-episode time window
based on statistics of the project communication. We analyse the temporal
distances of the communication, i.e., the temporal differences between sub-
sequent mails in a threadand observe that for all projects, at least 80 % of

3.2 Variables 19

the project communication shows temporal distances of 20 hours or less. In
addition, in all but three of the subject projects, 95 % of the communication
is characterised by temporal distances of 150 hours or less – although this
varied greatly from 40 hours for Jailhouse to 200 hours for U-Boot, Django,
and PostgreSQL. Thus, as this corresponds to temporal distances regarding
whole threads instead of contacts between pairs of developers, we chose 7
days – or about 170 hours – as the threshold of pair-wise communication
episodes. This threshold indicates that we expect two developers who com-
municate to contact each other at least once per 7 days. If they communicate
more seldomly, we do not consider their contact as one communication
episode but as separate instances of communication.

Algorithm 1 : Identification of Communication Episodes between
Classes 𝐷1 and 𝐷2
Input : An edge-list 𝐸 of all interactions between Classes 𝐷1 and 𝐷2,

i.e., a list where each element corresponds to one edge in the
communication network and contains 𝑎𝑢𝑡ℎ𝑜𝑟1, 𝑎𝑢𝑡ℎ𝑜𝑟2
(lexicographycally greater than 𝑎𝑢𝑡ℎ𝑜𝑟1), and a 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 of
the interaction

Output : A list 𝐶𝐸 containing all communication episodes between 𝐷1
and 𝐷2, in which each element corresponds to one
communication episode and is a list of all interactions in the
context of this communication episode

begin
𝑝𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠.𝑙𝑖𝑠𝑡 ⟵ split 𝐸 according to 𝑎𝑢𝑡ℎ𝑜𝑟1 and 𝑎𝑢𝑡ℎ𝑜𝑟2,
creating a list of pair-wise interactions for every communicating
pair of authors

𝐶𝐸 ⟵ empty list
for 𝑝𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ∈ 𝑝𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠.𝑙𝑖𝑠𝑡 do

𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ⟵ ∅
for 𝑖 ⟵ 2 to length of 𝑝𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 do

𝑝𝑟𝑒𝑣.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ⟵ 𝑝𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠[𝑖 − 1]
𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ⟵ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∪ 𝑝𝑟𝑒𝑣.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ⟵ 𝑝𝑎𝑖𝑟.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠[𝑖]
𝑡𝑖𝑚𝑒.𝑑𝑖𝑓 𝑓 ⟵
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛[𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝] − 𝑝𝑟𝑒𝑣.𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛[𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝]

if 𝑡𝑖𝑚𝑒.𝑑𝑖𝑓 𝑓 > 7 days then
add 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 to 𝐶𝐸 as last element
𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ⟵ ∅

if 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 non-empty then
add 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 to 𝐶𝐸 as new element

20 Chapter 3 Study Design

3.2.2 Dependent Variables

Our dependent variables can be divided into three categories: variables per-
taining to the class activity, variables with regards to the class interaction, and
variables characterising communication episodes. All dependent variables
will be introduced and explained in the following.

For simplicity we let 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 = {𝐶, 𝑃, 𝑈, 𝑡𝑜𝑡𝑎𝑙} denote the set of classes,
i.e. core, periphery, unclassified, and total (all project members), respectively.
Contributors are categorised as unclassified in case they only contribute
to the mailing list, i.e., are not active in the VCS, and are not classified as
ML-core developers. Let 𝐷, 𝐷1, 𝐷2 ∈ 𝐶𝑙𝑎𝑠𝑠𝑒𝑠, 𝑛 ∈ N0, and 𝑥 ∈ [0; 1] in
the following.

Based on the classification, we obtain several general variables for a given
communication network: 𝑛(𝐷) denotes the number of 𝐷-members, i.e., the
absolute number of project members assigned to the class 𝐷 by our chosen
classification. Derived from this value, we define the relative number of
𝐷-members 𝑟𝑛(𝐷) = 𝑛(𝐷)/𝑛(𝑡𝑜𝑡𝑎𝑙) as the proportion of contributors that
are classified as 𝐷 out of all project members.

Dependent Variables: Class Activity For a given email social
network and corresponding developer classification, we characterise the de-
veloper classes’ level of activity via the following variables. We let 𝑚𝑎𝑖𝑙𝑠(𝐷)
denote the number of mails from 𝐷, i.e., the absolute number of emails written
by members assigned to the class 𝐷. Analogously, we define the number
of threads started by 𝐷 as 𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑆𝑡𝑎𝑟𝑡𝑒𝑑(𝐷). This variable corresponds to
the absolute number of threads where the initial email was written by a
contributor classified as 𝐷 – at the time the initial mail was sent in case local
classifications are used. We only consider threads that started a communi-
cation, i.e., theads that received at least one answer, as unanswered threads
could indicate either auto-generated messages, e.g., emails from the continu-
ous build system, or spam [11]. Messages sent to the wrong mailing list, e.g.,
support questions posted to a development mailing list, are a third possibility
and should also be filtered out as they do not provide valuable insights into
the communication patterns on the primary development mailing list.

We derive several variables from these absolute numbers. First, we in-
troduce the average number of mails by 𝐷, 𝑎𝑀𝑎𝑖𝑙𝑠(𝐷) = 𝑚𝑎𝑖𝑙𝑠(𝐷)/𝑛(𝐷),
and the average number of threads started by 𝐷, 𝑎𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑆𝑡𝑎𝑟𝑡𝑒𝑑(𝐷) =
𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑆𝑡𝑎𝑟𝑡𝑒𝑑(𝐷)/𝑛(𝐷), which normalise the activity on the basis of single
developers. In addition, we define measures of the activity of the entire
developer class. For this, we let 𝑟𝑀𝑎𝑖𝑙𝑠(𝐷) = 𝑚𝑎𝑖𝑙𝑠(𝐷)/𝑚𝑎𝑖𝑙𝑠(𝑡𝑜𝑡𝑎𝑙) denote
the relative number of mails written by 𝐷, i.e., the proportion of mails that
are written by participants assigned to class 𝐷 out of all mails. We define the
relative number of threads started by 𝐷 analogously as 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑆𝑡𝑎𝑟𝑡𝑒𝑑(𝐷) =
𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑆𝑡𝑎𝑟𝑡𝑒𝑑(𝐷)/𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑆𝑡𝑎𝑟𝑡𝑒𝑑(𝑡𝑜𝑡𝑎𝑙). Both of these variables are indica-
tors of how much each class contributes to the total communication activity
in the project.

3.2 Variables 21

Dependent Variables: Class Interaction For the analysis of the
classes’ interaction, we define the following dependent variables for a given
communication network and classification. We analyse the edges of the
network as well as the threaded mailing list discussions, filtering out email
threads without responses as explained above.

Let 𝑙𝑖𝑛𝑘𝑠(𝐷1, 𝐷2) denote the number of links from 𝐷1 to 𝐷2, i.e., the
absolute number of edges in the network whose origin is a contributor
classified as 𝐷1 and whose destination is a member of group 𝐷2. From this
variable, we derive the proportion of links from 𝐷1 to 𝐷2, 𝑟𝐿𝑖𝑛𝑘𝑠(𝐷1, 𝐷2) =
𝑙𝑖𝑛𝑘𝑠(𝐷1, 𝐷2)/𝑙𝑖𝑛𝑘𝑠(𝐷1, 𝑡𝑜𝑡𝑎𝑙), which corresponds to the proportion of links
from contributor class 𝐷1 to class 𝐷2 out of all links originating from 𝐷1.

Moreover, we let 𝑡ℎ𝑟𝑒𝑎𝑑𝑠(𝐷, 𝑛) denote the number of threads with max-
imum 𝑛 𝐷-contributors. This value corresponds to the absolute number of
threads where the number of participants assigned to class 𝐷 is less than
or equal to 𝑛. Hence, it is a sum of the number of threads with exactly 𝑚
𝐷-contributors for 𝑚 ∈ {0, … , 𝑛}. When using local classifications, it is pos-
sible – although seldom – that a thread spans multiple classification ranges
(see Figure A.1). In these cases, we regard all those developers as core who
are classified as core in at least one of the ranges as it is likely that developers
that are categorised as core in one range already held similar positions in
the previous and following range. As shown in Figure A.2, an exceedingly
small number of developers is ever re-classified due to this definition, hence,
this assumption should not distort our results. Similarly, we regard every
developer as peripheral who was part of the periphery in at least one of the
thread’s ranges and is classified as core in none of these time spans.

From this, we derive 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝐷, 𝑛) = 𝑡ℎ𝑟𝑒𝑎𝑑𝑠(𝐷, 𝑛)/𝑡ℎ𝑟𝑒𝑎𝑑𝑠(𝑡𝑜𝑡𝑎𝑙, ∞)
where 𝑡ℎ𝑟𝑒𝑎𝑑(𝑡𝑜𝑡𝑎𝑙, ∞) equals the total number of threads, as it represents
the number of threads where the number of participants is ≤ ∞. Thus,
the variable 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝐷, 𝑛) represents the proportion of threads with maxi-
mum 𝑛 𝐷-contributors, i.e., the proportion of threads where the number of
participants assigned to class 𝐷 is less than or equal to 𝑛 out of all threads.

Dependent Variables: Comunication Episodes When studying
communication between pairs of developers, we use the Algorithm 1 as de-
scribed in Section 3.2.1 to identify communication episodes. We let the term
𝑐𝑜𝑚𝑚𝐸𝑝(𝐷1, 𝐷2) denote the set of communication episodes between pairs
of contributors where one is assigned to class 𝐷1 and the other is classified as
𝐷2. In some of these communication episodes, only one contact may occur.
These communications need to be filtered out for some metrics. Thus, we let
𝑐𝑜𝑚𝑚𝐸𝑝𝑀𝑢𝑙𝑡𝑖(𝐷1, 𝐷2) ⊆ 𝑐𝑜𝑚𝑚𝐸𝑝(𝐷1, 𝐷2) be the set of communication
episodes between 𝐷1 and 𝐷2 in which only episodes with multiple interac-
tions are included. These multiple contacts do not necessarily correspond
to two-way communication, i.e., answers, but may indicate that one devel-
oper has contacted the other developer multiple times without receiving an
answer.

22 Chapter 3 Study Design

For a given communication episode, 𝑒, we let 𝑛𝑟𝐿𝑖𝑛𝑘𝑠(𝑒) and 𝑛𝑟𝑀𝑎𝑖𝑙𝑠(𝑒)
denote the number of edges produced and the number of e-mails written
between the two developers in the context of 𝑒, respectively. The number
of edges may not necessarily equal the number of mails – although this is
sometimes the case – as one mail can produce multiple edges due to the
network construction algorithm we employ (see Section 2.2.2). In addition,
we define the duration in days as 𝑑𝑢𝑟(𝑒). Based on these basic characteristics,
we derive the intensity of the communication episode as 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑒) =
𝑛𝑟𝐿𝑖𝑛𝑘𝑠(𝑒)/⌈𝑑𝑢𝑟(𝑒)⌉ that is the number of links per day. We count each
day that is started as a whole day, e.g., considering a 2-hour communication
episode as 1 day, in this calculation. This prevents very short but intensive
communication episodes, e.g., 5 emails in 30 minutes, from skewing the
distribution of the communication intensity. Analogously, we derive the
communication intensity measured in mails per day, mail-based intensity, as
𝑚𝑎𝑖𝑙𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑒) = 𝑛𝑟𝑀𝑎𝑖𝑙𝑠(𝑒)/⌈𝑑𝑢𝑟(𝑒)⌉. Both these measures of intensity
are only defined for communication episodes with multiple contacts, as we
cannot sensibly define an intensity for just one contact.

For our study, we investigate the class-level aggregation of thesecharac-
teristics. Thus, we define the class communication intensity between 𝐷1
and 𝐷2 as 𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐷1, 𝐷2) = ⋃𝑒∈𝑐𝑜𝑚𝑚𝐸𝑝𝑀𝑢𝑙𝑡𝑖(𝐷1,𝐷2) 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑒). Thus,
𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐷1, 𝐷2) corresponds to a (multi-)set which contains the commu-
nication intensities for all communication episodes between pairs of devel-
opers assigned to 𝐷1 and 𝐷2, respectively. Analogously, we let the variable
𝑐𝑀𝑎𝑖𝑙𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐷1, 𝐷2) = ⋃𝑒∈𝑐𝑜𝑚𝑚𝐸𝑝𝑀𝑢𝑙𝑡𝑖(𝐷1,𝐷2) 𝑚𝑎𝑖𝑙𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑒) denote
the class communication mail-based intensity between 𝐷1 and 𝐷2. Similarly,
we let 𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐷1, 𝐷2) = ⋃𝑒∈𝑐𝑜𝑚𝑚𝐸𝑝(𝐷1,𝐷2) 𝑑𝑢𝑟(𝑒) denote the class
communication longevity between 𝐷1 and 𝐷2. Additionally, we define the
class communication longevity of multi-contact episodes between 𝐷1 and 𝐷2
via 𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦𝑀𝑢𝑙𝑡𝑖(𝐷1, 𝐷2) = ⋃𝑒∈𝑐𝑜𝑚𝑚𝐸𝑝𝑀𝑢𝑙𝑡𝑖(𝐷1,𝐷2) 𝑑𝑢𝑟(𝑒).

When working with the class communication intensities and longevities,
we want to compare the observations for different class combinations, e.g., to
establish whether core-core communication is of greater longevity than core-
peripheral communication. For this, quantiles as defined in the following are
well suited. Quantiles (or, similarly, percentiles) essentially divide a given
ordered data into subsets of sizes corresponding to given probabilities, such
that the first subset contains the smallest values and the last subset contains
the highest values. Mathematically, when given a set of 𝑛 observations
arranged in order of magnitude, the 𝑞-th quantile is the value that exceeds
𝑞% of the measurements and is less than the remaining (1 − 𝑝)% [26]. Thus,
if 𝑞 is the 0.1-sample quantile, it corresponds to the threshold under which
10% of the data values lie. Illustratively, when picking a random value out of
the dataset it will be ≤ 𝑞 with a probability of 10 %. Probabilities of 0 and 1
correspond to the smallest and largest value of the data, respectively [28].

In our work we use quantiles as follows: 𝑞(𝑑𝑎𝑡𝑎, 𝑥) corresponds to the x-th
quantile of the given 𝑑𝑎𝑡𝑎. Thus, we represent the 𝑥-th quantile of the class

3.2 Variables 23

communication intensity between 𝐷1 and 𝐷2 and of its longevity via the
terms 𝑞(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐷1, 𝐷2), 𝑥) and 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐷1, 𝐷2), 𝑥), respectively.

Additionally, we use the variance to quantify how variable a given dataset
is, i.e., illustratively, how far apart the higher and lower values of the data are.
Mathematically, the variance of a sample of 𝑛 measurements corresponds
to the squared deviations of the measurements from their mean divided by
(𝑛 − 1), which equals the short form (∑ 𝑥2

𝑖)−(∑ 𝑥𝑖)2/𝑛
𝑛−1 [26]. The interested

reader is referred to Mendenhall et al. [26] for more details on the variance
as well as quantiles.

We let 𝑣𝑎𝑟(𝑑𝑎𝑡𝑎) denote the variance of 𝑑𝑎𝑡𝑎. Thus, we use the terms
𝑣𝑎𝑟(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐷1, 𝐷2) and 𝑣𝑎𝑟(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐷1, 𝐷2) for the variance of the
class communication intensity and longevity, respectively, between 𝐷1 and
𝐷2.

24 Chapter 3 Study Design

Ta
b.

3.
1
In
de
pe
nd

en
t
an

d
D
ep
en
de
nt

Va
ri
ab
le
s
of

ou
r
St
ud

y
al
on

g
w
it
h
th
ei
r
C
or
re
sp
on

di
ng

D
es
cr
ip
ti
on

Va
ri
ab

le
D
es
cr
ip
ti
on

In
de

pe
nd

en
tV

ar
ia
bl
es

D
ev

el
op

er
-d
ev

el
op

er
re
la
tio

n
A

co
nt
ri
bu

to
rs

po
st
in
g
m
ai
ls

to
a
th
re
ad

co
ns

tit
ut
es

an
in
te
ra
ct
io
n
w
ith

al
lp

re
vi
ou

s
pa

rt
ic
ip
an

ts
in

th
e
th
re
ad

.
Cl

as
si
fic

at
io
n

D
ev

el
op

er
sa

re
cl
as
si
fie

d
as

co
re

or
pe

rip
he

ry
on

th
e
ba

si
so

fe
ig
en

ve
ct
or

ce
nt
ra
lit
y
on

fu
nc

tio
n-

le
ve

lc
od

e-
co

ch
an

ge
ne

tw
or

ks
co

ns
tr
uc

te
d
ba

se
d
on

th
e
VC

S
da

ta
.L

on
gt
er
m
-

m
ai
lin

g
lis

tc
or
e
co

nt
rib

ut
or

sa
re

in
cl
ud

ed
as

co
re

m
em

be
rs
.F

or
th
e
lo
ca

lc
la
ss
ifi
ca

tio
n,

w
e
co

ns
id
er

3-
m
on

th
tim

e
w
in
do

w
s.

Co
m
m
un

ic
at
io
n
ep

is
od

e
tim

e-
w
in
do

w
𝑐𝐸

𝑇ℎ
𝑟𝑒

𝑠ℎ
𝑜𝑙

𝑑
=

7d
ay

s
A
n
in
te
ra
ct
io
n
be

tw
ee

n
a
pa

ir
of

de
ve

lo
pe

rs
be

lo
ng

s
to

a
co

m
m
un

ic
at
io
n
ep

is
od

e
in

ca
se

it
oc

cu
rs

no
m
or
et

ha
n

7d
ay

sl
at
er

th
an

th
em

os
tr

ec
en

ti
nt
er
ac

tio
n
in

th
ee

pi
so

de
.

D
ep

en
de

nt
Va

ri
ab

le
s:

G
en

er
al

N
um

be
ro

f𝐷
-c
on

tr
ib
ut
or

s
𝑛(

𝐷
)

A
bs

ol
ut
e
nu

m
be

ro
fd

ev
el
op

er
sc

la
ss
ifi
ed

as
𝐷

fo
ra

gi
ve

n
ne

tw
or

k
an

d
cl
as
si
fic

at
io
n

Re
la
tiv

e
nu

m
be

ro
f𝐷

-c
on

tr
ib
ut
or

s
𝑟𝑛

(𝐷
)

=
𝑛(

𝐷
)/

𝑛(
𝑡𝑜

𝑡𝑎
𝑙)

Pr
op

or
tio

n
of

de
ve

lo
pe

rs
cl
as
si
fie

d
as

𝐷
fo
ra

gi
ve

n
ne

tw
or

k
an

d
cl
as
si
fic

at
io
n
ba

se
d

on
th
e
to
ta
ln

um
be

ro
fd

ev
el
op

er
s

D
ep

en
de

nt
Va

ri
ab

le
s:

D
ev

el
op

er
C
la
ss

A
ct
iv
ity

N
um

be
ro

fm
ai
ls

fr
om

𝐷
𝑚

𝑎𝑖
𝑙𝑠(

𝐷
)

A
bs

ol
ut
e
nu

m
be

ro
fm

ai
ls

se
nt

by
m
em

be
rs

of
𝐷

3.2 Variables 25

(C
on

ti
nu

ed
)I
nd

ep
en
de
nt

an
d
D
ep
en
de
nt

Va
ri
ab
le
s
of

ou
r
St
ud

y
al
on

g
w
it
h
th
ei
r
C
or
re
sp
on

di
ng

D
es
cr
ip
ti
on

s

Va
ri
ab

le
D
es
cr
ip
ti
on

N
um

be
ro

ft
hr

ea
ds

st
ar
te
d
by

𝐷
𝑡ℎ

𝑟𝑒
𝑎𝑑

𝑠𝑆
𝑡𝑎

𝑟𝑡
𝑒𝑑

(𝐷
)

A
bs

ol
ut
e
nu

m
be

ro
ft

hr
ea

ds
in
iti
at
ed

by
m
em

be
rs

of
𝐷

Av
er
ag

e
nu

m
be

ro
fm

ai
ls

by
𝐷
-m

em
be

rs
𝑎𝑀

𝑎𝑖
𝑙𝑠(

𝐷
)

=
𝑚

𝑎𝑖
𝑙𝑠(

𝐷
)/

𝑛(
𝐷

)
Av

er
ag

e
nu

m
be

ro
fm

ai
ls

se
nt

by
a
m
em

be
ro

fc
la
ss

𝐷

Av
er
ag

e
nu

m
be

ro
ft

hr
ea

ds
st
ar
te
d
by

𝐷
-m

em
be

rs
𝑎𝑇

ℎ𝑟
𝑒𝑎

𝑑𝑠
𝑆𝑡

𝑎𝑟
𝑡𝑒

𝑑(
𝐷

)
=

𝑡ℎ
𝑟𝑒

𝑎𝑑
𝑠𝑆

𝑡𝑎
𝑟𝑡

𝑒𝑑
(𝐷

)/
𝑛(

𝐷
)

Av
er
ag

e
nu

m
be

ro
ft

hr
ea

ds
in
iti
at
ed

by
a
m
em

be
ro

fc
la
ss

𝐷

Re
la
tiv

e
nu

m
be

ro
fm

ai
ls

w
ritt

en
by

𝐷
𝑟𝑀

𝑎𝑖
𝑙𝑠(

𝐷
)

=
𝑚

𝑎𝑖
𝑙𝑠(

𝐷
)/

𝑚
𝑎𝑖

𝑙𝑠(
𝑡𝑜

𝑡𝑎
𝑙)

Pr
op

or
tio

n
of

m
ai
ls

w
ritt

en
by

m
em

be
rs

of
cl
as
s𝐷

ou
to

fa
ll
m
ai
ls

Re
la
tiv

e
nu

m
be

ro
ft

hr
ea

ds
st
ar
te
d
by

𝐷
𝑟𝑇

ℎ𝑟
𝑒𝑎

𝑑𝑠
𝑆𝑡

𝑎𝑟
𝑡𝑒

𝑑(
𝐷

)
=

𝑡ℎ
𝑟𝑒

𝑎𝑑
𝑠𝑆

𝑡𝑎
𝑟𝑡

𝑒𝑑
(𝐷

)/
𝑡ℎ

𝑟𝑒
𝑎𝑑

𝑠𝑆
𝑡𝑎

𝑟𝑡
𝑒𝑑

(𝑡
𝑜𝑡

𝑎𝑙
)

Pr
op

or
tio

n
of

th
re
ad

si
ni
tia

te
d
by

m
em

be
rs

of
cl
as
s𝐷

ou
to

fa
ll
th
re
ad

s

D
ep

en
de

nt
Va

ri
ab

le
s:

D
ev

el
op

er
C
la
ss

In
te
ra

ct
io
n

N
um

be
ro

fl
in
ks

fr
om

𝐷
1
to

𝐷
2

𝑙𝑖𝑛
𝑘𝑠

(𝐷
1,

𝐷
2)

A
bs

ol
ut
e
nu

m
be

ro
fl
in
ks

se
nt

fr
om

a
m
em

be
ro

fc
la
ss

𝐷
1
to

a
m
em

be
ro

fc
la
ss

𝐷
2

Pr
op

or
tio

n
of

lin
ks

fr
om

𝐷
1
to

𝐷
2

𝑟𝐿
𝑖𝑛

𝑘𝑠
(𝐷

1,
𝐷

2)
=

𝑙𝑖𝑛
𝑘𝑠

(𝐷
1,

𝐷
2)

/𝑙
𝑖𝑛

𝑘𝑠
(𝐷

1,
𝑡𝑜

𝑡𝑎
𝑙)

Pr
op

or
tio

n
of

lin
ks

se
nt

fr
om

a
m
em

be
ro

fc
la
ss

𝐷
1
to

a
m
em

be
ro

fc
la
ss

𝐷
2
ou

to
fa

ll
lin

ks
em

an
at
in
g
fr
om

𝐷
1

N
um

be
ro

ft
hr

ea
ds

w
ith

m
ax

im
um

𝑛
𝐷
-c
on

tr
ib
ut
or

s
𝑡ℎ

𝑟𝑒
𝑎𝑑

𝑠(
𝐷

,𝑛
)

A
bs

ol
ut
e
nu

m
be

ro
ft

hr
ea

ds
in

w
hi
ch

𝑛
or

fe
w
er

m
em

be
rs

of
cl
as
s𝐷

pa
rt
ic
ip
at
e

26 Chapter 3 Study Design

(C
on

ti
nu

ed
)I
nd

ep
en
de
nt

an
d
D
ep
en
de
nt

Va
ri
ab
le
s
of

ou
r
St
ud

y
al
on

g
w
it
h
th
ei
r
C
or
re
sp
on

di
ng

D
es
cr
ip
ti
on

s

Va
ri
ab

le
D
es
cr
ip
ti
on

Pr
op

or
tio

n
of

th
re
ad

s
w
ith

m
ax

im
um

𝑛
𝐷
-c
on

tr
ib
ut
or

s
𝑟𝑇

ℎ𝑟
𝑒𝑎

𝑑𝑠
(𝐷

,𝑛
)

=
𝑡ℎ

𝑟𝑒
𝑎𝑑

𝑠(
𝐷

,𝑛
)/

𝑡ℎ
𝑟𝑒

𝑎𝑑
𝑠(

𝑡𝑜
𝑡𝑎

𝑙,
∞

)

Pr
op

or
tio

n
of

th
re
ad

s
in

w
hi
ch

𝑛
or

fe
w
er

m
em

be
rs

of
cl
as
s

𝐷
pa

rt
ic
ip
at
e
ou

to
fa

ll
th
re
ad

s

D
ep

en
de

nt
Va

ri
ab

le
s:

C
om

m
un

ic
at
io
n
Ep

is
od

es

Cl
as
sc

om
m
un

ic
at
io
n
lo
ng

ev
ity

be
tw

ee
n

𝐷
1
an

d
𝐷

2
𝑐𝐿

𝑜𝑛
𝑔𝑒

𝑣𝑖
𝑡𝑦

(𝐷
1,

𝐷
2)

=
⋃

𝑒∈
𝑐𝑜

𝑚
𝑚

𝐸𝑝
(𝐷

1
,𝐷

2
)
𝑑𝑢

𝑟(
𝑒)

(M
ul
ti-

)s
et

co
nt
ai
ni
ng

th
e
du

ra
tio

n
(in

da
ys

)o
fa

ll
co

m
m
un

ic
at
io
n
ep

is
od

es
be

tw
ee

n
pa

irs
of

de
ve

lo
pe

rw
he

re
on

e
is

m
em

be
ro

f𝐷
1
an

d
th
e
ot
he

rm
em

be
ro

f𝐷
2

C
la
ss

co
m
m
un

ic
at
io
n

lo
ng

ev
ity

(m
ul
tip

le
co

nt
ac

t
ep

is
od

es
)b

et
w
ee

n
𝐷

1
an

d
𝐷

2
𝑐𝐿

𝑜𝑛
𝑔𝑒

𝑣𝑖
𝑡𝑦

𝑀
𝑢𝑙

𝑡𝑖(
𝐷

1,
𝐷

2)
=

⋃
𝑒∈

𝑐𝑜
𝑚

𝑚
𝐸𝑝

𝑀
𝑢𝑙

𝑡𝑖
(𝐷

1
,𝐷

2
)
𝑑𝑢

𝑟(
𝑒)

(M
ul
ti-

)s
et

co
nt
ai
ni
ng

th
e
du

ra
tio

n
(in

da
ys

)o
fc

om
m
un

ic
at
io
n
ep

is
od

es
be

tw
ee

n
pa

irs
of

de
ve

lo
pe

r
w
he

re
on

e
is

m
em

be
r
of

𝐷
1
an

d
th
e
ot
he

r
m
em

be
r
of

𝐷
2,

co
ns

id
er
in
g

on
ly

co
m
m
un

ic
at
io
n
ep

is
od

es
w
ith

m
ul
tip

le
in
te
ra
ct
io
ns

C
la
ss

co
m
m
un

ic
at
io
n

lin
k-
in
te
ns

ity
be

tw
ee

n
𝐷

1
an

d
𝐷

2
𝑐𝐼

𝑛𝑡
𝑒𝑛

𝑠𝑖𝑡
𝑦(

𝐷
1,

𝐷
2)

=
⋃

𝑒∈
𝑐𝑜

𝑚
𝑚

𝐸𝑝
𝑀

𝑢𝑙
𝑡𝑖

(𝐷
1
,𝐷

2
)
𝑖𝑛

𝑡𝑒
𝑛𝑠

𝑖𝑡𝑦
(𝑒

)

(M
ul
ti-

)s
et

co
nt
ai
ni
ng

th
e
in
te
ns

ity
(in

lin
ks

/d
ay

)o
fa

ll
co

m
m
un

ic
at
io
n
ep

is
od

es
be

-
tw

ee
n
pa

ir
s
of

de
ve

lo
pe

r
w
he

re
on

e
is

m
em

be
r
of

𝐷
1
an

d
th
e
ot
he

r
m
em

be
r
of

𝐷
2,

co
ns

id
er
in
g
on

ly
ep

is
od

es
w
ith

m
ul
tip

le
in
te
ra
ct
io
ns

C
la
ss

co
m
m
un

ic
at
io
n

m
ai
l-i

nt
en

si
ty

be
tw

ee
n

𝐷
1

an
d

𝐷
2

𝑐𝑀
𝑎𝑖

𝑙𝐼𝑛
𝑡𝑒

𝑛𝑠
𝑖𝑡𝑦

(𝐷
1,

𝐷
2)

=
⋃

𝑒∈
𝑐𝑜

𝑚
𝑚

𝐸𝑝
𝑀

𝑢𝑙
𝑡𝑖

(𝐷
1
,𝐷

2
)
𝑚

𝑎𝑖
𝑙𝐼𝑛

𝑡𝑒
𝑛𝑠

𝑖𝑡𝑦
(𝑒

)

(M
ul
ti-

)s
et

co
nt
ai
ni
ng

th
e
in
te
ns

ity
(in

m
ai
ls/

da
y)

of
co

m
m
un

ic
at
io
n
ep

is
od

es
be

tw
ee

n
pa

irs
of

de
ve

lo
pe

rw
he

re
on

ei
sm

em
be

ro
f𝐷

1
an

d
th
eo

th
er

m
em

be
ro

f𝐷
2,

co
ns

id
er
in
g

on
ly

ep
is
od

es
w
ith

m
ul
tip

le
in
te
ra
ct
io
ns

3.2 Variables 27

3.3 Hypotheses

Prior research has shown that core developers take on the role of coordi-
nating other developers’ work [8]. Hence, it seems likely that members
of the periphery will communicate extensively with core developers as pe-
ripheral contributors typically do not have comprehensive knowledge of
the project [17] and, thus, need to be advised as to how to integrate their
contributions. Additionally, as prior research has indicated [16], we expect
core developers to coordinate primarily with other core members.

Hypothesis 1.1 (H1.1) – Peripheral developers as well as core developers will
prefer core developers as communication partners..
We expect 𝑟𝐿𝑖𝑛𝑘𝑠(𝑃, 𝐶) > 𝑟𝑛(𝐶) and 𝑟𝐿𝑖𝑛𝑘𝑠(𝐶, 𝐶) > 𝑟𝑛(𝐶) to hold.

Core developers characteristically possess extensive project knowledge [17]
and one of the development mailing list’s goals is the sharing of knowledge
between developers. Additionally, we expect high levels of code contribution
activity to be reflected in high levels of mailing list participation. Therefore,
we anticipate that core members are present in most threaded mailing list
discussions.

Hypothesis 1.2 (H1.2) – In a majority of e-mail threads, at least one core
developer will participate.
We expect 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝐶, 0) < 50% to hold.

Members of the periphery typically do not know as much about the system
and do not need to coordinate other developers’ efforts [8]. Thus, they
won’t be able to contribute as much knowledge to threads and it is unlikely
that many peripheral developers communicate in one threaded discussion.
We expect peripheral contributors’ main role to be asking questions that
are answered by knowledgeable core members instead of other peripheral
developers contrary to them providing advice and opinions. Hence, we
formulate the following hypothesis:

Hypothesis 1.3 (H1.3) – In a typical e-mail thread, no more than three dif-
ferent peripheral developers will participate.
We expect 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑃, 3) > 50%.

We expect core-peripheral communication episodes to be rather short-
lived as the core developer will typically coordinate one of the irregular
contributions of the peripheral developer. As the latter might need intensive
advising on the task or go through an iterative process of refining his/her
contribution according to the core developer’s advice before it is accepted
into the project’s code base, the core-peripheral communication episodes
may exhibit high intensities.

Hypothesis 2.1 (H2.1) – Communication between a core developer and a
peripheral developer will tend to be short-lived, but there may be intensive
communication over this short time-span.

28 Chapter 3 Study Design

Weanticipate 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐶, 𝑃), 0.5) < 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.5) and
𝑞(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶, 𝑃), 0.75) > 𝑞(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.75).

When two core developers communicate, this might be an indicator that
they generally work on overlapping parts of the project. As they are charac-
terised by long-term involvement [16] and may have rather fixed areas of
expertise in the project, they might need to communicate over a longer time
period in order to coordinate aspects of the evolving system architecture.

Some communication episodes may exhibit high intensities, e.g., project
coordination when planning future releases or restructuring parts of the
system architecture, whereas others could show very low intensity levels,
e.g., two core developers working on loosely connected parts of the project
who need to coordinate only occasionally over a longer time period.

Hypothesis 2.2 (H2.2) – Communication between two core developers will
show greater longevity, but may vary in intensity.
We expect 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐶, 𝐶), 0.5) > 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.5) as well
as 𝑣𝑎𝑟(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶, 𝐶)) > 𝑣𝑎𝑟(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙).

Peripheral developers do not have extensive project knowledge [17] and
can, thus, only give little advice to other peripheral contributors and have
discussions of limited depth with members of their developer class. Moreover,
they do not have to coordinate larger efforts or matters of the system archi-
tecture, instead probably communicating primarily when they coincidentally
work on the same part(s) of the system. Another possibility of peripheral-
peripheral communication episodes would be that both developers make
smaller contributions to a general discussion, e.g., feature suggestions in a
discussion of future plans for the project. This gives rise to our hypothesis
that:

Hypothesis 2.3 (H2.3) – Communication between two peripheral developers
will be rather short-lived.
We expect 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑃, 𝑃), 0.5) < 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.5) to hold.

Similar to the findings of Bird et al. [1], we expect activity with regards to
the OSS project’s code base to be reflected in the distribution of the mailing
list traffic.

Hypothesis 3.1 (H3.1) – Code contributors will be more active regarding the
number of mails written than mailing-list-only contributors.
We anticipate 𝑎𝑀𝑎𝑖𝑙𝑠(𝐶) > 𝑎𝑀𝑎𝑖𝑙𝑠(𝑈) as well as 𝑎𝑀𝑎𝑖𝑙𝑠(𝑃) > 𝑎𝑀𝑎𝑖𝑙𝑠(𝑈).

As core developers take on roles as coordinators as well as form the project
leadership structure [16, 8] and as prior research has shown that activity
on the mailing list is positively correlated with activity measured via code
contributions [1], we expect the project core to be dominant with regards to
the mailing list traffic, in particular the number of active threads started.

3.3 Hypotheses 29

Hypothesis 3.2 (H3.2) – Core developers will write a majority of emails and
be responsible for starting more than 50% of mailing list threads.
We expect 𝑟𝑀𝑎𝑖𝑙𝑠(𝐶) > 50% and 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝐶) > 50% to hold.

We expect the developers’ level of activity to change over the course of a
release cycle. In particular, we expect the contributions of core members –
the project leadership structure [17] – to increase before major releases as
their coordination effort most likely intensifies in the context of discussions
of feature freezes and determining details of the releases.

For the evaluation of our release-specific hypotheses, quantitative analyses
are too error-prone due to temporary fluctuations in activity, difficulties in
discerning major and minor releases due to changing release patterns in
some systems, and – most importantly – overlapping release cycles, e.g., v4.2
can already be in preparation before the release of v4.1.9. These problems
cannot be adequately addressed with quantitative measures and, thus, we
choose to use qualitative methods to evaluate the following, release-specific
hypotheses.

Hypothesis 3.3 (H3.3) – The number of e-mails written by core developers
will increase significantly in the time period before a release.

We expect releases to draw the attention of the more passive developers
as well as the user group, provoking some of them to become (more) active
contributors. As explained above, we use a qualitative analysis to evaluate
this hypothesis.

Hypothesis 3.4 (H3.4) – The communication activity of peripheral develop-
ers will spike during the beginning and end phase of a release cycle.

We expect the intensified need for coordination prior to releases to increase
not only the number of mails written by core developers, but particularly the
communication among project core. We use qualitative measures to assess
this hypothesis due to the inaccuracy of quantitative measures.

Hypothesis 3.5 (H3.5) – Core-core developer communication will increase
in the time period prior to a release

3.4 Casestudies

For our empirical study of the hypotheses introduced in Section 3.3, we
analyse 11 OSS projects listed in Table 3.2. We choose the subject projects in
such a way as to ensure diversity and avoid biasing our results. The chosen
casestudies differ in the following dimensions: (1) Application domain: We
investigate projects that belong in the user and developer domain as well
as operating systems. (2) Technology: There is considerable diversity in the
programming languages and libraries used in the projects. (3) Source-code
activity: Our projects range from circa 20 to 1 500 source-code contributors
and about 3 800 to 480 000 commits in the studied time range. (4) Mailing-list

30 Chapter 3 Study Design

activity: The subject systems vary greatly in mailing-list activity, ranging
from about 120 to more than 4.600 ML-contributors with circa 3.200 to
480.000 mails posted to the primary development mailing list. (5) Communi-
cation guidelines: We ensure that some of the projects, e.g., Qemu, follow
very traditional OSS communication guidelines meaning that the mailing
list is the hub of project communication. Other projects, such as Django,
present a more modern form of OSS communication, relying on features of
the hosting platform or other means of communication, e.g., issue trackers.
(6) VCS: Although we extract our data based on the projects’ Git repositories
or mirrors, the casestudies differ in the version control system used for de-
velopment – most use Git, but we also investigate several projects that rely
on Svn as VCS as well as Llvm which uses Subversion. (7) Release system:
Some systems, e.g., Chromium, are characterised by a very regular, rigid
release schedule, whereas others, e.g., Jailhouse, publish releases relatively
irregularly and without an explicit system detailing the phases of the release
cycle.

For each project, we analysed the activity on the primary development
mailing list as well as the source-code contribution for a time span of at least
1 year. This prevents our findings from being too strongly influenced by tem-
porary tendencies. The projects chosen include ApacheHTTP which Bird et
al. [1] analysed as well as several projects studied by Joblin et al. [16](see Sec-
tion 2.4). This ensures that the classification metric chosen yields reasonable
core and periphery classifications which agree with developer perception [16].
Additionally, it allows us to extend and validate the findings of the aforemen-
tioned studies.

3.5 Implementation and Execution

We implement all calculations and analyses in self-written scripts in the
statistical programming language R1 [28]. The source code of this study will 1https://www.r-project.org/

be integrated into the repository se-passau/dev-network-growth which
will be made public in the future2. The raw data as well as the constructed 2The complete source code is

enclosed on the digital copy of
this thesis.

author networks for all subject projects are based on the data extracted via
the tool Codeface3. 3https:

//github.com/siemens/codeface

3.5 Implementation and Execution 31

https://www.r-project.org/
se-passau/dev-network-growth
https://github.com/siemens/codeface
https://github.com/siemens/codeface

Tab.3.2
O
verview

ofSubject
Projects

Project
D
om

ain
Language

#D
ev

#M
-D

ev
Tim

e
Range

#M
ails

#Com
m
its

A
pacheH

T
TP

D
evel

C
82

2112
03/2002-06/2016

54921
39735

Busybox
U
ser

C
221

2701
01/2003-02/2016

42013
43682

Chrom
ium

U
ser

C/++,JS
1457

1237
12/2014-12/2015

8576
479064

D
jango

D
evel

Python
318

457
12/2014-12/2015

3257
13878

Ffm
peg

U
ser

C
201

443
01/2015-02/2016

19508
13685

Jailhouse
D
evel

C
17

123
11/2013-08/2016

5619
3836

Llvm
D
evel

C/++
272

987
12/2014-12/2015

11119
26613

O
penSSL

D
evel

C,Perl
165

4677
09/2001-02/2016

32659
38473

Q
em

u
O
S

C
951

7131
04/2003-07/2016

430561
196319

U
-Boot

D
evel

C
281

703
12/2014-12/2015

37595
13791

W
ine

U
ser

C
94

196
01/2015-01/2016

4871
22967

32 Chapter 3 Study Design

4
Results

In the following, we present our findings for all hypotheses defined in Sec-
tion 3.3. We only present the results using eigencentrality as classification
metric and, for each hypothesis, we give an overview of the findings for all
projects and go into more detail for a few typical or notable suject projects.
More detailed findings, additional plots, and all results using the commit-
count classification metric can be found on the digital copy of this work.

4.1 Preferences concerning Communication Partners (H1.1)

In H1.1, we formulated our expectation that core developers as well as pe-
ripheral developers would prefer core developers as communication partners.
We anticipated 𝑟𝐿𝑖𝑛𝑘𝑠(𝐶, 𝐶) > 𝑟𝑛(𝐶) and 𝑟𝐿𝑖𝑛𝑘𝑠(𝑃, 𝐶) > 𝑟𝑛(𝐶), i.e., that
edges to core developers would appear more often than we would expect
based on mere developer class frequency without preferences for any devel-
oper class. In Table 4.1, we show the relative developer class frequencies
for core, peripheral, and unclassified, as well as the relative link frequencies
between the three classes for all our subject projects. This corresponds to
the aggregated data of all activity ranges.

Our first observation relates to the developer class frequencies: As prior
research has shown [16], core developers make up only a very small part
of the developer community, ranging from about 5 % in OpenSSL to circa
25 % in Wine. Interestingly, although the mail data we analyse stems from
the primary development mailing list, the proportion of non-developers,
i.e., mailing-list-only contributors, is quite high, ranging from about 40 %
in Wine to more than 90 % in OpenSSL. In all but two cases, unclassified
project members make up more than half of the mailing list contributors.
The proportion of peripheral developers shows strong differences between
the subject projects, varying between an almost negligible 3 % in OpenSSL
to about 40 % in Ffmpeg.

Additionally, our findings show that all contributor classes have a clear
preference for coremembers when sending out ties, as 𝑟𝐿𝑖𝑛𝑘𝑠(𝐶, 𝐶) > 𝑟𝑛(𝐶),
𝑟𝐿𝑖𝑛𝑘𝑠(𝑃, 𝐶) > 𝑟𝑛(𝐶), and 𝑟𝐿𝑖𝑛𝑘𝑠(𝑈, 𝐶) > 𝑟𝑛(𝐶) hold for all casestudies.
How pronounced this difference is varies significantly. We define a prefer-
ence factor of 𝐷1 by 𝐷2 as 𝑝𝑟𝑒𝑓 (𝐷1, 𝐷2) = 𝑟𝐿𝑖𝑛𝑘𝑠(𝐷2, 𝐷1)/𝑟𝑛(𝐷1) which
quantifies how much 𝐷2-contributors prefer members of 𝐷1 compared to
random communication partners. For instance, a communication factor
𝑝𝑟𝑒𝑓 (𝐶, 𝑃) = 2 would indicate that peripheral members are twice as likely

33

to communicate with a core member than with a random project participatn.
The preference factors for all developer class combinations are shown in
Table 4.2.

In Wine, core members are only preferred to other members by a factor of
2.50, 2.61, and 2.39 by core, peripheral, and unclassified project members,
respectively. The subject project Qemu is in strong contrast to this, as core
members are more likely to communicate with another core member as
opposed to a random contributor by factor 9.12. Peripheral and unclassified
members of this project also strongly prefer core members – by factors
9.06 and 7.01 respectively. Except for Wine, all contributor classes in all
casestudies prefer core by a factor of at least 3.

There does not seem to be any overarching tendency that this preference
is more pronounced in one participant class. While the preference of core
members as communication partners is slightly stronger in developers than
in ML-only contributors in the projects Jailhouse, Llvm, Qemu, and Wine,
the opposite effect is visible in Busybox and Ffmpeg. These values seem like
insignificant, expectable fluctuations and indicate that the strength of the
preference for core contributors is a project-wide tendency which transcends
member classes.

Examining the preference factor of unclassified members, we observe that
no clases in any of our subject projects prefer unclassified members. In
fact, the preference factor is nearly always smaller than 0.5, indicating that
members are nearly twice as likely to communicate with a random project
member than with a random unclassified contributor. There are no notable
differences in the distinctness of this preference in different classes.

When investigating possible preferences of peripheral developers as com-
munication partners, the findings are less clear. Although there is a negative
preference of peripheral members in all developer classes in ApacheHTTP,
Chromium, Ffmpeg, Jailhouse, Llvm, and Wine, we observe a considerable
class-invariant preference of peripheral contributors in OpenSSL. For this cas-
estudy, the preference factor of peripheral members by peripheral members is
greater than 6.5. In addition, the core and peripheral developers in Busybox
and Qemu seem to slightly prefer peripheral developers as communication
partners.

These aggregated results with regards to developer class frequencies, link
frequencies and communication partner preferences stay fairly consistent
over time. We go into more detail regarding this evolutionary perspective
in Section 4.10. The aggregated data for the project Ffmpeg as shown in
Table 4.1 are also reflected in Figure 4.1 which shows the evolution of the
link frequencies. We observe that, although there are slight fluctuations, all
three classes exhibit a clear and consistent preference for core members as
communication partners. Thus, we draw the conclusion that this preference
for coremembers is not only class-invariant but also very consistent over time.
In addition, we observe that – in this project – the preference of peripheral
members to unclassified members is most pronounced in the core developer
group where it also exhibits relative consistency. In the other two developer

34 Chapter 4 Results

groups, the relative link frequencies to unclassified and peripheral developers
show considerably stronger fluctuations although peripheral members are
slightly preferred.

In conclusion, we accept H1.1 as a clear preference for core members as
communication partners exists in all participant classes in all casestudies.

4.2 Core Thread Participation (H1.2)

In H1.2, we formulate our expectation that, in a majority of threads, at least
one core developer will participate. In Table 4.3, we show 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝐶, 𝑛)
for 𝑛 ∈ {0, … , 9} for all subject projects. As described in Section 3.2, this
corresponds to the proportion of threads where maximum 𝑛 core developers
contribute and, thus, we expect 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝐶, 0) < 50%.

We observe, that this is the case for all eleven subject projects, i.e., there
are only few threads without core member participation, although the degree
of this core involvement varies. In Ffmpeg, Jailhouse, and Wine, there
are almost no threads without core members – the proportion of threads
without core participation is smaller than 10 %. OpenSSL differs greatly from
these three casestudies as its proportion of threads without core members
is about 47 %. In most projects, about 10 % to 30 % of the threaded mailing
list discussions are without core participation.

Interestingly, it seems as though it happens rather seldomly that multiple
core developers participate in one thread: In all projects except Ffmpeg and
Wine, we observe that most threads show maximum 1 core contributors.
In OpenSSL, more than 90 % of all threads are characterised by 1 or 0 core
contributors. Additionally, we observe for all projects that in more than three
quarters of threads maximum 2 core developer contribute. Undoubtedly,
there are some threads with very high numbers of core participants, e.g.,
0.18 % of threads show 17 core developers in Llvm, but these numbers seem
like outliers and we observe a general tendency in all projects towards a very
small number of threads without core participation and a high proportion of
threads with only one core contributors.

As shown above, core developers contribute to a majority of threads
in all projects. Additionally, in all but one project less than a third of
threads are without core participation. Thus, we accept H1.2.

4.3 Peripheral and Unclassified Thread Participation (H1.3)

In H1.3, we hypothesise that, in a typical mailing-list thread, no more
than three different peripheral developers will participate, i.e., we antici-
pate 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑃, 3) > 50%. We present our findings of 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑃, 𝑛), 𝑛 ∈
{0, … , 8} in Table 4.4. In addition, we show the analogous results regarding
non-developer involvement, i,e, 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑈, 𝑛), in Table 4.5.

4.3 Core Thread Participation (H1.2) 35

Tab.4.1
R
elative

D
eveloper

C
lass

Frequencies
and

R
elative

Link
Frequencies

betw
een

C
ore

and
Periphery

Casestudy
𝑟𝑛(𝐷

)
[%]

𝑟𝐿𝑖𝑛𝑘𝑠(𝐷
1 ,𝐷

2)
[%]

Core
Periph.

U
nclass.

(𝐶,𝐶)
(𝐶,𝑃)

(𝐶,𝑈
)

(𝑃,𝐶)
(𝑃,𝑃)

(𝑃,𝑈
)

(𝑈
,𝐶)

(𝑈
,𝑃)

(𝑈
,𝑈

)

A
pacheH

T
TP

17.28
8.17

74.56
61.47

6.14
32.39

61.83
7.6

30.57
61.64

6.21
32.15

Busybox
10.78

6.5
82.72

49.24
7.19

43.57
52.97

8.5
38.52

54.83
3.87

41.29
Chrom

ium
10.68

35.29
54.03

54.07
22.92

23.01
50.22

26.2
23.58

51.69
24.01

24.29
D
jango

12.33
9.47

78.2
49.45

11.42
39.12

62.91
1.58

35.51
50.81

8.48
40.71

FFm
peg

15
39.14

45.86
76.01

17.27
6.72

74.07
20.36

5.57
79.16

14.4
6.44

Jailhouse
17.42

9.55
73.03

71.54
6.9

21.56
67.79

6.22
25.99

66.26
7.72

26.02
Llvm

12.71
17.19

70.1
61.64

15.17
23.19

59.04
16.79

24.17
57.11

14.01
28.89

O
penSSL

5.6
2.66

91.74
17.99

9.41
72.59

27.88
17.58

54.55
25.66

6.96
67.38

Q
em

u
6.96

21.38
71.66

63.5
25.85

10.65
63.03

26.82
10.15

48.79
18.38

32.83
U
-Boot

9.13
37.96

52.91
73.77

19.85
6.38

48.11
41.21

10.68
61.81

21.34
16.85

W
ine

25.39
36.39

38.22
63.58

16.44
19.99

66.19
21.58

12.23
60.66

9.92
29.42

Tab.4.2
Preference

Factor
for

C
om

m
unication

Partner
C
lasses

Casestudy
𝑝𝑟𝑒𝑓(𝐷

1 ,𝐷
2)

=
𝑟𝐿𝑖𝑛𝑘𝑠(𝐷

2 ,𝐷
1)/𝑟𝑛(𝐷

1)
Pref.FactorforCore

Pref.FactorforPeriph.
Pref.FactorforU

nclass.
(C,C)

(C,P)
(C,U

)
(P,C)

(P,P)
(P,U

)
(U,C)

(U,P)
(U,U

)

A
pacheH

T
TP

3.56
3.58

3.57
0.75

0.93
0.76

0.43
0.41

0.43
Busybox

4.57
4.91

5.09
1.11

1.31
0.60

0.53
0.47

0.50
Chrom

ium
5.06

4.70
4.84

0.65
0.74

0.68
0.43

0.44
0.45

D
jango

4.01
5.10

4.12
1.21

0.17
0.90

0.50
0.33

0.52
FFm

peg
5.07

4.94
5.28

0.44
0.52

0.37
0.15

0.12
0.14

Jailhouse
4.11

3.89
3.80

0.72
0.65

0.81
0.30

0.36
0.36

Llvm
4.85

4.65
4.49

0.88
0.98

0.82
0.33

0.34
0.41

O
penSSL

3.21
4.98

4.58
3.54

6.61
2.62

0.79
0.59

0.73
Q
em

u
9.12

9.06
7.01

1.21
1.25

0.86
0.15

0.14
0.46

U
-Boot

8.08
5.27

6.77
0.52

1.09
0.56

0.12
0.20

0.32
W

ine
2.50

2.61
2.39

0.45
0.59

0.27
0.52

0.32
0.77

36 Chapter 4 Results

n2.6

n2.7

n2.8

n2.6

n2.7

n2.8

n2.6

n2.7

n2.8

Core Peripheral Unclassified

20
15

−
02

−
02

20
15

−
03

−
16

20
15

−
04

−
27

20
15

−
06

−
08

20
15

−
07

−
20

20
15

−
08

−
31

20
15

−
10

−
12

20
15

−
11

−
23

20
16

−
01

−
04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T
im

e

Proportion of Links Sent from one Developer Class to the Other

D
ev

el
op

er
 C

la
ss

 to
 w

hi
ch

 th
e

Li
nk

s
ar

e
S

en
t

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 In
te

ra
ct

io
n

Fi
g.

4.
1
R
el
at
iv
e
Ed

ge
C
la
ss

Fr
eq
ue
nc
y
Ev
ol
ut
io
n
in

Ff
m
pe
g

4.3 Peripheral and Unclassified Thread Participation

(H1.3) 37

Tab.4.3
Proportion

ofThreads
w
ith

M
axim

um
𝑛
C
ore

D
evelopers:𝑟𝑇

ℎ𝑟𝑒𝑎𝑑𝑠(𝐶
,𝑛)

[%
]

Casestudy
n

0
1

2
3

4
5

6
7

8
9

A
pacheH

T
TP

14.8
51.8

81.39
91.77

96.04
97.96

99.02
99.48

99.76
99.88

Busybox
18.35

63.74
88.51

96.23
98.66

99.57
99.96

99.99
100

100
Chrom

ium
30.15

69.06
84.92

92.82
95.62

97.34
97.99

98.64
98.92

99.14
D
jango

10.4
51.3

76.12
89.6

94.56
96.93

98.82
99.29

99.76
100

FFm
peg

2.93
32.47

77.21
90.82

96.22
98.47

99.19
99.72

99.91
100

Jailhouse
5.29

51.98
94.05

100
100

100
100

100
100

100
Llvm

28.25
68.58

87.07
92.92

95.06
97.19

98.05
98.66

99.21
99.45

O
penSSL

47.35
91.29

98.75
99.74

99.94
99.98

100
100

100
100

Q
em

u
16.7

52.56
81.46

92.96
97.12

98.76
99.44

99.76
99.86

99.92
U
-Boot

19.01
55.61

90.5
97.73

99.36
99.77

99.94
100

100
100

W
ine

8.41
46.38

89.63
97.16

98.63
99.51

99.8
99.8

99.9
99.9

Tab.4.4
Proportion

ofThreads
w
ith

M
axim

um
𝑛
PeripheralD

evelopers:𝑟𝑇
ℎ𝑟𝑒𝑎𝑑𝑠(𝑃,𝑛)

[%
]

Casestudy
n

0
1

2
3

4
5

6
7

8

A
pacheH

T
TP

79.76
97.23

99.57
99.9

99.98
100

100
100

100
Busybox

85.96
99.08

99.92
99.99

100
100

100
100

100
Chrom

ium
37.19

74.08
89.52

96.05
98.71

99.35
99.64

99.78
99.93

D
jango

76.6
97.4

99.76
100

100
100

100
100

100
FFm

peg
66.03

94.54
99.28

99.78
99.94

100
100

100
100

Jailhouse
76.87

98.02
100

100
100

100
100

100
100

Llvm
59.85

89.99
97.38

98.9
99.57

99.88
99.88

99.88
100

O
penSSL

89.06
98.61

99.76
99.92

99.96
100

100
100

100
Q
em

u
51.87

87.85
97.84

99.59
99.92

99.97
99.99

100
100

U
-Boot

44.68
80.07

96.3
99.15

99.61
99.9

99.96
99.98

99.98
W

ine
56.46

90.41
99.32

99.9
99.9

100
100

100
100

38 Chapter 4 Results

Core Developer Frequency Peripheral Developer Frequency Unclassified Developer Frequency

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

0

100

200

300

Relative Class Frequency (Percentage of Class per Thread)

C
ou

nt

Histogram of Developer Class Frequency per Thread
(Local Eigen−Centrality Classification, 3 months)

Fig. 4.2 Relative Thread Class Frequencies in Chromium

Our findings show that not only does 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑃, 3) > 50% hold for
all projects, but an overwhelming majority of threads – about 99% in all
casestudies – contains 3 peripheral developers or less. In all projects except
Chromium and U-Boot, a majority of threads is completely without periph-
eral contribution. This proportion – 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑃, 0) – ranges from 37% in
Chromium to 89% in OpenSSL and we observe that in six of our subject
projects, at least two thirds of the threaded mailing list discussions do not
contain peripheral participants.

When investigating the occurence of unclassified members in mailing-list
threads as shown in Table 4.5, we observe much more varied results for the
different subject projects: In some, such as OpenSSL, the ML-only contribu-
tors play a very important part in the threads. For instance, we observe that,
in OpenSSL, only 5 % of threads are without unclassified members and in a
majority of threads, at least three different unclassified contributors partic-
ipated. Nonetheless, there are some casestudies, in which the unclassified
developers are a lot less active. One example is the project Ffmpeg where
over 80 % of threads are completely without contribution by unclassified
members and, even if ML-only contributors participate in threads, there is
very seldomly more than 1 unclassified developer in a thread. There does not
seem to be a general tendency regarding the level of unclassified involvement
in threads in our 11 casestudies.

In Figure 4.2, we show the relative developer class frequencies in threads
in the project Chromium, i.e., we indicate the absolute number of threads
in which, e.g., 10 % of the participants are core developers. We observe
that core members substantially shape most threads. However, peripheral
members only constitute a very small proportion of the participants in most
threads. There are almost no threads in which only one class of developers is
present. It seems as though most threads in Chromium contain relatively
equal proportions of core members and non-developers. In most projects,
we observe a general phenomenon that core members significantly shape
threads.

4.3 Peripheral and Unclassified Thread Participation

(H1.3) 39

Tab.4.5
Proportion

ofThreads
w
ith

M
axim

um
𝑛
U
nclassified

D
evelopers:𝑟𝑇

ℎ𝑟𝑒𝑎𝑑𝑠(𝑈
,𝑛)

[%
]

Casestudy
n

0
1

2
3

4
5

6
7

8

A
pacheH

T
TP

33.93
75.74

92.87
97.24

98.63
99.35

99.72
99.79

99.88
Busybox

21.29
65.48

90.29
96.59

98.62
99.34

99.73
99.84

99.91
Chrom

ium
26.49

75.88
93.18

97.27
99.07

99.57
99.78

99.93
99.93

D
jango

15.84
64.3

86.52
93.62

96.93
97.64

99.53
99.53

99.53
FFm

peg
82.86

98.06
99.84

99.94
100

100
100

100
100

Jailhouse
48.24

92.29
97.8

99.34
99.78

100
100

100
100

Llvm
18.06

65.59
89.87

96.71
98.47

99.33
99.82

99.88
99.88

O
penSSL

4.85
46.38

85.92
95.09

97.87
99.22

99.56
99.76

99.84
Q
em

u
61.25

86.07
95.59

98.15
99.04

99.46
99.64

99.79
99.88

U
-Boot

76.48
96.22

99.29
99.85

99.96
99.98

100
100

100
W

ine
81.51

97.46
98.83

99.71
99.8

99.8
100

100
100

Tab.4.6
Variance

ofthe
C
lass

C
om

m
unication

Longevity
and

Link-Intensity

Casestudy
𝑣𝑎𝑟(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐶

1 ,𝐶
2))

𝑣𝑎𝑟(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶
1 ,𝐶

2))
(C,C)

(C,P)
(P,P)

(tot.,tot.)
(C,C)

(C,P)
(P,P)

(tot.,tot.)

A
pacheH

T
TP

25184
88584

134566
57225

1.43
1.36

2.26
5.46

Busybox
28464

46277
30530

30217
3.71

9.11
9.64

13.2
Chrom

ium
3980

3156
1172

2476
7.2

6.59
8.96

9.35
D
jango

2875
2918

1035
2014

0.99
11.87

3.55
5.7

FFm
peg

1241
2107

1875
1640

20.15
38.83

77.22
27.79

Jailhouse
788

1909
4609

3518
759.25

252.71
778.35

271.24
Llvm

1787
2092

1195
1578

33.04
20.35

16.86
24.85

O
penSSL

147278
137153

20581
11608

1.17
2.24

4.11
9.41

Q
em

u
575

30828
25397

21781
67.79

45.23
115.65

65.3
U
-Boot

944
1668

1775
1431

279.31
159.99

48.19
155.6

W
ine

2648
2718

875
2260

2.34
3.32

2.95
4.42

40 Chapter 4 Results

Given these points, we observe that, in most casestudies, peripheral
involvement in mailing-list threads is very limited and we find that, in
all of our casestudies, in a great majority of threads, no more than three
different peripheral developers are involved. Hence, we accept H1.3.

4.4 Core-Peripheral Communication Episodes (H2.1)

We formulate our expectation that core-peripheral communication will be
short lived but may be intensive in H2.1. We present our findings regarding
the communicatino longevity in Table 4.9. Additionally, we show the com-
munication longevity of only those communication episodes where multiple
interactions occurred in Table 4.10. For the second part of our hypothesis,
we show the relevant findings in Table 4.7 and Table 4.8. Table 4.7 contains
the quantiles of the communication intensity based on the links created in
the context of each communication episode, whereas Table 4.8 consists of
the quantiles of the communication intensity based on the mails sent during
communication episodes.

4.4.1 Communication Longevity

Regarding the communication longevity, we observe great differences in the
core-peripheral communication episode longevity for different projects. The
measured longevity ranges from a median of less than 1 day in Chromium to
about 52 days, i.e., more than 7 weeks, in ApacheHttp. Although these two
cases seem like extremes, there is no general tendency of, e.g., communication
episode longevities lasting between 10 and 20 days.

In the first part of H2.1a, we anticipated that 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐶, 𝑃), 0.5) <
𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.5) would hold. We observe that, in all sub-
ject projects except Ffmpeg and Wine, this is not the case. In these two
projects, the median of the core-peripheral communication longevity is
about 85% of the analogous value of the total-total project communication,
i.e., 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐶, 𝑃), 0.5) ≈ 0.85 ∗ 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.5). In
general, this difference factor varies between 1.2 in U-Boot and 58.29 in
OpenSSL, although the latter as well as Django with a factor of 13.07 seem
like outliers. In eight of our eleven subject projects, we observe a factor
between 1.2 and 4, indicating that the typical core-peripheral communica-
tion episode is of greater longevity than a typical general communication
episode by a factor of up to 4. Considering these values, we deduce that
even for the two casestudies where our hypothesis is true, core-peripheral
communication episodes are not significantly more short-lived than general
communication episodes.

We observe similar results when analysing 𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦𝑀𝑢𝑙𝑡𝑖(𝐶, 𝑃), i.e.,
the communication longevity considering only communication episodes
with at least two interactions, which we present in Table 4.10. In some
subject systems, e.g., Chromium, this filtering has a significant influence on
the median of the core-peripheral communication longevity, increasing it

4.4 Core-Peripheral Communication Episodes (H2.1) 41

from 0.78 days considering all episodes to 14.44 days when the filtering is
applied. Although the increase in communication longevity is considerable
for all subject projects, in most, it is not as pronounced, increasing the value
by about 10% to 25% in most projects. In Jailhouse the changes due to
the applied filtering are the least significant, increasing the median of the
core-peripheral communication longevity only by 2%.

Our findings indicate that this filtering acts as a normaliser for our data,
as we now observe difference factors 𝑓 ∶ 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦𝑀𝑢𝑙𝑡𝑖(𝐶, 𝑃), 0.5) ≈
𝑓 ⋅ 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦𝑀𝑢𝑙𝑡𝑖(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.5) between the different communica-
tion class combinations where 𝑓 ∈ [0.8; 4.1] instead of 𝑓 ∈ [0.8; 59] as
observed for the unfiltered communication episodes. In all but two cases-
tudies, the difference factor is now between 1 and 2, indicating that typical
core-peripheral communication episodes are 1 to 2 times longer than typical
total-total communication episodes when considering only communication
episodes where “real” longevity could be measured, i.e., episodes which con-
tain at least two interactions between which we could calculate the temporal
distance to use as longevity.

In conclusion, we find that core-peripheral communication is not of
shorter longevity than the general project communication including
unclassified members. All things considered, we reject H2.1a.

4.4.2 Communication Intensity

When investigating the intensity of typical communication episodes between
the core and the periphery, we observe values ranging from 0.07 links/day
to 0.66 links/day. Most of our casestudies are characterised by a mean
core-peripheral communication intensity between 0.1 and 0.4 links/day.

In H2.1b, we hypothesised that some core-peripheral communication
episodes would be rather intensive. Hence, we anticipated that the inequal-
ity 𝑞(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶, 𝑃), 0.75) > 𝑞(𝑐(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.75) would hold.
As shown by the findings presented in Table 4.7, this assumption is generally
not supported by our data. We observe only one subject project – Ffmpeg – in
which the core-peripheral communication reaches higher intensities than the
general project communication. In this casestudy, the core-peripheral inten-
sity is about 30 % higher than the general project communication intensity.
Additionally, we find that the 0.75 quantile of core-peripheral communication-
episode intensity equals the analogous value of total-total communication in
Chromium, Llvm, and U-Boot. Nonetheless, in the majority of projects, the
core-peripheral communication seems to be of rather low intensity compared
to the general project communication intensity. In some cases, this difference
is very pronounced. For instance, the core-peripheral communication is only
about 20 % as intensive as the general communication in OpenSSL.

Whenwe considermails instead of links as indicator for the communication
intensity, we get the results shown in Table 4.8. We observe that the switch
from links to mails as intensity indicator decreases the intensity in all cases
except Chromium and Wine where it slightly increases the 0.75 quantile. In

42 Chapter 4 Results

some subject projects, this decrease is quite drastic, such as Jailhouse where
the 0.75 quantile of the core-peripheral mail intensity equals only about 22%
of the analogous value for the link intensity.

The switch to mails as intensity indicator not only quantitatively in-
fluences the results, but also shows qualitative differences. Whereas the
core-peripheral communication link-intensity in Ffmpeg was about 30%
higher than the respective total-total communication link-intensity, we
observe that, when using mails as intensity measure, the core-peripheral
communication is only about half as intensive as the general project com-
munication. Nonetheless, the findings using mail intensity support our
hypothesis even less: Core-peripheral communication is more intensive
than total-total communication in only one of the eleven subject projects,
ApacheHTTP, although we see a very notable difference in this case as
𝑞(𝑐𝑀𝑎𝑖𝑙𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶, 𝑃), 0.75) ≈ 2.15 ⋅ 𝑞(𝑐𝑀𝑎𝑖𝑙𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.75).
However, in most casestudies, the 0.75 quantile of the core-peripheral mail-
intensity is only about 30% to 50% of the comparative total-total value.

Overall, our findings indicate that core-peripheral communication is
not more intensive than the general project communication – in most
subject projects, the inverse effect is visible. This result is not changed
by using mails instead of links as intensity measure. Although different
casestudies support our hypothesis for both metrics, these findings only
occur in a very small number of our subject systems. Given these points,
we reject H2.1b.

4.5 Core-Core Communication Episodes (H2.2)

In H2.2, we hypothesised that communication between two core developers
would be rather long-lived but varied in intensity. We present the findings
concerning the communication longevity in Tables 4.9 and 4.10. Our results
regarding the second part of the hypothesis are presented in Table 4.6.

4.5.1 Communication Longevity

In Table 4.9, we present our findings concerning the core-core communica-
tion longevity. We observe that, depending on the casestudy, the duration
of typical core-core communication episode ranges from 19 days in Ffm-
peg to 54 days in OpenSSL. In most subject projects, the median longevity
of communication episodes between core developers is about 3 weeks to
4 weeks. Consequently, the differences in longevity between our eleven cas-
estudies manifest significantly less strongly in the core-core communication
than in the project-wide communication and especially the core-peripheral
communication.

In H2.2a, we anticipated that a typical core-core communication episode
would be rather long-lived according to the project’s communication stan-
dards, i.e., that 𝑞(𝑐𝐿𝑜𝑛𝑔𝑣𝑖𝑡𝑦(𝐶, 𝐶), 0.5) > 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.5)

4.5 Core-Core Communication Episodes (H2.2) 43

Tab.4.7
C
lass

C
om

m
unication

Link-Intensity,Qu
antiles

Casestudy
𝑞(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐷

1 ,𝐷
2),𝑥)

[links/day]
(Core,Core)

(Core,Periph.)
(Periph.,Periph.)

(Total,Total)
0.25

0.5
0.75

0.25
0.5

0.75
0.25

0.5
0.75

0.25
0.5

0.75

A
pacheH

T
TP

0.05
0.14

0.33
0.02

0.07
0.22

0.01
0.06

0.4
0.03

0.12
0.52

Busybox
0.08

0.22
0.62

0.04
0.15

0.61
0.05

0.27
2

0.06
0.32

2
Chrom

ium
0.06

0.15
0.54

0.06
0.26

2
0.28

2
3

0.09
0.56

2
D
jango

0.05
0.11

0.21
0.05

0.18
1

0.18
1.5

2
0.07

0.21
2

FFm
peg

0.17
0.46

1.42
0.12

0.56
2.59

0.33
1.58

4.8
0.15

0.55
2

Jailhouse
0.39

1.38
4.67

0.21
0.66

2.62
0.07

0.33
2.38

0.23
0.94

3.5
Llvm

0.11
0.28

0.9
0.1

0.38
2

0.14
0.8

3
0.14

0.65
2

O
penSSL

0.02
0.08

0.22
0.02

0.1
0.38

0.05
0.2

1
0.04

0.5
2

Q
em

u
0.14

0.4
1.33

0.07
0.26

1.2
0.1

0.47
2.12

0.1
0.38

2
U
-Boot

0.22
0.6

2.21
0.15

0.44
2

0.13
0.45

2
0.17

0.53
2

W
ine

0.05
0.12

0.38
0.04

0.18
1.33

0.08
0.3

1.38
0.05

0.2
1.5

Tab.4.8
C
lass

C
om

m
unication

M
ail-Intensity,Qu

antiles

Casestudy
𝑞(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐷

1 ,𝐷
2),𝑥)

[m
ails/day]

(Core,Core)
(Core,Periph.)

(Periph.,Periph.)
(Total,Total)

0.25
0.5

0.75
0.25

0.5
0.75

0.25
0.5

0.75
0.25

0.5
0.75

A
pacheH

T
TP

0.04
0.12

0.25
0.02

0.05
0.17

0.01
0.05

0.27
0.03

0.1
0.36

Busybox
0.06

0.17
0.35

0.03
0.12

0.36
0.03

0.2
2.4

0.05
0.23

1.65
Chrom

ium
0.05

0.12
0.31

0.05
0.21

2.83
0.24

1.85
12.41

0.07
0.41

3.89
D
jango

0.04
0.1

0.19
0.04

0.15
0.9

0.15
0.87

3.93
0.06

0.18
1.72

FFm
peg

0.13
0.3

0.71
0.09

0.3
1.78

0.26
0.87

4.23
0.12

0.34
1.24

Jailhouse
0.26

0.51
1.1

0.14
0.3

0.57
0.06

0.12
0.94

0.15
0.4

1.61
Llvm

0.08
0.18

0.46
0.08

0.26
1.93

0.12
0.49

3.75
0.11

0.41
2.87

O
penSSL

0.02
0.06

0.2
0.02

0.08
0.28

0.04
0.14

0.74
0.04

0.35
3.9

Q
em

u
0.1

0.23
0.5

0.05
0.15

0.44
0.06

0.23
1.12

0.06
0.21

0.73
U
-Boot

0.14
0.29

0.74
0.1

0.26
0.73

0.09
0.26

1.06
0.11

0.28
1.07

W
ine

0.04
0.11

0.3
0.03

0.15
1.44

0.07
0.25

1.49
0.04

0.18
1.41

44 Chapter 4 Results

would hold. Our findings support this assumption in all 11 subject projects.
In half the subject projects – namely ApacheHTTP, Ffmpeg, Jailhouse,
Qemu and U-Boot, there is only a slight difference and the typical core-core
communication episode lasts about 30 % to 80 % longer than a typical total-
total communication episode. However, the other projects show considerably
more pronounced differences, e.g., core-core communication exceeding the
duration of project-wide communication by a factor of 100 in OpenSSL. This
tendency is even more apparent regarding the comparatively shorter commu-
nication episodes, i.e., the 0.25 quantile: In this case core-core communication
is of significantly greater longevity than total-total communication episodes
in every single subject system. In addition, we observe that, in all projects
but Qemu and ApacheHTTP, the 0.75 quantile of core-core communication
longevity is greater than the analogous project-wide value.

When considering only the communication episodes with multiple in-
teractions, we observe these same effects, albeit less pronounced. In this
case, 𝑞(𝑐𝐿𝑜𝑛𝑔𝑣𝑖𝑡𝑦𝑀𝑢𝑙𝑡𝑖(𝐶, 𝐶), 0.5) > 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦𝑀𝑢𝑙𝑡𝑖(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0, 5)
holds in all casestudies except ApacheHTTP, where core-core communica-
tion lasts slightly shorter than general project communication, exhibiting a
core-core communication longevity that is about 90 % of the project-wide
communication longevity. In most casestudies, the core-core communication
is more long-lived by a factor of 1.20 to 2. The most pronounced difference
can be observed in OpenSSL, where the typical core-core communication
episode lasts more than 5 times as long as its project-wide counterpart.

This tendency is even more apparent regarding the 0.25 quantile: In this
case, core-core communication is of considerably greater longevity than
total-total communication episodes in every single subject system, differ-
ing by factors of up to 21 times in OpenSSL. In most systems, the assump-
tion even holds when considering the 0.75 quantile. Although we observe
comparably small core-core longevities in ApacheHTTP, Busybox, Ffm-
peg, and Qemu, in all other projects, we find 𝑞(𝑐𝐿𝑜𝑛𝑔𝑣𝑖𝑡𝑦(𝐶, 𝐶), 0.75) >
𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.75).

Our findings show that the difference in communication longevity be-
tween core-core and total-total communication episodes is very appar-
ent in all 11 subject projects. When considering only communication
episodes with multiple interactions or comparatively long-lived com-
munication, i.e., the 0.75 quantile, the tendency is not as pronounced
but still visible. We observe a particularly strong difference in longevity
when comparing the 0.25 quantile, i.e., the comparatively shorter com-
munication episodes. This holds when considering all communication
as well as filtering out episodes with only one interaction. All things
considered, we accept H2.2a.

4.5.2 Communication Intensity

We show our findings regarding the core-core communication intensity in
Table 4.7. We observe that a typical communication episode between two

4.5 Core-Core Communication Episodes (H2.2) 45

core developers has an intensity ranging from 0.08 links/day in OpenSSL
to 1.38 links/day in Jailhouse. Contrary to the communication longevity,
these results show that the intensity difference between our casestudies
manifests more strongly in the core-core communication than in the core-
peripheral communication (see Section 4.4). This effect seems to be present
regardless of which intensity metric is used. Nonetheless, there is no general
tendency of how the intensity of a typical core-core communication episode,
i.e., the median intensity, relates to the intensity of general communication.
For link-based as well as for mail-based intensities, we observe some casestud-
ies where core-core communication seems more intensive – e.g., Jailhouse
as the project where this effect is most pronounced – as well as others where
the inverse effect is observable, e.g., OpenSSL, in which the link-based and
mail-based core-core communication intensity are only about 16 % as high
as their total-total counterparts.

In addition, we observe that, in a small majority of projects, the 0.25 quartile
of core-core communication link-based intensity is greater than the analo-
gous value for the general project communication indicating that the less
intensive core-core communication episodes exhibit higher intensities than
the general project communication. This observation applies to all projects
except Chromium, Django, Llvm, and OpenSSL where the core-core com-
munication is slightly less intensive than the total-total communication as
well as Wine where the two values do not differ. This effect is also present –
albeit less pronounced – when investigating the mail-based communication.
For this measure of intensity, we observe that – as for the link-based intensity
– the 0.25 quantile of core-core communication mail-based intensity equals
the analogous total-total intensity in Wine. In addition, the four projects in
which link-based core-core intensity was less intensive than its project-wide
counterpart – Chromium, Django, Llvm, and OpenSSL – show the same
tendency when examining mail-based intensity. Thus, our observations con-
cerning the core-core communication intensity do not change qualitatively
when applying a different measure of intensity.

When examining the 0.75 quantile, we observe that the core-core commu-
nication is significantly less intensive than the total-total communication.
This effect applies to all eleven casestudies when analysing mail-based inten-
sity and to all casestudies except Jailhouse and U-Boot for the link-based
intensity. Considering the link-based intensity, we observe five projects,
where the 0.75 quantile of core-core communication episodes is less than half
as intensive as the general project communication. The strongest difference
can be observed in OpenSSL and Django, where the link-based core-core
communication measures only 10 % of the general communication intensity.
Moreover, we observe that the analogous values for the mail-based inten-
sity indicate that the 0.75 quantile of the general project communication
is between 1.5 and 20 times more intensive than the comparable core-core
communication. Consequently, it seems as though core-core communication
intensity shows comparably little variation.

46 Chapter 4 Results

This observation is also supported when analysing the variance of the core-
core communication intensity shown in Table 4.6. We had hypothesised in
H2.2b that 𝑣𝑎𝑟(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶, 𝐶)) < 𝑣𝑎𝑟(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙) would hold.
In fact, our findings show the inverse tendency: 𝑣𝑎𝑟(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐶, 𝐶)) <
𝑣𝑎𝑟(𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙) holds in seven of our eleven subject projects. In
some cases, this inequality is extremely pronounced, e.g., OpenSSL where
the total-total variance is greater than the core-core variance by a factor of
8. Nonetheless, in Jailhouse, Llvm, Qemu, and U-Boot, our assumption
that core-core communication intensity shows greater variation than its
project-wide counterpart is correct. As explained above, these are also the
projects, which show anomalies regarding the 0.25 and 0.75 quantile of the
core-core communication intensity compared to their respective total-total
communication intensity.

Interestingly, we do not see any correlation between the intensity-variance
and the longevity-variance: Whereas there are some projects, such as OpenSSL,
in which the core-core longevity-variance is considerably higher than its
project-wide counterpart while the core-core intensity varies significantly
less than the general project communication intensity, in other projects, e.g.,
ApacheHTTP, the inverse effect can be observed.

In summary, we observe that the intensity differences between subject
systems manifest more strongly in the core-core communication than in
the core-peripheral communication. In addition, we observe that the 0.25
quantile of core-core communication is slightly more intensive than the
general project communication in most casestudies. When regarding the
median, we do not observe any general tendencies. However, the 0.75 quantile
of core-core communication episodes is considerably less intensive than its
project-wide counterpart – in some cases they differ by a factor of up to 20.
These tendencies are present regardless of the intensity metric used. Thus,
we observe that – although it does not usually reach intensities as low as
the general project communication – core-core communication also cannot
attain the total-total communication’s very high intensities. Generally, it
seems as though core-core communication intensity is a lot more stable and
balanced, with significantly less variation towards very low as well as very
high values than the general project communication.

In general, our assumption does not hold, although there are a few
projects in which we observe more varied core-core communication
intensity than total-total communication intensity. As described above,
these are the same projects, which show anomalies concerning the dis-
tribution of the core-core communication intensity compared to the
project-wide values. It seems as though there are two types of projects
regarding the core-core communication intensity. Nonetheless, we ob-
served that the core-core communication intensity is rather stable and
is characterised by little variation in a majority of our subject projects
and, hence, we reject H2.2b.

4.6 Core-Core Communication Episodes (H2.2) 47

4.6 Peripheral-Peripheral Communication Episodes (H2.3)

In H2.2, we formulated our expectation that communication episodes be-
tween two peripheral developers would be rather short-lived compared to the
general project communication, i.e., we anticipated 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑃, 𝑃), 0.5) <
𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑡𝑜𝑡𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙), 0.5) would hold. We show our findings in Ta-
ble 4.9.

The longevity in a typical peripheral-peripheral communication episode
ranges from 0 days in Chromium and Django to 20 days in Jailhouse. As
described in Section 3.2, a communication episode is assigned a longevity of
0 days in case only one interaction occurred in the episode. Thus, these values
could indicate that peripheral-peripheral communication often consists of
only one interaction without any answers or follow-ups.

We observe that – except for Jailhouse and OpenSSL – our assumption
holds. In most cases the difference in longevity is very pronounced and
typical peripheral-peripheral communication episodes last less than half as
long as their total-total counterparts. In ApacheHTTP, Qemu, and Wine,
this difference is not as pronounced but still noticeable. Interestingly, we
observe that peripheral-peripheral communication episodes in Jailhouse
and OpenSSL are 1.4, respectively 25, times as long-lived as typical total-
total communication episodes. This difference is especially pronounced in
OpenSSL, which is not actually surprising considering that, in this project,
core-core, respectively core-peripheral, communication lasted 90, respec-
tively 58, times as long as the general communication episodes.

The tendency for peripheral-peripheral communication episodes to be of
little longevity compared to project standards is even more apparent when
regarding the 0.25 quantile, for which the peripheral-peripheral commu-
nication longevity is smaller than or equal to its total-total counterpart in
every single casestudy. Interestingly, we do not observe similar tendencies
when considering the 0.75 percentile, i.e., the comparably longer peripheral-
peripheral communication episodes. Although the communication among
peripheral project members is less long-lived in some projects, e.g., Django
as the subject project where this phenomenon is the most significant, our
findings for other projects, e.g., ApacheHTTP, indicate the opposite effect
or, as in the case of U-Boot, no considerable difference in longevity can be
found.

When considering only communication episodes with multiple inter-
actions, we observe that our assumption holds in all casestudies except
ApacheHTTP, Jailhouse, and OpenSSL for which peripheral-peripheral
communication is about 60 %, 70 %, and 150 %, respectively, more long-lived
than the general project communication. In all other casestudies, peripheral-
peripheral communication is noticeably more short-lived. For the 0.25 quan-
tile, the same effect can be observed in all subject projects except for the
aforementioned three casestudies. Analogously to the longevity considering
all communication episodes, no general tendency can be found regarding

48 Chapter 4 Results

the 0.75 quantile of longevity in communication episodes with multiple
interactions.

To summarise, we see that peripheral-peripheral communication are of
comparatively short longevity in all but two casestudies. This effect is
observable regarding the 0.25 as well as the 0.5 quantile. Our findings are
not qualitatively changed by filtering out communication episodes with
only one interaction, although it seems as though peripheral-peripheral
communication is significantly marked by these short communication
episodes. Overall, we accept H2.2.

4.7 Comparison of Core-Core, Core-Peripheral, and
Peripheral-Peripheral Communication Episodes

When comparing the core-core, core-peripheral, and peripheral-peripheral
communication episodes, we observe significant differences which pertain
not only to the different levels of activity in the project core and periphery
but also to the longevity and intensity of the communication. We present
the corresponding results in the following.

4.7.1 Communication Longevity

When considering the communication longevity of all communication episodes
presented in Table 4.9, we find that in all subject projects except ApacheHTTP
and Qemu, a typical core-core communication episode is of greater longevity
than core-peripheral communication episodes. In addition, we observe that
core-core communication is more long-lived than peripheral-peripheral
communication in all eleven casestudies. In fact, in nine of our eleven
subject projects, 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐶, 𝐶), 0.5) > 𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐶, 𝑃), 0.5) >
𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝑃, 𝑃), 0.5) holds, i.e., core-core communication is typically
more long-lived than core-peripheral communication which is, in turn, of
greater longevity than peripheral-peripheral communication. In most subject
projects, these differences are very considerable, e.g., Django, in which the
typical core-core, core-peripheral, and peripheral-peripheral longevity are
53 days, 34 days, and 15 days, respectively.

These tendencies are not only apparent in the typical communication
episodes, i.e., the median of the communication-episode longevity, but are
also visible in the distributions of communication longevities. We show these
distributions for Ffmpeg and U-Boot in Figures 4.3 and 4.4, respectively. We
only show the values in the 0.8 quantile, as our plots would otherwise be
distorted and unreadable due to outliers. The distributions regarding the
communication longevities seem very consistent across our subject projects,
generally differing quantitatively but not qualitatively.

4.7 Comparison of Core-Core, Core-Peripheral, and

Peripheral-Peripheral Communication Episodes 49

Tab.4.9
C
lass

C
om

m
unication

Longevity,Qu
artiles,A

llC
om

m
unication

Episodes

Casestudy
𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐷

1 ,𝐷
2),𝑥)

[days]
(Core,Core)

(Core,Periph.)
(Periph.,Periph.)

(Total,Total)
0.25

0.5
0.75

0.25
0.5

0.75
0.25

0.5
0.75

0.25
0.5

0.75

A
pacheH

T
TP

16.23
31.72

72.97
15

51.99
169.05

0.03
18.91

150.71
0.51

21.21
85.45

Busybox
16

29.82
67.2

9.1
28.8

98.64
0.01

5.29
47.85

0.01
8.01

43.08
Chrom

ium
6.8

22.88
57.3

0
0.78

25.11
0

0
1.87

0
0.21

15.19
D
jango

14.52
27.82

71.41
0

7.45
38.63

0
0

0.93
0

0.57
21.05

FFm
peg

11.06
19.01

33.44
0.66

10.04
34.52

0
0.96

8.77
0.72

12.33
29.39

Jailhouse
13.4

24.91
36.71

13.52
21.29

37.12
0.34

19.92
43.04

1.19
13.92

29.08
Llvm

9.62
22.04

48.2
0.1

8.06
35.91

0
0.91

12.97
0

2.02
21.21

O
penSSL

17.09
53.55

172.62
7.34

34.39
138.12

0.06
14.84

57.86
0

0.59
24.88

Q
em

u
14.14

23.8
44.91

10.76
26.31

75.93
0.73

13.85
50.24

1.36
17.1

49.02
U
-Boot

12.21
20.16

37.73
4.79

15.96
38.09

0.73
12.18

31.68
0.95

13.15
31

W
ine

1.16
20.54

61.9
0

1.72
37.21

0
0.57

16.91
0

2.02
32.03

Tab.4.10
C
lass

C
om

m
unication

Longevity,Qu
antiles,O

nly
A
nsw

ered
C
om

m
unication

Episodes

Casestudy
𝑞(𝑐𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦(𝐷

1 ,𝐷
2),𝑥)

[days]
(Core,Core)

(Core,Periph.)
(Periph.,Periph.)

(Total,Total)
0.25

0.5
0.75

0.25
0.5

0.75
0.25

0.5
0.75

0.25
0.5

0.75

A
pacheH

T
TP

16.87
32.31

74.21
20.8

61.63
184.06

11.88
55.54

234.18
11.42

34.89
113.6

Busybox
16.19

29.98
67.82

12.63
34.77

110.68
1.63

16.35
96.63

2.79
18.94

70.71
Chrom

ium
13

28.05
63.03

1.06
14.44

58.12
0.24

1.86
13.79

0.8
8.26

40.93
D
jango

16.53
29.88

76.66
6.25

16.39
59.23

0.55
3.43

15.94
1.83

14.98
50.93

FFm
peg

11.91
19.79

34.61
2.82

13.9
42.86

0.96
5.53

13.98
7.02

15.91
34.84

Jailhouse
13.4

24.91
36.71

13.79
21.8

37.71
7.5

26.97
62.03

6.44
15.35

32.98
Llvm

11.78
24.8

51.83
2.11

14.87
48.71

0.96
6.97

27.49
1.18

10.14
34.31

O
penSSL

17.92
56.24

182.19
12.91

42.45
165.55

6.73
26.53

70.68
0.84

10.46
89.08

Q
em

u
14.25

23.92
45.08

13.19
29.19

83.32
6.02

19.74
67.1

9.32
22.25

61.35
U
-Boot

13.05
20.98

38.58
8.52

18.86
41.9

5.58
15.27

37.03
7.18

16.87
37.1

W
ine

10.99
26.24

69.95
2.59

20.74
65.59

1.86
13.36

40.73
2.18

18.9
62.05

50 Chapter 4 Results

Core−Core Core−Periph. Periph.−Periph.

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0%

10%

20%

30%

Longevity of Communication Episodes (in days)

R
el

at
iv

e
F

re
qu

en
cy

Histogram of Communication Episode Longevity

Fig. 4.3 Class Communication Longevity in Ffmpeg, not showing the highest 20%
of values

Core−Core Core−Periph. Periph.−Periph.

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0%

10%

20%

30%

Longevity of Communication Episodes (in days)

R
el

at
iv

e
F

re
qu

en
cy

Histogram of Communication Episode Longevity

Fig. 4.4 Class Communication Longevity in U-Boot, not showing the highest 20%
of values

4.7 Comparison of Core-Core, Core-Peripheral, and

Peripheral-Peripheral Communication Episodes 51

Core−Core Core−Periph. Periph.−Periph.

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0%

5%

10%

15%

20%

25%

Intensity of Communication Episodes (in links/started day)

R
el

at
iv

e
F

re
qu

en
cy

Histogram of Communication Episode Intensity

Fig. 4.5 Class Communication Link-Intensity in Wine, not showing the highest
10% of values

Core−Core Core−Periph. Periph.−Periph.

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0%

5%

10%

15%

20%

Intensity of Communication Episodes (in links/started day)

R
el

at
iv

e
F

re
qu

en
cy

Histogram of Communication Episode Intensity

Fig. 4.6 Class Communication Link-Intensity in ApacheHTTP, not showing the
highest 10% of values

52 Chapter 4 Results

4.7.2 Communication Intensity

Considering the link-intensity of the typical communication episodes as
presented in Table 4.7, we do not observe any tendencies that are as clear.
Nonetheless, we find that peripheral-peripheral communication is typically
themost intensive form of communication in all projects except ApacheHTTP,
Jailhouse, and U-Boot. In these three projects, core-core communication
link-intensity surpasses core-peripheral as well as peripheral-peripheral com-
munication intensity, in the case of Jailhouse significantly so. A similar
tendency is visible when investigating the mail-intensity presented in Ta-
ble 4.8: In eight cases, the peripheral-peripheral communication episodes
typically show the greatest intensity. In the remaining three projects, core-
core communication surpasses all other communication in intensity. These
are the same projects in which the core-core communication dominates the
other communication types with regards to the link-intensity. Thus, we
observe that the switch to a mail-based activity metric only quantitatively
changes our findings but the tendencies we observe remain stable. Interest-
ingly, the switch of intensity metric intensifies differences in some cases and
smoothes them in others.

As there are no qualitative differences between the link-based and the mail-
based communication intensity, we only discuss the link-based results in the
following. In Figures 4.5 and 4.6, we show the results for one project in which
peripheral-peripheral communication is the most intensive, Wine, as well as
one project in which core-core communication dominates, ApacheHTTP,
respectively. We show only the 0.9 quantile in the figure as high outliers
would otherwise distort the plots. The tendencies we observe for typical
intensity, i.e., the median intensity, are reflected in the intensity distributions.
In Wine, we clearly see that a great majority of core-core communication
is of comparatively little intensity. This effect is visible and even intensified
in the core-peripheral communication episodes. In ApacheHTTP, however,
we see the exact opposite tendency: peripheral-peripheral communication is
typically the least intensive, followed by the core-peripheral communication
intensities. We observe clearly that core-core communication generally
constitutes the most intensive communication episodes.

To summarise, we find that core-core communication episodes are gen-
erally of greater longevity than core-peripheral communication which is,
in turn, more long-lived than peripheral-peripheral communication. For
the most part, we observe that the inverse is true when considering com-
munication intensity: In eight subject projects, peripheral-peripheral
communication episodes are the most intensive. In the remaining three,
we observe that core-core communication is of the greatest intensity.
These findings do not change qualitatively when using a mail-based
intensity metric. Interestingly, the results we observe for the typical
communication episodes are also reflected in the distributions of the
communication longevity and intensity.

4.8 Comparison of Core-Core, Core-Peripheral, and

Peripheral-Peripheral Communication Episodes 53

4.8 Average Class Activity (H3.1)

InH3.1, we hypothesised that code contributors would be more active regard-
ing the number of mails written than mailing-list-only contributors. Thus,
we expected the inequalities 𝑎𝑀𝑎𝑖𝑙𝑠(𝐶) > 𝑎𝑀𝑎𝑖𝑙𝑠(𝑈) and 𝑎𝑀𝑎𝑖𝑙𝑠(𝑃) >
𝑎𝑀𝑎𝑖𝑙𝑠(𝑈) to hold. We present our findings concerning the average number
of mails written by members of the three classes and additionally the average
number of threads started in Table 4.11.

We observe that the two inequalities hold in all eleven subject projects. In
fact, our findings even show that there is a strict order of activity in which the
average core developer is more active than the average peripheral developer
who, in turn, is more active than the average non-developer, i.e., 𝑎𝑀𝑎𝑖𝑙𝑠(𝐶) >
𝑎𝑀𝑎𝑖𝑙𝑠(𝑃) > 𝑎𝑀𝑎𝑖𝑙𝑠(𝑈). Except for Chromium, this hierarchy of activity
is also visible in the average number of threads started by members of the
three classes.

As we not only observed that core and peripheral members are more
active than unclassified members regarding the average number of mails
written, but even found evidence for a strict hierarchy of activity in all
eleven subject projects considering e-mail activity and in all but one
project considering threads as an activity indicator, we accept H3.1.

4.9 Activity Level of the Core Class (H3.2)

In H3.2, we theorised that core developers were responsible for the bulk of
the communication activity. We anticipated that this would pertain to the
proportion of mails written by core members as well as the proportion of
threads started (out of all threads that received an answer). The proportions
of mails written and threads started for all subject systems and all three
participant classes are shown in Table 4.12.

Regarding the proportion of mails written as indicator for the class activity,
we find that core members are responsible for the majority of mails in 6 of our
11 casestudies. In 3 of the subject projects – Busybox, Django, and Llvm –
core members amounted for 40 % to 50 %. In Chromium and OpenSSL, core
members were only responsible for 37 % and 22 %, respectively. Although
our assumption is true for a slightmajority of subject projects, we do not really
see a general tendency towards core developers contributing the majority of
e-mails.

Although core developers are generally not responsible for more than half
the mails, we observe that they are usually more active than the other two
developer groups: In all projects except OpenSSL, we find that the proportion
of mails contributed by core developers exceeds the comparable values for the
peripheral and unclassified member groups. When comparing the periphery
and the ML-only contributors, we do not see any clear tendencies. In 7
casestudies we observe 𝑟𝑀𝑎𝑖𝑙𝑠(𝑈) > 𝑟𝑀𝑎𝑖𝑙(𝑃) but in the remaining 4, the
opposite effect is visible. Hence, we do not observe any tendency that affects

54 Chapter 4 Results

Ta
b.

4.
11

Av
er
ag
e
N
um

be
r
of

M
ai
ls
an

d
Av

er
ag
e
N
um

be
r
of

Th
re
ad

s
St
ar
te
d
pe
r
C
la
ss

M
em

be
r

Ca
se
st
ud

y
𝑎𝑀

𝑎𝑖
𝑙𝑠(

𝐷
)

𝑎𝑇
ℎ𝑟

𝑒𝑎
𝑑𝑠

𝑆𝑡
𝑎𝑟

𝑡𝑒
𝑑(

𝐷
)

Co
re

Pe
rip

h.
U
nc

la
ss
.

To
ta
l

Co
re

Pe
rip

h.
U
nc

la
ss
.

To
ta
l

A
pa

ch
eH

T
TP

32
.0

9
8.

93
4.

98
9.

99
8.

92
2.

9
2.

32
3.

51
Bu

sy
bo

x
35

.3
1

7.
09

4.
41

7.
92

4.
83

2.
38

1.
7

2.
09

Ch
ro

m
iu

m
16

.5
1

3.
73

2.
99

4.
7

2.
01

0.
75

1.
03

1.
03

D
ja
ng

o
19

.1
8

4.
94

2.
64

4.
9

6.
84

2.
56

1.
09

1.
94

FF
m
pe

g
14

0.
64

11
.4

2
5.

02
27

.8
7

25
.6

8
2.

61
1.

4
5.

52
Ja

il
ho

us
e

12
4.

13
19

.5
3

11
.0

7
31

.5
7

11
.3

2
2.

41
4.

88
5.

76
Ll

vm
24

.0
9

6.
45

4.
34

7.
21

3.
93

1.
25

1.
19

1.
55

O
pe

nS
SL

23
.6

6
10

.6
8

4.
82

6.
04

9.
86

4.
29

3.
02

3.
43

Q
em

u
21

9.
69

31
6.

66
26

.7
24

.0
7

5.
07

2.
14

4.
29

U
-B

oo
t

21
9.

27
26

.9
3

6.
45

33
.6

6
40

.6
6.

63
1.

99
7.

28
W

in
e

35
.8

2
6.

43
3.

44
12

.7
5

19
.8

2
2.

4
1.

1
6.

33

Ta
b.

4.
12

R
el
at
iv
e
D
ev
el
op

er
C
la
ss

A
ct
iv
it
y

Ca
se
st
ud

y
M
ai
ls

[%
]

Th
re
ad

ss
ta
rt
ed

[%
]

Co
re

Pe
rip

h.
U
nc

la
ss
.

Co
re

Pe
rip

h.
U
nc

la
ss
.

A
pa

ch
eH

T
TP

55
.5

1
7.

30
37

.1
9

43
.8

9
6.

74
49

.3
7

Bu
sy

bo
x

48
.0

8
5.

82
46

.1
0

24
.9

7
7.

42
67

.6
1

Ch
ro

m
iu

m
37

.5
5

28
.0

4
34

.4
1

20
.8

1
25

.5
3

53
.6

6
D
ja
ng

o
48

.3
0

9.
55

42
.1

6
43

.4
5

12
.4

7
44

.0
7

FF
m
pe

g
75

.7
0

16
.0

3
8.

27
69

.8
2

18
.5

2
11

.6
6

Ja
il
ho

us
e

68
.4

8
5.

91
25

.6
1

35
.2

1
4.

00
61

.7
9

Ll
vm

42
.4

7
15

.2
7

42
.1

7
32

.2
4

13
.9

0
53

.8
5

O
pe

nS
SL

21
.9

5
4.

71
73

.3
4

16
.0

8
3.

32
80

.6
0

Q
em

u
57

.3
0

24
.8

3
17

.8
7

39
.0

6
25

.2
5

35
.6

9
U
-B

oo
t

59
.4

9
30

.3
8

10
.1

3
50

.9
3

34
.6

0
14

.4
8

W
in

e
71

.3
4

18
.3

5
10

.3
0

79
.5

3
13

.8
1

6.
66

4.9 Activity Level of the Core Class (H3.2) 55

all projects regarding the relation between the contribution by the periphery
and by unclassified project members.

When considering the number of threads started as activity metric, our
findings indicate that core developers are usually not responsible for the bulk
of communication activity. In fact, core members initiate the majority of
mailing-list threads in only three of our casestudies, Ffmpeg, U-Boot, and
Wine. Interestingly, there does not seem to be a direct correlation between
the proportion of mails written and of threads started: Although we observe
𝑟𝑀𝑎𝑖𝑙𝑠(𝐶) < 𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝐶) in all casestudies except Wine, the proportion
of mails written is no indicator for the proportion of threads initiated by
core members. This becomes very apparent when comparing Busybox and
Django which both exhibit 48 % as proportion of mails contributed by
core members. Nonetheless, core members start 24 %, respectively 43 %, of
threads in the two projects, differing by a factor of nearly 2.

Regarding hierarchy of activity as measured in threads started, we observe
very different tendencies than considering e-mails. In seven of our cases-
tudies, unclassified project members initiate more threads than the project
core and periphery. In five systems, this group even starts more than half
the mailing-list threads. However, we also observe three projects in which
ML-only contributors are the least active group. Thus, we do not observe any
general tendencies, but it becomes apparent that core members are generally
not the most active group with regards to the initiation of mailing-list threads.
Nonetheless, we observe that core members are responsible for more contri-
butions than peripheral members in all subject projects except Chromium.
Thus, we see that the order between core and periphery established based on
the source code is reflected in the mailing-list activity.

In essence, we observe that the project core is the most active group
considering e-mail contributions, albeit not as active as we had antic-
ipated. When considering the proportion of threads initiated, we do
not observe these tendencies. Interestingly, there does not seem to be
a direct correlation between the proportion of mails and of threads. In
a majority of our subject projects, the unclassified members were the
most active group when considering threads started. Additionally, we
observe that the core-peripheral classification, i.e., the difference in ac-
tivity established based on the source code, is reflected in the mailing-list
activity, as the core group is generally more active than the periphery.
All points considered, we reject H3.2.

4.10 Core Communication Activity during the Release Cycle
(H3.3)

InH3.3, we hypothesise that the number of mails written by core developers
will increase significantly prior to a release. We show the relative class
communication activity for four subject projects in Figures 4.7, 4.8, 4.9, 4.9,

56 Chapter 4 Results

4.10, 4.11, and 4.12. The vertical, dotted lines in the plots indicate major
releases.

We do not observe any release-specific patterns concerning the proportion
of mails written by the project member classes in Ffmpeg, as shown in
Figure 4.9. However, the evolution of the class activity supports our findings
regarding the classes’ proportions of contribution activity: The aggregated
results we described in Section 4.9 are strongly reflected in the more fine-
granular evolution of relative activity. We observe that core participation
remains at an extremely stable 65 % to 85 %, exceeding this range only
very seldomly. The same effect can be observed for the periphery’s and the
unclassified members’ activity proportions of 10 % to 25 % and 5 % to 20 %,
respectively.

We observe this same phenomenon in Chromium, as shown in Figure 4.11.
Although the actual proportions of class activity differ considerably from
those in Ffmpeg, we observe the same effect of stability. In Chromium, there
is a nearly equal distribution of mail contributions among the three classes:
the project core is generally responsible for 30 % to 50 % of the mailing-list
activity, whereas the periphery and the unclassified members amount for
20 % to 35 % and 25 % to 40 %, respectively. Thus, we observe a division of
contributions among the three group that is project-specific but very constant
in these two projects.

This observation is supported by our findings regarding other subject
projects: Despite the fluctuations, the relative core mail-activity generally
does not exceed a range of size 20 %. We observe this stability in the pro-
portion of contributions even for the unclassified and peripheral members
in almost all subject projects. Admittedly, there are exceptions: In Qemu as
well as Busybox, we observe several different phases of the class activity. We
show the relative class activity in Qemu and Busybox in Figure 4.7 and 4.8,
respectively.

In Qemu, there are two very distinct phases of the developer class activity:
Up to release “release_0_10_0”, i.e., the beginning of 2009, the unclassified
project members contribute the bulk of the activity, the project periphery
is nearly inactive and the core developers only amount for 0 % to 40 % of
the messages posted to the development mailing list. However, this changes
drastically. After abovementioned release, the core developers consistently
contribute 50 % to 70 %. In addition, the periphery gains in importance,
amounting for 20 % to 40 % of the mailing list traffic. The unclassified
members become the least active group on the mailing list.

Thus, although the project exhibits stronger fluctuations in the beginning of
the analysed ML-history and its class activity proportions change completely
at one point in time, we observe the same role stability as in the other
casestudies afterwards. Hence, our results in Qemu introduce the notion of
different phases in the class activity, but otherwise support our conclusions
regarding the stability of class activity proportions. Busybox, however, is
the only subject project, in which this tendency is not directly observable.
Although it seems as though there are different phases within which the

4.10 Core Communication Activity during the Release Cycle

(H3.3) 57

class activity proportions remain comparatively stable, this stability is no
longer visible in the data after release “1_18_0”. Nonetheless, we do observe
stable activity proportions divided in phases of at least 16 months each. The
changing points of these phases usually seem to coincide with the major
releases, namely “1_01”, “1_2_0”, “1_7_0”, and “1_15_0”. Thus, we still observe
stability – albeit in changing, but relatively long-lasting phases – in most of
the Busybox history.

Generally, we observe a relative high stability in the proportion of contri-
butions. However, when considering the absolute number of mails written
in Ffmpeg – presented in Figure 4.10 – we observe considerable fluctuations.
This effect seems to affect primarily the project core, although peripheral
developers show similar, albeit considerably less strong, fluctuations in the
same time periods. The unclassified developer group is not affected by this
tendency. Despite the occurence of these fluctuations, they do not seem to
support our hypothesis: In most release cycles, e.g., after release “n2.8” and
“n2.6”, we observe a decrease in core activity and then – about 4 weeks into
the release cycle – considerable spikes in the core activity. Regarding the
beginning and end phase of the release cycles, we do not observe any effects
that are consistent over time.

The absolute numbers of mails written per class for Chromium, which
we present in Figure 4.12, show some similar tendencies. We also observe
that fluctuations in the core activity are usually reflected in the other classes’
activity level. In Chromium, this phenomenon seems to affect the unclassi-
fied members more strongly than the project periphery. In most cases, we
observe uprises in core activity circa 2 weeks to 3 weeks after major releases.
Generally, the participant activity – particularly the core activity – seems to
go down towards the end of a release cycle. Nonetheless, no release-specific
core activity patterns are visible in the other subject projects.

To summarise, our most interesting observation concerning the classes’
activity is the stability in the proportion of their contributions. These
proportions seem to be project-specific but very stable for most of our
subject projects. Very long project histories might exhibit different,
relatively long-lasting phases of this activity stability. In addition, we
see two projects – Qemu and Busybox – that gain, respectively lose, this
stability at a specific point in the project evolution. In some projects,
we observe a recurring rise in general and especially core activity about
2 weeks to 4 weeks after major releases, but in most casestudies, no
consistent tendency can be observed. In addition, we observe a decline
in the core group’s mail-activity towards the end of a release cycle, i.e.,
prior to a release, in several cases. Hence, we reject H3.3.

58 Chapter 4 Results

release_0_10_0

release_0_6_0

release_0_7_0

release_0_9_0

v0.10.0

v0.11.0

v0.12.0

v0.13.0

v0.14.0

v0.15.0

v0.2.0 v0.3.0 v0.4.0

v0.5.0

v0.6.0

v0.7.0

v0.9.0

v1.1.0

v1.3.0

v1.5.0

v1.6.0

v1.7.0

v1.0

v1.2.0

v1.4.0

v2.0.0

v2.1.0

v2.2.0

v2.3.0

v2.4.0

v2.5.0

v2.6.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20
04

−
01

−
01

20
06

−
01

−
01

20
08

−
01

−
01

20
10

−
01

−
01

20
12

−
01

−
01

20
14

−
01

−
01

20
16

−
01

−
01

T
im

e

Proportion of Mails (in a given time period)

D
ev

el
op

er
 C

la
ss

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 A
ct

iv
ity

Fi
g.

4.
7
R
el
at
iv
e
C
la
ss

A
ct
iv
it
y
in

Q
em

u

1_14_0

1_15_0

1_16_0

1_17_0

1_18_0

1_19_0

1_20_0

1_21_0

1_22_0

1_23_0

1_24_0

1_00

1_01

1_1_0

1_2_0

1_3_0 1_4_0

1_6_0

1_7_0

1_8_0
1_9_0

1_10_0

1_11_0
1_12_0

1_13_0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20
04

−
01

−
01

20
06

−
01

−
01

20
08

−
01

−
01

20
10

−
01

−
01

20
12

−
01

−
01

20
14

−
01

−
01

20
16

−
01

−
01

T
im

e

Proportion of Mails (in a given time period)

D
ev

el
op

er
 C

la
ss

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 A
ct

iv
ity

Fi
g.

4.
8
R
el
at
iv
e
C
la
ss

A
ct
iv
it
y
in

B
us
yb
ox

4.11 Core Communication Activity during the Release Cycle

(H3.3) 59

n2.6

n2.7

n2.8

0.0

0.2

0.4

0.6

0.8

1.0

2015−
02−

02
2015−

03−
16

2015−
04−

27
2015−

06−
08

2015−
07−

20
2015−

08−
31

2015−
10−

12
2015−

11−
23

2016−
01−

04

T
im

e

Proportion of Mails (in a given time period)

D
eveloper C

lass
(Local E

igen−
C

entrality C
lassification, 3 m

onths)
C

ore
P

eripheral
U

nclassified

D
eveloper C

lass A
ctivity

Fig.4.9
R
elative

C
lass

A
ctivity

in
Ffm

peg

n2.6

n2.7

n2.8

0

200

400

600

2015−
02−

02
2015−

03−
16

2015−
04−

27
2015−

06−
08

2015−
07−

20
2015−

08−
31

2015−
10−

12
2015−

11−
23

2016−
01−

04

T
im

e

Number of Mails (in a given time period)

D
eveloper C

lass
(Local E

igen−
C

entrality C
lassification, 3 m

onths)
C

ore
P

eripheral
U

nclassified

D
eveloper C

lass A
ctivity

Fig.4.10
A
bsolute

C
lass

A
ctivity

in
Ffm

peg

60 Chapter 4 Results

42

43

44

45

46

47

48

49

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20
15

−
01

−
12

20
15

−
02

−
23

20
15

−
04

−
06

20
15

−
05

−
18

20
15

−
06

−
29

20
15

−
08

−
10

20
15

−
09

−
21

20
15

−
11

−
02

20
15

−
12

−
14

T
im

e

Proportion of Mails (in a given time period)

D
ev

el
op

er
 C

la
ss

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 A
ct

iv
ity

Fi
g.

4.
11

R
el
at
iv
e
C
la
ss

A
ct
iv
it
y
in

C
hr

om
iu
m

42

43

44

45

46

47

48

49

05010
0

15
0

20
15

−
01

−
12

20
15

−
02

−
23

20
15

−
04

−
06

20
15

−
05

−
18

20
15

−
06

−
29

20
15

−
08

−
10

20
15

−
09

−
21

20
15

−
11

−
02

20
15

−
12

−
14

T
im

e

Number of Mails (in a given time period)

D
ev

el
op

er
 C

la
ss

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 A
ct

iv
ity

Fi
g.

4.
12

A
bs
ol
ut
e
C
la
ss

A
ct
iv
it
y
in

C
hr

om
iu
m

4.11 Core Communication Activity during the Release Cycle

(H3.3) 61

4.11 Peripheral and Unclassified Communication Activity
during the Release Cycle (H3.4)

In H3.3, we formulated our hypothesis that the number of mails written by
peripheral developers would spike during the beginning and end phase of
the release cycle. We show the relative and absolute class communication
activity in Busybox, Chromium, Ffmpeg, and Qemu in Figures 4.7, 4.8, 4.9,
4.9, 4.10, 4.11, and 4.12.

As explained in Section 4.10, we generally do not observe significant
changes in the relative class activity, i.e., the proportion of mails each of the
classes contributes to the project communication. This not only affects core
members but also the project periphery and non-developers.

Considering the absolute class activity, i.e., the number of mails written
by developers from each of the three groups, we do not observe any clear
release-specific effects in the core and unclassified activity either. In Ffmpeg,
there are only few noticeable increases in unclassified and peripheral activity
as shown in Figure 4.10. These do not correspond to specific points in the
release cycle. Although we observe spikes in peripheral mail activity directly
prior to release “n2.6” as well as about 3 weeks to 4 weeks after releases
“n2.6” and “n2.8”, these seem coincidental and don’t seem to to be linked to
specific points in the release cycle.

Investigating the absolute class activity in Chromium, which we present in
Figure 4.12, we do, however, see some tendencies that might indicate effects
that the release cycle has on the peripheral activity: Although there are no
general upturns in the beginning and end phase of release cycles, the data
exhibits slight increases about 2 weeks after major releases. In addition, we
observe an uprise in the last week prior to a major release in most cases. The
increase in activity which takes place 2 weeks into the release cycle seems to
be a phenomenon that affects all contributor groups in Chromium, whereas
only the project periphery exhibits the slight upturns directly prior to most
major releases.

In most projects, the relative class activity remains stable and is unaf-
fected by the release cycle. In addition, our data does not indicate the
existence of general release-specific tendencies. Although, we observe
two potentially release-specific effects in Chromium, which affect all
developer groups and primarily the periphery, respectively, our data is
not sufficient to substantiate this assumption as the phenomenon could
just consist of random fluctuations. In addition, these are not general
changes in activity in certain phases of the release cycle but only two
specific points in time: the week prior to a release as well as the point
about 2 weeks into a release cycle. All things considered, we reject
H3.4

62 Chapter 4 Results

4.12 Class Interaction during the Release Cycle (H3.5)

In H3.5, we hypothesised that core-core communication activity would
increase in the time period prior to a release. In Figures 4.13, 4.14, 4.15,
4.16, 4.17, 4.18, and 4.19, we show the class interaction, i.e., the edge class
frequencies, in the context of release cycles for 5 notable subject projects.
The vertical dotted lines in the plots indicate major releases.

As explained in Section 4.1, we observe that core members are consistently
preferred by all project member groups in Ffmpeg. We present the relative
edge class frequencies in Ffmpeg in Figure 4.1. Thus, we find that 60 %
to 90 % of core communication is directed at other core members. Due to
this consistently high number, there are not many fluctuations to be seen
– especially not any patterns with regards to the release cycle. It seems as
though core-core communication increases prior to release “n2.7” starting
about 6 weeks before the point of release, but this tendency is not reflected
in any of the other release cycles we investigate. Interestingly, the proportion
of links sent to the core group originating from the peripheral as well as the
unclassified participant group also increase in the same time span, but even
more strongly. Therefore, this increase does not seem to present a pattern of
core-core communication but of the general project communication and the
importance or activity of the core group at that point in time.

Considering the project U-Boot, we see slightly different tendencies, as
shown in Figure 4.13. Although core members are significantly preferred
as communication partners by other core members, this tendency is not
as pronounced and consistent in the periphery and the non-developers. In
addition, we see significantly more fluctuations in the relative core-core
interaction than was the case in Ffmpeg. Nonetheless, we do not observe any
increases in the relative core-core communication prior to releases – in some
cases, e.g., release “v2015.04” and “v2015.07”, the inverse tendency seems to
come into effect.

This observation is supported by the absolute class interaction we present
in Figure 4.14. Although there are some increases in the core-core communi-
cation, these mostly take place in the first part of the release cycle. Even in
the cases where we see small upticks directly prior to releases, the core-core
activity is usually lower than in the first half of the release cycle.

In Figure 4.15, we show the analogous statistics for the project Wine. The
findings are difficult to interpret as we observe only two major revisions
which are spaced about 1 week apart due to Wine’s release system. Thus,
it might be a possibility that our results are slightly distorted by these two
releases. When investigating the relative edge class frequencies, we do not
find any noticeable changes in the core-core communication prior to the
releases. However, considering the absolute developer class interactions
shown in Figure 4.16, we observe a very noticeable spike in the absolute
number of core-core communication about 1 month before release “wine-
1.8”. Although this increase is accompanied by a general rise in core activity
– apparent in the simultaneous rise of core-core, core-peripheral, and core-

4.12 Class Interaction during the Release Cycle (H3.5) 63

v2015.01

v2015.04

v2015.07

v2015.10

v2015.01

v2015.04

v2015.07

v2015.10

v2015.01

v2015.04

v2015.07

v2015.10

CorePeripheralUnclassified

2015−
01−

05
2015−

02−
16

2015−
03−

30
2015−

05−
11

2015−
06−

22
2015−

08−
03

2015−
09−

14
2015−

10−
26

2015−
12−

07

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e

Proportion of Links Sent from one Developer Class to the Other

D
eveloper C

lass to w
hich the Links are S

ent
(Local E

igen−
C

entrality C
lassification, 3 m

onths)
C

ore
P

eripheral
U

nclassified

D
eveloper C

lass Interaction

Fig.4.13
R
elative

Edge
C
lass

Frequency
Evolution

in
U
-B
oot

64 Chapter 4 Results

v2015.01

v2015.04

v2015.07

v2015.10

v2015.01

v2015.04

v2015.07

v2015.10

v2015.01

v2015.04

v2015.07

v2015.10

Core Peripheral Unclassified

20
15

−
01

−
05

20
15

−
02

−
16

20
15

−
03

−
30

20
15

−
05

−
11

20
15

−
06

−
22

20
15

−
08

−
03

20
15

−
09

−
14

20
15

−
10

−
26

20
15

−
12

−
07

0

20
00

40
00

60
00

80
00 0

20
00

40
00

60
00

80
00 0

20
00

40
00

60
00

80
00

T
im

e

Number of Links Sent from one Developer Class to the Other

D
ev

el
op

er
 C

la
ss

 to
 w

hi
ch

 th
e

Li
nk

s
ar

e
S

en
t

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 In
te

ra
ct

io
n

Fi
g.

4.
14

A
bs
ol
ut
e
Ed

ge
C
la
ss

Fr
eq
ue
nc
y
Ev
ol
ut
io
n
in

U
-B
oo

t

4.12 Class Interaction during the Release Cycle (H3.5) 65

wine−1.8

wine−1.9.0

wine−1.8

wine−1.9.0

wine−1.8

wine−1.9.0

CorePeripheralUnclassified

2015−
01−

26
2015−

03−
09

2015−
04−

20
2015−

06−
01

2015−
07−

13
2015−

08−
24

2015−
10−

05
2015−

11−
16

2015−
12−

28

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e

Proportion of Links Sent from one Developer Class to the Other

D
eveloper C

lass to w
hich the Links are S

ent
(Local E

igen−
C

entrality C
lassification, 3 m

onths)
C

ore
P

eripheral
U

nclassified

D
eveloper C

lass Interaction

Fig.4.15
R
elative

Edge
C
lass

Frequency
Evolution

in
W
ine

66 Chapter 4 Results

wine−1.8

wine−1.9.0

wine−1.8

wine−1.9.0

wine−1.8

wine−1.9.0

Core Peripheral Unclassified

20
15

−
01

−
26

20
15

−
03

−
09

20
15

−
04

−
20

20
15

−
06

−
01

20
15

−
07

−
13

20
15

−
08

−
24

20
15

−
10

−
05

20
15

−
11

−
16

20
15

−
12

−
28

05010
0

15
0

20
0 05010
0

15
0

20
0 05010
0

15
0

20
0

T
im

e

Number of Links Sent from one Developer Class to the Other

D
ev

el
op

er
 C

la
ss

 to
 w

hi
ch

 th
e

Li
nk

s
ar

e
S

en
t

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 In
te

ra
ct

io
n

Fi
g.

4.
16

A
bs
ol
ut
e
Ed

ge
C
la
ss

Fr
eq
ue
nc
y
Ev
ol
ut
io
n
in

W
in
e

4.12 Class Interaction during the Release Cycle (H3.5) 67

unclassified communication – it affects the core-core communication most
significantly. Although this is only one occurence and we do not have enough
data to draw conclusions for general tendencies in Wine, this development
could support our hypothesis.

Interestingly, we observe several spikes in the absolute class interaction
in Wine. These upturns seem to originate from all developer classes, but
apparently increase mostly the number of links sent to the project core.
Although some of these spikes occur simultaneously in all three participant
classes, e.g., in mid-June, 2015, we observe others that only concern the
activity of 1 or 2 classes. For instance, we observe a considerable increase
in communication from core members to unclassified members around the
middle of July in 2015. Simultaneously, the communication originating from
unclassified members to core members spikes and one week later we see an
additional, albeit smaller, upturn in unclassified-unclassified interaction. The
communication originating from peripheral developers does not exhibit any
significant changes in this time period.

In addition, we investigate the class interaction in a project with a very
regular release cycle – Chromium. The relative and absolute class interac-
tion in Chromium are presented in Figure 4.17 and 4.18, respectively. We
observe that core-core communication generally amounts for 40 % to 70 %
of core activity including some fluctuations. This value is of similar stability,
albeit slightly lower, when considering peripheral-core and unclassified-core
communication. Generally, uprises in the preference for core members as
communication partners seem to affect all three groups simultaneously, e.g.,
the time period before the release of version “45”. We do not observe any
general tendencies of the core-core communication in the context of the
release cycle. In some cases, e.g., the time period leading up to version “44”,
a noticeable decrease can be observed which mainly relates to the core-core
interaction, affecting peripheral-core communication and unclassified-core
communication less strongly and not significantly, respectively. In other
release cycles, such as the time period between version “46” and “47”, we
observe a considerable increase in the preference of core members as com-
munication partners in all three participant classes. We do not observe
different tendencies when considering the absolute class interactions shown
in Figure 4.17, although it seems as though the uprises in the relative core-
core communication manifest even more significantly in the corresponding
absolute value.

In our results concerning Qemu, shown in Figure 4.19, we observe the
division of the project history into two distinct phases. In fact, these phases
correspond exactly to the phases of relative class activity which we presented
in Section 4.10. Within a phase, the group-specific preferences for communi-
cation partners are only subject to small variations. Thus, the communication
preferences seem stable for the whole project history or at least within the
general project phases, which is in line with the results we observed for our
other subject projects.

68 Chapter 4 Results

42

43

44

45

46

47

48

49

42

43

44

45

46

47

48

49

42

43

44

45

46

47

48

49

Core Peripheral Unclassified

20
15

−
01

−
12

20
15

−
02

−
23

20
15

−
04

−
06

20
15

−
05

−
18

20
15

−
06

−
29

20
15

−
08

−
10

20
15

−
09

−
21

20
15

−
11

−
02

20
15

−
12

−
14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T
im

e

Proportion of Links Sent from one Developer Class to the Other

D
ev

el
op

er
 C

la
ss

 to
 w

hi
ch

 th
e

Li
nk

s
ar

e
S

en
t

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 In
te

ra
ct

io
n

Fi
g.

4.
17

R
el
at
iv
e
Ed

ge
C
la
ss

Fr
eq
ue
nc
y
Ev
ol
ut
io
n
in

C
hr

om
iu
m

4.12 Class Interaction during the Release Cycle (H3.5) 69

42

43

44

45

46

47

48

49

42

43

44

45

46

47

48

49

42

43

44

45

46

47

48

49

CorePeripheralUnclassified

2015−
01−

12
2015−

02−
23

2015−
04−

06
2015−

05−
18

2015−
06−

29
2015−

08−
10

2015−
09−

21
2015−

11−
02

2015−
12−

14

0

200

400

600

8000

200

400

600

8000

200

400

600

800

T
im

e

Number of Links Sent from one Developer Class to the Other

D
eveloper C

lass to w
hich the Links are S

ent
(Local E

igen−
C

entrality C
lassification, 3 m

onths)
C

ore
P

eripheral
U

nclassified

D
eveloper C

lass Interaction

Fig.4.18
A
bsolute

Edge
C
lass

Frequency
Evolution

in
C
hrom

ium

70 Chapter 4 Results

release_0_10_0

release_0_6_0

release_0_7_0

release_0_9_0

v0.10.0

v0.11.0

v0.12.0

v0.13.0

v0.14.0

v0.15.0

v0.2.0 v0.3.0 v0.4.0

v0.5.0

v0.6.0

v0.7.0

v0.9.0

v1.1.0

v1.3.0

v1.5.0

v1.6.0

v1.7.0

v1.0

v1.2.0

v1.4.0

v2.0.0

v2.1.0

v2.2.0

v2.3.0

v2.4.0

v2.5.0

v2.6.0

release_0_10_0

release_0_6_0

release_0_7_0

release_0_9_0

v0.10.0

v0.11.0

v0.12.0

v0.13.0

v0.14.0

v0.15.0

v0.2.0 v0.3.0 v0.4.0

v0.5.0

v0.6.0

v0.7.0

v0.9.0

v1.1.0

v1.3.0

v1.5.0

v1.6.0

v1.7.0

v1.0

v1.2.0

v1.4.0

v2.0.0

v2.1.0

v2.2.0

v2.3.0

v2.4.0

v2.5.0

v2.6.0

release_0_10_0

release_0_6_0

release_0_7_0

release_0_9_0

v0.10.0

v0.11.0

v0.12.0

v0.13.0

v0.14.0

v0.15.0

v0.2.0 v0.3.0 v0.4.0

v0.5.0

v0.6.0

v0.7.0

v0.9.0

v1.1.0

v1.3.0

v1.5.0

v1.6.0

v1.7.0

v1.0

v1.2.0

v1.4.0

v2.0.0

v2.1.0

v2.2.0

v2.3.0

v2.4.0

v2.5.0

v2.6.0

Core Peripheral Unclassified

20
04

−
01

−
01

20
06

−
01

−
01

20
08

−
01

−
01

20
10

−
01

−
01

20
12

−
01

−
01

20
14

−
01

−
01

20
16

−
01

−
01

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T
im

e

Proportion of Links Sent from one Developer Class to the Other

D
ev

el
op

er
 C

la
ss

 to
 w

hi
ch

 th
e

Li
nk

s
ar

e
S

en
t

(L
oc

al
 E

ig
en

−
C

en
tr

al
ity

 C
la

ss
ifi

ca
tio

n,
 3

 m
on

th
s)

C
or

e
P

er
ip

he
ra

l
U

nc
la

ss
ifi

ed

D
ev

el
op

er
 C

la
ss

 In
te

ra
ct

io
n

Fi
g.

4.
19

R
el
at
iv
e
Ed

ge
C
la
ss

Fr
eq
ue
nc
y
Ev
ol
ut
io
n
in

Q
em

u

4.12 Class Interaction during the Release Cycle (H3.5) 71

Overall, we did not observe any release-specific patterns in the class
interaction. We observe a compartively high stability in the group-
specific communication-partner preferences either for the entire ob-
served project history or for the general project phases. Although we
did see core-specific changes in the preference of core members as com-
munication partners, these did not usually correspond to specific points
in the release cycle. In some cases, we observed increases in core-core
communication before releases but these seem like random fluctuation
instead of consistent changes in activity. We draw this conclusion be-
cause the phenomenon occurred rather seldomly, we could not observe
it consistenly in any single project, and there were generally as many
release cycles where we could observe the inverse effect, i.e., a decrease
in core-core communication prior to a release. These results do not
change qualitatively when considering the absolute numbers as activity
indicator. All things considered, we reject H3.5.

72 Chapter 4 Results

5
Discussion

We begin this section by discussing our findings. In Section 5.1, we break
our results down by the research question they pertain to. Furthermore, we
disclose possible threats to the internal as well as external validity of our
study in Section 5.2.

5.1 Discussion of our Findings

In the following, we discuss our findings regarding the three research ques-
tions we defined in Section 3.1.

5.1.1 Research Question 1

In RQ1, we investigate with developers from which group core, peripheral,
and unclassified project members communicate primarily. Our hypotheses
concerning this research question are the following:

H1.1: Peripheral developers as well as core developers
prefer core contributors as communication partners.

[Accepted]

H1.2: In a majority of e-mail threads, at least one core
developer participates.

[Accepted]

H1.3: In a typical e-mail thread, no more than three dif-
ferent peripheral developers participate.

[Accepted]

Our results support previous findings [16] which indicate considerable
size differences between the project core and the periphery. In no subject
project, did we observe that the project core made up more than a quarter
of mailing-list contributors. Surprisingly – considering we investigate the
primary development mailing list whose proclaimed purpose is the discussion
of development issues between code contributors [11] – all subject projects
were characterised by a very large proportion of non-developers as mailing-
list contributors. This proportion ranges from circa 40 % in Wine to an
extremely high 90 % in OpenSSL. These results fit in with prior research
which indicated that development mailing lists do not primarily discuss
matters pertaining to the software development [11].

The involvement of peripheral developers on the mailing list seems to be
very project-specific as we observe some projects with almost no peripheral
developers in the mailing-list community, whereas the periphery makes

73

up more than a third of the mailing-list contributors in others. The level
of involvement of the periphery seems to be linked to the communication
guidelines of the project in question, i.e., whether the mailing-list discussions
are supplemented with other channels of communication. In projects which
rely on issue trackers or features of the hosting platform, e.g., Django,
we observe comparatively little peripheral involvement on the mailing list,
although the core involvement on the mailing list seems relatively unaffected
by this phenomenon. This could indicate that core members will be active
on the mailing list in any case, e.g., in their form as coordinators as well as
making announcements, but that the discussion of implementation details,
in which the periphery is usually involved, is moved to other channels of
communication.

We observe that all contributor classes in all casestudies show a clear
preference for core members as communication partners. This finding sup-
ports prior research which indicated that the core is the project’s leadership
structure which takes on a coordinating role in the developer community [17,
8]. In addition, this pronounced preference indicates that core members are
valued by all groups in the developer community, e.g., due to their possible
role as advice-givers and project coordinators. Additionally, peripheral and
unclassified members might communicate with core developers to affect fu-
ture project decisions over which the core exerts considerable influence [16].
Generally, we observe that the project core is not only characterised by a
higher level of activity regarding source-code contributions, but also seems
to show structural differences in their communication due to their role. Our
findings could be an indicator that all participant groups are conscious of the
status and role of core members and, thus, prefer them as communication
partners.

Moreover, we observe that core members have the possibility to shape
the project communication considerably, as they are present in almost all
threaded mailing-list discussions: Threads without any core involvement are
very rare amounting for less than a third of communication in ten of our
eleven subject projects. This is especially notable due to the little absolute
number of core contributors. This finding supports the assumption that
core members are valued advice-givers and that – due to their role in the
project leadership structure and their extensive knowledge regarding the
project architecture [16, 8] – their opinion is needed or helpful in most
project discussions. The one project which exhibits considerably less core
involvement in the mailing-list threads, OpenSSL, might differ so strongly
because there are extremely few core members on the mailing list. In fact,
it is notable that, given that only 5% of mailing list contributors are part
of the project core, most threads still contain at least one core participant.
This could be interpreted as an indicator for the great importance of core
developers on the mailing list.

As we seldomly observe more than one core developer in a thread, we
hypothesise that this might be due to the fact that separate, possibly private
communication channels are used for communication among core members.

74 Chapter 5 Discussion

Additionally, this tendency might indicate that one core developer is usually
sufficient for giving advice and coordinating in a ML-thread. In all subject
projects, we find that more than three quarters of threads contain two core
developers or less. However, this effect might be partly explained by the short
threads (see Figure A.4) and especially by the small number of developers
per thread (see Figure A.3).

Peripheral involvement in the threaded discussions, however, is very lim-
ited as peripheral developers only contribute to less than a third of mailing-list
threads in all subject projects. Even in the cases in which a the periphery
does participate in a thread, it happens only very rarely that more than two
members of the periphery contribute to the same thread. This might indicate
that peripheral members often use threads to ask questions which are, then,
answered by core members. In general, it seems as though there is little
discussion among the members of the periphery. One possible explanation
for this phenomenon is the fact that peripheral developers usually do not
possess extensive knowledge regarding the general system architecture and,
thus, cannot contribute much to implementation-related discussions.

The non-developers’ level of involvement on the mailing list varies greatly
between different casestudies. We find that, in some projects, unclassified
contributors significantly mark the project communication, e.g., OpenSSL, in
which a majority of threads contains at least three different non-developers.
In others, such as Ffmpeg, three quarters of threads are completely without
non-developer participation and even in cases of unclassified involvement,
we seldomly observe multiple non-developers in one thread. Similar to
the peripheral involvement, tendencies seem to be strongly linked to the
communication guidelines in the channel.

As in our example above, we observe that Wine – a project with rather
traditional communication guidelines which mainly uses the mailing list
to discuss development-related matters and patches – is characterised by
comparatively little involvement of non-developers on the mailing list. In
this particular case, one reason for the relatively small proportion of non-
developers might be that end users are explicitly encouraged to use other
forums provided on the Wine-website [32]. In Django’s mailing list, we
observe a comparatively high involvement of non-developers. Investigating
possible reasons for this phenomenon, we find that, although users are
discouraged from posting support questions to the mailing list, there is no
mailing list or forum dedicated to feature requests and bug reports and, thus,
the development mailing list is the primary communication channel to which
these issues are posted [24].

Additionally, the proportion of non-developers might not only indicate the
general orientation of the mailing list, but could also be an indicator of the
treatment of mailing-list-only contributors. For instance, a very small number
of non-developers in threads might indicate that the project follows very
strict commnication guidelines and non-developers receive no answers to
their postings because they post to the wrong list and, thus, these unanswered
threads are filtered out in our analysis.

5.1 Discussion of our Findings 75

Interestingly, the developer classes’ proportions, i.e., the relative frequency
of the classes, seem to affect the projects beyond the mere composition of
the developer community: we observe structural differences between the
communication in projects with comparatively little proportions of unclassi-
fied contributors and those in which the mailing-list community contains a
great number of non-developers. In OpenSSL, which is characterised a very
low proportion of developers, the preferences for core members as well as
peripheral members are higher than in other projects. Similarly, we observe a
comparatively little preference for core members in Wine – a project whose
mailing-list community contains quite a large proportion of core members.
This projects exhibits a core preferences that are only half as strong as the
median core preferences of all projects. Thus, it seems as though the pref-
erence for core members is especially pronounced when there are only few
core members on the mailing list. Based on our data, we cannot draw any
conclusions of whether this is due to a higher level in activity of these few
core members, to the scarcity of members with project expertise, or to an
effect we have not yet considered.

5.1.2 Research Question 2

InRQ2, we pose the question of how core-core, core-peripheral, and peripheral-
peripheral communication episodes differ in longevity and intensity. We
formulated the following hypotheses:

H2.1a: Communication between a core developer and a
peripheral developer tends to be short-lived.

[Rejected]

H2.1b: Core-peripheral communicationmay be intensive. [Rejected]
H2.2a: Communication among core developers is com-
paratively long-lived.

[Accepted]

H2.2b: Core-core communication may vary in intensity. [Rejected]
H2.3: Communication among peripheral developers is
rather short-lived.

[Accepted]

In general, we observe surprisingly high communication longevities: When
considering only the communication episodes with multiple interactions,
i.e., the episodes for which a real longevity could be computed, the typical
communication episode has a longevity of more than 1 week in all eleven cas-
estudies. In ApacheHTTP, we even find a typical communication longevity
of more than 1 month. However, within projects, we see very pronounced
differences in the communication between different classes. This serves as
another indicator that there are structural differences between the participant
classes. In addition, it might indicate that one developer might adapt his/her
behaviour to the class of his/her communication partner.

When comparing core-peripheral communication to the overall project
communication, we do not generally find the former to be of smaller longevity
or higher intensity than the latter. In most cases, we observe quite a strong

76 Chapter 5 Discussion

inverse effect. However, there are some subject projects which support our as-
sumptions. These results do not change qualitatively when considering only
communication episodes with multiple interactions or using a different inten-
sity metric. Interestingly, we do not see any universal tendencies regarding
core-peripheral communication longevity. The effects we do observe are very
project-specific and, hence, might indicate that the involvement and treat-
ment of peripheral developers varies greatly between different OSS projects.
However, our assumptions hold when comparing the core-peripheral com-
munication to the core-core and peripheral-peripheral communication as
explained below.

These results can be partly explained by the fact that we underestimated
the significance of unclassified developers in the mailing list. In fact, it seems
natural that all communication episodes among code contributors would
be of greater longevity than communication among non-developers due to
the fact that non-developers will not usually discuss implementation details
and are possibly not as involved in long-lived discussions concerning parts
of the system architecture as well as the project’s future. As the project
core and periphery might have a stronger link to the project due to their
personal involvement in the project in the form of code contributions, we
would expect their participation in the mailing list to be longer than that
of non-developers. This is one possible factor that could explain why all
communication among developers is comparatively long-lived.

In addition, we find that communication among core developers ismarkedly
more long-lived than the general project communication. This phenomenon
can be observed regardless of whether a filtering of multi-interaction episodes
is applied. The effect is visible regarding typical communication episodes,
rather short-lived episodes, and – to some extent – longer episodes, i.e.,
the 0.5, 0.25, and 0.75 quantile, respectively. However, it is especially pro-
nounced consdering the 0.25 quantile. Based on these results, we draw the
conclusion that the typical minimum duration of a core-core communication
episode greatly exceeds that of general communication episodes.

One possible explanation is that a pair of core members who communicates
once may either be involved in a general discussion regarding the project,
e.g., future plans, which may last for a relatively long time, or they might
work on overlapping parts of the system. Due to the longterm involvement
of core members it seems likely that they each have their areas of expertise
and certain parts of the software on which they concentrate. Thus, if two core
members coordinate their efforts once and their responsibilities typically
do not change, this would explain that this pair of developers needs to
communicate again and again over the project history as their respective
parts of the system are most likely linked and they need to coordinate before
and during possible changes in the code and architecture.

Peripheral-peripheral communication episodes are generally characterised
by their comparative brevity. It seems as though communication among
members of the periphery is especially strongly affected by communication
episodes with only one interaction. Nonetheless, even when filtering out

5.1 Discussion of our Findings 77

these short episodes, peripheral-peripheral communication is significantly
shorter than the general project communication. Thismay be partly explained
by the little proportion of threads in which multiple members of the periphery
participate (see Section 5.1.1). In addition, it seems likely that members of
the periphery do not need to coordinate over a long period of time as they
typically do not contribute code for long time spans. In addition, they usually
do not change big parts of the system architecture and, thus, their work
requires little coordination. In the cases in which peripheral developers need
coordination and guidance concerning their contributions, it seems more
likely that they approach knowledgeable core members than other peripheral
developers.

We gain additional insights into the behavioural differences between the
two developer classes – the core and the periphery – when comparing the
different kinds of communication among developers. Most interestingly, we
find that core-core communication episodes are generally more long-lived
than core-peripheral communication which is, in turn, of greater longevity
than peripheral-peripheral communication. Thus, although not all the as-
sumptions we formulated in RQ2 hold when comparing communication
among developers to the general project communication, we observe that
they are supported by our results when filtering out communication in which
non-developers participate. These findings indicate that – regardless of the
project-specific involvement of ML-only contributors – the structural differ-
ence as well as the hierarchy between the project core and periphery seem
to remain stable in the mailing-list communication.

Considering the communication intensity, we observe two contrary ten-
dencies: In two thirds of our subject projects, peripheral-peripheral communi-
cation episodes are the most intensive, whereas, in the remaining casestudies,
core-core communication is of the greatest intensity. These results do not
change qualitatively when using mails instead of links as metric of inten-
sity. Interestingly, these results not only concern the typical communication
episodes but are consistently reflected in the distributions of core-core, core-
peripheral, and peripheral-peripheral communication intensity. Hence, it
seems as though there are two classes of projects, which differ greatly in the
nature of the peripheral mailing-list involvement.

The possibility that core developers communicate in a more concise man-
ner and – opposed to peripheral members – do not typically need repeated,
iterative advice on implementation decisions, could be one reason for the
comparatively little intensity of core-core communication in most subject
projects. Peripheral-peripheral communication episodes may be relatively
intensive as the participation of peripheral developers may be marked by
relatively short and irregular, but intensive bouts of activity which are re-
flected in the communication among members of this group. In addition,
we deem it likely that peripheral developers, which typically do not hold
roles of coordinating other developers’ contributions, communicate primarily
when they work on parts of the system that are closely linked. Thus, the
rare occasions when pairs of peripheral developers do communicate, they

78 Chapter 5 Discussion

communicate intensively as they adapt their respective changes in the source
code using repeated feedback from each other.

In addition, we found that, in a majority of projects, variance in the inten-
sity of core-core communication episodes is significantly smaller than not
only the variance in total-total intensity but also than the corresponding value
for the core-peripheral as well as the peripheral-peripheral communication
episodes. Interestingly, the cases where the core-core communication seems
more varied are those cases which showed anomalies concerning the general
distribution of the core-core communication compared to the project-wide
values. Thus, this supports above-mentioned thesis that few casestudies are
characterised by structurally different patterns in the communication among
their developers.

Although there are a few exceptions to this rule in which core-core inten-
sity variance exceeds that of total-total communication, we observe relatively
little variation in the core-core communication intensity in a majority of our
casestudies. This comparatively small variation might be an indicator of a
possible homogeneity of the core group: As core members are characterised
by a prolonged involvement in the OSS project, they likely adapt to project
norms regarding not only the code contribution but also the communication
with other project members. This would set them apart from the periphery
and especially the unclassified members and is a possible explanation as
to why interactions among them are marked by a greater uniformity than
core-peripheral, peripheral-peripheral, or general contributor interactions.

Moreover, the fact that inter-project differences in typical communication
longevity manifest less strongly in core-core communication than in the
other forms of communication may indicate that a certain uniformity not
only exists concerning the core developers within a project, but even across
different OSS projects. Possible explanations for this phenomenon are their
general role in the project leadership structure and as coordinators [16], which
favour – or even necessitate – certain behaviours when communicating.

5.1.3 Research Question 3

In RQ3, we investigate to what extent the three developer classes contribute
to the total communication activity. In addition, we analyse whether we
can observe any changes over the course of a release cycle. We analyse the
following hypotheses:

5.1 Discussion of our Findings 79

H3.1: Code contributors are more active regarding the
average number of mails written than mailing-list-only
contributors.

[Accepted]

H3.2a: Core developers write a majority of e-mails. [Rejected]
H3.2b: The project core initiates more than 50 % of
mailing-list threads.

[Rejected]

H3.3: The number of e-mails written by core developers
increases significantly prior to a release.

[Rejected]

H3.4: Peripheral communication activity spikes during
the beginning and end phase of the release cycle.

[Rejected]

H3.5: Core-core communication increases in the time
period prior to a release.

[Rejected]

We observe that the activity level measured via code contributions is
strongly reflected in the mailing-list activity. We find a universal tendency
for core members to be more active than peripheral members with regards
to mails as well as to the initiation of threads.

Considering the activity of an average class member, our findings support
the existence of a strict hierarchy of activity in which core members domi-
nate peripheral members and in which non-developers are the least active
contributors. This result is visible in all subject projects when considering
mails as measure of activity. Even when considering the number of threads
initiated, we find this same hierarchy in all but one casestudies. Hence, we
observe that – as indicated by previous findings [1] – source-code activity
and mailing-list contributions are strongly correlated.

When investigating the proportion of mails as well as threads that each
class contributes, we observe slightly different results. We find that the core
is universally the most active contributor class. However, core developers are
usually not responsible for more than 50 % of messages posted to the mailing
list. This finding can be explained via the small number of core developers.
Considering that the proportion of core members is always smaller than 25 %
in our casestudies – mostly around 15 % – these high proportions of core
mails are actually another indicator for the great activity level and importance
of the project core in the mailing-list community.

Using the initiation of mailing-list threads as activity measure, we observe
very different results: In a majority of our casestudies, non-developers initiate
more threads than the project core and the periphery. In six of our eleven
casestudies, ML-only contributors even initiate the bulk of threaded mailing-
list discussions. Nonetheless, some cases remain where core developers
significantly dominate the other developer classes with regard to the number
of threads inititated. The cases of strong core thread initiation seem to be
linked, not only to the proportion of core members on the mailing list –
as in the example of Wine – but also to the orientation of the mailing list.
One example for the latter is Ffmpeg which explicitly directs users to a user-
specific mailing list and provides a separate list for bug reports [9]. Thus, the
development mailing list is intended exclusively for matters of development

80 Chapter 5 Discussion

and the submission of patches. It is possible that misplaced messages by non-
developers do not receive answers and are, thus, filtered out for our analyses,
explaining why the remaining threads are, for the most part, initiated by
developers and particularly core members. Therefore, whether core members
or non-developers dominate the mailing list with regard to the number of
threads initiated can possibly serve as an indicator for the orientation and
actual usage of the mailing list.

In addition to the aggregated data we considered in RQ1 and RQ2, we
adopt an evolutionary perspective in the investigation of RQ3. Interestingly,
we find that the classes’ proportion of contributions as well as the specific
preferences of different groups as communication partners seem to be project-
specific, differing considerably among our casestudies, but remaining very
stable within projects. Although we observe two projects in which this stable
phase only comes into play after a certain time or is lost at one specific
point in time, we generally find that – within phases which last more than
1.5 years in our subject projects – these stable phases exist in all our subject
projects. Thus, the interaction preferences and the levels of activity seem to
be characteristic of the specific OSS project. Interestingly, the changing of
phases seems to be linked to releases, perhaps due to explicit changes, e.g.,
in the OSS project organisation or the communication guidelines.

We do not observe any universal, release-specific patterns. This might be
due to the release systems in our eleven subject projects varying too greatly.
Nonetheless, in most projects, our data does not indicate any recurring
tendencies regarding activity or interaction patterns which could be linked
to releases. Although some small, recurring fluctuations in core preferences
can be observed, these do not seem to be regular in the context of the release
cycle.

However, in several projects, we find a semi-regular, recurring rise in core
activity about 2 weeks to 4 weeks after a major release. It seems likely that
this phenomenon is linked to a coordination phase in which core developers
plan for the next release, e.g., considering which features out of a multitude
of suggestions might be included in the next version and setting a general
schedule for the next release. In addition, we observe a decline in the core
communication activity towards the end of a release cycle in several cases.
One possible explanation of this phenomenon is the assumption that less
coordination is necessary towards the end of a release cycle. For instance,
most projects perform a feature freeze at one point in the release cycle after
which no more features are added to the current version. After this feature
freeze, only bugfixes are applied but the integration of new features which is
likely linked to extensive discussions involving the project core, is finished.
Nonetheless, these two effects only occur in some release cycles and do
not seem like a universal phenomenon. Thus, the assumption that they are
manifestations of how the release cycles affect the project communication
seems unconvincing.

We observe the strongest tendencies of such, possibly release-specific, ef-
fects in projects with very rigid, regular release schedules, such as Chromium.

5.1 Discussion of our Findings 81

In this particular project, we observe two phenomena, one of which affects
all groups in equal measure and one which mainly shapes peripheral activity.
However, these effects do not correspond to general changes in phases of the
cycle but only affect two very specific points in the course of a release cycle.

All things considered, our data is not sufficient to substantiate any claims
of release-specific, regular changes in activity and interaction patterns. Al-
though we observe some single cases where the communication may be
affected by certain points in the release cycle, the general evidence does not
seem convincing.

5.2 Threats to Validity

In this section we discuss threats to the internal and external validity of our
empirical study.

5.2.1 Internal Validity

The threats to the internal validity of our study mainly relate to the choice of
our independent variables.

The most significant possible problem might be our choice of data sources.
We analyse the primary development mailing list because it constitutes an
archive of the project communication. The mailing list has historically been
considered the hub of project communication [8, 11] and is generally where
newcomers’ first interaction with the project community takes place [13].
Therefore, it should still be of considerable importance to the project com-
munication even in projects that supplement the mailing list with other
communication channels.

Nonetheless, most projects have several mailing lists for different pur-
poses [16]. We choose to analyse the primary development mailing list as we
want to study the communication and coordination of the code contributors
on the mailing list which should traditionally take place on the primary de-
velopment mailing list. However, there may be several development mailing
lists, e.g., one mailing list for patches and one exclusively for core mem-
bers regarding the planning of releases, on which developers communicate.
Even when considering projects with strong mailing lists that follow more
traditional communication guidelines, core developers may communicate
over private channels. Nevertheless, since we mainly investigate the interac-
tion between core and peripheral developers, this phenomenon should not
substantially distort our findings.

A further possible problem concerning the choice of the primary develop-
ment mailing list as data source is that its actual usage may not reflect its
declared intent. Prior research has shown that a great proportion of mes-
sages posted to the development mailing list may not actually pertain to the
project development [11]. We mitigate this risk by excluding threads which
did not receive any answers from our thread-level analyses as these most
likely did not consist of veritable developer communication but automated
or misplaced messages.

82 Chapter 5 Discussion

The second important problem concerns our choice of classification metric.
We choose to classify developers based on VCS-data. As the VCS is an
integral part of the OSS software-engineering process, its data should not be
significantly corrupt [16]. We operationalise the notion of core and periphery
–which has been extensively analysed in prior research, e.g. [16, 17, 8, 29, 10] –
via the network-based eigencentrality metric. Other research has shown that
this approach accurately reflects developers’ perception of project roles [16].
Moreover, we additionally performed all analyses using a commit-count-
based classification and did not generally observe significant differences
compared to our findings.

Our choice of three-month windows for the local classifications is well-
founded as prior research has indicated that networks constructed using this
time window accurately reflect developers’ perception of the community
without obfuscating temporal details [16, 17]. We mitigate the risk that some
core developers no longer provide source-code contributions but hold roles as
coordinators and advisors on the mailing-list by including longterm mailing-
list-core members in the core group. This term designates the developers
that are classified as core based on the mailing-list data over a timespan of at
least half the analysed project history or alternatively three years in total.
Some source-code core developers may not contribute to the mailing list,
but – as prior research has shown that core developers usually hold roles
as coordinators in the projects instead of merely being the most active code
contributors [8] – their effect on our findings should be negligible.

The third threat to the internal validity of our study concerns our con-
struction and analysis of communication episodes. The most significant
possible problem is the choice of 7 days as communication window thresh-
old. Although we choose this value based on the temporal distances between
subsequent messages of e-mail threads (as shown in Figure A.5), this value
might not be an accurate indicator of the typical temporal distances between
pair-wise communication. In addition, we could have chosen project-specific
thresholds to guarantee more fine-granular results. This is an important
aspect to consider for future work. However, as the temporal distances did
not majorly differ among our 11 subject projects, our chosen threshold should
not greatly bias our results.

In addition, we consider communication episodes spanningmultiple threads.
Although developer interactions over multiple threads may not necessarily
pertain to the same topics, they link the same developers and are both part
of the communication between these pairs of developers. Thus, our choice
of multi-thread communication episodes is intentional as we do not want to
perform a thread-level abstraction of developer communication. In addition,
measures of longevity would be highly skewed when considering interac-
tions for different threads separately, as the typical threads are not of great
longevity (see Figure A.4). Hence, this choice fits our research questions
better than performing thread-level abstractions.

Misplaced messages, e.g., user questions posted to the wrong mailing list,
as well as automated messages, e.g., by the continous build system, could

5.2 Threats to Validity 83

theoretically distort our results. However, as we apply a filtering to the
threads removing all those that did not receive any answers – a condition
which should apply to misplaced as well as automated messages – we expect
their influence on our findings to be negligible.

Our findings might be biased – especially concerning communication
among peripheral members – by the great number of communication episodes
with only one interaction which distorts our measure of longevity. We
mitigate this risk by separately analysing only communication episodes
which contain more than one interaction and comparing these results to
our findings. In general, this filtering process only quantitatively alters
our results while the tendencies we observe, i.e., the qualitative findings,
remain stable. We employ a similar approach to guarantee that our measure
of intensity is valid: As one e-mail in a very long mailing-list thread may
produce several edges between a pair of developers and, hence, distort our
results of communication intensities, we compare our results considering
link-based intensity with the corresponding data using a mail-based intensity
metric.

Another possible way in which especially long mailing-list threads may
bias our results is our network construction mechanism. We do not use
any form of communication decay, i.e., we consider that two participants in
thread interact even if their respective contributions are several weeks apart.
Although this is admittedly a threat to the validity of our findings, its effect
should not be significant as most threaded mailing-list discussions in our
subject projects are very short (see Figure A.4) and subsequent contributions
to a thread are seldomly more than 24 hours apart (see Figure A.5). Thus, our
assumption that even the last message in a thread represents an interaction
of its author with the initiator of the thread generally seems justified in the
projects we investigate.

Undoubtedly, temporary fluctuations may distort our findings. We miti-
gate this threat by analysing at least 1 year of activity for each subject project.
In addition, we analyse more than 13 years of activity for 4 subject projects
– ApacheHTTP, Busybox, OpenSSL, and Qemu – which did not generally
produce different results than our casestudies with shorter analysed histo-
ries. Thus, the distortion of our results by temporary fluctuations should be
insignificant.

5.2.2 External Validity

Themain threat to the external validity of our findings is the problem that our
subject projects might not be representative of the entirety of OSS projects.
We only choose relatively established projects with at least one year of
development and mailing-list history as we would otherwise not be able
to rule out that our results are produced by temporary fluctuations. In
addition, we only analyse OSS projects with comparatively large developer
communities as outliers and single events in small developer communities
might skew the results for the whole project due to the small number of

84 Chapter 5 Discussion

developers and, thus, interactions. Thus, our results may not be relevant for
less mature or very small OSS projects.

Prior research indicates that OSS may not be seen as one universal phe-
nomenon but that considerable differences between the projects exist [7].
Hence, the findings we achieved for our eleven casestudies may not be rep-
resentative of the entirety of OSS development. We mitigate this problem
by choosing a very diverse set of 11 casestudies. As shown in Section 3.4,
the projects vary considerably in size, domain, technology, source-code ac-
tivity, mailing-list activity, version control system, release system, and the
communication guidelines on the mailing list. Thus, our findings should not
be significantly biased.

5.2 Threats to Validity 85

6
Conclusion

In the following, we conclude our work by summarising our study design and
our findings as well as presenting suggestions for future work and possible
enhancements of our study.

6.1 Summary

In this thesis, we conducted a long-term, empirical study of the mailing-list
communication in eleven OSS projects. We focused on investigating how
source-code activity is reflected in the interactions on the project’s primary
development mailing list. We used a network-based eigencentrality metric
to classify developers into core and periphery based on their contributions
to and specifically their collaboration in the project’s source code. Using
these developer roles, we analysed how the differences in the project core,
the periphery, and the non-developers manifest in their activity level as well
as the characteristics of their communication in the mailing list on the basis
of e-mail social networks. We used not only an aggregation of the entire
project-history data but additionally provided a fine-granular, evolutionary
perspective of the interactions on the mailing list.

With regards to the composition of the mailing-list community, we ob-
served considerable size differences between the classes. Most notably, only a
very small proportion of mailing-list contributors was classified as core mem-
bers. In all subject projects, surprisingly large numbers of non-developers
participated even though we analysed development mailing lists. The involve-
ment of peripheral developers in the mailing list seemed to be very project-
specific and was apparently strongly linked to whether other communication
channels were used in the project. In general, we observed pronounced
differences between the developer groups which not only pertained to their
activity levels but also strongly affected their preferences regarding com-
munication partners and the characteristics of the communication episodes
among them.

Considering the communication-activity levels of the different developer
groups, we found a strict hierarchy of the activity of an average member
indicating that core members dominated peripheral members which, in turn,
exhibited higher levels of activity than non-developers. This hierarchy was
very pronounced when using mails as indicator of activity and still visible
when considering the number of threads started as measure of activity. In
addition, the proportion of mails written by the project core exceeded the

87

corresponding values of the periphery as well as of the non-developers.
However, there seemed to exist two classes of projects regarding the initiation
of threads: In a majority of our casestudies, ML-only contributors were the
most active group with regards to threads and initiated the bulk of the
threaded mailing-list discussions. Nonetheless, in other projects, the project
core surpassed the other contributor groups concerning the inititation of
threads. This phenomenon was possibly linked to the orientation of the
mailing list, e.g., whether end users are encouraged to participate in the form
of feature requests and bug reports.

In addition, core members were present in almost all threaded mailing-list
discussions which might be an indicator of their role as coordinators and
advisors. However, we rarely observed a thread with more than one core par-
ticipant which supports the assumption that core-core communication might
take place on private channels. Peripheral involvement in the mailing-list
threads was extremely limited. Interestingly, we found that the involvement
of non-developers was very project-specific. In some cases, we observed that
ML-only contributors could significantly shape the project communication
as multiple non-developers were present in a majority of threads. Similar to
the composition of the mailing-list community, this phenomenon seemed
to be correlated to the orientation of the development mailing list and the
existence of other communication channels.

Above-mentioned differences manifested not only in the composition of
the community and the classes’ activity, but also created structural differences
in the communication: Although we observed a very pronounced preference
for core members as communication partners in all contributor classes in all
eleven subject systems, the distinctness of this preference seemed to vary
based on the involvement of the three classes. In general, this preference
indicated that all contributors were conscious of the role and status which
the project core holds.

To investigate pair-wise communication, we introduced the notion of com-
munication episodes which correspond to prolonged, connected episodes of
communication between two developers, possibly spanning multiple threads.
Considering these communication episodes, we found that core-core com-
munication was generally significantly more long-lived than core-peripheral
communicationwhich is, in turn, of greater longevity than peripheral-peripheral
communication episodes. This phenomenon indicated that, regardless of the
project-specific involvement of non-developers, the structural differences
between the project core and the periphery remained stable across different
projects.

We found two classes of projects based on communication intensity: In
most of our subject projects, peripheral-peripheral communication exhibited
the highest intensity. Nonetheless, in a few exceptions, core-core communi-
cation was of the highest intensity, indicating that communication patterns in
different OSS projects vary greatly in the nature of the peripheral mailing-list
involvement. In addition, most intra-project and inter-project differences,
e.g., in communication longevity, manifested less strongly in core-core com-

88 Chapter 6 Conclusion

munication than in other forms of communication indicating that the core
group might be comparatively homogenous and that the interactions among
them might share certain characteristics across different projects.

Considering the evolution of the project communication, we found that
patterns in activity as well as interaction between the groups, such as prefer-
ences for communication partners – although varying greatly across projects
– were very stable over time within a project. We observed long-lasting
phases during which these characteristics only showed slight fluctuations.
Although this stability was lost, respectively found, with one specific release
in two of the projects we investigated, it seemed to affect all subject systems.
Thus, the classes’ interaction as well as their levels of activity seemed to be
a project characteristic which was not considerably affected by temporary
fluctuations. Although we observed some tendencies that might indicate an
influence of the release-cycle on the project communication, we did not find
significant recurring effects that could be definitely linked to the releases.

In summary, we showed that – although some characteristics of the project
communication seemed to be linked to the orientation of the mailing list
– the structural differences and the relation between the project core and
the periphery manifested in similar ways in our subject projects. In general,
the differences in source-code activity were strongly reflected in the level
and nature of mailing-list contributions. In addition, the core group did not
only show greater homogeneity within a casestudy but also seemed to share
some characteristics across different OSS projects. Interestingly, class activity
levels and interaction preferences were project characteristics but stayed
consistent within a project during long-lived phases.

6.2 Future Work

It would be a valuable extension of this work to deepen the evolutionary
perspective we adopted in RQ3. We plan to apply the evolutionary analyses
to the class activity level as measured in the number of threads initiated
in addition to the mail-based analysis we performed in this work. As we
observed that communication patterns generally stay stable over long-lasting
phases, the analysis of what prompted changes at specific points in time
would be interesting. In addition, one could investigate the two projects in
which this stability was lost, respectively found: Questions such as “What
prompted these changes? How did they affect the content of the mailing list
as well as the quality of source-code contributions?” would give valuable
insights into how the communication structure adapts to coordination needs
in the project. Additionally, further research into the release-specific patterns
we observed in Chromium, particularly a quantitative analysis of these
effects, might be interesting. The release-specific analyses could be extended
to more OSS projects – especially those with rather rigid release schedules –
to investigate whether any other, possibly project-specific, effects linked to
the releases can be found.

6.2 Future Work 89

We plan to give more context to our results by examining not only what
proportion of mailing-list contributors belongs to the project core or periph-
ery but to investigate what percentage of the code contributors who are
classified as core, respectively peripheral, are actually active on the mail-
ing list. Moreover, in future work, we plan to investigate over how many
threads a pair of contributors typically communicates over the course of one
communication episode. An extension of our findings regarding communica-
tion intensity by using a finer metric of intensity – e.g., one which is not as
strongly linked to the duration of the episode but reflects the evolution of
the intensity over the course of the communication – could provide valuable
insights. Verifying our results by using variable communication-episode
time windows, in particular project-specific ones, could show whether our
findings are supported when a different perspective vis-à-vis what constitutes
ongoing communication is adopted.

In addition, as we have foundmost threads to contain very few contributors,
an analysis of the characteristics as well as of the content og particularly
long threds would be interesting: Hypotheses such as “In especially long
threads, the proportion of core members is comparatively high.” could be
investigated. Similarly, work that studies whether there are any pairs of
developers that communicate very intensively and to which groups they
belong could give valuable insights into the structure of the projects’ mailing-
list communities. In general, a study of the frequency of interaction for
each communicating pair of developers, i.e., in how many communication
episodes with one another they are involved, could be interesting.

As more and more projects use different communication channels, it would
be valuable to replicate or combine our analyses with bugtracker data as
foundation for the construction of the communication networks used in this
study. A market-basket analysis, i.e., considering frequent subsets instead of
only pairs of contributors, would constitute a valuable extension of this thesis,
allowing us to perform a group-level abstraction of communication patterns.
Lastly, an extension of our work by considering not only the number of mails
written but instead quantifying messages’ importance by weighing mails
according to their size or even using natural language processing to gain
insights into the content of the communication would be interesting.

90 Chapter 6 Conclusion

A
Additional Material

In this section, we provide supplementary material and figures illustrating
additional results of our study. We only present these results for Qemu. For
all material for the other subject projects as well as results of analyses using
a commit-count developer classification, the interested reader is referred to
the digital copy of this work.

0

10000

20000

30000

40000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Ranges

C
ou

nt

Statistics

80th percentile

95th percentile

median

Histogram of the Number of Ranges per Thread

Fig. A.1 Histogram of the Number of Ranges Threads Span in Qemu

0

10000

20000

30000

40000

0 1 2 3 4 5

Number of Temporary Core Developers

C
ou

nt

Statistics

80th percentile

95th percentile

median

Histogram of the Number of Temporary Core Developers per Thread

Fig. A.2 Histogram of the Number of Temporary Core Developers in Qemu-
Threads

91

10

1000

0 10 20 30

Number of Distinct Developers per Thread

C
ou

nt
s

(lo
g−

sc
al

e)

Statistics

80th percentile

95th percentile

median

Activity per Thread

Fig. A.3 Histogram of the Number of Participants in Qemu-Threads (logarithmic
scales)

10

1000

0 50 100 150 200

Number of Mails per Thread

C
ou

nt
s

(lo
g−

sc
al

e)

Statistics

80th percentile

95th percentile

median

Activity per Thread

Fig. A.4 Histogram of the Number of Mails in Qemu-Threads (logarithmic scales)

92 Chapter A Additional Material

1

5

10

50

100

500

1000

5000

1 2 5 10 20 50 100 200 500 1000 5000

Temporal Distances (in hours, log−scale)
(all distances for all threads)

C
ou

nt
s

(lo
g−

sc
al

e)

Statistics

80th percentile

95th percentile

median

Temporal Distances between Subsequent Mails of a Thread

Fig. A.5 Histogram of the Temporal Distances between Subsequent Messages in
Qemu-Threads (in hours, logarithmic scales)

Chapter A 93

B
Bibliography

[1] Christian Bird, Alex Gourley, Premkumar Devanbu, Michael Gertz,
and Anand Swaminathan. “Mining Email Social Networks”. In: Interna-
tional Workshop on Mining Software Repositories (MSR). 2006, pp. 137–
143 (cited on pp. 1, 4, 5, 6, 8, 14, 15, 18, 29, 31, 80).

[2] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and
PremkumarDevanbu. “Latent Social Structure inOpen Source Projects”.
In: ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). 2008, pp. 24–35 (cited on pp. 3, 4, 5, 13).

[3] Stephen Borgatti and Martin Everett. “Models of Core/Periphery Struc-
tures”. In: Social Networks 21.4 (2000), pp. 375–395 (cited on p. 10).

[4] Stephen Borgatti, Martin Everett, and Jeffrey Johnson. “Analyzing
Social Networks”. Sage Publications Ltd, 2013 (cited on pp. 5, 6, 10).

[5] Stephen Borgatti, Ajay Mehra, Daniel Brass, and Giuseppe Labianca.
“NetworkAnalysis in the Social Sciences”. In: Science 323 (2009), pp. 892–
895 (cited on pp. 5, 8, 10).

[6] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebas-
tiano Panichella. “Who is Going to Mentor Newcomers in Open Source
Projects?” In: ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE). 2012, p. 44 (cited on pp. 1, 8, 13).

[7] Kevin Crowston and James Howison. “The Social Structure of Free
and Open Source Software Development”. In: First Monday 10.2 (2005).
issn: 13960466 (cited on pp. 4, 85).

[8] Kevin Crowston, Kangning Wei, Qing Li, and James Howison. “Core
and Periphery in Free/Libre and Open Source Software Team Commu-
nications”. In: Hawaii International International Conference on Systems
Science (HICSS). 2006 (cited on pp. 5, 10, 11, 19, 28, 29, 74, 82, 83).

[9] “ffmpeg-devel – FFmpegDevelopment Discussions and Patches”. 2017-09-10.
url: https://ffmpeg.org/mailman/listinfo/ffmpeg-devel (cited
on p. 80).

[10] Jochen Gläser. “The Social Order of Open Source Software Production”.
In: Handbook of Research on Open Source Software: Technological, Eco-
nomic, and Social Perspectives. 4. IGI Global, 2007, pp. 168–182 (cited
on pp. 4, 8, 9, 83).

95

http://dx.doi.org/10.1145/1137983.1138016
http://dx.doi.org/10.1145/1453101.1453107
http://dx.doi.org/10.1016/S0378-8733(99)00019-2
http://dx.doi.org/10.1016/S0378-8733(99)00019-2
http://dx.doi.org/10.1145/2393596.2393647
http://dx.doi.org/10.1145/2393596.2393647
http://dx.doi.org/10.5210/fm.v10i2.1207
http://dx.doi.org/10.5210/fm.v10i2.1207
http://dx.doi.org/10.1109/HICSS.2006.101
http://dx.doi.org/10.1109/HICSS.2006.101
http://dx.doi.org/10.1109/HICSS.2006.101
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
http://dx.doi.org/10.4018/978-1-59140-999-1.ch014

[11] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie
van Deursen. “Communication in Open Source Software Development
Mailing Lists”. In: Working Conference on Mining Software Repositories
(MSR). 2013, pp. 277–286 (cited on pp. 4, 5, 13, 21, 73, 82).

[12] Andrea Hemetsberger and Christian Reinhardt. “Sharing and Cre-
ating Knowledge in Open-Source Communities, The Case of KDE”.
In: European Conference on Organizational Knowledge, Learning, and
Capabilities. Innsbruck, Austria, 2004 (cited on p. 13).

[13] Carlos Jensen, Scott King, and Victor Kuechler. “Joining Free/Open
Source Software Communities: An Analysis of Newbies’ First Interac-
tions on Project Mailing Lists”. In: Hawaii International Conference on
Systems Science (HICSS). 2011, pp. 1–10 (cited on pp. 1, 5, 8, 9, 10, 13, 82).

[14] Chris Jensen and Walt Scacchi. “Role Migration and Advancement Pro-
cesses in OSSD Projects: A Comparative Case Study”. In: International
Conference on Software Engineering (ICSE). 2007, pp. 364–374 (cited on
pp. 8, 9).

[15] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. “The Onion
Patch: Migration in Open Source Ecosystems”. In: ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (FSE). 2011, pp. 70–
80 (cited on p. 12).

[16] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer.
“Classifying Developers into Core and Peripheral: An Empirical Study
on Count and Network Metrics”. In: International Conference on Soft-
ware Engineering (ICSE). 2017, pp. 164–174 (cited on pp. 6, 7, 8, 9, 10, 11,
14, 15, 17, 18, 19, 28, 29, 31, 33, 73, 74, 79, 82, 83).

[17] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. “Evolutionary
Trends of Developer Coordination: A Network Approach”. In: 22.4
(2017), pp. 2050–2094 (cited on pp. 1, 4, 6, 8, 9, 10, 11, 12, 19, 28, 29, 30,
74, 83).

[18] Stefan Koch andGeorg Schneider. “Effort, Co-operation andCo-ordination
in an Open Source Software Project: GNOME”. In: Information Systems
Journal 12.1 (2002), pp. 27–42 (cited on pp. 3, 4).

[19] Georg von Krogh, Sebastian Spaeth, and Karim Lakhani. “Community,
Joining, and Specialization in Open Source Software Innovation: A
Case Study”. In: Research Policy 32.7 (2003), pp. 1217–1241 (cited on
pp. 11, 12).

[20] George Kuk. “Strategic Interaction and Knowledge Sharing in the KDE
Developer Mailing List”. In: Management Science 52.7 (2006), pp. 1031–
1042 (cited on pp. 10, 13).

[21] Karim Lakhani and Eric von Hippel. “How Open Source Software
Works: ”Free” User-to-User Assistance”. In: Research Policy 32.6 (2003),
pp. 923–943 (cited on p. 13).

96 Chapter B Bibliography

http://dx.doi.org/10.1109/MSR.2013.6624039
http://dx.doi.org/10.1109/MSR.2013.6624039
http://dx.doi.org/10.1109/HICSS.2011.264
http://dx.doi.org/10.1109/HICSS.2011.264
http://dx.doi.org/10.1109/HICSS.2011.264
http://dx.doi.org/10.1109/ICSE.2007.74
http://dx.doi.org/10.1109/ICSE.2007.74
http://dx.doi.org/10.1145/2025113.2025127
http://dx.doi.org/10.1145/2025113.2025127
http://dx.doi.org/10.1109/ICSE.2017.23
http://dx.doi.org/10.1109/ICSE.2017.23
http://dx.doi.org/10.1007/s10664-016-9478-9
http://dx.doi.org/10.1007/s10664-016-9478-9
http://dx.doi.org/10.1046/j.1365-2575.2002.00110.x
http://dx.doi.org/10.1046/j.1365-2575.2002.00110.x
http://dx.doi.org/10.1016/s0048-7333(03)00050-7
http://dx.doi.org/10.1016/s0048-7333(03)00050-7
http://dx.doi.org/10.1016/s0048-7333(03)00050-7
http://dx.doi.org/10.1287/mnsc.1060.0551
http://dx.doi.org/10.1287/mnsc.1060.0551

[22] Giovan Lanzara and Michèle Morner. “The Knowledge Ecology of
Open-Source Software Projects”. In: European Group of Organizational
Studies Colloquium (EGOS). Copenhagen, 2003 (cited on p. 13).

[23] Greg Madey, Vincennt Freeh, and Renee Tynan. “The Open Source
Software Development Phenomenon: An Analysis Based on Social
Network Theory”. In: Americas Conference on Information Systems
(AMCIS). 2002, pp. 1806–1813 (cited on pp. 2, 3).

[24] “Mailing Lists | Django Documentation”. 2017-09-10. url: https://
docs.djangoproject.com/en/dev/internals/mailing-lists/ (cited
on p. 75).

[25] Sergio ToralMarıń, RocıóMartıńez-Torres, and Federico Barrero. “Anal-
ysis of Virtual Communities Supporting OSS Projects Using Social
Network Analysis”. In: Information & Software Technology 52.3 (2010),
pp. 296–303 (cited on p. 1).

[26] WilliamMendenhall, Robert Beaver, and Barbara Beaver. “Introduction
to Probability and Statistics”. Thomson/Brooks/Cole, 2003 (cited on
pp. 23, 24).

[27] Audris Mockus, Roy Fielding, and James Herbsleb. “Two Case Studies
of Open Source Software Development: Apache and Mozilla”. In: ACM
Transactions on Software Engineering Methodology (TOSEM) 11.3 (2002),
pp. 309–346 (cited on p. 13).

[28] R Core Team. “R: A Language and Environment for Statistical Com-
puting”. R Foundation for Statistical Computing. Vienna, Austria, 2017
(cited on pp. 23, 31).

[29] Michael Scialdone, Na Li, Robert Heckman, and Kevin Crowston.
“Group Maintenance Behaviors of Core and Peripherial Members of
Free/Libre Open Source Software Teams”. In: International Conference
on Open Source Systems (OSS). 2009, pp. 298–309 (cited on pp. 4, 14, 83).

[30] Sulayman Sowe, Ioannis Stamelos, and Lefteris Angelis. “Identifying
Knowledge Brokers that Yield Software Engineering Knowledge in
OSS Projects”. In: Information & Software Technology 48.11 (2006),
pp. 1025–1033 (cited on pp. 4, 13).

[31] Antonio Terceiro, Luiz Romário Rios, and Christina Chavez. “An Em-
pirical Study on the Structural Complexity Introduced by Core and
Peripheral Developers in Free Software Projects”. In: Brazilian Sympo-
sium on Software Engineering (SBES). 2010, pp. 21–29 (cited on pp. 3, 4,
5, 8, 9, 12, 17).

[32] “WineHQ - Mailing Lists/Forums”. 2017-09-10. url: https://www.
winehq.org/forums (cited on p. 75).

[33] Yunwen Ye and Kouichi Kishida. “Toward an Understanding of the
Motivation of Open Source Software Developers”. In: International
Conference on Software Engineering (ICSE). 2003, pp. 419–429 (cited on
pp. 3, 8, 9, 11).

Chapter B 97

http://aisel.aisnet.org/amcis2002/247
http://aisel.aisnet.org/amcis2002/247
http://aisel.aisnet.org/amcis2002/247
https://docs.djangoproject.com/en/dev/internals/mailing-lists/
https://docs.djangoproject.com/en/dev/internals/mailing-lists/
https://docs.djangoproject.com/en/dev/internals/mailing-lists/
http://dx.doi.org/10.1016/j.infsof.2009.10.007
http://dx.doi.org/10.1016/j.infsof.2009.10.007
http://dx.doi.org/10.1016/j.infsof.2009.10.007
http://dx.doi.org/10.2307/2684586
http://dx.doi.org/10.2307/2684586
http://dx.doi.org/10.1145/567793.567795
http://dx.doi.org/10.1145/567793.567795
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1007/978-3-642-02032-2_26
http://dx.doi.org/10.1007/978-3-642-02032-2_26
http://dx.doi.org/10.1016/j.infsof.2005.12.019
http://dx.doi.org/10.1016/j.infsof.2005.12.019
http://dx.doi.org/10.1016/j.infsof.2005.12.019
http://dx.doi.org/10.1109/SBES.2010.26
http://dx.doi.org/10.1109/SBES.2010.26
http://dx.doi.org/10.1109/SBES.2010.26
https://www.winehq.org/forums
https://www.winehq.org/forums
https://www.winehq.org/forums
http://dx.doi.org/10.1109/ICSE.2003.1201220
http://dx.doi.org/10.1109/ICSE.2003.1201220

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Bachelorarbeit selbststän-
dig und ohne Benutzung anderer als der angegebenenQuellen und Hilfsmittel
angefertigt habe und dass alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, als solche gekennzeichnet sind, sowie dass ich die
Bachelorarbeit in gleicher oder ähnlicher Form noch keiner anderen Prü-
fungsbehörde vorgelegt habe.

Passau, 18. September 2017
Sofie Kemper

	1 Introduction
	2 Background
	2.1 Characteristics of OSS Projects
	2.2 Developer Networks
	2.2.1 Developer Networks for OSS Community Analysis
	2.2.2 Construction of Developer Networks

	2.3 Core/Periphery Classification
	2.3.1 Model of OSS Project Participant Roles
	2.3.2 Core and Periphery in the Developer Community
	2.3.3 Classification Metrics

	2.4 Related Work
	2.4.1 Related Work regarding Developer Roles
	2.4.2 Related Work regarding Developer Communication
	2.4.3 Combining Developer Roles and Communication Analyses

	3 Study Design
	3.1 Research Questions
	3.2 Variables
	3.2.1 Independent Variables
	3.2.2 Dependent Variables

	3.3 Hypotheses
	3.4 Casestudies
	3.5 Implementation and Execution

	4 Results
	4.1 Preferences concerning Communication Partners (H1.1)
	4.2 Core Thread Participation (H1.2)
	4.3 Peripheral and Unclassified Thread Participation (H1.3)
	4.4 Core-Peripheral Communication Episodes (H2.1)
	4.4.1 Communication Longevity
	4.4.2 Communication Intensity

	4.5 Core-Core Communication Episodes (H2.2)
	4.5.1 Communication Longevity
	4.5.2 Communication Intensity

	4.6 Peripheral-Peripheral Communication Episodes (H2.3)
	4.7 Comparison of Core-Core, Core-Peripheral, and Peripheral-Peripheral Communication Episodes
	4.7.1 Communication Longevity
	4.7.2 Communication Intensity

	4.8 Average Class Activity (H3.1)
	4.9 Activity Level of the Core Class (H3.2)
	4.10 Core Communication Activity during the Release Cycle (H3.3)
	4.11 Peripheral and Unclassified Communication Activity during the Release Cycle (H3.4)
	4.12 Class Interaction during the Release Cycle (H3.5)

	5 Discussion
	5.1 Discussion of our Findings
	5.1.1 Research Question 1
	5.1.2 Research Question 2
	5.1.3 Research Question 3

	5.2 Threats to Validity
	5.2.1 Internal Validity
	5.2.2 External Validity

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	A Additional Material
	B Bibliography

