
University of Passau
Faculty of Computer Science and Mathematics
Chair of Software Product Lines

Master’s Thesis

Visualization and Analysis of
Product-Line Evolution in

Codeface

Simon Niechzial
Matrikel Nr.: 48879

August 11, 2014

First reviewer: Dr.-Ing. Sven Apel
Second reviewer: Prof. Christian Lengauer, Ph.D.

Advisors: Claus Hunsen, Olaf Leßenich

Abstract
Software Product Lines (SPLs) are the next great change in the evolution of
software engineering. Growing complexity, the need for more efficiency and
better quality of software-products or products that contain software urge
software engineers to find new approaches to reach these goals in real-world
projects.
The need to collect, aggregate, visualize and utilize information on the

architecture and implementation of a product line during product-line evolution
arises. In this thesis we are going to concentrate on the visualize component.
We will search for ways to collect data as a basis for visualization, transform
the data into interactive displays of project state and evaluate the usefulness
of different representations.
Our approach in the following work consists of six steps. First we show

tools for visualization of software quality metrics and decide on a framework
for implementing our spldashboard. Then we develop a domain model
for software product line metrics that constitutes the basis of the following
software development. Afterwards we analyse existing tools for collecting data
about software product lines. This includes a summary of product line specific
software quality metrics and the challenges in testing SPLs or specific products,
generated from SPLs. It also involves implementation of an import system for
converting data from the collection tools into structures of our model. In the
following step we implement a proof of concept for visualizing the data from
the domain model, using the previously selected framework. Then we validate
the results with data from a selection of open-source software projects. Finally
we give an outlook on possible future work in this area.

The thesis results in a working prototype with different visualization options
for SPL metrics. It includes a benchmark of the data model behaviour for
different sizes of projects and number of projects in the system. Also the
performance of the import process is analyzed and possibilities for improvement
are outlined. The visualizations are validated against our set of user experience
goals and evaluated by cross checking them against other datasources such as
mailinglists, changelogs, bugtrackers.

We conclude that visualization and analysis of product-line evolution in the
codeface framework can be done and is feasible for real-world projects. While
there is room for improvement of responsivenes and extension of visualization
types, valuable data can be derived from the implemented prototype.

II

Contents

1 Introduction 1
1.1 About this Thesis . 2
1.2 Conventions . 2

2 Context and Framework 3
2.1 Software Product Lines . 3
2.2 The PYTHIA Project . 4

3 The Codeface Framework 5
3.1 Codeface: Existing Structures 5

3.1.1 MySQL Server / Model 6
3.1.2 Codeface Core . 7
3.1.3 VCS Analysis . 8
3.1.4 shinyserver . 8
3.1.5 ML Analysis . 11
3.1.6 Clustering . 11
3.1.7 Bug Extractor . 11
3.1.8 ID Service . 12
3.1.9 nginx Cache . 12

3.2 Codeface: Extensions . 12
3.2.1 Domain Model . 13
3.2.2 Data Model . 13
3.2.3 Ubiquitous Language . 16
3.2.4 Framework Extensions 18

4 Datasources 22
4.1 CPPStats . 23

4.1.1 Granularity . 24
4.1.2 File Level Metrics . 25
4.1.3 Release Level Metrics . 25
4.1.4 Project Level Metrics . 26

5 Visualization 28
5.1 Implementation Report . 28

5.1.1 Prototyping . 28
5.1.2 UI/UX Software Engineering 29

III

Contents

5.1.3 Extending shinyserver 31
5.1.4 Implementing the Extensions 37

5.2 Description of the Example Data Sets 39
5.3 Analysis . 41

5.3.1 Accessibility . 41
5.3.2 Responsiveness . 41
5.3.3 Self-Explanatory . 42
5.3.4 Fast Import Process . 42
5.3.5 Drill Down Approach . 42

6 Outlook and Future Work 44

A Figures 45

B Listings 50

C DVD Contents 55

IV

Glossary
codeface A framework for analysis and visualization of software project met-

rics.
cppstats A tool for analyzing software systems written in C regarding their

variability.

git GIT is a distributed revision control and source code management (SCM)
system with an emphasis on speed, data integrity, and support for dis-
tributed, non-linear workflows.

JavaScript A dynamic programming language that originated from scripting
in web browsers.

nginx Pronounced “engine x”, is an HTTP and reverse proxy server.
nodejs JavaScript programming framework, mainly for development of web-

services.

R Programming language, mainly for statistical analysis, derive from the S
language.

rjsonio A package for the R language that supports conversion to and from
data in JavaScript object notation (JSON) format.

shinyserver A webserver and web framework for the R language, partly imple-
mented in JavaScript.

Software Product Line A software product line is a set of software systems,
constructed from reusable parts according to a configuration.

spldashboard A framework for display and exploration of graphical represen-
tations of software product-line metrics, developed in this thesis.

WebSocket A protocol for bi-directional communication over TCP connections
between web browsers and web servers.

V

Acronyms
API Application Programming Interface.

CLI Command Line Interface.
CPP C Preprocessor.
CSS Cascading Style Sheets.
CSV Comma Separated Value.

DBMS Database Management System.
DDD Domain Driven Design.
DOM Document Object Model.
DSL Domain-Specific Language.

FRP Functional Reactive Programming.

GUI Graphical User Interface.

HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.

JSON JavaScript Object Notation.

LOC Lines of Code.

PNG Portable Network Graphics.

RAM Random Access Memory.
RDBMS Relational Database Management System.
REST Representational State Transfer.

SPL Software Product Line.
SQL Structured Query Language.

VI

Acronyms

TCP Transmission Control Protocol.

UI User Interface.
URL Uniform Resource Locator.

VCS Version Control System.

XML Extensible Markup Language.

YAML YAML Ain’t Markup Language.

VII

List of Figures

2.1 Mockup of a dashboard showing feature metrics 4

3.1 codeface architecture overview 5
3.2 Trace of a websocket communication 10
3.3 GUI interaction related to a websocket trace 11
3.4 Domain model of the extensions to codeface 14
3.5 spldashboard database schema 15
3.6 codeface target architecture after extensions have been imple-

mented . 19

4.1 Workflow for variant generation from feature-selection and im-
plementation artifacts . 23

5.1 spldashboard Mockup . 29
5.2 General MVC architecture . 29
5.3 shinyserver MVC architecture 30
5.4 shinyserver Custom Output Object architecture 31
5.5 spldashboard Project level overview of metrics per release . . 34
5.6 Example of a dashboard with widgets 36
5.7 ANDAVG metric represented as a dot-chart 39
5.8 GRAN metric widget . 40
5.9 TYPE metric widget . 40
5.10 Import runtime with caching . 43

A.1 codeface Datamodel before modifications 46
A.2 codeface database schema including spldashboard modifi-

cations . 47
A.3 Drill down approach through different dashboards in codeface 48
A.4 First sketches of the spldashboard components 49

VIII

List of Tables

3.1 Entity Instance Counts . 17
3.2 Import Process Runtime . 21

4.1 cppstats Metrics . 27

5.1 Example Software Projects . 40
5.2 Dashboard Load Time . 41

IX

Listings

3.1 codeface database creation and permission assignment 7
3.2 Importing (and optionally renaming) the codeface schema . . 7
3.3 Reactive Conductor Example 9
3.4 UI component . 10
3.5 Server Component . 10
3.6 mysql database size retrieval 16

4.1 Example for undisciplined annotations 24

5.1 HTML5 Minimal Example . 32
5.2 CSS Selector Example . 33
5.3 Custom Output Binding . 35
5.4 Register Custom Output Binding 35

B.1 Example codeface configuration file 50
B.2 NOF – Number of Files . 51
B.3 NOF per release . 51
B.4 LOC – Lines of Code (SUM) . 51
B.5 LOC – Project Average . 51
B.6 LOF – Lines Of Feature code 52
B.7 PLOF – LOF/LOC product . 52
B.8 VP – Variation Point . 53
B.9 NOFC – Number Of Feature Constants 53
B.10 SDEGMEAN – Scattering Degree (mean value) 53
B.11 TDEGMEAN – Tangling Degree (mean value) 53
B.12 NOFC – Number Of Feature Constants (average) 54
B.13 NOFC – Number Of Feature Constants (std. deviation) 54

X

1 Introduction
Software Product Lines are the next great change in the evolution of software
engineering. Coming from subroutines in the 1960s, modules in the 1970s,
object orientation in the 1980s and components in the 1990s. Pervasive and
increasingly complex software systems as well as the need for more economic
software development calls for new concepts in the organization of software
creation processes.

As their counterparts from the producing industry, SPLs improve productivity,
time to market, cost and quality, if applied the right way using the right tools
[8].

SPLs introduce variability at large scale. This leads to new challenges in all
activities related to the software development process such as testing and other
quality assurance steps. See chapter 4 for some examples.
Giving software project stakeholders (such as developers, product owners,

managers) the ability to track the quality of whole product lines, detect hot-
spots or foresee project issues is one of the high-level goals of the project that
builds the context of this thesis. Also analysis of external product lines that
are to be integrated in own products can be important.

Architectural analysis captures the “health” of the features of a system over
time. In [24] the authors give examples for questions that project stakeholders
may ask while improving software development and maintenance processes.
Questions regarding architectural analysis may be

1. Is the software modularized (architecturally alligned) according to the
features it implements?

2. How are features evolving and how is evolution taking place?
3. Are features becoming more complex? In which respect (coupling, size,

scattering, etc.)?

In the last question we see, that answers can be given by aggregating existing
code and process metrics on a per feature basis as well as by feature specific
metrics like scattering, tangling coupling and cohesion (see table 4.1). Collecting
and visualizing these metrics in a usable manner is the target of this thesis.

1

1 Introduction

1.1 About this Thesis
The need to collect, aggregate, visualize and utilize metrics on the architecture
and implementation of a product line during product-line evolution exists. This
thesis describes the efforts in developing a working prototype application that
enabels users to achieve these goals. The software development concentrates on
the visualize component. Tools for collecting data as a basis for visualization do
exist and will be described. The target is to transform the data into interactive
displays of project state and evaluate the usefulness of different representations.

Our approach in the following work consists of six steps. First we show tools
for visualization of software quality metrics and decide on a framework for
implementing our spldashboard in section 3.1. Then we develop a domain
model for software product line metrics that constitutes the basis of the following
software development in section 3.2.1. Afterwards we analyse existing tools
for collecting data about software product lines in chapter 4. This includes a
summary of product line specific software quality metrics and the challenges
in testing SPLs or specific products, generated from SPLs. It also involves
implementation of an import system for converting data from the collection
tools into structures of our model. In the following step we implement a proof
of concept for visualizing the data from the domain model, using the previously
selected framework. Chapter 5 builds the implementation report. Then we
validate the results with data from a selection of open-source software projects
in section 5.3. Finally we give an outlook on possible future work in this area
in chapter 6.

1.2 Conventions
In the following we give an overview of the typographic conventions used in
this text.

Linebreaks Linebreaks in sourcecode listings, that have no technical reason
but have been introduced because of space limitations, are marked with a
leading ↪→ in subsequent lines.

Products Product and project names are set in small capitals.

Source Code Source code chunks that appear in the text are set in a tele-
type font family.

Source Code References References to explicit lines in source code listings
are written as (line) after the reference.

2

2 Context and Framework

2.1 Software Product Lines
The tools described and developed in this thesis cover Software Product Lines in
general and feature-oriented software product lines in particular. The concept
of software product lines exists since the 1960s. The basic ideas are software
reuse and mass customization. The former covering the left hand side of the
software production process, where software is constructed from reusable and
combinable components instead of building everything from scratch for each
project. The latter taking the other sides perspective, where customers can
select from a large set of configuration options to make the product match their
requirements.
A large scale example of a software product line is the linux kernel with a

set of up to 10.000 configurable features. The linux kernel uses preprocessor
techniques (the C preprocessor cpp in particular) to implement compile time
feature selection. This is only one of many approaches for implementing
variability and will be discussed later in this thesis.

While there are initial costs of setting up a product line approach or tran-
sitioning a set of products into a product line, at some point the benefit of
reduced costs for generation of new products (based on the existing artifacts)
outweighs that. So one of the promises of software product line development is
reducing costs. Other benefits are made-to-order products that are of much
greater use for the customer than standardized or preconfigured software. Also
the overall product quality should improve, as reused parts can be tested more
thoroughly and in different contexts. Assembling software products from exist-
ing parts can even reduce time to market significantly. All these benefits are
not for free. Besides the mentioned initial investment in setup of a product line,
development of multiple (sometimes theoretical) products amplifies complexity.
The configuration space grows exponentially with the number of configuration
options. This leads to new challenges regarding testing and general quality
asessment as the number of possible products is orders of magnitude to large
for simple “test them all” approaches (for an example calculation see the
introduction in chapter 4) [2].

3

2 Context and Framework

2.2 The PYTHIA Project
The PYTHIA project is about “Analysis Techniques and Prediction Models
for Sustainable Product-Line Engineering” [3, 4].
The Applicants of the research grant proposal suggest to introduce new

analysis techniques for sofware product lines based on implementation knowl-
edge (software metrics, static analysis, mining techniques, measurement
of non-functional properties and feature-interaction analysis). The higher
level goal is to provide more precise prediction models that consider structural
and behavioral properties of the architecture and implementation assets.
These prediction models can then be used to foresee requirements regarding
new features and feature development.
In [24] a dashboard is suggested to show aggregated views on different

measures over features. These views should aid strategic decision making in
software development processes. The authors describe the dashboard by a
mockup that is shown in figure 2.1.

©
Pa

ss
os

et
al

,[
24

],
20

13

Figure 2.1: Mockup of a dashboard showing feature metrics

Such a dashboard will be developed in this thesis and will be referenced as
the spldashboard in the following text.

4

3 The Codeface Framework
codeface1 is a framework and interactive web frontend for the social and
technical analysis of software development projects. In its current state it
captures various data sources (revision control systems, bugtracking systems,
mailing lists and complexity metrics). This chapter describes the codeface
components and their roles as well as the extensions necessary to support
analysis of SPLs.

3.1 Codeface: Existing Structures

Figure 3.1: codeface architecture overview

1 http://siemens.github.io/codeface/ (Retrieved: 08.08.2014)

5

http://siemens.github.io/codeface/

3 The Codeface Framework

Codeface is a heterogeneous system, consisting of many modules. The
modules are written in different languages (R, python, Java, JavaScript) using
different frameworks (shinyserver, nodejs). Communication between mod-
ules is also done by different means: REST-APIs, shared model in a Relational
Database Management System (RDBMS) or config files. Codeface core consists
of 56.2% R, 30.4% Python, 6% Java and 5.9% JavaScript code.
The Graphical User Interface (GUI) of codeface is realized as a web appli-

cation that can be displayed in any modern browser. It uses websockets to
communicate asynchronously with the server component. This avoids reloading
of whole html documents. Instead only fragments are loaded and inserted
or replaced in the current Document Object Model (DOM). That causes the
browser to re-render only the affected parts of the website — which is a
Hypertext Markup Language (HTML) document — giving the user a more
desktop-application like experience.
An optional reverse-proxy-cache (nginx) caches distinct resources on the

application layer (ISO/OSI model) based on their Hypertext Transfer Protocol
(HTTP) headers. These resources are identified by their Uniform Resource
Locator (URL) with query parameters. The cache avoids expensive recompu-
tation (e.g. charts rendered as images) and delivers static resources, such as
images, fonts and stylesheets.
The following sections discuss the distint modules which are also shown in

figure 3.1.

3.1.1 MySQL Server / Model
mysql is an open-source RDBMS developed by Oracle. In codeface it serves
as the repository for all analysis results, project meta-data and partly as a
cache of binary graph image data.
The schema of the central SQL database is maintained in a binary format

(MWB) that is produced by the mysql Workbench, a grapical schema editor
for mysql databases, also maintained by Oracle2. For a representation of the
original codeface data model see figure A.1.
The workflow for making schema changes is as follows:

1. Load the schema with mysql Workbench (version >= 6.0)
2. Make changes
3. Export by selecting File → Export → Forward Engineer SQL CREATE

script
4. Activate the following settings to assure that code-generation does pro-

duces consistent code

2 http://www.mysql.com/products/workbench/ (Retrieved: 08.08.2014)

6

http://www.mysql.com/products/workbench/

3 The Codeface Framework

• Generate DROP statement before each CREATE statement
• Generate DROP schema
• Generate separate CREATE INDEX statements

5. Click Next, and choose to export table, view and routine objects
6. Click Next, save the generated script, and create a version control system

commit with both the binary and SQL creation script changes.

A version >= 6.0 of the Workbench is required, because the code-generation
procedures changed a lot between 5.x and 6.x branches and it would make
change tracking through diff views difficult.
Listing 3.1 shows how to create an empty database (1) named codeface

and assign privileges to a user of the same name (3). Listing 3.2 shows the
command for importing the generated schema sql into the database (1) with
the optional commands to rename the database from codeface to a new name
by simply replacing strings (3-5).

Listing 3.1: codeface database creation and permission assignment
1 CREATE DATABASE `codeface `;
2
3 GRANT ALL ON `codeface `.* TO 'codeface '@'localhost '

↪→ IDENTIFIED BY 'secretpassword ';

Listing 3.2: Importing (and optionally renaming) the codeface schema
1 mysql -u codeface -psecretpassword < ./ datamodel / codeface

↪→ _ schema .sql
2
3 cat ./ datamodel / codeface _ schema .sql | \
4 sed -e 's/ codeface /NEW_NAME/g;' | \
5 mysql -ucodeface -pcodeface

3.1.2 Codeface Core
This is the user facing part of the framework, apart from the actual GUI,
implemented in Python. It offers a Command Line Interface (CLI) for con-
trolling the various import and preprocessing tasks in codeface. The CLI is
extensible through a command pattern. Commands can be implemented as
python functions and bound to arguments that are passed to the CLI call. The
framework handles parsing of configuration files in the YAML Ain’t Markup
Language (YAML) format that are passed as an argument to CLI invocations.
The parsed configuration files can be accessed through an array in the command
functions. The tasks of this module can be summarized as:

7

3 The Codeface Framework

• Configuration file parsing
• CLI framework
• Job control for long running tasks

3.1.3 VCS Analysis
This module extracts various informations on a software project from a Version
Control System (VCS), such as developer activity, comment discipline and col-
laboration. Implementations exist for git, but interfaces exist for extensibility.
As the core, it is implemented in python.

3.1.4 shinyserver
shinyserver3 is a web framework for the R language. Its role in the whole
codeface structure is providing of the GUI in form of grids of widgets.
These grids are referenced as topics. Their main use is display of interactive
information about analyzed software projects.

shinyserver uses a principle called Functional Reactive Programming
(FRP) for the interaction between the view (user interface) and the controller.
View-controller interaction is usually implemented by some observer design
pattern and we are going to show how closely the two concepts are related. See
also figures 5.2 and 5.3 for a comparison of the MCV pattern with the codeface
components.

In FRP a variable is not bound to the value of the evaluated right-hand side
but to the expression itself. Hence a variable does not — at a specific point
in time — represent one value but a continuous stream of values (or events).
So we have an object emitting a stream of events — an observable. Using
this stream in another expression (by using the variables name) makes the
expression a listener on the stream of events. Every time the original stream
emits an event, the expression is evaluated and may cause side-effects — this
matches observers listening to an observable.

Reactive Sources, Conductors and Endpoints

The shinyserver Application Programming Interface (API) provides two R
data-frames (input, output) with appropriate member variables.
Reactive endpoints in their simplest form (members of output) correspond

to User Interface (UI) components defined in a specific file (ui.R). For example
a plotOutput(''distPlot'') will be bound to output$distPlot (where $ is
the shorthand for data-frame member access). It is noteworthy that any named

3 http://shiny.rstudio.com/ (Retrieved: 08.08.2014)

8

http://shiny.rstudio.com/

3 The Codeface Framework

UI element will appear as a DOM node in the front-end HTML code with its
id attribute set to the UI elements name (e.g. <div id='distPlot'...).
Reactive sources (members of input) correspond to the streams of input

values provided by users of the application trough the interaction with UI
elements (e.g. moving a slider). For example a sliderInput(''foo'',[...])
will be bound to input$foo.

If we think of the relationship between the three reactive elements (sources,
conductors, endpoints) as a graph, sources can only be parent-nodes (they are
not dependent) while endpoints can only be children. What we do not have yet
are inner nodes that can act as both — these are called conductors. Conductors
encapsulate reactive behavior and can act as junctions, multiplexing the event
stream of a source to multiple endpoints while optionally applying operations
on that stream. An example for a conductor is shown in listing 3.3 (4) where
it is used to multiplex the result of an expensive computation fib() to two
endpoints. A conductor is created by passing a block of code to the reactive()
function.

Listing 3.3: Reactive Conductor Example
1 fib <- function (n) ifelse (n<3, 1, fib(n -1)+fib(n -2))
2
3 shinyServer (function (input , output) {
4 currentFib <- reactive ({ fib(as.numeric (input $n

↪→)) })
5
6 output $ nthValue <- renderText ({ currentFib () })
7 output $ nthValueInv <- renderText ({ 1 / currentFib () })
8 })

Binding reactive sources in R to the event handlers in the browser (Java-
Script), serializing the values, transmitting them over Websockets forth and
back, deserializing and updating the DOM elements in the HTML document
when reactive endpoints change, is all done by the ShinyServer framework.
Events and changes are communicated by a WebSocket connection [13].
The following steps describe a communication between client and server

(or view and controller) that handles one interaction of the user with a GUI
component and the subsequent update of the view. In figure 3.3 the corre-
sponding GUI is shown while figure 3.2 displays a debug trace of the websocket
communication.

9

3 The Codeface Framework

Figure 3.2: Trace of the websocket communication

1. Â Selecting an item from a dropdown menu
2. À Change event is handled by the shinyserver JavaScript compo-

nent and then sent via an existing WebSocket connection (HTTP /
Transmission Control Protocol (TCP)) to the server component

3. After server-side processing the changes to reactive endpoints are
communicated back Á to the client, as shown in listing 3.5 (5)

4. DOM elements are updated by the shinyserver JavaScript compo-
nent Ã

Listing 3.4: UI component
1 #input
2 sidebarPanel (
3 selectInput (" dataset ", "Data:",
4 list(iris = "iris", mtcars = " mtcars ")
5) ,[...]
6)

Listing 3.5: Server Component
1 # shiny server side code for each call
2 shinyServer (function (input , output , session){
3 # update variable and group based on dataset
4 output $ variable <- renderUI ({
5 obj <-switch (input $dataset ,
6 "iris" = iris ,

10

3 The Codeface Framework

Figure 3.3: GUI interaction related to the websocket trace

7 " mtcars " = mtcars)
8 var.opts <-namel(colnames (obj))
9 selectInput (" variable "," Variable :", var.opts) #

↪→ update UI
10 })
11 [...]
12 })

3.1.5 ML Analysis
This module processes posts in mailinglists given in mbox files. It extracts data
about project communication and collaboration. The module is written in R
and uses the ID service for mapping of persons identities.

3.1.6 Clustering
This module implements custering of developers along different categories such
as activity or projects. It is implemented in R.

3.1.7 Bug Extractor
The bug extractor module fetches information from bug tracking software about
the bug reports. It connects to APIs of different tools or uses screen scraping
on their web interfaces. Lookup of identities is again done via the ID service.
Currently implementations for Jira4 and Bugzilla5 exist.

4 https://www.atlassian.com/software/jira (Retrieved: 08.08.2014)
5 http://www.bugzilla.org/ (Retrieved: 08.08.2014)

11

https://www.atlassian.com/software/jira
http://www.bugzilla.org/

3 The Codeface Framework

3.1.8 ID Service
The ID service manages unique identities (persons) and offers a lookup-or-
insert API to the other crawling and gathering services described before. It is
implemented in JavaScript (nodejs). If another service requests a person that
is not yet present in the database, it is created and its unique ID is returned.
Otherwise the ID of the existing person is returned. Lookup can be performed
by e-mail address and name.

3.1.9 nginx Cache
nginx6 is an application-layer cache for the HTTP protocol. It is not enabled
by default nor is it packaged with codeface but a configuration file is part
of the framework. The cache makes sense for larger installations with a high
number of clients, where it offloads the delivery of static resources (e.g. images,
fonts, css files) from the shinyserver.

3.2 Codeface: Extensions
In the following, we describe the necessary enhancements that had to be made
in the codeface framework in form of an implementation report. We describe the
software engineering approach that has been used for designing these changes
and give reason for each change.
The central entity of the codeface model is a commit. As our software

product-line metrics are aggregated around file-instances, releases and projects,
we need to extend the existing data model. This is described in section 3.2.2.

Some of the components of codeface had to be extended to support im-
porting of software product-line metrics that have been generated by cppstats.
These modifications are described in 3.2.4.

For planing and implementing the extensions, concepts from Domain Driven
Design (DDD) [9] have been used. A core strategy of DDD is the ubiquitous
language, it describes a common set of vocabulary used by a team building a
software. The goal is to use the same consistent wording for concepts of the
domain throughout the project (code, documentation, etc.). While the number
of stakeholders during the development of the spldashboard has been low,
the ubiquitous language also leads to a clear and descriptive terminology for
use in this thesis as well as following work or discussions. We developed and
evolved this vocabulary before and during development, its documentation can
be found in section 3.2.3.

When building a domain model with DDD, three concepts are used: entities,
value objects and services.

6 http://nginx.org/ (Retrieved: 08.08.2014)

12

http://nginx.org/

3 The Codeface Framework

Entities Also called reference objects, they describe objects that are primarily
defined by their thread of identity that runs through time and not by their
attributes. An entity is distinguishable from another entity even if their
attributes are the same. Although objects in languages like Java match this
description, because they have built-in identity functionality in all objects
(e.g. an understanding of equality as in Object.equals()), they should not
be mixed up.

Value Objects These are objects that describe some characteristic of a thing
are called value objects. In contrast to entities they have no conceptual identity.
While tracking the identity of entities is essential, it is a large overhead for
objects that do not need this concept. A value object can give information
about an entity and should be conceptually whole according to the Whole
Value Pattern7.

Services Services are processes or transformations in the domain that are
not a natural responsibility of an entity or value object. Such an operation is
added as an interface to the model declared as a service. The interface must
be defined in terms of the language of the domain model and the operations
name must be part of the ubiquitous language. A service is stateless.

3.2.1 Domain Model
The domain model developed for the spldashboard is shown in figure 3.4.
Variables are the concrete value of a metric for a specific project, release or
file instance (depending on the scope of the metric). Projects, releases and file
instances are all ScopeInstances and can therefore serve as scope for a variable.
Projects are identified by their ID. A release is identified by its tag (e.g. a string,
naming the release that may correspond to a tag in the versioning system). A
FileInstance is identified by the triple of path, release name and project ID
(path, release.name, project.id). Scopes represent the type of ScopeInstances
and appear in Metric objects to define their level of aggregation (or scoping).

3.2.2 Data Model
As said before, the central entity of the codeface model is a commit. Commits
are authored by a person and are aggregated in release-ranges. The data we
gather for our software product-line analysis is more coarse grained. The
deepest level of detail is information per file-instance. Where file-instance
stands for the state of a file in a specific release. We then have aggreated values
per release and per project.

7 http://fit.c2.com/wiki.cgi?WholeValue (Retrieved: 08.08.2014)

13

http://fit.c2.com/wiki.cgi?WholeValue

3 The Codeface Framework

Figure 3.4: Domain model of the extensions to codeface

Files have no representation in the existing codeface model and need to
be part of our extension. Releases match the release_timeline entity and
projects are already represented by the project entity. Metrics, though beeing
value objects, are going to have a representation in the database for easier
extensibility.
In the next sections database migrations as a way of changes to the model

described in a traceable and reversible manner will be explained. Also the
mapping of the domain model to a relational database model and the required
tools is described.

Database Schema Migrations

The concept of database migrations will be used in the following sections.
Migrations are a way do describe changes to an ER model in a traceable and
reversible manner. Migrations are pairs of executable SQL scripts where the
first part introduces a change and the second part reverts it. If the change is
destructive and cannot be reverted (e.g. a DROP of a non-empty column) this
should be documented in the migration.
We used the concept of Domain Driven Design (Eric J. Evans) to create a

domain-model for the process of variability analysis in software product-lines.
We focused on the data collection process used by cppstats. Based on the
Domain Model we created a data model as an entity relationship model (ER).

The implementation of the ER model was done by graphically designing it in
Oracle DbDesigner and using code generation to create SQL code compatible
with the mysql RDBMS. This approach was required by the codeface
framework project.
As a documentation of our changes and as a tool for extending existing

14

3 The Codeface Framework

installations of codeface (with an already filled database, where it is not
possible to drop and reinstantiate the whole schema) we created additional
migration scripts for each change.

Mapping the Domain Model to a Relational Database Schema

In this step we will derive a relational database schema from our domain model.
The complete extended schema is shown in figure A.2 and the relevant entities
are extracted for better visibility in figure 3.5.

Figure 3.5: spldashboard database schema

The type Variable and the ScopeInstance subtypes Project, Release and
FileInstance are entities and as such map naturally to entities of an entity-
relationship (ER) model. Project and Release actually already exist in the
schema of codeface. While Project has the same name there, Release maps
to the release_timeline entity. Other names have been converted to match the
SQL naming conventions: no camelcase but lowercase and underscores. The
scope attribute of spl_variable is implicitly given throug the foreign keys on
the respective ScopeInstances. If a foreign key is set, the variable is in the
respective scope.

The value object Metric has been implemented as an entity because the set of
possible metrics is likely to grow over time and needs to be configurable. This
way, adding new metrics can be done by a simple SQL INSERT statement.

The value object Scope has been implemented as an ENUM type attribute
of the metric entity. The ENUM holds values for the possible Scope types.
Adding scopes would involve changing the column type of the scope attribute,
whithout destroying existing data. The Scope type is also expressed as class
constants in the codeface.spl.DatabaseImporter python class.

15

3 The Codeface Framework

Unique ID generation for primary keys is implemented by the auto-increment
attribute for columns, which is an extension of standard SQL that exists in
mysql. It asserts that the column is filled with an incrementing integer value,
independent of the value passed in an INSERT query. All above mentioned
entities have a primary key with the name id that carries this attribute.
Example queries can be found in appendix B from listing B.2 until B.13.

The full set of retrieval queries is located at software/codeface-fork/spl/
metrics_retrieval.sql on the DVD. The concrete implementations for the
dashboard widgets is located at software/codeface-fork/codeface/R/shiny/
spl/db.queries.r on the DVD.

Benchmarking the Model

Table 3.1 shows the number of entity instances created per project per entity
type. It also shows the size of the resulting database including indices and
mysql management overhead. The query for database size retrieval is shown
in listing 3.6.

The variable instances with a file scope dominate regarding entity count and
database size. The number of releases multiplicates the variable instances per
file, as most of the files exist through most of the releases of a project.

Listing 3.6: mysql database size retrieval
1 SELECT
2 t.table_ schema " dbname ",
3 SUM(t.data_ length + t.index_ length) / 1024 / 1024 "

↪→ size"
4 FROM information _ schema . TABLES t
5 WHERE t.table_ schema = 'codeface '
6 GROUP BY t. table_ schema ;

3.2.3 Ubiquitous Language
The ubiquitous language provides a set of clearly defined terms that is used
throughout the whole project, its mode, the documentation and source code.
The following list defines these terms for the spldashboard project.

Project A project refers to a software project identified by its unique name.
We assume knowledge about which releases exist for this project and that
metrics have been gathered for this project. The assets of a project exist
as files in a specific folder.

Release A release identifies the state of all assets of a project at a certain
point in time. Usually a release is marked as a named tag or commit
identifier in a version control system. Synonyms are revision and version.

16

3 The Codeface Framework

Pr
oj
ec
t

sp
l_

va
ria

bl
e

sp
l_

fil
e_

in
st
an

ce
sp
l_

fil
e

R
el
ea
se
s

D
at
ab

as
e
Si
ze

(M
iB
)

ap
ac
he

51
60
11

39
57
3

87
2

14
2

10
8

be
rk
el
ey
db

13
01
35

99
22

24
25

21
16
.2

bu
sy
bo

x
77
11
64

59
53
7

91
8

89
81

ch
er
ok
ee

48
89
59

37
92
8

66
3

13
9

54
.9

em
ac
s

12
78
22

98
13
0

86
3

23
16
.1

fre
eb
sd

46
10
02
6

35
46
03

30
59
7

17
44
9.
3

gi
m
p

99
70
83

76
67
5

31
74

28
10
0.
1

gn
up

lo
t

42
67
8

32
66

27
9

20
8.
44

lib
xm

l2
15
69
51

11
97
5

19
5

11
6

20
.1
9

lin
ux

81
09
01
8

62
34
33

47
66
2

22
75
3.
15

m
ps
ol
ve

19
46

14
8

14
8

2
2.
02

op
en
vp

n
17
53
2

13
41

33
4

9
5.
58

pa
rr
ot

56
90
8

43
64

49
7

16
10
.6
7

po
st
gr
es
ql

35
73
38
0

27
46
85

33
31

22
5

34
9.
5

se
nd

m
ai
l

10
76
94

82
41

30
3

51
14
.9
1

sq
lit
e

74
71
8

57
23

22
4

29
11
.7
3

su
bv

er
sio

n
80
65
67

61
97
0

15
59

87
83

vi
m

23
19
5

17
69

25
0

18
5.
78

xfi
g

10
89
7

83
4

20
0

5
2.
91

xt
er
m

56
92
2

43
16

62
74

10
.6
1

Ta
bl
e
3.
1:

N
um

be
r
of

en
tit

y
in
st
an

ce
s
cr
ea
te
d
pe

r
pr
oj
ec
t.

D
at
ab

as
e
siz

e
in
cl
ud

es
in
di
ce
s.

17

3 The Codeface Framework

A release can be captured by exporting all files in the state identified by
the release to a folder. The unique (in the project context) identifier of a
release is its tag.

File Files are identified by a path relative to the project directory but do not
refer to contents directly, as file contents can have many states and files
do not have to exist at all points in the lifetime of a project.

File Instance The state of a file at a certain point in the lifteime of a project.
A file that exists (e.g. in a release) is represented as a file instance.

Metric Ametric is a standardized measurement. In this model, metrics describe
characteristics of the source code of a software project, in particular the
characteristics of use of variability techniques. For now we gather data
about annotations that control feature selection (see 4.1).

Metrics Scope A metric can apply to different entities, these entities are called
metric scopes. Valid scopes in this model are file, release and project.

Scope Instance An instance of a valid metrics scope (e.g. file, release, project)
is a scope instance.

Variable The occurence of a metric on a scope instance results in a value. This
triple of (scopeInstance, metric, value) is called variable.

3.2.4 Framework Extensions
In figure 3.6 we show the target architecture that should be reached after
the extensions are implemented. Extension points are the import process
where — besides the existing data collection — data from cppstats must be
imported. This is described in the following sections. Also the database or
more precisely its schema needs to be enhanced (see 3.2.2). The last extension
point is the dashboard and its server core where the collected metrics need
to be preprocessed for visualization and widgets for data display need to be
developed, this is described in 5.1.

Extending the Project Import Process

The codeface core already provides the components for a CLI (see 3.1.2).
Extensions have been written to support reading and parsing of Comma
Separated Value (CSV) files that are delivered by the analysis tools.

The path names used by cppstats required some postprocessing. The tool
identifies files by a absolut path to an internal XML file that looks like the
following /projects/apache/httpd-2.4.6/_cppstats/server/util_expr_
parse.h.xml. We make the assumption that the _cppstats directory will
always be present, to extract the real files name with a regular expression:
’_cppstats/(.*)\.xml$’.

18

3 The Codeface Framework

Figure 3.6: codeface target architecture after extensions have been imple-
mented

The import process can take a considerable amount of time. To improve
import speed, caching has been implemented for results of get-or-create queries.
These are queries that do a primary key lookup based on a set of attributes
and perform an insert if no entity with that set of attributes exist. The cache
uses Python dictionaries8.

Extending the Configuration File Format

Configuration files are written in the YAML format9 that takes concepts form
programming languages (objects, lists, etc.), Extensible Markup Language
(XML) and the e-mail specification. Parsers are available for all languages used
in codeface.
New configuration keys have been introduced for Software Product Line

analysis. The spl.cppstats key contains a map with the following pairs:
8 https://docs.python.org/2/tutorial/datastructures.html#dictionaries (Re-
trieved: 08.08.2014)

9 http://yaml.org/spec/ (Retrieved: 08.08.2014)

19

https://docs.python.org/2/tutorial/datastructures.html#dictionaries
http://yaml.org/spec/

3 The Codeface Framework

basePath the absolute path to the directory containing cppstats output data
in csv format,

revisionPattern a Python str.format() compatible pattern10, for one argu-
ment of type string that builds a folder name from a given revision name.
E.g. it performs a mapping from 2.4.4→ linux-2.4.4

perfile The name of the file containing per file metrics
perrevision The name of the file containing per revision metrics.

The complete path will be built by appending basePath, revisionPattern
applied on the current revision and either perfile or perrevision.

The existing configuration key revisions is used to determine which revisions
should be analyzed and where to find them. We provide a script that builds
the revisions array given a cppstats output directory. The script is located at
spl/revisionListFromCppstats.sh. A minimum viable configuration file is
shown in listing B.1.

Benchmarking the Import Process

Table 3.2 shows the import process runtime per project. Runtimes are shown
with and without caching. The last column shows the improvement through
caching. For an overview of the amount of data generated (in terms of generated
entity instances) see table 3.1 in the benchmark subsection of 3.2.2.
The benchmark was run on a Intel Core i7-3770 4-core at 3.4 GHz with 16

GiB of RAM and an Intel 520 Series SSD. The numbers are the average values
of 10 runs for each case. The benchmark control script is provided on the DVD
at /git/codeface-fork/spl/benchmark. The command used for benchmark-
ing is /usr/bin/time -f "user:%U system:%S total:%e cpu:%P"python
↪→ -m codeface.cli -l info setup -p conf/benchmark/PROJECT.conf.

Open Tasks

In a later version it should be possible to run cppstats directly from the
import process as an option instead of just importing the CSV files. The CLI
framework provides a help system. Explanations on the Software Product Line
specific commands should be integrated.

10 https://docs.python.org/2/library/string.html#format-string-syntax (Re-
trieved: 08.08.2014)

20

https://docs.python.org/2/library/string.html#format-string-syntax

3 The Codeface Framework

Project without caching (s) with caching (s) improvement (%) lps
apache 430.77 295.13 31.5 135.5
berkeleydb 121.17 77.72 35.9 128.9
busybox 684.58 444.24 35.1 133.9
cherokee 413.08 281.98 31.7 134.3
emacs 113.38 74.46 34.3 132.7
freebsd 10345.83 3045.41 70.6 116.5
gimp 946.34 577.41 39.0 132.9
gnuplot 34.98 25.46 27.2 130.6
libxml2 130.15 91.26 29.9 135
linux 25264.29 5558.68 78.0 112.2
mpsolve 2.09 1.59 23.9 96.9
openvpn 15.11 10.83 28.3 126.3
parrot 49.68 33.56 32.5 131.5
postgresql 2887.35 2020.95 30.0 136.3
sendmail 84.86 61.52 27.5 136.4
sqlite 61.86 43.42 29.8 133.8
subversion 668.64 456.18 31.8 136.4
vim 19.3 13.79 28.6 132.2
xfig 9.15 6.73 26.5 161.5
xterm 45.57 33.1 27.4 137.1

Table 3.2: Runtime comparison of the import process with and without caching
for all projects. Also showing the CSV lines parsed per second (lps).

21

4 Datasources
Variable software or software product lines have general implications on mea-
surability. As an example SQLite: Embedded, configurable Database Man-
agement System (DBMS) with 88 compile-time options. Assumed there
are no dependencies between the options we get 288 variants. Further as-
sumed and an average benchmark time of 5 minutes per variant results in
288 ∗ 5/60/24/365 = 2944111585058457655296 (two sextillion) years for each
test-run [5].
Hence it is no option to build and test each product that can be generated

based on a given variable implementation. There exist different approaches on
tackling this complexity, for example variability aware parsing [17]. Variability
can be realized in many different ways, some of the available techniques are
the following.

• Runtime Variability
• Version Control or Build System Variability
• Preprocessor Variability
• Feature Oriented Programming

We will focus on preprocessor based variability, particularly C Preprocessor
(CPP) annotation based variability (see 4.1). Preprocessing is not limited to
the C language. Different languages with builtin preprocessors exist, such as
C++, Fortran or Erlang. For other languages like C#, VisualBasic or D there
are external tools available. Scala has had external support for compile time
metaprogramming (preprocessing) with Kepler, that has been integrated into
the official Scala Compiler since version 2.10.0. Even for Java there is support
with Antenna, Munge and others.

Figure 4.1 shows the generic workflow of generating variants from reusable
artifacts and a feature selection. The feature names from the feature model
map to constant names in the CPP language. A feature selection is given
by a set of value assignments to these constant names (or more precisely, by
defining or not defining them). The generator is CPP itself, running before
each compilation step.

Preprocessor usage can reduce the binary footprint of a program because it
uses a tag and prune approach [14]. This can be important for systems with
strict memory limitations, such as embedded systems. But benefits come at a

22

4 Datasources

©
K

äs
tn

er
,A

pe
l,

Sa
ak

e,
[5

],
20

13

Figure 4.1: Workflow for variant generation from feature-selection and imple-
mentation artifacts

cost: readability of source code suffers. Deep nesting of annotations introduces
complexity and makes reasoning about the source code a hard task. Complex
annotations are error prone, because the simple string based deletions may lead
to invalid syntax. Mapping of error messages to the orginial source code may
be impossible. Missing tool support and undisciplined usage also lead to code
that is not easily understood.
An inherent problem of the CPP apporach to variability is the scattered

feature code which is a result of tagging the feature related fragments in place
instead of aligning the structure of the codebase to the feature model. See the
SDEG metric in section 4.1.3.

4.1 CPPStats
cppstats looks at variability from the C programming languages perspective,
using CPP capabilities for deriving products from a common set of C implemen-
tation artifacts. This is a global, omniscient view on variability and analyses
the quantity, granularity, relationship and interaction of/between features.

cppstats gathers the metrics listed in table 4.1. The metrics can be used
to analyse feature-to-code mappings as described in [2, 254ff.], that is the
mapping from problem-space (feature model, feature selections) into solution
space (metrics SDEG, TDEG and NOFPFC). They also give information about
the complexity of feature interaction (AND metric) and the types of feature
boundaries (GRAN metric). The NOFC and VP metrics show the general
amount of features and their appearence in the source code. LOC and LOF

23

4 Datasources

metrics can be used to compare the number of feature related lines with those
not feature related.

A good example for the relevance of preprocessor based variability is the linux
kernel. It has the largest feature model publicly known and freely available.
Between 600 and 1200 developers from more than 200 companies contribute
up to 10000 patches per release to the codebase. This codebase covers more
than 10000 features in over 8 million lines of code [19].

4.1.1 Granularity
In [27] a feature is described as “an optional or incremental unit of function-
ality” 1. This option or increment can be of different granularity. In the case
of variability management with IFDEF annotations (cpp) we can identify the
following levels of granularity

Global adding a structure or function
Function adding if-block or statement inside a function or a field to a structure
Block adding a code-block
Statement varying the type of a local variable
Expression changing an expression
Signature adding a parameter to a function

Additionally IFDEFs can be used in an undisciplined fashion that leads
to non-classifiable or even non-detectable results. An example for such an
undisciplined usage can be seen in listing 4.1 where the annotation appears at
substatement level [2, 117].

Listing 4.1: Example for undisciplined annotations
1 if (!ruby_ initialized) {
2 #ifdef DYNAMIC _RUBY
3 if (ruby_ enabled (TRUE))
4 #endif
5 ruby_init ();
6 [...]

In the following sections the metrics gathered by cppstats will be explained
in detail. An overview is shown in table 4.1 and some of the SQL queries to
retrieve the metrics are shown in appendix B listings B.13 until B.2.

1 Other definitions of features exist, such as “a client-valued function” or “a functionality
structuring concept” [23].

24

4 Datasources

4.1.2 File Level Metrics
Metrics gathered per file:

ND The metrics in this group ANDAVG, ANDSTDEV and NDMAX describe
the nesting depth of ifdef annotations. Average and corresponding stan-
dard deviation are measured per file. The maximum nesting depth is also
recorded.

GRAN* This group contains metrics with the suffixes -BL, -EL, -FL, -GL,
-ML, -SL that measure granularity of ifdef statements according to the
model described in 4.1.1. Additionally the -ERR suffixed metric counts
undisciplined usage that could not be matched.

LOC Counts lines of code in a file.
LOF Counts lines of feature code in a file. That is code that appears inside an

ifdef annotation.
NOFC Counts the number of distinct feature constants appearing in a file.
VP The count of variation points, essentially the sum of all GRAN* values.

Identifies the number of locations in the code that may be affected by
feature selections.

4.1.3 Release Level Metrics
Metrics gathered per release:

NOFPFC Counts the number of files per feature constant and shows how
distributed a feature is through the codebase.

SDEG The metrics SDEGMEAN and SDEGSTDEV measure the scattering
degree (average and according standard deviation). That is the number
of occurences of a feature constant in different feature expressions.

TDEG The metrics TDEGMEAN and TDEGSTDEV measure the tangling
degree (average and according standard deviation). That is the number
of distinct feature constant appearing in one feature expression.

TYPE The metrics HET, HOHE and HOM in the TYPE group count the
number of feature expressions belonging to a certain type. Heterogeneous
expressions add distinct extensions in different places. Homogeneous
expressions add code dulpicats in different places. HOHE expressions
are mixed and do not match one of the categories before. The types are
determined by exact string comparison of the code guarded by a feature
expression.

25

4 Datasources

Additionally, the following metrics can be aggregated on release level from
the file level metrics: NOFC (not the sum, but a total of all appearing feature
constants over all files), LOF (sum and average), GRAN and VP (average for
GRAN, sum and average for VP).

4.1.4 Project Level Metrics
Project level metrics are all aggregations from the metrics above (file level and
release level). Therfore they can be computed by using SQL queries. Example
queries can be found in appendix B from listing B.2 until B.13. The full set of
retrieval queries is located at /git/codeface-fork/spl/metrics_retrieval.
sql on the DVD. The concrete implementations for the dashboard widgets is
located at /git/codeface-fork/codeface/R/shiny/spl/db.queries.r on
the DVD.

26

4 Datasources

Fi
el
d

D
es
cr
ip
tio

n
Lo

ng
D
es
cr
ip
tio

n
A
gg

re
ga

te
Fu

nc
tio

ns

LO
C

Li
ne

s
of

C
od

e
N
um

be
r
of

\n
.
T
he

siz
e
of

a
so
ftw

ar
e
sy
st
em

.
SU

M
LO

F
Li
ne

s
of

Fe
at
ur
e
C
od

e
#
of

lin
es

of
fe
at
ur
e-
co
de

(li
nk

ed
to

fe
at
ur
e-
ex
pr
es
sio

ns
).

Va
ria

bl
e
fr
ac
tio

n
of

th
e
co
de

ba
se
.

SU
M

+
M
EA

N
pe

r
fil
e

PL
O
F

Pr
od

uc
t:

LO
F/

LO
C

R
at
io

of
to
ta
ll
in
es

of
co
de

to
fe
at
ur
e
co
de

N
O
FC

N
um

be
r
of

Fe
at
ur
e
C
on

-
st
an

ts
C
on

fig
ur
at
io
n

di
m
en

sio
n

of
a
SP

L
(v
ar
ia
bi
lit
y

an
d

co
m
pl
ex
ity

)
SU

M
on

un
iq
ue

co
ns
ta
nt
s

pe
r
pr
oj
ec
t
+

M
EA

N
(a
vg

.
pe

r
fil
e)

N
O
FP

FC
N
um

be
ro

fF
ile
sP

er
Fe

a-
tu
re

C
on

st
an

t
O
nl
y
pe

r
re
le
as
e

SU
M
,A

V
G

(P
ro
je
ct
)

A
N
D
AV

G
Av

er
ag

e
N
es
tin

g
D
ep

th
of

#i
fd

ef
s

Av
er
ag

e
ne

st
in
g
de

pt
h
of

ifd
ef

an
no

ta
tio

ns
(a
ve
ra
ge

pe
r
fil
e)

se
e
N
D
M
A
X

+
M
EA

N

A
N
D
ST

D
EV

Av
er
ag

e
N
es
tin

g
D
ep

th
s

σ
St
an

da
rd

de
vi
at
io
n
fo
r
A
N
D
AV

G

N
D
M
A
X

M
ax

im
um

N
es
tin

g
D
ep

th
M
A
X

(R
el
ea
se
,P

ro
je
ct
)

G
R
A
N
G
L

G
ra
nu

la
rit

y:
G
lo
ba

l
A
dd

in
g
a
st
ru
ct
ur
e
or

fu
nc

tio
n

G
R
A
N
FL

G
ra
nu

la
rit

y:
Fu

nc
tio

n
or

T
yp

e
A
dd

in
g
an

if-
bl
oc
k
or

st
at
em

en
t
in
sid

e
a
fu
nc

tio
n
or

a
fie

ld
to

a
st
ru
ct
ur
e

G
R
A
N
B
L

G
ra
nu

la
rit

y:
B
lo
ck

A
dd

in
g
a
bl
oc
k

G
R
A
N
SL

G
ra
nu

la
rit

y:
St
at
em

en
t

Va
ry
in
g
th
e
ty
pe

of
a
lo
ca
lv

ar
ia
bl
e

G
R
A
N
EL

G
ra
nu

la
rit

y:
Ex

pr
es
sio

n
C
ha

ng
in
g
an

ex
pr
es
sio

n
G
R
A
N
M
L

G
ra
nu

la
rit

y:
Fu

nc
tio

n
Si
gn

at
ur
e

A
dd

in
g
a
pa

ra
m
et
er

to
a
fu
nc

tio
n

G
R
A
N
ER

R
Pa

rs
e
Er

ro
rs

G
ra
nu

la
rit

y
de

te
ct
io
n
fa
ile

d
SD

EG
M
EA

N
Sc

at
te
rin

g
D
eg
re
e

O
cc
ur
en

ce
s
of

a
fe
at
ur
e
co
ns
ta
nt

in
di
ffe

re
nt

fe
at
ur
e

ex
pr
es
sio

ns
T
D
EG

M
EA

N
Ta

ng
lin

g
D
eg
re
e

D
ist

in
ct

fe
at
ur
e
co
ns
ta
nt

ap
pe

ar
in
g
in

on
e
fe
at
ur
e
ex
-

pr
es
sio

n
V
P

Va
ria

tio
n
Po

in
t

#
of

#i
fd

ef
oc
cu

re
nc

es
,
im

pl
ic
it

th
ro
ug

h
su
m

of
SD

EG
*

AV
G
,

SU
M

(R
el
ea
se
,

Pr
oj
ec
t)

Ta
bl
e
4.
1:

cp
ps

ta
ts

M
et
ric

s

27

5 Visualization
This chapter is about the design, implementation and evaluation of the com-
ponents that visualize metrics in the software product-line context. In the
implementation report section the prototyping and planning approaches and
deriving of the final components from the prototypes is described. Afterwards
an overview of the software projects that have been used as a data pool for
evaluation is given. The last section describes the evaluation process and its
results.

5.1 Implementation Report
In the following sections we describe the efforts in implementing custom visual-
izations for software product lines in the context of the codeface framework.
Therefor the prototyping approach is shown, planning of user interface and
user interaction is documented and the technical aspects of implementing the
planned functions are discussed.

5.1.1 Prototyping
Two prototyping approaches have been used. First a mockup (see figure 5.1)
has been created using the mockup drawing tool balsamiq1. Before some
sketches have been drawn together with potential users of the spldashboard,
these sketches are shown in the figures A.4.
As a second approach, a minimum example application has been built,

that showcases the core functionality of the used frameworks. This application
evolved during development and served as a testbed to test the feasibility of tech-
nical details like graph rendering or view-controller interaction. The example
application can be found on the DVD at /software/shiny-minimal-example.
GIT version control with disciplined comments has been used in all places so
that the process is reproducible and serves as a documentation.

1 http://balsamiq.com/ (Retrieved: 08.08.2014)

28

http://balsamiq.com/

5 Visualization

Figure 5.1: spldashboard Mockup

Figure 5.2: General MVC architecture

5.1.2 UI/UX Software Engineering
User Experience Design

In [1, 11-13] Stephen Anderson describes a model of user experience that can be
seen as a stack of needs. It can be used as a top-down or bottom-up approach,
as will be described later.

Functional The function level describes the most basic version of a product.
It provides a technical solution to a problem. It is new and useful. Every new
technological innovation starts at this level.

Reliable The next step in a products evolution is reliability. For example
service reliability in terms of uptime or data integrity and validity.

29

5 Visualization

Figure 5.3: shinyserver MVC architecture

Usability and Convenience In this step friction is removed and a product is
made less awkward so it will eventually be perceived as usable and convenient.
Usability focuses on removing known (technical) problems, while convenience
tries to find more natural ways for solving a task. In this context, more natural
can mean “in a technical way that acts more similar to real world concepts”.

At this point, the models layer are divided. The layers already discussed are
objective and can be rated based on quantifiable information. From here on
the layers will cover qualitative and subjective properties.

Pleasurable and Meaningful After improving the cognitive experience, the
next level focuses on affect and emotion. Making a product emotionally engaging
and memorable to use is also important, even for a technical product. It will
lead to a larger, faster growing user base, more feedback and therefore faster
improvements (product iterations). Pleasurable products can — for example —
use friendly language, aesthetics and humor to reach that goal.
Meaningful is the next and highest level of subjective/qualitative product

experience. Meaning is a personal experience and so a product can not be
designed to be meaningful. But this experience can be used as a starting
point for product design. Swapping the described bottom-up (Functional ⇒
Meaningful) model for a top-down approach, thinking about the user experience
first and designing the product aligned to it.

30

5 Visualization

User Experience Goals

The following user experience goals define what experience we want to provide
to users of the spldashboard. These goals will serve as a guideline in section
5.3 for validating the implementation.

• /UX01/ free chosing of granularity and detail
• /UX02/ “zoom in experience”
• /UX03/ explorability
• /UX04/ drill down approach
• /UX05/ intuitive click targets and paths
• /UX06/ self explaining
• /UX07/ integrated help system
• /UX08/ fast, reliable import process
• /UX09/ accessible2 user interface

5.1.3 Extending shinyserver
shinyserver is the framework used for presentation of the visualizations
generated with R. It also serves as a basis for the general user interface. This
framework used for visualization had to be extended to support custom user
interface components and software-product line specific navigation as described
in the section on user experience goals in 5.1.2. Figure 5.4 shows a schematic
overview of the components explained in the following sections.

Figure 5.4: shinyserver Custom Output Object architecture

2 Accessibility in this context means the degree to which a software product is available
to as many people as possible, especially considering users with disabilities.

31

5 Visualization

Developing a userinterface in the context of shinyserver involves techniques
from client- and serverside web development. In the following we give a short
introduction to the relevant methods and means.

Serialization The process of converting the state of an object into a byte
stream in such a way that the byte stream can be converted back into a copy
of that object is described as serialization [26]. In our case, serialization and
deserialization take place in different languages on different platforms. So the
process is also used for canonical representation and object conversion (between
R and JavaScript).

HTML This is a markup language describing the structure of a document
(website) semantically. There are some elements that control presentation but
the development of the language leads to a more and more distinct separation
of semantics and presentation. The listing 5.1 shows a minmal valid document
according to the HTML5 specification [7].

Listing 5.1: HTML5 Minimal Example
1 <! DOCTYPE html >
2 <html lang="en">
3 <head >
4 <meta charset ="utf -8">
5 <title >title </title >
6 <link rel=" stylesheet " href="style.css">
7 <script src=" script .js"></ script >
8 </head >
9 <body >
10 <!-- page content -->
11 </body >
12 </html >

CSS and CSS Selectors This separation has lead to Cascading Style Sheets
(CSS). CSS specifies expressions to adress single HTML elements or collections
of them, these are called selectors. Selectors can filter on the id and class
attribute of HTML elements. There are also more complex operators that
allow for example counting or specification of parent-child relationships. The
example in listing 5.2 selects all li elements that are the third child of an
unordered list ul with the class attribute containing the string ’addresses’
that are in turn contained in the unique div element with an id attribute value
of ’address-list’. These expressions are normally used to associate blocks
of style definitions (color, font-size, etc.) with DOM elements. The described
implementation will do that also, but primarily use them to address DOM

32

5 Visualization

elements in JavaScript code. The jquery library provides a Domain-Specific
Language (DSL)3 for this task that is nearly equal to CSS expressions.

Listing 5.2: CSS Selector Example
1 div#address -list ul. adresses li:nth -child (3) {...}

DOM The Document Object Model is a convention for representing and
interacting with the objects of an HTML (XML) document in a language-
independent cross-platform way [11, 312-313]. Objects in the DOM tree can be
addressed and manipulated by using methods on these objects. So the DOM
is an object-oriented representation of a structured document. Starting with
“legacy DOM” that evolved from the development of JavaScript in netscape
and JScript in Internet Explorer respectively, it was finally specified as a
standard (“DOM Level 1”) during the standardization of JavaScript derivatives
under the ECMAScript hat. The current working draft version is “DOM
Level 4”. Nearly all web browsers use an internal representation of a website
that is very similar to a DOM.

As we have seen before, communication between model and controller on the
server-side (shinyserver) and the view on the client side (web browser) is
done by JavaScript Object Notation (JSON) encoded data. shinyserver uses
the rjsonio library for serializing from, and deserializing to R data-structures.
Some default data-structures are already handled by the rjsonio default

serializers. For some cases, shinyserver provides helper functions. Those exist
for simple tables (renderTable()), text output and plots (renderPlot()). In
the special case of plots, the data is transported as binary representation of a
Portable Network Graphics (PNG) format image.
Building a custom output object, like the enriched table from figure 5.5,

consist mainnly of four steps.

1. Server-Side Output Functions
2. Design Output Component Markup
3. Write an Output Binding
4. Register Output Binding

Server-Side Output Function This functions task is, to translate any given
data-structure to a structure that is serializable by the rjsonio marshaller.
The function will later be used to provide output for reactive endpoints. We
are then able to pass in results of custom computations, serialize them as JSON
and let shinyserver handle the transmission to the view (web browser).

3 http://api.jquery.com/jQuery/ (Retrieved: 08.08.2014)

33

http://api.jquery.com/jQuery/

5 Visualization

Figure 5.5: spldashboard Project level overview of metrics per release

Output Component This describes the HTML markup used to render the
component in the view. The minimum output components markup consist of a
container-element, usually a div [7, sec. 4.4.13]. Two important attributes need
to be set: the class attribute of an HTML element contains a space-separated
list of class names, referencing CSS classes. The fact, that a referenced CSS
class does not necessarily need to be defined in a stylesheet is used here. The
classname is then used to identify a set of container-elements that will render
the same type of output data. The id attribute contains an unique identifier,
that binds one instance of an output-container-class to a reactive endpoint (see
3.1.4) [7, sec. 3.2.5.1;3.2.5.7].

Output Binding An Output Binding models the connection between reactive
endpoints and output components. It uses the shinyserver JavaScript core as
a basis and is represented as a JavaScript object that implements an interface,
allowing the following operations. An example is shown in listing 5.3.

find(scope) given a HTML document or element scope, finds all instances of
a custom output component. The fact that all output elements share the same
CSS class can be used, to find them by a CSS expression as explained above.
The interface is defined by the abstract class OutputBinding which is a member
of the global Shiny object defined in shiny/inst/www/shared/shiny.js. The
Shiny object is bound to the global namespace window.Shiny so it can be

34

5 Visualization

used inside custom scripts.

Listing 5.3: Custom Output Binding
1 exampleOutputBinding .find = function (scope) {
2 return $(scope).find('. exampleComponentClass ');
3 };

The essential method is renderValue(el, data). It is called each time a
new value arrives that matches the output components id attribute. el is a
reference on the DOM element, data contains the JSON data received from
the server and generated by the server-side output function and rjsonio.

The next method, required by the interface, is getId(el) that must return
the output ID (which is the name of the reactive endpoint). The two remain-
ing methods renderError(el, err) and clearError(el) implement error
handling.

Default implementations exist for renderError(el, err), clearError(el)
and getId(el). The latter returning the data-input-id attribute or — if
it does not exist — the id attribute of the given DOM element. The former
do a simple replacement of the current output component container content
with the error message (err.message) and additionally set a CSS class that
indicates an error state.

The last step is to register the custom output binding as shown in listing 5.4
with the shinyserver JavaScript framework using the register(binding,id
↪→) method, where binding is a reference to the bindings object and id is a
unique string identifying the binding, similar to a package and class name in
Java.

Listing 5.4: Register Custom Output Binding
1 Shiny. outputBindings . register (exampleOutputBinding , "

↪→ yourname . exampleOutputBinding ");

To separate the custom output bindings namespace, self executing anonymous
functions as a way of scoping the modules against eachother, have been used.
The technique uses a function scope as a private namespace [11, 248-250].

Finally, the git repository shiny-minimal-example on the DVD contains
a sample implementation invloving all the above mentioned processes.

Creating Widgets and Dashboards

Widgets are abstractions of UI components. Widgets have a specific size that
is defined in terms of height and width tuples. Both values are discrete, so
the widgets can be placed on a grid. Such grids are provided by dashboards
that act as a container. The initial layout of a dashboard is defined in the
application, but widgets can be re-arranged through drag-and-drop by the user.

35

5 Visualization

Widgets can also be deleted from or added to the layout of a dashboard. An
example of a dashboard, comprising different widgets with different content is
shown in figure 5.6.

Figure 5.6: Example of a dashboard with widgets

The process of creating a widget involves four steps that are outlined in the
following list.

1. Create widget file in codeface/R/shiny/widgets/[WIDGET_NAME].r
2. Implement an S3 class, extending widget [20, pp.208] from codeface/R/

shiny/widgets.r with the minimum method set of
a) initWidget - initialize data variables for widget
b) renderWidget - build the reactive output of the widget, which can

be anything that is representable as JSON (including an HTML
fragment)

3. Call createWidgetClass(...) to register a template (list of information
on how to create a widget instance) in widget.list[CLASSNAME]

4. Include the widget implementation using source(...) at the bottom of
codeface/R/shiny/widgets.r

36

5 Visualization

5.1.4 Implementing the Extensions
During testing of new widgets, it was usefull to see the error messages that
are generated by R and the database layer. This can be achieved by starting
shinyserver with the environment variable SHINY_LOG_LEVEL set, as with this
statement export SHINY_LOG_LEVEL="TRACE". Even more unfiltered output
with less indirection can be seen by starting the dashboard application directly
in an R console. A script is provided at codeface/R/shiny/apps/dashboard/
debug_start.r that can be run with the command R --no-save < debug_
↪→ start.r.

Additional URL Parameters

Dataflow from the HTTP layer of ShinyServer through to the widget imple-
mentations is a bit nested. Parameter parsing and validation happens in
/codeface/R/shiny/apps/dashboard/server.r. From there on, data takes
the following path (file paths relative to /codeface/R/shiny/):

1. shinyServer(...) function in apps/dashboard/server.r
2. widgetbase.output(...) function in apps/dashboard/server.r
3. initWidget(...) function in widgets.r
4. newWidget(...) function in widgets.r

These four functions needed an exteded parameter list, to pass the file and
release GET URL parameters to the widget. Therefore a list spl containing
reactive sources file and release is created in shinyServer(...) and finally
set as a member of the widget instance returned by newWidget(...).

Release Overview Table

The release overview table has a relatively complex layout and supports inter-
action with the table-cells by clicking. This fact and reduction of the amount
of data that flows from server to client for table updates lead to the decision
to generate the table markup on the client side. The serverside processing of
the widget returns just the data backing the table (arrays of column values)
including the calculated differences. The template library mustache.js4 is
used to transform the received data into HTML fragments by replacing variables
in a template. These fragments are then appended to the existing DOM. The
rendering process is implemented in the output binding of the custom output
object (see 5.1.3).
The function for identifying and highlighting relevant changes for different

metrics may be different according to the metrics properties. A mechanism has
4 https://github.com/janl/mustache.js/ (Retrieved: 08.08.2014)

37

https://github.com/janl/mustache.js/

5 Visualization

been developed to support new highlight functions: the object importance in
the spl/metrics_table_binding namespace has attributes that are functions
mapping metric_value→ {’low’, ’med’, ’high’}. The image of this func-
tion is the set of possible css classes that are dynamically set on the table cells.
Style definitions for these classes have been developed to emphasize on the
high values while putting low ones in the background. A pluggable highlight
function registered in the importance object can be exchanged per metric. The
table widget shown in figure 5.5 uses a generic function, with the following
mapping.

|change| > 20 → ’high’
|change| > 2 → ’med’
else → ’low’

Average Nesting Depth Chart

The average nesting depths average (ANDAVG, see 4.1.3) can be shown as a
dot-plot for all file instances in a release [6, 21, 25]. The widget supports a filter
by minimum ANDAVG value. The example shown in figure 5.7 shows files in
the 1.3.29 release of the apache http server project, filtered by values greater
than 1. Additionally the charts lines are grouped by the following scheme and
colored accordingly: v ≤ 1.5→ 1, v > 1.5→ 2, v > 2→ 3.

Extension Type Chart

Pie charts are not a good way of displaying information as the eye is good
at judging linear measures and bad at judging relative areas. However two
widgets have been implemented as a pie chart, because they are very common
in management dashboard views and have been in the prototype concepts. The
extension type chart graphs the data of the TYPE metric described in 4.1.3.
An example for this chart is shown in figure 5.9.

Granularity Chart

An example for a granularity chart is shown in figure 5.8. It graphs the data of
the GRAN metric described in 4.1.3.

Open Tasks

As shown in the graph of the ANDAVG metric, the space can be very densely
filled. This applies to all metrics with a lot of instances (mainly releases and
files). Therefore interactive filtering should be implemented. Rendering the
charts on the server and transmitting the binary image data has two negative
effects. First, the amount of data is large, compared to the raw data that builds

38

5 Visualization

Figure 5.7: ANDAVG metric for all files in a release, filtered by a minimum
value of 1 and represented as a dot-chart

the graph. Second, the image is not interactive, as is consists of static color
per pixel information. Client side rendering approaches like d3js5 exist and
should be evaluated.

5.2 Description of the Example Data Sets
The example data sets all stem from open-source projects. The set of projects
has been chosen because one of the advisors of this thesis used them successfully
for other evaluation purposes in the context of cppstats. The metrics have
been used in the state from the previous work, so that comparison of results is
possible.

Table 5.1 shows statistics about the example projects such as total Lines of
Code (LOC) processed for all releases, the number of lines of metrics data in
CSV files and number of releases analyzed.

5 http://d3js.org/ (Retrieved: 08.08.2014)

39

http://d3js.org/

5 Visualization

Figure 5.8: GRAN metric widget Figure 5.9: TYPE metric widget

Project LOC (all releases) Lines of cppStats data releases analyzed
apache 15020247 39999 142
berkeleydb 4017259 10016 21
busybox 13918465 59484 89
cherokee 6954656 37856 139
emacs 4746643 9882 23
freebsd 108197779 354654 17
gimp 18387512 76759 28
gnuplot 1466682 3326 20
libxml2 12558102 12323 116
linux 193926300 623818 22
mpsolve 32190 154 2
openvpn 432132 1368 9
parrot 1663382 4412 16
postgresql 99314873 275360 225
sendmail 3561737 8394 51
subversion 34779108 62231 87
vim 2801816 1823 18
xfig 276840 1087 5
xterm 3992459 4538 74
sqlite 5810 29

Table 5.1: Software projects that served as test data pools.

40

5 Visualization

Project first load (s) subsequent load (s) Database size
apache 10.67 2.19 108
berkeleydb 4.01 2.21 16.2
emacs 4.29 1.89 16.1
gimp 14.33 2.14 100.1
postgresql 139.15 2.68 349.5

Table 5.2: Dashboard load time (for first and subsequent load) per project.

5.3 Analysis
All /UXxx/ references in the following sections refer to the user experience
goals set in section 5.1.2.

5.3.1 Accessibility
Accessibility of the GUI is required in (/UX09/). Because of the implementation
as a web application, some accessibility features that are available in web
browsers can be used. Browser integrated features like text-zoom, custom color
schemes and contrast modes do work without further investment.

A large part of the HTML markup of the dashboards is dynamically generated
after the page has been loaded. The markup may change at any time if
events arrive from the controller. Besides the markup is missing annotations
that express the semantics of elements that allow interaction. Because of
that, features like keyboard navigation, screen reader and braille devices fail.
Statistical data rendered as graphs in images also can not be displayed by these
technologies.

5.3.2 Responsiveness
The SQL queries for retrieval of the metrics (that feed data to the widgets)
have been written in an expressive style, that documents their intention. As a
result a lot of subqueries are used where (materialized) views would make a
lot more sense. The subqueries lead to temporary table generation6 and the
poor performance on large projects that is shown in table 5.2. As queries for
single widget instances are generally static, the mysql query cache7 is able to
absorb some of the performance problems — at least, after a dashboard has
been shown once.

6 This can be seen by prefixing the queries with the EXPLAIN keyword.
7 http://dev.mysql.com/doc/refman/5.1/en/query-cache.html (Retrieved:
08.08.2014) - caches the results for exact query string matches.

41

http://dev.mysql.com/doc/refman/5.1/en/query-cache.html

5 Visualization

Also the mysql server has been used with its default configuration. The
performance may improve by adapting the configuration of the INNODB storage
engine to the amount of available Random Access Memory (RAM).

5.3.3 Self-Explanatory
As claimed in /UX06/ the user interface should be self explanatory. In figure
5.5 we show in place explanation of short metrics names with a popover dialog.
Such explanations are implemented in many places to explain abbreviations,
details of variables or more precise values if the display needed truncation of
decimal places. Clicking on free space of a widget shows an explanation text.

5.3.4 Fast Import Process
A fast import process is a requirement in /UX08/. In section 3.2.4 is described
and summarized in table 3.2 that the import process takes considerable amount
of time. The average performance for parsing the CSV files is 131 lines per
second. The largest project import, Linux, took 7 hours with the initial
approach.

Caching improves import runtime by an average of 35%, but for large projects
(like the Linux kernel or Freebsd) with a number of files that is a multiple of
104 it improves runtime by about 70%. For projects that are large considering
their amount of releases, caching does not have the same effect (see postgresql
for an example).
As a variable is described as a triple of (scopeInstance, metric, value) and

the most variables appear in the ScopeFileInstance scope, the lookups for
file instance ids dominate. With each new release, the file instance cache is
invalidated, as each instance is only valid at one point in time (release). So
the product fi

rel
, where fi is the file instance count and rel is the number of

releases, is a good indicator for potential cache improvement. This is shown in
figure 5.10.

5.3.5 Drill Down Approach
As required in /UX02/, /UX03/ and /UX04/ the data should be explorable,
giving the user the possibility to choose freely between levels of granularity of
the displayed data. Peculiar values should be clearly highlighted and clickable
to investigate on the cause of such values. This is realized with the three
spldashboard views that are described in the following section (and the
codeface projects view).

42

5 Visualization

Figure 5.10: fi
rel

compared to the import runtime with caching

The Dashboards

Dashboards are grids on which widgets can be arranged (see 5.1.3). Widgets
can contain hyperlinks that switch to other dashboard views. A marker badge
has been implemented that clearly highlights projects with Software Product
Line data available. The dashboard showing an overview of all projects did
already exist in codeface. In all dashboards, clicking on the grid icon in the
header allows adding and removing of widgets. The example figure A.3 shows
only a selection because of space limitations.

SPL Project Clicking on the Software Product Line indicator badge in the
dasboard before switches to the Software Product Line project dashboard. It
shows metrics aggregated per project as tables and charts. Additionally it
shows the release overview table described above.

SPL Release Clicking on a line in the release overview table switches to the
Software Product Line release dashboard. It displays metrics aggregated on
the release level as tables and charts.

SPL File Instance Clicking on a file path that, together with the release,
identifies a file instance, switches to the Software Product Line file instance
dashboard. It shows metrics for the selected file instance. The gauge type
widgets have their maximum set to the project level maximum of the specific
metric.

43

6 Outlook and Future Work
As import speed is important, parallelization of the import process is an option
for improvement. The cppstats files (per revision and per file) have no interde-
pendencies. Actually not even the lines of the CSV files have interdependencies,
so the import process could be parallelized with little effort.
General schemes for prediction of software faults by using data-mining

techniques on software metrics are questionable. But it is possible to build
statistic models on a per project or per project type basis that predict post-
release defects [22]. Even if the models have weaknesses regarding generalization,
they exist and have practical applications [10, 15, 12, 16]. It is likely that
such predictors can be built for software product line specific metrics. Data
about bugs, versioning-system commits and developer communication is already
aggregated in codeface and could support such analyses. With such metrics it
would be possible to extend the spldashboard with utilities that warn about
upcoming problems and help to prevent them [18].

Further evaluation of the visualizations through experiments with a real user
base on real projects should be done.
Retrieval, calculations and highlighting for a specific metric is currently

scattered through R and JavaScript code. Packaging a metric as a module and
reduce implementation to one language would make extensions easier.
Possible improvements for the spldashboard itself have been collected

during development and are listed below.

1. Adding datasoruces (parser, import) for other languages and analysis
tools.

2. Adding visualizations as new widgets.
3. Integration through hyperlinks with other codeface components.
4. Run the cppstats tool from within the codeface CLI.

44

A Figures

45

A Figures

Fi
gu

re
A
.1
:c

od
ef

ac
e
D
at
am

od
el

be
fo
re

m
od

ifi
ca
tio

ns

46

A Figures

Fi
gu

re
A
.2
:c

od
ef

ac
e
da

ta
ba

se
sc
he
m
a
in
cl
ud

in
g

sp
ld

as
hb

oa
rd

m
od

ifi
ca
tio

ns

47

A Figures

Fi
gu

re
A
.3
:D

ril
ld

ow
n
ap

pr
oa
ch

th
ro
ug

h
di
ffe

re
nt

da
sh
bo

ar
ds

in
co

de
fa

ce

48

A Figures

(a
)
In
te
rv
er
sio

n
co
m
pa

ris
on

an
d
st
at
ist

ic
s

(b
)
Pr

oj
ec
t
m
et
ric

s

Fi
gu

re
A
.4
:F

irs
t
sk
et
ch
es

of
th
e

sp
ld

as
hb

oa
rd

co
m
po

ne
nt
s

49

B Listings

Listing B.1: Example codeface configuration file
1 project : test
2 repo: test # Relative to git -dir as specified on the

↪→ command line
3 mailinglists :
4 - name: gmane.comp.apache.test
5 type: dev
6 source : gmane
7 description : This is a test project
8 revisions : ["1.3.0", "1.3.1", "1.3.2", "1.3.3"]
9
10 tagging : proximity
11
12 bugsProjectName : test project
13 issueTrackerType : bugzilla
14 issueTrackerURL : https:// issues.apache.org / bugzilla
15 productAsProject : true
16
17 spl:
18 cppstats :
19 basePath : /home/ sniechzial /03_Uni/ Masterarbeit /data/

↪→ cppstats _ analysis _data/ apache
20 revisionPattern : "httpd -%s"
21 perfile : perfile.csv
22 perrevision : merged.csv

50

B Listings

Listing B.2: NOF – Number of Files
1 SELECT count(*) count
2 FROM spl_file f
3 JOIN project p
4 ON p.id = f. project _id
5 WHERE p.name = 'test '

Listing B.3: NOF per release
1 SELECT rt.tag revision ,

↪→ count (*) count
2 FROM spl_file_ instance fi
3 JOIN release _ timeline rt
4 ON rt.id = fi. release _

↪→ timeline _id
5 JOIN spl_file f
6 ON fi.file_id = f.id
7 JOIN project p
8 ON p.id = f. project _id
9 WHERE p.name = 'test '

10 GROUP BY rt.tag

Listing B.4: LOC – Lines of Code
(SUM)

1 SELECT rt.tag revision ,
↪→ SUM(v.value) LOC

2 FROM spl_ variable v
3 JOIN spl_ metric m
4 ON v.spl_ metric _id = m.

↪→ id
5 JOIN spl_file_ instance fi
6 ON v.spl_file_ instance _

↪→ id = fi.id
7 JOIN release _ timeline rt
8 ON rt.id = fi. release _

↪→ timeline _id
9 JOIN spl_file f

10 ON fi.file_id = f.id
11 JOIN project p
12 ON p.id = f. project _id
13 WHERE p.name = 'test '
14 AND m.name = 'LOC '
15 GROUP BY rt.tag

Listing B.5: LOC – Project Average
1 SELECT AVG(LOC) LOC FROM

↪→ (
2 SELECT rt.tag revision ,

↪→ SUM(v. value) LOC
3 FROM spl_ variable v
4 JOIN spl_ metric m
5 ON v.spl_ metric _id =

↪→ m.id
6 JOIN spl_file_ instance

↪→ fi
7 ON v.spl_file_

↪→ instance _id = fi
↪→ .id

8 JOIN release _ timeline
↪→ rt

9 ON rt.id = fi. release
↪→ _ timeline _id

10 JOIN spl_file f
11 ON fi.file_id = f.id
12 JOIN project p
13 ON p.id = f. project _

↪→ id
14 WHERE p.name = 'test '
15 AND m.name = 'LOC '
16 GROUP BY rt.tag
17) AS tmp

51

B Listings

Listing B.6: LOF – Lines Of Feature
code

1 SELECT rt.tag revision ,
↪→ SUM(v.value) LOF

2 FROM spl_ variable v
3 JOIN spl_ metric m
4 ON v.spl_ metric _id = m.

↪→ id
5 JOIN spl_file_ instance fi
6 ON v.spl_file_ instance _

↪→ id = fi.id
7 JOIN release _ timeline rt
8 ON rt.id = fi. release _

↪→ timeline _id
9 JOIN spl_file f

10 ON fi.file_id = f.id
11 JOIN project p
12 ON p.id = f. project _id
13 WHERE p.name = 'test '
14 AND m.name = 'LOF '
15 GROUP BY rt.tag

Listing B.7: PLOF – LOF/LOC prod-
uct

1 SELECT rt.tag revision , (
↪→ SUM(v. value) / SUM(
↪→ v2.value)) PLOF

2 FROM spl_ variable v
3 JOIN spl_ metric m
4 ON v.spl_ metric _id = m.

↪→ id
5 AND m.name = 'LOF '
6 JOIN spl_file_ instance fi
7 ON v.spl_file_ instance _

↪→ id = fi.id
8 JOIN release _ timeline rt
9 ON rt.id = fi. release _

↪→ timeline _id
10 JOIN spl_file f
11 ON fi.file_id = f.id
12 JOIN project p
13 ON p.id = f. project _id
14 JOIN spl_ variable v2
15 ON v2.spl_file_ instance

↪→ _id = v.spl_file_
↪→ instance _id

16 JOIN spl_ metric m2
17 ON m2.id = v2.spl_

↪→ metric _id
18 AND m2.name = 'LOC '
19 WHERE p.name = 'test '
20 GROUP BY rt.tag

52

B Listings

Listing B.8: VP – Variation Point
1 SELECT rt.tag revision ,

↪→ SUM(v.value) VP
2 FROM spl_ variable v
3 JOIN spl_ metric m
4 ON v.spl_ metric _id = m.

↪→ id
5 JOIN spl_file_ instance fi
6 ON v.spl_file_ instance _

↪→ id = fi.id
7 JOIN release _ timeline rt
8 ON rt.id = fi. release _

↪→ timeline _id
9 JOIN spl_file f

10 ON fi.file_id = f.id
11 JOIN project p
12 ON p.id = f. project _id
13 WHERE p.name = 'test '
14 AND m.name LIKE 'GRAN%'
15 GROUP BY rt.tag

Listing B.9: NOFC – Number Of Fea-
ture Constants

1 SELECT rt.tag revision , v
↪→ .value NOFC

2 FROM spl_ variable v
3 JOIN release _ timeline rt
4 ON rt.id = v. release _

↪→ timeline _id
5 JOIN spl_ metric m
6 ON v.spl_ metric _id = m.

↪→ id
7 JOIN project p
8 ON p.id = rt. projectId
9 WHERE m.name = 'NOFC '

10 AND p.name = 'test '
11 AND m.scope = '

↪→ ScopeRelease '

Listing B.10: SDEGMEAN – Scatter-
ing Degree (mean value)

1 SELECT rt.tag revision , v
↪→ .value SDEGMEAN

2 FROM spl_ variable v
3 JOIN release _ timeline rt
4 ON rt.id = v. release _

↪→ timeline _id
5 JOIN spl_ metric m
6 ON v.spl_ metric _id = m.

↪→ id
7 JOIN project p
8 ON p.id = rt. projectId
9 WHERE m.name = 'SDEGMEAN '
10 AND p.name = 'test '
11 AND m.scope = '

↪→ ScopeRelease '

Listing B.11: TDEGMEAN – Tan-
gling Degree (mean
value)

1 SELECT rt.tag revision , v
↪→ .value TDEGMEAN

2 FROM spl_ variable v
3 JOIN release _ timeline rt
4 ON rt.id = v. release _

↪→ timeline _id
5 JOIN spl_ metric m
6 ON v.spl_ metric _id = m.

↪→ id
7 JOIN project p
8 ON p.id = rt. projectId
9 WHERE m.name = 'TDEGMEAN '
10 AND p.name = 'test '
11 AND m.scope = '

↪→ ScopeRelease '

53

B Listings

Listing B.12: NOFC – Number Of
Feature Constants (aver-
age)

1 SELECT rt.tag revision ,
↪→ AVG(v.value) NOFC

2 FROM spl_ variable v
3 JOIN spl_ metric m
4 ON v.spl_ metric _id = m.

↪→ id
5 JOIN spl_file_ instance fi
6 ON v.spl_file_ instance _

↪→ id = fi.id
7 JOIN release _ timeline rt
8 ON rt.id = fi. release _

↪→ timeline _id
9 JOIN spl_file f

10 ON fi.file_id = f.id
11 JOIN project p
12 ON p.id = f. project _id
13 WHERE p.name = 'test '
14 AND m.name = 'NOFC '
15 AND v.value > 0 -- if

↪→ NOFC is zero , no FC
↪→ is existent -> sort
↪→ out this data!

16 GROUP BY rt.tag

Listing B.13: NOFC – Number Of Fea-
ture Constants (std. de-
viation)

1 SELECT rt.tag revision ,
↪→ STDDEV _POP(v.value)
↪→ NOFC

2 FROM spl_ variable v
3 JOIN spl_ metric m
4 ON v.spl_ metric _id = m.

↪→ id
5 JOIN spl_file_ instance fi
6 ON v.spl_file_ instance _

↪→ id = fi.id
7 JOIN release _ timeline rt
8 ON rt.id = fi. release _

↪→ timeline _id
9 JOIN spl_file f
10 ON fi.file_id = f.id
11 JOIN project p
12 ON p.id = f. project _id
13 WHERE p.name = 'test '
14 AND m.name = 'NOFC '
15 AND v. value > 0 -- if

↪→ NOFC is zero , no FC
↪→ is existent -> sort
↪→ out this data!

16 GROUP BY rt.tag

54

C DVD Contents
Contents of the attached DVD. Folders are direct subfolders of the DVD root.

example-projects The cppstats metrics data used in this thesis as CSV files.
git Git repositories include complete history. In the top level directory, exported

archives of the master branch can be found.
codeface The original codeface project.
codeface-fork The fork of codeface that has been developed in this

thesis.
shiny-minimal-example Minimal examples and experiments referenced

in this thesis.
sql Structured Query Language (SQL) dump of the extended schema together

with a complete import of all sample projects.
virtual-machine A virtual machine disk image with startup instructions for

the Kernel-based Virtual Machine (KVM). It includes the current master
branch of codeface-fork and has already imported all example projects.

55

Bibliography
[1] Stephen Anderson. Seductive Interaction Design: Creating Playful, Fun,

and Effective User Experiences. New Riders, 1 edition, 2011.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer
Berlin Heidelberg, 2013.

[3] Sven Apel, Claus Hunsen, Christian Kästner, and Olaf Leßenich. Pythia -
Techniques and Prediction Models for Sustainable Product-Line Engineer-
ing. Technical report, University of Passau, 2013.

[4] Sven Apel and Christian Kästner. Analysis Techniques and Prediction
Models for Sustainable Product-Line Engineering (PYTHIA). Proposal
for a research grant, November 2011.

[5] Sven Apel, Christian Kästner, and Gunter Saake. Software Product Line
Evolution. Lecture Slides, 2013.

[6] R. A. Becker, J. M. Chambers, and A. R. Wilks. The new S language.
Pacific Grove, Ca.: Wadsworth & Brooks, 1988, 1988.

[7] Robin Berjon, Steve Faulkner, Edward O’Connor, Silvia Pfeiffer,
Erika Doyle Navara, and Travis Leithead. HTML5 - A vocabulary and
associated APIs for HTML and XHTML. Candidate recommendation,
W3C, April 2014. http://www.w3.org/TR/2014/CR-html5-20140429/.

[8] G. Bockle, P. Clements, John D. McGregor, Dirk Muthig, and K. Schmid.
Calculating ROI for software product lines. Software, IEEE, 21(3):23–31,
May 2004.

[9] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004.

[10] N.E. Fenton and M. Neil. A critique of software defect prediction models.
Software Engineering, IEEE Transactions on, 25(5):675–689, Sep 1999.

[11] David Flanagan. JavaScript. The Definitive Guide. O’Reilly Media, 6th
rev. edition, 2011.

56

http://www.w3.org/TR/2014/CR-html5-20140429/

Bibliography

[12] T. Gyimothy, R. Ferenc, and I Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. Software
Engineering, IEEE Transactions on, 31(10):897–910, Oct 2005.

[13] Harri Hämäläinen. HTML5: WebSockets. Technical report, Aalto Univer-
sity, Department of Media Technology, 2012.

[14] Patrick Heymans, Quentin Boucher, Andreas Classen, Arnaud Bourdoux,
and Laurent Demonceau. A Code Tagging Approach to Software Product
Line Development: An Application to Satellite Communication Libraries.
International Journal on Software Tools for Technology Transfer, June
2012.

[15] T.M. Khoshgoftaar and J.C. Munson. Predicting software development er-
rors using software complexity metrics. Selected Areas in Communications,
IEEE Journal on, 8(2):253–261, Feb 1990.

[16] Barbara A. Kitchenham. What’s up with software metrics? - A preliminary
mapping study. Journal of Systems and Software, pages 37–51, 2010.

[17] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens
Dörre, and Christian Lengauer. Scalable analysis of variable software. In
Bertrand Meyer, Luciano Baresi, and Mira Mezini, editors, ESEC/SIG-
SOFT FSE, pages 81–91. ACM, 2013.

[18] R. Lincke, T. Gutzmann, and W. Löwe. Software Quality Prediction
Models Compared. In Quality Software (QSIC), 2010 10th International
Conference on, pages 82–91, July 2010.

[19] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and
Andrzej Wąsowski. Evolution of the Linux kernel variability model. In
Software Product Lines: Going Beyond, pages 136–150. Springer Berlin
Heidelberg, 2010.

[20] N. Matloff and N.S. Matloff. The Art of R Programming: A Tour of
Statistical Software Design. No Starch Press, 2011.

[21] Paul Murrell. R Graphics. Chapman & Hall/CRC The R Series. Taylor &
Francis, second edition edition, 2011.

[22] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining Metrics
to Predict Component Failures. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages 452–461, New York,
NY, USA, 2006. ACM.

57

Bibliography

[23] Armstrong Nhlabatsi, Robin Laney, and Bashar Nuseibeh. Feature interac-
tion as a context sharing problem. In International Conference on Feature
Interactions.

[24] Leonardo Passos, Krzysztof Czarnecki, Sven Apel, Andrzej Wąsowski,
Christian Kästner, and Jianmei Guo. Feature-oriented Software Evolution.
In Proceedings of the Seventh International Workshop on Variability Mod-
elling of Software-intensive Systems, VaMoS ’13, pages 17:1–17:8, New
York, NY, USA, 2013. ACM.

[25] R Core Team. R: A Language and Environment for Statistical Computing.
http://www.R-project.org/.

[26] V. Ryan, S. Seligman, and R. Lee. Schema for Representing Java(tm)
Objects in an LDAP Directory. RFC 2713 (Informational), October 1999.

[27] Pamela Zave. An experiment in feature engineering. In Programming
methodology. Springer, 2003.

58

http://www.R-project.org/

Eidesstattliche Erklärung
Hiermit erkläre ich, dass ich diese Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe. Ich habe die Arbeit nicht
in gleicher oder ähnlicher Form bei einer anderen Prüfungsbehörde vorgelegt.

Passau, August 2014

	Introduction
	About this Thesis
	Conventions

	Context and Framework
	Software Product Lines
	The PYTHIA Project

	The Codeface Framework
	Codeface: Existing Structures
	MySQL Server / Model
	Codeface Core
	VCS Analysis
	shinyserver
	ML Analysis
	Clustering
	Bug Extractor
	ID Service
	nginx Cache

	Codeface: Extensions
	Domain Model
	Data Model
	Ubiquitous Language
	Framework Extensions

	Datasources
	CPPStats
	Granularity
	File Level Metrics
	Release Level Metrics
	Project Level Metrics

	Visualization
	Implementation Report
	Prototyping
	UI/UX Software Engineering
	Extending shinyserver
	Implementing the Extensions

	Description of the Example Data Sets
	Analysis
	Accessibility
	Responsiveness
	Self-Explanatory
	Fast Import Process
	Drill Down Approach

	Outlook and Future Work
	Figures
	Listings
	DVD Contents

