
Feature Interactions in
Configurable Software Systems

Sergiy Kolesnikov

February 4, 2019

Dissertation zur Erlangung des Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

eingereicht an der Fakultät für Informatik und Mathematik
der Universität Passau

Dissertation submitted to
the Department of Informatics and Mathematics of

the University of Passau
in Partial Fulfillment of Obtaining

the Degree of a Doctor in the Domain of Science

Betreuer / Advisor:
Prof. Dr. Sven Apel

Externer Gutachter / External Examiner:
Prof. Vittorio Cortellessa, Ph.D.

Die Dissertation wurde eingereicht am / The dissertation was submitted on:
2019-02-06

Unterschrift / Signature:

Sergiy Kolesnikov

ii

Abstract

Software has become an important part of our life. Therefore, the number of
different applications scenarios and user requirements of software systems grows
rapidly. To satisfy these requirements, software vendors build configurable
software systems that can be tailored to diverse needs without rebuilding them
from scratch, which reduces costs and development time.

Despite considerable advances in software engineering, which allow building
high-quality configurable software systems, some challenges remain. One
of these challenges is the feature interaction problem that arises when parts
(features), from which a configurable system is composed, interact in unexpected
ways, and inadvertently change the behavior or quality attributes (such as
performance) of the system.

The goal of this dissertation is to systematically study the nature of feature
interactions, their causes, their influence on performance of configurable systems,
and, based on empirical results, suggest ways of improving techniques for
detecting and predicting feature interactions.

More specifically, we compared and evaluated different strategies for the
analysis of configurable software systems. The results of our evaluation comple-
ment empirical data from previous work about how different analysis strategies
for configurable software systems compare with respect to different aspects,
such as performance. These results shall be used to develop effective and
scalable techniques and tools for analysis of configurable software including
feature-interaction detection and prediction techniques and tools.

Technically, we used a machine-learning technique to quantify the influence
of feature interactions on performance of real-world configurable systems. We
studied the characteristics of interactions that have the largest influence on
performance and found that interactions among few features have higher
influence than interactions among many features. With a growing number of
interacting features, the influence of the corresponding interactions decreases
consistently. This implies that interactions involving multiple features can
be ignored in practice because of their marginal influence on performance.
We also investigated the causes of the interactions and were able to identify
several patterns that link these interactions to the architecture of the systems:
For example, we found that if a data processing system consisted of multiple
features that processed the same data in sequence then these features interacted.
The identified patterns can help to anticipate performance interactions already
at an early development stage when a system’s architecture is designed.

Furthermore, considering that control-flow interactions (observable at the
level of control flow among features) are easier to detect than performance
interactions (externally observable through measuring performance of different
combinations of features), we conducted a case study on two configurable
systems. In this case study, we investigated a possible relation among control-
flow feature interactions and performance feature interactions. We also discussed
how this relation can be exploited by interaction detection and performance
prediction techniques to make them more time efficient and precise. Our case
study on two real-world configurable systems revealed that a relation indeed
exists, and we were able to show how it can be used to reduce the search
space of possibly existing performance interactions. The study can serve as
a blueprint for further studies that can rely on our conceptual framework for
investigating relations among external and internal interactions.

Overall, the contribution of this dissertation consists of scientific and tech-
nical insights, practical tool implementations, empirical evaluations, and case
studies that advance the current state of research in the area of feature inter-
actions in configurable software systems. In particular, we provide insights
into the causes of feature interactions and their influence on performance of
real-world configurable systems (e.g., interaction patterns, decreasing influence
of interactions with growing number of involved features). Our results also
suggest ways of improving techniques for detecting and predicting feature
interactions (e.g., ignoring interactions among multiple features, reducing the
search space based on relations among interactions).

ii

Acknowledgements

This dissertation would not have been possible without the support of many
people. No matter how large or small the involvement of each of them was, it
is the whole and not parts that made this dissertation possible.

I want to thank my wife Katja for her relentless support, words of wisdom
at the right moment, and always being there for me. Our son Luka came into
this world when I just started writing down this dissertation and he gave me
a lot of helpful input, not directly related to the topic, but nevertheless very
positive and inspiring. I am also grateful to my parents who laid a foundation
for all my achievements in life.

I would like to express my gratitude to my advisor Sven Apel. I got to know
Sven as a student and have been always admiring his openness to students and
colleagues, his capacity to absorb unbelievable amounts of information on a
vast number of topics, and the ability to effectively share the knowledge that
he generated from that information. Sven’s personality was one of the main
reasons why I gladly accepted the offer to become part of his research group.
His support, patience, and advice are invaluable.

I would like to thank Christian Kästner whose special way of providing
feedback helped me to learn writing research papers. I also would like to
thank Vittorio Cortellessa who kindly accepted the invitation to be my external
examiner, knowing how much work it would mean.

Furthermore, I want to thank my colleagues and students who were involved
in different activities regarding this dissertation: Alexander Denk, Alexander
Grebhahn, Claus Hunsen, Christian Kaltenecker, Olaf Leßenich, Jörg Liebig,
Judith Roth, Semah Senkaya, Norbert Siegmund, Stefan Sobernig, and Andreas
Stahlbauer. I also want to thank Eva Reichhart for her organizational and
administrative support. And a special thanks goes to Alexander von Rhein
with whom we shared an office for a long time and had a lot of interesting
discussions on a variety of topics.

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 5
1.3 Contributions and Key Results 6
1.4 Outline . 7

2 Background 9
2.1 Configurable Software Systems 9

2.1.1 Notes on Terminology 11
2.1.2 Variability Modeling . 12
2.1.3 Variability Implementation 14

2.2 Feature Interactions . 21
2.3 Analysis of Configurable Systems 26
2.4 Performance Prediction of Configurable

Systems . 29
2.4.1 Performance-Influence Models 29
2.4.2 Multiple Linear Regression 32
2.4.3 Learning Performance-Influence Models 33

2.5 Summary . 35

iv

CONTENTS

3 A Comparison of Analysis Strategies 37
3.1 Product-Line Type Checking . 38

3.1.1 Examples of Type Errors 39
3.1.2 Type Checking Product Lines 40
3.1.3 Product-based Strategy 40
3.1.4 Feature-based Strategy 41
3.1.5 Family-based Strategy 43
3.1.6 Summary . 44

3.2 Motivation and Hypotheses . 44
3.3 Empirical Evaluation . 45

3.3.1 Subject Systems . 47
3.3.2 Measurement Procedure 47
3.3.3 Results . 48
3.3.4 Discussion . 52

3.4 Threats to Validity . 56
3.5 Related Work . 56
3.6 Summary . 57

4 Tradeoffs in Modeling Performance 59
4.1 Motivation and Research Questions 61

4.1.1 Use Cases of Influence Models 63
4.1.2 Tradeoffs in Machine Learning 65
4.1.3 Research Questions . 66

4.2 Empirical Study . 67
4.2.1 Learning Performance-Influence Models 67
4.2.2 Measurement Procedure 67

4.2.2.1 Measuring Model Properties 67
4.2.2.2 Measuring Tradeoffs 68

4.2.3 Subject Systems and Experimental Setup 69
4.2.4 Results . 71
4.2.5 Discussion . 71

4.3 Threats to Validity . 81
4.4 Related Work . 82
4.5 Summary . 84

5 On the Relation of Feature Interactions 87
5.1 Visibility of Feature Interactions 88

5.1.1 External Feature Interactions 89
5.1.2 Internal Feature Interactions 90

5.2 Examples of Relations among Interactions 92
5.2.1 Control-Flow Interactions (Internal, Operational) 92

v

CONTENTS

5.2.2 Performance Interactions (External, Non-functional) . . . 94
5.2.3 Relating Control-Flow and Performance

Interactions . 95
5.3 Research Questions and Conceptual Framework 96

5.3.1 Research Method . 96
5.3.2 Identifying Control-Flow Interactions 97
5.3.3 Identifying Performance Interactions 98
5.3.4 Relating Control-Flow and Performance

Interactions . 98
5.3.5 Predicting Performance Interactions 99
5.3.6 Subject Systems . 100

5.4 Results . 103
5.4.1 Performance Interactions 103
5.4.2 Control-Flow Interactions 106
5.4.3 Relating Interactions . 108
5.4.4 Predicting Performance Interactions 112

5.5 Discussion . 113
5.6 Threats to Validity . 116
5.7 Related Work . 117
5.8 Summary . 118

6 Conclusion 119

Bibliography 123

Appendix 134
A.1 Influences of Interactions . 134
A.2 Materials Presented to the Interviewees 138

vi

List of Figures

1.1 Summary of our contributions. 6

2.1 Variability diagram of the example file archiver. 13
2.2 Prototypical implementation of the file archiver using feature-

oriented programming. 18
2.3 A configuration with DEFLATE, Encrypt, Hash, and File enabled. 19
2.4 Prototypical implementation of the file archiver using preproces-

sor. 20
2.5 Compression ratios for the example. 23
2.6 Example of a trivial performance-influence model. 31
2.7 Example of an alternative performance-influence model. 31
2.8 Example of an alternative performance-influence model with

interaction terms. 32

3.1 Examples of type errors. 38
3.2 Feature model of the example product line. 39
3.3 Steps of product-line type checking. 40
3.4 Syntax tree of the example product line. 43
3.5 Error message of the family-based type checker. 44
3.6 Example of a variable type hierarchy. 46
3.7 Extended feature model of the example product line. 47
3.8 Type-checking times for each subject system. 51

4.1 Two examples of performance-influence models. 62
4.2 Example tradeoff curves and corresponding AUC values. 68
4.3 Time–error tradeoff. 72

vii

LIST OF FIGURES

4.4 Time–size dependency. 73
4.5 Size–error tradeoff.p . 74
4.6 Shares of interactions of different size in performance-influence

models and their influence on the prediction error. 77

5.1 Interactions in the audio streaming system. 93
5.2 mbedTLS: counts of features in control-flow interactions. 107
5.3 SQLite: counts of features in control-flow interactions. 107

viii

List of Tables

2.1 Terms in configurable systems and software product lines domains. 11
2.2 Configuration options of the example file archiver. 12
2.3 Benchmark results for the example DBMS. 30

3.1 Conceptual comparison of the three type-checking strategies. . . 44
3.2 Overview of the subject systems. 48
3.3 Measurement results for each subject system and type-checking

strategy. 50
3.4 Break-even points of the superiority of the family-based strategy

for the subject systems. 53

4.1 Subject systems. 69

5.1 A lists of interacting features for the example. 95
5.2 Performance interactions and their influences on performance of

the systems in seconds. 104
5.3 Performance interactions, the number of the control-flow interac-

tions related to them, and the mean value of the corresponding
Jaccard indexes. 109

5.4 Control-flow interactions, the number of the related performance
interactions, and the mean value of the corresponding Jaccard
indexes. Control-flow interactions without related performance
interactions are not listed. 111

5.5 Precision and recall for the item set predictor. 114

A.1 A list of the most influential configuration options and interactions.134

ix

CHAPTER 1

Introduction

1.1 Motivation

Configurable software systems. In the time of the ongoing digital revolution,
software plays an essential role in more and more areas of economy and society.
Transportation and communication infrastructure, manufacturing and financial
sector, all from national defense and security to entertainment industry, depend
on software. As a result, we observe an explosive growth of different require-
ments, regulations, and application scenarios that software vendors have to
consider while developing their software products. A software product with a
single functionality is rarely enough nowadays to satisfy all customers. Similarly
as a coffee machine that makes only coffee lungo is rarely enough, because
there are also those delicious1 espresso, cappuccino, late macchiato. That is, a
customer will probably be unwilling to buy multiple coffee machines to make
each of these beverages. To satisfy different customer needs, vendors introduce
new configuration options (a.k.a. features) for their coffee machines, such as
the ability to make multiple coffee beverages, milk frother, auto-brew mode,
and adjustable grinder and coffee dosage. Based on these configuration options,
vendors provide a line of diverse products from which a customer can choose:
from simple budget variants with a few features to high-end variants with all
bells and whistles included. In other words, coffee machine vendors design their
machines as configurable systems, with the goal of satisfying diverse customer
requirements, considering different application scenarios. Software engineering

1To my taste, at least.

1

1.1. MOTIVATION

companies are not much different in this respect: They design configurable
software systems, pursuing the same goals.

Software product lines. Starting in 1960’s, gaining momentum in 1990’s, the
continuous research and development in the domain of configurable systems cul-
minated in the appearance of a new engineering discipline: software product line
engineering. This discipline is concerned with all aspects of producing config-
urable software systems; it describes how scientific and technological knowledge
and methods can be systematically applied in the production [PBvD05]. Adop-
tion of the software product-line approach promises different benefits among
which [Ape+13c, p. 8]:

Tailor-made software. A product-line approach facilitates tailoring products
to individual customers, such that a set of differently tailored products is
produced.

Low production costs. Since each tailored product is not developed from
scratch, but rather composed from reusable parts, which were developed
upfront, or is reconfigured to fit new requirements, the costs per product
per customer are reduced.

Reduced development time. Composing products from reusable parts re-
sults in reduced development time. Even if a customer requests new
functionality, building an new reusable part (with the requested function-
ality) for an existing well-designed product is faster than building the
product from scratch.

Improved product quality. Standardized and reusable parts, which are com-
posed to products, can be checked and tested systematically in different
products and use cases, leading to more stable and reliable parts and, as
a consequence, more stable and reliable products.

There are multiple cases of successful adoption of the software product
line approach in industry [PBvD05, p. 413; SPL17]. Among the adopters
are companies such as Boeing, Hewlett-Packard, LG, Philips, Bosch, and
Siemens. These companies report on cost reduction, shorter development time,
and quality improvement achieved by introducing the software product line
approach. For example, Bosch successfully applied a software product line
approach to develop a reference architecture for driver assistance systems (e.g.,
parking pilot) that was configurable, easy to integrate, highly performing, and
therefore could be used in different contexts for different car manufacturers. As
a result, Bosch was able to deliver high quality, low-price products that were
adjusted to the individual needs of the car manufacturers.

2

CHAPTER 1. INTRODUCTION

Challenges of configurable systems. Along with the evident benefits of config-
urability and its successful adoption in industry, new problems have emerged,
such as the exponential explosion of configuration spaces [Ape+13c, p. 247] and
the feature-interaction problem [Bru05]. The configuration space is a set of all
configurations of a configurable system. For example, by equipping one model
of a coffee machine with the Milk Frother feature and another model not, a
vendor creates two configurations of the coffee machine. A customer owing one
of these machines can additionally adjust the grinder by setting the adjustment
wheel to, say, 10 different positions, which results in 10 different coffee machine
configurations. So, in total, we have 2 (models) times 10 (grinder positions)
equals 20 different configurations. An additional configuration option, such
as auto-brew mode, will double the number of configurations and increase it
to 40 (4 models times 10 grinder positions). That is, the growth rate of the
configurations’ number is exponential in the number of configuration options.
If the vendor will keep adding configuration options, the configuration space
will explode. For example, the Linux2 kernel is one of the most prominent
configurable software systems that has approximately 13 000 configuration
options [Pas+15]. Even if we assume that from these configuration options
only 300 can be switched on or off independent from each other, the size of
the configuration space will still be in the order of 2300. For comparison, the
number of all atoms in the currently known, observable universe is estimated
to be approximately 2265. This unimaginable number of Linux configurations
makes it difficult for its developers to establish guarantees about properties
of the system: Will all configuration successfully boot without a crash? Will
any configuration fit in some predefined amount of the main memory? These
questions cannot be answered in feasible time by examining every single Linux
configuration in the system’s huge configuration space one by one. Legacy
techniques for testing, type checking, static analysis, verification, or program
analysis in general are well established for individual system configurations,
but they do not scale to configurable systems. To cope with the problem of
exponential explosion of configuration spaces new, variability-aware techniques
for analysis of configurable systems were proposed [Lie15; Tar13; vRhe16].

A key problem of the analyses of configurable systems is that configuration
options (or features, in terms of software product-line engineering) may interact
with each other in an unexpected ways. A feature interaction occurs when
the behavior of one feature is influenced by the presence of another feature
(or a set of other features) [Bow+89]. Due to a feature interaction, a feature
that functions well in one configuration may fail when combined with other
features in a different configuration. Often, the interaction cannot be deduced

2https://www.kernel.org/

3

1.1. MOTIVATION

easily from the behaviors of the individual features involved, which hinders the
understanding of the system’s behavior as a whole.

The feature interaction problem struck the telecommunication industry in
the late 1980 [Bow+89]. A classic example from this domain is the inadvertent
interaction between the Call Forwarding and Call Waiting features of a telephony
system [Cal+03]. Call Forwarding forwards calls to another phone-number if
the recipient’s line is busy. Call Waiting notifies the recipient on a busy line
about incoming calls and allows the recipient to switch among the calls. Both
features function correctly if only one of them is enabled in a given configuration.
Enabling both features in one configuration leads to a feature interaction, such
that only one of the features can fulfill its function: a call on a busy line can be
either forwarded to another recipient or put in a waiting queue, but not both
at the same time. This is an example of a feature interaction that infringes a
functional property of the system, because the system fails to fulfill a specified
functionality.

The next example describes a feature interaction in a configurable database
management system that has two features: Compression and Encryption [Sie12,
p. 22]. As the names suggest, Compression compresses the data stored in the
database, and Encryption encrypts the data. While measuring the performance
of configurations with only Compression or only Encryption enabled, we determine
that the configurations can store a given amount of data in 20 seconds or 40
seconds respectively. Based on this measurements, we may assume that enabling
both features will result in a configuration that stores the same amount of data in
60 seconds (20 seconds for compression plus 40 seconds for encryption). However,
the actual measurement is 50 seconds (10 seconds less than expected). This is an
effect of a feature interaction between Compression and Encryption: encrypting
compressed data is faster than uncompressed, because the compressed data
is smaller. This interaction does not prevent the features from fulfilling their
functions, but it changes the qualitative aspect of the system (the speed of
storing data) in an unexpected way. In other words, this interactions influence
a non-functional property of the system [Sie12, p. 13].

To establish guaranties about functional and non-functional properties
of a configurable system, it is imperative to detect feature interactions that
influence these properties. A key problem, however, is that any combination
of features in a configurable system may potentially interact. A system with
n features has n(n−1)

2
pairs of features that may potentially interact; and the

number of potential interactions with k > 2 features is
(
n
k

)
. For a reasonably

large configurable system, it is practically impossible to inspect all possible
combination of features to detect feature interactions, because the combinations
are exponentially many in the number of features. So, the exponential explosion

4

CHAPTER 1. INTRODUCTION

problem strikes here again.

1.2 Goals

For the feature interaction problem to be solved, the nature of feature interac-
tions needs to be explored systematically and comprehensively: Which feature
interactions occur in real-world systems? What causes these interactions and
what influence on the properties of a configurable system (such as performance)
do the interactions have? Are all of the interactions difficult to detect or can
certain kinds of them be detected easier than the others? Are there any rela-
tions between different kinds of interactions in a configurable system? Can we
predict feature interactions of one kind based on the knowledge about feature
interactions of another kind? These are the questions that we addressed in this
dissertation. Answering them will contribute to solving the feature interaction
problem that, in turn, will allow to produce more reliable, maintainable, and
performant configurable systems.

In our dissertation, we first explore the configuration space explosion prob-
lem, which is the key obstacle to making analyses of configurable systems
efficient and scalable. The goal is to compare different variability-aware analy-
sis strategies regarding their time efficiency, scalability, and completeness of
the analysis; and identify a strategy that is superior to other strategies under
discussion. This is an important prerequisite for our work, because efficient
and scalable variability-aware analysis strategies are the foundation for many
analyses of configurable systems including feature-interaction detection and
techniques that we applied in our thesis.

Then we focus on a particular type of analysis of configurable systems,
namely the detection of feature interactions. To detect feature-interactions
influencing non-functional properties of configurable systems, performance-
influence models can be used. But, for performance-influence models to be
generally applicable and useful in practice, they should have low prediction
error, produce models of a comprehensible size, and it should be possible to
construct these models in feasible time. Our goal here is to evaluate performance-
influence models with respect to these properties and determine if accurate
and also simple performance-influence models can be learned in feasible time.
Furthermore, in the course of the evaluation of the feature models, we aim at
gaining insights in the nature of feature interactions by investigating the cause
of the influence of feature interactions on performance of the subject systems.

Finally, we discuss different kinds of feature interactions and classify them
into external and internal feature interactions. Since internal feature interac-
tions are generally easier to detect than external ones, we investigate a possible

5

1.3. CONTRIBUTIONS AND KEY RESULTS

relation between these to kinds of interactions with the ultimate goal to use
this relation for predicting external interactions based on internal ones.

1.3 Contributions and Key Results

Guided by the goals described in Section 1.2, our work resulted in contributions
that we summarize in Figure 1.1. The figure depicts different areas of research
addressed in this dissertation, how they facilitate each other, and what our main
contributions to these areas are. Most contributions were published in journals,
conferences, or workshops that count among top-tier venues in our field of
research (such as, SoSyM, GPCE, and FOSD). In particular, our contributions
are the following:

• We implemented a type checker for feature-oriented, Java-based product
lines that supports family-based, feature-based, and product-based analy-
sis strategies. This is the first time that all three analysis strategies have
been integrated within a single tool.

• We evaluated and compared the three type-checking strategies on a set
of 12 subject product lines with regard to different aspects, such as the
ability to detect different kinds of type errors and the quality of the
provided information about errors. Most notably, we found that the
family-based strategy is the most efficient strategy for all of them.

• Using a machine-learning technique based on multiple linear regression,

Figure 1.1: Research areas to which we contributed, their dependencies, and a
summary of our main contributions to these areas.

6

CHAPTER 1. INTRODUCTION

we systematically studied and analyzed the tradeoffs among prediction
error, model size, and computation time of performance-influence models
for 10 real-world highly configurable systems from different domains.
We found that the low influences of these tradeoffs allow us to build
models that fit typical use cases, such as program comprehension and
performance prediction.

• We investigated the causes for the configuration options and their inter-
actions having the observed influences on the systems’ performance, and
we identified reoccurring patterns in the systems’ architecture and in the
dependencies among configuration options that explain these influences.

• We found that with the growing number of interacting features the
influence of the corresponding interactions consistently decreased. That
is, interactions involving multiple features can be ignored in practice
because of their marginal influence on performance.

• We discussed and classified feature interactions according to their visibility
in two classes: internal and external interactions. Using this classification,
we defined a relation between internal and external interactions based on
the features these interactions concern.

• We defined a conceptual framework for exploring the relation between
internal and external interactions and, in a first case study of this kind,
using two real-world highly configurable subject systems, we explored and
confirmed the relation between internal and external feature interactions.

• By exploiting the found relation, performance prediction techniques based
on machine learning and relying on sampling for building a training dataset
can make sampling more focused on the configurations that potentially
include interacting features, which may improve their prediction accuracy.

1.4 Outline

Chapter 2 lays the foundation for this dissertation by introducing basic terms,
central concepts and definitions.

Chapter 3 presents an empirical study that compares product-based, feature-
based, and family-based strategies for analysis of configurable systems
with respect to the analysis time and completeness. It is imperative
that we collect as much empirical evidence as possible to ensure the
applicability of these strategies in variability-aware program-analysis
tools, which we also apply in this dissertation.

Chapter 4 presents an empirical study on the tradeoffs in modeling perfor-
mance of configurable systems. Performance-influence models describe
the performance behavior of a configurable system as a whole and quantify

7

1.4. OUTLINE

the influence of individual configuration options and their interactions
on the system’s performance. The results describe which interactions
have the highest influence on performance and show how decisions about
architecture of a system may lead to feature interactions.

Chapter 5 presents a case study on the relation of external and internal
feature interactions in two configurable systems. The case study iden-
tifies a relation between control-flow and performance interactions and
suggests how this relation can be used to improve performance prediction
techniques for configurable systems.

Chapter 6 summarizes the dissertation.

8

CHAPTER 2

Background

This chapter shares material with the following publication: S. Apel et al.
“Exploring Feature Interactions in the Wild: The New Feature-interaction
Challenge”. In: Proceedings of the International Workshop on Feature-Oriented
Software Development (FOSD). ACM, 2013, pp. 1–8 [Ape+13a]

In this chapter we lay the foundation for our dissertation by introducing
the basic terms and central concepts used in the further discussion. We begin
by introducing the notions of configurable systems, variability modeling, and
implementation in Section 2.1; then we discuss feature interactions and analysis
of configurable systems in general in Sections 2.2 and 2.3; finally we describe a
technique for predicting performance of configurable systems using automatic
feature interaction detection in Section 2.4. This chapter is not meant as a
full featured literature review, therefore, for a deeper discussion of the topics,
we refer the reader to the corresponding literature: configurable software
systems [Ape+13c; CE00]; feature interactions [Ape+13d; Bow+89; JZ98];
analysis of configurable systems [Thü+14; vRhe16]; performance prediction of
configurable systems [Guo+13; Sie+12; Zha+15].

2.1 Configurable Software Systems

A configurable software system or simply a configurable system is a software
system that is explicitly built with the goal of satisfying different requirements
regarding its functionality, non-functional properties (such as, performance
or maintenance effort), operational environment (e.g., software and hardware

9

2.1. CONFIGURABLE SOFTWARE SYSTEMS

platform), or user group (e.g., novice of experienced users). This goal is achieved
by introducing variability in the software system (Section 2.1.3), that is by
implementing several alternatives of the same functionality or by making a
functionality optional.

For example, several different algorithms with the same functionality but
different resources requirements can be implemented in a configurable system.
One algorithm may be CPU intensive and another main memory intensive.
Depending on the CPU power and amount of the main memory provided by a
particular operational environment, a more suitable algorithm implementation
can be selected by a user. By selecting a concrete algorithm implementation
the user configures the system and resolves the variability. During this config-
uration process, the user resolves the variability in the configurable software
system based on the functional, non-functional, and operation environment
requirements. The result of the configuration process is a configuration of
the system. Therefore, a configurable software system can also be seen as
a set of configurations—a configuration space—that satisfy different sets of
requirements.

In Section 2.1.3 we discuss different implementation mechanisms of the
software variability, but on a more abstract level variability in a configurable
system can be described by a set of configuration options. A configuration
option (a.k.a. feature) is a characteristic or end-user-visible behavior of a
software system [Ape+13c, p. 14]. It describes what is in common and what is
different among the configurations of a configurable system. By assigning a
concrete value to a configuration option a user decides on the corresponding
characteristic of behavior and resolves the variability that is denoted by the
configuration option. For example, for the CPU intensive algorithm from our
example we can have a configuration option CPU-intensive. By enabling (i.e.,
assigning value 1) or disabling (i.e., assigning value 0) (also setting/unsetting,
selecting/deselecting) this configuration option the user can prescribe if the
CPU intensive algorithm must be used by the system or not. This type of
configuration options is called binary because it can be assigned only two
values (enabled or disabled). Another type of configuration options is numeric
configuration options that can be assigned a value from a predefined numeric
interval. For example, for the memory intensive algorithm we can have a
numeric configuration option MaxMem that defines the maximum amount of
the main memory (e.g., in megabytes) that can be used by the algorithm.

Similarly to Siegmund et al. [Sie+15], we formally model a configurable
system as a pair (O, C), where O is a set of configuration options and C is
a configuration space. A configuration c ∈ C is then a function c : O → R
that maps every configuration option to a real value. If a binary configuration

10

CHAPTER 2. BACKGROUND

option o ∈ O is enabled in a configuration c ∈ C, then c(o) = 1, and if it is
disabled then c(o) = 0. A a numeric configuration option is mapped by c to a
corresponding (user-)selected numeric value.

2.1.1 Notes on Terminology

The notions configurable system, configuration, and configuration option are
closely related to the notions product line, variant, and feature that come from
the domain of feature-oriented software product-line engineering [Ape+13c;
BSR04; CE00; Kan+90]. Software product-line engineering incorporates not
only the technical but also an economic perspective on the development of
configurable software systems. It promises to increase the quality and to reduce
the costs of developing a configurable software system [Big98; PBvD05]. In
Table 2.1 we summarize the terms from the configurable systems and software
product-line domains that denote equivalent concepts.

Sometimes, the term highly configurable system is used to describe certain
configurable systems [Tar13; vRhe+15]. There is no a precise definition for
a highly configurable system. Informally, we describe a configurable software
system as highly configurable if an analysis task cannot be accomplished in
feasible time by dealing with all configurations separately, one by one. For
example, we cannot run a test suite on every configuration of the Linux
kernel, because even the exact number of the configurations can only be
approximated and cannot be exactly computed in feasible time [Lie15, p. 61],
not speaking about testing every single configuration. So, the difference between
a configurable and highly configurable system depends on the concrete task that
a user wants to accomplish with the system (for example, determine the fastest
configuration, or run a test suit against each configuration) and how large the
corresponding configuration space is. For the approaches and techniques that
we discuss in this dissertation, the difference between configurable and highly
configurable systems is irrelevant.

Table 2.1: Terms describing equivalent concepts in the configurable systems
and software product lines domains.

Configurable Software System Software Product Line

configuration variant/product
configuration process feature selection
configuration option feature

11

2.1. CONFIGURABLE SOFTWARE SYSTEMS

Table 2.2: Configuration options of the example file archiver.

Option Description

DEFLATE Very fast compression algorithm with low compression rate
LZMA Very slow compression algorithm with high compression rate
BZIP2 A compression algorithm representing a compromise between

DEFLATE and LZMA regarding speed and compression rate
Hash Cryptographic hash function implementation
Encrypt Encryption functionality
File File output for the data
Stdout The standard output for the data

2.1.2 Variability Modeling

To introduce basic concepts and to demonstrate how they fit together, we use
a configurable file archiver program as an example. The main purpose of the
file archiver program is to combine multiple files in one file and to compress
this file using one of the three alternative compression methods (DEFLATE,
BZIP2, LZMA). The file archiver also provides two optional functionalities:
Encrypt and Hash. Encrypt is used to encrypt data and Hash is used to ensure
the integrity of compressed data. Hash is also used by Encrypt to implement
authentication and integrity of the encrypted data. The compressed data can
be written to a file using the File functionality, to the standard output using
the Stdout functionality, or to both outputs simultaneously. The functionalities
can be enabled or disabled using corresponding configuration options that we
summarize in Table 2.2

Listing the configuration options of a configurable system can give an
overview of the provided functionalities, but it is not enough to describe its
variability, because there may be dependencies among configuration options.
For example, the file archiver can apply only one compression method to data
at a time. That is, the three compression methods constitute an alternative
group of configuration options. Furthermore, we can enable or disable the
encryption functionality at will. That is, Encrypt is optional, but depends on the
Hash functionality (for the authentication and integrity-check implementation).
Finally, File and Stdout are two ways of outputting the compressed data. Both
of them can be used at the same time.

To formally describe the dependencies among configuration options of a
configurable system variability models are used. A variability model can be
represented by a variability diagram as shown in Figure 2.1. A variability
diagram is a treelike structure with the root node representing a configurable

12

CHAPTER 2. BACKGROUND

Encrypt⇒ Hash

Figure 2.1: Variability diagram of the example file archiver.

system, leaf nodes representing the configuration options of the system and
the inner nodes used for grouping. There is no a standard for variability
diagrams and there are variants in which inner nodes can represent configuration
options too. Additional graphical elements on the nodes are used to express
dependencies among configuration options. A half circle under a parent node
(e.g., Copmpression) denotes that the child nodes constitute an alternative group:
exactly one of the configuration option in the group can be set for a given
configuration. A filled half circle under a parent node denotes that the child
nodes constitute a choice group: several or all of the configuration options in
the group can be set for a given configuration. No circles under a parent node
denote that the child nodes constitute an and group: all of the configuration
options in the group must be set for a given configuration (except for the
options represented by optional nodes). A circle above a node denotes an
optional node, that is, the configuration option can be freely included into or
excluded from a given configuration. A filled circle above a node denotes a
mandatory node, that is, the configuration option that must be included in all
configurations in which the configuration option denoted by the parent node is
also selected. For example, for a configuration of the file archiver a compression
method and at least one of the output methods must be included.

Not all dependencies among configuration options can be expressed through
the tree structure of a variability diagram. Such cross-tree constraints can be
expressed through propositional formulas that are supplemented to a variability
diagram. For example, the propositional formula Encrypt⇒ Hash in Figure 2.1
denotes that functionality of Encrypt depends on Hash and that Encrypt can be
enabled only in combination with Hash.

Similar to the cross-tree constraints, any other dependency among configura-
tion options in a variability diagram can be expressed as a propositional formula
by interpreting feature names as propositional variables and expressing depen-
dencies among features through logical operators [Ape+13c, p. 30]. For example,

13

2.1. CONFIGURABLE SOFTWARE SYSTEMS

the choice group of the output methods is formalized as Output⇔ (File∨Stdout).
The complete semantic of the variability diagram in Figure 2.1 is formalized by
the following propositional formula:

Program
∧ (Compression⇔ DEFLATE ∨ LZMA ∨ BZIP2)

∧ ¬(DEFLATE ∧ LZMA ∧ BZIP2)

∧ ¬(DEFLATE ∧ LZMA)

∧ ¬(DEFLATE ∧ BZIP2)

∧ ¬(LZMA ∧ BZIP2)

∧ (Program⇐ Encrypt)
∧ (Output⇔ File ∨ Stdout)

Variability diagrams are a convenient graphical way to communicate a
variability model of a configurable software system to a user or any other
stakeholder. Propositional formulas may be less convenient for comprehension,
but they let us apply mathematical procedures and automated tools such as
SAT solvers to reason about and analyze variability models [BSR10; Kas+09;
TBK09].

2.1.3 Variability Implementation

To increase generalizability of the results of our dissertation, we use subject
system that apply different techniques to implement variability. Next, we
describe these techniques and their properties.

There are multiple techniques to implement variability in a software sys-
tem, but everyone of these techniques deals with the following three ques-
tions [Ape+13c, pp. 50–54]:

1. How variability is represented in the code?

2. What technique is used to implement and resolve variability?

3. At what time (in the software life-cycle) the variability is resolved?

How is variability represented in the code? There are two approaches for rep-
resenting variability in the code that are widely used in practice: annotation-
based [KAK08; Lie+10] and composition-based [AL08; Bat04; Kic+97] ap-
proaches.

In the annotation-based approach the code parts that are responsible for
a particular functionality are annotated (marked) in a way prescribed by

14

CHAPTER 2. BACKGROUND

the annotation language. An example of such annotation language is the C
preprocessor. C-preprocessor language is used to make annotations directly in
the source code of a program. When the variability is resolved (for example,
during the compilation of the code, in the case of the C preprocessor) the
annotated code is either included or not in the configuration, depending on if
the corresponding configuration options is enabled or disabled. The annotation-
based approach are rather popular because of their ease of use and availability
for many programming languages. Its downsides are reduced code readability,
lack of modularity, and error proneness [Ape+13c, p. 53].

In the composition-based approach, different functionalities are implemented
in physically separated composable units. One of the widely used techniques
that apply the composition-based approach is software frameworks. Different
functionalities are implemented as plugins that can be combined to form
different configurations of the system. Composition-based approaches are
more complex in their implementation and may have a steeper learning curve
for a programmer, but on the positive side they promote modularity of the
code [Ape+13c, p. 53].

What techniques are used to implement and resolve variability? There are
two techniques for implementing and resolving variability (that is, for creating
a configuration of a configurable system): language-based [ALS08; BSR04;
Kic+97; Pre97] and tool-based approaches [GS03; KA09; SGC07].

The language-based approach uses mechanisms provided by the program-
ming language to implement and to resolve variability. A classical example of
this approach is run-time configuration options that use variables and control
flow statements to implement variable code. Based on the value of the variable a
control flow statement prescribes at run-time which code blocks (implementing
units of functionality) are executed and which not. Since the same language
mechanisms are used to manage variability and to implement functionality
of the software, the language-based approach makes it easy for developers to
implement and reason about the configurable system. On the downside, the
code responsible for variability blends in with the code responsible for the
functionality of the system, which may complicate debugging, refactoring, and
other maintenance activities.

The tool-based approach uses specialized external tools to manage vari-
ability. Tools that are widely used in practice are preprocessors and build
systems [Ape+13c, pp. 107–127]. Preprocessors, such C preprocessor cpp, pro-
vide directives to remove code fragments before compilation based on user
defined conditions. Build systems orchestrate all activities concerned with
producing an executable of a software program, such as running generators

15

2.1. CONFIGURABLE SOFTWARE SYSTEMS

for code and documentation, executing tests, and compiling code. A build
system is usually configured by build script that describes which code artifacts
should be compiled and which not. This way, code artifacts (e.g., source files)
that implement different functionalities can be included into or excluded from
compilation, which effectively implements a variability management mechanism.
Using build systems clearly separates the code of the software from the vari-
ability management infrastructure. In general, tool-based approaches introduce
new tools that must be mastered and consistently used by the developers on
the everyday basis, which may complicate the development and maintenance
processes.

At what time (in the software life-cycle) the variability is resolved? Variability
can be resolved at compile time, load time, or run time [Ape+13c, p. 50]. If
variability is resolved at compile time then the functionalities associated with
disabled configuration options are excluded from the code before compilation.
An example of compile-time variability are techniques based on preprocessors.
Compile-time variability has an advantage of being more memory efficient,
because the unused functionality is not included in the compiled binary. The
decisions taken at the compile time about which configuration options are
enabled or disabled cannot be revised without recompilation. Therefore, if
a user wants to add or remove some functionality it has to stop the running
instance of the program, recompile it, and run the program again. This may be
unacceptable for use cases for which program downtimes cannot be tolerated.

In the case of the load-time variability, variability is resolved when the
program is started (i.e. loaded into the main memory). The configuration
process can be implemented using configuration files that store information
about enabled and disabled options. When the program is started it reads
the configuration file and disables or enables functionalities according to the
settings in the file. The compiled binary of the program contains code for all
configuration options of the configurable system, so that any combination of
them can be selected at the load time. Therefore, load-time variability may be
less memory efficient than the compile-time variability. Security vulnerabilities
existing in the disabled functionality may still pose a threat when using load-
time variability, because the corresponding code is still present in the main
memory when the program is executed and the vulnarability may be exploited.
Nevertheless, load-time variability allows changing configuration of a system
without recompilation which can save time. It may also be the only way to
reconfigure the system if its source code is not available.

Run-time variability is very similar to the load-time variability. The only
difference is that configuration options may be disabled or enabled not only at

16

CHAPTER 2. BACKGROUND

load time, but also later during the program’s execution. This allows changing
program configuration without stopping the execution and prevents downtime.

Prototypical Implementations of the File Archiver Example

To illustrate the discussed variability mechanisms, we developed two pro-
totypical Java-based implementations of the file archiver example: feature
oriented and preprocessor-based. Both implementations consist of a single
class Archiver that has four methods: readFile() reads data from a file,
process() processes the data, writeData() writes out the processed data,
main() calls the former three methods in order. There are two variants of the
writeData(). Each variant of the method implements one of the ways of
outputting the processed data (i.e., file, standard output, both). The choice of
the output implementations is controlled through configuration options: if File
is enabled then the data is written to a file, if Stdout is enabled then the data is
written to the standard output. If both options are enabled, the data is written
to the both outputs. Method process(), which is responsible for compressing
the data, has three implementations, because the data can be archived using
three alternative compression methods as described in the variability diagram in
Figure 2.1. The corresponding configuration options are DEFLATE, LZMA, and
BZIP2. Optionally, the compressed data may be encrypted and supplemented
with its hash, which is controlled through configuration options Encrypt and
Hash.

Feature-oriented implementation. Figure 2.2 illustrates the use of a feature-
oriented programming technique that implements each configuration option
in a separate feature module (further simply module). Each module adds the
corresponding functionality (e.g., encryption or hashing) to the Archiver
class. To create a configuration, the modules are automatically composed in
a user-defined order. The compositions of the modules is done according to
the superimposition rules [AL08] that prescribe how exactly different language
units (e.g., classes and methods) from different modules must be combined.
The composed code is then compiled to an executable. Figure 2.3 illustrates the
code of a configuration in which configuration options DEFLATE, Encrypt, Hash,
and File are enabled and features LZMA, BZIP2, Stdout are disabled. That is
the configuration uses DEFLATE compression method to compress the data,
than it encrypts the data, supplements it with a hash, and writes it out to a
file. According to this configuration, the modules that implement the required
functionality were composed. Since all methods in the corresponding modules
belong to the same class Archiver, they are all combined in one class with
the same name. The modules corresponding to options DEFLATE, Encrypt,

17

2.1. CONFIGURABLE SOFTWARE SYSTEMS

Feature Base

class Archiver {
void main(Path in, Path out) {

byte[] inData = readFile(in);
byte[] outData = process(data);
writeData(outData, out);

}
byte[] readFile(byte[] in) {

... // Read data from the file
}

}

Feature File

class Archiver {
void writeData(byte[] data, Path out) {

... // Write data to the output file
}

}

Feature Stdout

class Archiver {
void writeData(byte[] data, Path out) {

... // Write data to the stdout
}

}

Feature Hash

class Archiver {
byte[] process(byte[] data) {

byte[] tmpData = original(data);
byte[] digest = hash(tmpData);
... // Append the hash to the data

}
byte[] hash(byte[] data) {

... // Calculate the hash of data
}

}

Feature Encrypt

class Archiver {
byte[] process(byte[] data) {

byte[] tmpData = original(data);
byte[] digest = hash(data);
... // Encrypt tmpData using digest

}
}

Feature DEFLATE (LZMA, BZIP2)

class Archiver {
byte[] process(byte[] data) {

... // Compress data using DEFLATE
}

}

Figure 2.2: Prototypical implementation of the file archiver using feature-
oriented programming.

Hash refine process method, which is responsible for processing the input
data. Refining a method means that each module implements only that part
of the method for which it is responsible. So, these implementations must be
superimposed to implement the complete processing of the input data. The
order in which the implementation are superimposed corresponds to the order
of the module composition. Technically, the superimposition of the methods is
implemented using a special method call original() that is used to call the
next process-implementation in the order of the composition.

With respect to the classification of the variability mechanisms, the feature-
oriented programming technique is composition-based, since it uses separate
modules to implement different units of functionality. It is also a language-
based technique, because it requires an extension of the Java language with
additional keywords (e.g., original() method calls) and with an ability
to store multiple classes with the same name in one package (e.g., multiple
Archiver classes in different modules). Nevertheless, the technique also
requires an external composition tool with the knowledge of the composition

18

CHAPTER 2. BACKGROUND

class Archiver {
void main(Path in, Path out) {

byte[] inData = readFile(in);
byte[] outData = process_Hash(data);
writeData_File(outData, out);

}

byte[] readFile(byte[] in) {
... // Read data from the file

}

void writeData_File(byte[] data, Path out) {
... // Write data to the output file

}

byte[] process_Hash(byte[] data) {
byte[] tmpData = process_Encrypt(data);
byte[] digest = hash(tmpData);
... // Append the hash to the data

}

byte[] hash(byte[] data) {
... // Calculate the hash of data

}

byte[] process_Encrypt(byte[] data) {
byte[] tmpData = process_DEFLATE(data);
byte[] digest = hash(data);
... // Encrypt tmpData using digest

}

byte[] process_DEFLATE(byte[] data) {
... // Compress data using DEFLATE

}
}

Figure 2.3: A configuration with DEFLATE, Encrypt, Hash, and File enabled.

order and superimposition rules for composing the modules. Therefore, this
technique also has a tool-based nature. Usually, the modules are composed
right before compilation, so the variability is resolved before the compilation,
which corresponds to a compile-time variability implementation.

Preprocessor-based implementation. Figure 2.4a illustrates a preprocessor-
based technique which uses annotations,1 such as #ifdef Hash, to mark
parts of the code implementing different functionalities, that is, belonging to
different configuration options. To create an executable of a configuration,
the annotated code parts that belong to disabled configuration options are
deleted and the remaining code is compiled. Figure 2.4b illustrates the code of
a configuration with configuration options DEFLATE, Encrypt, Hash, and File

1In this example, C-preprocessor annotations.

19

2.1. CONFIGURABLE SOFTWARE SYSTEMS

class Archiver {
void main(Path in, Path out) {

byte[] inData = readFile(in);
#ifdef Hash || Encrypt

byte[] digest = hash(outData);
#ifdef Hash

... // Append the hash to the data
#endif
#ifdef DEFLATE

... // Compress data using DEFLATE
#elif defined LZMA

... // Compress data using LZMA
#elif defined BZIP2

... // Compress data using BZIP2
#endif
#ifdef Encrypt

... // Encrypt data using digest
#endif

writeData(outData, out);
}
byte[] readFile(byte[] in) {

... // Read data from the file
}
#ifdef Hash || Encrypt
byte[] hash(byte[] data) {

... // Calculate the hash of data
}
#endif
void writeData(byte[] data, Path out) {
#ifdef File

... // Write data to the output file
#else

... // Write data to the stdout
#endif
}

}

(a) Prototypical implementation.

class Archiver {
void main(Path in, Path out) {

byte[] inData = readFile(in);

byte[] digest = hash(outData);

... // Append the hash to the data

... // Compress data using DEFLATE

... // Encrypt data using digest

writeData(outData, out);
}
byte[] readFile(byte[] in) {

... // Read data from the file
}

byte[] hash(byte[] data) {
... // Calculate the hash of data

}

void writeData(byte[] data, Path out) {

... // Write data to the output file

}
}

(b) A configuration with DEFLATE, Encrypt,
Hash, and File enabled.

Figure 2.4: Prototypical implementation of the file archiver using preprocessor.

20

CHAPTER 2. BACKGROUND

enabled. The code that was marked as belonging to these configuration options
using annotations is included in this configuration. Configuration options
LZMA, BZIP2, and Stdout are disabled in this configuration and, consequently,
the corresponding code was removed by the C-preprocessor (preserving newlines
for easier error reporting, therefore the gaps in the code). The preprocessed
code of the configuration can be now compiled with a C-compiler for producing
an executable for the configuration.

The preprocessor-base technique is annotation-based, because it uses C-
preprocessor annotations to mark code belonging to different configuration
options. Since the technique uses a external tool (preprocessor) to exclude
code of disabled features, the technique is also tool-based. The preprocessor is
usually ran just before the compilation, so the technique counts to compile-time
variability implementation.

2.2 Feature Interactions

In this section we discuss the notion of feature interaction that is one of the
central concepts in our dissertation. Note that in this section we do not
differentiate between features and configuration options and regard these two
terms synonymous.

Features are units of functionality that define behavior of a configurable
system. But the problem is that if we understand how the individual features
behave in isolation we may still not be able to understand how they behave in
combination (i.e., in a given configuration), because features can interact with
each other. That is we cannot reason about the behavior of the system just
as about a sum of behaviors of its features. We must also consider possible
feature interactions to establish guaranties about functional and non-functional
properties of the configurable system.

Apel et al. [Ape+13c] define feature interaction as follows:

A feature interaction between two or more features is an emer-
gent behavior that cannot be easily deduced from the behaviors
associated with the individual features involved.

Although, there are desired interactions that are required to facilitate those
functionalities of a system that need an interoperation of multiple features. In
the file archiver example in Figure 2.1, the interaction between features Hash
and Encrypt is a desired one and facilitates the proper encryption of data.

The problematic ones are the undesired or inadvertent feature interactions
that occur when a feature influences the behavior of another feature in an

21

2.2. FEATURE INTERACTIONS

unexpected way [Ape+13c]. For an example of an inadvertent feature interac-
tion and its influence on the behavior of a configurable system, consider the
compression ratio of the file archiver in our example. The compression ratio
measures how good an archiving program is in reducing the size of the input
data. It is defined as follows:

Compression Ratio =
Uncompressed Size

Compressed Size
· 100

The more efficient a compression algorithm the higher compression ration it
can achieve.

One could assume that the compression ratio of our archiving program
depends on the input data and is determined by the behavior of the selected
compression algorithm, for example, DEFLATE or LZMA. In fact, the behavior
also depends on the Encryption feature, because encryption can defeat the
heuristics used by the compressions algorithms, as we describe next. The
heuristic of the DEFLATE algorithm assumes that the input data have repeated
occurrences of strings and achieves data compression by replacing these repeated
occurrences with references to a dictionary [Sal04, p. 230]. These references are
smaller in size than the replaced strings, therefore, the overall size of the data
is reduced. The assumption about repeated occurrences of strings holds for
most of the data representing text. That is why plain text documents can be
compressed with high compression ratio.

Encryption algorithms make data indistinguishable from random data2 and
effectively removes any repeating patterns in it. Therefore, the assumption of
the DEFLATE algorithm about repeating patterns does not hold for encrypted
text anymore and it cannot compress the data. In other words, if both features
DEFLATE and Encrypt are enabled and the input data is encrypted before
compression, then the compression ratio will be unexpectedly lower than it is
with Encryption disabled.

We demonstrate the influence of this interaction on compression ratio in an
experiment with real compression algorithm DEFLATE (implemented in Zip3

v. 3.0) and encryption algorithm AES256 (implemented in GPG4 v. 1.4.20).
As input data we used a file with 170KB of plain text in UTF-8 encoding.5
We processed the input data using Zip and PGP three times: 1) we only
compressed the data; 2) we only encrypted the data; 3) we encrypted and then
compressed the encrypted data.

2As long as the decryption key is not available.
3http://www.info-zip.org/
4https://www.gnupg.org/
5https://www.gutenberg.org/files/11/11-0.txt

22

https://www.gutenberg.org/files/11/11-0.txt

CHAPTER 2. BACKGROUND

In Figure 2.5, we illustrate the compression ratio (in %) for the three
peaces of data that we got after processing: the compressed data (C), the
encrypted data (E), and the encrypted and then compressed (E·C) data. Simply
compressing the input data resulted in a compression ratio of 278%, (the C
bar). That is, the size of the compressed data is almost 3 times smaller than
that of the uncompressed data. Simply encrypting the input data resulted in
a compression ration of 100% (the E bar). That is, the encrypted data has
the same size as the input data. Encrypting and compressing the input data
resulted in a compression ration of 100%, too, which may be surprising at
the first glance, because we would expect a higher compression ratio. But,
as we discussed above, this is due to an interaction between compression and
encryption.

C E E·C
Feature combinations

0

50

100

150

200

250

300

Co
m

pr
es

sio
n

ra
tio

 (%
)

Figure 2.5: Compression ratios for encrypted data (E), compressed data (C),
encrypted and then compressed data (E·C). An interaction of encryption and
compression algorithms leads to an unwanted result: the compression ratio is
the same as of the uncompressed data.

To resolve this feature interaction, we need to switch the order in which
the input data are processed: we first have to compress the data and than
encrypt it. The resolution of this interaction will result in the compression
ratio of 278% for the compressed and then encrypted data. What we have done
right now is solving the feature-interaction problem for the file archiver, which
consists in detecting and resolving (inadvertent) feature interactions among
features [Ape+13c, p. 218].

One of the obstacles complicating the solving of the feature-interaction

23

2.2. FEATURE INTERACTIONS

problem in general is the number of potential feature interactions in a config-
urable system that may be exponential in the number of features as we discuss
in the next section.

Formalizing Feature Interactions

Specifications. Talking about feature interactions requires talking about spec-
ifications, because to identify a feature interaction, one needs to be able to
identify deviating and inadvertent properties or behaviors. A specification
defines the expected behavior when features are combined. If a feature combi-
nation f1 • . . . • fn, with ‘•’ denoting composition, satisfies specification φ, we
write:

f1 • . . . • fn |= φ (2.1)

Specifications may be concerned with individual features (stating their
expectations and provisions; in this case, φ in (2.1) would be combined of
multiple smaller specifications, associated with individual features) or combi-
nations of features (e.g., stating properties that all feature combinations must
exhibit) [Ape+13b]. In the remainder, we abstract over this difference, for
simplicity.

Furthermore, depending on the kind of feature interaction, specifications
are formulated more or less explicitly. The requirement that a system does
not crash with a segmentation fault is very general and is often implicitly
assumed; the same applies to other properties, such as the absence of null-
pointer dereferences and data races. However, in other situations, specifications
are much more explicitly formulated, using formalisms such as temporal logic
or automata, for example, stating that a certain process terminates before
another process or that adaptive cruise control does not disable the break
system [Dom12].

Specifications are essential for the endeavor to understand feature inter-
actions, as we explain next when discussing two properties along which we
classify feature interactions.

Model of Feature Interactions Given a set of features (or configuration options)
F , predicate interactφi (f1, . . . , fn) denotes a feature interaction i that occurs in
the subset {f1, . . . , fn} ⊆ F of features (or configuration options) with respect
to specification φ, and that the feature set is minimal—removing one feature
from the set would deactivate interaction i. Accordingly, the only derivation

24

CHAPTER 2. BACKGROUND

rule for interact is:
f1 • . . . • fn 6|= φ n > 1

∀ {g1, . . . , gk} ⊂ {f1, . . . , fn} : ¬interactφi (g1, . . . , gk)

interactφi (f1, . . . , fn)
(2.2)

This inference rule applies only to feature sets with two or more features, and
it does not rule out that a given feature combination may contain multiple
feature interactions of the same or different sizes. This is in line with Siegmund
et al., who found that the presence of interactions of larger size is often implies
the presence of corresponding interactions of smaller size [Sie+12], which we
model as distinct interactions i1, . . . , im.

As a design decision, we model interactions as violations of specifications.
If features interact and satisfy a given specification, predicate interact does not
hold. To model such desired interactions, one can adapt the specification such
that it exposes the interaction—a case that we ignore, for simplicity.

Furthermore, our definition of feature interactions is centered around the
presence of features, which is natural when reasoning about feature-oriented
systems. Work on interaction testing also considers interactions that occur
when one feature must be selected and another must be deselected [GC11;
YCP06], which we do not consider for simplicity.

Finally, we do not consider constraints among features (e.g., that one feature
requires or excludes another feature). Although constrains play an important
role in modeling, managing, and analyzing variability [CE00], including them
into our model would make it more complicated, but does not add anything sub-
stantial to our message. See Garvin et al. [GC11] and Siegmund et al. [Sie+12]
for examples of how constraints are incorporated in modeling and detecting
feature interactions.

We denote an interaction between n features as f1 · . . . · fn.

Size of Feature Interactions The size of a feature interaction f1 · . . . · fn is the
number n of participating features (or configuration options):

size(f1 · . . . · fn) = n (2.3)

An interaction between two features is of size two, an interaction between three
features is of size three; and so on.6

The number of potential interactions in a system can be exponential in the
number of its set F of features (or configuration options):

2|F| − |F| − 1 ∈ O(2|F|) (2.4)
6Other researchers also call an interactions among n features an n-way feature interac-

tion [KKB08] or an n-th order interaction [Sie+12].

25

2.3. ANALYSIS OF CONFIGURABLE SYSTEMS

Fortunately, the situation is not that bad in practice. The number of actual
feature interactions that occur is likely to be much lower [CM06; Jay+07;
Sie+13]—otherwise feature-based systems would not be practical. Motivated
by this assumption, some researchers focus only of interactions between pairs
of features, which is much more tractable:

|F| · (|F| − 1)

2
∈ O(|F|2) (2.5)

Note that Equations 2.4 and 2.5 are approximations in the sense that they
ignore that a given set of features may give rise to multiple different interactions
of the same size. Still, they illustrate the nature of the feature-interaction
problem very well.

A major problem in practice is that, for a given system and specification, it
is not obvious which feature interactions really occur. Intuitively, the larger
the size of a feature interaction, the harder the interaction is to detect. Feature
interactions of size two (or three) can be simply detected by creating all
pairs (or triples) of features [Ape+13d; CM06; Jay+07] and applying a proper
interaction-detection technique (e.g., testing [GC11; Jay+07; Joh+12] or model
checking [Ape+11; Ape+13d]). But, this way, one may miss interactions of
larger sizes—these can be found reliably only by creating all possible feature
combinations, which induces, again, an exponential effort.

One practical problem that is complicated by the potentially exponential
number of feature interactions is predicting performance of configurable systems.
To predict performance of a configurable system it is essential to know the
influence of feature interactions in the system on performance (as we showed in
the file archiver example). We discuss the problem of finding the influence of
feature interactions on performance and predicting performance of configurable
systems in Section 2.4 in more detail. But, first, we discuss how the problem of
analyzing configurable software systems in general is approached.

2.3 Analysis of Configurable Systems

Among other techniques, we leverage static program analysis to analyze and
study configurable systems. Next, we introduce this technique and also its
different types that we apply in our dissertation.

Static program analysis is used to automatically analyze the behavior of
software and, based on the analysis results, to optimize the software’s behavior
or to ensure its correctness [Wic+95]. The analysis is performed without
executing the code of software, hence “static.” For example, type checking is a
lightweight static analysis technique for detecting a certain class of programming

26

CHAPTER 2. BACKGROUND

errors (type errors) [Pie02, p. 4]. Control-flow analysis is another static analysis
technique that determines an order in which parts of a program’s source code
are executed. This information can then be used for automatic optimization, for
example, by identifying parts of code that can be executed in parallel [ASU86,
p. 399].

The variability of configurable software introduces a new complexity dimen-
sion to the program analysis: a program analysis technique must analyze not a
single program but a set of programs, that is, all configurations of a configurable
system. A naïve strategy would be to analyze all configurations one by one, but,
with a growing number of configuration options, this strategy will encounter the
exponential explosion problem [Ape+13c, p. 247]. That is, testing configurations
one by one does not scale in general. Therefore, several alternative analysis
strategies have been developed that transform traditional analysis techniques
into variability-aware techniques capable of analyzing configurable software
efficiently. In this section, we introduce product-based, feature-based, and
family-based strategies for analysis of configurable software.

Analysis Strategies

The main idea behind variability-aware analysis techniques is to incorporate
the knowledge about the variability of an analyzed system into the analysis
process to make the analysis scale to a large number of configurations. This
is achieved through different analysis strategies. Next, we give an overview of
the common analysis strategies. For a concrete application of the strategies
using type checking as a concrete analysis technique see Section 3.1; for further
in-depth discussion and real-world examples we refer the reader to the work by
von Rhein [vRhe16].

Variant-based strategy. This strategy is a brute-force approach that applies a
legacy (non variability aware) program analysis to every single configuration
(i.e., variant) of a configurable system. The advantages of this strategy is
that any off-the-shelf implementation of a program analysis can be directly
applied to a configurable system without modifications. The disadvantages of
this strategy is that it can be stretched to its limits very fast, because of the
exponential explosion of the configuration space with respect to the number of
the configuration options [Ape+13c, p. 247]. Therefore, it can only be effectively
applied to configurable systems with relatively small configuration space.

Sampled-based strategy. This strategy is similar to the variant-based, but the
analysis is applied not to all configuration, but rather to a subset (a sample)

27

2.3. ANALYSIS OF CONFIGURABLE SYSTEMS

of the configuration space. Therefore, the strategy scales better than the
variant-based. Although, the scalability comes at a price, since the result of a
sample-based analysis may not generalize to the entire configurable system and
strongly depends on how representable the analyzed sample is for the whole
configuration space. Consider, for example, a sound type checker that checks a
sample consisting of one type-safe configuration. The type checker will accept
this configuration and, consequently, the entire configurable system, no matter
if the rest of the configurations is type-safe or unsafe.

Feature-based strategy. This strategy deals with a configurable systems not
as a set of configurations, but as a set of features and analyses the features in
isolation. This way the analysis escapes the combinatorial explosion and gains
scalability. On the downside, since the features are analyzed in isolation, the
relations among them cannot be taken into account by the analysis technique.
These relations may provide valuable information, for example, in the case of
feature-interaction detection.

Family-based strategy. This strategy deals with a configurable system as a
whole without explicitly drawing the line between configurations or features.
Technically, for a static program analysis, this means that not only the source
code of a configurable system is analyzed as one unit, but also the correspond-
ing variability implementation (for example, the preprocessor annotations,
Section 2.1.3) and the variability model (Section 2.1). Including variability
information into an analysis makes the analysis variability-aware and allows
it to produce a result for the entire configurable system without analyzing
each configuration individually. The produced result then holds for the entire
configurable system and, based on the result, statements can be made about
individual configurations. A family-based analysis is potentially faster than
a variant-based, because it does not have to check a potentially exponential
number of configurations, but it require a modification of a traditional program
analysis and the corresponding tools to make them variability-aware.

Combined strategies. The introduced basic analysis strategies can be combined
to form new strategies [vRhe16]. For example, we can think of a strategy
that is a combination of the family-based and variant-based strategies: The
corresponding analysis technique would partially resolve the variability of
the configurable system (the variant-based part), effectively dividing it in
several smaller configurable systems, which would still preserve some unresolved
variability. Then each of these smaller configurable systems would be analyzed
using the family-based strategy. Applying this combined strategy may be

28

CHAPTER 2. BACKGROUND

advantageous if, for example, the variability implementation cannot be analyzed
efficiently, as it is the case with undisciplined preprocessor annotations [LKA11].
Another use case is when the complexity of the family-based analysis is to high,
so that it is feasible to divide the configurable system and run the analysis on
its parts [vRhe16].

2.4 Performance Prediction of Configurable
Systems

Performance is one of the important quality properties of software systems.
For example, it is important for a Web server to serve client requests fast
to guarantee that users do not wait too long for a page to load; for a data
compression program it is important to maintain the compression rate expected
by a user. It is relatively easy to check if a given program satisfies a perfor-
mance requirement by simply benchmarking the program. To determine the
performance of a configurable system we have to deal with two challenges: (1)
the exponential explosion problem (Section 2.3), that is, simply benchmarking
every configuration of the system does not generally scale; (2) the feature
interaction problem (Section 2.2), that is, inadvertent feature interactions may
influence the performance of a configuration in an unexpected way.

Next, we will describe a machine-learning technique that deals with these
challenges and can automatically and efficiently learn performance-influence
models for configurable systems [Sie+12]. The technique detects the influence
of feature interactions on the performance of the system’s configurations and
represents this influence in the performance model. The performance-influence
model then can be used to accurately predict performance of any configuration
of a system without actually measuring it.

2.4.1 Performance-Influence Models

To introduce performance-influence models, we will use a simplified example of
a configurable database management system (DBMS). The system has three
configuration options: Compression (), Encryption (), and Localization ().
If Compression is enabled, data is compressed before it is stored in the database.
If Encryption is enabled, then the stored data is encrypted. Localization is
responsible for switching between two different localizations of the system
(i.e., the language of the user interface, times and dates representation). Base
() represents the core functionality of the system, which is present in all
configurations.

29

2.4. PERFORMANCE PREDICTION OF CONFIGURABLE
SYSTEMS

Table 2.3: Benchmark results for the example DBMS. For each configuration,
represented by the symbols of the enabled options, the performance in MB/s is
given.

Id Configuration Performance

1 100

2 90

3 70

4 100

Id Configuration Performance

5 80

6 90

7 70

8 80

With the three optional configuration options (, ,), there are eight
possible configurations of the DBMS. It is safe to assume that the performance
of these configurations, which we define as write throughput (measured in
megabytes written per second (MB/s)), depends on the configuration options
enabled in this configuration. For example, Compression and Encryption require
time to compress or encrypt the data before it can be written out, which
has negative influence on the performance of the DBMS. Localization on the
other hand has no obvious influence on the write throughput of the DBMS.
Table 2.3 summarizes the write throughput of an imaginary benchmark of each
configuration.

Based on the whole-population7 benchmark results, we can already model
the performance of the DBMS, as shown in Figure 2.6. This trivial performance-
influence model is a straightforward representation of the whole-population
benchmark results in the form of a linear polynomial. Each term (i.e., sum-
mand of the polynomial) consists of two parts: a constant representing the
performance of a configuration and a variable (e.g.,), which can have two
values: 1 if the corresponding configuration is selected, and 0 if not. To predict
the performance of, for example, configuration 5 (Table 2.3), we evaluate the
model as follows:

100 · 0 + 90 · 0 + 70 · 0 + 100 · 0 + 80 ·1 + 90 · 0 + 70 · 0 + 80 · 0 = 80
Since this model simply lists performance values for all system configurations,
it has a perfect prediction accuracy. However, modeling performance this way
requires benchmarking every system’s configuration, which does not generally
scale. Moreover, this model does not give much insight into what the influence
of individual configuration options or their interactions on performance is.

Figure 2.7 shows an alternative performance-influence model of the example
DBMS, which is similar to the previous model, but now the variables in

7That is, one that includes all configurations of a configurable system.

30

CHAPTER 2. BACKGROUND

100 · +

90 · + 70 · + 100 · +

80 · + 90 · + 70 · +

80 ·

Figure 2.6: A trivial performance-influence model for the example DBMS,
based on a whole-population benchmark. A variable (e.g.,) represents a
system’s configuration.

the terms (e.g.,) represent individual configuration options and not entire
configurations. The corresponding coefficients of the terms represent the
influence of these individual configuration options on the performance of the
DBMS. Using this model, we can predict the performance of configuration 5
(Table 2.3) as follows: 100 · 1− 10 · 1− 30 · 1 = 100− 10− 30 = 60

100 · − 10 · − 30 ·

Figure 2.7: An alternative performance-influence model for the example DBMS,
base on the performance influences of individual configuration options. A
variable (e.g.,) represents a configuration option.

Comparing the two models, we observe that the second one contains terms
that represent individual configuration options instead of whole configurations.
Moreover, configuration options that do not have influence on performance
(such as Localization) are omitted. Therefore, if it were possible to determine
performance influences of individual configuration options, we could build a per-
formance model that would accurately predict performance of all configurations.
This model also denotes the influences of individual options on performance
and, by interpreting the coefficients, we conclude that encryption reduces the
performance of the DBMS more than compression.

However, the second model is an oversimplification, because it does not
take feature interactions into account. Compression and Encryption interact,
since encrypting compressed data is faster than encrypting the same data
uncompressed. Not accounting for this interaction in the model results in a low
prediction accuracy: the predicted value of 60MB/s for configuration 5 has an
error of 25% compared to the measured value of 80MB/s.

Figure 2.8 shows an performance-influence model that, besides the individual
influences of configuration options, also accounts for the influences of feature

31

2.4. PERFORMANCE PREDICTION OF CONFIGURABLE
SYSTEMS

interactions (the last term). This model combines the advantages of the former
two models: it is accurate and it is based on the performance influences of
individual configuration options and their interactions. Moreover, such model
can be learned using benchmarking results for only a fraction of all system’s
configuration, which makes the learning process scalable.

100 · − 10 · − 30 · + 20 · ·

Figure 2.8: An alternative performance-influence model for the example system
with an interaction term. A variable represents a configuration option (e.g.,

) or an interaction (e.g., ·).

Based on the formalization of configurable systems (Section 2.1), we define
a performance-influence model as a function Π : C → R that maps each
configuration c ∈ C to a performance value (as suggested by Siegmund et al.
[Sie+15]). Further, let C denote the Compression option and E denote the
Encryption option; the formal representation of the performance-influence model
in Figure 2.8 is then

Π(c) = 100− 10 · c(C)− 30 · c(E) + 20 · c(C) · c(E) (2.6)

2.4.2 Multiple Linear Regression

Learning a performance-influence model that accurately predicts performance
of any system’s configuration, such as the model in (2.6), can be encoded as a
multiple linear regression problem. Next, we discuss how it is done.

Multiple linear regression is a supervised statistical learning approach that
consists in predicting a quantitative response Y based on multiple predictor
variables X1 . . . Xp [HTF09, p. 11]. It assumes that there is a linear relationship
between X1 . . . Xp and Y that can be written mathematically as

Y = β0 + β1X1 + · · ·+ βpXp

The values of predictor variables X1 . . . Xp are known and the values of
coefficients (or parameters) β0, . . . , βp are unknown and must be estimated
(Section 2.4.3). Based on the estimates a predictor ŷ of Y can be calculated as

ŷ = β̂0 + β̂1X1 + · · ·+ β̂pXp

Typically, we use historical measurements consisting of measurements of
X1 . . . Xp and Y for a number n of observations (x1, y1), . . . , (xn, yn) to estimate
the coefficients β0, . . . , βp. The goal is to obtain the coefficient estimates

32

CHAPTER 2. BACKGROUND

β̂0, . . . , β̂p, so that yi ≈ β̂0 + β̂1x1i + · · ·+ β̂pXpi for i = 1, . . . , n. In other words
we want to minimize the difference yi − ŷi for all i = 1, . . . , n. Consequently,
finding the coefficient estimates boils down to a minimization problem that has
an exact analytical solution [HTF09, p. 12] (which we do not discuss here any
further for brevity).

We encode the problem of learning performance-influence model as a multiple
linear regression problem by mapping values of configuration options and their
interactions, for example c(C), c(E), and c(C) · c(E) in (2.6), to predictor
variables X1 . . . Xp, and their influences on performance, for example −10, −30
in (2.6), to the coefficients β0, . . . , βp. Y is then the performance value Π(c)
that is to be predicted.

2.4.3 Learning Performance-Influence Models

Next, we give an overview of an existing machine-learning algorithm that
applies multiple linear regression to learn performance-influence models for
configurable systems. The algorithm does not try to learn the influences of
configuration options and their interactions all at once (which, again, may be
exponentially many). Instead, it applies an iterative forward feature selection
technique that prevents the exponential explosion of the number of the model
terms. For a detailed description of the algorithm we refer the reader to the
work by Siegmund et al. [Sie+15].

In Algorithm 1, we sketch the machine-learning algorithm. In a nutshell,
the algorithm starts with an empty model and a set of candidates that can be
included in the model to improve its accuracy. The set of candidates contains
all configuration options and their combinations. In each iteration of the outer
loop (Lines 2–20), the algorithm selects one candidate that satisfies a number
of conditions best (defined through parameters) and add it to the model, so
that the accuracy of the model increases. New candidates are added to the
model until a termination condition is reached (e.g., the desired accuracy is
reached or no more satisfying candidates exist).

Algorithm 1 is parameterized by parameters MinError and MinScore that
are used to specify termination conditions. MinError specifies the prediction
error the algorithm should strive for. As soon as the specified error is reached,
the algorithm terminates (Line 20). The indirect effect of increasing MinError
is that the learning algorithm terminates faster, because a model with lower
accuracy can be learned with fewer iterations. This way, accuracy can be traded
for learning time. Moreover, fewer iterations mean fewer candidates added
to the model, so the complexity of the resulting model is reduced, too. Less
complex models are also less susceptible to the negative effect of overfitting,
which occurs when the models follow the noise (e.g., measurement errors) too

33

2.4. PERFORMANCE PREDICTION OF CONFIGURABLE
SYSTEMS

Algorithm 1 A sketch of the stepwise learning algorithm.
Input: measurements, options
Parameters: MinError,MinScore
Output: model
1: selectedCandidates ← ∅
2: repeat
3: (candidates,moreCandidates)←
4: constructCandidates(options,MaxSize)
5: bestCandidate ← none
6: error ←∞
7: lastError ←∞
8: for all c ∈ candidates do
9: model ,modelError ← learn(selectedCandidates ∪ {c},measurements)
10: if modelError < error then
11: error ← modelError
12: bestCandidate ← c
13: end if
14: end for
15: score ← computeScore(lastError , error , bestCandidate)
16: if score ≥MinScore then
17: selectedCandidates ← selectedCandidates ∪ {bestCandidate}
18: lastError ← error
19: end if
20: until (error ≤MinError) ∨ (score < MinScore ∧ ¬moreCandidates)
21: return model

34

CHAPTER 2. BACKGROUND

closely [Jam+13, p. 22].
The algorithm decides whether a candidate should be added to the model

by computing the difference in accuracy between a model with and without the
candidate (Lines 15–19). We call this difference the score of the candidate. If
the score is less than specified by MinScore, the candidate is rejected. When
we increase MinScore, we increase the number of candidates that may be
rejected, because the improvement in accuracy that they yield is lower than
required. Rejecting these candidates reduces the accuracy of the resulting
model, but it also reduces the complexity of the model (i.e., fewer terms are
added to the model). Similar to MinError, by increasing MinScore, we trade
accuracy for complexity.

2.5 Summary

In this chapter, we introduced the basic terms and central concepts on which
we rely in this dissertation. We discussed the notions of configurable systems
and feature interactions, then we introduced analysis strategies used to analyze
configurable systems in general, and finally discussed performance-influence
models used to predict performance of all configurations of a configurable
system. We also mathematically formalized the introduced notions.

35

CHAPTER 3

A Comparison of Product-based, Feature-based,
and Family-based Analysis Strategies

This chapter shares material with the following publication: S. Kolesnikov
et al. “A comparison of product-based, feature-based, and family-based type
checking”. In: Generative Programming: Concepts and Experiences, (GPCE).
ACM, 2013, pp. 115–124 [Kol+13]

Analyzing configurable software systems is difficult, due to their inherent
variability. Several variability-aware analysis strategies with different strengths
and weaknesses have been proposed, in particular, product-based, feature-based,
and family-based strategies (Section 2.3). Gaining more empirical evidence
about how these strategies compare and to expand our knowledge about the
applicability of these strategies is imperative, because in our dissertation we
apply multiple variability-aware tools that rely on these strategies (such as
TypeChef1 and SPL Conqueror2).

Next, we compare product-based, feature-based, and family-based strategies
in a controlled setting (i.e., by means of a common set of subject systems and
the same analysis tool that implements all three strategies). As a concrete
analysis technique, we choose type checking, as it has been used before in
several studies on product-line analysis [Ape+10; DCB09; Käs+12; Lie+13]. We
compare the strategies with regard to their ability to facilitate the detection
of different kinds of type errors and the time required for type checking. We
implemented the strategies as an extension of Fuji, an extensible compiler for

1http://fosd.net/TypeChef/
2http://fosd.net/SPLConqueror/

37

http://fosd.net/TypeChef/
http://fosd.net/SPLConqueror/

3.1. PRODUCT-LINE TYPE CHECKING

feature-oriented programming in Java [Ape+12]. Using Fuji, we compare the
three strategies by applying them to 12 feature-oriented, Java-based product
lines, from different application domains and of different sizes.

Overall, we found that the family-based strategy is superior in that it is
complete (i.e., it was able to identify all type errors in the subject systems)
and takes substantially less time for type checking than the other strategies.
The feature-based strategy is also quite fast, compared to the product-based
strategy, but incomplete. Based on the experimental results, we discuss a
number of issues regarding the ability to detect and report errors, the role of
optimization for family-based strategies, the influence of factors such as the
size of a product line, and the trade-off between analysis coverage and time.

The implementation of the strategies (in the form of a Fuji compiler
extension), the subject product lines, and the experimental data are available
online.3

Feature Base

1class SingleList {
2 Object next(){...}
3}
4class DoubleList {
5 Object next(){...}
6 Object prev(){...}
7}
8class TestCase {
9

::::::::::
BatchList bl;

10 ...
11}

Feature Batch

12class BatchList {
13 SingleList queue;
14 ...
15 int reorderJobs(){
16 int result = ...
17 return

:::::::
resutl;

18 }
19}

Figure 3.1: Examples of type errors: Two basic list implementations (feature
Base) and a list for batch jobs (feature Batch); type errors are underlined; arrows
denote references; the dashed arrow denotes a possibly dangling reference.

Base requires Batch

Batch requires Base

3.1 Product-Line Type Checking

By means of a simple product line and type checking as a concrete analysis
technique, we give concrete examples of product-based, feature-based, and
family-based strategies for product-line analysis.

3http://fosd.de/fuji/

38

http://fosd.de/fuji/

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

3.1.1 Examples of Type Errors

The example in Figure 3.1 is a very simple product line of list data structures. It
consists of two features: Base and Batch. The mandatory feature Base provides
two basic implementations of lists: SingleList for singly-linked lists, and
DoubleList for doubly-linked lists. It also provides a test class TestCase.
The optional feature Batch provides a special list implementation BatchList
for scheduling batch jobs that uses class SingleList of feature Base.

In Figure 3.2, we show the feature model (Section 2.1.2) of our example.
It states that feature Base is mandatory (i.e., it must be present in every
product) and feature Batch is optional (i.e., it may be present in a product).
Consequently, our example consists of two valid products: {Base} and {Base,
Batch} .

In Line 9 of Figure 3.1, feature Base refers to class BatchList . If we
attempt to compile a product with Base and without Batch, we get a type
error, because BatchList is declared only in Batch. This dangling reference
is a simple example of an error that involves multiple features. The cause
of this type error is an inconsistency between the feature model and the
implementation of the product line: The feature model suggests that feature
Base is independent from feature Batch, but the implementation requires these
features to be selected together.

To resolve the inconsistency, we can make Batch mandatory or move the
test case from Base to Batch. The key point is that, in large-scale product lines,
such inconsistencies may go unnoticed for a long time and show up only late in
the development cycle [Tar+11].

Another kind of type error is illustrated in Line 17 of Figure 3.1. There,
the undeclared variable resutl is accessed. This type error is caused by a
simple typo. It is an example of a feature-local error that can be discovered as
soon as the affected feature is used in a product.

Next, we discuss which type errors can be detected by different type-checking
strategies. We consider what information can be provided to a developer by a
type checker to help to fix these errors. We also take a look at certain properties
of the strategies that can influence type-checking performance.

List

Base Batch

mandatory feature
optional feature

Figure 3.2: Feature model of the example product line.

39

3.1. PRODUCT-LINE TYPE CHECKING

3.1.2 Type Checking Product Lines

Our procedure for type checking of product lines consists of two steps, as
illustrated in Figure 3.3. In the first step, setup, we parse the code of the
considered features and compose it accordingly. In the second step, checking,
we perform the actual type checks on the result of the first step. If a particular
type-checking strategy cannot check the whole product line in a single run, the
type-checking procedure is repeated. For example, the product-based strategy
repeats the procedure for each product, the feature-based strategy repeats
it for each feature, and only the family-based strategy checks all products
simultaneously in a single run.

The performance of a type-checking strategy is the total time t required to
check the entire product line:

t =
r∑
i=1

tsetup
i + tchecking

i

The value r is the number of type-checker runs needed to verify the complete
product line; tsetup

i is the time used by the setup in run i, and tchecking
i is the

time used by the checking step in run i. Based on this equation, we can derive
the following possibilities for optimizing the type-checking procedure, of which
the tree type-checking strategies make use to different extents:

• Minimize the number of type-checker runs r

• Minimize the setup time tsetup
i

• Minimize the checking time tchecking
i

3.1.3 Product-based Strategy

To ensure that every product of a product line is well typed, we can apply
the product-based strategy. That is, we generate and check each product
individually. This way, we find every type error in all products of the product
line.

Figure 3.3: Steps of product-line type checking.

40

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

We can even use an off-the-shelf type checker (or compiler) for this task,
because the individual products do not contain any compile-time variability.
In our setting, the products are normal Java programs.

However, by generating and checking individual products, we lose infor-
mation about the features the products are made of as well as about their
dependencies. This makes it difficult to create meaningful error messages. The
error messages for our example will only tell us that one product accesses an
unknown type BatchList. A product-based type checker fails to identify the
primary reason, namely, the false optionality of feature Batch. That is, the type
checker cannot blame the feature that is responsible for the error, which is left
to the user. This also applies to feature-local errors, such as for the undeclared
variable resutl.

A major weakness of the product-based strategy is its poor scalability. With
n optional and independent features, we have to repeat the type-checking
procedure for each of the 2n products. Therefore, the upper bound for the
performance is

t =
2n∑
i=1

tsetup
i + tchecking

i (Product-based)

The reason for the poor scalability are redundant analyses made in every step
of the type-checking procedure (Figure 3.3). During the setup, we repeatedly
parse and compose the same features again and again. During type checking,
we repeat type checks that are similar among different products.

To avoid this redundancy, it is possible to parse the code of feature Base only
once, because the corresponding parse tree is the same per product. Likewise,
it is sufficient to perform type checks that concern code inside Base, such as
type checking the body of method next, only once.

The remaining two type-checking strategies exploit this optimization poten-
tial, which we explain next.

3.1.4 Feature-based Strategy

Using the feature-based strategy, we check every feature of a product line
individually. We assume that all types, declarations, and so on that a feature
requires are available in all valid products. For example, if we check feature Base,
then the feature-based type checker assumes that the required type BatchList,
provided by feature Batch, is always available. Type BatchList becomes
part of the feature’s required interface. While the feature-based strategy may
seem naive at first glance, it is motivated by open-world systems, in which not
all features are known at development time [LKF02; LBL11].

41

3.1. PRODUCT-LINE TYPE CHECKING

Technically, we implement the required interface of a feature module using
stubs. A stub is a bundle of Java interfaces and classes, possibly with member
prototypes, that represent the types and members a feature requires from other
features. Either stubs are provided by the developer to define the required
interface, such as in Hyper/J [TOS02], or they are generated using tools, such
as AHEAD [Tha+07] or FeatureStubber.4 To type check feature Base of
our example, a stub containing an empty class named BatchList is needed,
possibly with proper member declarations.

While checking a feature, the feature-based strategy does not know anything
about other features. Consequently, a feature-based type checker cannot detect
type errors that arise between features. In our example, it cannot detect the
erroneous access to the missing type BatchList, because the type is provided
by the stub (i.e., the type checker simply assumes that it will be provided by
another feature). Only errors that are local to a feature can be detected by the
feature-based type checker, as the undeclared variable resutl.

To guarantee that all products are well typed, feature-based type checking
has to be supplemented with additional type checks during byte-code feature
composition (which corresponds to linking in C). The result is a mixed feature-
product-based strategy [Thü+12a].

Much like for the product-based strategy, we can use an off-the-shelf type
checker for feature-based type checking, because a single feature complemented
with stubs does not contain any compile-time variability.

In contrast to a product-based type checker, a feature-based type checker
can provide sufficient information about feature-local errors, but it misses errors
that arise from combinations of features.

Furthermore, the feature-based strategy requires one type-checker run
for each feature. Thus, every feature is parsed and checked only once, and
the number of the unnecessarily repeated actions is reduced compared to
the product-based strategy. The strategy also completely avoids the feature-
composition part of the setup (cf. Figure 3.3). To summarize, it utilizes the
following optimization possibilities:

• The number of type-checker runs r is reduced from 2n to n, where n is
the number of features.

• The setup time tsetup
i is reduced by omitting feature composition.

Therefore, the performance of the feature-based strategy is

t =
n∑
i=1

tsetup
i + tchecking

i (Feature-based)

4http://fosd.de/featurebite/

42

http://fosd.de/featurebite/

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

List

SingleList
Base

next
Base

...

DoubleList
Base

next
Base

...

prev
Base

...

TestCase
Base

bl
Base

Base

BatchList
Batch

queue
Batch

Batch

reorderJobs
Batch

...

Figure 3.4: Syntax tree of the example product line. Every node knows the
feature to which it belongs. Arrows denote references; the dashed arrow denotes
a possibly dangling reference (cf. Figure 3.1).

3.1.5 Family-based Strategy

The family-based strategy analyses the code base of a product line as a whole.
Hence, it can detect all type errors and guarantee that all products of a product
line are well typed.

The variability of a product line has to be incorporated into the type-
checking procedure, so that the type checker can take it properly into account.
The key idea is to compose all features of the product line (even mutually
exclusive ones), and to keep variability information in the syntax tree (i.e.,
which program element belongs to which feature and depends on which other
features) [Tha+07]. This way, the syntax tree does not represent only a single
product or feature, but the whole product line, as illustrated in Figure 3.4. A
family-based type checker works on these enriched syntax trees and must be
able to cope with variability. For this reason, we cannot use an off-the-shelf
type checker for this task.

Figure 3.5 shows an example of an error message produced by our family-
based type checker. The error message identifies the features participating
in the type error. It shows in which feature and where exactly in its code
the error occurs. Moreover, the error message describes the exact cause of
the error, namely that feature Base requires feature Batch (because Base uses
type BatchList introduced by Batch), but feature Batch is not present in all
products in which Base is present; all these products contain the type error,
which is useful information for debugging.

The family-based strategy parses and composes the code of all features
in one run. Thus, no repetitive parsing or composition of the same source

43

3.2. MOTIVATION AND HYPOTHESES

Base/TestCase.java:9:
Type Error: 1 optional target:

Feature Base accesses the type
(default package).BatchList of feature Batch

Figure 3.5: Error message of the family-based type checker.

Table 3.1: Conceptual comparison of the three type-checking strategies.

Strategy Performance Optimization Error Feature Tool
detection blaming reuse

Product-based
∑2n

i=1 t
setup
i + tchecking

i — #

Feature-based
∑n

i=1 t
setup
i + tchecking

i #runs, setup G#

Family-based tsetup + tchecking #runs, checking #

 possible G# partly possible # impossible

code is necessary. The resulting syntax tree represents the whole product line.
Therefore, only one type-checking run is needed to cover the whole product line.
To summarize, the strategy utilizes the following optimization possibilities:

• The number of type-checker runs r is reduced to the minimum of one.

• Furthermore, the time tchecking for type checking can be reduced by using
caching, as we will explain in Section 3.3.4.

Therefore, the performance of the family-based strategy is

t = tsetup + tchecking (Family-based)

3.1.6 Summary

For a better overview, Table 3.1 summarizes the properties of the three strategies,
regarding performance, optimization, the ability to find errors and to blame
features, and the possibility to reuse off-the-shelf tools.

3.2 Motivation and Hypotheses

Our goal is to compare the three strategies quantitatively in terms of their
performance. We believe that the family-based strategy outperforms the other

44

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

two, because it reduces the number of type-checker runs to one. This way, the
strategy avoids unnecessarily repeated analysis operations during the setup
and checking steps. Nevertheless, a family-based type checker has to take
the whole variability of a product line into account. Therefore, the respective
problem is more complex and may require more time for analysis. Moreover,
family-based type checkers rely on SAT solvers to determine dependencies
between features [Ape+10; Käs+12]. The corresponding SAT solver calls are
expensive and may reduce the overall performance. Therefore, product-based
type checking may be faster than family-based, especially, on product lines
with a small number of products.

As for the feature-based strategy, it processes the same amount of code as the
family-based strategy and completely avoids the composition part and ignores
feature combinatorics. Thus, it is an open question whether it outperforms
the family-based strategy when the analyzed product line has a small number
of features. Of course, the potential win of the feature-based strategy would
be at the expense of the number of type errors found, as it would detect only
feature-local errors (see Section 3.1.4). To be able to detect errors occurring
between features, we supplemented the strategy with additional type checks at
the byte-code level, as explained in Section 3.1.4. These type checks run on the
per-product basis when composing separately compiled feature modules, which
corresponds, in fact, to a mixed feature-product-based strategy. For illustration,
we also present the performance measurements for this mixed strategy.

Based on our considerations, we state the following three hypotheses that
we address in the evaluation:

• H.1: The family-based strategy is superior to the feature-based and
product-based strategies in terms of performance.

• H.2: As an exception to H.1, the product-based strategy is superior to
the family-based one, if the analyzed product line has a relatively small
number of products.

• H.3: As an exception to H.1, the feature-based strategy is superior to
the family-based one, if the analyzed product line has a relatively small
number of features.

3.3 Empirical Evaluation

We implemented the product-based, feature-based, and family-based type-
checking strategies in a single type checker. The type checker is an extension

45

3.3. EMPIRICAL EVALUATION

of a feature-oriented Java compiler Fuji.5 It operates on the abstract syntax
tree, built by the Fuji’s parser, and extends the underlying Java type system
to implement variability-aware type checks.

To calculate dependencies between features, our type checker uses a cor-
responding library from the FeatureIDE project.6 In FeatureIDE, the
problem of determining a dependency between features is reduced to a SAT
problem and solved by querying an off-the-shelf SAT solver (SAT4J). Fea-
tureIDE implements a caching mechanism to reduce the response time in the
case of multiple identical SAT solver queries (see Section 3.3.4, Caching).

It is important to note that our type checker covers many but not all Java
type rules. In a nutshell, it checks all accesses to fields, methods, constructors,
and types, and verifies that the accessed elements are present in all correspond-
ing products. The possibly variable type hierarchy of the corresponding product
line is considered too, because it can influence the presence or absence of pro-
gram elements, such as fields or methods. For illustration, let us assume that
we decided to add two alternative features to our example, as illustrated in the
Figures 3.6 and 3.7. The new features refine feature Batch, and specify a new
superclass for class BatchList. Consequently, the two alternative features
define which methods are inherited by BatchList. If feature BatchSingle
is selected, the superclass of BatchList is SingleList, and BatchList
inherits method next. If feature BatchDouble is selected, the superclass of
BatchList is DoubleList, and BatchList inherits the methods next
and prev. Now, if prev is called on a BatchList object, the type checker
has to determine in which feature combination method prev is inherited by

5http://fosd.de/fuji/
6http://fosd.de/featureide/

Feature BatchSingle

1class BatchList extends SingleList {
2 ...
3}

Feature BatchDouble

1class BatchList extends DoubleList {
2 ...
3}

Figure 3.6: Example of a variable type hierarchy: The choice between BatchS-
ingle and BatchDouble defines the superclass of class BatchList.

46

http://fosd.de/fuji/
http://fosd.de/featureide/

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

List

Base Batch

BatchSingle BatchDouble

mandatory feature
optional feature
alternative group

Figure 3.7: Feature model for the example product line, extended with the two
new features BatchDouble and BatchSingle.

BatchList (in our case, the required combination is {Base, BatchDouble}).
Further type rules cover explicit and implicit casts, which also take a

possibly variable type hierarchy into account. The rules for implicit casts cover
assignment expressions involving two variables, assignments of a return value
of a method call, parameter passing, and so on.

3.3.1 Subject Systems

We conducted the evaluation of the type-checking strategies on a set of 12
feature-oriented, Java-based product lines. The set has been collected and pre-
pared before for benchmarking purposes and was used in several studies [AB11;
Ape+12]. The subject systems belong to different application domains, and they
are of different sizes: in terms of lines of code, number of features, and number
of products. In Section 3.3.4, we use the three size categories to discuss the
relation between the size of a product line and the corresponding performance
of type checking. Table 3.2 summarizes relevant information about the systems.

3.3.2 Measurement Procedure

To compare the performance of the three type-checking strategies, we applied
each strategy to each subject system, and we measured the time required by
every step of the type-checking procedure (i.e., tsetup and tchecking). We repeated
each measurement 10 times and took the average value to reduce measurement
bias. The maximum relative standard error was 3.1%, which we observed for
family-based type checking of ZipMe. For the product-based strategy, we did
not include the time needed to generate the configuration of each product,
because this time was negligible compared to the time required for type checking.
Likewise, for the feature-based strategy, we did not include the time used to
generate stubs (Section 3.1.4), because stubs represent required interfaces and
are part of the corresponding feature modules. We measured the performance

47

3.3. EMPIRICAL EVALUATION

Table 3.2: Overview of the subject systems (LOC: number of lines of code; #F:
number of features; #P: number of products).

System Domain LOC #F #P

EPL Expression evaluation 304 12 425
GPL Graph library 2855 25 156
GraphLib Graph library 401 5 16
GUIDSL Configuration tool 14 318 26 24
Notepad Text editor 2193 10 512
PKJab Chat client 4109 8 48
Prevayler Persistence library 6185 6 32
Raroscope Compression library 415 4 16
Sudoku Game 1926 6 64
TankWar Game 4845 38 2458
Violet Model editor 10 866 88 ≈288

ZipMe compression library 5076 13 24

of the family-based type checker twice, with and without caching, to investigate
the influence of the caching on the overall performance.

We instrumented the code of the Fuji compiler with calls to the timer of
ThreadMXBean,7 such that we measure only the CPU time consumed by the
type-checker thread. This approach eliminates the influence of other concurrent
tasks (e.g., garbage collection) on the measurement results. Furthermore, we
did not measure the JVM startup time for each type-checking run, because the
overhead can be avoided using special tools.8

We conducted all measurements on a workstation equipped with an Intel
Xeon CPU (2.9GHz) and 8GB RAM, running Ubuntu 12.04 (64-Bit) and
OpenJDK 7 (u21).

3.3.3 Results

In Table 3.3, we present the results of our measurements (in seconds). For each
subject system and each strategy from our comparison, we show the setup time
(tsetup), the checking time (tchecking), and the total time (i.e., the performance
of the strategy, t). We also provide total times (t) for the feature-product-
based strategy and the family-based strategy with caching disabled. For the
feature-based strategy, we computed the speedups relative to the product-based
strategy. For the family-based strategy, we computed the speedups relative

7java.lang.management.ThreadMXBean is part of the Java 7 API.
8http://martiansoftware.com/nailgun/

48

http://martiansoftware.com/nailgun/

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

to the product-based strategy and the feature-based strategy. Note that we
aborted the product-based measurements for Violet after checking 40 random
products, because it was impossible to check all of the approximately 288

products in reasonable time. We mark the corresponding values in the table
with “X.”

For comparison, we visualize the results in Figure 3.8 by means of bar
plots. There is one bar plot per subject system, consisting of five stacked bars,
divided into two groups (with different axes to compensate the considerable
differences between the measured times). Each bar denotes the amount of time
(in seconds) used by the corresponding type-checking strategy. The light gray
part of each bar denotes the time required by the setup step; the white part
denotes the time required by the check step. The crosses over the bars for
Violet indicate that we aborted measurements at this point.

Note that, for the family-based strategy, there are two bars: the first,
FM, denotes the performance of the strategy with SAT-solver caching enabled ;
the second, FM*, denotes the performance with SAT-solver caching disabled.
FT* denotes the performance of the feature-product-based strategy; its dark
gray part denotes the time required by the byte-code feature composition
(Section 3.1.4).

As we can see, the family-based strategy is the fastest for all subject systems.
Compared to the product-based strategy, the minimum speedup of this strategy
has been measured for GUIDSL, where it is 8.8 times faster. The maximum
speedup of 745.3 has been measured for Tankwar. As we could not check all
products of Violet in reasonable time, we do not consider the corresponding
speedups (they are likely to be much higher). Compared to the feature-based
strategy, the speedup of the family-based strategy lies in between 1.7 and 6.5.
The feature-based strategy is the second fastest. Its speedup compared to the
product-based strategy lies in between 2.2 and 129.7.

Recall that the feature-based strategy finds only feature-local errors (Sec-
tion 3.1.4). In our evaluation, it found no errors at all. The reason is that
our subject systems have been used in many previous studies. Every single
feature of the product lines was type checked as part of a product at least once.
Therefore, all feature-local errors have already been detected and fixed. The
other two strategies detected the same 556 unique type errors. These errors
occurred between features and stayed undetected, because the corresponding
feature combinations have been never considered by the developers and users
of the systems.

The results support our first hypothesis H.1 (Section 3.2): the family-
based strategy is superior to the other two strategies in terms of performance.
Although quite apparent from Table 3.3, we still conducted statistical tests

49

3.3. EMPIRICAL EVALUATION

Table 3.3: Measurement results for each subject system and type-checking
strategy (in seconds). For each system and each strategy from our comparison,
the setup time (tsetup), checking time (tchecking), and total time (t) are provided.
We also provide total times (t) for the feature-product-based strategy and the
family-based strategy with caching disabled. For the feature-based strategy,
the speedups relative to the product-based strategy are provided. For the
family-based strategy, the speedups relative to the product-based strategy
and the feature-based strategy are provided. We rounded all values to one
decimal place. X We aborted the product-based measurements for Violet
after checking 40 random products (cf. Section 3.3.3).

Product Feature

Time (seconds) Time (seconds) Speedup w.r.t.

System tsetup tchecking t tsetup tchecking t Product

EPL 152.7 28.9 181.7 4.6 0.3 4.9 37.2
GPL 68.5 43.7 112.2 8.1 3.8 12 9.4
GraphLib 6 2.8 8.8 1.8 0.5 2.4 3.7
GUIDSL 19.6 22.5 42.1 12.2 6.9 19.1 2.2
Notepad 216.1 300.1 516.3 3.7 4.3 8 64.5
PKJab 27.6 41.6 69.2 3.9 2.4 6.3 11
Prevayler 19.3 35.7 55.1 3 1.9 4.9 11.2
Raroscope 6.4 3.1 9.5 1.9 0.4 2.3 4.1
Sudoku 32 37.9 69.9 3 2.9 5.8 12
TankWar 1254.4 1326.5 2580.8 12.7 7.2 19.9 129.7
Violet 21.6X 37.1X 58.7X 39.6 14.4 54 1.1X

ZipMe 12.8 10.2 23 5.5 1.3 6.8 3.4

Family Feature-product Family (no caching)

Time (seconds) Speedup w.r.t. Time (seconds) Time (seconds)

System tsetup tchecking t Product Feature t t

EPL 0.4 0.4 0.8 240.3 6.5 90.5 6.4
GPL 0.6 1.7 2.3 48.9 5.2 84.2 798.2
GraphLib 0.4 0.3 0.7 12.7 3.4 6.5 1.7
GUIDSL 1 3.7 4.8 8.8 4 55.9 2102.2
Notepad 0.5 1.6 2.1 242.2 3.8 334 34.2
PKJab 0.6 2 2.6 27.1 2.5 70.8 47.2
Prevayler 0.7 2.2 2.9 18.9 1.7 51.4 21
Raroscope 0.4 0.3 0.7 13.4 3.2 7.8 1.6
Sudoku 0.6 1.1 1.7 41.7 3.5 54.6 9
TankWar 0.6 2.9 3.5 745.3 5.7 2176.5 3200.9
Violet 0.8 10 10.8 5.4X 5 100.2X 32251.1
ZipMe 0.6 1 1.6 14.5 4.3 30.1 185.3

50

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

Figure 3.8: Type-checking times for each subject system—five bars per system.
A bar denotes the time used by the corresponding type-checking strategy. Each
step of the type-checking procedure (Section 3.1.2) is denoted by a different color
inside a bar. The crosses over the bars for Violet indicate that we aborted
the product-based measurement after checking 40 products (cf. Section 3.3.3).

51

3.3. EMPIRICAL EVALUATION

to test all hypotheses. We used the Wilcoxon test, because the data are not
normally distributed (according to a Shapiro-Wilk test). Though, we could
use the non-parametric ANOVA, we decided to use the conservative double-
test variant with Bonferroni correction, because it is more rigorous. For all
performance comparisons, the p value is much smaller than 0.01.

We found no supporting evidence for hypothesis H.2 (i.e., product-based
is superior on product lines with few products) and H.3 (i.e., feature-based is
superior on product lines with few features), because, for none of our subject
systems, the product-based or the feature-based strategy is superior to the
family-based strategy, not even for very small product lines with few products
and features (e.g., GraphLib and Raroscope).

A comparison of the results for the two variants of the family-based type
checker shows a substantial influence of SAT-solver caching on performance.

Finally, the feature-product-based strategy is always slower than the family-
based strategy (with caching) and the feature-based strategy. More interestingly,
it is only in several cases slower than the product-based strategy (e.g., GUIDSL,
PKJab, ZipMe), which indicates the benefits of separate feature compilation
and byte-code feature composition.

3.3.4 Discussion

Next, we discuss the results of our measurements based on the size categories
of Table 3.2 as well as regarding the implementation of our type checker. We
use the product-based strategy as the base line, and compare it to the other
strategies. We subdivided this section in three parts, one part for each strategy.

Product-based strategy. The measurements of the product-based strategy
support our expectations about its poor scalability. As discussed in Section 3.1.3,
this strategy induces considerable redundant work in every step of the type-
checking procedure, while the number of the unneeded repetitions increases
with the number of products. An extreme example is Violet, which we could
not even check completely, because of the sheer amount of time required to
generate and check all of the approximately 288 products. Nevertheless, if
developers have to use a standard (non-variability-aware) type checker, product
lines with few products and relatively small code bases (e.g., Raroscope) can
be checked in reasonable time.

Comparing the results for GUIDSL and ZipMe makes it apparent that it
is insufficient to consider only the number of products when estimating the
performance of the product-based strategy. Both product lines have the same
number of products, but type checking GUIDSL lasts almost twice as long as

52

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

Table 3.4: Break-even points of the superiority of the family-based strategy for
the subject systems. Total number of products #P and break-even points �B
(i.e., the number of products whose cumulative analysis time exceeds the time
needed by the family-based strategy to check all products of the product line).

System #P �B

EPL 425 2
GPL 156 4
GraphLib 16 2
GUIDSL 24 3
Notepad 512 3
PKJab 48 2

System #P �B

Prevayler 32 2
Raroscope 16 2
Sudoku 64 2
TankWar 2458 4
Violet ≈288 8
ZipMe 24 2

type checking ZipMe. The cause is the larger code base of GUIDSL, which is
almost three times larger than the code base of ZipMe. Systems with a similar
number of products and a similar size of the code base (e.g., GraphLib and
Raroscope) have similar times.

Although not in the scope of our study, one could use sampling to speed
up the product-based strategy [Guo+13; JHF12; OMR10; Sie+12; Sie+13].
This would render the analysis incomplete, but tractable, at least. To give
an impression of how the family-based strategy performs in comparison to
sampling, we computed the (average) number of products one has to check with
a sample-based strategy to exceed the time needed for the family-based strategy.
This number marks the break-even point, at which the family-based strategy is
superior without question (recall sampling is incomplete). In Table 3.4, we list
the break-even points for the subject systems in terms of this number (and the
overall number of products checked by the product-based strategy). The results
are clear: Only when checking a very small number of products (less than 5%,
on average), a sample-based strategy is faster. But these small numbers also
mean that the coverage will be very low and does not satisfy state-of-the-art
coverage criteria (e.g., pair-wise coverage [OMR10]). This observation is in line
with previous results [Lie+13].

Feature-based strategy. A feature-based type checker parses and checks the
code of each feature only once (cf. Section 3.1.4). The result of this optimization
becomes apparent when we compare the performance of the product-based and
feature-based strategies in the setup step. With a growing number of products
the advantage of the feature-based strategy becomes more evident. Nevertheless,
the feature-based strategy induces an overhead for every type-checker run that
is caused by instantiating internal data structures and loading classes from the

53

3.3. EMPIRICAL EVALUATION

Java run-time library. This overhead explains why setting up type checking
for GUIDSL is only slightly faster using the feature-based type strategy, then
using the product-based strategy. A peculiarity of GUIDSL that is responsible
for this effect is that it has a relatively small number of products and more
features than products.

The checking step of the feature-based strategy also consumes less time
than that of the product-based strategy. Still, we have to keep in mind that
the feature-based strategy is able to detect only feature-local errors (cf. Sec-
tion 3.1.4). Our subject systems have been used in many previous studies
and all eventual feature-local errors have already been fixed. Therefore, the
feature-based strategy found no errors. The inability to detect the full range of
errors is the main weakness of this strategy.

We used FeatureBite9—a tool developed by us—to perform supplemen-
tary type checks when composing individually compiled feature modules to
products. These additional checks at the byte-code level find type errors that
arise between features (cf. Section 3.1.4). This way, we can achieve the same
level of type safety as with the other two type-checking strategies (all 556
errors are found). However, our evaluation demonstrates that attaining type
safety by combining the feature-based and product-based strategy requires
considerably more effort than using the feature-based strategy alone, which
was to be expected. The interesting finding is that, in all subject product
lines except GUIDSL, PKJab, and ZipMe, the feature-product-based strategy
outperforms the product-based strategy.10 The reason is that the number of
products of these three product lines is relatively low compared to the number
of their features, which outweighs the benefit of separate feature compilation.
This result demonstrates that the intermediate steps of checking and compiling
feature modules and composing them at the byte-code level can positively
influence analysis performance.

Family-based strategy. The family-based strategy is the clear winner among
the three strategies. It requires only one run to check all products of a product
line. Consequently, it does not induce the overhead of feature-based type
checking (i.e., repeated instantiation of data structures in each run) in the
setup step. It also avoids the overhead of the product-based strategy (i.e.,
repeated type checks) in the checking step (cf. Section 3.1.5).

Furthermore, our results show that the family-based strategy outperforms
also the feature-based strategy in the checking step, even though the feature-
based strategy considers only features in isolation. We attribute this phe-

9http://fosd.de/featurebite/
10We do not consider Violet, as we could not check all its products.

54

http://fosd.de/featurebite/

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

nomenon to the same kind of overhead that the feature-based strategy induces
in the setup step (i.e., repeated instantiation of data structures in each run).
From Table 3.3, we can see that the advantage of the family-based strategy
in the checking step increases with the number of features. For product lines
with a small number of features (e.g., GraphLib, Prevayler, Raroscope,
Sudoku), the family-based strategy is 1.7 to 3.5 times faster than the feature-
based strategy. For product lines with larger numbers of features (e.g., GPL,
GUIDSL, TankWar), the family-based strategy is 4.1 to 5.8 times faster than
the feature-based strategy.

Caching. One property of our family-based type checker poses a principal
boundary on its performance. The type checker reduces the problem of deter-
mining dependencies between features to a SAT problem (cf. Section 3.1.5).
SAT is NP-complete, which renders family-based type checking NP-complete,
as well (w.r.t. the number of features). Luckily, today’s SAT solvers mitigate
this theoretical boundary for practical problems. Nevertheless, the calls to a
SAT solver are still expensive enough, so minimizing the number of such calls
is always a good idea.

Our family-based type checker uses a caching mechanism. All queries of the
type checker to the SAT solver are cached, and none of the queries is performed
twice. As we can see from the measurements (the FM and FM* bars in each
plot, Figure 3.8), the caching mechanism leads to a substantial speedup. This
is due to the fact that the family-based type checker makes a considerable
number of repeated, identical calls that involve the SAT solver.

A large number of features often means a more complex feature model and,
consequently, more expensive SAT solver calls. A small number of products
keeps the time needed for the product-based type checking relatively low.
ZipMe and GUIDSL are such product-lines, and, as we can see in Figure 3.8,
the family-based type checker without caching is slower than the product-based
type checker.

The reasons for the success of caching is that the feature modules in our
subject systems are relatively coarse-grained units, and checking them involves
checking a large number of identical type, method, and field accesses. This may
not be the case if a product line consists of many fine-grained features containing
no or few identical accesses (e.g., as may be the case for preprocessor-based
variability).

55

3.4. THREATS TO VALIDITY

3.4 Threats to Validity

We implemented a substantial subset of type rules in Fuji, but not all type
rules specified for the Java language. This threatens the internal validity of
our study. However, the implemented rules cover a considerable number of
language constructs and involve complex analyses of the possibly variable type
hierarchy. We can safely assume that adding new type checking rules (e.g.,
checking access modifiers) will not change the overall picture substantially.

As often the case, the external validity of our study is affected by the choice
of the subject product lines. In our evaluation, we used only product lines
built with AHEAD/Fuji-style feature modules. The coarse-grained nature
of these features is beneficial for the caching mechanism used in the family-
based type checker (cf. Section 3.3.4, Caching). Although, we cannot draw
sound conclusions for other kinds of feature implementations (e.g., based on
the C preprocessor), previous work shows a similar picture, at least regarding
the performance of the family-based strategy compared to the product-based
strategy [Lie+13].

3.5 Related Work

Our classification of product-line analysis strategies is based on a recent survey
by Thüm et al. [Thü+12a]. Beside the classification, the authors discuss the
conceptual strengths and weaknesses of the individual strategies. Based on this
survey, von Rhein et al. propose the Product-Line-Analysis model [vRhe+13]
that describes a whole spectrum of possible combinations of product-line
analysis strategies.

The family-based strategy has been applied to several analysis tech-
niques, including type checking [Ape+10; DCB09; Käs+12; Tha+07], static
analysis [Bod+13; Bra+13; Lie+13], model checking [Ape+11; Ape+13d;
Cla+10; LTP09], performance measurement [SvRA13], and deductive veri-
fication [Thü+12b]. The feature-based strategy has been used before for type
checking [AH10; BDS13] and verification [LKF02] of product lines. Product-
based analyses with sampling have been used in the context of product-line
testing [JHF12; OMR10] and performance prediction [Guo+13; Sie+12; Sie+13].

There are only few studies that compare product-line analysis strategies
empirically. Two studies evaluated the performance of the family-based and
product-based strategy in the context of product-line verification [Ape+13d;
Cor+12]. Brabrand et al. compares the performance of the family-based and
product-based strategy for static analysis [Bra+13]. For type checking, Liebig
at al. evaluated the efficiency of several sample-based strategies, compared to

56

CHAPTER 3. A COMPARISON OF ANALYSIS STRATEGIES

the family-based strategy [Lie+13]. While their results are in line with ours,
we are the first who have implemented all three strategies in one tool and have
evaluated them using the same subject systems and measurement procedure,
so that all comparisons have been made in a controlled setting.

3.6 Summary

Since tools for analysis of configurable software rely on different product-line
analysis strategies, it is imperative to gain more empirical evidence about how
these strategies compare and to expand our knowledge about the applicability
of these strategies. To this end, we compared the three product-line analysis
strategies—product-based, feature-based, and family-based—in a controlled
setting. In our evaluation, we used feature-oriented programming as an imple-
mentation technique and type checking as an analysis technique, although the
big picture of our results may be transferable to other techniques. In particular,
we compared the analysis performance, but we also addressed the ability to
detect different kinds of errors, and the quality of the provided information
about errors. Our evaluation is based on a feature-oriented compiler that we
extended with the three type-checking strategies for this purpose, and a subject
set of 12 feature-oriented, Java-based product lines.

A main result of our study is that the family-based strategy outperforms the
other strategies for all subject systems in terms of analysis time. We identified its
caching mechanism as the key factor for the success, as it substantially reduces
the number of SAT-solver queries. At the same time, the family-based strategy
is complete: it finds errors that are feature-local and that occur among several
features (556 in total), which is not the case for the feature-based strategy.
Furthermore, the family-based strategy provides the most comprehensive error
messages, as it has all information on features and variability at its disposal,
which is not the case for the other two strategies.

Although not being in the focus of our study, we found that pursuing a
sampling-based strategy (checking only a tractable subset of products) would
not change the big picture. For our subject systems, the break-even point,
at which the family-based strategy becomes faster, is at very low numbers of
products, which means that the corresponding analysis coverage of sampling is
likely to be very small, compared to the family-based strategy, which achieves
full coverage.

Surprisingly, the feature-based strategy is often slower than the family-
based strategy, although it ignores feature interactions and is, consequently,
incomplete. Combining the feature-based with the product-based strategy
makes it complete, but is substantially slower. Interestingly, such a combined

57

3.6. SUMMARY

strategy outperforms the plain product-based strategy in most cases in our
experiments, which indicates that separate feature compilation and byte-code
composition can have a positive effect on analysis performance.

Altogether, our evaluation complements valuable empirical data about how
different analysis strategies for configurable systems compare with respect to
completeness and performance. This information can be taken into account
by the developers of different variability aware analysis techniques and tools
among which are also techniques and tools for feature-interaction detection
that we use in our dissertation.

58

CHAPTER 4

Tradeoffs in Modeling Performance of
Configurable Systems

This chapter shares material with the following publication: S. Kolesnikov et al.
“Tradeoffs in modeling performance of highly configurable software systems”.
In: Software and Systems Modeling (SoSyM) (Feb. 2018). Online first, pp. 1–
19 [Kol+18]

One of the goals of our dissertation is to understand the influence of feature
interactions (or interactions among configuration options) on performance of
configurable systems. To accomplish this goal, we need to gather and analyze
empirical data on interactions in configurable systems and their influences on
performance. That is, our first steps should be (1) detecting interactions that
have influence on performance for a set of real-world configurable systems and
(2) quantifying the interactions’ influences. Both can be done using performance-
influence models (Section 2.4.1). Performance-influence models describe how
individual configuration options and, what is especially important for this
dissertation, how their interactions influence performance of a configurable
system. For our and other techniques based on performance-influence models
to be practically useful and generally applicable, performance-influence models
should exhibit the following properties:

1. Low prediction error (i.e., be as accurate as possible), such that it
accurately describes the influence of interactions on system’s behavior,

2. Small model size, such that it is understandable by humans for a wide va-
riety of tasks involving human judgment, such as program comprehension,
but still clearly denotes interactions present in the system, and

59

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

3. Short computation time, such that constructing the model is feasible in
practice.

It is well known in the machine-learning community that there are tradeoffs
among prediction error, model size, and computation time [Dom00; Jam+13;
SW11]. Hence, optimizing for one property may negatively influence the
others. The goals of this chapter are the following: (1) to explore whether
these tradeoffs are practically relevant for performance-influence models in the
domain of configurable software systems and how significant they are; (2) to
study if the interactions described by performance-influence models really exist
in the subject systems, their causes and influence on performance.

In a nutshell, our results show that, although, the tradeoffs among the
different model properties technically exist, their effect is surprisingly low, so
that they have effectively no negative influence for practical purposes. Further-
more, by analyzing the source code and documentation of the subject systems,
we were able to show that the identified interactions actually exist in the
subject systems. We were also able to explain the causes for these interactions
having the observed influences on the systems’ performance. Moreover, we
identified several interaction patterns across subject systems, such as dominant
configuration options and data pipelines, that explain the influences of highly
influential configuration options and interactions, and give further insights into
the domain of configurable systems.

These results are important in several ways: First, they demonstrate that
one learning approach can be used for different real-world application sce-
narios, which is crucial for practicality. Second, they demonstrate that the
domain of configurable software systems exhibit specific properties (e.g., the
distribution of interactions) that make circumventing the tradeoff problem
possible, allowing researchers and practitioners to develop efficient learning
approaches by concentrating on a few important configuration options and
their low-order interactions (i.e., interactions involving only a small number
of configuration options, in our case, two or three). Third, we confirm that
the learning approach that we use effectively identifies real interactions in
configurable systems. Finally, the identified interaction patterns can be used as
anti-patterns and help prevent or at least to anticipate the possible presence of
performance interactions already in the early stages of the configurable systems
development when architectural decisions are made. In total, these results
contribute to the goals of our dissertation by providing insights into the nature
and properties of feature interactions that may help in detecting or preventing
feature interactions.

Technically, we use a state-of-the-art machine-learning algorithm to au-
tomatically learn performance-influence models (Section 2.4.3). To this end,

60

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

we have studied the properties of models learned for a set of 10 real-world
configurable software systems. Based on the results of this study, we analyze
the tradeoffs among the properties of the models and discuss their applicability
in common practical use cases.

All experimental data and analysis scripts are available on a supplementary
website.1

4.1 Motivation and Research Questions

In the domain of configurable systems, we lack empirical understanding of
how strong the tradeoffs among prediction error, model size, and computation
time of performance-influence models are. That is, while learning performance-
influence models for real-world configurable systems, we do not know for which
combinations of these properties we are able to effectively optimize that, in turn,
may negatively influence practicability and general applicability of performance-
influence models. Our goal is to quantify these tradeoffs by means of a series of
experiments and to gain insights in to the characteristics of the configuration
spaces of configurable software systems, for example, such as the relevance of
different kinds of interactions and their influences on performance.

To illustrate the properties of performance-influence models and the tradeoffs
among them, we will use two simple models, as shown in Figure 4.1a. These
models describe the request throughput (requests per second, req/s) of the
Apache Web server for a fixed standard benchmark. They are slightly simplified
versions of the real models that we learned during our evaluation. The variables
in the models represent binary configuration options (Section 2.1) of the Web
server (such as, AccessLog, HostnameLookups, etc.), which can be either enabled
or disabled (values 0 or 1).

It is important to note that both models in Figure 4.1a describe the same
system, but have different size and prediction error. The table in Figure 4.1b
lists the actual performance measurements of the Web server next to the pre-
dictions for the corresponding configurations using either Model A or Model B.
Both models describe the main effects of the configuration options strongly
influencing the system: In its default configuration (with all options disabled),
the server can process 1000 req/s. However, with option AccessLog enabled,
the throughput is decreased by 250 req/s. Enabling option HostnameLookups
decreases the throughput by further 150 req/s. Both models accurately describe
the performance of the first two configurations with one or the other option en-
abled (configurations 1 and 2 in Figure 4.1b). The third configuration contains

1http://fosd.net/tradeoffs/

61

http://fosd.net/tradeoffs/

4.1. MOTIVATION AND RESEARCH QUESTIONS

(a) Two performance-influence models for the Apache Web server.

Model A: 1000 − 250 ·AccessLog− 150 ·HostnameLookups

Model B: 1000 − 250 ·AccessLog− 150 ·HostnameLookups
+ 100 ·AccessLog·HostnameLookups+ . . .
+ 2 ·AccessLog·EnableSendfile·KeepAlive
+ 1 ·EnableSendfile·FollowSymLinks·Handle

(b) Performance values predicted by the models.

Measured Predicted Value
Configuration Value ModelA Model B

1 A 750 750 750
2 H 850 850 850
3 H,T 850 850 850
4 H, I 950 850 850
5 A,H 700 600 700
6 A,E,K 752 750 752
7 A,E, F, n 751 750 751
...

...
...

...
...

Figure 4.1: Two examples of performance-influence models for the Apache Web
server and the corresponding predicted performance values. The underlined
letters in the option names are used as abbreviations in the table (e.g., A stands
for AccessLog). The slanted letters in the table denote configuration options
that are not covered by either model. The predicted values that match the
actually measured values are shaded in green, those that do not match are
shaded in red.

62

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

the configuration option TypeConfig, which is not covered by the two models.
Nonetheless, both models predict the configuration’s performance accurately,
because the configuration option has no measurable influence on performance.
In contrast, configuration option InMemory in the fourth configuration has a
substantial influence on the performance, and its absence in both models leads
to prediction errors.

The two models differ in how they characterize minor variations and inter-
actions among configuration options. By the individual influences of 250 req/s
and 150 req/s of the options AccessLog and HostnameLookups, we could expect a
combined performance penalty of 400 req/s, when both options are enabled, and
in fact the first, simpler model assumes that. In practice though, we observed
that both options interact, and their combined penalty is only 300 req/s (see
Figure 4.1b, configuration number 5). By studying the system’s documentation,
we found that both options partially use the same data retrieved from a request,
so the data are retrieved only once, but used by both options, and this reuse
results in a higher throughput. While the first model produces an inaccurate
prediction by ignoring this interaction, the second model covers this interaction
(term AccessLog·HostnameLookups) and yields accurate predictions for more
configurations, but at the cost of a more complex model (5 model terms instead
of 2) and increased computation time.

Clearly, interactions can be important for prediction accuracy, but not all
interactions may have a substantial influence on performance. The second
model includes several interaction terms that only slightly alter the predicted
performance by 2 or 1 req/s (e.g., EnableSendfile·KeepAlive), resulting in a
relative accuracy improvement of at most 0.3% and 0.1% (compare the pre-
dicted values for configurations number 6 and 7). If we are fine with accepting
such small prediction errors, we could ignore these interactions and work with
smaller and simpler models. Note that such small-influence terms may be an
indication for model overfitting, that is, the model describes measurement noise
more than actual influences, at the cost of significant computation time and
complexity of models.

4.1.1 Use Cases of Influence Models – A Discussion with
HPC Experts

Over the last few years, we have been creating and using performance-influence
models for various applications in a number of domains, including Web servers,
code-analysis tools, and high-performance computing (HPC).2 In an attempt
to better understand requirements and use cases of performance-influence

2http://www.exastencils.org/

63

http://www.exastencils.org/

4.1. MOTIVATION AND RESEARCH QUESTIONS

models regarding prediction error, model size, and computation time, we had
several discussions with four of our collaborators from the HPC domain. The
discussions constitute a basis for a lightweight explanatory analysis rather
than a deep study in itself. Still, the discussions are informative enough to
guide our analysis. All four HPC experts develop, analyze, and work with
performance-critical applications on an everyday basis in areas, such as image
and signal processing, automatic code generation, and differential-equations
solvers, having 10 to 20 years of experience in the corresponding areas. They
are working with the following systems: DUNE [Bas+06], HSMGP [Kuc+13],
HIPACC [Mem+12], and SaC [GS06] (DUNE and HSMGP being also subject
systems in our experiments; see Section 4.2).

To anchor our discussions with concrete data, we learned performance-
influence models for the systems with which the experts were deeply familiar.
Specifically, we took models at an early, intermediate, and late stage of the
incremental learning process (Section 4.2.1): The early models were smaller, but
more inaccurate (like Model A in Figure 4.1) than those in the later stages of
the learning process (like Model B in Figure 4.1). We presented the models3 to
the experts explaining their general structure and asked the following questions:

1. What are use cases for the presented performance-influence models that
you can think of?

2. What are acceptable tradeoffs among prediction error, model size, and
computation time of a model with respect to these use cases?

The use cases mentioned by the experts can be grouped in two categories:

1. Performance prediction. Performance-influence models can help stake-
holders of a system find the system’s optimal configuration (for a give
setting). For example, the SaC compiler has a default configuration
that may have suboptimal performance for some hardware platforms.
Learning a performance-influence model for each target platform allows
developers to find the optimal configuration for each of them.

2. Program comprehension and debugging. Among the important program
comprehension tasks, the experts named (1) confirming or disproving
existing assumptions about influences of individual configuration options
and (2) gaining new insights and deeper understanding of the performance
of the system. For example, the HIPACC expert was surprised to see
that pixelsPerThread configuration option had only a small influence on
system performance.

3The models used in the discussions can be found in the appendix on page 138.

64

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

All experts stated that the decision about which model to chose or which
property to optimize would depend on the given use case. For example, a model
with the lowest prediction error is needed for performance prediction, whereas
the model size and the computation time would be less important. For con-
firming a theoretical assumption about the influence of a certain configuration
option, a simple model without interaction terms that is fast to learn could
suffice. Regarding the usefulness of performance-influence models for this use
case, one expert stated: “We assumed many things all the time and now we
can actually see them.” All experts were ready to accept the model with the
highest prediction error (among the provided models), which was smaller and
therefore easier to comprehend. For gaining deeper insights, such as finding and
debugging unexpected interactions, all experts said that they required a model
with interaction terms, but still of a tractable size. One expert stated: “The
smaller model is readily comprehensible compared to the larger model. It is more
graspable.” For debugging purposes, computation time becomes important too,
and the experts were ready to accept a model with a high prediction error if
they could save a considerable amount of computation time during debugging.

The use cases identified in our discussions map very well to the model
properties that we study here. Therefore, we are confident that exploring the
tradeoff space spanned by these properties has an immediate practical use.

4.1.2 Tradeoffs in Machine Learning

The tradeoffs between prediction error, model size, and computation time
are well known in the machine-learning community: A key concept is the
bias-variance tradeoff [Dom00; SW11], which refers to the tradeoff between
the size and prediction error of a model. Bias refers to the prediction error
one encounters for a model with a fixed size and all data that is available.
That is, for a small and simple model, the bias error may be high, because
the model potentially does not explain the observed data to a full extent.
Variance refers to the sensitivity of the model to the noise in the training
data (such as measurement errors). More complex and larger models tend to
fit the noise in the learning set, so that one may encounter large prediction
errors when the model is applied to new data. So, learning a larger model
may reduce its prediction error, but, at the same time, may complicate its
understandability, simply because of its large size. Therefore, one of the main
goals in machine learning is to find the sweet spot between underfitting (i.e.,
too simplistic models) and overfitting (i.e., too complicated models). However,
often the search for this sweet spot is primarily driven by the minimization of
the prediction error and does not take the comprehensibility of the resulting
model into account.

65

4.1. MOTIVATION AND RESEARCH QUESTIONS

Researchers in software engineering often apply machine learning without
specifically considering the possible effects of the tradeoffs, or they just optimize
for one criterion (e.g., prediction error) until other criteria leave the acceptable
value ranges. For example, genetic algorithms have been used for multi-objective
optimization to find configurations of configurable systems that satisfy multiple
quality requirements [Say+13]. However, they trade computation time for
prediction error, because most of these configurations are not valid. Other
approaches aim solely at reducing the prediction error using classification
and regression trees [Guo+13; Sar+15], but produce models that are hard to
comprehend for humans. The goal of the mentioned approaches was never to
balance or even explore the tradeoffs, but to optimize only for one property
and ignore the others. As pointed out by our experts (Section 4.1.1), such
approaches are only of limited practicality, because a different use case may
require a different approach with yet another tool. We aim at filling this gap.

Notably, recent research in the performance-engineering community rec-
ognized the importance of the tradeoffs. In their recent work, Brosig et al.
[Bro+15] explore alternative stochastic performance-modeling approaches re-
garding several low-level properties, such as the capability of handling loops
in the analyzed software system. While we concentrate on regression models
and more general properties, their work clearly connects to ours in showing
that different stochastic models are suitable for different use cases and that it
is important to have this information before performance analysis.

4.1.3 Research Questions

Our overarching goal is to explore the tradeoffs during the learning process of
performance-influence models and gain insights into the performance behavior
of configurable systems. For the purpose of our study, we use a state-of-the-art
learning technique that is based on multivariate linear regression learning and
forward feature selection [CS14]. We specifically aim at answering two research
questions:

• RQ1: How significant are the tradeoffs among prediction error, model size,
and computation time of the performance-influence models of real-world
configurable systems?

• RQ2: Can these tradeoffs be balanced, such that the resulting models
can be applied in different use cases, as identified by our discussion with
experts?

66

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

4.2 Empirical Study

To answer our two research questions, we conducted an empirical study in
which we created and compared different performance-influence models for 10
real-world configurable software systems. Next, we describe how we learned
performance-influence models for our subject systems and how we analyzed
their properties.

4.2.1 Learning Performance-Influence Models

For our experiments, we use a learning algorithm based on multivariate linear
regression and forward feature selection (Section 2.4.3). It has proved to
be accurate and effective for learning performance-influence models of real-
world configurable systems [Sie+15]. During the learning process, we learn
increasingly accurate models and keep track of the prediction error, model size,
and computation time of each intermediate model, so that we can study how
the properties evolve and how significant the tradeoffs among them are. Note
that it is not our primary goal and contribution to invent a new technique for
learning performance-influence models, but to use an established technique to
study and leverage the tradeoffs among the three properties.

4.2.2 Measurement Procedure

To answer our research questions, we need to quantify the prediction error, size,
and computation time of performance-influence models and tradeoffs among
them. For this purpose, we define a number of measures.

4.2.2.1 Measuring Model Properties

The prediction error of a performance-influence model Π is the mean relative
prediction error over the set of system configurations C:

error(Π, C) =
1

|C|
∑
c∈C

∣∣∣∣Π(c)−measure(c)

measure(c)

∣∣∣∣ ,
where c ∈ C is a system configuration, measure(c) is the performance of the con-
figuration actually measured, and Π(c) is the performance of the configuration
predicted by the model Π. For example, for Model B of Figure 4.1a and the
set of configurations number 1 through 7 in Figure 4.1b, the prediction error
is 0.03 (or 3%), mainly because the model wrongly predicts the performance
value for the configuration number 4.

67

4.2. EMPIRICAL STUDY

We define the model size as the number of configuration options in every
term of the model. The model size of a performance-influence model Π and its
set terms(Π) of terms is defined as follows:

modelSize(Π) =
∑

t∈terms(Π)

size(t),

where t ∈ terms(Π) is a term of the model Π and size(t) is the number of
configuration options in t. For example, Model B in Figure 4.1a has a size of 2,
because it contains two terms and each term consists of only one configuration
option.

The computation time of a model is equal to the CPU time used by the
algorithm to learn the model.

4.2.2.2 Measuring Tradeoffs

To characterize the tradeoffs between the three properties quantitatively, we use
the Area Under the Curve (AUC) measure. To calculate the AUC for a tradeoff
between two properties, we plot one property against another and calculate
the integral of the resulting curve. The integral value is the corresponding
AUC. We normalize the property values in the range [0, 1] before calculation,
therefore, the corresponding AUC is a value in the same range.

Figure 4.2 illustrates three example tradeoff curves and the corresponding
AUC values for different kinds of tradeoffs between computation time and
prediction error properties.4 If the two properties are in inverse relationship
(Figure 4.2a), then a relatively large (small) positive change in one property
always results in a relatively large (small) negative change in the other property.

4The tradeoffs for other property pairs are calculated in the same way.

(a) Balanced tradeoff

0.0 0.5 1.0
computation time

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ic
tio

n
er

ro
r

AUC = 0.5

(b) Marginal tradeoff

0.0 0.5 1.0
computation time

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ic
tio

n
er

ro
r

AUC = 0.05

(c) Significant tradeoff

0.0 0.5 1.0
computation time

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ic
tio

n
er

ro
r

AUC = 0.95

Figure 4.2: Example tradeoff curves and corresponding AUC values.

68

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

That is, the tradeoff between these two properties is balanced. The AUC value
for a balanced tradeoff like this is close to 0.5.

AUC values that are smaller that 0.5 indicate a shift to a marginal tradeoff
(Figure 4.2b), which is favorable in our setting: A small initial increase in
computation time already leads to a large initial decrease of prediction error.
Conversely, a large initial decrease in prediction error requires only a small
increase in computation time. A marginal tradeoff would allow us to learn
smaller and more accurate models faster.

AUC values that are larger than 0.5 indicate a shift to a significant tradeoff
(Figure 4.2c), which is unfavorable in our setting: A large initial increase in
computation time would lead to a small initial decrease in prediction error. A
significant tradeoff means that we would have to invest much computation time
or accept large model sizes if we want to learn a model with low prediction
error.

By calculating the AUC values for each subject system and each pair
of model properties, we can determine which kinds of tradeoffs—balanced,
marginal, or significant—are present in the subject systems.

4.2.3 Subject Systems and Experimental Setup

Table 4.1: Subject systems; |O|: number of configuration options, |C|: number
of configurations. The number of configurations is less than |O|2 because of
dependencies among configuration options.

System Domain |O| |C| Performance metric

AJStats Static analysis 20 30 256 Analysis time
Apache Web server 9 192 Response rate
BDB-C DBMS 18 2 560 I/O time
BDB-J DBMS 26 180 I/O time
Clasp ASP solver 19 700 Solving time
DUNE Stencil code 31 2 304 Solving time
HSMGP Stencil code 32 3 456 Solving time
LLVM Compiler 11 1 024 Optimization time
Lrzip Archiving tool 19 432 Compression time
x264 Video codec 16 1 152 Encoding time

As subject systems, we selected 10 real-world configurable software systems
of different sizes, complexities, and from different application domains, as sum-
marized in Table 4.1. The systems differ in the number of configuration options

69

4.2. EMPIRICAL STUDY

as well as in the number of resulting configurations. They are implemented in
different programming languages and support configuration at compile time,
load time, or both. We used the systems’ documentation to determine which
configuration options may have influence on performance.

For each subject system, we measured performance of all valid5 configura-
tions (whole-population analysis) using standard benchmarks for the respective
domain. We repeated the measurements multiple times to control for the
measurement noise (see Section 4.3, for more detail). Based on the benchmark
data, we learned performance-influence models of the subject systems using the
machine-learning algorithm described in Section 4.2.1. In practice, one would
not measure all configurations but only a sample, due to time constraints when
gathering a learning set for the machine-learning process, which is demonstrated
by Siegmund et al. [Sie+15]. However, for the purpose of our study, we were
specifically interested in exploring the full range of tradeoffs, meaning that
we were also interested in the maximum possible accuracy of the resulting
performance-influence models (to see the maximum possible extent of the corre-
sponding tradeoffs). So, we used the benchmark results for all configurations as
the learning set. The usage of the largest possible learning set also neutralizes
one of the possible reasons for overfitting: non-representative sampling of the
learning set.

The learning procedure was conducted on a dedicated server with an Intel
Xeon E5-2609, 2.5 GHz and 128 GB RAM, running Ubuntu 14.04. To obtain
accurate models, but not to run the computation indefinitely, we terminated
the learning procedure as soon as the score of the current candidate fell below
0.05 (see Section 4.2.1). From our experience, this ensures that we learn all
actually existing performance influences, but largely avoid measurement errors
manifesting in the model (i.e., overfitting). If we had continued learning, we
would have essentially learned the measurement error.

After each iteration of the learning algorithm, we saved the current model
(see Section 4.2.1) to study the evolution of the model properties. For each
model, we calculated the prediction error, its size, and the computation time.
To rule out the time measurement bias caused by warm-up effects and compu-
tation-setup overhead, we subtracted the time of the first learning round from
the elapsed-time measurement. Considering that the initial learning rounds
are the fastest, this subtraction does not introduce any relevant deviation from
the actual computation time.

5Not all combinations of configuration options are valid system configurations, because of
dependencies among the configuration options.

70

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

4.2.4 Results

For most subject systems, we obtained highly accurate models at the end of
the learning procedure. The largest prediction error is 6.25% for BDB-C.
In Figure 4.3, we show how the prediction errors evolve during the learning
process (the solid blue line). The AUC lies in the range between 0.07 and 0.29,
indicating a marginal tradeoff between computation time and prediction error.
That is, we may be able to to learn more accurate models faster.

The size of the learned models varies substantially from system to system:
Among the models with the highest prediction accuracy, the smallest model has
the size of 12 (BDB-J) and the largest model has the size of 544 (DUNE). In
Figure 4.4, we show how the model size evolves for each system during learning.

Due to the dependency between computation time and model size, the
tradeoff between model size and prediction error is similar to the tradeoff
between computation time and prediction error, as we show in Figure 4.5,
with similar AUC values between 0.13 and 0.29. As one would expect, more
accurate models have larger sizes and, conversely, smaller models have a higher
prediction error.

4.2.5 Discussion

Research Questions

Our results confirm that there is, as expected, a tradeoff between computation
time and prediction error: investing more time reduces the prediction error.
However, our results also show that this tradeoff is rather marginal, with AUC
smaller than 0.3, for all systems. This insight is surprising and is good news
for the domain of configurable systems, because it means that it is possible to
efficiently learn relatively accurate models. In Figure 4.3, we can observe how
the prediction error drops quickly to a certain level early on in the learning
process, whereas later the accuracy improvement saturates.

Between model size and computation time, we observe a strong positive
dependency instead of a tradeoff. This result was to be expected due to the
incremental nature of our algorithm, which monotonically increases model size
by learning an additional term in each round. In fact, most machine learning
mechanisms operate iteratively to incrementally approximate an optimal solu-
tion, simply out of necessity to handle the complexity of the huge search space
(for |o| options, there are |o| possible main influences, |o| · (|o| − 1)/2 possible
pairwise interactions, and an exponential number of higher-order interactions
among more than two options). With this huge search space, it is generally
not feasible to use an exact, analytical approach.

71

4.2. EMPIRICAL STUDY

20
0

40
0

60
0

computation time (minutes)

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.25

AJStats

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

computation time (minutes)

2

3

4

5

6

7

8

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.16

Apache

0.0 2.5 5.0 7.5 10
.0

12
.5

computation time (minutes)

20

40

60

80

100

120

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.12

BDB-C

2 4 6
computation time (minutes)

0

5

10

15

20

25

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.29

BDB-J

0 5 10 15
computation time (minutes)

0

5

10

15

20

25

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.11

Clasp

0
10

00
20

00
30

00
40

00

computation time (minutes)

2

4

6

8

10

12

14

16

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.07

DUNE

0
20

00
40

00
60

00

computation time (minutes)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.09

HSMGP

0.0 0.5 1.0 1.5 2.0 2.5
computation time (minutes)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.09

LLVM

0.0 0.2 0.4 0.6 0.8 1.0
computation time (minutes)

0

20

40

60

80

100

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.14

Lrzip

0 1 2 3
computation time (minutes)

2

4

6

8

10

12

14

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.18

x264

Figure 4.3: Time–error tradeoff.

72

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

20
0

40
0

60
0

computation time (minutes)

5

10

15

20

25

m
od

el
 si

ze

AJStats

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

computation time (minutes)

10

20

30

40

50

60

m
od

el
 si

ze

Apache

0.0 2.5 5.0 7.5 10
.0

12
.5

computation time (minutes)

5

10

15

20

25

30

m
od

el
 si

ze

BDB-C

2 4 6
computation time (minutes)

4
5
6
7
8
9

10
11
12

m
od

el
 si

ze

BDB-J

0 5 10 15
computation time (minutes)

10

20

30

40

m
od

el
 si

ze

Clasp

0
10

00
20

00
30

00
40

00

computation time (minutes)

0

100

200

300

400

500

m
od

el
 si

ze

DUNE

0
20

00
40

00
60

00

computation time (minutes)

0

50

100

150

200

250

300

350

m
od

el
 si

ze

HSMGP

0.0 0.5 1.0 1.5 2.0 2.5
computation time (minutes)

5
10
15
20
25
30
35
40
45

m
od

el
 si

ze

LLVM

0.0 0.2 0.4 0.6 0.8 1.0
computation time (minutes)

5

10

15

20

25

30

35

m
od

el
 si

ze

Lrzip

0 1 2 3
computation time (minutes)

5

10

15

20

25

m
od

el
 si

ze

x264

Figure 4.4: Time–size dependency.

73

4.2. EMPIRICAL STUDY

5 10 15 20 25
model size

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.29

AJStats

20 40 60
model size

2

3

4

5

6

7

8

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.21

Apache

10 20 30
model size

20

40

60

80

100

120

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.20

BDB-C

4 6 8 10 12
model size

0

5

10

15

20

25

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.20

BDB-J

10 20 30 40
model size

0

5

10

15

20

25

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.13

Clasp

0
10

0
20

0
30

0
40

0
50

0
model size

2

4

6

8

10

12

14

16

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.14

DUNE

0
10

0
20

0
30

0
model size

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.17

HSMGP

10 20 30 40
model size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.13

LLVM

10 20 30
model size

0

20

40

60

80

100

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.18

Lrzip

5 10 15 20 25
model size

2

4

6

8

10

12

14

pr
ed

ict
io

n
er

ro
r (

%
) AUC = 0.20

x264

Figure 4.5: Size–error tradeoff.p

74

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

Due to the strong positive dependency between computation time and
model size, we see also a marginal tradeoff between model size and prediction
error, much like we saw it between computation time and prediction error.
While, again, we can learn more accurate models that are larger, the increased
accuracy benefits are small. The fairly small models, early in the learning
process, can characterize the performance of configurable software systems
already fairly accurately.

So, with respect to the first research question (RQ1), we conclude that,
for learning performance-influence models for configurable software systems,
the tradeoffs between computation time and prediction error and between
model size and prediction error are marginal; furthermore, model size and
computation time have a strong positive dependency. What this means for
practice is that learning simple models can be suitable to serve multiple or
even all use cases, as identified in our discussions with experts (RQ2). This is
an important insight for the research community: Although, the tradeoffs are
known in the machine-learning literature, it was previously unclear to what
extend they affect learning performance-influence models for software systems,
that is, whether a large configuration space can only be accurately described
with complex models learned with significant resource investment. Fortunately,
we were able to show that this worst-case scenario is not the rule for real-world
software systems.

Understanding the Tradeoffs: Influence of Interactions

A followup question that arises from our results is why the tradeoffs are so
marginal. That is, why are accurate models also simple and can be learned
in feasible time in this domain? To answer this question, we additionally
analyzed our experiment’s data for the role of interactions. A hypothesis is
that the tradeoffs are marginal because performance in software systems can
be described with few main effects, whereas many options and most potential
interactions do not affect performance much.

Specifically, we analyzed what kinds of terms are learned in each round and
how do they contribute to the accuracy of the model. We distinguish between
influences of individual options (term size 1), influences of interactions between
two options (term size 2), influences of interactions among three options (term
size 3), and so forth. We plot our observations in Figure 4.6. Each plot shows
how with additional time (left to right) additional terms are learned and how
the prediction error is reduced. We specifically distinguish terms of different
sizes using different background colors. For example, for AJstats, the model
with the prediction error of 1.7% (bottom x-axis) contains four model terms
representing the influence of only individual options (i.e., four model terms of

75

4.2. EMPIRICAL STUDY

terms size 1 each). Then, during the learning process, a fifth term is added
describing an interaction among four options, decreasing the prediction error
to 1.6%. Note that prediction error and computation time share an axis, but
the scales are independent: prediction error reduces linearly, but computation
time grows superlinearly. So, the final marginal reductions in prediction errors
typically require significant investment in computation time.

Figure 4.6 reveals that few mostly small model terms are sufficient to build
relatively accurate models. Considering interactions among options is important
to achieve accuracy, but high accuracy can be reached without considering a
huge number of interactions among many configuration options. For the most
of the systems, 10 model terms with size 3 or lower are sufficient to build a
model with a prediction error of under 5%. Adding more interaction terms of
larger size later in the learning process results in marginal improvements only.
This explains why we did not observe strong tradeoffs among prediction error
and computation time earlier. In fact, the substantial increase of the share of
larger model terms and the simultaneous growth of the total number of model
terms needed for very high accuracy may be an indication for the overfitting
effect. These additional model terms may describe measurement noise rather
than the actual performance behavior of the system.

Note that the measured computation times should be considered in relation
to the corresponding prediction errors and not as absolute values. Consider
the Apache case study, which is one of the smallest in terms of configuration
options (9) and in terms of configurations (192). To calculate a performance-
influence model with 3% prediction error for this system takes about 3 seconds.
But calculating a slightly more inaccurate model with 7% prediction error is 6
times faster. So the developer can save relatively much time by stopping the
learning process at earlier stages. We have a similar picture for one of the largest
systems, HSMGP, with 32 configuration options and 3456 configurations. For
this system, we can compute a performance-influence model with 7% prediction
error 13 times faster than a model with 3% prediction error (which needs 3 days
to compute). The same pattern applies to all our subject systems irrespective
of their size: The time needed to achieve an acceptable prediction accuracy
of the model is always multiple times less than the time needed for further
marginal increases of the prediction accuracy. These results suggest that the
same may apply for very large configuration spaces.

We conclude that the marginality of the tradeoffs can be explained by the
fact that interactions among three or more configuration options have only a low
influence on the performance of configurable software systems. Note that our
result regarding interactions primarily describes a characteristic of performance
in configurable software systems, not of machine learning in general.

76

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

1.41.451.51.551.61.651.71.751.81.85
prediction error (%)

0

2

4

6

8

10

12

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2
 3

 4

te
rm

 s
iz

e

AJStats

71554042723914612094704644
computation time (minutes)

1.62.43.24.04.85.66.47.28.0
prediction error (%)

0
4
8

12
16
20
24
28
32

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 5

te
rm

 s
iz

e

Apache

0.20.0840.0420.0290.0210.0150.0100.010.004
computation time (minutes)

0.015.030.045.060.075.090.0105.0120.0135.0
prediction error (%)

0
2
4
6
8

10
12
14
16

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 5

te
rm

 s
iz

e

BDBC

13.45.52.71.71.20.930.780.630.480.47
computation time (minutes)

0.03.06.09.012.015.018.021.024.027.030.0
prediction error (%)

0

1

2

3

4

5

6

7

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3

te
rm

 s
iz

e

BDBJ

7.54.44.13.83.53.12.82.42.01.61.4
computation time (minutes)

0.03.06.09.012.015.018.021.024.0
prediction error (%)

0
3
6
9

12
15
18
21
24

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 4

te
rm

 s
iz

e

Clasp

18.35.52.71.91.40.90.70.50.4
computation time (minutes)

2.04.06.08.010.012.014.016.0
prediction error (%)

0
20
40
60
80

100
120
140
160

nu
m

be
r

of
 m

od
el

 te
rm

s

 1
 2

 3

 4

 5

te
rm

 s
iz

e

DUNE

36314421103416831
computation time (minutes)

2.04.06.08.010.012.014.016.018.020.0
prediction error (%)

0
15
30
45
60
75
90

105
120
135

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3

te
rm

 s
iz

e

HSMGP

57881904487180672711743
computation time (minutes)

0.81.21.62.02.42.83.23.64.04.4
prediction error (%)

0

3

6

9

12

15

18

21

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 4

te
rm

 s
iz

e
LLVM

2.590.750.390.260.170.090.070.060.050.04
computation time (minutes)

0.015.030.045.060.075.090.0105.0
prediction error (%)

0

3

6

9

12

15

18

21

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

te
rm

 s
iz

e

Lrzip

1.050.450.200.0830.0530.0440.0340.026
computation time (minutes)

0.01.53.04.56.07.59.010.512.013.515.0
prediction error (%)

0

2

4

6

8

10

12

14

nu
m

be
r

of
 m

od
el

 te
rm

s

 1

 2

 3
 4

te
rm

 s
iz

e

x264

3.21.81.21.00.690.410.250.200.170.130.11
computation time (minutes)

Figure 4.6: Shares of interactions of different size in performance-influence
models and their influence on the prediction error.

77

4.2. EMPIRICAL STUDY

Finally, the results of our analysis have implications for sampling and learn-
ing algorithms. For example, if an algorithm considers interactions among
configuration options, it can concentrate on interactions among three configura-
tion options and fewer. Excluding interaction of larger size reduces the search
space and may improve the performance of the algorithm without sacrificing
accuracy. The reduction of the search space may be substantial if we consider
that the number of potential interactions grows exponentially with the number
of configuration options. Already for 10 optional configuration options without
additional constraints we get 1018 (210 − 6) potential interactions. Considering
the emergent nature of interactions, we have to admit that any of these poten-
tial interactions may actually exist. But, as our results show, for real-world
configurable systems, the number of actually relevant (i.e., those that have
influence on performance) interactions is much smaller than the number of
potential interactions. For example, for the smallest subject system Apache
with 9 configuration options (which, according to Apache’s documentation,
all may have influence on performance), the number of potential interactions
is 124 (considering the dependencies among the configuration options). By
considering only 3 interactions of 124, we already can learn a relatively accurate
performance-influence model with only 4% prediction error. That is, only 2%
of all potential interactions do actually exist and have relevant influence on
performance of the Apache system.

Analysis of the Influence of Configuration Options and their
Interactions

To identify commonalities among the influential configuration options and
their interactions across the subject systems, we conducted an exploratory
analysis by reading the systems’ documentation and the source code to build
hypotheses, and talking to the systems’ developers in unclear cases. We
proceeded iteratively until we were able to explain the influences. Finally, we
formulated the commonalities as patterns that explain the influences, such as,
dominant configuration option, data pipeline, and workload tuning. A complete
overview of the analyzed configuration options and their interactions is given
in the appendix on page 134.

Dominant Configuration Option. During our analysis, we found that the
most influential configuration option for Apache is KeepAlive, which has an
influence of 876.61, on average. This value denotes that enabling KeepAlive
increases the response rate of the Web server by, on average, 876.61 responses
per second (cf. performance metric in Table 4.1). That is, enabling this config-
uration option increases the performance of the Web server. The performance

78

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

increases, because this configuration option enables the persistence connection
functionality of the HTTP 1.1 protocol, which enables sending multiple re-
quests over the same TCP connection. This functionality saves the overhead of
establishing a separate connection for each request. Note that the influence
of KeepAlive is larger than the sum of absolute influences of the next three
most influential options. So, KeepAlive is a dominant configuration option,
which largely determines the performance of the system and, consequently,
the prediction error of the corresponding performance-influence model. We
found that such dominant configuration options are also present in other sub-
ject systems: S1MiB in BDB-J, heuristicUnit in Clasp, Smoother_GSACBE
in HSMGP, etc. We also observed that the dominant configuration options
interact with other configuration options in highly influential interactions in all
subject systems (except for x264). Some dominant configuration options can
be identified based on domain knowledge and documentation. For example,
the Apache documentation states that enabling KeepAlive can result in almost
50% speedup.6 As our data suggests, knowing the dominant configuration
options from the documentation, we can also assume that they interact with
other configuration options.

Data Pipeline. Regarding the most influential interactions, we found that, for
Clasp, DUNE, HSMGP, LLVM, and x264, the interactions arise due to the
architecture of the systems that prescribes which system modules/algorithms
(enabled through the configuration options) supply input data to other system
modules/algorithms. That is, the architecture constitutes a data pipeline, and
the parts of this pipeline are determined by configuration options. For example,
in the Clasp solver, the options eq and satPreproYes enable preprocessing steps
that can reduce the initial problem, such that the solving algorithm can find a
solution for this problem faster. Therefore, the most influential interactions
for this system are among the preprocessing options and solver heuristics, for
example, eq · heuristicUnit.

We observe a similar picture for DUNE and HSMGP. These systems are
built such that the input data are preprocessed before they reach a solver, and
the output of the solver is post-processed. The corresponding configuration
options (pre*7 and post* for DUNE; numPre* and numPost* for HSMGP) define
the number of these pre- and post-processing steps (e.g., if pre1 is enabled, one
preprocessing step is made). Each pre- and post-processing step introduces
a computational overhead, which increases the solution time. Therefore, we
observe that the most influential interactions of these systems include pre-,

6https://httpd.apache.org/docs/2.4/mod/core.html#keepalive
7pre* denotes all configuration options starting with “pre”.

79

https://httpd.apache.org/docs/2.4/mod/core.html#keepalive

4.2. EMPIRICAL STUDY

post-processing and solver-related (or smoother-related in the case of HSMGP)
configuration options.

Data pipelines also explain why larger interactions include partly the same
configurations options as smaller interactions. That is, why for a set of inter-
acting options there exist interactions for its respective subsets. The reason
is that smaller interactions describe smaller parts of the pipelines and larger
interactions include these smaller parts. For example, this is the case in DUNE
with cells*, pre*, and post* options, and configuration options for solvers, which
build up data pipelines (and, consequently, interactions) of size up to 5.

We assume that, in the case of a data-pipeline architecture, developers
can deduce from the system’s architecture which configuration options are
likely to interact. Therefore, identifying these interactions using performance-
influence models can be seen as a sanity check or regression test if parts of the
architecture are changed. This use case corresponds to program comprehension
and debugging as described in Section 4.1.1.

Workload Tuning. Furthermore, we found configuration options that adjust
the workload by tuning the main data processing algorithm of the system.
These tuning configuration options often interact with configuration options
denoting processing algorithms. Configuration options level* in Lrzip, for
example, determine the compression level for the data compression algorithms.
With a growing compression level the compression time grows too. Therefore,
interactions among configuration options that specify the compression level
and the compression algorithm arise.

Domain-Specific Interactions. Other interactions that we analyzed had a
more domain-specific nature. For example, the interaction between inline and
licm configuration options, which enable code optimizations in the LLVM
compiler. The inline optimization inlines code of methods at the call sites
and licm moves code out of loops. The peculiarity of LLVM is that these
optimizations can be executed in arbitrary order (determined by the order of
the corresponding command line parameters). If inlining is performed before
loop optimization (which was the case in our experiment) there may be some
code that gets inlined into loops. Consequently, the loop optimization has
more code to process and, consequently, requires more computation time. As a
result, we observe a performance interaction between inline and licm.

Another example of a domain-specific interaction is an interaction in x264
between no_fast_pskip, which disables Fast-P-Skip optimization, and ref_9,
which sets the number of reference frames. Both configuration options tune
the main encoding algorithm, but Fast-P-Skip optimization is more effective

80

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

with more reference frames. This dependency between the two configuration
options induces an interaction between them.

The two examples of the interactions show that their domain-specific nature
does not allow us to describe them in general terms (like data pipelines) and
requires deep understanding of the system’s workings to explain their influences.

Summary. Based on domain knowledge, systems’ documentation, and in-
formation provided to us by systems’ developers, we were able to explain the
most influential configuration options and interactions of the subject system.
Furthermore, we identified several interaction patterns across multiple subject
systems providing further insights in the domain of configurable systems. The
patterns explain how decisions about a system’s architecture may lead to the
emergence of performance feature interactions. They can be used as perfor-
mance anti-patterns [Cor+10] and help to prevent or at least to anticipate the
possible presence of performance feature interactions already in the early stages
of the configurable systems development when architectural decisions are made.

4.3 Threats to Validity

Internal Validity. To learn a performance-influence model, we rely on bench-
mark measurements that are susceptible to measurement errors. There is a
threat that these measurement errors may bias the results of the learning
procedure, such that the resulting model may not properly characterize the
actual performance of the system. To investigate the potential influence of
measurement errors on the prediction error of a performance-influence model,
we conducted a separate experiment. We added random noise (representing
measurement errors) to the original measurements for our subject systems8
and repeated the learning process. Then, we compared the prediction error
of the noisy models to the prediction error of the original models to see the
potential influence of measurement errors.

A noise value was computed for each original measurement value by ran-
domly sampling a value from a normal distribution. The parameter σ of the
normal distribution specified the standard deviation of the noise values: the
larger σ, the larger the noise value can be (i.e., the larger the measurement
error). We set the initial value of σ to 0.75 (the average standard deviation
of the original measurement values of our subject systems). For each subject
system, we doubled σ and repeated the learning process five times to simulate
the influence of increasing measurement errors.

8We excluded HSMGP, because conducting this additional experiment with the system
would have taken several months of computation time.

81

4.4. RELATED WORK

Analyzing the noisy models, we found that most of them had approximately
the same prediction error as the original models until σ (i.e., potential magnitude
of the simulated measurement errors) reached a value of 6 (i.e., the potential
errors were 8 times larger, than the errors of our original measurement). From
this result, we can conclude that the learning algorithm that we used is robust
against realistic measurement errors.

Our simple model size measure (Section 4.2.2.1) could be further refined to
reflect the complexity of the model more accurately, for example, by considering
the number of the interaction terms. We decided against this refinement,
because we do not have enough empirical evidence to quantify the influence
of the interaction terms on the complexity of a model. Still, our interviews
(Section 4.1.1) indicate that our simple model size measure quantifies the
complexity of the models rather well.

External Validity. Our results are not automatically transferable to larger
models or other subject systems. However, to increase the external validity of
our study, we collected 10 real-world systems of different sizes, complexities,
and from different application domains. Furthermore, the subject systems
differ in the number of configuration options and in the number of resulting
configurations. They are implemented in different programming languages
and support configuration at compile or load time, or both. As we observed
differing results regarding the number of interactions, but found a similar
picture regarding the model properties, we gain some confidence that our
results are general to a certain extent, because our selection of subject systems
covers heterogeneous systems of important domains.

The use of a particular machine-learning technique, namely multivariate
linear regression with forward feature selection, may limit the generalizability
of our results.

4.4 Related Work

Our goal was not to propose a certain machine-learning technique for learn-
ing performance-influence models of configurable systems, but to explore the
design space of performance-influence models with respect to prediction er-
ror, computation time, and model size. Next, we discuss learning techniques,
feature-interaction-detection approaches, and model-size definitions related to
our study.

Learning. There are a number of machine-learning techniques that can be used
to learn performance-influence models. Classification and regression trees repre-

82

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

sent a successful method to learn prediction models from a learning set [SC09].
Guo et al. [Guo+13] applied this technique to configurable software systems.
They required only a limited computation time and achieved a high prediction
accuracy. However, decision trees and the related forests [LW02] have two
drawbacks: First, they model variants and not configuration options and their
interactions, which hinders comprehension in that the influence of individual
configuration options and their interactions on performance is not explicitly
denoted; Second, decision trees are unstable in that even small changes in the
training set can lead to vastly different models (in contrast, we did not observe
the instability problem with linear regression in our experimental setting).
Other learning techniques using support vector machines [SC08], Bayesian net-
works [Ben07], evolutionary algorithms [Sim13], or Fourier transforms [Zha+15]
trade off even more comprehensibility of the underlying prediction models in
return for prediction accuracy or focus more on finding the fastest configuration
or reducing the number of samples instead of quantifying the influence of
individual configuration options and their interactions on performance. Hence,
there is only a limited choice of techniques that let us explore the tradeoffs
among prediction accuracy, computation time, and model size of performance-
influence models. Brosig et al. [Bro+15] study stochastic performance models
acquired with different model generation approaches, but the main focus lies on
the accuracy and efficiency of the generation approaches and the corresponding
tradeoffs. Furthermore, the applicability of the models with regard to their
complexity is not considered.

Performance Engineering. The field of performance engineering aims at mod-
eling non-functional properties of a system to evaluate if these properties satisfy
a given set of requirements [Bal+04; BVK13; Poo00]. We do not focus on
a single system, but on a potentially exponential number (in the number of
configuration options) of system configurations, which lifts the problem to
a higher level of complexity. But what is more important, we are primarily
concerned with presenting the influence of the system’s configuration options
and their interactions on the system’s performance to a user in a concise and
understandable way without sacrificing the model’s prediction accuracy.

Feature Interactions. Interactions among configurations options are the key
to learning accurate performance-influence models. Nhlabatsi et al. [NLN08]
and others as well as Calder et al. [CM06] surveyed detection mechanisms for
feature interactions. Other approaches focus on properties such as semantic
correctness [Ape+11; Cla+10] and global system behavior [Pre04] in the presence
of feature interactions. Zhang et al. [Zha+16] propose a mathematical model

83

4.5. SUMMARY

of performance-relevant feature interactions and describe two algorithms to
automatically detect them and quantify their influence. A number of techniques
for finding performance interactions using sampling heuristics in combination
with linear programming have been proposed in previous work [Sie+12; Sie+13].
Here, we focus not on detecting interactions, but on the effect of interactions on
model size, computation time, and prediction error of the learned performance-
influence model. We are not aware of any other studies that explore the
properties of performance-influence models of configurable systems in this way.

Model Complexity. There is no single accepted definition and measure for
model complexity. One approach is to define model complexity through its
size. The larger the model the more difficult it is to comprehend and to use.
Several measures have been proposed to measure such model size: Schruben
et al. [SY93] proposed a measure based on McCabe’s software complexity
measure, Wallace [Wal87] defined a similar measure. Although the given
definition of complexity is similar to ours, the proposed measures cannot be
applied to our models, because they have been developed for graph-based model
representations. Another approach is to define the size of a model through its
susceptibility for overfitting, that is, the more complex a model, the higher
its ability to fit random noise in the data [MP04]. Although this definition
describes an important property of a model, it does not fit the research questions
that we addressed in this study.

4.5 Summary

Performance-influence models help developers and users to better understand
performance characteristics of complex configurable software systems. They
quantify the influence of individual configuration options and their interactions
on systems’ performance. An ideal performance-influence model should have low
prediction error, short computation time, and small model size. However, there
are usually tradeoffs between these properties that do not allow to optimize for
all of them at once.

In our discussions with four domain experts, we identified two important
practical use cases for performance-influence models: performance prediction
and program comprehension. Performance prediction would require a model
with the lowest possible prediction error; program comprehension would require
a model of small size and short computation time. Since it is unclear to what
extent the tradeoffs among prediction error, model size, and computation time
affect the applicability of performance-influence models in these two use cases,
we conducted an empirical study with the goal of systematically exploring the

84

CHAPTER 4. TRADEOFFS IN MODELING PERFORMANCE

properties of the configuration spaces of 10 real-world configurable software
systems. Our results show that there are indeed tradeoffs between prediction
error and model size and between prediction error and computation time.
However, we found that these tradeoffs are rather marginal, such that accurate
and also simple performance-influence models can be learned in feasible time,
which is surprising and good news.

To further understand why efficient learning is possible, we analyzed the
learned performance-influence models regarding the influences they capture. We
found that individual configuration options and interactions between, at most,
three options explain most of the performance variances. That is, identifying
and learning the influence of interactions between more than three options
will likely improve the prediction accuracy only by a tiny fraction, but will
still increase computation time and model size considerably. This finding have
an immediate practical consequence for the techniques that aim at detecting
feature interactions or that rely on sampling: using our findings they may focus
on feature combinations that include two or three features, because they may
highly likely give rise to the influential feature interactions.

To gain further insights into the nature of interactions among configuration
options, which is one of the goals of our dissertation, we investigated why
the systems’ configuration options and their interactions have that particular
influence on performance, which we observed in the experiments. We traced
the reasons for the observed influences back to the architecture of the systems
and interdependencies among system components. Therefrom, we extracted
general interaction patterns, such as dominant configuration option and data
pipeline. The patterns explain how decisions about a system’s architecture
may lead to the emergence of performance feature interactions. They can be
used as anti-patterns and help prevent or at least to anticipate the possible
presence of performance feature interactions already in the early stages of the
configurable systems development when architectural decisions are made.

In the next chapter, we rely on performance-influence models to study
relations among different types of feature interactions. Therefore, showing
practicability and general applicability of performance models is a prerequisite
for the techniques described in the next chapter to have the same properties.

85

CHAPTER 5

On the Relation of External and Internal
Feature Interactions

This chapter shares material with the following publication: S. Apel et al.
“Exploring Feature Interactions in the Wild: The New Feature-interaction
Challenge”. In: Proceedings of the International Workshop on Feature-Oriented
Software Development (FOSD). ACM, 2013, pp. 1–8 [Ape+13a]

In this chapter we address one of the ultimate questions of our dissertation:
Whether we can efficiently predict certain kinds of feature interactions (such
as interactions influencing performance of configurable systems) based on the
information about other kinds of feature interactions. To this end, we introduce
two classes of interactions according to their visibility: (1) external feature
interactions, which can be identified by observing the external behavior of a
system, such as performance; and (2) internal feature interactions, which can be
identified by analyzing or interpreting the source code of a system, for example,
using control-flow analysis. A key hypothesis is that there is a relation between
internal and external interactions, and that we can make use of this relation to
automatically identify external interactions by identifying internal interactions
in a fast and efficient way. For example, multiple function calls from one
feature to another (internal feature interactions) can result in a performance
overhead. This performance overhead arises only if both—the caller and the
callee features—are present in a configuration (external feature interaction).
This way, the internal interaction is related to its external counterpart. This
relation, if present, would give us hints about the existence of external feature
interactions based on the internal ones. In this chapter, we follow up on this

87

5.1. VISIBILITY OF FEATURE INTERACTIONS

idea and report on an exploratory case study in which we investigated the
control flow among features and its relation to performance feature interactions.
We conjecture that by supplying the performance-prediction procedure with
hints about which feature combinations are more likely or less likely to exhibit
external feature interactions, the procedure can be made more focused on
finding actual interactions.

Technically, we use a state-of-the-art machine-learning technique (Sec-
tion 2.4.3) to learn external (performance) feature interactions among features
of two subject systems: mbedTLS and SQLite.1. Furthermore, we manually
inspected the code of the systems and checked whether the learned perfor-
mance interactions actually exist and whether they are actually caused by the
interplay of the corresponding features, and not just misinterpreted artefacts of
measurement bias or environment noise. Using a variability-aware control-flow
analysis augmented by manual code inspection (Section 5.3.2), we also identify
control-flow interactions among the features of mbedTLS and SQLite. That
is, we identified the code locations where the features pass the control to one
another.

Comparing the set of internal (control-flow) interactions with the set of
external (performance) interactions revealed that those features that interact
internally also interact externally (Section 5.4.3), which is in line with our
expectation. Using the identified relation, we were able to substantially shrink
the search space of performance feature interactions (Section 5.5). Furthermore,
we made first steps towards developing an automated predictor for identifying
features that are likely to interact externally based on the set of internal
interactions, although, with mostly negative results (Section 5.3.5). To the best
of our knowledge, this is the first case study that analyzed both the external
and the internal feature interactions for the same system and investigated
possible connections between internal and external interactions.

5.1 Visibility of Feature Interactions

Different levels of visibility of feature interactions have been discussed in the
literature [Bru05; LA11; WE05; WEL07]. Feature interactions may appear at
the level of the externally-visible behavior, which we call henceforth external
feature interactions, for short, and at the level of the internal properties of a
system, which we call henceforth internal feature interactions, for short.

1https://tls.mbed.org/ https://www.sqlite.org/

88

https://tls.mbed.org/
https://www.sqlite.org/

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

5.1.1 External Feature Interactions

Feature interactions, as such, have been described first in the domain of
telecommunication systems [Bow+89]. There, feature interactions have been
described as inadvertent deviations from the expected externally-visible behavior
of a system. Basically, the behavior of a system composed of features is more
(or less) than the sum of the (well-known and well-defined) behaviors of the
individual features involved.

Functional Interactions. Two lines of research on external feature interactions
emerged in the recent years. One line of research is concerned mainly with
interactions that violate the functional specification (Section 2.2) of a com-
posed system, which includes all kinds of bugs, including segmentation faults,
race conditions, and deadlocks. We call these interactions functional feature
interactions. 2

Consider Hall’s e-mail system with features for message encryption and
forwarding as an example [Hal05]: While encryption and forwarding operate
individually as expected, their combination gives rise to an undesired feature
interaction. The interaction occurs if one host sends an encrypted message
to a second host that forwards the message automatically to a third host. If
the second host does not have the public key of the third host, it forwards
the message in plain text. The reason is that the forwarding feature has been
developed independently of the encryption feature, so it does not “know” whether
an e-mail is encrypted. This interaction is clearly undesired: it contradicts
what we expect from the encryption feature, and it violates the specification of
the encryption feature (if there is one), which states that messages that have
been encrypted initially must never be sent unencrypted over the network.

Finding feature interactions that violate the functional specification of a
composed system boils down to combining analysis techniques, such as testing,
static analysis, and model checking, with strategies to reduce the analysis effort
in the face of feature combinatorics (e.g., sampling, feature-based and variability-
aware analyses). In the e-mail example, one could create (a subset of) feature
combinations and analyze whether messages are sent unintentionally in plain
text over the network using the following temporal-logic specification [Ape+13b]:

AG
(
recv(msg m) ∧m.isEncrypted

)
⇒(

(send(msg m)⇒ m.isEncrypted) R send(msg m)
) (5.1)

This specification states essentially that all incoming messages (recv) that were
encrypted (isEncrypted) must be encrypted when leaving the system (send).

2The concept of interaction faults used in the interaction-testing community is very
similar [GC11; Joh+12; KWG04].

89

5.1. VISIBILITY OF FEATURE INTERACTIONS

Non-Functional Interactions. Another line of research is concerned with inter-
actions that influence non-functional properties of a composed system, including
performance, memory consumption, energy consumption, etc. We call these
interactions non-functional feature interactions. Non-functional feature interac-
tions have been discussed in the literature with regard to explicit and implicit
specification [RGP12; Sie+12; WE05]. If we have an explicit specification of
the desired non-functional properties of a system at hand (e.g., the maximum
latency), we can typically decide whether a given feature combination satisfies
the specification (e.g., whether it is fast enough).

If we do not have a specification at hand, it is still useful to reason about
non-functional feature interactions. An assumption that guides work on the
prediction of non-functional properties [Sie+15; Sie+12; Sie+13] is that each
feature has an influence on the non-functional properties of a system and that
this influence can be quantified. Features are considered not to interact, if their
contributions to a given non-functional property can be simply aggregated (e.g.,
by adding their execution times or taking the maximum peak performance).
This statement is actually an implicit specification that serves to detect feature
interactions, and to make predictions more accurate [Sie+12]. In this sense,
feature are considered to interact, if a non-functional property of the composed
system diverges from the aggregation of the individual contributions of the
features involved, for example, in that the performance goes substantially down.

For example, many features in a database system can be freely combined
to tailor the system to the specific needs of a customer or application scenario,
including encryption, compression, and various kinds of index structures and
locking strategies [Ros+09]. However, there are subtle feature interactions that
lead to performance abnormalities, for example, when a coarse-grained locking
strategy hinders query evaluation and optimization [Moh92].

Detecting non-functional feature interactions is, at least, as challenging
as detecting functional feature interactions. Typically, various techniques for
the measurement, prediction, and modeling of non-functional properties are
combined with strategies to reduce the analysis effort in the face of feature
combinatorics [Sie+15; Sie+12]. For example, if we measure the performance of
a database system with and without encryption and with and without com-
pression, we will notice that these two feature interact: encrypting compressed
data is computationally less expense than encrypting uncompressed data (as
we discussed in Chapter 1, p. 4).

5.1.2 Internal Feature Interactions

Beside the behavior-centric view, researchers have proposed to take an
implementation-centric view, which aims at the internals of a system, to under-

90

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

stand the feature-interaction problem [BHK11; Käs+09; LBL06]. Specifications
are given usually implicitly, as we will discuss.

Structural Interactions. It is a matter of fact that a feature is typically not an
island; it communicates and cooperates with other features and the environment.
In the end, the communication and cooperation among features needs to be
implemented somewhere. To let features interact, we need corresponding
coordination code (denoted using the # operator with features that require
coordination [BHK11]). For example, if we attempt to coordinate the call-
forwarding and call-waiting features of the telephony example (Chapter 1, p. 4),
we have to add additional code for this task (e.g., to deactivate one of the two
features in favor of the other). If we activate both features in a system, we
need to include also the corresponding coordination code:

CallForw ∧ CallWait ⇒ CallForw#CallWait

Coordination code breaks feature modularity and hinders compositional
reasoning [KAO11]. But, there is more to this. Much like with external feature
interactions at the behavioral level, in the worst case, the number of pieces of
coordination code grows exponentially with the number of features. Although
researchers have proposed and discussed a number of solutions, there is no
“silver bullet” to this problem [Käs+09]. The problem becomes even more
problematic when all interacting features are supposed to be independently
selectable or activatable by the user [Käs+09].

The key observation that is important here is that coordination code gives
rise to a structural feature interaction. Features are considered to interact
structurally if some coordination code is necessary that is different from the
combination of the code of the individual features involved [BHK11; Käs+09;
LBL06].

In many cases, structural feature interactions can be easily identified stat-
ically (e.g., based on naming or coding conventions, code-nesting structure,
feature-tracing approaches, or dedicated implementation techniques [Käs+09;
LBL06; Pre97]). As an example, in practice, the presence of coordination code
is often controlled by nested preprocessor directives [Lie+10] or dedicated glue-
code modules [Käs+09], such as lifters in feature-oriented programming [Pre97]
and connector plugins in Eclipse.

Operational Interactions. Apart from just analyzing the code base and search-
ing for coordination code that gives rise to structural interactions, one can
collect more detailed information on internal feature interactions by analyzing
the execution or operation of a system. Which features refer to which other

91

5.2. EXAMPLES OF RELATIONS AMONG INTERACTIONS

features? Which features pass control to which other features? Which features
pass data to which other features? This information on operational interactions
cannot be easily extracted from just looking syntactically at the source code,
but requires more sophisticated (static or dynamic) analyses of the control and
data flow. These analyses may provide valuable insights. For example, if we
find that a contact-management and a messaging feature in an office groupware
interact at the level of the control flow, but not at the level of the data flow
(i.e., they do not exchange or share any data, even not via other features), we
can infer that private contact data will not be send via the messaging feature
to an untrusted receiver. This kind of information would help to make analysis
techniques smarter and more efficient, as we will discuss in the next section.

Features are considered to interact operationally, if the occurrence of specific
control and data flows, diverges from the combination of the flows of the
individual features involved [BHK11; Käs+09; LBL06]. For example, two
feature interact at the level of the control flow if there are control flows that
occur only when the two features are combined, and that are not just the
addition or union of the control flows induced by the two individual features.

5.2 Examples of Relations among Interactions

To illustrate how internal and external feature interactions can be related, we
use a simple example of an audio streaming system with five optional features:
Compress compresses the audio stream; Encrypt encrypts data; AddMetadata
adds data about the stream quality, description of the audio content, information
about its authors, etc., to the stream; LogIP logs IPs of the users receiving
the stream; RankContent ranks the audio content according to its popularity.
The performance of the system is measured by the maximum number of users
that can simultaneously receive an audio stream without the system becoming
overloaded.

5.2.1 Control-Flow Interactions (Internal, Operational)

In Figure 5.1a, we illustrate an excerpt of the annotation-based implementation
(Section 2.1.3) of the audio streaming system using C and C preprocessor. We
denote internal interactions among features with arrows. The boxes on the
arrows contain presence conditions for the corresponding interactions [vRhe+15],
that denote which features must be enabled (or disabled) for the interaction to
take place. For example, if both features AddMetadata and Encrypt are enabled,
then metadata are encrypted along with the audio data. For this purpose,
AddMetadata calls the encryption function of feature Encrypt (denoted by the

92

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

(a) Control-flow (solid line) and data-flow (dashed line)
interactions interactions in the audio streaming system.

#ifdef Encrypt
void encrypt(payload_t *payload) {...}
#endif

#ifdef AddMetadata
void add_metadata(packet_t *packet) {
...

#ifdef Encrypt
encrypt(metadata);

#endif
...

}
#endif

#ifdef LogIP
void log(char *ip) {
...

#ifdef Encrypt
encrypt(log_entry);

#endif
...

}
#endif

#ifdef Compress
void compress(payload_t *payload) {...}
#endif

#ifdef RankContent
void rank() {...}
#endif

AddMetadata ∧ Encrypt

LogIP ∧ Encrypt

Compress ∧ Encrypt

(b) A performance-influence model with performance interactions.

100− 15·Compress−15·Encrypt−5·AddMetadata−5·LogIP−5·Rank
−5· AddMetadata·Encrypt +10· Compress·Encrypt

feature interactions

Figure 5.1: Interactions in the audio streaming system.

93

5.2. EXAMPLES OF RELATIONS AMONG INTERACTIONS

solid red arrow). Consequently, there is a control-flow interaction between these
two features.

Likewise, there is a control-flow interaction between features LogIP and
Encrypt (denoted by the dashed green arrow), since the log entries are encrypted
if both features are enabled.

Finally, a internal interaction exists between features Compress and Encrypt
(denoted by the dotted blue arrow). This is a data-flow interaction, because
both features operate on the same resource (i.e., the audio stream).

5.2.2 Performance Interactions (External, Non-functional)

In Figure 5.1b, we show a performance-influence model (Section 2.4) of the
audio streaming system. For a given system configuration, the model can
predict the maximum number of users that can simultaneously receive an audio
stream without overloading the system.3 For example, for the configuration
with feature Compress enabled and the rest of the features disabled the system
can reliably serve 100− 15 · 1− 15 · 0 + · · ·+ 10 · 0 = 85 users.

The model reveals two feature interactions (denoted by gray boxes). The
first interaction is between AddMetadata and Encrypt. If both of this feature are
enabled, the system encrypts not only the audio stream, but also the metadata
that are added to the stream. The larger amount of data to be encrypted leads
to a computational overhead that reduces the system’s performance by 5 users
that can be served. The second interaction is between Compress and Encrypt.
Each of the two features individually has a negative influence of −15 on the
system’s performance, but encryption is faster if the data were compressed
before. Therefore, the combined influence of both features on performance is
less than the sum of their individual influences: −15− 15 + 10 = −20 and not
−30. That is, the interaction has a positive influence on performance.

Furthermore, for our example, we assume that encrypting a small string
containing an IP address is so fast that this has no measurable effect on the
performance of the system. Therefore, there is no a performance interaction
between features LogIP and Encrypt. Consequently, there is no a corresponding
term in our performance-influence model. Finally, feature RankContent as well
as all other possible feature combinations have no measurable influence on
performance and, therefore, they are not in the performance-influence model.

3Here, we assume that the model is 100% accurate.

94

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

Table 5.1: A lists of interacting features from Figure 5.1. It illustrates which
of the features interact internally (control-flow interaction), externally (perfor-
mance interaction), or both.

Interacting Features Control flow Performance

AddMetadata, Encrypt X X
Compress, Encrypt X X
LogIp, Encrypt X –

5.2.3 Relating Control-Flow and Performance
Interactions

Table 5.1 summarizes the control-flow and the corresponding performance inter-
actions from our example (Fig. 5.1). The feature combinations (AddMetadata,
Encrypt) and (Compress, Encrypt) give rise to both control-flow and performance
interactions. Based on our knowledge about the implementation, we can explain
the causal relation between the control-flow and performance interactions cap-
tured by these feature combinations: The call to the computationally expensive
encryption functionality (a control-flow interaction) leads to the performance
decrease in the configurations containing the features that implement and use
the encryption functionality (i.e., a performance interaction between these
features occurs). Notice that the related control-flow and performance inter-
action involve exactly the same features, so we can also relate them based on
the features they involve. However, the mere presence of control flow among
features does not always indicate the presence of a performance interaction.
For example, the control-flow interaction between features LogIp and Encrypt
has no corresponding performance interaction. So, it is an open question to
what extent a presence of a control-flow interaction can be used as an indicator
for a potentially existing performance interaction.

Also note that from 264 feature combinations possible in the audio streaming
system only three combinations give rise to feature interactions. All remaining
feature combinations can be ignored by an interaction detection technique,
because features in these combinations do not interact.

In what follows, we investigate to what extent a relation between control-flow
and performance interactions exists in a real-world setting. Furthermore, we
define and evaluate a predictor that uses control-flow interactions to predict
potential performance interactions. With such a predictor in place, we could
make interaction detection more efficient and accurate, which would be a

410 combinations with 2 features, 10 with 3, 5 with 4, and 1 with 5.

95

5.3. RESEARCH QUESTIONS AND CONCEPTUAL FRAMEWORK

valuable contribution to research fields, such as optimization of non-functional
properties, combinatorial testing, and sampling techniques.

5.3 Research Questions and Conceptual Frame-
work

In our study, we address the following research questions:
• RQ1: Do control-flow feature interactions and performance feature inter-

actions relate (in terms of the definition of Section 5.3.4)?
• RQ2: If a relation exists, can it be effectively leveraged to improve

existing techniques for detecting external feature interactions or even to
predict external feature interactions based on internal ones?

Before we can answer these questions, we have to decide on methods and
tools that we will use in our study and how to combine them in a conceptual
framework. Using this conceptual framework, we will then study relations
among internal and external interactions and answer the research questions.
Particularly, we have to choose a suitable research method, specify how we
identify control-flow and performance interactions, define what a relation
between these two types of interactions exactly is, and describe how we want
to leverage it. Next, we describe this conceptual framework.

5.3.1 Research Method

We use the case study research method to explore a relation between control-
flow and performance interactions. Shull et al. [SSS07] defines a case study as
an “initial investigation of some phenomena”. The relation, which we explore in
this chapter, is novel and it is studied for the first time. Therefore, our study
qualifies as an initial investigation of a phenomena.

Yin [Yin03] has a broader definition of a case study as “an empirical inquiry
that investigates a contemporary phenomenon within its real-life context.” It is
easy to construct an artificial example with a clearly existing relation between
control-flow and performance interactions (cf. Section 5.2.3), but this would
say nothing about the existence of this phenomenon in real-world configurable
systems. The goal of our study is to investigate whether there is or may be
such a relation between control-flow and performance interactions in real-world
configurable systems, which matches exactly the definition by Yin.

Finally, Flyvbjerg [Fly06] states that “case studies offer in-depth understand-
ing of how and why certain phenomena occur, and can reveal the mechanisms
by which cause–effect relationships occur”. In our study, we want to obtain deep

96

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

insights into the nature of the relation between control-flow and performance
feature interactions and not only report statistics. By focusing on two systems,
we aim at increasing the internal validity of the study, because, this way, we can
better identify and control confounding effects that may vary from one subject
system to another (e.g., architecture, size of features). Moreover, our study
involves bleeding-edge techniques for detecting control-flow and performance
interactions in configurable systems that are technically challenging and cannot
be easily applied to a large number of non-trivial real-world systems. For
example, information about the variability in the configurable system that is
provided in its documentation is often outdated, so compiling all configurations
of the system becomes a tedious try-and-error process.

Based on all these considerations we have chosen the case study as our
research method. In our case study, we go through the following steps: We take
two real-world configurable systems and identify control-flow and performance
interactions in these systems; then, we examine if the identified control-flow
and performance interactions can be related based on the features that occur
in them; finally, we evaluate predictors for performance interactions based
on these relations. Next, we describe these steps in more detail and give an
overview of the subject systems.

5.3.2 Identifying Control-Flow Interactions

To identify control-flow interactions, we use a variability-aware call-graph
analysis [Fer+15] implemented in TypeChef5 that identifies function calls
among features implemented with preprocessor annotations (Fig. 5.1a). The
central idea of a variability-aware analysis is to achieve efficiency by analyzing
code parts that are shared by multiple system configurations only once. This
is achieved by analyzing the source code of the system that still contains
variability (e.g., the code with preprocessor annotations in Figure 5.1a), as
opposed to analyzing the source code of individual configurations, which may
be exponentially many in the number of features. A variability-aware call-graph
analysis provides an efficient way to identify function calls among features of a
configurable system and makes the detection of internal interactions feasible.

The underlying data structure for the analysis is the variable abstract syntax
tree. Similar to an abstract syntax tree (AST), a variable AST provides an
abstraction of the source code that can be efficiently analyzed, but it also
provides information on which part of the code belongs to which features (in
the form of presence conditions). Using this information, a call-graph analysis
can identify, for each function call, which feature is the caller and which feature

5http://fosd.net/TypeChef/

97

http://fosd.net/TypeChef/

5.3. RESEARCH QUESTIONS AND CONCEPTUAL FRAMEWORK

is the callee. Furthermore, the analysis can identify a presence condition for
each call, that is, which features must be enabled (or disabled) for the call
to take place at runtime. For example, in Figure 5.1a, the call from feature
AddMetadata to feature Encrypt (solid red arrow) occurs only if both features
AddMetadata and Encrypt are enabled (denoted by the presence condition in the
box under the arrow). Due to the static nature of the technique, the collected
information about the calls may be an overapproximation, but this is a problem
with any static analysis approach. The current implementation of the analysis
also uses pointer analysis to increase the accuracy of the call graph [Fer+15].

5.3.3 Identifying Performance Interactions

For detecting performance feature interactions, we learn performance-influence
models (Fig. 5.1b). As discussed in Section 2.4, a performance-influence
model captures the influences of individual features and their interactions
on performance of a configurable system. We learn performance-influence
models using the tool SPL Conqueror,6 which implements a state-of-the-art
machine learning algorithm based on multivariable regression and forward
feature selection (Section 2.4.3). The algorithm takes as input a sample of
system configurations and corresponding performance measurements. The
accuracy of the learned performance-influence model depends, among other
factors, on how representative the sampled configurations are for the entire
configuration space. To get a performance-influence model of the highest
possible accuracy, and, consequently, to detect feature interactions as precise
as possible (i.e., to obtain the ground truth), we measured not a sample but
all configurations of the subject system and used these measurements as the
algorithm input. The performance measurements were done using a standard
benchmark.

5.3.4 Relating Control-Flow and Performance
Interactions

After we have identified the internal (control-flow) interactions, the question is
what we can learn from them regarding external (performance) interactions. To
answer this question, we relate the control-flow interactions and performance
interactions based on the features involved in them, as we explained it in our
example in Section 5.2.3. The goal is to find out if the features involved in
performance interactions also occur in one or more internal interactions and
vice versa. This is a feasibility check to see if the interactions can be related

6http://fosd.net/SPLConqueror/

98

http://fosd.net/SPLConqueror/

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

based on the features’ occurrence at all. That is, if we find no interactions that
can be related in this way, this would mean that it is impossible to define any
relation between interactions based on the corresponding feature occurrences
in these interactions.

We define a performance interaction ip and a control-flow interaction ic
as related if features(ip) ⊆ features(ic) or if features(ip) ⊇ features(ic), where
features(i) is the set of features that contribute to the interaction i.

Furthermore, for each related pair of interactions, we determine how similar
the interactions are (i.e., if they contain exactly the same features or if they
also contain features that are present only in one of them). The similarity of
the related interactions can be interpreted as the strength of their relation: the
higher the similarity, the higher the strength of the relation. We calculate the
similarity of interactions using the Jaccard index J [Jac12]:

J(ip, ic) =
features(ip) ∩ features(ic)

features(ip) ∪ features(ic)

where features(i) is the set of features involved in the interaction i. The Jaccard
index equals 1 if both interactions involve exactly the same features and is less
than 1 otherwise.

5.3.5 Predicting Performance Interactions

If we find a relation between control-flow and performance feature interactions
as defined in Section 5.3.4, the question is whether we can use this relation to
predict performance feature interactions.

One method is to build on our argumentation in Section 5.2.3 and to assume
that every control-flow interaction corresponds to an existing performance
interactions. Of course, we already know that there may be control-flow
interactions without corresponding performance interactions. Nevertheless, it
is an open question how accurate this simple method can be if applied to a
real-world system.

We can also use a more advanced method based on reoccurring feature
combinations in control-flow interactions: We argue that, if a set of features
occurs in multiple control-flow feature interactions, then this set of features is
also likely to give rise to one or more external interactions. The rationale behind
this argument is that, if a set of feature is involved in many control-flow feature
interactions, then chances are high that it is also involved in performance
interactions, because the accumulated influence of the control-flow interactions
on performance have a measurable effect.

We use frequent item set mining [Bor12] as a method to identify such
frequent feature sets. This method was successfully used as a general pattern

99

5.3. RESEARCH QUESTIONS AND CONCEPTUAL FRAMEWORK

mining method [MB07; Qia+13]. In terms of frequent item set mining, we
refer to a feature as an item. For example, features such as AddMetadata
and Encrypt in the example in Fig. 5.1 are items. The set of all items (all
features) is the item base B (e.g, the item base of the example contains all its
features). A subset of the item base I ⊆ B is an item set that corresponds to
a feature combination. An item set (i.e., a feature combination) that denotes
an internal interaction in a system is a transaction t ∈ T , where T is a set
of transactions. In our example, a set of features {AddMetadata, Encrypt} is
an item set and it is also a transaction, because these two features interact
at the control-flow level (Fig. 5.1a). Based on these definitions, we define the
support (a.k.a. absolute frequency) s of an item set I: s = |{t : t ∈ T ∧ I ⊆ t}|.
In Fig. 5.1a, the item set {Encrypt} has a support value of three, because it is a
subset of every transaction (i.e., control-flow feature interaction) in the running
example. Item set {AddMetadata, Encrypt} has a support value of 1, because
there is only one control-flow feature interaction involving these features. The
support value and a threshold E ∈ [0,∞) is used to decide which of the item
sets are considered frequent: All item sets with the support value s ≥ E are
frequent item sets. Based on our hypothesis, frequent item sets predict external
feature interactions. In our analysis, we also ignore item sets with only one item
(feature), because a feature interaction requires at least two different features.
We use an implementation of the Apriori algorithm from the Orange library7

to calculate the support value.

5.3.6 Subject Systems

The case study was conducted using two real-world configurable software
systems: the mbedTLS library implementing the transport security network
protocol TLS/SSL and a SQL database engine SQLite. The initial use case
for the systems was the embedded domain, but now they are also used in
non-embedded projects, such as OpenVPN and Firefox.

Similar to a large number of other real-world configurable systems, the
subject systems are written in C using C-preprocessor directives to implement
compile-time variable features. mbedTLS has 97 and SQLite has 12 features,
which results in 1921 and 1533 configurations respectively. The configurations
are obtained using a SAT solver (built-in into SPL Conqueror) by computing
all feature combinations that satisfy the constraints in the feature models (see
the following subsections) of the subject systems. mbedTLS comprises 50K and
SQLite 195K lines of code. Both systems have a highly modular architecture,
which is thoroughly documented along with the corresponding preprocessor

7http://orange.biolab.si/

100

http://orange.biolab.si/

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

macro names allowing relatively easy matching of code to the corresponding
modules and submodules.

The manageable number of features and configurations makes these systems
especially suitable for an in-depth qualitative case study: For example, it allows
us to measure performance of all configurations and use these measurements in
turn to identify a baseline of performance feature interactions in reasonable
time. The feasible number of resulting feature interactions allows us to verify
that every one of them actually exists in the system. Furthermore, the size of
the subject systems allows us to manually inspect and understand the structure
of the systems and the interplay of their features (Sec. 5.4, 5.5). Altogether,
the manageable size of the subject systems is a prerequisite for the internal
validity of our qualitative case study.

Features and Feature Model of mbedTLS

At the top level, mbedTLS consists of modules, such as Cipher, Public Key,
Hashing. Each module implements the corresponding algorithms and protocols.
For example, the Cipher module includes submodules that implement cipher
algorithms, such as AES, DES, and ARC4. Submodules implement the features
of the system. The cipher-algorithm features can be combined with other
features, such as hash algorithms and public-key implementations, to provide
an encryption protocol. We used the original documentation and manual code
inspection to construct a feature model for mbedTLS version 2.2.1.

Features and Feature Model of SQLite

SQLite consists of a Core providing a C-language interface and being re-
sponsible for executing compiled SQL code, an SQL Compiler, and a Backend
providing the low-level implementation of the database. A user can configure
the operation of these modules by enabling or disabling their features through
compile-time options. For example, Core can be configured to operate safely in
a multithreaded environment by enabling the SQLITE_THREADSAFE feature.
We studied the documentation and the source code of version 3.16.2 to construct
a feature model.

Performance Measurements of mbedTLS

The primary application of mbedTLS is the encryption of data transmitted
over a TCP/IP network. Ensuring fast and secure data transfer is commonly
considered an important property of communication networks, such as the
Internet. So, the time required to encrypt data and transfer them over the
network is an important non-functional property of mbedTLS. Measuring

101

5.3. RESEARCH QUESTIONS AND CONCEPTUAL FRAMEWORK

the time required by encryption alone is not representative, because different
configurations may produce different amounts of payload (e.g., due to data
compression and different amounts of generated metadata) influencing the
transmission time. Therefore, we defined the performance measure for a
configuration of mbedTLS as the amount of time (in seconds) required to
encrypt and successfully transmit a fixed amount of input data.

To detect performance feature interactions reliably based on performance
benchmarks, it must be ensured that every feature included in a configuration
is invoked during the benchmark of this configuration. Otherwise, the influence
of features and their interactions on performance cannot be deduced from
the benchmark results. The original automated test framework of mbedTLS
includes tests that check the library’s functionality in a client-server environment
and is suitable to serve as a typical benchmark suite. During the tests, the
functionality of every feature in the configuration is tested, that is, every feature
is actually invoked.

We used 2GB of random data as input to ensure that the fastest config-
uration requires, at least, five seconds for transmission and to mitigate the
influence of warm-up effects on the result. We repeated the benchmark 30
times to further reduce the influence of measurement bias. To exclude the
influence of network latencies, we ran the benchmark locally using the local
network interface.

SQLite Performance Measurements

The developers of SQLite provide a performance benchmark that measures
time required by the database to execute a set of queries.8 The original
benchmark is not compatible with the latest version of the system that we
use, so we used it as guidance to create a new compatible benchmark. While
constructing the benchmark we made sure that the features of SQLite are
actually invoked during the benchmarking process. Our benchmark measures
the execution time in seconds. To reduce the influence of warm-up effects and
measurement bias, the benchmark runs, at least, 25 seconds and every run is
repeated 30 times.

The benchmarks for both systems were conducted on an Intel i5-4590, 16GB
RAM, 256GB SSD, Ubuntu 16.04.

8http://sqlite.org/speed.html

102

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

5.4 Results

In this section, we describe the results of applying of our conceptual framework
(Section 5.3) to subject systems. To increase internal validity, we report in
Sections 5.4.1 and 5.4.2 in detail how we identified performance and control-flow
interactions. Based on these data, we report the identified relation between
performance and control-flow interactions (Section 5.4.3), which use to answer
RQ1 in Section 5.5, and how this relation can be leveraged (Section 5.4.4),
which we use to answer RQ2 in Section 5.5.

5.4.1 Performance Interactions

In this section, we report on performance interactions that we identified in
mbedTLS and SQLite. Using domain knowledge and manual inspection of
the source code, we confirm that the identified interactions actually exist and
thereby increasing internal validity of our study.

We used SPL Conqueror and the performance benchmark results (cf.
Section 5.3.6) as input data to identify performance interactions in mbedTLS
and SQLite, as described in Section 5.3.3. Table 5.2 lists for both systems the
performance interactions and their influences on performance of the systems in
seconds. The negative values in the influence column denote positive influences
of the corresponding interactions on performance. That is, they denote how
much less time a configuration that includes them would need to execute the
benchmark.

The mean standard deviation for the performance measurements of mbed-
TLS is 0.42 s. Therefore, we classified all interactions with the absolute influ-
ences less than this value as noise and discarded them. From the remaining
16 interactions, 11 are interactions between two features; and five are interac-
tions among three features. The mean standard deviation for the performance
measurements of SQLite is 0.09 s. The influences of the three identified inter-
actions for the system are much higher and, therefore, are unlikely to be noise.
Two of the interactions are interactions between two features and one is an
interaction between three features.

mbedTLS

All identified interactions in mbedTLS are among features implementing
different ciphers, block cipher modes of operation (simply “modes”), and crypto-
graphic hash functions. This is plausible, because these three types of algorithms
work tightly together to implement an encryption protocol. Ciphers (e.g., AES)
are used to encrypt data, modes (e.g., CBC) are used in combination with block

103

5.4. RESULTS

Table 5.2: Performance interactions and their influences on performance
of the systems in seconds.

ID Influence Performance Interaction
(sec) (features involved)

m
be

d
T

L
S

1 10.73 CIPHER_MODE_CBC, SHA256_C
2 -9.71 AES_C, AESNI_C
3 8.53 AESNI_C, SSL_CBC_RECORD_SPLITTING
4 6.93 CIPHER_MODE_STREAM, AESNI_C
5 6.08 SHA256_C, CIPHER_MODE_STREAM
6 5.75 AES_C, AESNI_C, GCM_C
7 3.49 CIPHER_MODE_CBC, SHA256_C, SHA256_SMALLER
8 3.45 SHA256_C, CIPHER_MODE_STREAM, SHA256_SMALLER
9 3.44 SHA256_C, AESNI_C, CIPHER_MODE_STREAM

10 3.14 CIPHER_MODE_CBC, RIPEMD160_C
11 -2.97 AES_C, GCM_C
12 -2.84 CIPHER_MODE_STREAM, MD5_C
13 1.93 AESNI_C, CAMELLIA_C
14 1.68 CIPHER_MODE_CBC, SHA1_C
15 1.60 CIPHER_MODE_STREAM, AESNI_C, MD5_C
16 1.51 RIPEMD160_C, CIPHER_MODE_STREAM

S
Q

L
it

e 1 1.50 DEFAULT_MEMSTATUS, THREADSAFE
2 1.47 MEMDEBUG, THREADSAFE
3 1.41 DEFAULT_MEMSTATUS, MEMDEBUG, THREADSAFE

To relate the influences to configuration run times, note that the fastest mbedTLS
configuration completed its benchmark in 6.7 seconds and the fastest SQLite
configuration completed its benchmark in 26.7 seconds.

104

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

ciphers to encrypt amounts of data larger than a block (i.e., a fixed amount of
data a block cipher can operate on; 128 bit for AES), and cryptographic hash
functions (e.g., SHA) are used with modes to implement authentication and to
ensure data integrity.

To confirm that the identified performance interactions actually result from
the interplay of the corresponding features, we manually inspected the source
code of mbedTLS. Next, we present the results of this code inspection.

Interaction 1 in Table 5.2 arises between a mode (CBC) and a hash function
(SHA256). CBC uses hashing extensively to calculate keyed-hash message
authentication code (HMAC). SHA256 is computationally more expensive than,
for example, MD5; therefore, this combination with the mode has a negative
influence of 10.73 seconds on performance. Interactions 5, 7, 8, 10, 12, 13, 14,
and 16 have a similar cause and explanation. In addition to a mode and a
hash function, interactions 7 and 8 also include the feature SHA256_SMALLER,
which denotes that an implementation of SHA256 with smaller binary footprint
was used. However, this implementation also has a lower performance, which
leads to the negative influence of this interaction on performance. Interaction
12 has a positive influence on performance of using a mode (stream mode,
in this case) with a less computationally complex (but also less secure) MD5
hash function. In interaction 13, the AES cipher is used as a hash function in
combination with the Camellia cipher.

Interaction 2 arises from the usage of the AES cipher for encryption in
combination with a native implementation of the AES algorithm in assembler
(AESNI). The native implementation makes encryption faster, so this interaction
has a positive influence of 9.71 seconds on performance.

Interaction 3 arises from the usage of the AES cipher for encryption in
combination with an implementation of the CBC mode that includes a record
splitting algorithm. This algorithm is a countermeasure against the BEAST
attack on the SSL algorithm [DR11]. The way record splitting is implemented
increases the number of packets to be transmitted (compared to the number of
packets without this countermeasure). The increased number of packets results,
in turn, in a negative influence on performance.

Interactions 4, 6, 9, 11, and 15 arise from the influence of further combina-
tions of ciphers, modes, and hash functions on performance, similar to the first
interaction.

SQLite

All performance interactions in SQLite include the feature THREADSAFE.
This is plausible, because THREADSAFE is a crosscutting feature that adds the
mutex and thread-safety logic to all unsafe regions in the code. This additional

105

5.4. RESULTS

thread-safety code imposes a runtime overhead and makes the benchmarks for
the configurations containing it run longer. We inspected the code of SQLite
and confirmed that both features DEFAULT_MEMSTATUS and MEMDEBUG
retrieve a mutex (i.e., use THREADSAFE feature) at a certain stage of operation
that results in interaction among THREADSAFE and these features.

Summary. Overall, we identified 16 performance interactions in mbedTLS.
11 of them occur between 2 features and 5 among 3 features. In SQLite, we
identified 3 performance interactions. 2 interactions between 2 features and
1 among 3 features. Using domain knowledge and manual inspection of the
source code, we identified the cause of all interactions and thereby confirmed
that they actually exist in the systems and are caused by the interplay of the
corresponding features.

5.4.2 Control-Flow Interactions

In this section, we report on control-flow interactions that we identified in
mbedTLS and SQLite using variability-aware call-graph analysis implemented
in TypeChef (Section 5.3.2). Furthermore, we explain the limitations of
TypeChef that prevent it from detecting all control-flow interactions (e.g., in
cases where one feature uses function pointers to call another). We discuss how
we addressed these limitations to increase the internal validity of the study by
manually identifying control-flow interactions missed by TypeChef.

mbedTLS

From 761 992 function calls in the system, we detected 575 560 control-flow
feature interactions. This number of interactions includes duplicate interactions
that appear if the corresponding function call between features occurs in
multiple locations in the code. The number of unique control-flow interactions
is 73.

Notably, among the unique control-flow interactions, there are interactions
with up to 10 features, but most unique interactions involve only two features
(Fig. 5.2a). If we also consider the duplicates (Fig. 5.2b), the overall picture
stays largely the same: Only the number of interactions involving four features
becomes larger than the number of those involving three features.

While manually exploring the source code of mbedTLS, we found that
cipher, mode, and hash algorithms call each other indirectly, using function
pointers. This indirection was introduced by the designers of the library to
decouple the algorithms and to make their concrete implementations inter-
changeable. TypeChef would need to be extended with a variability-aware,

106

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

2 3 4 5 6 7 8 9 10
Number of involved features

0
5

10
15
20
25
30

C
ou

nt

(a) Unique interactions only

2 3 4 5 6 7 8 9 10
Number of involved features

101

102

103

104

105

106

C
ou

nt

(b) All interactions

Figure 5.2: mbedTLS: counts of features in control-flow interactions.

2 3 4 5 6
Number of involved features

0

10

C
ou

nt

(a) Unique interactions only

2 3 4 5 6
Number of involved features

103

105

107

C
ou

nt

(b) All interactions

Figure 5.3: SQLite: counts of features in control-flow interactions.

inter-procedural data-flow analysis to identify which features interact using
indirect function calls. Being aware of this technical limitation of TypeChef,
we added 11 indirect control-flow interactions that we collected while manually
exploring the code to the set of interactions. In our manual exploration of the
source code, we relied on our understanding of the subject systems’ structure
and interplay of the features. For example, based on the knowledge, we knew
that cipher, mode, and hash algorithms should closely work together. So, we
looked for control flow among all features implementing these algorithms. The
total number of the identified unique control-flow interactions is 84 (73 were
found using TypeChef and 11 manually). It would be infeasible to find man-
ually all instances of indirect control-flow interactions, so their exact number
(including duplicates) is unknown. We discuss the corresponding threats to
validity in Section 5.6.

107

5.4. RESULTS

SQLite

From over 14 587 337 function calls in the system, we detected 14 587 335 control-
flow feature interactions. That is, all but two function calls involved more than
one feature. The number of unique control-flow interactions is 37.

In contrast to mbedTLS, most unique interactions involve 4 features, and
there are interactions with up to 6 features (Fig. 5.3a). Although, if we also
consider duplicates (Fig. 5.3b), the picture becomes similar to that in mbedTLS:
Interactions among 2 features prevail and the count of interactions decreases
with the increasing number of involved features.

While manually inspecting the code of SQLite, we found that the option
SQLITE_DEFAULT_MEMSTATUS (which is used by TypeChef to identify
the code belonging to the feature DEFAULT_MEMSTATUS) is used to set a
Boolean variable at compile-time. This variable is then used at runtime to
check if feature DEFAULT_MEMSTATUS is enabled or disabled. This way,
the feature can be enabled or disabled at runtime. Again, TypeChef would
need a data-flow analysis to trace the connection the preprocessor macro to
the corresponding Boolean variable to detect control-flow interactions in which
feature DEFAULT_MEMSTATUS is involved. By further exploring the code,
we identified two control-flow interactions of this kind and added them to the
set of automatically detected interactions. Therefore, the total number of the
identified unique control-flow interactions is 39.

Summary. Overall, we identified 575 571 control-flow interactions in mbedTLS
among which 84 were unique. Some interactions involve up to 10 features, but
most interactions are between 2 features. For SQLite, we identified 14 587 335
control-flow interactions, with 39 unique. Due to technical limitations of
TypeChef, indirect control-flow interactions in mbedTLS and interactions
induced by runtime variability in SQLite could not be detected by TypeChef.
We manually inspected the source code to collect these interactions.

5.4.3 Relating Interactions

In this section, we describe how we identified relations among performance and
control-flow interactions that we described in Sections 5.4.1 and 5.4.2

Performance Interactions → Control-Flow Interactions. Using the relation
definition features(ip) ⊆ features(ic) (Section 5.3.4), for each performance
interaction, we identified all unique related control-flow interactions (i.e., all
control-flow interactions involving exactly the same features as the performance
interaction). Furthermore, for each pair of related interactions, we calculated

108

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

Table 5.3: Performance interactions, the number of the control-flow interactions
related to them, and the mean value of the corresponding Jaccard indexes.

ID Performance Interaction Rela- Jaccard
(features involved) tions (mean)

m
be

d
T

L
S

1 CIPHER_MODE_CBC, SHA256_C 1 1.00
2 AES_C, AESNI_C 10 0.53
3 AESNI_C, SSL_CBC_RECORD_SPLITTING 2 0.38
4 CIPHER_MODE_STREAM, AESNI_C 1 1.00
5 SHA256_C, CIPHER_MODE_STREAM 1 1.00
6 AES_C, AESNI_C, GCM_C 4 0.53
7 CIPHER_MODE_CBC, SHA256_C, SHA256_SMALLER 1 1.00
8 SHA256_C, CIPHER_MODE_STREAM, SHA256_SMALLER 1 1.00
9 SHA256_C, AESNI_C, CIPHER_MODE_STREAM 1 1.00
10 CIPHER_MODE_CBC, RIPEMD160_C 1 1.00
11 AES_C, GCM_C 13 0.40
12 CIPHER_MODE_STREAM, MD5_C 1 1.00
13 AESNI_C, CAMELLIA_C 4 0.35
14 CIPHER_MODE_CBC, SHA1_C 1 1.00
15 CIPHER_MODE_STREAM, AESNI_C, MD5_C 1 1.00
16 RIPEMD160_C, CIPHER_MODE_STREAM 1 1.00

S
Q

L
it

e 1 DEFAULT_MEMSTATUS, THREADSAFE 1 1.00
2 MEMDEBUG, THREADSAFE 16 0.45
3 DEFAULT_MEMSTATUS, MEMDEBUG, THREADSAFE 1 1.00

109

5.4. RESULTS

the Jaccard index (Section 5.3.4), which denotes how similar the interactions
are (the index equals 1 if both interactions involve exactly the same features
and is less than 1 otherwise).

Table 5.3 summarizes the results. For each performance interaction, it
shows the number of the related control-flow interactions and the mean of all
Jaccard indexes calculated for these relations. The apostrophe (’) denotes the
performance interactions that are related to the manually identified indirect
control-flow interactions for which we were not able to establish the exact
number of occurrences (cf. Section 5.4.2). The numbers show that there is a
relation between every performance interaction and, at least, one control-flow
interaction. The Jaccard indexes show that the related control-flow interactions
that were automatically detected by TypeChef (those are the same as the
interactions with the number of relations greater than 1 in Table 5.3), involve, on
average, twice as many or even more features than there are in the corresponding
performance interactions.

Control-Flow Interactions → Performance Interactions. Using the relation
definition features(ip) ⊇ features(ic) (Section 5.3.4), for each control-flow inter-
action, we identified all related performance interactions (i.e., all performance
interactions involving exactly the same features as the control-flow interaction).

Table 5.4 summarizes the results. For mbedTLS, among the 84 unique
control-flow interactions, we found 15 interactions that have one or more re-
lated performance interactions. For SQLite, among the 39 unique control-flow
interactions, we found 2 interactions that have one or more related performance
interactions. The Jaccard indexes show that the related performance interac-
tions that were automatically detected by TypeChef (interactions 1–4 for
mbedTLS) involve mostly the same features as the corresponding control-flow
interactions. The manually added control-flow interactions (interactions 5–15
for mbedTLS and all interactions for SQLite) match exactly the related
performance interactions.

Summary. We found a relation between every of the 16 identified performance
interactions and one or more control-flow interactions. The Jaccard indexes
show that the automatically detected control-flow interactions do not generally
contain exactly the same features as the related performance interactions, that
is, the automatically detected control-flow interactions involve, on average,
twice as many features as the corresponding performance interactions. The
manually added control-flow interactions involve exactly the same features as
the corresponding performance interactions.

110

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

Table 5.4: Control-flow interactions, the number of the related performance
interactions, and the mean value of the corresponding Jaccard indexes. Control-
flow interactions without related performance interactions are not listed.

ID Control-Flow Interaction Rela- Jaccard
(features involved) tions (mean)

m
be

d
T

L
S

1 AES_C, AESNI_C 2 0.83
2 GCM_C, AESNI_C 1 0.67
3 GCM_C, AES_C 2 0.83
4 GCM_C, AES_C, AESNI_C 1 1.00
5 CIPHER_MODE_CBC, SHA256_C 1 1.00
6 CIPHER_MODE_STREAM, AESNI_C 1 1.00
7 SHA256_C, CIPHER_MODE_STREAM 1 1.00
8 CIPHER_MODE_CBC, SHA256_C, SHA256_SMALLER 1 1.00
9 SHA256_C, CIPHER_MODE_STREAM, SHA256_SMALLER 1 1.00

10 SHA256_C, AESNI_C, CIPHER_MODE_STREAM 1 1.00
11 CIPHER_MODE_CBC, RIPEMD160_C 1 1.00
12 CIPHER_MODE_STREAM, MD5_C 1 1.00
13 CIPHER_MODE_CBC, SHA1_C 1 1.00
14 CIPHER_MODE_STREAM, AESNI_C, MD5_C 1 1.00
15 RIPEMD160_C, CIPHER_MODE_STREAM 1 1.00

S
Q

L
it

e 1 DEFAULT_MEMSTATUS, THREADSAFE 1 1.00
2 DEFAULT_MEMSTATUS, MEMDEBUG, THREADSAFE 1 1.00

111

5.4. RESULTS

5.4.4 Predicting Performance Interactions

mbedTLS: Direct Matching. As we describe in Section 5.3.5, one prediction
method is to assume that every control-flow interaction induces a performance
interaction that involves exactly the same features. In mbedTLS, from the
73 automatically identified unique control-flow interactions there are three—
interactions 1, 3, and 4 in Table 5.4—that have exactly the same features
as the related performance interactions 2, 6, and 11 in Table 5.3. That is,
three of the 16 performance interactions could be predicted by the direct
matching. Therefore, the precision of the direct matching is 4.11% and the
recall is 18.75%. If we also incorporate the 11 indirect control-flow interactions,
which we identified by manually inspecting the code, the total number of
matching control-flow interactions becomes 14. Including indirect control-flow
interactions increases the precision and recall to 16.7% and 51.85% respectively.

SQLite: Direct Matching. In SQLite, there are no automatically identified
unique control-flow interactions that match exactly any of the performance
interactions. Including the manually added control-flow interactions gives the
prediction precision of 5.13% and the recall of 67%.

mbedTLS: Frequent Item Sets. Using frequent item set analysis (cf. Sec-
tion 5.3.5) on the set of control-flow interactions for mbedTLS, we found 44
item sets, of which we calculated the support values. The support values range
from 11% to 34%, meaning that there are item sets occurring in 11% to 34%
of all control-flow interactions.

Two of the found item sets match exactly the performance interactions 2
and 11 of Table 5.3. Notice that we ran the frequent item set analysis only on
the automatically detected control-flow interactions. We were not able to run
it on the indirect control-flow interactions, because then we would have to find
every instance of such interaction manually, which is infeasible. Nevertheless,
we incorporated the indirect control-flow interactions into further analysis by
approximating their support values based on the distribution of support values
for similar indirect interactions (see Section 5.6, for threats to validity). Among
the 44 detected item sets, there are 33 item sets capturing interactions among
ciphers, modes, and hash functions. We assigned support values to the indirect
control-flow interactions according to the distribution of the support values of
these 33 item sets. That is, 6% of the interactions were assigned a support
value of 11%, 3% were assigned a support value of 12%, and so on.

By varying the threshold E, as described in Section 5.3.5, we are able to
decide which of the identified item sets are considered frequent. By setting
the threshold to 0, we consider all identified item sets as frequent. When the

112

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

threshold is increased the item sets with lower support values are not considered
frequent anymore. For example, if we set the threshold to 15% only 25% of
the identified item sets will have a higher support value and will be considered
frequent. Changing the threshold this way allows us to observe its influence on
the predictive power (i.e., precision and recall) of the frequent item sets.

To calculate how good the item sets are in predicting performance in-
teractions, we compared how many of them denote the actually identified
performance interactions (i.e., contain exactly the same features as the per-
formance interactions). The low precision and recall values for mbedTLS
summarized in Table 5.5 show that our predictor based on the frequent item
sets has only a low predictive power. Increasing the threshold value decreases
the precision and recall of the predictor.

SQLite: Frequent Item Sets. Applying the same frequent item set method
to the control-flow interactions of SQLite resulted in four frequent item sets
with support values ranging from 20% to 100%. None of these frequent
item sets matched the performance interactions. We could not approximate
the distribution of the support values for the manually detected control-flow
interactions, because they do not exhibit any commonalities with the calculated
frequent item sets as it was the case for mbedTLS.

Summary. We defined two predictors for performance interactions based on
their relation with control-flow interactions. The first predictor is based on the
assumption that every control-flow interaction induces a performance interaction
that involves exactly the same features. The second predictor is based on the
assumption that the recurring feature combinations in control-flow interactions
capture the related performance interactions. The evaluation showed that both
predictors have only low precision and recall values.

5.5 Discussion

Based on our results, we conclude that there is indeed a quantifiable relation
between control-flow and performance interactions. We confirmed this by
manually inspecting the code and by comparing which features are involved in
the detected performance interactions and how these features interact at the
control-flow level. We found that features involved in performance interactions
work closely together to implement the systems’ functionality and thus also
interact at the control-flow level. That is, the same features that are involved in
performance interactions are also involved in control-flow interactions. There-

113

5.5. DISCUSSION

Table 5.5: Precision and recall values for the item sets as predictors for the
performance interactions in mbedTLS. (*) marks the precision and recall
values for the item sets with incorporated indirect control-flow interactions.

Threshold Precision Recall Precision* Recall*

0 4.5 12.5 23.6 48.1
15 2.3 6.3 5.5 11.1
20 0 0 1.8 3.7

fore, we can positively answer research question RQ1, which asked if control-flow
feature interactions and performance feature interactions relate.

The relation we found among control-flow and performance feature interac-
tions has implications for performance prediction techniques for configurable
systems. As we discussed in Section 5.4.3, the identified control-flow interac-
tions capture the features that are involved in the performance interactions. Of
course, we cannot identify these features precisely, because the same control-flow
interactions also involve other features that are not involved in performance
interactions (this is also a reason for direct matching prediction having low
precision and recall; cf. Sec 5.4.4). Nevertheless, assuming that only the fea-
tures from the identified control-flow interactions can give rise to a performance
interaction considerably reduces the search space of the potential performance
feature interactions, because otherwise we have to assume that any (valid)
feature combination may give rise to a performance interaction. mbedTLS
has 134 057 valid feature combinations of two and three features, but the 84
identified unique control-flow interactions (Section 5.4.2) result in only 452
potential performance interactions (among two and three features). Notice that
these include all 16 actually existing performance feature interactions that we
identified. That is, we are able to shrink the search space of performance feature
interactions by almost 300 times (452 instead of 134 057) without losing any of
the actually existing performance feature interactions. SQLite has 524 valid
feature combinations of two and three features and (based on the 39 identified
unique control-flow interactions) only 131 potential performance interactions
(among two and three features). These potential performance interactions also
include all 3 actually existing performance interactions that we identified. That
is, the search space shrinks by 4 times. These results have immediate conse-
quences for performance prediction techniques based on machine learning and
relying on sampling for building a training dataset: By exploiting our findings
they can make sampling more focused on the configurations that potentially
include interacting features, which may improve their prediction accuracy.

With respect to RQ2, which asked if relations between control-flow and

114

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

performance interactions can be effectively leveraged to improve existing tech-
niques for detecting external feature interactions or to predict external feature
interactions based on internal ones, our results are twofold. The shrinkage of
the search space of performance feature interactions can help to make perfor-
mance prediction techniques more focused on potential feature interactions,
which is a positive result. As to the predictors based on direct matching and
frequent item sets, we obtained only low precision and recall values, which is
effectively a negative result. One possible reason for this negative result is that
the predictors rely solely on control-flow data, but features can also interact via
data flow. For example, they can exchange data through shared data structures.
This interplay at the data-flow level can be interpreted as data-flow feature
interactions (much like control-flow feature interactions, Figure 5.1a), which
may also induce performance interactions. For example, a feature may block
other features by locking a shared data structure, which may have a negative
influence on the performance of the system. Therefore, enriching the data
used by the predictors with the information about data-flow interactions may
increase their predictive power. So, a takeaway message here is that predictors
should consider the interplay of features not only on the control-flow level, but
also at the data-flow level, and other levels. Another reason may be that not
all features involved in a control-flow interaction are also involved in a related
performance interaction. The Jaccard index values in Table 5.3 show that
only about half of the features in a control-flow interaction are also present
in the related performance feature interaction. For example, the interaction
(AES_C, AESNI_C) has the average Jaccard index of 0.46. This means that, on
average, a related control-flow interaction has two other features additionally
involved, in addition to features AES_C and AESNI_C. Both predictors for a
given control-flow interaction are not able to distinguish among features that
are involved in a related performance interaction and those that are not.

Further Observations. A further observation is related to the distribution
of the number of features involved in the control-flow and performance inter-
actions. For mbedTLS, in most cases, interactions (both, control-flow and
performance) involve two or three features. For SQLite, in most cases, control-
flow interactions involve four features, but this is only the case because every
single control-flow interaction involves the two crosscutting features THREAD-
SAFE and ENABLE_API_ARMOR. If we ignore these crosscutting features,
the pictures becomes similar to mbedTLS. The performance interactions in
SQLite involve two or three features as in mbedTLS. From these data, we
conclude that the frequency of interactions decreases with the growing number
of the involved features. This shows that features tend to interact at the same

115

5.6. THREATS TO VALIDITY

rate (two or three features per interaction) independently of the type of the
interaction (control-flow or performance). This is another indication for a
relation between control-flow and performance interactions.

Finally, for mbedTLS, we found that most of the frequent item sets that we
identified in the control-flow interactions contain features from three groups of
algorithms: ciphers, modes, and hashes. Even though most of the frequent item
sets do not resemble existing performance interactions, they still capture the
general pattern of the detected performance interactions, namely, that these in-
teractions involve features from these three groups of algorithms. For SQLite
the frequent item sets capture the crosscutting features, such as THREAD-
SAFE and ENABLE_API_ARMOR. The crosscutting feature THREADSAFE
was involved in all identified performance interactions.

5.6 Threats to Validity

Internal Validity. Due to technical limitations of TypeChef, we were unable
to identify the exact number of indirect function calls between features (i.e., calls
made using function pointers) and, consequently, the exact support values for the
corresponding item sets (Section 5.4.4). We approximated these support values
based on the distribution of the support values for the item sets calculated from
direct function calls. Our approximation method may result in an inaccurate
calculation of the precision and recall values of the frequent item set predictor.
Nevertheless, we expect that improving the approximation would rather improve
the precision and recall of the predictor.

Due to the static nature of the call-graph analysis employed by TypeChef,
the collected information about the calls may be an approximation, and, as a
consequence, a threat to internal validity. To mitigate this threat, we verified all
control-flow interactions (identified using call-graph analysis) that are related
to performance interactions by manually inspecting the source code of the
subject systems and by confirming that these control-flow interactions actually
exist.

External Validity. We have chosen a case study as our research method
(Section 5.3.1), which suits well the exploratory nature of our study, which aims
at the initial investigation of the relation between control-flow and performance
feature interactions. The downside of using this research method is that it
cannot be efficiently applied to multiple reasonably large configurable systems.
In fact, it threatens the external validity of our study, since we focused on
analyzing two systems and our results may not hold for other configurable
systems. Nevertheless, our study setup has proven successful and can thus serve

116

CHAPTER 5. ON THE RELATION OF FEATURE INTERACTIONS

as a blueprint for further studies that can rely on our conceptual framework
for studying relations among external and internal interactions. We conjecture,
that the relation between performance and control-flow interactions that we
identified in our subject systems is likely to exist in systems with a larger
number of features as well.

5.7 Related Work

In recent years, a number of papers aimed at detecting feature interactions
in configurable systems. We summarize and subdivide them according to our
classification into those considering internal feature interactions and those
considering external feature interactions. Alone the fact that we were able to
clearly assign the related work to one of the feature interaction classes shows
that previous studies focused on one interaction class at a time and did not
consider relations among different classes of feature interactions. To our best
knowledge, there is no work that studied these two types of interactions in
combination and investigates their relation, as we do it in this case study.

Internal Feature Interactions Detection of internal feature interactions is
often used by techniques that aim at minimizing test-suite and test-effort for
configurable systems. Reisner et al. [Rei+10], Nguyen et al. [Ngu+16], and
Tartler et al. [Tar+12] apply symbolic evaluation, dynamic and static program
analysis respectively to infer minimal sets of features responsible for a given code
coverage. Kim et al. [KBK11] apply static program analysis to identify features
that do not interact with other features with respect to the test-suite. Garvin
et al. [GC11] explore a connection between feature interactions and interaction
faults. Lillack et al. [LKB14] extend static taint analysis to automatically
identify interactions among load-time configuration options.

External Feature Interactions A number of recently proposed performance
prediction techniques for configurable systems by Guo et al. [Guo+13], Siegmund
et al. [Sie+12], Sarkar et al. [Sar+15], Thereska et al. [The+10], Westermann
et al. [Wes+12], and Zhang et al. [Zha+15] use machine-learning techniques,
such as, CART, multivariable regression, and Fourier learning, for learning a
performance function based on the performance measurements of a configuration
sample. These techniques learn performance (external) feature interactions
as an integral part of the overall black-box learning process, that is, without
considering the internal feature interactions.

117

5.8. SUMMARY

5.8 Summary

To answer one of the question of our dissertation, namely, how to use informa-
tion about internal interactions to predict external interactions, we explored
the relation among control-flow (internal) and performance (external) feature
interactions that occur in configurable systems. Using the encryption library
mbedTLS and the database engine SQLite as real-world subject systems,
we identified control-flow and performance feature interactions using static
program analysis and machine learning. Analyzing the interactions, we found
that they can be related based on the involved features. By manually inspecting
the code, we confirmed the causal relation between the interplay of features at
the control-flow level and the identified performance interactions among the
same features. Furthermore, based on the identified relation, we defined two
predictors for performance feature interactions and conducted a preliminary
evaluation of these predictors. The evaluation showed that the predictors have
low precision and recall, presumably, because features also interact at the
data-flow level. Future predictors based on the internal feature interactions
should consider both control-flow and data-flow interactions to improve their
predictive power.

Beside this negative result, using the identified relation among control-flow
and performance feature interactions, we are still able to shrink the search
space of performance feature interactions (by almost 300 times for mbedTLS
and by 4 times for SQLite) without losing any of the performance feature
interactions actually existing in our subject systems. Performance prediction
techniques that rely on sampling can use our results to make their sampling
more focused on configurations with potential performance interactions.

Overall, our results suggest that relations among internal and external
interactions can be exploited to predict external interactions, which is one of
the goals of our dissertation. The conceptual framework that we introduced
in this chapter can be used by other researchers to explore relations among
different kinds of internal and external interactions.

118

CHAPTER 6

Conclusion

Configurable software systems are a response of research and industrial practice
to the growing number of user requirements and application scenarios that a
software must fulfill nowadays. Software vendors build configurable systems
with the goal of producing high-quality tailor-made software fast and cost-
efficient. One of the major problems of producing high-quality configurable
systems is the presence of unanticipated feature interactions that may lead to
unexpected or suboptimal behavior of the system. Detecting feature interactions
is complicated by potentially exponential explosion of configuration space of
configurable systems.

The goal of this dissertation is to contribute to the solution of the feature
interaction problem by studying the nature of feature interactions in a sys-
tematic and comprehensive way. We achieved this goal by gaining concrete
empirical results about properties of feature interactions, their causes, their
influence on performance of configurable systems, and about relations among
feature interactions of different types.

Specifically, we made the following contributions:

1. We systematically compared family-based, feature-based, and product
based analysis strategies using type-checking as a concrete analysis tech-
nique. The comparison was made regarding such aspects as the ability to
detect different kinds of type errors and the time needed to run the anal-
ysis. The comparative evaluation was practically conducted on a set of
12 configurable systems using our own implementation of the techniques
in Fuji (an extensible compiler for feature-oriented programming).

119

CHAPTER 6. CONCLUSION

The evaluation showed that the family-based strategy is the most efficient.
Used as the basis for Variability-aware type-checking based on this strategy
is faster than the alternatives, it detects errors that are local to features
and that involve several features, it also provides most detailed information
about the errors found, which improves the usability of the type-checker.
The drawback of this strategy is that it requires adaption of the existing
type-checking tools.

This evaluation provides empirical data to the developers of variability-
aware analysis techniques and tools—among which are also feature-
interaction detection tools—about how different analysis strategies com-
pare with respect to completeness and performance.

2. Using a variability-aware machine-learning technique we systematically
studied the tradeoffs among prediction error, model size, and computation
time of performance-influence models, which we use in this dissertation
to automatically detect performance feature interactions. We found that
the tradeoffs are marginal and that accurate and human-comprehensible
influence models can be built in feasible time. More interestingly, we
found that interactions of size 2 and 3 had the highest influence on
performance and that this influence reduced with the growing size of the
interactions. This findings about feature interactions have an immediate
practical consequence for the techniques that aim at detecting feature
interactions or that rely on sampling: using our findings they may focus
on feature combinations that include 2 or 3 features, because they may
highly likely give rise to the influential feature interactions.

Furthermore, we investigated the causes for the detected performance
feature interactions and found four reoccurring patterns: dominant con-
figuration option, data pipeline, workload tuning, and domain-specific
interactions. The patterns explain how decisions about a system’s archi-
tecture may lead to the emergence of performance feature interactions.
This knowledge can help to prevent or at least to anticipate the possible
presence of performance feature interactions already in the early stages
of the configurable systems development when architectural decisions are
made.

3. Finally, to facilitate a more structural approach to studying the nature of
feature interactions we classify them in two classes: internal and external
interactions. Each of these classes we further subdivide into: structural
and operational subclasses, and functional and non-functional subclasses
respectively. Based on the empirical evidence, that internal feature inter-
actions are generally easier to detect than the external ones, we conducted

120

CHAPTER 6. CONCLUSION

a case study in which we investigated the relation among performance
(external, non-functional) interactions and control-flow (internal, oper-
ational) interactions. With the goal that, if this relation exists, it can
facilitate the prediction of external interactions based on the related
internal ones. For the two subject systems that we used in our case
study, we were able to confirm that such relation exists and potentially
can be used to substantially reduce the search space for external feature
interactions.

These results have immediate practical consequences for performance
prediction techniques based on machine learning and relying on sampling
for building a training dataset: By exploiting our findings they can make
sampling more focused on the configurations that potentially include
interacting features, which may improve their prediction accuracy. More-
over, other researchers can use the conceptual framework from our study
to investigate possible relations among other kinds of interactions.

Avenues of Future Work

Feature interaction patterns. Feature interaction patterns link designer deci-
sions about a system’s architecture to possible feature interactions that emerge
due to this decisions. With more empirical data on feature interactions and
their causes new feature interaction patterns may be discovered. They then can
be used as anti-patterns and help prevent feature interactions or as indicators
for feature interactions that may emerge due to certain designer decisions.

Relation of external and internal feature interactions. Control-flow feature
interactions that we studied in this dissertation is only one type of internal
operational feature interactions. A further type is data-flow feature interactions
that can also be studied with regard to the relation to performance or, again,
other types of external feature interactions. Studying relations among further
types of internal and external interactions using the conceptual framework that
we proposed in this dissertation is a possible line of future research.

Prediction of feature interactions. With the growing amount of data about
relations among internal and external feature interactions there may be a possi-
bility of learning accurate predictors for functional and non-functional feature
interactions. Finding and evaluating such predictors is another interesting line
of research.

121

Bibliography

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, 1986.

[AB11] S. Apel and D. Beyer. “Feature Cohesion in Software Product Lines:
An Exploratory Study”. In: Proc. ICSE. ACM, 2011, pp. 421–430.

[AH10] S. Apel and D. Hutchins. “A Calculus for Uniform Feature Com-
position”. In: ACM TOPLAS 32.5 (2010), 19:1–19:33.

[ALS08] S. Apel, T. Leich, and G. Saake. “Aspectual feature modules”. In:
IEEE Transactions on Software Engineering 34.2 (2008), pp. 162–
180.

[AL08] S. Apel and C. Lengauer. “Superimposition: A language-
independent approach to software composition”. In: International
Conference on Software Composition. Springer. 2008, pp. 20–35.

[Ape+12] S. Apel et al. “Access Control in Feature-Oriented Programming”.
In: Science of Computer Programming 77.3 (2012), pp. 174–187.

[Ape+11] S. Apel et al. “Detection of Feature Interactions using Feature-
Aware Verification”. In: Proc. ASE. IEEE, 2011, pp. 372–375.

[Ape+13a] S. Apel et al. “Exploring Feature Interactions in the Wild: The New
Feature-interaction Challenge”. In: Proceedings of the International
Workshop on Feature-Oriented Software Development (FOSD).
ACM, 2013, pp. 1–8.

[Ape+13b] S. Apel et al. “Feature-Interaction Detection based on Feature-
Based Specifications”. In: Computer Networks 57.12 (2013),
pp. 2399–2409.

123

BIBLIOGRAPHY

[Ape+13c] S. Apel et al. Feature-Oriented Software Product Lines – Concepts
and Implementation. Springer-Verlag, 2013.

[Ape+13d] S. Apel et al. “Strategies for product-line verification: Case studies
and experiments”. In: Proc. ICSE. IEEE, 2013, pp. 482–491.

[Ape+10] S. Apel et al. “Type Safety for Feature-Oriented Product Lines”.
In: Automated Software Engineering 17.3 (2010), pp. 251–300.

[Bal+04] S. Balsamo et al. “Model-based performance prediction in soft-
ware development: A survey”. In: IEEE Transactions on Software
Engineering 30.5 (2004), pp. 295–310.

[Bas+06] P. Bastian et al. “The distributed and unified numerics environ-
ment (DUNE)”. In: Proceedings of the Symposium on Simulation
Technique in Hannover. 2006, pp. 12–14.

[Bat04] D. Batory. “Feature-oriented programming and the AHEAD tool
suite”. In: Software Engineering, 2004. ICSE 2004. Proceedings.
26th International Conference on. IEEE. 2004, pp. 702–703.

[BHK11] D. Batory, P. Höfner, and J. Kim. “Feature interactions, products,
and composition”. In: Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE).
ACM, 2011, pp. 13–22.

[BSR04] D. Batory, J. Sarvela, and A. Rauschmayer. “Scaling step-wise
refinement”. In: IEEE Transactions on Software Engineering 30.6
(2004), pp. 355–371.

[BSR10] D. Benavides, S. Segura, and A. Ruiz-Cortés. “Automated anal-
ysis of feature models 20 years later: A literature review”. In:
Information Systems 35.6 (2010), pp. 615–636.

[Ben07] I. Ben-Gal. “Bayesian networks”. In: Wiley Online Library, 2007.
[BDS13] L. Bettini, F. Damiani, and I. Schaefer. “Compositional Type

Checking of Delta-oriented Software Product Lines”. In: Acta
Informatica 50.2 (2013), pp. 77–122.

[Big98] T. Biggerstaff. “A perspective of generative reuse”. In: Annals of
Software Engineering 5.1 (1998), pp. 169–226.

[Bod+13] E. Bodden et al. “SPLLIFT: Statically Analyzing Software Prod-
uct Lines in Minutes Instead of Years”. In: Proc. PLDI. ACM,
2013, pp. 355–364.

[Bor12] C. Borgelt. “Frequent item set mining”. In: Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery 2.6 (2012),
pp. 437–456.

124

BIBLIOGRAPHY

[Bow+89] T. Bowen et al. “The feature interaction problem in telecommuni-
cations systems”. In: Proceedings of the International Conference
on Software Engineering for Telecommunication Switching Systems
(SETSS). IEEE, 1989, pp. 59–62.

[Bra+13] C. Brabrand et al. “Intraprocedural Dataflow Analysis for Software
Product Lines”. In: Trans. on Aspect-Oriented Software Develop-
ment 10 (2013), pp. 73–108.

[Bro+15] F. Brosig et al. “Quantitative evaluation of model-driven per-
formance analysis and simulation of component-based architec-
tures”. In: IEEE Transactions on Software Engineering 41.2 (2015),
pp. 157–175.

[BVK13] A. Brunnert, C. Vögele, and H. Krcmar. “Automatic Performance
Model Generation for Java Enterprise Edition (EE) Applications”.
In: Computer Performance Engineering: 10th European Workshop,
EPEW 2013, Venice, Italy, September 16-17, 2013. Proceedings.
Springer, 2013, pp. 74–88.

[Bru05] G. Bruns. “Foundations for features”. In: Feature Interactions in
Telecommunications and Software Systems VIII. IOS Press, 2005,
pp. 3–11.

[CM06] M. Calder and A. Miller. “Feature interaction detection by pairwise
analysis of LTL properties: A case study”. In: Formal Methods in
System Design 28.3 (2006), pp. 213–261.

[Cal+03] M. Calder et al. “Feature Interaction: A Critical Review and
Considered Forecast”. In: Computer Networks 41.1 (2003), pp. 115–
141.

[CS14] G. Chandrashekar and F. Sahin. “A survey on feature selection
methods”. In: Computers & Electrical Engineering 40.1 (2014),
pp. 16–28.

[Cla+10] A. Classen et al. “Model checking lots of systems: Efficient verifi-
cation of temporal properties in software product lines”. In: Proc.
ICSE. ACM. 2010, pp. 335–344.

[Cor+12] M. Cordy et al. “Simulation-Based Abstractions for Software
Product-Line Model Checking”. In: Proc. ICSE. ACM, 2012,
pp. 672–682.

[Cor+10] V. Cortellessa et al. “A process to effectively identify “guilty” perfor-
mance antipatterns”. In: International Conference on Fundamental
Approaches to Software Engineering. Springer. 2010, pp. 368–382.

125

BIBLIOGRAPHY

[CE00] K. Czarnecki and U. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, 2000.

[DCB09] B. Delaware, W. Cook, and D. Batory. “Fitting the Pieces Together:
A Machine-Checked Model of Safe Composition”. In: Proc. FSE.
ACM, 2009, pp. 243–252.

[Dom00] P. Domingos. “A unified bias-variance decomposition”. In: Proceed-
ings of International Conference on Machine Learning (ICML).
Morgan Kaufmann, 2000, pp. 231–238.

[Dom12] A. Dominguez. “Detection of Feature Interactions in Automotive
Active Safety Features”. PhD thesis. University of Waterloo, 2012.

[DR11] Thai Duong and Juliano Rizzo. “Here come the Ninjas. 2011”.
In: Manuscript, https : / / web . archive . org / web /
20150630133214/http://www.hpcc.ecs.soton.ac.
uk/~dan/talks/bullrun/Beast.pdf (2011).

[Fer+15] G. Ferreira et al. “Characterizing complexity of highly-configurable
systems with variational call graphs: Analyzing configuration op-
tions interactions complexity in function calls”. In: Proc. HotSoS.
ACM, 2015, 17:1–2.

[Fly06] B. Flyvbjerg. “Five misunderstandings about case-study research”.
In: Qualitative Inquiry 12.2 (2006), pp. 219–245.

[GC11] B. Garvin and M. Cohen. “Feature interaction faults revisited: An
exploratory study”. In: Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 2011, pp. 90–
99.

[GS03] J. Greenfield and K. Short. “Software factories: assembling applica-
tions with patterns, models, frameworks and tools”. In: Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. ACM. 2003,
pp. 16–27.

[GS06] C. Grelck and S.-B. Scholz. “SaC—A functional array language
for efficient multi-threaded execution”. In: International Journal
of Parallel Programming 34.4 (2006), pp. 383–427.

[Guo+13] J. Guo et al. “Variability-aware performance prediction: A sta-
tistical learning approach”. In: Proc. ASE. IEEE, 2013, pp. 301–
311.

[Hal05] R. Hall. “Fundamental Nonmodularity in Electronic Mail”. In:
Automated Software Engineering 12.1 (2005), pp. 41–79.

126

https://web.archive.org/web/20150630133214/http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf
https://web.archive.org/web/20150630133214/http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf
https://web.archive.org/web/20150630133214/http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf

BIBLIOGRAPHY

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statis-
tical learning 2nd edition. Springer, 2009.

[Jac12] P. Jaccard. “The distribution of the flora in the alpine zone.” In:
New phytologist 11.2 (1912), pp. 37–50.

[JZ98] Michael Jackson and Pamela Zave. “Distributed feature composi-
tion: A virtual architecture for telecommunications services”. In:
IEEE Transactions on Software Engineering 24.10 (1998), pp. 831–
847.

[Jam+13] G. James et al. An introduction to statistical learning. Vol. 112.
Springer, 2013.

[Jay+07] P. Jayaraman et al. “Model Composition in Product Lines and
Feature Interaction Detection Using Critical Pair Analysis”. In:
Proceedings of the International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS). LNCS 4735. Springer,
2007, pp. 151–165.

[JHF12] M. Johansen, Ø. Haugen, and F. Fleurey. “An Algorithm for
Generating t-wise Covering Arrays from Large Feature Models”.
In: Proc. SPLC. ACM, 2012, pp. 46–55.

[Joh+12] M. Johansen et al. “A Technique for Agile and Automatic Interac-
tion Testing for Product Lines”. In: Testing Software and Systems.
LNCS 7641. Springer, 2012, pp. 39–54.

[Kan+90] K. Kang et al. Feature-oriented domain analysis (FODA) feasibility
study. Tech. rep. CMU/SEI-90-TR-21, 1990.

[KA09] C. Kästner and S. Apel. “Virtual separation of concerns-a second
chance for preprocessors”. In: Journal of Object Technology 8.6
(2009), pp. 59–78.

[KAK08] C. Kästner, S. Apel, and M. Kuhlemann. “Granularity in soft-
ware product lines”. In: Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on. IEEE. 2008,
pp. 311–320.

[KAO11] C. Kästner, S. Apel, and K. Ostermann. “The Road to Feature
Modularity?” In: Proceedings of the International Workshop on
Feature-Oriented Software Development (FOSD). ACM, 2011, 5:1–
5:8.

127

BIBLIOGRAPHY

[Kas+09] C. Kastner et al. “FeatureIDE: A tool framework for feature-
oriented software development”. In: Software Engineering, 2009.
ICSE 2009. IEEE 31st International Conference on. IEEE. 2009,
pp. 611–614.

[Käs+09] C. Kästner et al. “On the Impact of the Optional Feature Problem:
Analysis and Case Studies”. In: Proceedings of the International
Software Product Line Conference (SPLC). Software Engineering
Institute, 2009, pp. 181–190.

[Käs+12] C. Kästner et al. “Type Checking Annotation-Based Product
Lines”. In: ACM Trans. on Software Engineering and Methodology
21.3 (2012), 14:1–14:29.

[Kic+97] G. Kiczales et al. “Aspect-oriented programming”. In: Object-
oriented programming (ECOOP) (1997), pp. 220–242.

[KBK11] C. Kim, D. Batory, and S. Khurshid. “Reducing combinatorics in
testing product lines”. In: Proc. AOSD. ACM, 2011, pp. 57–68.

[KKB08] C. Kim, C. Kästner, and D. Batory. “On the modularity of feature
interactions”. In: Proceedings of the International Conference on
Generative Programming and Component Engineering (GPCE).
ACM, 2008, pp. 23–34.

[Kol+13] S. Kolesnikov et al. “A comparison of product-based, feature-based,
and family-based type checking”. In: Generative Programming:
Concepts and Experiences, (GPCE). ACM, 2013, pp. 115–124.

[Kol+18] S. Kolesnikov et al. “Tradeoffs in modeling performance of highly
configurable software systems”. In: Software and Systems Modeling
(SoSyM) (Feb. 2018). Online first, pp. 1–19.

[Kuc+13] S. Kuckuk et al. “A Generic Prototype to Benchmark Algorithms
and Data Structures for Hierarchical Hybrid Grids”. In: Parallel
Computing: Accelerating Computational Science and Engineering
(CSE). IOS Press. 2013, pp. 813–822.

[KWG04] D. Kuhn, D. Wallace, and A. Gallo, Jr. “Software Fault Interactions
and Implications for Software Testing”. In: IEEE Transactions on
Software Engineering (TSE) 30.6 (2004), pp. 418–421.

[LTP09] K. Lauenroth, S. Toehning, and K. Pohl. “Model Checking of
Domain Artifacts in Product Line Engineering”. In: Proc. ASE.
IEEE, 2009, pp. 269–280.

128

BIBLIOGRAPHY

[LA11] C. Lengauer and S. Apel. “Feature-Oriented System Design and
Engineering”. In: International Journal of Software and Informatics
(IJSI) 5.1–2, Part II (2011). Special Issue on Foundations and
Practice of Systems and Software Engineering, Festschrift in Honor
of Manfred Broy., pp. 231–244.

[LKF02] H. Li, S. Krishnamurthi, and K. Fisler. “Verifying Cross-cutting
Features as Open Systems”. In: Proc. FSE. ACM, 2002, pp. 89–98.

[LW02] A. Liaw and M. Wiener. “Classification and regression by random-
Forest”. In: R News 2.3 (2002), pp. 18–22.

[LKA11] J. Liebig, C. Kästner, and S. Apel. “Analyzing the discipline of
preprocessor annotations in 30 million lines of C code”. In: Pro-
ceedings of the tenth international conference on Aspect-oriented
software development. ACM. 2011, pp. 191–202.

[Lie15] Jörg Liebig. “Analysis and Transformation of Configurable Sys-
tems.” PhD thesis. University of Passau, 2015.

[Lie+10] J. Liebig et al. “An analysis of the variability in forty preprocessor-
based software product lines”. In: Software Engineering, 2010
ACM/IEEE 32nd International Conference on. Vol. 1. IEEE. 2010,
pp. 105–114.

[Lie+13] J. Liebig et al. “Scalable Analysis of Variable Software”. In: Proc.
ESEC/FSE. ACM, 2013, pp. 81–91.

[LKB14] M. Lillack, C. Kästner, and E. Bodden. “Tracking load-time con-
figuration options”. In: Proc. ASE. ACM, 2014, pp. 445–456.

[LBL06] J. Liu, D. Batory, and C. Lengauer. “Feature oriented refactor-
ing of legacy applications”. In: Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 2006, pp. 112–
121.

[LBL11] Jing Liu, Samik Basu, and Robyn Lutz. “Compositional model
checking of software product lines using variation point obligations”.
In: Automated Software Engineering 18.1 (Mar. 2011), pp. 39–76.

[MB07] O. Maqbool and H. Babri. “Hierarchical clustering for software
architecture recovery”. In: IEEE Transactions on Software Engi-
neering 33.11 (2007), pp. 759–780.

[Mem+12] R. Membarth et al. “Generating Device-specific GPU Code for
Local Operators in Medical Imaging”. In: Proceedings of the Inter-
national Parallel & Distributed Processing Symposium (IPDPS).
IEEE. 2012, pp. 569–581.

129

BIBLIOGRAPHY

[Moh92] C. Mohan. “Interactions Between Query Optimization and Con-
currency Control”. In: Proceedings of the International Workshop
on Research Issues on Data Engineering: Transaction and Query
Processing (RIDE-TQP). IEEE, 1992, pp. 26–35.

[MP04] J. Myung and M. Pitt. “Model comparison methods”. In: Methods
in Enzymology 383 (2004), pp. 351–366.

[Ngu+16] T. Nguyen et al. “iGen: Dynamic interaction inference for config-
urable software”. In: Proc. FSE. ACM, 2016, pp. 655–665.

[NLN08] A. Nhlabatsi, R. Laney, and B. Nuseibeh. “Feature interaction:
The security threat from within software systems”. In: Progress in
Informatics 5 (2008), pp. 75–89.

[OMR10] S. Oster, F. Markert, and P. Ritter. “Automated Incremental
Pairwise Testing of Software Product Lines”. In: Proc. SPLC.
LNCS 6287. Springer, 2010, pp. 196–210.

[Pas+15] L. Passos et al. “Feature scattering in the large: a longitudinal
study of Linux kernel device drivers”. In: Proceedings of the 14th
International Conference on Modularity. ACM, 2015, pp. 81–92.

[Pie02] B. C. Pierce. Types and programming languages. MIT press, 2002.

[PBvD05] K. Pohl, G. Böckle, and F. van Der Linden. Software product line
engineering: foundations, principles and techniques. Springer, 2005.

[Poo00] R. Pooley. “Software Engineering and Performance: A Roadmap”.
In: Proceedings of the Conference on The Future of Software Engi-
neering. ACM, 2000, pp. 189–199.

[Pre97] C. Prehofer. “Feature-oriented programming: A fresh look at ob-
jects”. In: Object-Oriented Programming (ECOOP) (1997), pp. 419–
443.

[Pre04] C. Prehofer. “Plug-and-play composition of features and feature
interactions with statechart diagrams”. In: Software and Systems
Modeling 3.3 (2004), pp. 221–234.

[Qia+13] Y. Qiao et al. “Analyzing malware by abstracting the frequent
itemsets in API call sequences”. In: Proc. TrustCom. IEEE, 2013,
pp. 265–270.

[Rei+10] E. Reisner et al. “Using symbolic evaluation to understand behavior
in configurable software systems”. In: Proc. ICSE. ACM, 2010,
pp. 445–454.

130

BIBLIOGRAPHY

[RGP12] T. Repasi, S. Giessl, and C. Prehofer. “Using model-checking for the
detection of non-functional feature interactions”. In: Proceedings
of the International Conference on Intelligent Engineering Systems
(INES). IEEE, 2012, pp. 167–172.

[Ros+09] M. Rosenmüller et al. “Tailor-Made Data Management for Em-
bedded Systems: A Case Study on Berkeley DB”. In: Data &
Knowledge Engineering (DKE) 68.12 (2009), pp. 1493–1512.

[Sal04] David Salomon. Data compression: the complete reference. Springer
Science & Business Media, 2004.

[SW11] C. Sammut and G. I Webb. Encyclopedia of machine learning.
Springer, 2011.

[Sar+15] A. Sarkar et al. “Cost-efficient sampling for performance prediction
of configurable systems”. In: Proc. ASE. IEEE, 2015, pp. 342–352.

[Say+13] A. Sayyad et al. “Scalable product line configuration: A straw
to break the camel’s back”. In: Proceedings of the International
Conference on Automated Software Engineering (ASE). IEEE,
2013, pp. 465–474.

[SY93] L. Schruben and E. Yucesan. “Complexity of Simulation Models a
Graph Theoretic Approach”. In: Proceedings of the Conference on
Winter Simulation. ACM, 1993, pp. 641–649.

[SSS07] F. Shull, J. Singer, and D.I.K. Sjøberg. Guide to Advanced Empir-
ical Software Engineering. Springer, 2007.

[Sie12] N. Siegmund. “Measuring and Predicting Non-Functional Proper-
ties of Customizable Programs”. PhD thesis. University of Magde-
burg, 2012.

[SvRA13] N. Siegmund, A. von Rhein, and S. Apel. “Family-based Perfor-
mance Measurement”. In: Proc. GPCE. ACM, 2013, pp. 95–104.

[Sie+15] N. Siegmund et al. “Performance-influence models for highly con-
figurable systems”. In: Proc. ESEC/FSE. ACM, 2015, pp. 284–
294.

[Sie+12] N. Siegmund et al. “Predicting Performance via Automated
Feature-Interaction Detection”. In: Proc. ICSE. IEEE, 2012,
pp. 167–177.

[Sie+13] N. Siegmund et al. “Scalable prediction of non-functional properties
in software product lines: Footprint and memory consumption”. In:
Information and Software Technology (IST) 55.3 (2013), pp. 491–
507.

131

BIBLIOGRAPHY

[Sim13] D. Simon. Evolutionary optimization algorithms. John Wiley &
Sons, 2013.

[SGC07] N. Singh, C. Gibbs, and Y. Coady. “C-CLR: a tool for navigating
highly configurable system software”. In: Proceedings of the 6th
workshop on Aspects, components, and patterns for infrastructure
software. ACM. 2007, p. 9.

[SPL17] SPLC. Hall of Fame. 2017. url: https://web.archive.
org/web/20171231211902/http://splc.net/hall-
of-fame/ (visited on 03/20/2018).

[SC09] D. Steinberg and P. Colla. “CART: Classification and regression
trees”. In: The top ten algorithms in data mining 9 (2009), p. 179.

[SC08] I. Steinwart and A. Christmann. Support Vector Machines.
Springer, 2008.

[TOS02] P. Tarr, H. Ossher, and S. Sutton Jr. “Hyper/J: Multi-Dimensional
Separation of Concerns for Java”. In: Proc. ICSE. ACM, 2002,
pp. 689–690.

[Tar13] R. Tartler. “Mastering variability challenges in Linux and re-
lated highly-configurable system software”. PhD thesis. Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), 2013.

[Tar+12] R. Tartler et al. “Configuration coverage in the analysis of large-
scale system software”. In: SIGOPS Operating Systems Review
(ACM OSR) 45.3 (2012), pp. 10–14.

[Tar+11] R. Tartler et al. “Feature Consistency in Compile-time-configurable
System Software: Facing the Linux 10,000 Feature Problem”. In:
Proc. EuroSys. ACM, 2011, pp. 47–60.

[Tha+07] S. Thaker et al. “Safe Composition of Product Lines”. In: Proc.
GPCE. ACM, 2007, pp. 95–104.

[The+10] E. Thereska et al. “Practical performance models for complex,
popular applications”. In: SIGMETRICS Performance Evaluation
Review 38.1 (2010), pp. 1–12.

[TBK09] T. Thum, D. Batory, and C. Kastner. “Reasoning about edits to
feature models”. In: Proceedings of the 31st International Con-
ference on Software Engineering. IEEE Computer Society. 2009,
pp. 254–264.

[Thü+14] T. Thüm et al. “A classification and survey of analysis strategies
for software product lines”. In: ACM Computing Surveys (CSUR)
47.1 (2014), p. 6.

132

https://web.archive.org/web/20171231211902/http://splc.net/hall-of-fame/
https://web.archive.org/web/20171231211902/http://splc.net/hall-of-fame/
https://web.archive.org/web/20171231211902/http://splc.net/hall-of-fame/

BIBLIOGRAPHY

[Thü+12a] T. Thüm et al. Analysis Strategies for Software Product Lines.
Tech. rep. FIN-004-2012. University of Magdeburg, 2012.

[Thü+12b] T. Thüm et al. “Family-based Deductive Verification of Software
Product Lines”. In: Proc. GPCE. ACM, 2012, pp. 11–20.

[vRhe16] A. von Rhein. “Analysis Strategies for Configurable Systems”. PhD
thesis. Universität Passau, 2016.

[vRhe+15] A. von Rhein et al. “Presence-condition simplification in highly
configurable systems”. In: Proc. ICSE. Vol. 1. IEEE, 2015, pp. 178–
188.

[vRhe+13] A. von Rhein et al. “The PLA Model: On the Combination of
Product-Line Analyses”. In: Proc. VaMoS. ACM, 2013, pp. 73–80.

[Wal87] J. Wallace. “The control and transformation metric: Toward the
measurement of simulation model complexity”. In: Proceedings of
the Conference on Winter Simulation. ACM, 1987, pp. 597–603.

[WE05] M. Weiss and B. Esfandiari. “On Feature Interactions Among
Web Services.” In: International Journal of Web Services Research
(IJWSR) 2.4 (2005), pp. 22–47.

[WEL07] M. Weiss, B. Esfandiari, and Y. Luo. “Towards a classification
of web service feature interactions”. In: Computer Networks 51.2
(2007), pp. 359–381.

[Wes+12] D. Westermann et al. “Automated inference of goal-oriented perfor-
mance prediction functions”. In: Proc. ASE. ACM, 2012, pp. 190–
199.

[Wic+95] BA Wichmann et al. “Industrial perspective on static analysis”.
In: Software Engineering Journal 10.2 (1995), pp. 69–75.

[YCP06] C. Yilmaz, M. Cohen, and A. Porter. “Covering Arrays for Effi-
cient Fault Characterization in Complex Configuration Spaces”. In:
IEEE Transactions on Software Engineering (TSE) 32.1 (2006),
pp. 20–34.

[Yin03] R. Yin. Case Study Research–Design and Methods. Sage, 2003.

[Zha+16] Y. Zhang et al. “A mathematical model of performance-relevant
feature interactions”. In: Proceedings of the International Systems
and Software Product Line Conference. ACM. 2016, pp. 25–34.

[Zha+15] Y. Zhang et al. “Performance prediction of configurable software
systems by fourier learning”. In: Proc. ASE. IEEE. 2015, pp. 365–
373.

133

Appendix

A.1 Influence of Configuration Options and
their Interactions

Table A.1: A list of the most influential configuration options and interactions
grouped by subject system. For each configuration option and interaction, we
indicate its influence on performance and give a description. We also denote if
the configuration option (if enabled) or interaction (if present) increases (↑) or
decreases (↓) the performance of the system.

№ Config. Option/
Interaction

Influence Description

Apache
1 KeepAlive 876.61 ↑ Allow multiple requests over the same

TCP connection; speeds up transmis-
sion

2 HostnameLookups -233.61 ↓ Perform a DNS lookup for every re-
quest; causes communication over-
head

3 InMemory 197.48 ↑ Copy specified files into RAM on
startup; reduces I/O

4 AccessLog -116.80 ↓ Log every request in the logfile on
disk; causes I/O overhead

5 InMemory ·KeepAlive 166.87 ↑ Files cached in RAM are served over
the same connection; speeds up trans-
mission

134

APPENDIX

6 AccessLog ·KeepAlive -157.49 ↓ Disk I/O induced by logging reduces
performance even if KeepAlive is en-
abled

AJStats
1 CodeFormatter 3048.44 ↓ Preprocess code for parsing; avoids

unnecessary parsing
2 Interfaces -304.99 ↑ Disable interfaces statistics; speeds

up processing
3 ClassMethods -198.27 ↑ Disable calls-methods statistics;

speeds up processing
4 ClassConstructors ·

CodeFormatter
-664.49 ↑ Disable constructor statistics; the ef-

fect is increased in the presence of
CodeFormatter

BDB-C
1 PS16K -1.10 ↑ Set page size to 16K; read longer por-

tions of data from the disk and speed
up data retrieval

2 PS32K -1.06 ↑ Same as 1
3 HAVE_CRYPTO ·

HAVE_HASH ·PS32K
43.29 ↓ Hash data structure performs poorly

if the stored data is encrypted
4 HAVE_CRYPTO ·

HAVE_HASH ·PS16K
16.73 ↓ Same as 3, but the performance de-

crease is smaller with smaller page
size

BDB-J
1 S1MiB 44078 ↓ Sets recovery log size to 1MB (default

is 100MB); increases I/O overhead
2 Finest · S1MiB 222790 ↓ Save maximum possible recovery in-

formation in multiple small recovery
log files; increases I/O overhead

Clasp
1 heuristicUnit 345493 ↓ Enable Unit heuristic with an expen-

sive Lookahead operation
2 eq -92677 ↑ Enable preprocessing that may re-

duce the problem and speed up solv-
ing

3 heuristic -35218 ↑ Enable Berkmin-Heuristic; faster
than Unit-heuristic

4 satPreproYes 19959 ↓ Enable SatElite-like preprocessing
that may reduce the problem; pre-
processing introduces overhead

135

A.1. INFLUENCES OF INTERACTIONS

5 eq · heuristicUnit -163900 ↑ The heuristic works on the reduced
problem and can solve it faster

6 heuristicUnit ·
satPreproYes

-148980 ↑ The problem is reduced through pre-
processing and solved faster by the
Unit heuristic

DUNE
1 post0 2793.76 ↓ Disable postprocessing steps; without

postprocessing the main algorithm re-
quires more time to calculate a so-
lution, which results in a decreased
performance

2 cells50 -1605.82 ↑ Set the size of the computation do-
main (workload) to 50 (the smallest
workload)

3 CGSolver · post0 · pre1 17946.17 ↓ The interaction describes a data
pipeline including a solver, a post,
and a pre-processing step

4 CGSolver · cells55 ·
post0 · pre1

12810.57 ↓ The interaction describes a data
pipeline as in 3 plus the cells55 option,
which sets the highest workload for
the pipeline

HSMGP
1 Smoother_GSACBE 4669.89 ↓ Enable the GSACBE smoother,

which is an essential part of the multi-
grid algorithm; GSACBE is one of the
slower smoothers

2 Smoother_GS -513.12 ↑ Enable the GS smoother, which is
faster than GSACBE

3 Smoother_GSACBE ·
numPost_0 · numPre_1

-4976.29 ↑ The interaction denotes a data
pipeline with a pre, post-processing,
and a smoother

4 Smoother_GSACBE ·
numPost_0 · numPre_2

-3377.14 ↑ Same as in 3, but increasing the num-
ber of pre-processing steps reduces
performance compared to 3

LLVM
1 gvn 24.27 ↓ Enable Global Value Numbering op-

timization; introduces computational
overhead

2 instcombine 17.61 ↓ Enable combining of redundant in-
structions; introduces computational
overhead

136

APPENDIX

3 inline 10.67 ↓ Enable code inlining; introduces com-
putational overhead

4 inline · licm 31.57 ↓ More code is inlined in the loops that
are processed by licm, introducing
more computation overhead and de-
creasing performance

Lrzip
1 compressionZpaq 2032161.26 ↓ Enable ZPAQ compression (slower

than the default BZip2)
2 compression 193262.66 ↓ Enable the default BZip2 compres-

sion
3 compressionZpaq ·

level9
3433850.93 ↓ The interaction describes the influ-

ence of ZPAQ algorithm with the
highest compression level 9 on per-
formance

4 compressionZpaq ·
level8

3415670.93 ↓ Same as in 3, but a lower compression
level results in a slightly increased
performance compared to 3

x264
1 ref_1 -349.61 ↑ Set the number of reference frames

to 1 (the default is 9); less refer-
ence frames means less workload and
higher performance

2 ref_5 -178.68 ↑ Same as in Line 1, but the increase in
performance is twice as less as in Line
1 because of more reference frames

3 no_fast_pskip · ref_9 110.22 ↓ Fast-P-Skip can increase encoding
speed; it is more effective with more
reference frames; disabling Fast-P-
Skip with 9 reference frames decreases
performance

137

A.2. MATERIALS PRESENTED TO THE INTERVIEWEES

A.2 Materials Presented to the Interviewees

Interview I (HSMGP)

HSMGP

post-smoothing
[0,…,6]

3

pre-smoothing
[0,…,6]

3

sum (pre-smoothing, post-smoothing) > 0

coarse grid solver

IP_CG IP_AMGRED_AMG

smoother

GSACGSJac BSRBGS RBGSAC

Number of Cores
[64,256,1024,4096]

64

Mandatory

Optional

XOR group
OR group

(round 9, error 18.27)

+ 310.0 · root + 200.0 · Smoother_GSACBE
− 120.0 · Smoother_GS − 120.0 · Smoother_JAC

− 160.0 · Smoother_GSAC − 13.0 · CGS_IP _AMG
+ 4.2 · pre · pre + 310.0 · Smoother_GSACBE · post

+ 45.0 · Smoother_GSACBE · pre · pre + 3.6 · Smoother_GSAC · post · post

(round 13, error 7.17)

+ 150.0 · root − 30.0 · Smoother_GSACBE
− 120.0 · Smoother_GS − 120.0 · Smoother_JAC

− 85.0 · Smoother_GSAC − 13.0 · CGS_IP _AMG
+ 28.0 · post + 27.0 · pre

+ 1.4 · pre · pre + 300.0 · Smoother_GSACBE · post
+ 310.0 · Smoother_GSACBE · pre + 0.0027 · post · numCore

− 1.8 · Smoother_GSACBE · pre · pre − 0.90 · Smoother_GSAC · post · post

(round 19, error 2.83)

+ 120.0 · root + 13.0 · Smoother_GSACBE
− 31.0 · Smoother_GS − 26.0 · Smoother_JAC

− 11.0 · Smoother_GSAC − 17.0 · CGS_IP _AMG
+ 21.0 · post + 18.0 · pre

+ 1.8 · pre · pre + 290.0 · Smoother_GSACBE · post
+ 320.0 · Smoother_GSACBE · pre + 0.0027 · post · numCore
+ 19.0 · pre · Smoother_GSRBAC + 12.0 · pre · Smoother_GSRB

+ 2.0 · post · post − 1.6 · Smoother_GSACBE · pre · pre
− 2.1 · Smoother_GSAC · post · post − 0.41 · CGS_IP _AMG · pre · pre

− 2.5 · Smoother_GS · post · post − 2.4 · Smoother_JAC · post · post

Complexity

2.0 · Smoother_JAC
2.0 · pre · post

2.0 · Smoother_JAC · pre · post
2.0 · Smoother_JAC · pre · post · numCores

1

138

APPENDIX

Interview II (HIPACC)

HIPAcc

API

CUDA

Texture Memory

OpenCL Linear2D Array2D

Padding
[0,32,…,512]

0

 Pixels per Thread
[1,2,3,4]

1

¬(OpenCL ˄ Linear1D)
¬(OpenCL ˄ Linear2D)

¬(OpenCL ˄ Ldg)

Blocksize

¬(Local Memory ˄ 1024x1 ˄ Pixel Per Thread = 2)
¬(Local Memory ˄ 32x32 ˄ Pixel Per Thread = 3)
¬(Local Memory ˄ 64x16 ˄ Pixel Per Thread = 3)

Local Memory

32x1 64x16

128x1 128x2 128x4 128x8 256x4 512x1 512x2 1024x1

Ldg

32x2 32x4 64x2 64x8

256x1 256x2

(Array2D Padding = 0)

¬(Local Memory ˄ 128x8 ˄ Pixel Per Thread = 3)
¬(Local Memory ˄ 256x4 ˄ Pixel Per Thread = 3)
¬(Local Memory ˄ 512x2 ˄ Pixel Per Thread = 3)

¬(Local Memory ˄ 1024x1 ˄ Pixel Per Thread = 3)
¬(Local Memory ˄ 32x32 ˄ Pixel Per Thread = 4)
¬(Local Memory ˄ 64x16 ˄ Pixel Per Thread = 4)

¬(Local Memory ˄ 128x8 ˄ Pixel Per Thread = 4)
¬(Local Memory ˄ 256x4 ˄ Pixel Per Thread = 4)
¬(Local Memory ˄ 512x2 ˄ Pixel Per Thread = 4)

¬(Local Memory ˄ 1024x1 ˄ Pixel Per Thread = 4)

32x1632x8 64x432x32 64x1

Linear1D

Mandatory

Optional

XOR group
OR group

(round 2, error 14.67)

+ 26.0 · root + 15.0 · bs_1024x1
+ 13.0 · LocalMemory

(round 9, error 6.93)

+ 27.0 · root + 18.0 · bs_1024x1
+ 15.0 · LocalMemory + 11.0 · bs_512x2

+ 19.0 · bs_32x1 + 8.4 · bs_256x4
+ 7.4 · bs_32x32 + 7.1 · bs_128x8
+ 7.0 · bs_64x16 − 1.1 · pixelP erT hread;

(round 27, error 3.11)

+ 27.0 · root − 2.3 · bs_1024x1
+ 30.0 · LocalMemory − 3.9 · bs_512x2

+ 60.0 · bs_32x1 + 8.0 · bs_256x4
+ 7.0 · bs_32x32 + 6.8 · bs_128x8
+ 6.7 · bs_64x16 − 1.7 · pixelP erT hread
+ 2.7 · bs_512x1 + 0.29 · Array2D
− 1.7 · bs_64x2 + 0.55 · bs_256x2
− 2.1 · bs_32x4 − 1.5 · bs_128x2
− 1.6 · bs_64x4 − 28.0 · pixelP erT hread · bs_32x1

+ 16.0 · pixelP erT hread · bs_1024x1 + 12.0 · pixelP erT hread · bs_512x2
− 0.56 · pixelP erT hread · bs_128x1 − 13.0 · pixelP erT hread · LocalMemory
+ 1.0 · pixelP erT hread · Array2D; + 3.9 · bs_32x1 · pixelP erT hread · pixelP erT hread

+ 0.036 · pixelP erT hread · pixelP erT hread · pixelP erT hread − 2.6 · bs_1024x1 · pixelP erT hread · pixelP erT hread
− 2.1 · bs_512x2 · pixelP erT hread · pixelP erT hread + 2.3 · pixelP erT hread · LocalMemory · pixelP erT hread

Complexity

2.0 · Smoother_JAC
2.0 · pre · post

2.0 · Smoother_JAC · pre · post
2.0 · Smoother_JAC · pre · post · numCores

2139

A.2. MATERIALS PRESENTED TO THE INTERVIEWEES

Interview III (DUNE)

Dune MGS

post-smoothing
[0,…,6]

3

pre-smoothing
[0,…,6]

3

sum (pre-smoothing, post-smoothing) > 0

preconditioner

GS

solver

CG LoopBicGSTAB Gradient

Number of Cells
[50,…,55]

50

SOR

Mandatory

Optional

XOR group
OR group

(round 1, error 13.74)

− 23000.0 · root + 640.0 · cells

(round 13, error 7.26)

+ 180000.0 · root − 5300.0 · cells
− 1000.0 · post + 6800.0 · GradientSolver

+ 600.0 · BiCGST ABSolver − 110.0 · cells · GradientSolver
+ 2.6 · cells · pre + 1.9 · cells · post · post

+ 530.0 · GradientSolver · pre · pre + 0.70 · cells · cells · cells
+ 380.0 · GradientSolver · post · post − 38.0 · BiCGST ABSolver · pre · pre

− 11.0 · cells · GradientSolver · pre · pre − 8.3 · cells · GradientSolver · post · post

(round 25, error 3.54)

+ 670000.0 · root − 19000.0 · cells
− 2800.0 · post − 5000.0 · GradientSolver

+ 1200.0 · BiCGST ABSolver + 11000.0 · pre
+ 130.0 · cells · GradientSolver − 200.0 · cells · pre

+ 1700.0 · post · SeqSOR − 350.0 · post · GradientSolver
+ 220.0 · post · BiCGST ABSolver + 8.3 · cells · post · post

+ 12000.0 · GradientSolver · pre · pre + 2.4 · cells · cells · cells
− 130.0 · GradientSolver · post · post − 16.0 · BiCGST ABSolver · pre · pre

− 0.098 · cells · pre · SeqGS − 4.6 · cells · pre · post
− 270.0 · post · SeqSOR · post − 440.0 · cells · GradientSolver · pre · pre

+ 2.7 · cells · GradientSolver · post · post + 2.2 · cells · pre · post · LoopSolver
+ 0.015 · cells · cells · cells · CGSolver + 9.7 · cells · pre · post · SeqGS

− 1.6 · cells · pre · SeqGS · post · post + 3.8 · GradientSolver · pre · pre · cells · cells

Complexity

2.0 · Smoother_JAC
2.0 · pre · post

2.0 · Smoother_JAC · pre · post
2.0 · Smoother_JAC · pre · post · numCores

3140

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Contributions and Key Results
	Outline

	Background
	Configurable Software Systems
	Notes on Terminology
	Variability Modeling
	Variability Implementation

	Feature Interactions
	Analysis of Configurable Systems
	Performance Prediction of ConfigurableSystems
	Performance-Influence Models
	Multiple Linear Regression
	Learning Performance-Influence Models

	Summary

	A Comparison of Analysis Strategies
	Product-Line Type Checking
	Examples of Type Errors
	Type Checking Product Lines
	Product-based Strategy
	Feature-based Strategy
	Family-based Strategy
	Summary

	Motivation and Hypotheses
	Empirical Evaluation
	Subject Systems
	Measurement Procedure
	Results
	Discussion

	Threats to Validity
	Related Work
	Summary

	Tradeoffs in Modeling Performance
	Motivation and Research Questions
	Use Cases of Influence Models
	Tradeoffs in Machine Learning
	Research Questions

	Empirical Study
	Learning Performance-Influence Models
	Measurement Procedure
	Measuring Model Properties
	Measuring Tradeoffs

	Subject Systems and Experimental Setup
	Results
	Discussion

	Threats to Validity
	Related Work
	Summary

	On the Relation of Feature Interactions
	Visibility of Feature Interactions
	External Feature Interactions
	Internal Feature Interactions

	Examples of Relations among Interactions
	Control-Flow Interactions (Internal, Operational)
	PerformanceInteractions(External, Non-functional)
	Relating Control-Flow and PerformanceInteractions

	Research Questions and Conceptual Framework
	Research Method
	Identifying Control-Flow Interactions
	Identifying Performance Interactions
	Relating Control-Flow and PerformanceInteractions
	Predicting Performance Interactions
	Subject Systems

	Results
	Performance Interactions
	Control-Flow Interactions
	Relating Interactions
	Predicting Performance Interactions

	Discussion
	Threats to Validity
	Related Work
	Summary

	Conclusion
	Bibliography
	Appendix
	Influences of Interactions
	Materials Presented to the Interviewees

