
UNIVERSITY OF PASSAU
Department of Informatics and Mathematics

MASTER THESIS

Predicate Granularity in
Predicate Abstraction

Author:

Sebastian Böhm

September 18, 2019

Advisors:

Prof. Dr. Sven Apel
Prof. Dr. Gordon Fraser

Andreas Stahlbauer

Sebastian Böhm:
Predicate Granularity in Predicate Abstraction
Master Thesis, University of Passau, 2019

ii

Abstract

Predicate abstraction is used to make software verification practicable by
reducing the size of the state-space that has to be explored to solve a certain
verification task. Abstraction predicates define what information of the pro-
gram under verification is retained in the abstract model and thus specify the
level of abstraction.

During previous work, we discovered that the granularity of the abstrac-
tion predicates, that is their size and structure, influences the performance
of predicate abstraction. While fine-grained predicates work well for some
verification tasks, the abstraction costs will explode for other programs—the
same applies to coarse-grained predicates.

In this work, we investigate the influence of the granularity of abstrac-
tion predicates on the performance of predicate abstraction. Therefore, we
develop several strategies on how knowledge about a program’s structure
can be used to determine a suitable predicate granularity for the verification
task at hand. We demonstrate the applicability of this approach with several
scenarios and investigate whether these results generalize to a wider variety
of programs.

iii

Contents

1 Introduction 1

2 Background 3
2.1 Program Representation . 3
2.2 Abstraction . 3
2.3 Abstraction Refinement . 5

2.3.1 CEGAR . 5
2.3.2 Craig Interpolation . 6

3 Predicate Granularity and Abstraction 7
3.1 The Abstraction Problem . 7
3.2 Predicate Granularity . 8

3.2.1 Predicate Granularity in CEGAR Algorithms 9

4 Strategies for Predicate Splitting 11
4.1 Split to Atoms . 11
4.2 Never Split . 11
4.3 Slicing-Based Predicate Splitting 12

4.3.1 Slicing Using the PDG 12
4.3.2 Slicing Using the CDG 13

4.4 SSA-Based Predicate Splitting 13

5 Evaluation 14
5.1 Research Questions . 14

5.1.1 Suitability of the Split Strategies 14
5.1.2 Efficiency and Effectiveness 15

5.2 Experiment Setup . 15
5.3 Sensibility Study . 18
5.4 Results . 20

5.4.1 Case Study SCENARIOS 20
5.4.2 Case Study SVCOMP . 24

5.5 Discussion . 28
5.6 Threats to Validity . 29

5.6.1 Internal Validity . 29
5.6.2 External Validity . 29

6 Related Work 31

7 Summary 33

iv

Bibliography 34

v

List of Figures

2.1 Example program for predicate abstraction 5

5.1 Control-flow graphs for the SCENARIOS case study 17
5.2 Quantile plots of the analysis CPU time for the results of the

sensibility study. 19
5.3 Results for the case study SCENARIOS grouped by scenario . . 21
5.4 ARG for scenario REACTIVE with split strategy ATOMIC (left)

and NONE (right) . 23
5.5 Scatter plots for the case study SVCOMP 24
5.6 Quantile plot of the number of refinements for the case study

SVCOMP . 25
5.7 Quantile plot of the analysis CPU time for the SVCOMP case

study. 26
5.8 Quantile plots for selected categories of the SVCOMP case study. 27

vi

List of Tables

5.1 Number of solved tasks by category and split strategy. 28

1

Chapter 1

Introduction

The heavy-work of modern software verification tools is usually done by
satisfiability solvers. The verification tool encodes the verification task into a
formula that is then given to the solver of choice to determine a solution. As
a consequence, the performance of the verification tool is heavily depending
on the performance of the solver and, without intimate knowledge about its
inner workings, it might be hard to optimize the performance of a verification
tool. So what can we—who we see the solver as a black box—do to improve
the performance?

At the heart of a verification algorithm often stands an abstraction proce-
dure that transforms the potentially infinite state-space of a program into a
finite abstract model on which the verification tool can then perform its anal-
ysis. In this work, we take a look at Boolean predicate abstraction—an abstrac-
tion technique that heavily relies on solver queries (in particular, it uses a
potentially expensive AllSAT query)—and how we can improve the problem
encoding such that the costs for the abstraction procedure are reduced.

During previous work, we encountered a scenario where splitting ab-
straction predicates into smaller parts caused the costs for the abstraction
computations to explode. The reason was that due to the smaller predicates,
the formula used in the abstraction procedure had an exponential number of
models that need to be enumerated by the AllSAT query. As a result, the
costs for the abstraction procedure grow more than exponentially with the
problem size. In a different case, however, such fine-grained predicates were
beneficial for the performance of predicate abstraction and keeping the pred-
icates intact lead to much longer running times. Obviously, none of both
strategies to shape the abstraction predicates is suitable in every case.

These observations lead to the notion of predicate granularity. This term
captures both, the size and the structure of abstraction predicates. In this
work, we explore how the granularity of predicates influences the perfor-
mance of predicate abstraction and thus, the verification procedure around
it. To get a better understanding of the context of this problem, we character-
ize the problem to find an abstraction of a program summary such that the
underlying verification task can be solved efficiently with the term abstrac-
tion problem. The abstraction procedure is usually not aware of the nature of
the underlying task, so we need to provide it with the necessary information.
This is usually done in the form of an abstraction precision which, in the case
of predicate abstraction, happens to be a set of abstraction predicates. These

Chapter 1. Introduction 2

predicates are usually obtained in an automated way, for example, using
Craig-interpolation. However, the granularity of the generated predicates
can still be changed afterwards and additional information about the verifi-
cation task, like the trace of an infeasible counterexample or simply control-
or data-flow dependencies of the program under verification, can be used to
guide this process.

Contributions In this work, we make the following contributions:

• We introduce the concept of predicate granularity and discuss its role in
predicate abstraction.

• We introduce the notion of an abstraction problem that builds the frame-
work for discussing the relationship between predicate granularity and
predicate abstraction.

• We develop several strategies for determining the granularity of pred-
icates based on additional information extracted from the program un-
der verification and provide implementations of these strategies based
on the verification tool CPAchecker.

• We perform an experimental study to show that our strategies outper-
form the current predicate split strategies of CPACHECKER in certain
situations and investigate whether these results generalize to a wider
variety of programs.

Overview The rest of this thesis is structured as follows: In Chapter 2, we
give some background information about software model checking, predi-
cate abstraction, and abstraction refinement. Chapter 3 introduces the ab-
straction problem and the concept of predicate granularity and discusses the
relationship between these two. The following Chapter 4 presents several
strategies for determining the granularity of predicates along with notes on
their implementation and integration in CPACHECKER. The applicability of
these strategies is investigated in an experimental study in Chapter 5. In the
end, we discuss some related work in Chapter 6 and conclude with Chapter 7
containing summarizing thoughts.

3

Chapter 2

Background

In this chapter, we provide background information about the most impor-
tant concepts referenced throughout this work. Where applicable, we use the
notation used in [21].

2.1 Program Representation

We denote a program as a tuple P = (X, L, l0, T) consisting of a set of vari-
ables X, a set of program locations L with a designated entry location l0 ∈ L
and a transition relation T. The elements τ ∈ T are tuples (l, ρ, l′) with
l, l′ ∈ L and ρ is a constraint over the variables in X ∪ X′ where X and X′

are the values of the variables at location l or l′ respectively. A program
defined as above forms a deterministic, finite automaton with the program
locations as its states and the program transitions as its transitions. The ini-
tial state of the automaton is the program’s entry location l0. The transitions
of the automaton are labeled with the constraints ρ as defined by the transi-
tion relation. Such an automaton is called the control-flow automaton (CFA) of
a program.

In this work, we look at software model checking based on reachability
analysis. The task of software model checking is to determine whether a pro-
gram satisfies a given property. A property can be encoded by introducing
a special error location E into the program’s transition system that can be
reached if and only if the program violates that property. The model check-
ing algorithm must then check if this error location E is reachable in this
transition system or not. This type of analysis is called reachability analysis.

2.2 Abstraction

For programs with an infinite state-space, model checking algorithms based
on reachability analysis may not terminate. To circumvent this problem, the
reachability analysis is performed using an abstract model of the real pro-
gram. The abstract model overapproximates the real program, meaning that
every path through the real program has a counterpart in the abstract model
(the converse is not necessarily true). As a result, the analysis is still sound
but it loses precision, i.e., the analysis may report error paths that are infea-
sible in reality.

Chapter 2. Background 4

This kind of reachability analysis is called abstract reachability analysis and
it is a form of abstract interpretation [10]. In abstract interpretation, an abstract
model of the real program is created using an abstract domain D = (C, E , J·K),
where C is the set of concrete states, E = (E,>,⊥,v,t) is a join-semi-lattice
over the set E of abstract states and J·K : E 7→ 2C is a concretization func-
tion mapping abstract states to sets of concrete states. The abstract domain
satisfies the properties J⊥K = ∅ and J>K = C. Also, for all lattice elements
e, e′ ∈ E it holds that Je t e′K ⊇ JeK ∪ Je′K. The abstract reachability analysis
then explores the state-space of the program under verification by summa-
rizing parts of the program, abstracting these summaries and conducting the
reachability analysis using these abstractions. Each of the summaries consists
of a collection of paths through the program and thus, represents a set of con-
crete program states. These summaries are abstracted into abstract states that
overapproximate the set of states represented by the summary itself. The ex-
ploration of the abstract state-space terminates whenever the abstract state
for the current block S1 is already entailed by another abstract state S2, i.e.,
when S1 v S2. In this way, an abstract reachability graph (ARG) is con-
structed.

Predicate Abstraction One commonly used abstract domain is the predicate
abstract domain [1, 16]. Intuitively, the state space of a program is partitioned
into a finite set of abstract states by a finite set Π of predicates over the pro-
gram’s variables. An abstract model of a program with respect to the pred-
icates in Π can be constructed automatically in the following way. Given a
formula ψ summarizing some part of a program (e.g. a block formula) and a
set of predicates Π, the predicate abstraction φ of ψ with respect to Π is the
strongest formula over Π such that ψ → φ, i.e. φ is an overapproximation of ψ.
Such a formula φ can be computed by building the conjunction of all models
of the formula f = p

∧
π∈Π π ⇔ vπ where each vπ is a unique propositional

variable [22]. This method requires an expensive AllSAT query to be solved.
There are other predicate abstraction techniques that avoid the AllSAT query
[17] or that trade computation cost for precision (e.g. cartesian predicate ab-
straction [3]), but these are not considered in this work.

Example Let’s consider the program block depicted in figure 2.1. In this
figure, the ovals are program locations and the arrows are transitions with
their operations annotated. Operations in square brackets are assumptions
that split the program’s control-flow. Now assume we want to compute an
abstraction at the orange marked location. The block formula ψ for this pro-
gram block looks like this:

ψ = (b1 = 0 ∧ a1 6= 0 ∧ b2 = 1) ∨ (b1 = 0 ∧ a1 = 0 ∧ b2 = b1)

The subscripts on the variable names are the static-single-assignment (SSA)
indices [12]. Let Π = {(π1, a1 6= 0), (π2, b2 = 1)} be our set of predicates.
Note that we give each predicate a name for the sake of this example. Also,
we have instantiated the predicates with the latest SSA indices. This results

Chapter 2. Background 5

int a;

int b = 0;

[a == 0]

[a != 0]

b = 1;

FIGURE 2.1: Example program for predicate abstraction

in the formula

f = ψ ∧ (π1 ⇔ (a1 6= 0)) ∧ (π2 ⇔ (b2 = 1))

which has exactly two models, namely π1 ∧ π2 and ¬π1 ∧ ¬π2. Therefore,
the predicate abstraction φ of ψ with respect to Π1 is:

φ1 = ((a1 6= 0) ∧ (b2 = 1)) ∨ (¬(a1 6= 0) ∧ ¬(b2 = 1))

2.3 Abstraction Refinement

As stated before, model checking an abstract model may report false errors
caused by a too imprecise model. In that case, the abstract model needs to
be refined. For a predicate abstraction based model checker, counterexample-
guided abstraction refinement (CEGAR) in conjunction with a refinement proce-
dure based on Craig-interpolation can be used to automate this process.

2.3.1 CEGAR
Counterexample-guided abstraction refinement (CEGAR) is a program verification
algorithm capable of automatically refining an initially coarse abstract model
until either the program is proven safe or a violation is found that is not an
artifact of a too coarse model [9].

When used with predicate abstraction, CEGAR starts with constructing
an abstract model using Π = ∅. In the first step, this model is given to
the model checker which either can prove the property at hand or reports a
violation along with a counterexample trace. This trace is a path through the
abstract model that reaches an error location defined by the property. How-
ever, it might be that such a path does not exist in the underlying program.
Therefore, in the second step of CEGAR, the counterexample is checked for
feasibility. If it is found feasible, the violation is indeed valid and the al-
gorithm terminates. Otherwise, the infeasibility proof is passed to the third
step of CEGAR—the refinement step. Here, the counterexample is analyzed
and new predicates are extracted and added to the set Π such that at least

Chapter 2. Background 6

this counterexample is removed from the abstract model that can be con-
structed using the new Π. These three steps are repeated until either the
abstract model—and therefore the corresponding program—is proven to ad-
here to the property at hand, or a true violation is found.

2.3.2 Craig Interpolation

We now take a more detailed look at the refinement step of the CEGAR al-
gorithm. Henzinger et al. observed that the infeasibility-proof of a spurious
counterexample trace encodes information about why it is infeasible [18].
They developed a method to extract additional facts (predicates) from the
infeasibility proof that rules out at least that specific spurious counterexam-
ple. This method utilizes Craig’s interpolation theorem [11] to extract the
new predicates.

Given two formulas φ− and φ+ whose conjunction is unsatisfiable, a Craig-
interpolant for (φ−, φ+) is a formula ψ for which the following properties
hold: (1) φ− ⇒ ψ, (2) ψ ∧ φ+ is unsatisfiable and (3) ψ only uses variables
common to φ− and φ+. For a counterexample l0

ρ0−→ l1 · · · ln−1
ρn−1−−→ ln, the

refinement procedure takes the counterexample’s trace formula
∧n−1

i=0 ρi as an
input. This formula is satisfiable if and only if the counterexample-path is
feasible. For each state li, i ∈ [1, n − 1]in the counterexample-path, the trace
formula is split into two formulas φ−

i and φ+
i at the corresponding location

and an interpolant for (φ−
i , φ+

i) is constructed. These interpolants can then
be transformed into abstraction predicates. The abstract model created with
these additional new predicates is guaranteed to not contain the counterex-
ample the predicates were extracted from.

7

Chapter 3

Predicate Granularity and
Abstraction

In this chapter, we take a detailed look at the role of abstraction predicates
and their granularity—that is, their size and structure—in predicate abstrac-
tion. We observed that the main performance bottleneck in predicate abstrac-
tion is the AllSAT query that is used to compute an overapproximation of
the path formula and its more than exponential costs. As we will see, the
granularity of predicates poses a degree of freedom in how we formulate the
AllSAT query. We will discuss this concept of predicate granularity in order
to come up with strategies for choosing a better granularity for the predi-
cates. This chapter only gives an intuition about how such strategies could
look like. For concrete implementations, we refer the reader to chapter 4.

3.1 The Abstraction Problem

Abstraction is a tool that is used because the problem at hand is too complex
to be handled efficiently otherwise. The abstraction procedure is responsible
for removing details from the problem input that are not needed for solv-
ing the underlying problem so that this problem becomes feasible. Because
of that close connection between a problem at hand and an appropriate ab-
straction, we believe that it is important to look at abstraction not in isolation,
but in the context of that accompanying problem. We call this configuration
an abstraction problem.

An abstraction problem can be divided into three parts: an input sum-
mary, the underlying task and the abstraction procedure itself. The main
issue is to determine which information of the input summary is needed to
solve the underlying task and how can be ensured that this information is
preserved in the abstraction. The abstraction procedure might not be aware
of the underlying problem and therefore, does not know which information
should be retained in the abstract model and which not. It is the responsibil-
ity of the user to guide the abstraction process and provide this information,
for example in the form of an abstraction precision. Such information can, for
example, be extracted from the input of the underlying problem. In the case
of software verification, that input is computer programs that have a well-
known structure and a lot of analysis and metrics are available to obtain all

Chapter 3. Predicate Granularity and Abstraction 8

kinds of information that might be helpful to the abstraction procedure and
problem at hand.

In software model checking, abstraction is used to reduce the size of the
state-space of the program under verification. The abstraction technique we
take a look at is Boolean predicate abstraction. Our definition of an abstrac-
tion problem translates to this setting as follows: The underlying problem
is a verification problem, that is, to decide whether a specific error state in
the program’s state-space is reachable or not. The abstraction procedure con-
structs abstract states by summarizing the concrete states inside a program
block into an abstract state (cf. 2). The abstraction must ensure that an er-
ror location in the abstract model is reachable if and only if a corresponding
error location is reachable in the real program. The abstract model’s level of
abstraction is defined by an abstraction precision, a set of predicates that is re-
sponsible for partitioning the concrete states. Typically, these predicates stem
from a refinement procedure and include information necessary for correctly
solving the verification task at hand.

3.2 Predicate Granularity

Let’s look again at the example shown in figure 2.1 in the previous chapter.
We used the abstraction precision Π1 = {(π1, a1 6= 0), (π2, b2 = 1)} to com-
pute an abstraction of the block formula ψ:

ψ = (b1 = 0 ∧ a1 6= 0 ∧ b2 = 1) ∨ (b1 = 0 ∧ a1 = 0 ∧ b2 = b1)

The abstraction formula we constructed for this had two models. Now let
Π2 = {(π1, a1 6= 0 ∧ b2 = 1)} be another set of predicates. The resulting
abstraction formula f2 has only one model, namely π1, and the abstracted
formula φ2 looks like the following:

φ2 = π1 = (a1 6= 0 ∧ b2 = 1)

One can easily see that different sets of predicates result in different abstrac-
tions. In particular, the abstraction constructed using Π2 is more specific than
the one constructed with Π1. Also, note that the number of models of the
abstraction formula is different for the abstraction precisions Π1 and Π2.

In the above example, the abstraction precision Π1 can be constructed
by splitting the predicate of Π2 into a set of smaller—more fine-grained—
predicates. During previous work, we observed that this difference in the
granularity of the abstraction predicates influences how expensive the ab-
straction computation is. Depending on whether the abstraction precision
consists of a few larger, coarse-grained predicates or more but finer-grained
predicates, the performance of the abstraction procedure differed severely.
In one case the analysis would complete in a matter of seconds, while in the
other case the analysis would not terminate in a reasonable amount of time.

The example already hints at one important aspect: The predicate ab-
straction procedure relies on an AllSAT-query that has costs polynomial in

Chapter 3. Predicate Granularity and Abstraction 9

the number of models the formula in that query has. As this number grows
exponentially with the number of predicates in the worst case, their granu-
larity can have a severe influence on the performance of predicate abstrac-
tion. Intuitively, having very coarse-grained predicates should reduce the
overall number of models as they tend to be larger, more complex, and fewer
in number. However, very coarse-grained predicates may be too specific so
that the verification task at hand cannot be solved with the resulting abstract
model. In this case, other mechanisms are needed to counteract this problem
(e.g. additional CEGAR iterations). Also, large and complex predicates add
to the overall complexity of the abstraction formula what in turn increases
the costs to solve the AllSAT query. More fine-grained predicates, on the
other hand, give the abstraction procedure more flexibility in its task of over-
approximating the given block formula. This is especially important in the
presence of loops to find appropriate loop invariants. But, as demonstrated
in the example above, very fine-grained predicates are prone to increasing
the number of models of the abstraction formula leading to a more expen-
sive AllSAT query.

There is a second aspect to our notion of predicate granularity besides
predicate size, that is, the structure of the predicates. The structure of the ab-
straction predicates determines what information they encode that can help
the analysis to converge faster towards an abstract model that does not con-
tain any spurious counterexamples. The goal is to find a good compromise
for the granularity of predicates that retains all relevant information for the
verification task at hand while allowing the abstraction procedure to gener-
alize. Strategies for achieving that goal are discussed in the next chapter.

3.2.1 Predicate Granularity in CEGAR Algorithms

Now that the notion of predicate granularity is introduced, this concept needs
to be integrated into a suitable software verification algorithm. One such
algorithm is CEGAR, a software verification algorithm that iteratively con-
structs, checks, and refines an initially coarse abstract model until no spuri-
ous counterexamples are encountered anymore. There are several different
locations where the granularity of predicates can be decided in this algo-
rithm. In the following, we discuss three possibilities along with their differ-
ent advantages and shortcomings.

During Abstraction The obvious choice is to decide the predicate granu-
larity right before the abstraction computation itself. This approach enables
a per-abstraction decision about the granularity of the predicates, which of-
fers the most flexibility. This is desirable if there is some information avail-
able about the concrete instance of the abstraction problem that is relevant to
decide the best predicate granularity. But additional information about the
verification task at hand, like for example the error location, might not be
available at this point.

Chapter 3. Predicate Granularity and Abstraction 10

During Refinement In CEGAR, new predicates that can be used in future
abstraction computations are generated during the refinement step. What
makes this location attractive for determining the granularity of the predi-
cates is that during refinement, we have access to the trace and the target
state of a spurious counterexample—information that is important to solve
the underlying verification problem. This information can be used to split the
newly generated predicates into fragments of the desired granularity. How-
ever, this limits how predicates can be reused or shared with other program
locations, as the granularity stays the same for all following abstraction com-
putations.

Hybrid Approaches The previous approaches can also be combined to re-
tain the flexibility of a per-abstraction decision about predicate granularity
while still having access to the information available during refinement. Such
an approach could store the additional information collected during refine-
ment along with the coarse-grained predicates and then split the predicates
on demand during the abstraction-phase. However, this needs additional
implementation effort as well as memory to store the additional information.

In chapter 4 we present several strategies for predicate splitting that all work
during the refinement step of CEGAR. We chose that location because our
strategies rely on information about spurious counterexamples and their tar-
get states, information that is only available during refinement. Also, this
helps to keep the implementation simple and clean.

11

Chapter 4

Strategies for Predicate Splitting

In the previous chapter, we identified the granularity of the abstraction predi-
cates as a variable we can change and, in that way, influence the performance
of predicate abstraction. In this chapter, we discuss several strategies on how
predicates generated by the refinement procedure can be split into smaller
fragments that are better suited for the abstraction problem at hand. We inte-
grated these strategies into CPACHECKER and its predicate analysis as part of
the refinement procedure. CPACHECKER is a software verification tool that is
built on the concept of configurable program analysis and implements CE-
GAR, predicate abstraction and refinement based on Craig-interpolation [4,
5]. Our techniques are implemented in a fork of CPACHECKER that can be
found on github1. The strategies are implemented as operators that take the
produced interpolants as well as the current counterexample trace and tar-
get state as input and splits the interpolants into one or more predicates.
It should be noted that no part of the interpolant is omitted to ensure the
soundness of the operation.

4.1 Split to Atoms

One of the simplest possible strategies and currently the default configura-
tion of CPACHECKER is to always split the predicates generated by the refine-
ment procedure into their atoms making them as fine-grained as possible.
This strategy shows good results in the presence of loops, as it inflicts the
least restrictions when computing an abstraction, and therefore, exhibits the
most potential for generalization (e.g. for finding loop invariants). However,
as discussed before, because this strategy generates many small predicates,
this also means that the formula constructed during abstraction tends to have
more models resulting in a more expensive AllSAT query.

4.2 Never Split

Instead of splitting the predicates into atoms, they can also be left intact. This
results in the coarsest granularity the predicates can have. Those predicates
carry all the information needed to rule out the spurious counterexample the

1https://github.com/se2p/predicate-grinding

https://github.com/se2p/predicate-grinding

Chapter 4. Strategies for Predicate Splitting 12

refinement was performed for. As these predicates are larger and more com-
plex, it is less likely they can be combined to multiple models of a single block
formula and so the problem of the previous split strategy can be avoided.
However, the predicates generated with this strategy result in a lower level
of abstraction so the explored state-space becomes larger. Additional refine-
ment iterations might even be necessary to rule out spurious counterexam-
ples that would not be contained in a model created more fine-grained pred-
icates. Both cases lead to additional abstraction computations and an overall
higher cost for solving the verification task. Also, as predicates become more
complicated they increase the size and complexity of the abstraction formula
which can also lead to a more expensive AllSAT query.

4.3 Slicing-Based Predicate Splitting

The predicates produced by the previous split strategies have the finest or
coarsest granularity possible. We now explore several strategies that lie be-
tween those extremes and try to exploit additional information about the ver-
ification task at hand to determine the granularity of the abstraction predi-
cates more intelligently.

The first two strategies rely on dependency information of the program
under verification. The rationale behind these strategies is that reachability-
based program verification is a path-sensitive analysis and therefore, infor-
mation about the taken paths is most likely needed for a successful analy-
sis. Thus, predicates describing program paths should be kept intact during
splitting, while other information can be more fine-grained to allow better
generalization.

4.3.1 Slicing Using the PDG

The first idea was to use program slicing to determine what dependencies
should be preserved by the predicates after splitting. The program depen-
dence graph (PDG)[15] of the program under verification is computed as a
pre-processing step before the analysis starts. During refinement, we take the
target state of the counterexample—the error location that was reached via
an infeasible path—and compute a backward program slice [25]. This slice
contains all the dependencies that can be encountered on the way towards
this error location. Then all program variables contained in that slice are col-
lected and the predicates are split such that sub-formulas consisting only of
variables contained in the slice are left intact and all other parts of the pred-
icates are split into their atoms. This is a heuristic that retains all data- and
control-flow information in the predicates.

During the implementation, we encountered the problem that the pro-
gram dependence graph generated by CPACHECKER is not suitable for in-
terprocedural slicing. Traditionally, interprocedural slicing is done using a
system dependence graph [19], an extended form of the program depen-
dence graph. As there is no system dependence graph available, we decided

Chapter 4. Strategies for Predicate Splitting 13

to implement interprocedural slicing differently using call stack information.
In CPACHECKER, this information is typically available along with the tar-
get location. The backward-traversal of the program dependence graph is
then restricted to those paths that are compatible with the current call stack
state truncating all function calls that could not have been taken in the cur-
rent counterexample. This slicing technique, however, proved to be prone
to producing too big slices. A slicing technique that fits this scenario better
than traditional program slicing is path slicing [20], a technique specifically
designed to extract all edges along some path through a program that are rel-
evant to demonstrate the reachability of the target state of that program path.
We achieve a similar behavior by restricting the slicing procedure to only
follow edges where all the occurring variables are also contained in the inter-
polant. This simple optimization resulted in much smaller slices and greatly
improved the results achieved with this split strategy.

4.3.2 Slicing Using the CDG

This predicate split strategy is essentially a further optimization of the pre-
vious strategy. For larger programs the data-flow analysis needed for com-
puting the PDG can become very time- and memory-intensive. Also, for pro-
grams with many data-dependencies, the PDG can grow very large making
program slicing rather expensive. In our experience, control-flow informa-
tion is more relevant for the verification algorithm than data-flow informa-
tion. With this in mind, we can simplify the PDG-based split strategy by per-
forming the slicing only on the control dependence graph (CDG)—the PDG
without data-dependencies. The implementation of this strategy is the same
as for the PDG-based splitting strategy, only CPACHECKER’s configuration
is adjusted so that the PDG does not include data-dependencies.

4.4 SSA-Based Predicate Splitting

There is another way to extract dependency information from the counterexample-
trace. To each state of the counterexample trace, there is a map with the
static single assignment (SSA) indices of the program variables attached to it.
By looking at the differences in the SSA-maps of two succeeding states along
the counterexample trace we can determine which variables have changed.
Here, we argue that for variables whose values change, we want to give the
abstraction procedure more flexibility to generalize and thus, such predicates
need to be more fine-grained. Other dependencies in the predicates model
aspects of the program that do not change and therefore can remain as they
are. Therefore, we split the parts of the formula that contain variables whose
SSA-index has changed into atoms and leave the rest of the predicates intact.

14

Chapter 5

Evaluation

5.1 Research Questions

In the previous chapters, we discussed how the granularity of abstraction
predicates can influence the performance of Boolean predicate abstraction
and we designed and implemented several strategies for determining the
predicate granularity in order to improve the performance of predicate ab-
straction. Now, we investigate the applicability of these predicate split strate-
gies and whether our novel strategies lead to an increase in efficiency and
effectiveness of the underlying software verification algorithm. We formu-
late these goals in the following research questions.

5.1.1 Suitability of the Split Strategies

We designed our predicate split strategies such that a specific abstraction
problem can be solved more efficiently than when using the trivial split strate-
gies, while still preserving all the information necessary for solving the un-
derlying verification task. The first set of research questions investigates
whether our novel strategies achieve these goals better than the existing triv-
ial predicate split strategies.

RQ1.1: Which predicate split strategy produces the least num-
ber of models during predicate abstraction?

Predicate abstraction makes use of an AllSAT query to over-approximate
block formulas. As AllSAT has costs exponential in the number of models
of the formula, we expect a smaller number of models to result in improved
performance of predicate abstraction. Our novel predicate split strategies
aim to find a granularity for the predicates, such that the resulting formula
used in the AllSAT query has fewer models than it would have with the de-
fault split strategies.

RQ1.2: Which predicate split strategy results in the least re-
finements?

Refinements tend to add additional costs to the analysis as for each refine-
ment a new abstract model needs to be created, meaning that additional

Chapter 5. Evaluation 15

abstraction computations are necessary. Therefore, a low number of refine-
ments can be an indicator of a good predicate split strategy. Additional re-
finements may be necessary if the granularity of the predicates is too coarse
so that the abstraction procedure is unable to deduce additional information
not reflected in the predicates. In general, we expect to see fewer refinements
the finer-grained the predicates are.

5.1.2 Efficiency and Effectiveness

The goal of our predicate split strategies is to increase the performance of
predicate abstraction based program verification. Performance in this con-
text means efficiency—how fast the algorithm can solve a verification task—
and effectiveness—for how many verification tasks a result can be produced
within certain resource limits.

RQ2.1: Which predicate split strategy is the most efficient in terms of CPU
time?

The predicate split strategies presented in the previous chapter do come with
additional costs. They all rely on dependency information of some sort,
which is expensive to compute by itself—especially for large programs. There-
fore, we need to investigate, whether the expected performance gains out-
weigh the costs for computing the predicate splittings.

RQ2.2: Which predicate split strategy is the most effective in terms of the
number of solved tasks?

Because termination of the verification algorithm cannot be guaranteed, there
exists a fixed time and memory budget for each verification task. When this
budget is depleted, the task will be terminated with the result UNKNOWN.
Therefore, an increase in efficiency usually goes along with an increase in
effectiveness.

5.2 Experiment Setup

We perform our experiments using a custom version of CPACHECKER ver-
sion 1.8 and its predicate analysis. The refinement procedure can be config-
ured to use the different predicate split strategies as described in chapter 4.
Also, we made some performance optimizations to the PDG generation algo-
rithm. The code of this tool along with the used benchmark definitions can
be found on github1.

We divide this study into several experiments. Each experiment consists
of a set of tasks. A task is defined as a tuple T = (prog, sp, solver, blk), where

1https://github.com/se2p/predicate-grinding

https://github.com/se2p/predicate-grinding

Chapter 5. Evaluation 16

prog is the program under verification, sp is the operator responsible for de-
termining the granularity of the predicates, solver is the used SMT-solver and
blk is the block operator.

The experiments are performed on machines with two Intel Xeon E5 pro-
cessors running at 2.10GHz and 256GB of RAM running Debian 10 as an
operating system. The tasks are executed using benchexec2 in the version
shipped with CPACHECKER. Each task is allowed to use two CPUs (accord-
ing to the definition of benchexec, this means two virtual cores) and is re-
stricted to 1800 seconds of CPU time and 25 gigabytes of RAM.

Case studies

We perform our experiments with two case studies: a set of hand-crafted
SCENARIOS that demonstrates the need and applicability of novel predicate
split strategies and the larger SVCOMP program set which we use to investi-
gate how the different strategies perform on a wider variety of programs.

SCENARIOS The SCENARIOS case study demonstrates worst- and best-case
behavior of the trivial split strategies (ATOMIC and NONE) and shows how
our novel split strategies can achieve best-case (or at least better) perfor-
mance in all of the scenarios. Figure 5.1 shows the control-flow graphs for
these scenarios. In this figure, the oval nodes are program locations and the
arrows depict program transitions annotated with the corresponding pro-
gram operations. Annotations in italic are assignments and annotations in
[square brackets] are assumptions that split the control-flow into multiple
paths. The orange node is the location where abstraction computations are
performed, red nodes mark error locations. The important part of the control-
flow graph is printed in black, parts of the graph shown in gray represent
initialization code or encode the specification and are of secondary concern.
All of the scenarios have a size parameter n that can be scaled to simulate
increasing complexity. In the control-flow graphs, the extension points are
marked with dots or dashed lines. Experiments are performed with problem
sizes ranging from 1 to 64.

The first scenario is called SEQUENTIAL and is shown in figure 5.1a. It is
based on a benchmark used in [24] that models feature interactions in con-
figurable systems. The program consists of n independent choices creating
2n different paths through the program. The specification checks whether
the if-branches were executed correctly and thus makes the relationship be-
tween the ai and li relevant for the verification algorithm. Therefore, this
information should be reflected in predicates with a good granularity for this
scenario. If the predicates are split into atoms however, this results in n pred-
icates and 2n possibilities to combine them into models the solver then has
to enumerate during abstraction. Therefore, this scenario shall demonstrate
why splitting predicates into atoms is not always a feasible strategy.

2https://github.com/sosy-lab/benchexec

https://github.com/sosy-lab/benchexec

Chapter 5. Evaluation 17

[!a1] [a1]

l1 = 1;

[!a2] [a2]

[a1 && l1 != 1]

ERROR

a1 = nondet();

l1 = 0;

...

[!an] [an]

ln = 1;

(A) SEQUENTIAL

[!(s == 0)]

[s == 0]

l1 = 1;

s = 1;

[l1 != 0]

ERROR

[!(s == 2n-1)]

[s == 2n-1]

ln = 0;

s = 0;

s = 0;

l1 = 0;

...

[true]

(B) REACTIVE

FIGURE 5.1: Control-flow graphs for the SCENARIOS case study

The second scenario REACTIVE models a finite state automaton with n
states. It consists of a loop inside which a variable representing the automa-
ton’s state is changed based on constraints modeling the automaton’s transi-
tions. In this case, each of the automatons states has exactly one successor, so
the states form a loop themselves, that is run through over and over again.
Inside this loop, a sequence of locks is acquired and then released again in the
reverse order. Although technically never reachable, the specification checks
that all locks are released upon the termination of the loop. The challenge in
this scenario is to find an appropriate loop invariant that proves that the loop
never terminates and thus, no error location is ever reachable. When not
splitting the predicates at all, their number grows rapidly with the problem
size adding to the complexity of the abstraction computation. This scenario
shows that using the predicates as they are generated by the refinement pro-
cedure also will not work in every case.

The third and last scenario SEQ+RCT combines the other two scenarios by
means of sequential composition. So first the SEQUENTIAL and immediately
afterward, the REACTIVE verification problems have to be solved. As this
scenario includes the challenges of both of the other scenarios, neither of the
two default predicate split strategies (“split into atoms” and “do not split at
all”) will be able to solve larger instances of this scenario. Our novel pred-
icate split strategies, however, should be able to handle this combination of
opposing extremes at once.

Chapter 5. Evaluation 18

SVCOMP This case study consists of a subset of the verification tasks used
in the SV-COMP 2019 competition on software verification3. This collection
of verification tasks was compiled by various contributors from the software
verification community and contains programs from different domains with
different characteristics. For this case study, we use the programs from the
category ReachSafety except for the sub-category Float as not all of the used
solvers support floats and the sub-categories Heap and Recursive as those re-
quire analysis techniques that are not or only partially supported by CPACHECKER
in the desired configuration. It remains a set of 3080 programs distributed
over seven sub-categories.

Predicate Split Operators

In chapter 4, we described several strategies for determining the granularity
of abstraction predicates. The strategy ATOMIC—CPACHECKER’s default
behavior—splits each predicate into its atoms and thus, produces the most
fine-grained result. In contrast, the strategy NONE performs no additional
operations resulting in the coarsest granularity of the predicates. In addition
to these trivial strategies, there are our novel predicate split strategies PDG,
PDGctrl and SSA which split the predicates generated by the refinement pro-
cedure based on dependency information extracted from the program or con-
trol dependence graph or the difference in the SSA-maps accompanying the
states in the counterexample trace. All experiments are performed for each
of those strategies.

5.3 Sensibility Study

CPACHECKER is a highly configurable system and each configuration can
potentially lead to different results of our experiments. Obviously, we cannot
test all configurations. We can, however, study the influence of the configu-
ration options we consider to be the most important. One such option is the
SMT-solver that is used for the abstraction and refinement computations, as
it might be that some of the split strategies produce formulas that one solver
can handle better than another. The second option we consider very impor-
tant is the block operator—the operator that determines when an abstraction
should be computed. This operator has a huge influence on the block for-
mula that needs to be over-approximated by the abstraction computation.

Experiments To empirically support our choice of configuration, we per-
form a sensibility study for the aforementioned configuration options. There-
fore, we randomly selected 250 programs from the SVCOMP case study and
created verification tasks using different solvers and block operators.

CPACHECKER currently supports four different SMT-solvers: MATHSAT
5, PRINCESS, SMTINTERPOL and Z3. However, only MATHSAT 5 and Z3
work for our verification tasks and therefore are used in this study. The other

3https://sv-comp.sosy-lab.org/2019/benchmarks.php

https://sv-comp.sosy-lab.org/2019/benchmarks.php

Chapter 5. Evaluation 19

0

500

1000

1500

M
AT

HS
AT

5

An
al

ys
is

CP
U

Ti
m

e
(s

)

SBE
ATOMIC
NONE
CDG
PDG
SSA

LF L

0 50 100 150
0

500

1000

1500

Z3

An
al

ys
is

CP
U

Ti
m

e
(s

)

0 50 100 150
nth Fastest

0 50 100 150

FIGURE 5.2: Quantile plots of the analysis CPU time for the
results of the sensibility study.

solvers do not support the required theories (SMTINTERPOL cannot handle
bit-vectors and princess does not support floats).

We explore three different block operators: The traditional way of sum-
marizing program blocks is called single-block encoding (SBE). With this
block operator abstractions are computed after every control-flow edge. How-
ever, this approach was discovered to be unfavorable as it explores a huge
number of paths in the abstract state-space and it was eventually replaced
by large block encoding [7] and its generalization adjustable block encoding
[6]. Large block encoding is implemented in the block operator L with which
abstractions are computed only at loop heads. The third block operator LF
produces somewhat smaller blocks as abstractions are computed not only at
every loop head but also at every function call. For all other parameters
of CPACHECKER, the default values are used. Together with the five split
strategies, this results in a total of 7500 verification tasks.

Results The results for this sensibility study are shown in figure 5.2. The
figure shows quantile plots for the analysis CPU time grouped by configura-
tion. One can clearly see that MATHSAT 5 outperforms Z3 in terms of the
number of solved tasks with all block operators and split strategies. As for
the block operators, as expected the configurations with SBE could solve the
least tasks followed by LF and then with the most solved tasks L. As MATH-
SAT 5 in combination with L produces by far the most results, we decide to
use this configuration for the rest of our experiments.

Chapter 5. Evaluation 20

5.4 Results

We discuss the results of our experiments for each case study separately. As
the main goal of this work is to understand the interaction between predicate
granularity and predicate abstraction, we take a more detailed look at the
case study SCENARIOS. The SVCOMP case study is there to see whether our
findings generalize to a broader variety of programs.

5.4.1 Case Study SCENARIOS

First, we take a detailed look at the results for the case study SCENARIOS.
Plots for the relevant metrics are shown in figure 5.3. The x-axis of the plots
is labeled with the problem size. The first row of the figure contains plots for
the analysis CPU time as reported by CPACHECKER measured in seconds
and rounded to two decimal places. The analysis CPU time only measures
the time spent for the actual analysis and excludes any setup times like pars-
ing the program under verification or the creation of a program dependence
graph. The second row shows the average number of models that were enu-
merated during abstraction computations. We use averages here, as there are
many abstraction computations performed in each verification task and we
are interested in an overall picture and not only in single abstraction compu-
tations. Also, this allows comparing different configurations of the same ver-
ification problem that took a different number of abstraction computations.
In the third row, the average number of predicates used during abstraction
computations are shown, and the last row depicts the number of refinements
that were needed to solve the verification task. Note that the y-axes are plot-
ted on a logarithmic scale. Data points for tasks that could not be solved
within the given resource limits are omitted as most of those do not carry
any meaningful information.

RQ1.1 Number of Models

In the scenario SEQUENTIAL, we observe an exponential growth in the num-
ber of models generated during abstraction when using the predicate split
strategy ATOMIC. The reason is that each of the 2n paths from the start
of the program to the abstraction location (the head of the loop, see figure
5.1) can be expressed with the fine-grained predicates generated by this split
strategy. For all other strategies, the number of models grows linearly with
the problem size. The predicates generated by these split strategies already
encode the relationships between the variables ai and li that are important
for solving the verification task. Together with the way CPACHECKER tra-
verses the program’s control flow graph, 4 this results in a linear number of
models enumerated during abstraction.

In the scenario REACTIVE, the number of models does not explode for any
of the split strategies as it does in the scenario SEQUENTIAL. With the split

4By default, CPACHECKER uses a so-called reverse-postorder traversal strategy. This has
the effect that else-branches are always taken first.

Chapter 5. Evaluation 21

0
100

101

102

103

An
al

ys
is

CP
U

Ti
m

e
(s

)

REACTIVE

ATOMIC
NONE
CDG
PDG
SSA

SEQ+RCT SEQUENTIAL

100

101

102

103

104

M

od
el

s f
or

 A
llS

AT

100

101

Pr
ed

s p
er

 A
bs

tra
ct

io
n

0 20 40 60
100

101

102

Re

fin
em

en
ts

0 20 40 60
Problem Size

0 20 40 60

FIGURE 5.3: Results for the case study SCENARIOS grouped by
scenario

Chapter 5. Evaluation 22

strategy NONE, the number of models is slightly higher than it is for the
other strategies. But that does not solely explain the huge difference in the
running time of the tasks. Instead, we can observe that the average number
of predicates used during the abstraction computations grows very quickly
when using the split strategy NONE. At first sight, this might seem sur-
prising as this strategy does not split any of the predicates generated during
refinement into multiple new predicates. But having very fine-grained pred-
icates can actually reduce their number as predicates typically have parts in
common so splitting predicates into smaller parts or even atoms will most
likely produce a lot of duplicates. The larger number of predicates also adds
to the complexity of the abstraction problem as the abstraction formula grows
bigger and more complex. The strategies ATOMIC, PDG and PDGctrl be-
have very similarly to each other in this scenario. They all result in fewer
models than the strategy NONE and the number of predicates grows slower.

With the explanations from the other two scenarios, the results for the sce-
nario SEQ+RCT are as expected. As this scenario is the sequential composition
of the other two, the observed behavior can be described informally as the
sum of the observations of the other scenarios. For the split strategy NONE,
the number of models explodes because of the SEQUENTIAL part of the sce-
nario. Similar, the behavior with the strategy NONE is almost identical to
the scenario REACTIVE. All of our novel split strategies PDG, PDGctrl and
SSA outperform the two trivial strategies concerning the number of models
encountered during abstraction in this scenario.

Overall, all three of our novel split strategies produced the least number
of models in all three scenarios. However, this metric alone proved to be not
as good an indicator for the expected performance of predicate abstraction as
we expected it to be. But more factors, like the number and structure of the
predicates and the block formula, need to be considered.

RQ1.2 Number of Refinements

In terms of the number of refinements, there is no difference between the dif-
ferent split strategies for the scenario SEQUENTIAL. As for the scenarios RE-
ACTIVE and SEQ+RCT, the strategy NONE needs several refinements more
than the other strategies for problem sizes greater than 7. This not very sur-
prising as the coarse-grained predicates produced by this strategy take away
more of the flexibility in over-approximating the block formula at hand the
abstraction procedure has. There is almost no difference in refinements for
the remaining four split strategies (the markers in the plots are invisible be-
cause they are on top of each other). That suggests that our novel split strate-
gies find a good compromise in the granularity of predicates according to
this metric.

RQ2.1 Efficiency

For the predicate split strategy ATOMIC, one can see how the costs in terms
of analysis time grow more than exponentially with the problem size of the
scenario SEQUENTIAL. This is caused by the exponential number of models

Chapter 5. Evaluation 23

the abstraction procedure has to deal with in this setting and demonstrates
how the costs for the AllSAT query performed during the abstraction compu-
tation grow rapidly. All other split strategies avoid those costs because they
keep the predicates more coarse-grained resulting in costs almost linear in n
solving even the largest problem instances in this scenario.

(A)

(B)

FIGURE 5.4: ARG for
scenario REACTIVE with
split strategy ATOMIC
(left) and NONE (right)

Scenario REACTIVE draws a different picture.
This time, costs grow quickest for the split strategy
NONE. As discussed in the section about the num-
ber of models encountered during abstraction, we
explain these costs with the larger number and size
of the abstraction predicates that add to the com-
plexity of the abstraction problem. In addition, the
size of the explored state space is larger as the ab-
straction procedure is not able to generalize over
larger parts of the state-space resulting in more ab-
straction computations. Figure 5.4 shows graphical
representations of the explored state space for this
scenario with problem size n = 5 when using the
predicate split strategy ATOMIC (figure 5.4a) and
NONE (figure 5.4b). The split strategy NONE cer-
tainly explored more of the state-space.

In the last scenario SEQ+RCT, the time needed
for the analysis with each split strategy should be
approximately the sum of the times of the previ-
ous two scenarios. Looking at the results this is
essentially the case. As a result, all three of our
novel predicate split strategies PDGctrl, PDG and
SSA outperform the two trivial split strategies in
terms of CPU time for the analysis very soon as the
problem sizes grow, demonstrating that predicate
abstraction can benefit from a well-chosen granu-
larity of the abstraction predicates.

RQ2.2 Effectiveness

For the scenario SEQUENTIAL, the least effective predicate split strategy is
ATOMIC. Because of the exponential growth in running time, this strategy
can solve only 18 of the 64 tasks. All other split strategies can solve all of
the 64 tasks of this scenario.

For the scenario REACTIVE, the strategy NONE is the least effective split
strategy with only 21 solved tasks. All other strategies can solve more than
twice as many tasks. The strategies ATOMIC, PDG, and PDGctrl are the
most effective and manage to solve 48 tasks. The strategy SSA is almost as
effective in this scenario solving 47 tasks.

In the last scenario SEQ+RCT, the trivial split strategies ATOMIC and
NONE, solving only 18 or 21 tasks respectively, perform far worse than the
other strategies. Here, the strategies PDGctrl and SSA are the most effective

Chapter 5. Evaluation 24

0 100 101 102 103

Analysis CPU Time (s)

0
100

101

102

103

104

M

od
el

s f
or

 A
llS

AT

ATOMIC
NONE
CDG
PDG
SSA

0 100 101 102 103

Analysis CPU Time (s)

100

101

102

Pr
ed

s p
er

 A
bs

tra
ct

io
n

FIGURE 5.5: Scatter plots for the case study SVCOMP

with 45 solved tasks—more than twice as many as the trivial split strategies,
followed by the strategy PDG which can solve 44 tasks.

Overall, it can be seen that, while the strategies ATOMIC and NONE
perform good (in terms of number of solved tasks) in only one of the scenar-
ios, all of our novel split strategies show the same effectiveness as the better
of those strategies in the scenarios SEQUENTIAL and REACTIVE and even out-
perform both in the scenario SEQ+RCT. However, this case study does not
show any significant difference in effectiveness between the strategies PDG,
PDGctrl, and SSA.

5.4.2 Case Study SVCOMP

With the case study SVCOMP, we investigate whether our novel predicate
split strategies also produce as good results as they do for the scenarios and
whether we can observe the same effects. We excluded all tasks from the
results that caused an exception with any of the used configurations or that
could not be solved with any of the five predicate split strategies within the
given resource limits. That means that for every task included in the results,
for all split strategies, the result was one of TRUE, FALSE or UNKNOWN and at
least one of the strategies came to a verdict TRUE or FALSE. The exceptions we
encountered were caused either by unsupported features or by software bugs
in CPACHECKER. In the end, there are a total of 1755 programs remaining
for which we investigate the results.

RQ1.1 Number of Models

Figure 5.5 shows scatter plots for the average number of models encountered
during abstraction and the analysis time, as well as the average number of
predicates and the analysis time. It can be seen that for most of the tasks, the
maximum number of models during an abstraction computation is compar-
atively low (note the logarithmic scale on both axes). On average, the least
models occur with the predicate split strategy NONE. This is expected as
this strategy produces the most specific predicates that do often apply only
to a specific part of the path formula. All other four strategies produce a con-
siderably higher number of models on average but behave similarly among

Chapter 5. Evaluation 25

0 200 400 600 800 1000 1200 1400 1600
Problem Size

0

100

101

102

Re
fin

em
en

ts

svcomp
ATOMIC
NONE
CDG
PDG
SSA

FIGURE 5.6: Quantile plot of the number of refinements for the
case study SVCOMP

themselves. This is most prominent in the categories ControlFlow, Product-
Lines, and Sequentialized, all of which share some characteristics with the sce-
nario SEQUENTIAL. While there is a tendency that more models mean a
longer running time of the analysis, that does not hold for all tasks. There
are many tasks where the number of models is small but the analysis still
takes a long time to complete. This is most noticeable with the split strat-
egy NONE where the number of models is low in general. Growth in the
number of predicates, like discussed for the scenario REACTIVE, cannot al-
ways be observed in these cases. The number of predicates rather grows
with the number of models. All in all, our novel predicate split strategies
do not succeed very well in reducing the number of models that have to be
enumerated during the predicate abstraction computations leaving potential
for improvement.

RQ1.2 Number of Refinements

The number of refinements does not vary very much between the different
predicate split strategies. The strategies NONE and PDG tend to need some
more refinements than the other strategies as they tend to produce the most
coarse-grained predicates. In the case of the strategy PDG, this could also be
an artifact of the reduced number of data points available for this strategy.
As for the other three predicate split strategies, the number of refinements is
very similar and most of the differences between these can be attributed to
missing results. The fact that the strategies PDGctrl and SSA are so similar
to the strategy ATOMIC that produces the most fine-grained predicates pos-
sible, suggests that these strategies produce predicates of a granularity that
leaves the abstraction procedure enough flexibility to generalize and avoid
any additional refinement iterations.

Chapter 5. Evaluation 26

0 250 500 750 1000 1250 1500 1750
nth Fastest

0

250

500

750

1000

1250

1500

1750

An
al

ys
is

CP
U

Ti
m

e
(s

)

svcomp
ATOMIC
NONE
CDG
PDG
SSA
All

154.91
114.64
177.14
368.7
152.29
75.74

FIGURE 5.7: Quantile plot of the analysis CPU time for the SV-
COMP case study.

RQ2.1 Efficiency

Reasoning about the efficiency of the different split strategies in this case
study is not easily possible. Theoretically, we would have to reason about ef-
ficiency on a per-program basis, but given the number of tasks in this study,
this is not feasible. Instead, we look at the overall efficiency of the differ-
ent split strategies and go into more detail only in interesting or unexpected
cases. We consider a split strategy A to be more efficient than another strat-
egy B, if for every number n of tasks, the nth-fastest task solved by A was
solved faster than the nth-fastest task solved by B. Or put differently, a split
strategy A is more efficient than a split strategy B if given a time limit t,
with strategy A more tasks can be solved in under t seconds than with strat-
egy B. Quantile plots of the analysis times for this case study are shown in
figure 5.7. The dashed lines mark the third quartile for each predicate split
strategy with the color matching quantile plot. It can be seen that most of the
tasks can be solved in under 200 seconds by almost all predicate split strate-
gies, meaning that these tasks are comparatively easy to solve and therefore
are less interesting in this study.

Conspicuously, the strategy PDG is noticeably less efficient than the oth-
ers. The reason for this is that for some of the larger programs in the category
ECA, the control dependence graph becomes very huge because these pro-
grams contain a considerable amount of control and data dependencies. As
a result, slicing this huge PDG is very expensive. In some cases, the actual
analysis does not even start because the time budget is completely spent cre-
ating the PDG. It should be noted that, as the PDG can be computed once for
every program and then be reused, this counts as a pre-processing step and
is not included in the analysis CPU time. But in these cases, a timeout can
still be expected, even if the PDG creation would be instant, because of the

Chapter 5. Evaluation 27

0 200 400
0

500

1000

1500

An
al

ys
is

CP
U

Ti
m

e
(s

)
ECA

ATOMIC
NONE
CDG
PDG
SSA

0 200 400
nth Fastest

0

500

1000

1500

ProductLines

0 100 200 300
0

500

1000

1500

Sequentialized

FIGURE 5.8: Quantile plots for selected categories of the SV-
COMP case study.

high costs for program slicing. This was the only case where we observed the
predicate splitting to cause any noticeable overhead with any of the predicate
split strategies. In the vast majority of tasks, only a few seconds were spent
for the predicate split operator. The similar split strategy PDGctrl avoids this
problem most of the time by not including any data dependencies. Only for
a few of the tasks mentioned before does the split operator of this strategy
cause any noticeable overhead. But in contrast to the split strategy PDG,
these costs are not caused by slicing, but by the actual splitting procedure
that traverses the interpolant formula and splits it into multiple predicates.
The same observation can be made for the split strategy SSA but in even
fewer cases. The costs for splitting are never a problem for the strategies
NONE and ATOMIC as for the former no splitting is done at all and for the
later splitting can be performed more efficiently.

According to our notion of efficiency, the strategy NONE is the most effi-
cient overall. For almost any number of tasks, this strategy needed the least
time to solve them. It is only superseded by the strategies ATOMIC and SSA
for a small fraction of tasks. The cause is again several sets of tasks in the cat-
egory ECA that could be solved much more efficiently with the strategies that
produce more fine-grained predicates. As the programs in this category have
a similar structure to our scenario REACTIVE, such behavior was expected. In
the categories ProductLines and Sequentialized, the strategy NONE also was
considerably more efficient than the others as can be seen in figure 5.8.

The strategies ATOMIC and SSA both behave very similar in terms of ef-
ficiency. Their quantile plots are almost identical for the fastest 1400 verifica-
tion tasks. Afterwards, ATOMIC is slightly more efficient than SSA and both
strategies are eventually superseded by the strategy PDGctrl. Once more,
the difference mainly stems from the category ECA where PDGctrl was more
effective.

RQ2.2 Effectiveness

In contrast to our expectations, the most effective split strategy in this case
study is not one of our novel split strategies but the strategy NONE that

Chapter 5. Evaluation 28

Category Tasks # Solved Tasks
ATOMIC NONE CDG PDG SSA

Arrays 40 38 37 38 38 37
BitVectors 37 34 36 33 34 35

ControlFlow 76 76 76 76 76 76
ECA 612 479 501 501 396 479

Loops 111 111 105 106 106 110
ProductLines 554 522 543 519 519 504

Sequentialized 325 287 313 287 288 285
All 1755 1547 1611 1560 1457 1526

TABLE 5.1: Number of solved tasks by category and split strat-
egy.

could solve 1611 of the 1755 tasks. The only categories where another strat-
egy was more effective are the categories Arrays and Loops where this strat-
egy performed worst. For the latter category, this is not surprising, as the
coarse-grained predicates of this strategy hinder the abstraction procedure in
finding loop invariants. Special focus must also be laid on the category ECA
which stands for event-condition-action and therefore contains programs with
a structure similar to our REACTIVE scenario. Strangely, the strategy NONE
which performed worst in the scenario REACTIVE is the most effective strat-
egy in this category. This is mainly due to the fact that there are two groups
of very large programs in this category where this strategy was the only these
tasks could be solved with. Unfortunately, we could not identify the reason
behind this behavior as there is no obvious difference to other programs in
this category (where NONE is often less efficient and effective) besides the
larger size of these programs. However, the size of the programs alone can-
not explain why this split strategy was able to solve these tasks when it could
not solve tasks with similar-looking but smaller programs. This issue needs
further investigation and is postponed to future work.

5.5 Discussion

In the case study SCENARIOS, we saw that the granularity of predicates can
have a tremendous impact on the efficiency and effectiveness of predicate
abstraction and thus on the analysis. And while our novel split strategies
demonstrated that it is possible to handle two very different extreme cases
at once, the results for the case study SVCOMP are rather sobering. The most
promising strategy is PDGctrl that is more effective than CPACHECKER’s de-
fault configuration that uses the strategy ATOMIC. But it is still less efficient
and less effective than the split strategy NONE that was also available prior
to this work. However, this also shows that the current default strategy for
deciding the predicate granularity in CPACHECKER is not necessarily the op-
timal choice.

Despite the bad performance of our novel predicate split strategies, the
results of our experiments confirm that the granularity of predicates is an

Chapter 5. Evaluation 29

important factor for the performance of AllSAT-based Boolean predicate ab-
straction. While we have not yet found a suitable predicate split strategy for
a wider variety of programs, we can construct one additional strategy that
would outperform all of the current five predicate split strategies: The black
line in figure 5.7 plots the analysis times theoretically achievable if the anal-
ysis would be run for each of the five split strategies in parallel until the first
one terminates. It can be easily seen that this strategy would be the most effi-
cient and also the most effective. This line is not identical to the minimum of
the two trivial strategies, showing that our novel split strategies indeed per-
form better than those in some cases.

5.6 Threats to Validity

In this section, we discuss several aspects of the design and implementation
of the experiments in this chapter that put a threat to the validity of its results.

5.6.1 Internal Validity

As CPACHECKER is written in Java, one must be aware of characteristics of
the JVM like the garbage collector or “warm-up” effects of the JIT-compiler,
which can influence the benchmark results. However, as we do not rely on
very precise measurements but either look at time-independent numbers or
at time spans where such effects can be neglected, JVM-related issues are not
much of a concern.

What cannot be neglected, however, are programming bugs in CPACHECKER
or our implementation. A recent study discovered several such bugs [26] and
most likely not all of them are fixed in our implementation. After inspec-
tion of the logs of some of the tasks that terminated with an exception, we
are confident that some of those exceptions were caused by programming
bugs. While this may distort the overall picture (results for these tasks are
missing), these tasks do not introduce incorrect results. Also, some tasks
produced incorrect results, however, these errors do not depend on the se-
lected split strategy.

5.6.2 External Validity

The selection of case studies plays an important role in the external validity
of our experiments. The case study SCENARIOS is there to demonstrate ex-
treme cases and does not allow for generalization. Therefore, we have the
case study SVCOMP which is widely used in the software verification com-
munity. While this case study contains a variety of programs with different
characteristics, those are not equally distributed. Most of the programs are
part of the categories ECA, ProductLines and Sequentialized biasing the results
towards the characteristics of these programs.

Chapter 5. Evaluation 30

Another important aspect is the chosen configuration. CPACHECKER is a
highly configurable system and each configuration option potentially influ-
ences the results of our study. For the options we deem the most important,
we performed a sensibility study and chose the options that showed the best
performance. For the other configuration options, we used CPACHECKER’s
default values assuming that those are chosen reasonably by the developers.

31

Chapter 6

Related Work

In chapter 4, we already mentioned path slicing [20]. Path slicing was created
in order to reduce the size of counterexample traces in order to make manual
or automatic inspection thereof simpler. Path slicing indirectly influences the
granularity of abstraction predicates in that it modifies the counterexample
trace, what on the other hand has an effect on what predicates are generated
by the refinement procedure. The slicing technique used in some of our pred-
icate split strategies was inspired by path slicing but is not equivalent (see
chapter 4).

In [17], Gurfinkel et al. present a different technique for predicate ab-
straction that avoids the exponential costs of AllSAT by relying on linear de-
cision diagrams (LDDs)[8]. It would be interesting to investigate the role of
predicate granularity with this approach. However, this is out of the scope
of this work. In addition to the LDD-based predicate abstraction technique,
they also introduce a different way to encode program blocks that separates
control- and data-flows and preserves the control-flow structure. As our
predicate split strategies also separate control-flow information, it is possible
that an AllSAT-based predicate abstraction in combination with these split
strategies could benefit from such a block encoding.

In the results of chapter 5, we discussed that an approach that runs sev-
eral predicate split strategies in parallel would theoretically achieve better
results than each strategy in isolation. This leads to the question if it is possi-
ble to select a strategy for each task separately in advance. There are several
works that use different approaches to select configurations by analyzing the
input program of a verification task. Apel et al. [2] analyze usage patterns of
program variables in order to assign them to appropriate abstract domains.
Demyanova et al. [13] use a data-flow analysis in order to classify the roles of
program variables and predict the categories of the SVCOMP program set the
different programs belong to. This work is extended in [14] where the vari-
able roles and other empirical metrics of the program under verification are
used to learn a model that predicts the performance of a verification tool or
configuration. Such techniques could be adapted to select a fitting predicate
split strategy.

Leroux et al. introduced a formalism for abstracting the interpolation
problem in the refinement step of CEGAR, called interpolation abstraction [23].
In this approach, domain-specific knowledge provided by the user is used
to guide a search in the lattice of possible interpolants to find better inter-
polants. This is an example of a different problem that fits into our concept

Chapter 6. Related Work 32

of an abstraction problem. Here, the underlying problem is to find good in-
terpolants. Interpolation abstraction restricts the interpolation procedure to
those interpolants that can be constructed using the given abstraction preci-
sion, i.e., the additional information provided by the user. Also, the inter-
polants found by this technique may contain predicates of a different, better,
granularity.

33

Chapter 7

Summary

In this work, we investigated the problem that the costs for predicate ab-
straction can explode when the abstraction predicates are chosen disadvan-
tageously. Therefore, we first characterized this problem as an abstraction
problem, the problem of finding an appropriate abstraction for the input of
some underlying task, in this case, a verification task, such that this task
can be solved more efficiently. We discovered that the granularity of the ab-
straction predicates, that is, their size and structure, have an influence on
the performance of the predicate abstraction procedure. On the one hand,
the granularity of predicates must not be too fine, as this can lead to more
expensive abstraction computations due to an increased number of models
that must be enumerated by the abstraction procedure. On the other hand, a
too coarse granularity can make predicates unnecessarily complex and spe-
cific, and thus, limit the abstraction procedure’s flexibility. This problem was
demonstrated with a set of scenarios where neither very fine-grained predi-
cates, nor coarse-grained predicates are a suitable choice.

In order to explore other levels of granularity, we extended the refine-
ment procedure of CEGAR with an additional operator that extracts predi-
cates of the desired granularity from the interpolants. We developed several
strategies on how to split the interpolants appropriately by using informa-
tion about control- and data-flow dependencies of the program under ver-
ification, as such dependency information is considered to be necessary to
solve the verification task at hand. With these strategies, the granularity of
predicates better suits the abstraction problems in these scenarios and as a
result, the verification tasks can be solved much more efficiently. However,
experiments with a larger variety of programs showed that none of the pred-
icate split strategies, neither one of our novel strategies, nor one of the trivial
strategies, is the single best choice. Instead, the different split strategies work
best for different programs with different characteristics.

A task for future work is to refine the predicate split strategies presented
in this work into yet another strategy that works with a wider variety of pro-
grams and outperforms all of the currently available strategies. Therefore,
additional insights in the relationship between predicate granularity and ab-
straction costs are needed as this work showed that the number of models of
the abstraction formula while being a relevant factor, is not the sole reason
for high abstraction costs.

34

Bibliography

[1] T. Agerwala and Jayadev Misra. Assertion Graphs for Verifying and Syn-
thesizing Programs. Tech. rep. Austin, TX, USA, 1978.

[2] Sven Apel et al. “Domain Types: Abstract-Domain Selection Based on
Variable Usage”. In: Hardware and Software: Verification and Testing -
9th International Haifa Verification Conference, HVC 2013, Haifa, Israel,
November 5-7, 2013, Proceedings. 2013, pp. 262–278. DOI: 10.1007/978-
3-319-03077-7_18. URL: https://doi.org/10.1007/978-3-319-
03077-7%5C_18.

[3] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. “Boolean and
Cartesian Abstraction for Model Checking C Programs”. In: Tools and
Algorithms for the Construction and Analysis of Systems, 7th International
Conference, TACAS 2001 Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,
Proceedings. 2001, pp. 268–283. DOI: 10.1007/3-540-45319-9_19. URL:
https://doi.org/10.1007/3-540-45319-9%5C_19.

[4] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. “Config-
urable Software Verification: Concretizing the Convergence of Model
Checking and Program Analysis”. In: Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Pro-
ceedings. 2007, pp. 504–518. DOI: 10.1007/978-3-540-73368-3_51.
URL: https://doi.org/10.1007/978-3-540-73368-3%5C_51.

[5] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for Con-
figurable Software Verification”. In: Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. 2011, pp. 184–190. DOI: 10.1007/978-3-642-22110-1_16.
URL: https://doi.org/10.1007/978-3-642-22110-1%5C_16.

[6] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. “Predicate ab-
straction with adjustable-block encoding”. In: Proceedings of 10th Inter-
national Conference on Formal Methods in Computer-Aided Design, FM-
CAD 2010, Lugano, Switzerland, October 20-23. 2010, pp. 189–197. URL:
http://ieeexplore.ieee.org/document/5770949/.

[7] Dirk Beyer et al. “Software model checking via large-block encoding”.
In: Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA.
2009, pp. 25–32. DOI: 10.1109/FMCAD.2009.5351147.

https://doi.org/10.1007/978-3-319-03077-7_18
https://doi.org/10.1007/978-3-319-03077-7_18
https://doi.org/10.1007/978-3-319-03077-7%5C_18
https://doi.org/10.1007/978-3-319-03077-7%5C_18
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/3-540-45319-9%5C_19
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3%5C_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1%5C_16
http://ieeexplore.ieee.org/document/5770949/
https://doi.org/10.1109/FMCAD.2009.5351147

Bibliography 35

[8] Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. “Decision diagrams
for linear arithmetic”. In: Proceedings of 9th International Conference on
Formal Methods in Computer-Aided Design, FMCAD 2009, 15-18 Novem-
ber 2009, Austin, Texas, USA. 2009, pp. 53–60. DOI: 10.1109/FMCAD.
2009.5351143.

[9] Edmund M. Clarke et al. “Counterexample-Guided Abstraction Re-
finement”. In: Computer Aided Verification, 12th International Conference,
CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. 2000, pp. 154–
169. DOI: 10.1007/10722167_15. URL: https://doi.org/10.1007/
10722167%5C_15.

[10] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints”. In: Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. POPL ’77.
Los Angeles, California: ACM, 1977, pp. 238–252. DOI: 10.1145/512950.
512973.

[11] William Craig. “Linear Reasoning. A New Form of the Herbrand-Gentzen
Theorem”. In: J. Symb. Log. 22.3 (1957), pp. 250–268. DOI: 10 . 2307 /
2963593.

[12] Ron Cytron et al. “Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph”. In: ACM Trans. Program. Lang.
Syst. 13.4 (1991), pp. 451–490. DOI: 10.1145/115372.115320.

[13] Yulia Demyanova, Helmut Veith, and Florian Zuleger. “On the concept
of variable roles and its use in software analysis”. In: Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October
20-23, 2013. 2013, pp. 226–230. URL: http://ieeexplore.ieee.org/
document/6679414/.

[14] Yulia Demyanova et al. “Empirical software metrics for benchmarking
of verification tools”. In: Formal Methods in System Design 50.2-3 (Jan.
2017), pp. 289–316. DOI: 10.1007/s10703-016-0264-5.

[15] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program
Dependence Graph and Its Use in Optimization”. In: ACM Trans. Pro-
gram. Lang. Syst. 9.3 (1987), pp. 319–349. DOI: 10.1145/24039.24041.

[16] Susanne Graf and Hassen Sadi. “Construction of Abstract State Graphs
with PVS”. In: Computer Aided Verification, 9th International Conference,
CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings. 1997, pp. 72–83. DOI:
10.1007/3-540-63166-6_10. URL: https://doi.org/10.1007/3-
540-63166-6%5C_10.

[17] Arie Gurfinkel, Sagar Chaki, and Samir Sapra. “Efficient Predicate Ab-
straction of Program Summaries”. In: NASA Formal Methods - Third In-
ternational Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011.
Proceedings. 2011, pp. 131–145. DOI: 10.1007/978-3-642-20398-5_11.
URL: https://doi.org/10.1007/978-3-642-20398-5%5C_11.

https://doi.org/10.1109/FMCAD.2009.5351143
https://doi.org/10.1109/FMCAD.2009.5351143
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167%5C_15
https://doi.org/10.1007/10722167%5C_15
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.2307/2963593
https://doi.org/10.2307/2963593
https://doi.org/10.1145/115372.115320
http://ieeexplore.ieee.org/document/6679414/
http://ieeexplore.ieee.org/document/6679414/
https://doi.org/10.1007/s10703-016-0264-5
https://doi.org/10.1145/24039.24041
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6%5C_10
https://doi.org/10.1007/3-540-63166-6%5C_10
https://doi.org/10.1007/978-3-642-20398-5_11
https://doi.org/10.1007/978-3-642-20398-5%5C_11

Bibliography 36

[18] Thomas A. Henzinger et al. “Abstractions from proofs”. In: Proceed-
ings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2004, Venice, Italy, January 14-16, 2004. 2004,
pp. 232–244. DOI: 10.1145/964001.964021.

[19] Susan Horwitz, Thomas W. Reps, and David W. Binkley. “Interpro-
cedural Slicing Using Dependence Graphs”. In: ACM Trans. Program.
Lang. Syst. 12.1 (1990), pp. 26–60. DOI: 10.1145/77606.77608.

[20] Ranjit Jhala and Rupak Majumdar. “Path slicing”. In: Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation, Chicago, IL, USA, June 12-15, 2005. 2005, pp. 38–47. DOI:
10.1145/1065010.1065016.

[21] Ranjit Jhala and Rupak Majumdar. “Software Model Checking”. In:
ACM Comput. Surv. 41.4 (Oct. 2009), 21:1–21:54. ISSN: 0360-0300. DOI:
10.1145/1592434.1592438.

[22] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. “SMT
Techniques for Fast Predicate Abstraction”. In: Computer Aided Veri-
fication. Ed. by Thomas Ball and Robert B. Jones. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 424–437. ISBN: 978-3-540-37411-
4. DOI: 10.1007/11817963_39.

[23] Jérôme Leroux, Philipp Rümmer, and Pavle Subotic. “Guiding Craig
interpolation with domain-specific abstractions”. In: Acta Inf. 53.4 (2016),
pp. 387–424. DOI: 10.1007/s00236-015-0236-z.

[24] Jens Meinicke et al. “On essential configuration complexity: measuring
interactions in highly-configurable systems”. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering -
ASE 2016. ACM Press, 2016. DOI: 10.1145/2970276.2970322.

[25] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th International
Conference on Software Engineering, San Diego, California, USA, March 9-
12, 1981. 1981, pp. 439–449. DOI: 10.1109/tse.1984.5010248. URL:
http://dl.acm.org/citation.cfm?id=802557.

[26] Chengyu Zhang et al. “Finding and understanding bugs in software
model checkers”. In: Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-
30, 2019. 2019, pp. 763–773. DOI: 10.1145/3338906.3338932.

https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/77606.77608
https://doi.org/10.1145/1065010.1065016
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/11817963_39
https://doi.org/10.1007/s00236-015-0236-z
https://doi.org/10.1145/2970276.2970322
https://doi.org/10.1109/tse.1984.5010248
http://dl.acm.org/citation.cfm?id=802557
https://doi.org/10.1145/3338906.3338932

Eigenständigkeitserklärung:

Hiermit bestätige ich Sebastian Böhm, dass ich die vorliegende Arbeit selbst-
ständig und ohne unzulässige Hilfe verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel benutzt sowie die wörtlich und sinngemäß
übernommenen Passagen aus anderen Werken kenntlich gemacht habe. Die
Arbeit ist weder von mir noch von einer anderen Person an der Universi-
tät Passau oder an einer anderen Hochschule zur Erlangung eines akademi-
schen Grades bereits eingereicht worden.

Passau, den 18. September 2019
Sebastian Böhm

	Introduction
	Background
	Program Representation
	Abstraction
	Abstraction Refinement
	CEGAR
	Craig Interpolation

	Predicate Granularity and Abstraction
	The Abstraction Problem
	Predicate Granularity
	Predicate Granularity in CEGAR Algorithms

	Strategies for Predicate Splitting
	Split to Atoms
	Never Split
	Slicing-Based Predicate Splitting
	Slicing Using the PDG
	Slicing Using the CDG

	SSA-Based Predicate Splitting

	Evaluation
	Research Questions
	Suitability of the Split Strategies
	Efficiency and Effectiveness

	Experiment Setup
	Sensibility Study
	Results
	Case Study scenarios
	Case Study svcomp

	Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Summary
	Bibliography

