
University of Passau
Department of Informatics and Mathematics

Bachelor Thesis

Automata-Guided Synthesis and
Reuse of Precisions

Author:

Sebastian Böhm

September 28, 2017

Advisors:

Prof. Dr. Sven Apel
Andreas Stahlbauer

(Chair of Software Engineering I)

Sebastian Böhm:
Automata-Guided Synthesis and Reuse of Precisions
Bachelor Thesis, University of Passau, 2017

ii

Abstract

In software verification based on counterexample guided abstraction refinement
(CEGAR) reducing the number of refinement iterations is desired in order to
lower the costs of the verification algorithm. The general approach to achieve
this is to provide the algorithm with additional precisions before a spurious
counterexample is found and a refinement is needed. Ideally, the resulting
abstract model is precise enough to contain less spurious counterexample paths.

In this work we discuss some shortcomings of precision reuse, an existing
approach to reduce the number of refinements, by demonstrating them on sim-
ple examples. We find that its main problem is that the reused information
is inherently static and cannot adapt to new verification tasks. With this in-
sight we develop a new technique that synthesizes new precisions from symbolic
automata on-the-fly by observing the creation and exploration of the abstract
model and suggesting new precisions in certain situations. The flexibility of this
approach can be further improved by allowing templates for the generation of
precisions. Our method is defined as a configurable program analysis (CPA)
and therefore, it can be easily integrated into existing analyses.

We show how specifications can be transformed into precision mining au-
tomata that synthesize precisions crucial for the separation of violating and
non-violating program paths. This work also provides an implementation of
this technique as well as an experimental evaluation to demonstrate its effi-
ciency and effectiveness. Our experiments confirm, that precision mining from
specifications can indeed severely reduce the number of refinements.

iii

Contents

1 Introduction 1

2 Background 4

3 Pitfalls of Precision Reuse 8
3.1 Precision Reuse . 8
3.2 Investigating Negative Precision Reuse 9

3.2.1 Experiment Setup . 9
3.2.2 Results . 12

3.3 Conclusion . 15

4 Precision Mining using Symbolic Automata 16
4.1 A Framework for Precision Mining 16

4.1.1 Symbolic Automata for Precision Mining 17
4.1.2 Precision Mining CPA 17
4.1.3 Templates as Candidate Precisions 18

4.2 Using Specifications for Precision Mining 18
4.2.1 Example . 19

4.3 Implementation . 21
4.3.1 More on Specification Automata 21
4.3.2 Extention of Existing Analyses 21

5 Experimental Evaluation 23
5.1 Research Questions . 23
5.2 Setup . 24
5.3 Results . 25

5.3.1 RQ 1.1: Efficiency in Terms of Refinements Saved 27
5.3.2 RQ 1.2: Efficiency in Terms of Analysis Speedup 28
5.3.3 RQ 1.3: Saved Refinements and Analysis Speedup 29
5.3.4 RQ 2.1: Effectiveness of Precision Mining 30

5.4 Discussion . 30
5.5 Threats to Validity . 31

5.5.1 Internal Validity . 31
5.5.2 External Validity . 32

6 Conclusion 33

A Experimental Study Relults 35

Bibliography 38

iv

List of Figures

3.1 Loop programs . 9
3.2 Loop precisions . 11

4.1 Lock example program . 19
4.2 Lock specification . 20
4.3 Precision mining automaton . 20

5.1 Box plots of saved refinements and speedup 28
5.2 Correlation of saved refinements and speedup 29

v

List of Tables

3.1 Precision reuse experiment results 12

5.1 LDV Specifications . 25
5.2 Evaluation results by result . 26
5.3 Evaluation results by status . 26

A.1 Top results . 35
A.2 Median results . 36
A.3 Bottom results . 37

1

Chapter 1

Introduction

The complexity of today’s software systems calls for means to reason about
their correctness. While testing provides a practical solution to give hints about
whether programs are working as intended, especially for safety-critical applica-
tions one would like to be able to prove that software is error-free. This is what
software verification tries to accomplish. Software verification takes a program
and some specification as input and proves in finite time if the program violates
the given specification or not. Since in general this problem is undecidable and
even under restrictions still is computationally expensive, a lot of effort has
been put into applying software verification to real-world applications.

Counterexample-guided abstraction refinement (CEGAR) is a verification
algorithm that uses abstraction to cope with state-space explosion and auto-
matically adjusts the level of abstraction until the result of the analysis is sound.
This is done by iteratively refining an initially coarse abstract model of the pro-
gram until it is precise enough for the analysis either to find a counterexample
that is not an artifact of the abstract model or to prove it save. Those refine-
ments however, are computational expensive and thus, it is desired to reduce
their number to improve the overall performance of the verification task.

Goal The goal of this thesis is to define a new method to be used with
CEGAR-based verification algorithms that automatically refines the precision
of the abstract model on-the-fly in order to reduce the amount of refinements
needed to produce a sound result by using sumbolic automata and templates. In
order to demonstrate the benefit of our technique we provide an implementation
that gets investigated in an experimental evaluation.

Related Work Over the years different approaches on how to choose or gen-
erate precisions have been proposed: In the work that first introduced predicate
abstraction, predicates are chosen from the guards of the transition system of
the program and more predicates are computed from them [10]. With CEGAR
the search for precisions can be automated by performing a Craig-interpolation
of the path formula of a spurious counterexample [9, 11]. This technique exploits
the observation that the reason for an abstract counterexample being infeasible
is encoded in the proof that it is infeasible (i.e. in the trace of the counterex-
ample). When the analysis discovers a counterexample it is checked, whether
it is valid or just an artifact of a too imprecise model. If the counterexample
indeed is spurious, new predicates are extracted from it via Craig-interpolation
and the refined model now does not contain that counterexample anymore.

Chapter 1. Introduction 2

Precision reuse recycles the precision of an earlier verification run to make
the initial abstract model precise enough to rule out spurious counterexamples
thus, saving refinements [8]. The success of this technique depends on the
similarity of the program under verification to the program the reused precision
originates from and on whether the used specification is the same. Relying on
this type of information is suitable for situations like regression verification but
it does not adapt well to new verification problems.

Contribution In this work we make the following contributions:

• We investigate situations where precision reuse does not work well or even
has negative effects on performance. Based on simple examples we explain
the reasons for the behavior of this technique in the observed situations.

• We introduce a new technique that generates precisions during the verifi-
cation run so that the abstract model is precise enough to rule out some
spurious counterexamples and thus, save refinements. Therefore, we define
a CPA that uses symbolic automata and templates to generate precisions
on-the-fly.

• We provide an implementation of this technique which uses specifications
as precision mining automata and investigate its effectiveness and effi-
ciency in an experimental evaluation.

Overview After providing some background knowledge about the used terms
and concepts in the first chapter, we revisit precision reuse [8], an existing
method that supplies already computed results to future verification tasks in
order to reduce refinement iterations. While a detailed experimental study
shows that precision reuse can cause a huge speedup when successive revisions
of a program are verified [8], we found scenarios where this method does not
work well or even worsens performance. By investigating these situations we
found out that they cannot always be easily circumvented.

The idea behind precision reuse is to provide the analysis with additional
precisions that make the abstract model precise enough to rule out spurious
counterexamples before they would be discovered, and therefore refinement it-
erations of the CEGAR-loop can be saved. In chapter four, we describe a new
method based on this idea that utilizes symbolic automata to generate new pre-
cisions on-the-fly. That way our technique can be applied to new verification
problems without the need for previously computed results. We take advantage
of the CPA framework to create a new composite analysis that enriches existing
CPAs with an additional component that observes the analysis and suggests
new precisions to the main analysis when its underlying automaton matches
certain situations. As an example we show how specifications can be effectively
used as precision mining automata as they inherently carry information crucial
for verifying a property.

We also provide a proof-of-concept implementation of our new precision min-
ing technique that makes use of weaving specification automata to generate new
precisions. To show that our implementation can severely reduce the amount of

Chapter 1. Introduction 3

refinement iterations needed to verify a program, we provide an experimental
evaluation with verification tasks that are created from set of over four thou-
sand Linux kernel modules. In this evaluation we investigate the benefit of
our precision mining technique in terms of efficiency and effectiveness and dis-
cuss possible problems and how this approach could be further improved. We
conclude by summarizing our findings and giving an outlook into future work.

4

Chapter 2

Background

In this chapter we explain how safety properties of a program can be verified
with a reachability analysis, how abstraction is used to limit the cost of this
analysis and how counterexample guided abstraction refinement is used to fully
automate that process. We also provide background knowledge about symbolic
automata and configurable program analysis—two concepts we use for our pre-
cision mining technique.

Representation and Reachability Analysis
One way to prove that a program satisfies a certain specification is to show that
specific error locations defined by that specification cannot be reached during
the execution of the program. Therefore a reachability analysis constructs an
abstract reachability graph (ARG)—a representation of the state-space that is
explored during program execution.

A Program can be represented as a control-flow automaton (CFA) which is a
tuple (L, l0, G) consisting of a set of program locations L with an entry location
l0 ∈ L and a set of control-flow edges G ⊆ L×Ops×L. The edges represent the
operations of a program like assignments or arithmetic operations. The ARG
is then created by iteratively unrolling the CFA of a program and constructing
abstract successor states for the current location each time the control flow runs
through an edge of the CFA.

A program is then considered safe with respect to a specification, if there is
no abstract state in the ARG that represents an error location defined by that
specification. That means that there is no possible path through the program
that passes such an error location.

Predicate Abstraction
For infinite state programs, verification based on reachability analysis may take
an unreasonable amount of time or memory or may not terminate at all. With
abstract model checking the high cost is traded for precision of the analysis by
performing the reachability analysis on a model in an abstract domain [12].

In this context an abstract domain D = (C, E , J·K) is defined by a set C of
concrete states, a semi-lattice E and a concretization function J·K. The semi-
lattice E = (E,>,⊥,v,t) consists of a set E of domain elements, the abstract
states, with special elements top > and bottom ⊥, a preorder v ⊆ E × E as

Chapter 2. Background 5

well as a total function t : E × E 7→ E called the join operator. The abstract
states are mapped to the concrete states they represent by the concretization
function J·K : E 7→ 2C . For each abstract state e this mapping gives the set of
concrete states e represents.

One abstraction technique that is commonly used in software verification is
predicate abstraction [10] [2]. Let X be the set of program variables and P a
set of quantifier-free predicates over X, the predicate abstract domain consists
of boolean formulas over the perdicates of P . A precision π, that consists of
predicates from P , guides the abstraction process. During the construction of
the ARG, successors of abstract states are created by computing the boolean
or cartesian abstraction of the current state and the perdicates from π.

This can be further optimized by a technique called adjustable block encoding
(ABE) [4]. Program statements are grouped into blocks and abstractions are
computed only at the end of each block. One instance of ABE is ABE-Loops
where each block contains loop-free parts of a program.

Configurable Program Analysis
Configurable program analysis (CPA) [5] is a framework that allows to com-
bine several analyses into a composite analysis that enables its components to
exchange information to strengthen elements of their abstract domain.

Formally a CPA is a tuple D = (D, , merge, stop, prec, target). Its ab-
stract domain D = (C, E , J·K), e.g. the predicate abstract domain, defines how
the concrete states C from the program are represented. Successors of abstract
states are computed via the transfer relation . The operator merge can com-
bine two abstract states into a new one that is an overapproximation of those
states, i.e. for two states e, e′ ∈ E it must be true, that e′ v merge(e, e

′
). For

a set of abstract states R ⊆ Z and an abstract state e, the termination check
stop(e,R) returns true if e represents only concrete states that are already
covered in R; in other words JeK ⊆

⋃
e′∈RJe′K holds true. Otherwise it returns

false. Dynamic precision adjustment [3] adds the operator prec that computes
an adjusted precision from an abstract state e, a precision π and a set of reached
states R. The last missing component is the operator target, which checks if
a given abstract state is a target of a reachability analysis, that is, it represents
an error location defined by the specification.

An essential property of CPAs is that they can be combined into a composite
CPA. A new operator ↓, called the strengthening operator, is introduced for the
components to be able to exchange information. It is executed at the end of
the transfer relation of the composite CPA and allows its components to access
information from abstract states of their sibling in order to compute a stronger
abstract successor state.

The algorithm executing a CPA (Alg. 1) computes for an initial set of ab-
stract states with precisions W0 its successors until either a violation is found
or the waitlist is empty. The resulting ARG is guaranteed to contain an over-
approximation of the set of reachable concrete states [5].

Chapter 2. Background 6

Algorithm 1 CPA algorithm, adopted from [1]
Input: a CPA D = (D, , merge, stop, prec, target),

a set R0 ⊆ E × Π of abstract states with precision,
a subset W0 ⊆ R0 of frontier abstract states with precision

Output: a set of reachable abstract states with precision,
a subset of frontier abstract states with precision

1: reached := R0; waitlist := W0

2: while waitlist 6= ∅ do
3: (e, π) := choose(waitlist)
4: for all e′ with e (e

′
, π do

5: (ê, π̂) := prec(e
′
, π, reached)

6: for all (e
′′
, π

′′
) ∈ reached do

7: enew := merge(ê, e
′′
, π̂)

8: if enew 6= e
′′ then

9: waitlist := (waitlist ∪ {(enew, π̂)}) \ {(e′′ , π′′
)}

10: reached := (reached ∪ {(enew, π̂)}) \ {(e′′ , π′′
)}

11: if ¬ stop(ê, {e | (e, ·) ∈ reached}, π̂) then
12: waitlist := (waitlist ∪ {(ê, π̂)})
13: reached := (reached ∪ {(ê, π̂)})
14: if target(ê) then
15: return (reached, waitlist)

return (reached, ∅)

Counterexample Guided Abstraction Refinement
In order to combat the state explosion occurring in model checking, abstraction
is the main tool of choice. Indeed there are two problems using this concept
alone: First, in the beginning an initial abstract model must be generated,
i.e., a decision must be made what information to keep and what to ignore.
Second, the level of abstraction needs to find the right compromise between
performance and precision. If the abstraction is to coarse, the analysis might
find erroneous program paths that do not really exist, but are an artifact of
the overapproximation of concrete states. As a result a program might be
incorrectly reported as unsave due to such a spurious counterexample.

Counterexample guided abstraction refinement (CEGAR) is an algorithm
that provides a practical solution to both problems [9]. The algorithm starts
with a very coarse abstract model (e.g. everything is abstracted) and automat-
ically refines it iteratively until either a real counterexample is found or the
program is reported to be safe. The CEGAR algorithm consists of three main
parts. At first an initial abstract model is built and model checked. Whenever
the model checker reports a counterexample, CEGAR moves to its second step
and examines if the counterexample is feasible or not. If the counterexample is
feasible, meaning that at least one of the paths represented by the counterex-
ample exists in the real program and ends in an error location, the algorithm
terminates and reports the program as unsafe. Otherwise the erroneous pro-
gram path is used in the third step to generate new predicates for the precision

Chapter 2. Background 7

and thus, refine the abstract model (e.g. using Craig-interpolation [13]). The
new, more precise model then again gets model checked. This loop advances
by eliminating at least one spurious counterexample per iteration and continues
until the analysis provides a sound result.

Symbolic Automata
As the software verification algorithms we consider commonly deal with sym-
bolic representations of program states and -paths, when using automata, we
need to adapt them to cope with such a notation of values. That is what
symbolic finite automata (SFA) do. In contrast to classical automata theory
the alphabet is not given explicitly but implicitly by a Boolean algebra. An
easy-to-understand introduction to SFA is given in [15] where the following
definitions are largely adopted from.

A symbolic automaton M is a tuple (Q,A, q0, F, δ) where Q is the finite
set of states, q0 ∈ Q is the initial state and F ∈ Q is the set of final states.
The alphabet A is an effective Boolean algebra (D,Ψ, J·K,⊥,>,∨,∧,¬) with a
recursive enumerable (r.e.) set of domain elements D, a r.e. set Ψ of predicates
closed under ∨, ∧, ¬, ⊥ and >. The denotation function J·K : Ψ → 2D is also
r.e. and such that J⊥K = ∅ and J>K = D as well as for all φ, ψ ∈ Ψ holds
Jφ∨ψK = JφK∪ JψK, Jφ∧ψK = JφK∩ JψK and J¬φK = D \ JφK. This explains the
set of transitions δ of the automaton which is defined as δ ⊆ Q×Ψ×Q.

In context of software verification the set of predicates usually consists of the
variable names of the verified program. A popular choice of effective Boolean
algebra are those who can be implemented via a SMT-solver.

8

Chapter 3

Pitfalls of Precision Reuse

When optimizing CEGAR-based software verification algorithms one main goal
is to reduce the amount of refinement iterations that are needed to rule out
all spourious counterexamples. This is because in each iteration an expensive
abstraction refinement is performed and parts of the state-space possibly have
to be re-explored. In this chapter we revisit precision reuse, an existing ap-
proach to avoid refinements by reusing results from previous verification runs.
We demonstrate several shortcomings of this technique by performing simple
experiments and investigate their causes.

3.1 Precision Reuse
Precision reuse identifies the precisions from past verification runs as valuable
intermediate results for other verification runs [8]: We collect the precisions dis-
covered during a verification run and create the union over those. The resulting
precision is then saved for future use. Precisions are quite small and therefore
can be stored in a simple text-based format [8]. When verifying the same or a
similar program one can simply use the previously stored precision for the initial
abstract model of this verification task. As a result this model is precise enough
to rule out spurious counterexamples that otherwise would cause a refinement
step. Thus, the verification of the program needs less iterations to come to a
result. If the verified program is exactly the same as when the precision was
generated the initial abstract model is precise enough to rule out all spurious
counterexamples so there is no refinement needed at all.

The practical benefit of this method shows when it is applied to regression
verification. When software is developed there are usually a lot of small changes
made to the code resulting in many similar program versions. Therefore, there
is a good chance that the abstract models generated during the verification of
succeeding program revisions along with their precisions also differ only a little.

An experiment where multiple revisions from different Linux device drivers
were verified comparing precision reuse to normal verification runs shows that
this technique can indeed significantly reduce the amount of refinements needed
as well as the verification time in a regression verification scenario [8].

Chapter 3. Pitfalls of Precision Reuse 9

1 int main() {
2 int i=0, a=0;
3 int n=20;
4

5 while(i < n) {
6 ++i; ++a;
7 if(i != a)
8 goto ERROR;
9 }
10

11 if(i != n)
12 goto ERROR;
13

14 return(0);
15 ERROR:
16 return(-1);
17 }
18

19

20

21

(a) loopA.c

int main() {
int j=0, a=0;
int n=20;

while(j < n) {
++j; ++a;
if(j != a)
goto ERROR;

}

if(j != n)
goto ERROR;

return (0);
ERROR:
return (-1);
}

(b) loopB.c

int loop() {
int i=0, a=0;
int n=20;

while(i < n) {
++i; ++a;
if(i != a)
goto ERROR;

}

if(i != n)
goto ERROR;

return(0);
ERROR:
return(-1);
}

int main() {
return loop();
}

(c) loopC.c

int main() {
int i=0, a=0;
int n = 20;

while(i < n) {
++i; a+=i;
if(i > a)
goto ERROR;

}

if(i != n)
goto ERROR;

return (0);
ERROR:
return (-1);
}

(d) loopD.c

Figure 3.1: The Programs used in the experiments. For versions
B-D changes compared to version A are marked red

3.2 Investigating Negative Precision Reuse
Although precision reuse can be a great tool for optimizing CEGAR-based algo-
rithms we identified situations where that technique does not work well. There
are even cases in which enabling precision reuse has a negative impact on the
performance of a verification task, meaning that not enabling precision reuse
results in a faster program verification than adding that optimization to the run.
Farther we found out that for some simple programs one can intuitively write
precisions that outperform those generated during the verification process.

On order to further investigate our observations we designed some experi-
ments that trigger the described situations. In the following sections we first
explain how our experiments are set up. After that we analyze the results w.r.t.
the impact of precision reuse on the performance and discuss possible reasons
of the observed behavior.

3.2.1 Experiment Setup

For our experiments we used odysseus, a fork of the CPAchecker platform1 [6],
as verification tool. All tasks of this experiment are configured to use a standard
predicate analysis with ABE-Loops.

Chapter 3. Pitfalls of Precision Reuse 10

Test Programs

We created four different versions of a small C-program, which are shown in
Figure 3.1. Each program is designed to demonstrate a specific behavior of
precision reuse. Version A of the program serves as the base program and the
other versions B, C and D are derived from it, each containing one modification
compared to the base version.

Version A consists of a loop that runs a fixed number of times and increments
the loop variable as well as an second variable in each iteration. If those two
variables are not equal at the end of each iteration or after the loop, the program
enters an error state, otherwise the program terminates ordinarily. In version
B we changed the name of the loop variable from i to j altering the syntax of
the program but leaving its semantics untouched. For program version C the
loop is extracted into its own function. The last program version D contains
changes to the loop body as well as an adjustment of the condition inside the
loop such that it again holds true.

Verification Tasks

For each program, versions A-D, we have six verification tasks with different
precisions given as input for precision reuse. The most important of the used
precisions are shown in Figure 3.2. They are depicted in a simplified version of
the format for precision-files introduced in [8] and consist of blocks that begin
with a program location in the form of a function name and a line number
followed by predicates that are to be used at that location.

In the following we introduce the tasks of our experiment and explain what
purpose they fulfill:

Without Precision Reuse (no_predmap) This is a basic verification run
of the program without precision reuse. The precisions generated during this
run are saved and used for the next tasks. It also serves as reference for reasoning
about the influence of precision reuse on the performance.

Basic Precision Reuse (with_predmap) This is the task with precision
reuse added to the verification run. Each program is provided with the precision
dumped after the previous task. This task shows how well precision reuse works
under ideal conditions.

Precision Reuse With Regression (no_predicate_filter) Each of the
program variations is verified using the precision of loopA.c that was generated
in the first task (s. Figure 3.2a). All predicates in that precision are kept for
the analysis, even if they contain variables that are not present in a specific
program version, for example for program B most of the predicates contain the
old loop variable i and thus are obsolete.

1https://cpachecker.sosy-lab.org/

https://cpachecker.sosy-lab.org/

Chapter 3. Pitfalls of Precision Reuse 11

main l.5:
<= i (+ n -20)
<= i (+ n -19)
...
<= i (+ n -2)
<= i (+ n -1)
<= a (+ n -20)
<= a (+ n -19)
...
<= a (+ n -2)
<= a (+ n -1)
= i n
<= i a
<= a i
<= (+ n -a) 0
= (+ n -a -1) 0
= (+ a -i) 0
<= (+ a -i) 0
<= (+ a -i 1) 0

main l.15:
false

(a) loopA.c precision

main l.5:
(or (<= i (+ n -20))

(<= i (+ n -19))
...
(<= i (+ n -2))
(<= i (+ n -1)))

(or (<= a (+ n -20))
(<= a (+ n -19))
...
(<= a (+ n -2))
(<= a (+ n -1)))

= i n
<= i a
<= a i
<= (+ n -a) 0
= (+ n -a -1) 0
= (+ a -i) 0
<= (+ a -i) 0
<= (+ a -i 1) 0

main l.15:
false

(b) disjunctive precision

main:
= i a
= i n

main l.5:
< i n
= i a
= i n

(c) manual preci-
sion

Figure 3.2: Precisions used in the experiments

Filtering Obsolete Predicates (with_predicate_filter) This task uses
almost the same configuration as the previous one. Only that this time predi-
cates that contain variables that are not present in a program version (and thus
are of no use for the abstraction process) are filtered out. Therefore, any effects
caused by superfluous predicates should be eliminated.

Optimizing the Precision (manual_precision) Here we have the same
configuration as before. But instead of the precision generated in the first task
the verifier gets the precision shown in figure 3.2c as input for precision reuse.
That precision was written by looking at the input program and intuitively
simplifying the precision generated during the first verification task. The ex-
pectation is that due to the generalized predicates the loop unrolling can be
prevented reducing the cost to verify the programs.

Automating the Optimization Process (or_precision) Again, this task
differs from the previous one only by the input precision. This time we tried
to construct a precision that resembles the manual one but theoretically could
be deduced from the original precision automatically. In this case we simply
concatenated the predicates caused by unrolling the loop with OR-operations.
The resulting precision can be seen in Figure 3.2b. As before we expect a per-
formance gain over reusing the generated precision by avoiding loop unrollings.

Chapter 3. Pitfalls of Precision Reuse 12

Ref. Reach Unroll. Models Time Prec. Time An. Result

loopA.c

no_predmaps 22 192 21 25 4.202 5.773 TRUE
with_predmaps 0 192 21 21 1.380 1.748 TRUE
no_predicate_filter 0 192 21 21 1.482 1.853 TRUE
with_predicate_filter 0 192 21 21 1.534 1.762 TRUE
manual_precision 0 21 2 2 0.091 0.152 TRUE
or_precision 0 30 3 3 0.377 0.461 TRUE

loopB.c

no_predmaps 22 192 21 25 4.519 6.027 TRUE
with_predmaps 0 192 21 21 1.446 1.801 TRUE
no_predicate_filter 22 192 21 463 28.298 29.435 TRUE
with_predicate_filter 22 192 21 21 5.322 6.689 TRUE
manual_precision 22 192 21 25 4.143 5.586 TRUE
or_precision 22 192 21 21 4.778 6.175 TRUE

loopC.c

no_predmaps 22 236 21 25 4.359 5.845 TRUE
with_predmaps 0 236 21 21 1.390 1.751 TRUE
no_predicate_filter 22 236 21 25 4.405 5.872 TRUE
with_predicate_filter 22 236 21 25 4.925 6.447 TRUE
manual_precision 22 236 21 25 4.174 5.601 TRUE
or_precision 22 236 21 25 4.102 5.453 TRUE

loopD.c

no_predmaps 9 39 5 20 0.522 0.875 TRUE
with_predmaps 0 39 4 5 0.318 0.400 TRUE
no_predicate_filter 2 192 21 489 9.184 9.622 TRUE
with_predicate_filter 2 192 21 489 9.761 10.256 TRUE
manual_precision 2 30 3 8 0.208 0.464 TRUE
or_precision 2 30 3 16 0.700 0.860 TRUE

Table 3.1: Precision reuse experiment results

3.2.2 Results

Table 3.1 shows the results of the previously described verification tasks. The
results are grouped by the program version. The first column shows the num-
ber of refinements needed by the CEGAR algorithm followed by the number
of abstract states reached during the analysis, the number of performed loop
unrollings as well as the number of models generated during abstraction. On
the right half of the table the times for the precision adjustment and the total
analysis time are given. The results of the verification runs conclude the table.

We now explain the results of our experiments grouped by the verification
tasks, as each verification task was designed to show a specific behavior of the
verification algorithm in combination with precision reuse.

Without precision reuse (no_predmap) The results of the program ver-
sions A-C are very similar as they are semantically (almost) the same. Worth
mentioning is that despite the small input program the verification needs a lot
of refinements because the loop has to be unrolled by the model checker. The
programs are designed to do that, because this huge number of refinements lets
us observe the impact of precision reuse more easily as the difference in the
results is much larger. The only exception is the run of program D where the

Chapter 3. Pitfalls of Precision Reuse 13

different loop body causes the model checker to be able to prove the safety of
the program after unrolling only five iterations of the loop.

Basic precision reuse (with_predmap) The second reference task clearly
shows that precision reuse works. Each of the runs of this task needed no refine-
ment iteration at all and therefore was significantly faster than its counterpart
with the first configuration.

Precision reuse with regression (no_predicate_filter) The expectation
of this run is that for program version A the result is exactly the same as in the
second task as they are exactly the same. For all other programs only a small
part of the reused precision is still valid, and most of the predicates contain
variables that are not present at the given location anymore. So the execution
time should be about the same as measured in the first task. But this holds
true only for program C. Table 3.1 shows an huge increase in the time needed
to verify the versions B and D. Not only that precision reuse gives no benefit
here, its effect on the performance is extremely negative.

For program B the cause of this is hidden in the abstraction process. When
looking at the results one can see that much more models are generated during
abstraction than in the other verification runs. This is because additionally to
the predicates contained in the initial precision there are those needed for the
current program to be verified. A boolean formula is built from those models
that is then given to a SAT solver, which in return needs more time for its
satisfyability check leading to an overall worse performance.

Program C does not show this effect because the initial precision maps
predicates to function names. As most abstractions are computed for the loop
that is now in another function, all those useless predicates are not considered
most of the time and so do not noticeably affect the performance.

In the case of version D all predicates of the precision are applicable as the
variables in program A and D are the same. But those predicates unnecessar-
ily cause the loop of the program to be unrolled completely leading to more
refinements and a bigger state-space that gets explored.

Filtering obsolete predicates (with_predicate_filter) A solution for
the problem encountered in the previous task is already hinted in [8]. The
suggestion is to remove all predicates that contain variables that are not present
at the current program location with a quick syntactical check. This is exactly
what we do here in order to accommodate for the negative impact of precision
reuse we encountered.

Our results confirm that in the case of version B of the program the execu-
tion time is again comparable to not enabling precision reuse. The most time
consuming part of the verification of the loop programs is the unrolling of the
loop. So we cannot expect a faster run than in the first task as the construction
of the programs A and B renders that part of the precision generated for version
A essentially useless when applied to version B.

But for version D we still observe the same behavior as in the task without
predicate filtering. Both program version A and D contain the same variables,

Chapter 3. Pitfalls of Precision Reuse 14

they only differ in their loop body. As a result no predicates are filtered out. But
the precision of version A causes the verifier to completely unroll the loop of the
program even though this would not be necessary as the task without precision
reuse showed. Again the effects described before drain the performance of this
verification run.

Optimizing the precision (manual_precision) As already explained in
the description of the different verification tasks the precision reused here is
built by taking an educated guess about what information must be kept in an
abstract model of program A such that the verification algorithm needs as few
refinements as possible. The precision we came up with (s. 3.2c) showed some
interesting results.

First of all we use predicate filtering for this task. So the precision is useless
for verifying the programs B and C. The lack of refinement steps for version
A shows that using this precision results in an abstract model that is precise
enough to rule out all spurious counterexamples. What stands out is that
this verification run is way faster than any of the other tasks for version A
of our program. Taking a closer look at the results reveals that this time
the verifier could prove the program after exploring only three iterations of
the loop instead of unrolling it completely, meaning that it is sufficient for
the algorithm to compute a smaller part of the abstract model saving a lot of
expensive abstraction computations. Saving those loop unrollings is possible
because the provided precision contains some kind of loop invariant letting the
abstraction process recognize that in the abstract model all loop iterations are
covered by the first one.

A similar behavior holds true for the last version D. The precision prevents
the loop from being unrolled completely so only a part of the abstract model
must be explored by the model checker. For proving the safety of this program
only a small amount of additional predicates that differ from the precision must
be found. As a result this run is about as fast as reusing the precision generated
by this program itself.

Automatize optimization process (or_precision) This last task is there
to see if it might be possible to automatically optimize precisions generated
during program verification such that the resulting precision performs better
than the original one – similar as the manual precision from the previous task
does. As described before we did this by comparing the manual (Figure 3.2c)
and the original precision (Figure 3.2a) and transforming the later one in a way
an algorithm could also do. In the case of our experiment a procedure that
optimizes precisions would at first identify similar predicates, here the ones
caused by the loop unrolling. Afterwards they get merged by concatenating all
similar predicates into a new big one using the Boolean OR-operator.

The results show that this precision still outperforms the normal precision
of program A by far, although being not as good as the manual one. The effects
that cause the improved performance are the same as in the task before only
do they occur not as strong.

Chapter 3. Pitfalls of Precision Reuse 15

For the other two program versions there is again no performance improve-
ment, because the precision contains no predicates that are useful for the veri-
fication of those. But due to predicate filtering there isn’t any negative impact
either.

3.3 Conclusion
A detailed experimental study shows that precision reuse is a simple yet powerful
possibility to reduce the runtime of program verification tasks [8]. Nevertheless
we saw in our experiments that this technique’s benefit can vanish when the
abstract model generated by the reused precision differs too much from the cur-
rently verified program and even turn into negative precision reuse. This could
easily happen when precision reuse is applied to regression verification where
the precision evolves from revision to revision probably outdating more and
more parts of the precision. In some situations this effect can be circumvented
by cleaning the precision from obsolete predicates before reusing it but in other
cases the detection of predicates that harm the performance of the abstraction
process is much more difficult.

We also saw that the performance of the verification can be further im-
proved by optimizing the used precision. When looking at the examples of our
experiment this seems to relate to the problem of invariant generation. But
these experiments also hint that it might be possible to improve precisions by
merging predicates automatically in certain situations. A deeper investigation
of this idea is out of the scope of this work.

Instead we focus on the concept that lies behind precision reuse: Providing
the model checker with additional information that otherwise would only be
discovered later during refinement iterations. In the next chapter we introduce
a generic method that builds on that idea and makes use of symbolic automata
to gather and provide new precisions to the analysis.

16

Chapter 4

Precision Mining using Symbolic
Automata

In the previous chapter we saw that precision reuse can be an effective means to
improve the overall performance of CEGAR-based verification algorithms. This
happens by providing the abstraction process with additional information such
that the generated model is precise enough to rule out spurious counterexamples
before they are discovered by the analysis. Nevertheless our experiments showed
that there are situations where this technique does not work very well and, in
the worst case, can even have a bad impact on the performance. We also found
out that the precision generated by the verification algorithm is not necessarily
the best one, instead there are precisions that cause a smaller and thus faster
to verify abstract model.

In this chapter, we introduce a new technique that builds upon the basic idea
behind precision reuse but does not rely on previously computed and stored
results. Instead new precisions are generated on-the-fly by using symbolic au-
tomata that observe the creation of the ARG and suggest new precisions when
they encounter certain situations.

In this chapter, we first define our technique by describing a configurable
program analysis that implements this approach. Then we discuss how such a
CPA can utilize information available in each verification run through the speci-
fication in order to synthesize new precisions and explain how we integrated this
technique into odysseus, a verification tool based on the CPAchecker framework.

4.1 A Framework for Precision Mining
Our main goal is to reduce the number of refinements needed to verify a pro-
gram. To achieve this we must provide the model checker with information
about what aspects of a program are important to keep in the abstract model,
that is, we must supply new precisions. Of course this has to happen before
the corresponding parts of the abstract model are created if we want to save
any refinements. For these new precisions to be effective, we need to decide (1)
what information they contain and (2) at what location they should be used.

From specification automata we know that SFAs can be used to observe and
match locations in the ARG [1] and when we extend these automata to carry

Chapter 4. Precision Mining using Symbolic Automata 17

candidate precisions in their state they also yield a way to store information
new precisions can be drawn from.

The CPA framework allows several analyses to run in parallel and exchange
information when needed. We use these properties to add an additional compo-
nent to existing analyses that runs a precision mining automaton and provides
the candidates it generates to the main analysis.

4.1.1 Symbolic Automata for Precision Mining

The automata used to generate new precisions work similar to specification
automata [1]. They observe the construction and exploration of the programs
ARG and suggest new precisions on a match.

Such a precision mining automaton is a non-deterministic symbolic automa-
ton M = (Q,Σ, δ, q0, F) for a given CFA (L, l0, G) with a finite set of states Q,
an initial state q0 ∈ Q, a set of accepting states F ⊆ Q and a transition relation
δ ⊆ Q×Σ×Q. The elements of the alphabet Σ ⊆ 2Q×ΨA×2P consist of a CFA-
edge, a set of assumptions denoted as a predicate of an effective boolean algebra
A with program variables as domain elements and a set of candidate precisions.
We also use the notation qa

locations[assumptions]{candidates}−−−−−−−−−−−−−−−−−−−−→ qb for transitions.
In order to prevent state-space explosion, on-the-fly weaving [1] can be used

to encode the automatons operations directly into the transition relation of the
analysis. In the same way as specification automata, precision mining automata
(1) must not modify variables that were not created by themselves and (2) the
conjunction of all guards of all outgoing transitions of each state must evaluate
to true in order to not affect the completeness or soundness of the analysis [1].

4.1.2 Precision Mining CPA

A CPA to operate those automata can also be deduced from the specification
analysis [1]. The precision mining CPA D = (D,Π, , merge, stop, prec, target)
contains an abstract domain D that is constructed from the states of the au-
tomaton and a transfer relation that is defined by the abstract domain’s
transitions. There is currently no use for precisions in this CPA so the set Π
of precisions is empty and the precision adjustment prec does nothing. The
operator merge always keeps abstract states separate, i.e., merge(e, e

′
) = e

′ ,
the operator stop checks whether an abstract state is already subsumed by any
other state. As there is no special meaning to final states in precision mining
automata, the operator target can always return false.

The most important part of this CPA to our technique is the strengthening
operator ↓ that is called at the end of the transfer relation. Here, precision can-
didates are generated from the templates the automaton offers after a match.
The candidates can be stored in any form that other CPAs can generate a pre-
cision of their domain from. For example CFA-edges could serve this purpose.

In existing CPAs that are used for verification, only the strengthening op-
erator has to be extended so that it fetches the candidate precision offered
by precision mining CPAs. Later in the precision adjustment operator of the
analysis the candidates can be used to improve the current precision.

Chapter 4. Precision Mining using Symbolic Automata 18

4.1.3 Templates as Candidate Precisions

Our precision mining technique can be made more flexible by using templates
instead of predicates. A template is a formula over unknown variables that
take values over some subset of a given set of predicates [14]. In this case, the
unknown variables can be substituted by variables occurring in the description
of the CFA-edges. This has the advantage that the automaton adapts to new
situations. For example, when the name of a variable that occurs in a candi-
date changes (e.g. with a new revision of the program), the automaton needs
not to be modified because the template takes care of substituting the correct
variable name. Another, probably more important, use case is to use templates
to make a precision mining automaton match classes of situations instead of in-
dividual ones. Consider a precision mining automaton that wants for each call
of a function foo(a) to provide a precision of the form a 6= 0. With templates,

the automaton needs only one state q with a single transition q
foo($1)[]{$16=0}−−−−−−−−−→ q.

When the verification algorithm runs through a CFA-edge that calls the func-
tion foo(a), the precision mining CPA takes care of substituting the template
variable $1 with the real variable of the CFA-edge and providing the instantiated
candidate precision to the analysis. It is also possible to allow the assumptions
to be templates to further control how candidate precisions are generated.

4.2 Using Specifications for Precision Mining
When using pure weaving specification automata [1], it is a good idea to look at
assumptions that they introduce to the code. This is because those assumptions
typically encode information that distinguishes between correct and erroneous
program locations. For the abstract model to be able to separate these locations
into different abstract states and therefore, rule out spurious counterexamples
– the precision of the program analysis must contain that information.

In the simplest case one can derive a precision mining automaton from a
specification automaton that has only one state and one transition for each
assumption the specification makes that presents this exact assumption as a
candidate precision. Assume a specification that manages its internal state in
a variable state and enters an error location whenever the function foo() is
called and the assumption state == 0 is true. The precision mining automaton
generated from this specification has a transition q

foo()[state==0]{state==0}−−−−−−−−−−−−−−−→ q with
q ∈ Q being the automatons only state.

Without any information about the variable state the analysis would report
a counterexample that is spurious when it first reaches a call to the function
foo() as the computed abstract state would include a concrete state where
foo() is called and state == 0. In order to eliminate this counterexample a
refinement iteration would be necessary. But if we mine the specification for
precisions with this method, the analysis is told to separate all states where
state == 0 into a different abstract state.

We presented templates as a way to make precision mining automata more
flexible. And they can also be used in matcher descriptions and assumptions of
specification automata [1]. An example for this is a specification that ensures

Chapter 4. Precision Mining using Symbolic Automata 19

1 int main() {
2 int condition = nondet();
3

4 if (condition)
5 lock();
6 if (condition)
7 unlock();
8 }

Figure 4.1: The program lock.c used to demonstrate precision
mining

that no division by zero occurs in the program. The precision mining automaton
generated from such a specification has again only one state q and a transition
q

$?/$1[]{$16=0}−−−−−−−−→ q, where $? and $1 are template variables. When the template
variables get replaced by actual program variables (or constants) during the
analysis from a statement a/b, our precision mining automaton generates the
candidate precision b 6= 0.

During the runtime of the analysis we can take advantage of additional
information that is not statically available. In particular we can track the values
of specific variables, either in a map or with an explicit value analysis [7], and
use those values to generate more specific precisions. For example this could be
used to reduce the amount of loop unrollings by approximating loop-invariants
with values from few loop iterations. The use of CPA makes this theoretically
easy to implement although we do not focus on that idea in this work.

4.2.1 Example

To gain a better understanding of how the precision mining automata and CPA
work we now demonstrate our precision mining technique using a specification
automaton and an example program.

Program We verify the C-program shown in Figure 4.1. The program first
defines a condition by assigning a random value to the variable condition. If
condition 6= 0 holds true two functions lock() and unlock() are called.

Specification The specification used for verifying this program checks for a
correct usage of the functions lock() and unlock(). As expected, those func-
tions implement a lock : the function lock() acquires the lock and unlock()
releases it. This mechanism is used correctly iff. (1) the lock is never acquired
twice, (2) unlock() is only called when the lock is held and (3) the lock is
released when the program terminates. Figure 4.2 shows this specification as
automata. We write transitions in the same way as with precision mining au-
tomata but instead of candidate precisions the curly braces now contain code
that gets weaved into the ARG. The specification is split into two components:
The first part (Figure 4.2a) is the environment that instruments the code with
additional information that is needed by the specification. This automaton has

Chapter 4. Precision Mining using Symbolic Automata 20

I

init() []{lock = 0}

lock() []{lock = 1}

unlock() []{lock = 0}
(a) environment automaton

I E

unlock() [lock == 1]{}

lock() [lock == 0]{}

exit() [lock == 1]{}

(b) observer automaton

Figure 4.2: The lock -specification divided into environment and
observer part

I

lock() [lock == 1]{lock == 1}

exit() [lock == 1]{lock == 1}

unlock() [lock == 0]{lock == 0}

Figure 4.3: Precision mining automaton derived from the lock-
specification

only one state and several transitions that match a set of CFA-edges (init()
matches the begin of the program and exit() anywhere it terminates) and en-
code a set ofoperations into the CFA. For example, if the analysis passes a call
to the function lock() the environment automaton sets the value of the vari-
able lock to 1. The second part (Figure 4.2b) observes the ARG and jumps
to an error state when it encounters a violation of the specification. To detect
violations it relies on the state provided by the environment automaton.

Execution To enable precision mining we first need an automaton that fulfills
this purpose. We can create such an automaton by applying the procedure
described in the previous section to our specification. The resulting automaton
can be seen in Figure 4.3.

When the analysis starts with an initially empty precision the first thing
that happens is that the environment automaton inserts a new variable lock

and sets its value to 0. After condition is initialized the reachability analysis
comes to the first if-construct. Here the ARG splits into two paths because the
condition could either be true or false. On the path where the condition was
true we would now find the first counterexample. As the abstraction does not
take the variable lock into account, the analysis finds a program path where
lock == 1 when lock() is called. This is where the precision mining automaton
comes into play. It matches the function call and suggests the new precision
lock == 1. Thus, the abstraction for this location computes an abstract state
for the case lock == 1 and one for !(lock == 1). The reachability analysis
is then able to mark the path where lock() is called while lock == 1 as not
reachable. The same thing happens later for the call to the function unlock()
and in the end right before the program terminates.

Chapter 4. Precision Mining using Symbolic Automata 21

In all three cases our precision mining automaton provides the analysis with
exactly the information it needs to not produce spurious counterexamples saving
all three refinements the verification would have needed otherwise.

4.3 Implementation
Extracting new precisions from the specification as described in the previous
section is a very easy and rewarding application of our precision mining tech-
nique. To be able to evaluate this method we integrated it into odysseus, a fork
of the model checking tool CPAchecker [6].

For convenience and to better fit into the tool, our implementation differs a
bit from the formalism we describe in this chapter. The specification analysis [1]
already provides all the information we need for precision mining. Therefore,
instead of writing a new CPA we extended the existing CPA that handles the
specifications with a new feature, that enables it to generate candidate precisions
from specifications.

4.3.1 More on Specification Automata

As seen in the example, the specifications we use are purely weaving and are split
into two parts. The first part, the environment automaton, is responsible for
adjusting the state encoded by the specification; the second part, the observer
automaton, represents the actual specification, i.e., it matches situations that
violate the specification and reports them to the analysis. Both automata have
only one state and encode all information they need directly into the CFA of
the program being analyzed. Besides preventing state-space explosion caused
by the automaton CPA, this format makes specifications easier to comprehend
and helps extracting candidate precisions from the specification as candidates
are only taken from the observer part.

4.3.2 Extention of Existing Analyses

Very few changes are needed for the new feature. During the strengthening of
the specification’s transfer-relation we query the current state for assumptions
made by the observer automaton that are associated with a possible match. If
such assumptions exist they are transformed into an intermediate format and
stored as part of the (specification-CPA-)state. We choose CFA-edges to repre-
sent candidate precisions because they are easy to handle and mostly analysis-
agnostic in CPAchecker.

The analysis used for verification then must fetch the candidates from the
abstract state of the specification’s CPA, transform the CFA-edges into preci-
sions of its domain, and merge the newly generated precisions with its current
one. In CPAchecker the precision-adjustment operator of the used analysis also
has access to the state of other CPA’s so we implement this second step there in-
stead of during the strengthening operator. We choose CPAchecker’s predicate
abstraction for our implementation. For this analysis, at the begin of the preci-
sion adjustment operator, the candidates are transformed into predicates which

Chapter 4. Precision Mining using Symbolic Automata 22

are then added to the current precision. If an abstraction is computed in this
iteration of the CPA algorithm, the precision with the newly added predicates
can already be used.

Being a popular choice for model checking we focus on compatibility with
predicate abstraction, but any kind of analysis can be extended to work with
our implementation as long as it can construct precisions from CFA-edges.

23

Chapter 5

Experimental Evaluation

In order to to investigate the potential of our precision mining technique and
its impact on the efficiency and effectiveness of program verification we perform
an experimental evaluation. We verify programs from a set of several thousand
Linux kernel modules using predicate analysis and compare the performance of
our implementation of precision mining from specifications (s. Chapter 4) to a
configuration that does not make use of additional precisions.

In this chapter we first present the research questions that guide this ex-
perimental evaluation, then we describe the experiment setup with the used
programs, specifications and execution environment. Afterwards, we answer
our research questions with the gathered results and discuss advantages and
disadvantages of precision mining that are revealed by the experiments as well
as threats to the validity of our evaluation.

5.1 Research Questions
The goals of this evaluation are formulated in four research questions that are
separated into two groups addressing the efficiency and effectiveness of our new
technique.

Efficiency of Precision Mining First we want to know if and how precision
mining from specifications affects the performance of the analysis. In our in-
vestigations we focus on how many refinements can be saved with this method
over a normal predicate analysis and what speedup can be achieved.

RQ 1.1. How many verification tasks need less refinements to be verified and
how many refinements can be saved by enabling precision mining compared to
tasks not using this technique?

RQ 1.2. How many verification tasks can be solved more efficiently in terms of
CPU-time of the analysis and what is the speedup gained by enabling precision
mining compared to tasks not using this technique?

RQ 1.3. How does the ratio of saved refinements affect the speedup of the anal-
ysis and are there other factors affecting the performance?

Effectiveness of Precision Mining The saved refinements and performance
gain might increase the effectiveness of the verification tool, i.e., more programs

Chapter 5. Experimental Evaluation 24

are verifiable within the given resources when using precision mining from spec-
ifications than without.

RQ 2.1. How many more verification tasks can be completed within the given
resources by enabling precision mining compared to tasks not using this technique
and are any results lost?

5.2 Setup
Our experiments are based on the replication package presented in [1]. We use
the set of 4336 Linux kernel modules as well as six of the specifications that
describe a correct usage of the Linux kernel API to build our verification tasks.
Our implementation is contained in the branch precision_automaton of the
CPAchecker fork odysseus. For these experiments we used the version labeled
with the tag prec_mining.

Benchmark Suite As stated earlier, the programs we use for our evaluation
are taken from the replication package shipped with the paper about multi-
property verification [1]. The package contains 4336 modules of the Linux ker-
nel version 4.0-rc1 that are prepared with the LDV toolkit1, which enriches
the modules with an environment model of the Linux kernel and adds entry-
functions to the code.

The properties we use for the verification runs describe the correct usage
of a part of the Linux kernel API and are given as six specification automata.
The specifications are also taken from the earlier mentioned replication package,
although their representation is changed to be pure weaving and they are split
into environment and observer as shown in the last chapter. Table 5.1 shows a
description of these properties.

Not all of the specifications are relevant for each program of the test set
so we consider only such combinations where the specification is relevant to
the program. Additionally we filter out all tasks where the analysis fails due
to internal errors of the verification tool. Applying these restrictions leaves us
with a total of 2038 combinations of programs and specifications. How many
programs per specification remain can also be seen in Table 5.1.

Experiments Our experiments use two different configurations of the verifi-
cation tool. The first one uses CPAchecker’s predicate analysis with adjustable
block encoding to verify each of the 2038 specification-program combinations
from our test set. These tasks form the baseline of our experiments against
which efficiency and effectiveness of other tasks are measured. The second con-
figuration makes use of our implementation of precision mining as described in
section 4.3 of the previous chapter. Candidate precisions are generated from the
specification and prorosed to the predicate analysis CPA on-the-fly. This is the
only change in the analysis compared to the baseline configuration. Together,
this results in 4076 different runs of the verification tool.

1http://linuxtesting.org/project/ldv

Chapter 5. Experimental Evaluation 25

Property Description # Progs
LDV_08_1a Each module that was referenced with module_get

must be released by module_put.
116

LDV_32_1a The same mutex must not be acquired or released twice
in the same process.

812

LDV_43_1a Each memory allocation must use the flag GFP_ATOMIC
if a spinlock is held.

735

LDV_68_1a All resources that were allocated with
usb_alloc_urb must be released with
usb_free_urb.

115

LDV_129_1a An offset argument of a find_bit function must not
be greater than the size of the corresponding array.

117

LDV_134_1a The probe functions must return a non-zero value
in case of a failed call to register_netdev or
usb_register.

143

Table 5.1: Used specifications (adapted from [1]). For each spe-
cification, its name, a description and the number of programs

it is relevant for are given

Our experiments were performed on machines that have a Quad Core CPU
installed running at 3.4 GHz (Intel Core i7-2600) and are equipped with 32GB of
RAM. Each task has a run-time limit of 15 minutes of CPU time and is restricted
to 15GB of RAM; the JVM heap size is limited to 13GB. Those limitations to
resources are controlled with BenchEexc2, a freely available benchmarking tool.
In order to cope with variations in measurements caused by the just-in-time
compiler of the JVM we force it to compile most of the bytecode on startup.

5.3 Results
For 1487 of the 2038 program-specification combinations both tasks, the one
with, and the one without precision mining, can be solved within the given
resources of which 1227 times the verifier proves the program safe and 260
times a violation is found; for 515 combinations, at least one of the tasks runs
into a timeout. Cases where either the baseline task or the precision mining
task exceeded the resource restrictions are excluded from the discussion for most
research questions as they would distort the result. Instead, they are considered
more closely in the answer to RQ 2.1.

Detailed information for the fifty best, median and worst results regarding
speedup can be seen in Appendix A. For each listed run it shows the number
of refinements occurred, the used CPU time for the analysis, the fraction of re-
finements the task with precision mining needed compared to the corresponding
task without this technique and the speedup precision mining achieved as well
as the result of the verification (i.e. if a violation was found or a timeout oc-
curred). When not stated otherwise, time is given as seconds of CPU time and
is rounded to two significant digits.

2https://github.com/sosy-lab/benchexec

Chapter 5. Experimental Evaluation 26

True False
% Ref. Speedup Count % Ref. Speedup Count

LDV_08_1a 0.52 1.02 6 0.89 0.99 85
LDV_32_1a 0.29 1.3 551 0.61 1.1 94
LDV_43_1a 0.61 1.15 494 0
LDV_68_1a 0.94 0.98 18 0.94 1.26 79
LDV_129_1a 0.0 1.43 95 0
LDV_134_1a 1.11 1.01 63 1.0 0.97 2
All runs 0.45 1.23 1227 0.8 1.11 260

Table 5.2: Evaluation results grouped by specification and type
of result; all values are arithmetic means

No Timeout Timeout
% Ref. Speedup Count % Ref. Speedup Count

LDV_08_1a 0.86 0.99 91 0.89 1.0 25
LDV_32_1a 0.34 1.27 645 0.52 1.3 167
LDV_43_1a 0.61 1.15 494 0.73 1.2 241
LDV_68_1a 0.94 1.21 97 0.98 3.56 18
LDV_129_1a 0.0 1.43 95 0.0 1.15 22
LDV_134_1a 1.11 1.01 65 0.98 1.0 78
All runs 0.51 1.21 1487 0.69 1.27 551

Table 5.3: Evaluation results grouped by specification and
whether a timeout occurred; all values are arithmetic means

For our explanations we distinguish between cases where the result of the
analysis is true and those cases where the result is false. We also separate
all tasks where the analysis ran into a timeout because an incomplete analysis
delivers distorted results. This group also contains cases where for one of the
configurations a timeout occurs but for the other one a result can be given.

As the verification costs differ heavily between the programs of our test
set (some programs take seconds to be verified, other tasks cannot even finish
in the given time), we need measures that are agnostic to this fact in order
to compare the results for different programs. That is, we use the ratio of
the sizes of interest between the baseline tasks and those incorporating our
precision mining technique. More precisely, we focus on how many refinements
the latter of these configurations needs in comparison to the first one as well as
the speedup that can be achieved in this way. The ratio of refinements is the
main size of interest as reducing the number of refinements is the primary goal
of our approach. Thereby we expect to increase the efficiency of the verification
algorithm in terms of analysis time, hence the gained speedup is of interest.
To make this size more meaningful, it only refers to the time needed for the
analysis, meaning, that all preprocessing steps are omitted. This does not hide
any side effects caused by precision mining because our implementation does
not require any preprocessing.

Tables 5.2 and 5.3 contain a summary of all results of our experiments
grouped by specifications and verification result or whether a timeout occurred
or not. In each case, the average fraction of how many refinements compared

Chapter 5. Experimental Evaluation 27

to the baseline experiments the tasks with precision mining needed, the average
speedup and the number of tasks contained in each group are given.

5.3.1 RQ 1.1: Efficiency in Terms of Refinements Saved

On average, the tasks that use precision mining need only 56% of the refinements
the tasks without this technique do. When looking only at those tasks, for which
the analysis can actually deliver a result (i.e. they do not run into a timeout)
this number improves to 51% meaning that in this experiment precision mining
is able to cut the number of refinements in half. If we just consider runs where
the program does not violate the specification, only 45% of the refinements
from the tasks without precision mining are needed. For violating tasks, 80%
of the refinements are needed on average – a worse result than for non-violating
tasks. This behavior is expected because for finding counterexamples it is often
necessary to further unroll a specific path through the CFA of the program so
there are more chances that refinements are needed that precisions synthesized
from the specification cannot prevent (e.g. when the control flow diverges at
loops or conditions). Additionally only a part of the abstract model is explored
and thus, potential for saving refinements is lost.

However it depends heavily on the specification how efficient in terms of
saved refinements our technique is. On the one end, all refinements can be
saved for the specification LDV_129_1a. These tasks probably work so well,
because this specification just compares two parameters of a function call and
therefore, it affects only single locations of the program in isolation (one per
occurrence of the function call). No information must be tracked over a longer
path through the ARG and all the information needed to handle this situation
can be delivered via precision mining from the specification. This specifica-
tion also demonstrates the benefit of templates: the specification automaton
matches the relevant function call with the two parameters as template vari-
ables. The instantiated version of the template is used for the violation-check
of the specification as well as for the generation of the candidate precision. On
the other end we observe an increase in refinements needed for the specification
LDV_134_1a. Indeed this bad result is dominated by two tasks with an overall
small number of refinements (1 or 2 refinements respectively) where the corre-
sponding run with precision mining uses six to seven times more refinements.
If we exclude these two cases, we observe a similar result to the specifications
LDV_08_1a and LDV_68_1a, where only a small fraction of the refinements
can be saved, although in these cases the bad increase in efficiency can be ex-
plained by the large number of violations reported for these specifications. The
box plots in Figure 5.1 as well as Figure 5.2 further clarify how differently preci-
sion mining behaves for different specifications: Not only do they vary in overall
efficiency, but also in the distribution of their results. For some Specifications,
the results are tightly packed together, while for other specifications they are
scattered over a wide range of values.

This makes it hard to predict the performance of a given verification run
when using this technique and aggravates reasoning about the general efficiency

Chapter 5. Experimental Evaluation 28

LD
V_
08
_1
a

LD
V_
32
_1
a

LD
V_
43
_1
a

LD
V_
68
_1
a

LD
V_
12
9_
1a

LD
V_
13
4_
1a

All
 r
ns

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

% Saved Refinements

LD
V_
08
_1
a

LD
V_
32
_1
a

LD
V_
43
_1
a

LD
V_
68
_1
a

LD
V_
12
9_
1a

LD
V_
13
4_
1a

All
 r
ns

0.8

1.0

1.2

1.4

1.6

Speed p

Figure 5.1: Box plots of the percentage of saved refinements (left)
and the speedup of the analysis (right) for each specification
and for all results together. Only results with no timeouts are

considered and outliers are not shown.

of precision mining from specifications. Nevertheless our experiments show that
our approach can severely reduce the amount of refinements in many cases.

5.3.2 RQ 1.2: Efficiency in Terms of Analysis Speedup

Despite the good efficiency when looking at the number of refinements the anal-
ysis time shows only a moderate speedup. On average the tasks with precision
mining are 1.2 times faster than the ones without. Tasks without a violation
of the specification show a slightly higher speedup than tasks that do violate
the specification (speedup of 1.2 vs. 1.1). The “speedup” for the tasks with
timeouts origins in cases where only one of the configurations can provide a
result, and therefore, it has no meaningfulness.

Our technique itself introduces almost no noticeable overhead to the analy-
sis. Each candidate precision must be first converted into a CFA-edge and then
into a predicate, so the costs for this procedure increase linearly with the num-
ber of candidates. However, each newly added predicate makes the formulas
used in the abstraction procedure larger and thus, more expensive to solve for
an SMT-solver. The additional time spent this way during abstraction com-
putations counterweights the speedup gained by saving refinements negatively
affecting the total speedup. Again, the specification has a huge influence on
the measured efficiency. One more time, the specification LDV_129_1a gets
the best results and LDV_08_1a and LDV_134_1a with their huge amount
of detected violations the worst showing no speedup on average.

The lessons learned from analyzing the efficiency in terms of analysis time
are similar to those of the first research question: Both, the program and the
specification largely influence the result and the measurements are scattered
over a more or less wide range. Only a coarse tendency of the outcome can be

Chapter 5. Experimental Evaluation 29

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
% Saved Refinements

100

101

Sp
ee

du
p

LDV_08_1a
LDV_32_1a
LDV_43_1a
LDV_68_1a
LDV_129_1a
LDV_134_1a

Figure 5.2: Relationship between saved refinements (x-axis) and
analysis speedup (y-axis; log scale) grouped by specification. For
a better representation two outliers in negative x-direction are

omitted.

given by analyzing the results of many different verification tasks and accord-
ing to that, precision mining as in our implementation yields only a moderate
increase in efficiency.

5.3.3 RQ 1.3: Saved Refinements and Analysis Speedup

We want to know, how the saving of refinements via precision mining from
specifications is reflected in the achieved speedup and what other other factors
there are which influence the speedup.

Figure 5.2 shows a scatter plot of our results that reveals the relationship
between saved refinements and speedup. The x-axis is labeled with the per-
centage of refinements saved when using precision mining over not using this
technique. A value of one means that all refinements could be saved, the value
zero expresses that both runs needed the same amount of refinements, and val-
ues below zero suggest an increase in refinements when using precision mining.
As tasks with timeouts carry misleading results, we excluded them for this plot.
For a better visual representation two outliers with an huge increase in the
amount of refinements (the same two tasks mentioned in RQ 1.1) are also not
shown. For most of the tasks that show an decrease of refinements of 60% or less
the speedup varies around one, with several outliers in both, positive and neg-
ative direction. It is approximately at a level of 60− 70% of saved refinements
where the time saved with the refinements begins to dominate other costs that
come with additional predicates and the speedup tends to get bigger. When
nearly all refinements can be saved the achieved speedup grows rapidly in many
cases, although other tasks still manage to have a worse performance than their
counterparts using the baseline configuration.

In the answer to the previous research question we saw, that precision mining
increases the cost for the abstraction because the additional predicates add to

Chapter 5. Experimental Evaluation 30

the complexity of formulas that must be solved by a SMT-solver. For precision
reuse to be efficient in terms of analysis time, the decrease in refinements caused
by the additional predicates must outperform the overhead they introduce to
the abstraction computation. The overall picture given by our experiments
suggests, that the reduction of refinements must be severe (here: > 60%) in
order to really gain a noticeable performance increase, and even then the actual
benefit depends heavily on the verified program. Otherwise the computational
overhead introduced with additional predicates cancels out any savings gained
with the smaller number of refinements.

5.3.4 RQ 2.1: Effectiveness of Precision Mining

When using our precision mining technique the analysis can provide additional
results in 25 cases where it otherwise runs into a timeout. In one of these tasks
the time limit of 900s is only barely missed so this result might be an artifact
caused by a variation in the execution of the JVM. But the other 24 of those
tasks can be solved easily within the given resource limits with the fastest runs
finishing in under half a minute. In most of these cases the crucial point that
makes these programs verifiable is indeed the time we saved by needing less
refinements thanks to the information provided by the synthesized precisions.
This is true especially for tasks, where the time spent for refinements takes a
substantial fraction of the whole analysis time. In other cases the additional
predicates in combination with the saved refinements enables other parts of the
analysis, like the precision adjustment (including the abstraction computations)
or the transfer relation, to be cheaper.

In contrast, we also lose 11 results when enabling precision mining. However
this time 4 of the results are unclear because the tasks without precision mining
miss the time limit only by a few seconds. The reasons of the lost results vary
from an explosion in the cost of the refinement steps to a wider unrolling of
the CFA resulting in an overall higher computation time. Interestingly, almost
all of the tasks with lost results use the specification LDV_43_1a, although,
the exact reason for this specification loosing that much results could not be
identified with these experiments. A deeper investigation of this matter and
development of possible countermeasures is out of scope of this work and left
as subject for future work.

Summary, the use of precision mining from specifications gained 24 results
while loosing only 7. So we can say that this technique improves the overall
effectiveness of the analysis used for this experiment.

5.4 Discussion
Our results show that precision mining in many cases can severely reduce the
number of refinements needed to verify the program and a lot of programs can
be verified without any refinements at all. We also achieve some additional
results that are not accessible with a normal predicate analysis. However we
hardly gain a noticeable speedup for most tasks. As a cause we identified an

Chapter 5. Experimental Evaluation 31

increase in the complexity of the abstraction computations introduced by the
additional precisions that mitigates the speedup gained with saving refinements.

We found out that the specification plays a key role in how effective this
technique is, although to this point we do not know what part of a specification
in particular is beneficial or detrimental to the efficiency of precision mining.
The good results achieved with the specification LDV_129_1a (i.e. none of the
tasks needs any refinements) suggest that specifications with a very local scope
in the program might perform better than specifications that have to track
internal state over long paths through the program. A deeper understanding of
such effects could aid the improvement of this technique.

If we provide useless or bad information the wrong parts of the abstract
model get refined resulting in a different, potentially larger state space to ex-
plore. Therefore the choice of candidate precisions is crucial to the success of
precision mining. Our implementation is based on the presumption that all as-
sumptions made by the observer part of the specification automaton is helpful
for refining the abstract model in the right way, but duplicates or superfluous
precisions might be generated. CPAchecker eliminates duplicates and also filters
out some unwanted predicates mitigating possible negative effects arising from
those. The high rate of saved refinements suggests that most of the information
we supply via precision mining is indeed useful. Therefore, we find our choice
of candidates to be a good compromise between ease of implementation and
resulting efficiency – at least in terms of saved refinements.

The bad performance gain however leaves room for improvement. Right
now, in most cases the overhead introduced to the analysis by the additional
precisions is too large for our implementation to be efficient when talking about
computation time. A different technique for deriving precision mining automata
from specifications could improve this technique either by a different structure
of the automaton or by a more careful selection of candidate precisions.

5.5 Threats to Validity
In this section we discuss characteristics of our experiments that might put a
threat to their internal or external validity.

5.5.1 Internal Validity

First of all, we saw that the used specification has a huge impact on the effect
of our technique. We chose specifications that represent different concepts (e.g.
one specification describes a mutex, another one checks for correct function
parameters, etc.) in order to gain a more general picture of the effects of
precision mining. Nevertheless we can take only a few specifications into account
and they stem all from the same application domain perhaps threatening the
internal, as well as external validity of this evaluation.

Even for the same specification, the results of different programs are very
dissimilar. We ensure this to not endanger the internal validity of our experi-
ments with the large size of our test set.

Chapter 5. Experimental Evaluation 32

The resource limits chosen for our experiments are based on values from
other experiments that use the same input and verification tool, thus, most of
the tasks can be solved within these limits. When a timeout occurs or a violation
is found in a task the abstract model is not built completely and the results are
missing refinements. Such cases must therefore be looked at separately from
successful runs in order to not affect internal validity.

5.5.2 External Validity

The selection of the used programs might be the biggest threat to the external
validity in these experiments. Instead of artificially creating test data we rely on
real-world software and specifications in order to gain credible results. Device
driver and kernel modules are an important application domain for software
verification and the size and diversity of our test set ensures external validity
at least in this domain. However our test set is not necessarily representative
for all kinds of software.

Different verification tools or abstract domains might react differently to the
precisions we synthesize from the specifications. In this experiment we focus
on CPAchecker’s predicate analysis as the predicate abstract domain is widely
used, especially with CEGAR based verification. But other tools or the use of
other abstract domains may yield results differing from ours.

33

Chapter 6

Conclusion

Software verification is a computational hard problem and abstraction and CE-
GAR automate this process and make it accessible for many use cases. One
approach to improve the performance of CEGAR-based verification algorithms
is to short-circuit the execution by providing the analysis with information such
that it needs less refinements until the abstract model has reached the right pre-
cision to rule out all spurious counterexamples.

An existing technique that accomplishes this is precision reuse and it is
known that it has limitations [8]. Despite being designed for regression verifica-
tion we identified situations where small changes to the source code – changes
that could occur during software development – can cancel out the performance
improvements gained by the use of this technique. Admittedly our examples
are artificially created in order to investigate such situations that expose the
shortcomings of precision reuse. But we identify that the main problem in all
investigated situations remains the static nature of the reused information so
this technique can not adapt well to new verification problems. Another obvious
shortcoming of precision reuse is that it cannot be used for a single verification
run of a program as the information being reused must at first be generated.

Therefore, we introduce a new technique to find new precisions that does not
rely on static information gathered during a past verification run but generates
new precisions on-the-fly. This process is guided by symbolic automata that
use templates in order to adapt the candidate precisions they generate to the
program under investigation. In that way we can reduce the amount of refine-
ments the analysis needs by refining the precision that guides the abstraction
process with the generated candidates on-the-fly. Specifications in the form of
automata provide a valuable source to extract candidate precisions from, be-
cause they typically contain information that distinguishes between correct and
erroneous program paths. This is exactly the information needed for the ab-
stract model to be able to avoid spurious counterexample paths and additionaly,
specification automata are easy to transform into precision mining automata.
The CPA framework makes our technique easy to integrate into existing analy-
ses by adding an additional CPA that handles the precision mining automata.
Only a minor addition to the analysis’ CPA must be made such that candidate
precisions can be fetched from the new CPA.

We confirm that our approach increases the effectiveness and efficiency of a
predicate analysis by integrating it into CPAchecker and performing an experi-
mental evaluation with Linux kernel modules involving over four thousand single

Chapter 6. Conclusion 34

verification tasks. The results show that generating precisions from specifica-
tions can reduce the amount of refinements significantly and does not introduce
a noticeable overhead by itself. The verifier is also able to solve more prob-
lems than it was before. Although in most cases the performance in terms of
runtime increases only moderately because the additional predicates make the
abstractions more expensive reducing the overall performance gain. To mitigate
these negative effects is the main challenge in order to improve this technique’s
performance.

Future Work For future work it would be interesting to apply our technique
to other abstract domains, for example explicit value analysis [7]. Our imple-
mentation and experiments make only use of specifications as precision mining
automata, but there are other situations where our technique could improve the
analysis, e.g., by using conditions of loops or branches as candidate precisions
in certain cases. We also suggest to include runtime information in the mining
process, e.g., by tracking the values of certain variables in a map or via explicit
value analysis and use these values to synthesize new precisions. In that way
candidates can be produced, that are more specific to the exact situation and
thus, perhaps more rewarding.

35

Appendix A

Experimental Study Relults

The following tables show detailed results for some tasks from the experimental
evaluation in Chapter 5. The first table contains the fifty results with the best
speedup, the tasks in the second one form the median and the last table presents
the fifty results with the worst speedup. Program-specification combinations,
where for both tasks a timeout occurred are excluded as their results are mean-
ingless. The name of the verified program and the used specification, the CPU
time of the analysis excluding preprocessing time, the number of needed re-
finements and the verification result are given for each task. Additionally the
tables contain the ratio of refinements needed when using precision mining over
normal predicate analysis and the achieved speedup.

It can be seen, that saving refinements does not guarantee speedup and, in
the other way round, sometimes not saving many refinements can still result in
a huge speedup.

Table A.1: Top results

Program Spec. An. CPU time # Refinements Result Ref. used Speedup
no yes no yes no yes

drivers-bluetooth-bcm203x.c 68_1a 880.15 18.6 5 5 UNKN FALSE 1.0 47.32
drivers-mfd-dln2.c 43_1a 880.18 21.91 176 20 UNKN TRUE 0.11 40.17
drivers-hwmon-w83793.c 32_1a 879.7 30.3 2430 32 UNKN TRUE 0.01 29.03
drivers-hid-usbhid-usbmouse.c 68_1a 447.26 19.96 6 5 FALSE FALSE 0.83 22.41
drivers-auxdisplay-cfag12864b.c 32_1a 235.52 10.89 227 3 TRUE TRUE 0.01 21.63
drivers-net-wireless-rtl818x-rtl8180-
rtl818x_pci.c

43_1a 456.76 29.24 231 0 TRUE TRUE 0.0 15.62

drivers-usb-host-r8a66597-hcd.c 43_1a 745.65 69.61 235 0 TRUE TRUE 0.0 10.71
drivers-video-fbdev-broadsheetfb.c 32_1a 342.09 34.21 409 184 TRUE TRUE 0.45 10.0
drivers-net-ethernet-smsc-
smc91c92_cs.c

43_1a 74.94 12.26 36 0 TRUE TRUE 0.0 6.11

drivers-power-bq27x00_battery.c 32_1a 881.02 163.24 314 1 UNKN TRUE 0.0 5.4
drivers-net-ethernet-sis-sis190.c 43_1a 879.07 163.74 564 110 UNKN TRUE 0.2 5.37
arch-x86-kernel-cpu-microcode-
microcode.c

129_1a 47.41 8.93 17 0 TRUE TRUE 0.0 5.31

drivers-vhost-vhost_net.c 32_1a 129.45 25.48 1080 68 TRUE TRUE 0.06 5.08
drivers-staging-media-lirc-lirc_zilog.c 32_1a 124.62 27.29 336 14 TRUE TRUE 0.04 4.57
net-phonet-phonet.c 32_1a 877.49 193.37 9716 1088 UNKN TRUE 0.11 4.54
drivers-staging-media-bcm2048-radio-
bcm2048.c

32_1a 105.76 24.62 1386 13 TRUE TRUE 0.01 4.3

drivers-net-ethernet-microchip-
enc28j60.c

32_1a 191.99 45.25 164 3 TRUE TRUE 0.02 4.24

drivers-usb-atm-cxacru.c 32_1a 120.66 28.51 283 22 TRUE TRUE 0.08 4.23
drivers-thunderbolt-thunderbolt.c 32_1a 322.9 79.07 1081 70 TRUE TRUE 0.06 4.08
drivers-net-wireless-ath-carl9170-
carl9170.c

43_1a 802.46 197.29 1368 0 TRUE TRUE 0.0 4.07

drivers-video-fbdev-matrox-
matroxfb_base.c

32_1a 879.78 224.6 2681 29 UNKN TRUE 0.01 3.92

drivers-platform-x86-samsung-laptop.c 32_1a 813.33 207.72 173 3 TRUE TRUE 0.02 3.92
drivers-mfd-sm501.c 32_1a 880.72 229.05 3744 406 UNKN TRUE 0.11 3.85
drivers-input-serio-serio.c 43_1a 880.87 236.36 12 267 0 UNKN TRUE 0.0 3.73
drivers-platform-x86-acer-wmi.c 32_1a 89.8 24.32 7 1 TRUE TRUE 0.14 3.69
drivers-scsi-scsi_debug.c 129_1a 878.71 242.8 378 0 UNKN TRUE 0.0 3.62
drivers-hwmon-w83627ehf.c 32_1a 372.2 105.58 373 22 TRUE TRUE 0.06 3.53
drivers-vhost-vhost_scsi.c 32_1a 79.26 22.89 1280 101 TRUE TRUE 0.08 3.46
drivers-net-wireless-rtlwifi-rtl_pci.c 43_1a 877.21 254.91 7 0 UNKN TRUE 0.0 3.44
drivers-mtd-mtd_blkdevs.c 32_1a 164.96 51.16 2266 203 TRUE TRUE 0.09 3.22
drivers-media-usb-dvb-usb-v2-dvb-usb-
af9015.c

32_1a 273.04 84.76 620 16 TRUE TRUE 0.03 3.22

drivers-watchdog-pcwd_usb.c 32_1a 95.4 29.78 175 26 TRUE TRUE 0.15 3.2

Appendix A. Experimental Study Relults 36

Program Spec. An. CPU time # Refinements Result Ref. used Speedup
no yes no yes no yes

drivers-net-macvlan.c 129_1a 25.84 8.13 36 0 TRUE TRUE 0.0 3.18
net-bridge-netfilter-ebtables.c 129_1a 56.04 17.95 141 0 TRUE TRUE 0.0 3.12
drivers-media-usb-dvb-usb-v2-dvb-usb-
lmedm04.c

32_1a 57.68 18.64 14 2 FALSE FALSE 0.14 3.09

drivers-hwmon-pc87360.c 32_1a 179.02 58.92 2775 35 TRUE TRUE 0.01 3.04
drivers-net-wireless-rt2x00-rt61pci.c 32_1a 878.62 301.43 726 21 UNKN TRUE 0.03 2.91
drivers-staging-lustre-lustre-mgc-mgc.c 32_1a 108.51 37.33 141 3 TRUE TRUE 0.02 2.91
drivers-infiniband-core-rdma_ucm.c 32_1a 58.24 20.78 469 17 TRUE TRUE 0.04 2.8
drivers-net-wan-hdlc_ppp.c 43_1a 51.67 18.76 36 0 TRUE TRUE 0.0 2.75
drivers-net-ethernet-fealnx.c 43_1a 27.23 10.09 56 0 TRUE TRUE 0.0 2.7
drivers-hid-hid-roccat.c 32_1a 49.33 18.4 346 9 TRUE TRUE 0.03 2.68
drivers-net-ethernet-renesas-sh_eth.c 43_1a 173.38 64.71 53 0 TRUE TRUE 0.0 2.68
drivers-mmc-host-vub300.c 32_1a 163.15 61.23 387 126 TRUE TRUE 0.33 2.66
drivers-nfc-trf7970a.c 32_1a 55.73 21.49 172 1 TRUE TRUE 0.01 2.59
net-packet-af_packet.c 32_1a 345.41 133.26 1026 295 TRUE TRUE 0.29 2.59
drivers-media-radio-radio-si476x.c 32_1a 135.45 53.2 987 2 TRUE TRUE 0.0 2.55
net-rxrpc-rxkad.c 32_1a 187.3 73.97 92 18 TRUE TRUE 0.2 2.53
drivers-net-ethernet-altera-altera_tse.c 43_1a 119.99 48.24 19 1 TRUE TRUE 0.05 2.49
drivers-hid-hid-logitech-hidpp.c 32_1a 719.32 293.62 455 160 TRUE TRUE 0.35 2.45

Table A.2: Median results

Program Spec. An. CPU time # Refinements Result Ref. used Speedup
no yes no yes no yes

drivers-media-radio-si4713-radio-usb-
si4713.c

32_1a 15.95 15.36 16 6 TRUE TRUE 0.38 1.04

drivers-hwmon-adcxx.c 32_1a 8.93 8.6 13 5 TRUE TRUE 0.38 1.04
drivers-iio-dac-ad5360.c 32_1a 13.95 13.44 43 18 TRUE TRUE 0.42 1.04
drivers-cpufreq-cpufreq_stats.c 43_1a 12.6 12.14 5 5 TRUE TRUE 1.0 1.04
drivers-iio-adc-nau7802.c 32_1a 10.41 10.03 6 2 TRUE TRUE 0.33 1.04
sound-usb-usx2y-snd-usb-us122l.c 32_1a 27.99 26.97 187 91 TRUE TRUE 0.49 1.04
drivers-iio-light-apds9300.c 32_1a 12.44 11.99 26 1 TRUE TRUE 0.04 1.04
sound-usb-snd-usbmidi-lib.c 32_1a 25.3 24.39 138 82 TRUE TRUE 0.59 1.04
net-ipv4-udp_diag.c 43_1a 11.96 11.53 3 3 TRUE TRUE 1.0 1.04
drivers-memstick-host-rtsx_pci_ms.c 32_1a 9.61 9.27 10 3 TRUE TRUE 0.3 1.04
drivers-iio-light-isl29125.c 32_1a 11.6 11.19 15 6 TRUE TRUE 0.4 1.04
sound-pci-snd-als300.c 43_1a 19.07 18.4 4 4 TRUE TRUE 1.0 1.04
drivers-i2c-i2c-dev.c 43_1a 17.25 16.65 9 9 TRUE TRUE 1.0 1.04
drivers-iio-magnetometer-mag3110.c 32_1a 10.37 10.01 14 3 TRUE TRUE 0.21 1.04
mm-zsmalloc.c 43_1a 24.8 23.94 21 17 TRUE TRUE 0.81 1.04
drivers-w1-slaves-w1_ds2408.c 32_1a 8.09 7.81 7 1 TRUE TRUE 0.14 1.04
drivers-block-loop.c 43_1a 28.13 27.16 5 5 TRUE TRUE 1.0 1.04
drivers-usb-misc-ftdi-elan.c 134_1a 22.45 21.68 5 5 TRUE TRUE 1.0 1.04
drivers-net-wireless-zd1201.c 68_1a 17.57 16.97 12 8 FALSE FALSE 0.67 1.04
drivers-staging-media-dt3155v4l-
dt3155v4l.c

32_1a 11.14 10.76 3 2 FALSE FALSE 0.67 1.04

net-ipv4-esp4.c 43_1a 14.98 14.47 2 1 TRUE TRUE 0.5 1.04
drivers-staging-iio-resolver-ad2s1210.c 32_1a 12.7 12.27 10 3 TRUE TRUE 0.3 1.04
drivers-isdn-hisax-hisax_st5481.c 43_1a 229.96 222.23 198 41 TRUE TRUE 0.21 1.03
drivers-net-slip-slip.c 43_1a 18.02 17.42 20 5 TRUE TRUE 0.25 1.03
drivers-net-ethernet-atheros-atlx-atl1.c 43_1a 226.14 218.62 295 59 TRUE TRUE 0.2 1.03
drivers-usb-host-fotg210-hcd.c 129_1a 82.72 79.98 39 0 TRUE TRUE 0.0 1.03
drivers-edac-i7core_edac.c 32_1a 16.33 15.79 48 22 TRUE TRUE 0.46 1.03
drivers-usb-serial-ir-usb.c 43_1a 12.27 11.87 5 3 TRUE TRUE 0.6 1.03
drivers-block-nbd.c 43_1a 8.7 8.42 1 0 TRUE TRUE 0.0 1.03
drivers-tty-serial-max310x.c 32_1a 25.43 24.62 106 61 TRUE TRUE 0.58 1.03
drivers-mtd-chips-cfi_cmdset_0002.c 32_1a 9.43 9.13 6 3 TRUE TRUE 0.5 1.03
drivers-watchdog-wm831x_wdt.c 32_1a 10.7 10.36 29 3 TRUE TRUE 0.1 1.03
drivers-tty-serial-mfd.c 43_1a 95.12 92.11 52 51 TRUE TRUE 0.98 1.03
drivers-usb-misc-usbtest.c 32_1a 38.77 37.55 36 21 FALSE FALSE 0.58 1.03
drivers-media-common-siano-smsdvb.c 32_1a 13.35 12.93 7 6 TRUE TRUE 0.86 1.03
drivers-net-wan-dscc4.c 32_1a 126.36 122.4 211 205 TRUE TRUE 0.97 1.03
drivers-scsi-cxgbi-cxgb3i-cxgb3i.c 43_1a 21.79 21.11 1 0 TRUE TRUE 0.0 1.03
net-sctp-sctp_probe.c 43_1a 15.39 14.91 4 4 TRUE TRUE 1.0 1.03
drivers-media-pci-solo6x10-solo6x10.c 32_1a 27.98 27.11 10 9 FALSE FALSE 0.9 1.03
net-ipv4-netfilter-arp_tables.c 08_1a 15.78 15.29 8 5 FALSE FALSE 0.62 1.03
net-core-drop_monitor.c 32_1a 11.3 10.95 12 6 TRUE TRUE 0.5 1.03
drivers-media-usb-dvb-usb-v2-dvb-usb-
az6007.c

32_1a 10.35 10.03 3 3 FALSE FALSE 1.0 1.03

drivers-iio-dac-ad5686.c 32_1a 11.66 11.3 13 3 TRUE TRUE 0.23 1.03
drivers-media-pci-pt1-earth-pt1.c 32_1a 21.43 20.78 68 19 TRUE TRUE 0.28 1.03
sound-drivers-snd-dummy.c 43_1a 743.42 721.06 8 8 TRUE TRUE 1.0 1.03
sound-pci-snd-azt3328.c 43_1a 22.0 21.34 2 2 TRUE TRUE 1.0 1.03
drivers-net-sb1000.c 134_1a 109.35 106.07 14 14 TRUE TRUE 1.0 1.03
drivers-media-radio-si470x-radio-usb-
si470x.c

68_1a 74.44 72.23 27 25 FALSE FALSE 0.93 1.03

drivers-usb-storage-ums-realtek.c 32_1a 16.06 15.59 36 17 TRUE TRUE 0.47 1.03
drivers-net-hamradio-mkiss.c 43_1a 21.92 21.29 38 14 TRUE TRUE 0.37 1.03

Appendix A. Experimental Study Relults 37

Table A.3: Bottom results

Program Spec. An. CPU time # Refinements Result Ref. used Speedup
no yes no yes no yes

drivers-md-dm-log.c 43_1a 8.33 9.54 1 1 TRUE TRUE 1.0 0.87
drivers-media-pci-ddbridge-ddbridge.c 43_1a 9.47 10.85 1 1 TRUE TRUE 1.0 0.87
drivers-edac-amd64_edac_mod.c 129_1a 8.99 10.37 1 0 TRUE TRUE 0.0 0.87
drivers-iio-imu-inv_mpu6050-inv-
mpu6050.c

08_1a 10.89 12.61 1 1 FALSE FALSE 1.0 0.86

drivers-usb-atm-xusbatm.c 134_1a 6.81 7.89 2 2 TRUE TRUE 1.0 0.86
drivers-iio-gyro-itg3200.c 08_1a 9.95 11.61 1 1 FALSE FALSE 1.0 0.86
drivers-media-rc-img-ir-img-ir.c 32_1a 178.29 208.73 8 2 TRUE TRUE 0.25 0.85
drivers-usb-serial-mos7840.c 43_1a 37.01 43.33 200 28 TRUE TRUE 0.14 0.85
drivers-input-joystick-xpad.c 68_1a 54.95 64.83 28 30 FALSE FALSE 1.07 0.85
drivers-net-ethernet-marvell-
pxa168_eth.c

43_1a 20.96 25.11 26 14 TRUE TRUE 0.54 0.83

drivers-mfd-tps65010.c 32_1a 16.02 19.55 69 9 TRUE TRUE 0.13 0.82
sound-soc-intel-snd-soc-sst-baytrail-
pcm.c

43_1a 10.31 12.63 2 0 TRUE TRUE 0.0 0.82

drivers-net-wireless-rtlwifi-rtl_usb.c 43_1a 51.13 62.7 527 13 TRUE TRUE 0.02 0.82
drivers-usb-class-cdc-wdm.c 43_1a 25.26 30.98 45 32 TRUE TRUE 0.71 0.82
drivers-net-wireless-ti-wl12xx-wl12xx.c 32_1a 179.2 219.94 3 3 FALSE FALSE 1.0 0.81
drivers-net-ethernet-sun-sunhme.c 43_1a 327.74 407.52 308 51 TRUE TRUE 0.17 0.8
sound-drivers-snd-portman2x4.c 43_1a 10.74 13.39 1 1 TRUE TRUE 1.0 0.8
drivers-net-wan-dscc4.c 43_1a 38.75 50.06 92 48 TRUE TRUE 0.52 0.77
drivers-atm-zatm.c 43_1a 72.1 93.27 39 41 TRUE TRUE 1.05 0.77
net-key-af_key.c 32_1a 658.28 854.05 193 41 TRUE TRUE 0.21 0.77
drivers-usb-gadget-function-u_ether.c 43_1a 319.77 417.13 4 0 TRUE TRUE 0.0 0.77
drivers-net-ethernet-ti-tlan.c 134_1a 67.98 89.75 2 12 TRUE TRUE 6.0 0.76
drivers-input-tablet-gtco.c 68_1a 665.05 880.66 62 58 FALSE UNKN 0.94 0.76
drivers-atm-iphase.c 43_1a 182.22 243.66 58 58 TRUE TRUE 1.0 0.75
drivers-isdn-hisax-hisax_st5481.c 68_1a 550.66 739.73 48 41 FALSE FALSE 0.85 0.74
drivers-usb-class-cdc-acm.c 43_1a 67.33 90.62 393 392 TRUE TRUE 1.0 0.74
drivers-md-dm-snapshot.c 43_1a 7.99 10.98 1 1 TRUE TRUE 1.0 0.73
drivers-net-ethernet-micrel-ks8842.c 43_1a 30.37 42.08 79 15 TRUE TRUE 0.19 0.72
sound-core-seq-oss-snd-seq-oss.c 43_1a 383.55 552.02 96 93 TRUE TRUE 0.97 0.69
drivers-net-usb-kaweth.c 134_1a 15.97 23.44 1 7 TRUE TRUE 7.0 0.68
drivers-usb-serial-garmin_gps.c 43_1a 39.14 57.8 129 8 TRUE TRUE 0.06 0.68
drivers-bluetooth-btusb.c 68_1a 45.33 67.26 9 10 TRUE TRUE 1.11 0.67
drivers-infiniband-core-ib_mad.c 43_1a 77.2 116.34 34 25 TRUE TRUE 0.74 0.66
drivers-usb-serial-digi_acceleport.c 43_1a 25.13 38.71 112 11 TRUE TRUE 0.1 0.65
drivers-media-dvb-frontends-
rtl2832_sdr.c

43_1a 35.95 63.16 70 15 TRUE TRUE 0.21 0.57

drivers-net-hippi-rrunner.c 43_1a 26.48 47.1 23 25 TRUE TRUE 1.09 0.56
drivers-net-ethernet-tehuti-tehuti.c 43_1a 251.23 500.68 352 212 TRUE TRUE 0.6 0.5
drivers-net-vmxnet3-vmxnet3.c 43_1a 202.1 425.12 582 126 TRUE TRUE 0.22 0.48
drivers-net-ethernet-cadence-macb.c 43_1a 80.37 171.67 101 100 TRUE TRUE 0.99 0.47
drivers-net-ethernet-micrel-ksz884x.c 43_1a 406.71 876.92 1382 886 TRUE UNKN 0.64 0.46
drivers-dma-mic_x100_dma.c 43_1a 22.3 48.15 19 22 TRUE TRUE 1.16 0.46
drivers-usb-mon-usbmon.c 43_1a 15.14 34.47 4 5 TRUE TRUE 1.25 0.44
drivers-net-irda-vlsi_ir.c 43_1a 26.07 62.76 31 24 TRUE TRUE 0.77 0.42
drivers-net-ethernet-atheros-atl1c-
atl1c.c

43_1a 335.36 877.11 143 63 TRUE UNKN 0.44 0.38

drivers-net-ethernet-sis-sis900.c 43_1a 206.72 584.94 257 469 TRUE TRUE 1.82 0.35
drivers-tty-n_r3964.c 43_1a 284.66 880.57 105 448 TRUE UNKN 4.27 0.32
drivers-net-wireless-orinoco-
orinoco_usb.c

43_1a 17.62 62.38 40 4 TRUE TRUE 0.1 0.28

drivers-usb-serial-cypress_m8.c 43_1a 239.38 883.35 73 2 TRUE UNKN 0.03 0.27
drivers-atm-nicstar.c 43_1a 212.92 878.03 1376 207 TRUE UNKN 0.15 0.24
drivers-isdn-capi-capidrv.c 43_1a 14.51 120.36 21 0 TRUE TRUE 0.0 0.12

38

Bibliography

[1] Sven Apel et al. “On-the-fly Decomposition of Specifications in Software
Model Checking”. In: Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. FSE 2016.
New York, NY, USA: ACM, 2016, pp. 349–361.

[2] Thomas Ball et al. “Automatic Predicate Abstraction of C Programs”.
In: Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation. ACM, 2001, pp. 203–213.

[3] D. Beyer, T. A. Henzinger, and G. Theoduloz. “Program Analysis with
Dynamic Precision Adjustment”. In: 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. 2008, pp. 29–38.

[4] D. Beyer, M. E. Keremoglu, and P. Wendler. “Predicate abstraction with
adjustable-block encoding”. In: Formal Methods in Computer Aided De-
sign. Oct. 2010, pp. 189–197.

[5] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. “Configurable
Software Verification: Concretizing the Convergence of Model Checking
and Program Analysis”. In: Computer Aided Verification: 19th Interna-
tional Conference, CAV 2007, Berlin, Germany, July 3-7, 2007. Proceed-
ings. Springer, 2007, pp. 504–518.

[6] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for Con-
figurable Software Verification”. In: Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV 2011, Snowbird, UT,
July 14-20). Ed. by G. Gopalakrishnan and S. Qadeer. LNCS 6806. Springer-
Verlag, Heidelberg, 2011, pp. 184–190.

[7] Dirk Beyer and Stefan Löwe. “Explicit-State Software Model Checking
Based on CEGAR and Interpolation”. In: Fundamental Approaches to
Software Engineering: 16th International Conference, FASE 2013, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings.
Springer, 2013, pp. 146–162.

[8] Dirk Beyer et al. “Precision Reuse for Efficient Regression Verification”.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ACM, 2013, pp. 389–399.

[9] Edmund Clarke et al. “Counterexample-Guided Abstraction Refinement”.
In: Computer Aided Verification: 12th International Conference, CAV
2000, Chicago, IL, USA, July 15-19, 2000. Proceedings. Springer, 2000,
pp. 154–169.

BIBLIOGRAPHY 39

[10] Susanne Graf and Hassen Saidi. “Construction of abstract state graphs
with PVS”. In: Computer Aided Verification: 9th International Confer-
ence, CAV’97 Haifa, Israel, June 22–25, 1997 Proceedings. Springer, 1997,
pp. 72–83.

[11] Thomas A. Henzinger et al. “Abstractions from Proofs”. In: SIGPLAN
Not. 39.1 (2004), pp. 232–244.

[12] Ranjit Jhala and Rupak Majumdar. “Software Model Checking”. In: ACM
Comput. Surv. 41.4 (2009), 21:1–21:54.

[13] K. L. McMillan. “Interpolation and SAT-Based Model Checking”. In:
Computer Aided Verification: 15th International Conference, CAV 2003,
Boulder, CO, USA, July 8-12, 2003. Proceedings. Springer, 2003, pp. 1–
13.

[14] Saurabh Srivastava and Sumit Gulwani. “Program Verification Using Tem-
plates over Predicate Abstraction”. In: Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. PLDI ’09. ACM, 2009, pp. 223–234.

[15] Margus Veanes. “Applications of Symbolic Finite Automata”. In: Im-
plementation and Application of Automata: 18th International Confer-
ence, CIAA 2013, Halifax, NS, Canada, July 16-19, 2013. Proceedings.
Springer, 2013, pp. 16–23.

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Bachelorarbeit selbstständig
und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel ange-
fertigt habe und dass alle Ausführungen, die wörtlich oder sinngemäß übernom-
men wurden, als solche gekennzeichnet sind, sowie dass ich die Bachelorarbeit
in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt
habe.

Passau, den 29. September 2017
Sebastian Böhm

	Introduction
	Background
	Pitfalls of Precision Reuse
	Precision Reuse
	Investigating Negative Precision Reuse
	Experiment Setup
	Results

	Conclusion

	Precision Mining using Symbolic Automata
	A Framework for Precision Mining
	Symbolic Automata for Precision Mining
	Precision Mining CPA
	Templates as Candidate Precisions

	Using Specifications for Precision Mining
	Example

	Implementation
	More on Specification Automata
	Extention of Existing Analyses

	Experimental Evaluation
	Research Questions
	Setup
	Results
	RQ 1.1: Efficiency in Terms of Refinements Saved
	RQ 1.2: Efficiency in Terms of Analysis Speedup
	RQ 1.3: Saved Refinements and Analysis Speedup
	RQ 2.1: Effectiveness of Precision Mining

	Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	Experimental Study Relults
	Bibliography

