
Bachelor’s Thesis

Beyond Syntax: An Eye Tracking
Analysis of Java Method Ordering

Strategies
Sami Naim

March 20, 2024

Advisors:
Dr. Norman Peitek Chair of Software Engineering

Anna-Maria Maurer Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Antonio Krüger Deutsches Forschungszentrum für Künstliche Intelligenz

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Sami Naim: Beyond Syntax: An Eye Tracking Analysis of Java Method Ordering Strategies, ©
March 2024

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

Abstract

Source code should be written in a manner that guarantees consistency and efficiency while
reading, for it not only affects the code revision of the developer but additionally eases the
comprehension process for other developers reading the code. Without a generally estab-
lished guideline to follow, most projects apply different strategies for organizing the source
code. While this allows the developer the flexibility to write code following their intuition,
the lack of consistency may provoke confusion in subsequent source code comprehension by
others. Therefore, code-writing guidelines that guarantee reading efficiency are needed. In
this thesis, we focus on one of the flexible aspects of programming languages, i.e., the order
in which methods within a class are ordered. We analyze three method ordering strategies in
the programming language Java using behavioral methods, eye tracking, and the subjective
preference of participants. In the first step, we observe and analyze quantitative metrics,
namely task correctness, response time, fixation count, fixation time, and saccade length.
Then we compare the quantitative results to the subjective preference of participants on the
best method ordering strategy out of the three. Based on our results, we conclude that the
"Calling" strategy is subjectively preferred among the participants. The "Calling" strategy
revolves around ordering methods following the call hierarchy within a class, i.e., if a
method calls another method, then the called method is positioned below the caller method.
However, the subjective preference does not fully adhere to the quantitative results, which
do not show a significant advantage of the "Calling" strategy, although further research
might provide more insights. Furthermore, we demonstrate the application of eye tracking
to offer further analysis of participants’ reading processes, which can be used in future work
to explore a larger set of method ordering strategies and expand to other programming
languages.

v

Contents
1 Introduction 1

1.1 Goal of this Thesis . 1

1.2 Motivational Example . 2

1.3 Overview . 4

2 Background 5

2.1 Code Readability . 5

2.2 Method Ordering Strategies . 6

2.3 Program Comprehension . 9

2.4 Eye Tracking . 11

3 Related Work 13

3.1 Method Order and Program Comprehension 13

3.2 Eye Tracking in Program Comprehension . 13

4 Methodology 15

4.1 Research Questions . 15

4.2 Participant Recruitment . 16

4.3 Snippet Selection . 17

4.4 Experiment Design . 18

4.5 Variables . 20

4.5.1 Independent Variables . 20

4.5.2 Dependent Variables . 21

4.6 Analysis . 22

4.6.1 Behavioral Methods . 22

4.6.2 Eye Tracking . 22

5 Evaluation 25

5.1 Results . 25

5.1.1 RQ1: Task Correctness Comparison . 26

5.1.2 RQ2: Response Time Comparison . 28

5.1.3 RQ3: Effect on Eye Movements . 31

5.1.4 RQ4: Subjective Preference and Behavior 34

5.1.5 RQ5: Subjective Preference and Eye Movements 34

5.2 Discussion . 35

5.3 Threats to Validity . 36

5.3.1 Internal Validity . 36

5.3.2 Construct Validity . 36

5.3.3 External Validity . 37

6 Concluding Remarks 39

6.1 Conclusion . 39

vii

viii contents

6.2 Future Work . 39

A Appendix 41

a.1 Code Snippets . 41

a.2 Snippet and Demographic Questions . 61

Bibliography 65

List of Figures

Figure 4.1 An example plot of eye tracking data 23

Figure 5.1 Task correctness for all the questions 27

Figure 5.2 Task correctness for only the first question 28

Figure 5.3 Response time during reading and solving 29

Figure 5.4 Response time during reading . 30

Figure 5.5 Fixation count . 33

Figure 5.6 Average fixation time . 33

Figure 5.7 Average saccade length . 34

Figure 5.8 Participants’ preference . 35

List of Tables

Table 4.1 Demographics . 17

Table 4.2 Ordering strategies sequences . 21

Table 5.1 Behavioral results . 25

Table 5.2 Task correctness Shapiro-Wilk . 26

Table 5.3 Task correctness for all the questions 26

Table 5.4 Task correctness of first question . 27

Table 5.5 Response time Shapiro-Wilk . 28

Table 5.6 Response time during reading and solving 29

Table 5.7 Response time during reading . 29

Table 5.8 Eye tracking results . 30

Table 5.9 Eye tracking Shapiro-Wilk . 31

Table 5.10 Fixation count . 32

Table 5.11 Fixation time . 32

Table 5.12 Saccade length . 32

Table 5.13 Subjective preference results . 34

Table A.1 Questions for "Board" snippet . 61

Table A.2 Questions for "Buffer" snippet . 61

Table A.3 Questions for "Snake" snippet . 62

ix

Table A.4 Questions for "String" snippet . 62

Table A.5 Demographic questionnaire . 63

Listings

Listing 1.1 A class skeleton from the Spring Boot repository 3

Listing 1.2 Another class skeleton from the Spring Boot repository 4

Listing 2.1 An example of a class skeleton ordered with StCS 7

Listing 2.2 An example of a class skeleton ordered with CaS 7

Listing 2.3 An example of a class skeleton ordered with CoS 9

Listing 4.1 "Snake" snippet as an example . 18

Listing A.1 Warmup snippet . 41

Listing A.2 "Palindrome" snippet ordered with StCS 42

Listing A.3 "Palindrome" snippet ordered with CaS 43

Listing A.4 "Palindrome" snippet ordered with CoS 44

Listing A.5 "Board" snippet ordered with StCS . 45

Listing A.6 "Board" snippet ordered with CaS . 46

Listing A.7 "Board" snippet ordered with CoS . 47

Listing A.8 "Board" snippet ordered with RaS . 48

Listing A.9 "Buffer" snippet ordered with StCS . 49

Listing A.10 "Buffer" snippet ordered with CaS . 50

Listing A.11 "Buffer" snippet ordered with CoS . 51

Listing A.12 "Buffer" snippet ordered with RaS . 52

Listing A.13 "Snake" snippet ordered with StCS . 53

Listing A.14 "Snake" snippet ordered with CaS . 54

Listing A.15 "Snake" snippet ordered with CoS . 55

Listing A.16 "Snake" snippet ordered with RaS . 56

Listing A.17 "String" snippet ordered with StCS . 57

Listing A.18 "String" snippet ordered with CaS . 58

Listing A.19 "String" snippet ordered with CoS . 59

Listing A.20 "String" snippet ordered with RaS . 60

x

acronyms xi

Acronyms

OGAMA Open Gaze And Mouse Analyzer

StCS StyleCop Strategy

CaS Calling Strategy

CoS Cohesion Strategy

RaS Random Strategy

fMRI functional Magnetic Resonance Imaging

EEG Electroencephalography

JCC Java Code Conventions

1
Introduction

1.1 Goal of this Thesis

Software has become an undeniably essential part of the everyday life of each individual. It
provides us with functionalities that assist us in our daily lives and enable us to connect with
people all around the globe. An analysis from March 2023 [14] shows that there are over 5.7
million apps on the Google Play Store and the Apple App Store combined. Unfortunately,
an app’s development lifecycle does not end after the initial release; rather, apps require
daily maintenance and improvements based on the users’ feedback [21]. Given that each
software contains many files with possibly hundreds of lines of source code, it is crucial to
guarantee that the developer comprehends the source code in a reasonable time. One of the
aspects that greatly influences code readability is consistency [43].

Keeping consistency throughout the code of a project is pivotal for understanding source
code quickly and efficiently [18], especially considering the high writing flexibility offered
by a lot of programming languages. Although most programming languages have some
agreed-upon conventions to keep source code consistent, these conventions are very minimal
and still leave a lot of room for deviation. An example of a widely used convention is the
"one class per file" convention, which states that each file must contain a single class with
the goal of reducing confusion while browsing project files [17].

In contrast, one of the aspects of programming languages without a unified consensus is
method order. Several programming languages allow any arbitrary method order within a
class while still maintaining the logic. Since the class only serves as a container for methods,
the order of methods does not affect the execution or output of source code. We can observe
this concept in programming languages such as Java [26] and Python [30], where methods
are defined as objects belonging to a class and only referenced through that class. In other
words, classes consist of a set of methods that implement certain functionalities and are
exclusively accessible through that class, which renders the ordering of methods obsolete.
Nevertheless, programmers must decide on the visual order of the methods. As mentioned
above, consistency is pivotal. Hence, choosing arbitrary method ordering for each class
would lead to inefficient source code comprehension.

In this thesis, we will introduce three method ordering strategies and compare them in
terms of task correctness, response time, and eye movements. The three strategies, which
are defined later in Chapter 2, are "StyleCop," "Calling," and "Cohesion." Considering the
vast number of possible method ordering strategies, the aim of this thesis is not to conclude
which strategy is the best overall, but rather, which of the three method ordering strategies
chosen is the most promising for enhancing program comprehension. Additionally, we

1

2 Introduction

hope that the methodology applied in this thesis will pave the way for future research with
a larger set of method ordering strategies and expand to other programming languages.
To achieve this goal, we employ a combination of behavioral and eye tracking measures.
The behavioral measures provide a basis to compare method ordering strategies based on
participants’ task correctness and response time. Furthermore, the eye tracking measures
allow us to observe the visual attention of participants during source code comprehension,
thus developing a deeper understanding of their reading process.

1.2 Motivational Example

To illustrate the problem of method ordering, we will observe two source code snippets
found on GitHub1 from the Spring Boot repository2, which is an open-source project that
aids in creating production-grade spring applications with minimal configurations. For
Listing 1.1, we observe that none of the three method ordering strategies are applied in
this class. The access modifiers are scrambled, which excludes the "StyleCop" strategy. The
clear() method calls getSesssionFile(), which is located above it. This excludes the "Calling"
strategy. The closest method ordering strategy is "Cohesion." Although, this should imply
the usage of "Cohesion" throughout the project for consistency purposes. However, the
method order in Listing 1.2 does not conform to the "Cohesion" strategy completely due to
the fact that refreshApplicationListeners() is separated from other methods accessing the field
application. Interestingly enough, it fully adheres to the "StyleCop" strategy. The approach
used by Spring Boot developers leaves us with a method order incompatible with the three
strategies.

1 GitHub: https://github.com/
2 Spring Boot: https://github.com/spring-projects/spring-boot

https://github.com/
https://github.com/spring-projects/spring-boot

1.2 Motivational Example 3

Listing 1.1: A class skeleton from the Spring Boot repository

class FileSessionPersistence implements SessionPersistenceManager {

private final File dir;

FileSessionPersistence(File dir) {

this.dir = dir;

}

public void persistSessions() {

// Calls getSessionFile() and saveF()

}

private void saveF() {

// Calls saveS()

}

private void saveS() {

}

public Map<String, PersistentSession> loadSessionAttributes() {

// Calls getSessionFile() and loadF()

}

private Map<String, PersistentSession> loadF() {

// Calls loadS()

}

private Map<String, PersistentSession> loadS() {

// Calls readSession()

}

private Map<String, SerializablePersistentSession> readSession() {

}

private File getSessionFile() {

}

public void clear() {

// Calls getSessionFile()

}

}

4 Introduction

Listing 1.2: Another class skeleton from the Spring Boot repository

class EventPublishingRunListener {

private final SpringApplication application;

private final String[] args;

private final SimpleApplicationEventMulticaster initialMulticaster;

EventPublishingRunListener(SpringApplication application, String[] args) {

// Initializes all fields

}

public int getOrder() {

}

public void starting() {

// Accesses the fields application and args

}

// ...

// Five public methods that also access the fields application and args

// ...

public void failed() {

// Accesses the fields application, args, and initialMulticaster

}

private void multicastInitialEvent(ApplicationEvent event) {

// Accesses the fields initialMulticaster

}

private void refreshApplicationListeners() {

// Accesses the fields application and initialMulticaster

}

}

1.3 Overview

In the background section, in Chapter 2, we introduce the method ordering strategies and
program comprehension. Following that, in Chapter 3, we present related work, its signifi-
cance, and how this thesis builds upon it. After establishing background and motivation,
in Chapter 4, we explain the methodology used for the experiment. The results of the
experiment are evaluated in Chapter 5, along with discussion and threats to validity. We
summarize the findings of this thesis and provide thoughts on future work in Chapter 6.

2
Background

In this chapter, we address several concepts that are essential for the topic at hand. First,
we introduce code readability and its connection to method ordering strategies. Then we
briefly define program comprehension, followed by an elucidation on eye tracking.

2.1 Code Readability

Code readability concerns the difficulty of comprehending source code and is hence directly
related to the maintainability of programs [7]. It has been the main topic in many literatures
published, each of which provides different views and guidelines for writing source code.

Martin [22] and McConnell [23] offer with their books "Clean Code" and "Code Complete"
two perspectives on code design and maintenance based on their personal experience.
Martin [22] also inspired one of the method ordering strategies that we analyze in this thesis.
Although both books suggest different code-writing styles, the authors agree that source
code should be written with the goal of making the code more readable, maintainable, and
testable.

Furthermore, code readability has been extensively explored and investigated by numer-
ous papers [12, 43]. For example, Sedano [36] conducts a study on 21 programmers who
follow four code readability sessions to improve the readability of their code. Each session
consists of two phases. During the first phase, an expert programmer reads aloud the code
written by one of the 21 programmers. In the second phase, the expert programmer discusses
the code with the programmer who wrote it. The researcher reports an improvement in code
readability after only three sessions. Additionally, the researcher identifies common fixes
to improve readability, for example, changing variable and method names, and replacing
repeated code with a new method.

Sasaki et al. [34] highlight the connection between code readability and the order of
statements. They propose a new technique for ordering statements within methods and
they test it in the programming language Java. The technique revolves around the idea of
maintaining the smallest possible distance between a variable and its reference. Through an
experiment with 215 methods and 44 subjects, they reveal that the reordered statements
enhanced the readability considerably.

Analogous to the latter work, we aim to investigate the reordering of methods to enhance
source code comprehension. Although we do not observe one technique but rather focus on
comparing different method ordering strategies. In the following section, we present papers
that aim to explore different method ordering strategies applied by developers.

5

6 Background

2.2 Method Ordering Strategies

Biegel et al. [6] are one of the first to tackle the issue of ordering fields and methods within
classes. They explore a wide range of specific ordering strategies, such as grouping methods
that call each other together, grouping fields of the same type together, etc., and if they
are implemented in Java projects. They focus on the strategies provided by the official Java
Code Conventions (JCC) [24], however they detect multiple strategies that deviate from JCC.
In addition to that, they find out through a small survey of 52 developers that 87% of them
regard the ordering of fields and methods as meaningful or important. The JCC are not
included as a strategy in our set of method ordering strategies because the researchers
conclude that they are implemented as a primary ordering criterion in all projects in their
study. Concerning the alternative strategies found throughout the study, their descriptions
are insufficient for a complete method ordering strategy.

In another paper, which we elaborate on in Chapter 3, Geffen and Maoz [16] compare
three method ordering strategies in the programming language Java and test them on
task correctness and response time of participants. Two of the method ordering strategies
that Geffen and Maoz [16] investigate, namely the "StyleCop" and "Calling" strategies,
are included in our set. However, the combined strategy "Calling+Connectivity" is left
out to keep the strategies simple and concise without worrying about the attributes of
different strategies colliding or contradicting each other. The "Connectivity" strategy, which
is inspired by JCC, states that methods calling each other must be adjacent to one another.
This strategy is excluded because of its high similarity to the "Calling" strategy (defined
below). This similarity stems from their reliance on method calls alone.

In the previous two examples, the researchers chose a set of method ordering strategies
to conduct their experiment on since one cannot test all possible method orders. In this
thesis, we focus on three method ordering strategies that were inspired by the related work
and literature on code readability. In the following, we will introduce the three ordering
strategies:

1. StyleCop Strategy (StCS): Using this strategy, the methods are ordered mainly by their
access modifiers. Similar to the convention of inserting getters and setters to access
private variables outside a class, add and remove methods are responsible for adding
and removing elements of lists, sets, or other types of collections. The add and remove
methods are positioned at the start of the class, with the add methods stationed above
their respective remove methods. They are followed by the getters and setters of the
class, with getters stationed above their respective setters. All other methods are then
ordered by their access modifier. The order is as follows: public, then protected, then
private methods. Additionally, static methods are positioned above instance methods.
Since the documents provided do not mention the order for the rest of the class, any
methods left without an order are ordered alphabetically. This strategy originates from
Microsoft’s StyleCop 1, which is an open-source static code analysis tool. An example
is provided in Listing 2.1.

1 StyleCop: https://github.com/StyleCop/StyleCop

2.2 Method Ordering Strategies 7

Listing 2.1: An example of a class skeleton ordered with StCS

public class Foobar {

public static void ...() {

// Does something

}

public void ...() {

// Does something

}

protected void ...() {

// Does something

}

private void ...() {

// Does something

}

}

2. Calling Strategy (CaS): The methods in this strategy are ordered based on call depen-
dency. A method calling another method inside the class should always be positioned
above the called method. In other words, the caller always points downward to the
callees. Callee methods are in the same order they are called in. Methods that are
neither callers nor callees are pushed to the bottom of the class. Once ordered, if
two methods share the same place in the hierarchy, for example, two methods that
call other methods but are not called by any method themselves, they are ordered
alphabetically. We added the latter rule of alphabetical order because the details on
how to further order methods were absent. This strategy is described under the name
"Vertical Ordering" in the book "Clean Code" by Robert C. Martin [22] and is provided
in Listing 2.2.

Listing 2.2: An example of a class skeleton ordered with CaS

public class Foobar {

public void caller1() {

// Calls callee1() and callee2()

}

public void callee1() {

// Calls callee2()

}

private void callee2() {

// Does something

}

public void caller2() {

// Calls callee3()

}

private void callee3() {

// Does something

}

}

8 Background

3. Cohesion Strategy (CoS): This strategy is inspired by the types of method cohesion
explored by Athanasopoulos and Zarras [2]. Communicational and functional cohesion,
which are explained below, form the basis of this strategy. We excluded the sequential
cohesion since it overlaps with CaS. This strategy revolves around the idea of grouping
methods together that either operate on the same data or perform similar tasks. The
constructors and the main method are positioned at the top of the class. Then, methods
are divided into three groups:

• Communicational Cohesion: a communicational group of methods contains
methods that operate on the same data within the class. If a method operates on
multiple variables, the dominant variable is the one to be considered. A variable
in a method is dominant if it appears more frequently than others within the
method. Alternatively, if all variables appear with the same frequency, then the
one that comes first alphabetically is considered dominant. Belonging to this
group are, for example, methods that act on a list within a given class, specifically,
add elements, remove elements, empty the list, etc.

• Functional Cohesion: a functional group of methods contains methods that
operate similarly and are not part of a communicational cohesion group. This
includes, for example, methods that increase their input by some amount since
they do not operate on data within the class.

• Other Cohesion: all other methods, whether they belong to a cohesion group not
mentioned above or are completely incoherent, belong to this final group.

The groups are inserted in the same order they appear in the enumeration above,
i.e., first, communicational cohesion, followed by functional cohesion, and at the end,
all other methods. Each group can incorporate multiple subgroups, considering that
methods operating on two different variables within a class would both be considered
communicational cohesion groups, albeit two different ones. The communicational
cohesion groups are ordered alphabetically by the variable name they operate on.
Seeing that functional cohesion groups do not share an unequivocal answer to which
attribute to order them by, we chose to order them by the method name that is first
alphabetically within each group. As for the other cohesion, since there are no groups,
the methods are ordered alphabetically. Next, the methods within each subgroup are
also ordered alphabetically. All alphabetical orderings mentioned above are added by
us to reinforce distinguishability within the different method ordering strategies. An
example is shown in Listing 2.3.

2.3 Program Comprehension 9

Listing 2.3: An example of a class skeleton ordered with CoS

public class Foobar {

private File file;

private List list;

// Group 1

public void saveFile() {

// Accesses file

}

public void loadFile() {

// Accesses file

}

public void deleteFile() {

// Accesses file

}

// Group 2

public void addToList() {

// Accesses list

}

public void removeFromList() {

// Accesses list

}

}

2.3 Program Comprehension

Program comprehension is the process of perceiving given source code and then interpreting
it based on prior computer science knowledge [45]. It is an important cognitive process for
software developers since it usually takes up most of their time [41], which only solidifies the
necessity of further research to optimize source code for fast and efficient comprehension.
Since program comprehension requires reading the source code, the readability of the
program might have a positive or negative effect on it [28].

Research surrounding program comprehension can be traced back to the late 60s, where
the researchers Sackman et al. [33] were one of the first to tackle this subject matter. They
compare online and offline debugging, where online refers to the debugging process while
the program is executing and offline refers to debugging source code without observing
the runtime behavior of the program. They conclude that online debugging is better
performance-wise, although this result is not as important as the researchers describing the
methodology and problems that occurred during the experiment design since there was no
prior research to base it on.

Several decades later, in 1995, the researchers Von Mayrhauser and Vans [45] compare
six program comprehension models, namely the Letovsky model, the Shneiderman and
Mayer model, the Brooks model, top-down model, bottom-up model, and the integrated
metamodel. They dive deep into the differences and similarities of the models and provide a
detailed overview of their evaluation of each model. This work has been cited in numerous

10 Background

papers within the field of program comprehension, which highlights the level of detail and
importance of this work.

That being said, the field of program comprehension has insufficient research compared to
other fields. Starting in the mid-90s, there was a huge setback in conducting research, which
is suspected to be caused by the loss of appreciation for empirical evaluations of program
comprehension, where papers would be rejected several times [41]. Considering how rapidly
the computer science industries are evolving and the countless programming languages,
IDEs, etc. that are emerging [10, 19], the mentioned setback made it near impossible to
check whether modern technologies and enhancements have positive or negative effects on
program comprehension. Hence, conducting research on state-of-the-art programs requires
highly fine-tuned study scenarios to assure measuring desired parameters. In light of
this information, we elaborate on methods utilized by researchers to measure program
comprehension.

Siegmund [41] describes multiple behavioral methods to measure program compre-
hension, for example, think-aloud protocols, memorization, and comprehension tasks.
Think-aloud protocols are verbalized thoughts of participants captured via audio or video
while reading source code. Memorization is based on the idea of participants recalling
source code. The degree of comprehension is directly related to the correctness of the
recall. Lasty, comprehension tasks are measured in terms of task correctness and response
time, which is an integral part of our thesis. Comprehension tasks are closer to real-world
scenarios than the other two techniques since they rely on comprehending source code to
solve a problem. In contrast, thinking aloud and memorizing source code are not directly
related to developer activities [32].

Measuring program comprehension using a neural approach varies greatly from study to
study because of the different methods that exist, for example, Electroencephalography (EEG)
and functional Magnetic Resonance Imaging (fMRI) [41]. There is not a single method that
can be regarded as the best; rather, each method has its own suitable use cases. fMRI is
usually applied to study brain activity patterns during program comprehension [40]. It
measures changes in the oxygen levels of blood caused by brain activity in different regions
of the brain. In order to measure brain activity without the time and cost consumption
of fMRI, one could also opt for EEG instead. EEG is proven especially useful to capture
cognitive performance of developers during program comprehension, for example, drawing
conclusions about the link between expertise and programming language comprehension
[11].

Eye tracking has been utilized in numerous papers [38] to assess visual attention. Re-
searchers analyze eye tracking data with respect to specific regions on the screen that they
assign, known as areas of interest. In this thesis, we are interested in exploring the visual
perception of the participants; hence, we will be utilizing eye tracking to measure program
comprehension. In the following section, we will elaborate on eye tracking as a method of
analyzing participants’ eye movements.

2.4 Eye Tracking 11

2.4 Eye Tracking

Reading source code can be divided into perceiving the source code and then compre-
hending it [9]. Eye tracking provides the necessary medium to observe and analyze the
perception of source code [27].

Eye tracking has been proven useful in numerous scenarios concerning program compre-
hension. For example, Uwano et al. [44] utilized eye tracking to characterize the performance
of participants during code review. They identify a specific eye movement pattern in some
participants who are able to find defects faster than others. However, eye tracking studies
in program comprehension are not only limited to source code comprehension but also
include, for example, UML diagram comprehension. In the paper by Yusuf et al. [48], they
conclude that experts rely on coloring and layout to achieve more efficient exploration and
navigation of class diagrams.

There are multiple metrics one could consider when working with eye tracking, each
providing a different insight into perception. The metrics can be categorized according to
the number and duration of fixations, saccades, and scanpaths [38], where fixation is the act
of stabilizing the eye gaze on a specific location within the screen.

One of the metrics in the category of number of fixations is fixation count, which
indicates the total amount of fixations in each area of interest. Sharafi et al. [39] analyze
the fixation count of participants during code reading. They conclude that higher fixation
count correlates with higher cognitive load, i.e., the effort spent to answer a question was
significantly higher.

One of the metrics in the category of duration of fixations is fixation time, which equals
the sum of the durations of all fixations in an area of interest. Bednarik [5] experiments
on two groups of programmers with two distinct levels of experience while they debug a
program. Through analyzing fixation time, similar to fixation count, a higher fixation time
indicated more effort in searching for bugs.

Lastly, the saccades describe the rapid eye movements in between fixations and the
scanpath is a chronological order of fixations that indicates some distinct pattern. The two
metrics, regression rate and scanmatch, that belong to saccades and scanpath respectively,
are the main focus of the paper by Busjahn et al. [8]. After comparing novices and experts via
the two metrics, the researchers discovered that novices read source code almost equivalent
to reading natural language, whereas experts show signs of tracing code execution to
comprehend more efficiently, which is not a possibility in natural language.

3
Related Work

In this chapter, we introduce research related to the topic at hand. We split the research into
two sections: the first section includes a study on method ordering strategies with regard to
program comprehension, and the second section includes a study on eye tracking and its
evaluation.

3.1 Method Order and Program Comprehension

Geffen and Maoz [16] investigate the effect of method ordering on program comprehension
in the programming language Java. They examine the usage of four different ordering
strategies in open-source projects and conduct a user study on task correctness and response
time utilizing the different ordering strategies. The setup of the user study is almost identical
to our setup, as they analyze the multiple-choice answers of the participants by observing
extracted graphs on task correctness and response time. The study shows that the ordering
strategies have little to no effect on task correctness, but some reduce the response time.
They do not mention any statistical tests applied while analyzing the data, which leads us to
the conclusion that they based their results solely on the graphs. We improve upon this by
employing statistical tests on the behavioral data. Additionally, in this thesis, we introduce
eye tracking, which they suggest as future work. The eye tracking addition should provide
visual insight into participants’ source code comprehension, for example, the real-time eye
movements of the participants, to assess methods of high interest.

3.2 Eye Tracking in Program Comprehension

Kővári et al. [20] provide a quantitative evaluation of eye tracking metrics using Open
Gaze And Mouse Analyzer (OGAMA), which is elucidated in Chapter 4. The eye tracker
records participants’ eye movements during a debugging task, which revolves around
exploring and correcting an incorrectly functioning algorithm. The participants are divided
into two groups based on whether they solve the debugging issue via testing multiple
modifications or whether they think about the algorithm and then solve it within one
or a few modifications. The researchers first analyze the attention maps, i.e., the areas
on the screen with the most attention from the participants. Since attention maps are
visual representations, the researchers only emphasize the areas with the highest attention.
Following the attention maps, the researchers focus on the quantitative measures, more
specifically, the metrics: fixation count, fixation duration, and average saccade length. For

13

14 Related Work

each metric, the data of both groups is initially tested for normality via the Shapiro-Wilk
test. After that, the data of both groups is compared through a two-sample t-test, which
shows no significant difference for the fixation duration and the average saccade length.
In contrast, the test shows a significant difference in terms of fixation count, in which the
group with participants needing multiple modifications exhibits a higher average fixation
count than the other group. Following the latter, they draw the conclusion that developers
who tend to think more about the code before editing it debug errors more efficiently than
developers who follow a trial-and-error strategy. The methodology and analysis applied by
Kővári et al. [20] provide a framework for our methodological approach.

4
Methodology

In this chapter, we establish the research questions and the methodology we applied to
answer them. The methodology sections range from the participant recruitment and snippet
selection to the main experiment design, ending with experiment variables (dependent and
independent) and analysis.

4.1 Research Questions

The primary goal of this thesis is to deduce the method ordering strategy for Java methods
within a class that best aligns with human comprehension. To achieve this goal, we formulate
five research questions that we hope to answer through the methodology described in the
following sections. The five research questions are divided into three quantitative questions
and two qualitative questions. As hinted on in Chapter 1, we use a combination of behavioral
methods and eye tracking to compare the different method ordering strategies. Subsequently,
the first three research questions are about comparing the three method ordering strategies
based on task correctness, response time, and eye movements. The choice of dividing the
quantitative analysis into three questions is based on the fact that each question explores
different phases of the experiment. As we elucidate in the following question descriptions,
each question concerns either one or two phases of the experiment; for example, the task
correctness is analyzed for only the first question and for all questions together. The first and
second questions are aimed at validating the findings of Geffen and Maoz [16]. The third
question incorporates the new method of eye tracking to analyze method ordering strategies.
Additionally, we include the subjective preference of the participants in our analysis,
although it is separate from the quantitative aspects. Thus, the last two research questions
aim to connect the quantitative findings with the subjective preference of participants.
Specifically, the research questions we will be addressing in this thesis are:

• RQ1: Does one of the three method ordering strategies ease program comprehension
in terms of task correctness?

Task correctness refers to the number of correct answers per method ordering strategy.
We differentiate between the correct answers for only the first question, and for all
questions together, which we elaborate on in Chapter 5.

• RQ2: Does one of the three method ordering strategies ease program comprehension
in terms of response time?

Response time refers to the time spent reading the snippets, and the time spent
reading the snippets and answering questions. We added the time of only reading

15

16 Methodology

to the analysis to assess the time of participants comprehending the snippets with
different strategies.

• RQ3: Does one of the three method ordering strategies improve the eye movements in
terms of reducing fixation count, fixation time, and saccade length during program
comprehension?

The three eye tracking metrics are illustrated in Chapter 2. We analyze the three
metrics during snippet reading.

• RQ4: Do the participants’ subjective preferences regarding the order of methods align
with the objective results of the behavior?

• RQ5: Do the participants’ subjective preferences regarding the order of methods align
with the objective results of the eye movements?

By answering these research questions, we aim to deliver valuable insights into the signifi-
cance of ordering strategies in program comprehension and to provide a basis for further
studies on this topic.

4.2 Participant Recruitment

We selected participants who fulfilled one of two criteria. Each participant should either
have a minimum of one year of Java experience or have at least attended the Programming
2 course, which introduces Java concepts and requires students to undertake three small
Java projects. We chose these criteria to ensure that the participants comprehend the source
code in the snippets provided.

The recruitment of participants was accomplished by advertising on social media and
asking students who had completed Java-related courses. A total of twelve participants
were recruited. Eleven of the participants are bachelor’s and master’s students attending
Saarland University, and the twelfth participant is a master’s graduate who works as a
researcher at the DFKI1. The participants consisted of one female and eleven males, aged
between 20 and 26. The semesters of the students span from the third until the eleventh
semester, although the average semester is the sixth. Except for three participants that do
not program in their free time, nine participants program on average six hours per week on
personal projects.

The Java experience of the participants spans from one to six years, where the average is
2.6 (SD = 1.36) years. When asked to rate their programming skills compared to those of
their fellow students, the participants chose, on average, three out of five on the scale (SD
= 0.87), which implies that no participant considers themselves a beginner nor an expert.
Based on their subjective opinion, half of the participants claim to have project experience
in Java, i.e., they have worked on Java projects before, and the other half claim to have
regular or basic knowledge. Almost every participant mentioned Python and C as another
programming language they know well, which could be interesting to note for future work.
An overview of the demographics is provided in Table 4.1.

1 German Research Centre for Artificial Intelligence: https://www.dfki.de/web

4.3 Snippet Selection 17

Table 4.1: Demographics data of the study population

Category Sub-Category Frequency Percentage

Age Between 20-23 6 50%

Between 24-26 6 50%

Gender Male 11 92%

Female 1 8%

Highest Education High School Diploma 9 75%

Bachelor 2 17%

Master 1 8%

Java Experience 1 Year 2 17%

2 Years 3 25%

3 Years 5 41%

More than 3 Years 2 17%

4.3 Snippet Selection

The programming language used in the source code is set to be Java, since it is a widely
used language [29]. Furthermore, multiple courses at the Saarland University, where the
participants are recruited from, have Java as the main programming language throughout
the lecture. Source code snippets were collected from multiple GitHub repositories. The
snippets are named based on their original repositories, namely "Board" [35], "Buffer" [47],
"String" [13], "Snake" [31], and "Palindrome" [1]. During snippet selection, the attributes we
searched for were: average class difficulty, which was assessed in the pilot studies and by
gathering opinions from programmers, presence of public and private methods for StCS,
and methods that call each other for CaS. The methods of each snippet are ordered by
the three method ordering strategies StCS, CaS, and CoS with an additional fourth Random
Strategy (RaS), which we include to compare it to the other method ordering strategies. RaS

assigns each snippet a random method order that does not collide with any of the three
method ordering strategies. However, the "Palindrome" snippet, which is shown in the
subjective preference section, is only ordered using the three method ordering strategies:
StCS, CaS, and CoS. All snippets with the different orderings are provided in Appendix A.

We modified the snippets to ensure the same number of methods in each snippet, which
is seven methods. There are two reasons that led us to conclude that the number seven
is the optimal number of methods for our experiment. First, we wanted the number of
methods in each snippet to be equal to or bigger than the smallest number of methods
observed in the paper by Geffen and Maoz [16], which is five. Additionally, the design of
our experiment relied on showing the code on one screen without scrolling. After testing
out multiple numbers, seven methods sufficed for these two conditions. The modification
included removing methods, removing fields that are only accessed by deleted methods,
and adding a main method to each snippet. The latter was deemed necessary to ensure that

18 Methodology

each snippet has an execution cycle and an output, thus underpinning the need to read all
the methods. The "Snake" snippet without a specific order is provided in Listing 4.1.

Listing 4.1: "Snake" code snippet used in the experiment [31]. The snippet does not have a specific
order.

public char direction = ’R’;
private int x = 0;

private int y = 0;

public void update() {

move();

if (checkCollision()) die(); }

private void move() {

if (direction == ’U’) y -= 1;

if (direction == ’D’) y += 1;

if (direction == ’L’) x -= 1;

if (direction == ’R’) x += 1; }

private boolean checkCollision() {

if (x < 0 || x > 20 || y < 0 || y > 20) return true;

return false; }

public void setDirection(char direction) {

if (this.direction != getOppositeDir(direction)) {

this.direction = direction; }}

private char getOppositeDir(char dir) {

if (dir == ’U’) return ’D’;
else if (dir == ’L’) return ’R’;
else if (dir == ’D’) return ’U’;
else return ’L’; }

private void die() {

System.out.println("Game Over! "); }

public static void main(String[] args) {

Example example = new Example();

example.update();

example.setDirection(’U’);
example.update(); }

4.4 Experiment Design

Before initiating the experiment, the participants undergo a warmup session and answer
a questionnaire to assess their demographic and their Java experience. In the warmup
session, the participants familiarize themselves with the eye tracking equipment and the

4.4 Experiment Design 19

general procedure to ensure seamless execution. The snippet used in the warmup session is
provided in Listing A.1. Next, they fill out the demographic questionnaire, which entails
questions about age, gender, and education level. Additionally, there are questions included
on Java programming experience, such as, "How many years of programming experience do
you have in total?" and "How do you rate your programming skills compared to your fellow
students? (1 to 5)." The questionnaire with the possible answers is provided in Table A.5.

The actual experiment consists of comprehending four snippets and answering three
multiple-choice questions per snippet, followed by a question on the subjective preference
for ordering the "Palindrome" snippet. The experiment follows a within-subject design.
Each participant is presented with the four snippets that we collected, however the method
ordering strategy for each snippet differs between participants, i.e., the first snippet could
have StCS for the first participant but CaS for the second. If the first snippet always had the
same order, for example, CoS, then the risk of learning effect increases.

The four snippets are displayed one by one along with the multiple-choice questions. The
participants have seven minutes to read and comprehend the snippets before viewing the
questions, however we provide a button in the lower right corner to manually open the
questions before the seven minutes pass. We refrain from initially displaying the questions
alongside the snippets to direct the participants’ focus solely towards the code. This allows
us to analyze the response time during reading only and to observe the eye movements
while participants comprehend the snippet. After that, the participants have two minutes
per question to choose one of the answers. The multiple-choice questions are shown one by
one alongside the code. Each snippet has three multiple-choice questions with one correct
answer, two wrong answers, and an "I do not know" option. The first question in each
snippet asks for the output of the main method. The second and third questions are snippet-
specific and aim to assess participants’ general comprehension of the snippets. The difficulty
of the questions was tested in the pilot studies, wherein the participants reported that the
difficulty appeared consistent across the questions. The number of multiple-choice questions
and the choice of answers are inspired by the related work in Chapter 3. To illustrate the
questions’ structure, we show the questions for the "Snake" snippet in Listing 4.1:

1. What is the output of the main method?

□ "Game Over!"

□ Nothing

□ Two times "Game Over!"

□ I do not know

2. If the movement were to be rendered, where would the starting point be on a grid?

□ Top-left corner

□ Centered

□ Bottom-left corner

□ I do not know

3. What happens if the main method sets the direction to ’L’ instead of ’U’?

□ An exception is raised

20 Methodology

□ The direction changes to ’L’

□ The direction stays ’R’

□ I do not know

All questions are provided in Appendix A.
The eye movements of the participants are collected with a Tobii EyeX Eye Tracker2

during code reading and question solving. The eye tracker tracks the user’s eyes at a 60 Hz
frequency, as specified by the manufacturer.

Following the comprehension phase, the participants provide a subjective opinion on the
order of the "Palindrome" snippet. The experiment, including the pre-experiment phase, is
set to last around 45 minutes per participant.

After the experiment, we gather feedback on the difficulty of the tasks and suggestions
for improvements. Additionally, we check the validity of the data collected during the
experiment, especially eye tracking data. We verify that the files concerning the demographic
questionnaire, snippet answers, and eye tracking data have been successfully generated.
Furthermore, we scan the files to ensure the inclusion of all answers from the demographic
questionnaire and snippets, as well as the availability of eye tracking data.

4.5 Variables

In the following, we introduce the independent and dependent variables of our study.

4.5.1 Independent Variables

The method ordering strategies used in the experiment are explained in Chapter 2 with
the addition of RaS. There are four sequences of the method ordering strategies that repeat
three times to cover the twelve participants. the sequences are presented in Table 4.2. The
selection of sequences relied purely on having each strategy in each possible position, i.e.,
each strategy is in the first, second, third, and fourth positions in three iterations. Though
ideally, testing all possible permutations of positions, i.e., the 24 possible permutations of
the four strategies, would exclude any influence other strategies could have on the strategies
after. For example, there is a possibility that having CoS before CaS might influence CaS either
positively or negatively. However, this would impose 24 different sequences that require a
minimum of 24 participants, which is not possible within the scope of this thesis.

2 https://help.tobii.com/hc/en-us/articles/212818309-Specifications-for-EyeX

https://help.tobii.com/hc/en-us/articles/212818309-Specifications-for-EyeX

4.5 Variables 21

Table 4.2: Sequences of method ordering strategies used in the experiment

Sequence Name Sequence

CaCoRaSt CaS, CoS, RaS, then StCS

CoRaStCa StCS, CaS, CoS, then RaS

RaStCaCo RaS, StCS, CaS, then CoS

StCaCoRa CoS, RaS, StCS, then CaS

Moreover, the five snippets shown to the participants constitute an independent variable.
The sequence of the four snippets during the comprehension phase is identical for all
participants, namely the "Board" snippet followed by "Buffer," "String," and then "Snake."
The reason behind the consistent sequence is the limited scope of the study. If the snippets
exhibited a similar sequence variation as the method ordering strategies, we would need
to account for snippets having an impact on each other in terms of comprehension. Con-
sidering the low number of participants, we decided on a single sequence of snippets. The
"Palindrome" snippet is excluded from the sequence since it is presented in the subjective
preference phase.

4.5.2 Dependent Variables

The dependent variables of the study can be derived from the research questions proposed
at the beginning of this chapter. The first research question concerns the task correctness.
The task correctness will be measured by the multiple-choice answer submissions of the
participants. We analyze the correctness across all questions and additionally, the correctness
of the first question. Although there are three possible answers (correct, wrong, and "I do
not know"), only the correct answers are of significant importance to us since they confirm
that the participant has comprehended the code fully.

The second research question is about the response time of each code snippet. We record
the time while participants read the code snippet, in addition to the overall time spent
reading and solving the multiple-choice questions. We did not deem the overall response
time sufficient in our case since the time of comprehension could also yield insights into the
efficiency of each method ordering strategy.

The third research question does not comprise of only one dependent variable, but rather
a set of dependent variables all related to eye tracking. The three main metrics we are
analyzing are fixation count, fixation time, and saccade length, which are explained in
Chapter 2.

Both the fourth and fifth research questions are related to the subjective preference of
participants. We measure the preference by the number of participants who choose one of
the three method ordering strategies: StCS, CaS, or CoS for the "Palindrome" snippet.

22 Methodology

4.6 Analysis

In the following sections, we will describe the approach to analyze the data extracted
from the experiment. All visual and statistical analysis scripts are available in the GitHub
repository "Method Ordering" [25]. The library used to conduct the statistical tests is SciPy3.
We chose α = 0.05 as the significance level for all tests.

4.6.1 Behavioral Methods

Bauer et al. [4] present an empirical study on the various levels of indentation and its effect
on program comprehension through eye tracking and behavioral methods. Although the
topic is not directly relevant to the topic at hand, the researchers provide detailed description
of analysis methods they apply to assess correctness and response time. They check the
data for normal distribution via Shapiro-Wilk test and then transform it accordingly. For
the statistical analysis part, they apply one-way repeated-measures ANOVA test, which
compares means of groups that are differentiated by one factor, and Friedman test, which is
an alternative to ANOVA in case the data violates ANOVA’s assumptions. Based on their
methodology, we describe in the following the statistical tests used to assess task-correctness
and response time.

The task correctness of the ordering strategies will be compared using one-way repeated-
measures ANOVA test [42] to compare the means or Friedman test [15] to compare the
medians of the method ordering strategies. The null hypothesis of both tests states that the
different groups are equal. Hence, if the p-value is greater than 0.05, then the strategies are
not significantly different. The decision between the two tests depends on whether the data
satisfies ANOVA’s assumptions, which state that data must be normally distributed and
has approximately equal variances across all groups. To test the assumptions, we apply the
Shapiro-Wilk test [37] to assess the normality, and Bartlett’s test [3] to check for variance
homogeneity. For the Shapiro-Wilk test, the null hypothesis states that the sample comes
from a normal distribution. In other words, if the p-value of the Shapiro-Wilk test is greater
than 0.05, then the data is normally distributed. For Bartlett’s test, the null hypothesis states
that all variances of the samples are equal, i.e., a p-value greater than 0.05 implies that all
variances are equal.

Similar to the task correctness, the response time will be analyzed by one-way repeated-
measures ANOVA test or Friedman test.

4.6.2 Eye Tracking

The eye tracking metrics analyzed in this thesis are fixation count, fixation time, and saccade
length, which are explained in Chapter 2. The raw data from the eye tracker is inserted into
the open-source software OGAMA4 to analyze various aspects, especially the three metrics
mentioned. OGAMA provides a medium to create a slideshow from the snippets. After

3 SciPy: Scientific Library for Python version 1.7.3
4 OGAMA version 5.1: http://www.ogama.net/node/3

http://www.ogama.net/node/3

4.6 Analysis 23

importing the raw data into the slideshow, the program calculates the fixations and displays
them on the corresponding snippet. The maximum distance in pixels that a data point may
vary from the average fixation point and still be considered part of the fixation is set to
twelve pixels. Additionally, the minimum number of data points that can be considered a
fixation is four. The fixations and their respective times can be exported as a text file. An
example of OGAMA displaying fixation count is provided in Figure 4.1. Furthermore, we are
able to export the saccade length in pixels as a text file. The results generated via OGAMA

are interpreted similarly to the results provided by papers mentioned in Chapter 3. We
apply ANOVA and Friedman test to assess equality between the strategies.

Figure 4.1: An example plot of eye tracking data from the experiment. The circles represent fixations
of the participant.

5
Evaluation

5.1 Results

In this chapter, we show the results of the study by addressing the research questions
and discussing them thereafter. The behavioral and eye-movement results are provided in
Table 5.1 and Table 5.8 respectively. All raw data collected throughout the experiment can
be found in Appendix A.

Table 5.1: Behavioral results of the study grouped by snippet and method ordering strategy. The
standard deviation of response time is provided in parentheses next to the mean value.

Snippet Strategy Correctness Correctness
(first question)

Time [s] Time [s] (only
reading)

Board StCS 8/9 2/3 235 (110) 163 (93)

CaS 6/9 3/3 258 (112) 174 (98)

CoS 5/9 0/3 352 (57) 184 (131)

RaS 8/9 3/3 226 (97) 112 (79)

Buffer StCS 6/9 1/3 332 (97) 200 (81)

CaS 2/9 0/3 395 (103) 252 (67)

CoS 3/9 1/3 251 (161) 157 (114)

RaS 2/9 0/3 431 (45) 297 (46)

Snake StCS 3/9 1/3 257 (14) 124 (21)

CaS 7/9 3/3 196 (15) 96 (18)

CoS 7/9 2/3 238 (77) 103 (7)

RaS 5/9 2/3 151 (65) 84 (58)

String StCS 3/9 0/3 161 (54) 76 (53)

CaS 6/9 2/3 293 (66) 204 (58)

CoS 8/9 2/3 172 (30) 109 (18)

RaS 8/9 2/3 241 (49) 147 (24)

25

26 Evaluation

5.1.1 RQ1: Task Correctness Comparison

We compare the method ordering strategies based on the task correctness of all three
questions per class. Additionally, we look at the correctness of only the first question, with
the assumption that the method ordering strategies might affect cognitive effort on the
initial read and become irrelevant thereafter, as stated by Geffen and Maoz [16]. Table 5.1
reports the correctness results for both cases. The results of the "Buffer" snippet suggest an
advantage of StCS over the other strategies, although this pattern does not repeat in other
snippets. The answers for only the first questions appear to show an advantage of CaS over
the other method ordering strategies. A visualization of the distribution is provided in
Figure 5.1 and Figure 5.2.

After applying the Shapiro-Wilk test to assess the normality of correct answers, the
method ordering strategies exhibit higher p-values than the significance level. The p-values
measured in the Shapiro-Wilk test are provided in Table 5.2.

Table 5.2: P-values of the Shapiro-Wilk test per method ordering strategy for the task correctness

Method ordering strategy All questions First question

StCS 0.86 0.161

CaS 0.103 0.272

CoS 0.798 0.406

RaS 0.272 0.683

To meet the ANOVA assumptions, we also check for variances’ homogeneity via Bartlett’s
test, which also indicates higher p-values than the significance level (all questions: p = 0.97;
first question: p = 0.812). This excludes the necessity of comparing the times using the
Friedman test since we can directly apply one-way ANOVA. In both cases of observing all
questions, and first question, the one-way ANOVA test indicates no significant difference
between the method ordering strategies (all questions: F = 0.093, p = 0.962; first question:
F = 0.645, p = 0.601). An overview of the task correctness per method ordering strategy is
provided in Table 5.3 and Table 5.4.

To answer the first research question, the correctness results of all three questions do
not show a definite advantage of one strategy over the others. Similarly, the tests show no
significant difference between the correct answers of the first question.

Table 5.3: Task correctness of participants for all three questions

Method ordering strategy Correct Wrong I do not know

StCS 20 11 5

CaS 21 14 1

CoS 23 8 5

RaS 23 8 5

5.1 Results 27

Table 5.4: Task correctness of participants for only the first question

Method ordering strategy Correct Wrong I do not know

StCS 4 6 2

CaS 8 4 0

CoS 5 3 4

RaS 7 4 1

Figure 5.1: Task correctness for all the questions, showing the percentage of correct, wrong, and "I
do not know" answers

28 Evaluation

Figure 5.2: Task correctness for only the first question, showing the percentage of correct, wrong,
and "I do not know" answers

5.1.2 RQ2: Response Time Comparison

We compare the method ordering strategies based on the task response time while partic-
ipants read the classes and solve their respective questions. Additionally, we look at the
response time of only reading the classes. Based on Table 5.1, the data shows varied times
between strategies for reading and solving. The data does not suggest an advantage of any
strategy. During reading, CoS seems to score better in terms of response time compared to
the other strategies, although this pattern does not repeat combined with the time spent
on solving the questions. CaS, on the other hand, appears to have average to high response
times in all snippets. The data is visually presented in Figure 5.3 and Figure 5.4.

Using the Shapiro-Wilk test to assess the normality of response time data, the method
ordering strategies exhibit higher p-values than the significance level. The p-values measured
in the Shapiro-Wilk test are provided in Table 5.5.

Table 5.5: P-values of the Shapiro-Wilk test per method ordering strategy for the response time

Method ordering strategy Reading and solving Only reading

StCS 0.394 0.353

CaS 0.813 0.39

CoS 0.644 0.327

RaS 0.971 0.676

To meet the ANOVA assumptions, we also check for variances’ homogeneity via Bartlett’s
test, which also indicates higher p-values than the significance level (reading and solving:
p = 0.919; only reading: p = 0.937). This excludes the necessity of comparing the times

5.1 Results 29

using the Friedman test since we can directly apply one-way ANOVA. In both cases of
observing reading and solving, and only reading, the one-way ANOVA test indicates
no significant difference between the method ordering strategies (reading and solving:
F = 0.261, p = 0.853; only reading: F = 0.539, p = 0.658). An overview of the response time
per method ordering strategy is provided in Table 5.6 and Table 5.7.

To answer the second research question, the response time results of reading and solving
the questions do not show a definite advantage of one strategy over the others. The statistical
tests indicate no significant difference.

Table 5.6: Response time (in seconds) of participants while reading and solving questions

Method ordering strategy Mean Standard deviation Min Max

StCS 246 99 83 468

CaS 286 110 108 483

CoS 253 115 28 413

RaS 263 123 66 484

Table 5.7: Response time (in seconds) of participants while reading only

Method ordering strategy Mean Standard deviation Min Max

StCS 141 82 2 304

CaS 182 88 35 323

CoS 138 94 5 328

RaS 160 99 4 348

Figure 5.3: Response time per method ordering strategy of participants during reading and solving
the questions

30 Evaluation

Figure 5.4: Response time per method ordering strategy of participants only during reading

Table 5.8: Eye tracking results of the study grouped by snippet and method ordering strategy. The
standard deviation of all metrics is provided in parentheses next to the mean value.

Snippet Strategy Average Fixation
Count

Fixation Time
[ms]

Saccade Length
[px]

Board StCS 563 (312) 110 (17) 100 (15)

CaS 720 (218) 104 (4) 116 (17)

CoS 285 (192) 130 (21) 155 (21)

RaS 625 (169) 111 (8) 123 (10)

Buffer StCS 718 (384) 110 (3) 138 (10)

CaS 818 (330) 154 (55) 111 (17)

CoS 622 (107) 109 (7) 126 (11)

RaS 688 (467) 130 (22) 136 (17)

Snake StCS 230 (170) 148 (30) 234 (169)

CaS 325 (90) 104 (2) 124 (17)

CoS 312 (78) 144 (46) 101 (10)

RaS 188 (148) 89 (13) 173 (58)

String StCS 251 (77) 97 (3) 171 (32)

CaS 558 (406) 138 (19) 174 (62)

CoS 360 (78) 108 (5) 158 (8)

RaS 487 (130) 120 (10) 120 (23)

5.1 Results 31

5.1.3 RQ3: Effect on Eye Movements

For the analysis of eye movements, we investigate the data of eleven participants. The
twelfth participant is excluded due to insufficient data quality, i.e., raw data containing little
to no fixations per class. The eye tracker stopped recording after capturing the first snippet.
Analogous to analyzing the response time, we check the following three eye tracking metrics
separately on ANOVA assumptions, and then apply one-way ANOVA or Friedman test to
assess differences while also observing the respective box plots.

Based on Table 5.8, the strategy CaS seems to have a higher average fixation count
compared to the other three strategies. The results are visualized in Figure 5.5. Using
the Shapiro-Wilk test together with Bartlett’s test, the fixation count data is proven to
be normally distributed and consist of homogeneous variances with a significance level
(Bartlett’s test: p = 0.164). The p-values measured in the Shapiro-Wilk test are provided in
Table 5.9. Thus, we apply the one-way ANOVA test, which shows no significant difference
between the fixation counts of the four strategies (F = 0.922, p = 0.439). An overview of the
fixation count per method ordering strategy is provided in Table 5.10.

Contrary to the results of fixation count, the results of fixation time do not appear to be
different. The results are visualized in Figure 5.6. Using the Shapiro-Wilk test, the fixation
time data is proven to be not normally distributed with a significance level. The p-values
measured in the Shapiro-Wilk test are provided in Table 5.9. Thus, we apply the Friedman
test, which shows no significant difference between the fixation times of the four strategies
(F = 1.444, p = 0.695). An overview of the fixation time per method ordering strategy is
provided in Table 5.11.

Lastly, the average saccade length in pixels does not seem to show an advantage of one
strategy over the others. The results are visualized in Figure 5.7. Using the Shapiro-Wilk test,
the saccade length data is proven to be not normally distributed with a significance level,
similar to the fixation time. The p-values measured in the Shapiro-Wilk test are provided in
Table 5.9. Thus, we apply the Friedman test, which shows no significant difference between
the average saccade lengths of the four strategies (F = 0.709, p = 0.871). An overview of the
saccade length per method ordering strategy is provided in Table 5.12.

To answer the third research question, in terms of eye tracking metrics, the results of the
statistical tests do not favor one method ordering strategy over the others.

Table 5.9: P-values of the Shapiro-Wilk test per method ordering strategy for the eye tracking metrics

Method ordering strategy fixation count fixation time saccade length

StCS 0.2 0.022 3.74e-5

CaS 0.29 6.16e-4 1.26e-3

CoS 0.646 1.14e-3 0.876

RaS 0.393 0.375 4.39e-3

32 Evaluation

Table 5.10: Number of fixations per participant

Method ordering strategy Mean Standard deviation Min Max

StCS 458 346 4 1255

CaS 595 356 43 1141

CoS 374 176 21 753

RaS 525 330 7 1334

Table 5.11: Average fixation time (in milliseconds) per participant

Method ordering strategy Mean Standard deviation Min Max

StCS 118 26 90 177

CaS 127 38 99 231

CoS 124 31 101 207

RaS 115 21 72 161

Table 5.12: Average saccade length (in pixels) per participant

Method ordering strategy Mean Standard deviation Min Max

StCS 160 104 79 473

CaS 133 44 89 260

CoS 136 28 86 185

RaS 135 39 95 244

5.1 Results 33

Figure 5.5: Fixation count of participants for each method ordering strategy

Figure 5.6: Average fixation time of participants for each method ordering strategy

34 Evaluation

Figure 5.7: Average saccade length of participants for each method ordering strategy

5.1.4 RQ4: Subjective Preference and Behavior

The subjective results in Table 5.13, which are also plotted in Figure 5.8, show CaS having
the majority of votes. This does not align with the results of behavioral methods, which do
not indicate an advantage of any method ordering strategy.

To answer the fourth research question, the subjectively best method ordering strategy
CaS does not demonstrate significantly different results from the other method ordering
strategies in terms of task correctness and response time.

5.1.5 RQ5: Subjective Preference and Eye Movements

CaS is voted the highest among the participants, however it does not score differently than
other strategies in terms of eye tracking metrics.

To answer the fifth research question, the subjectively best method ordering strategy
CaS does not demonstrate significantly different results from the other method ordering
strategies in terms of fixation count, fixation time, and saccade length.

Table 5.13: Subjective preference of participants on the subjectively preferred method ordering

Method ordering strategy Number of participants

StCS 0

CaS 8

CoS 4

5.2 Discussion 35

Figure 5.8: Participants’ preference regarding optimal method ordering strategy for readability

5.2 Discussion

We have shown that in our case of classes with seven methods each, we could not conclude
the best method ordering strategy based on behavioral and eye tracking methods. However,
through subjective preference of participants, one method ordering strategy, namely CaS,
was preferred more than the others.

The insignificant results throughout the analysis could have multiple reasons. Factors
such as number of participants, number of methods, number and difficulty of snippets and
questions might greatly affect the results. Depending on the Java experience, participants
might have perceived the snippets and questions as too difficult, so the method order had
little influence on comprehension. Similarly, the number of methods may have limited the
impact of their order on code comprehension, whether positively or negatively. Furthermore,
we recruited twelve participants and included eleven of them in the eye tracking analysis,
which could be a major reason for the insignificance.

Concerning the main method, all participants agree that the main method belongs at the
top or bottom of the class, and it would disturb their reading flow if it was anywhere in
between. While observing the reading pattern of participants, it also becomes evident that
participants move their eye gaze to the main method immediately. However, it should be
mentioned that main methods mostly exist only one time throughout the whole source
code, since it starts the program. One could argue that the results would have been different
if we excluded the main method, although this is not possible in the scope of this thesis
since we show only code snippets and not whole applications.

The method ordering strategy StCS was not prevalent throughout the analysis, except for
acquiring zero votes. When asked why they did not choose StCS, the participants claimed
that they never looked at the scope of methods while reading. It did not concern them
whether the method was public or private. Although this could also be true for bigger

36 Evaluation

projects, testing out code snippets might have affected the results of StCS because of the lack
of other classes trying to access it.

RaS having neutral scores throughout all metrics might indicate that either the sample
size of participants was too small, or that the number of methods per class was too little to
have a significant effect on program comprehension. Seeing that all other method ordering
strategies had the main method at the very top based on their definitions, participants
reading the main method might have moved their eye gaze from the main method to the
methods called within it constantly leading to a lengthy saccade.

5.3 Threats to Validity

5.3.1 Internal Validity

First, some multiple-choice questions might vary in difficulty across different snippets,
which would influence the performance of the method ordering strategies. To avoid this
issue, we tried to keep the difficulty of the questions consistent. Other than that, we apply
each question to all four method ordering strategies through different sequences, which
implies that no strategy had a question that was not presented in all other strategies.

Second, to avoid performance bias of the participants, we added the random ordering
strategy (RaS), such that the results of the three method ordering strategies can be compared
to a random order’ performance. Although, since the study consists of only twelve par-
ticipants, the results might not be enough to consider the random ordering strategy as a
control variable.

Third, we cannot guarantee that all participants comprehended the snippets before
opening the questions and solving them. Although we emphasized this point prior to the
experiment, some participants might have opened the questions immediately, which would
explain the low response times and eye tracking metrics in the plots.

Fourth, the response time during reading might not reflect a real programming scenario
since the participant could simply open the questions without having comprehended the
snippet completely. To mitigate this issue, we provided the participants with more time to
read the snippets compared to the time to answer the questions. However, some participants
might have pressed the "show questions" before fully comprehending the snippets.

Lastly, the chosen snippet sequences might have influenced the results, as we did not try
every possible sequence. We ensured that every method ordering strategy had a different
position within each sequence, although strategies may have an effect on each other based on
the sequence. Similarly, the snippets were presented to the participants identically; however,
different orders of snippets could have different effects on comprehension.

5.3.2 Construct Validity

First, the algorithms used to order the snippets may not reflect the original intention for
each method ordering strategy. Since the definitions of the method ordering strategies do

5.3 Threats to Validity 37

not fully entail every possible case, we expanded them with alphabetical ordering. We
applied the alphabetical order to every missing case to ensure that every strategy had the
same expansion. Although investigating other techniques for complementing the strategies
might lead to different results.

Second, the eye tracker had to be adjusted depending on the height of the participants
since some participants could not be detected by the eye tracker otherwise. To mitigate this
issue, we shifted the fixations of the participants in OGAMA to fit the snippets and ensure
the eye tracking data is similar across all participants.

5.3.3 External Validity

First, we chose Java as the programming language for the snippets. The results might differ
when analyzing other programming languages; hence, the results of this study are not
directly applicable to other languages. Nevertheless, considering the popularity and wide
usage of Java, it proves suitable as the first programming language to analyze.

Second, the code snippets consisted of seven methods each, which is an adequate number
of methods in a class, although classes and their methods within big projects vary largely.
Using snippets with more methods or varied method numbers might yield different results.

Third, the participants gathered are students with none of them rating themselves as an
expert Java programmer, but rather beginner to average level. The results may have different
distributions if we had recruited expert programmers.

6
Concluding Remarks

6.1 Conclusion

In this thesis, we present a study on the effect of method ordering strategies on behavior and
eye movements in the programming language Java. We have defined three method ordering
strategies, in addition to a fourth random strategy, and examined their performance on
twelve participants solving multiple-choice questions of four Java snippets, each ordered
with a different ordering strategy.

Through analyzing task correctness, response time, and eye tracking metrics, such as
fixation count, fixation time, and saccade length, we have concluded that the method
ordering strategies do not show any statistically significant differences in the measured
metrics. However, it is noteworthy that the participants’ subjective preference for the best
method ordering strategy showed CaS acquiring the most votes.

These results suggest that while our objective analysis did not yield any significant results,
the subjective opinions we discussed hint at CaS being preferred among programmers. Thus,
highlighting the importance of further research to explore method ordering strategies in a
wider scope.

6.2 Future Work

In future research, we suggest expanding the set of method ordering strategies and choosing
different programming languages. For instance, comparing method ordering strategies
between Java and Python. The set of method ordering strategies could also incorporate
combined strategies. By broadening the method ordering analysis, we can deepen our
understanding of attributes influencing source code comprehension. This could lead to
unified conventions across languages to ease comprehension or optimized strategies tailored
for each explored programming language.

Furthermore, the cohesion types analyzed in the experiment are communicational and
functional cohesion, although there are other cohesion types, namely logical, temporal, and
procedural cohesions [46]. We do not consider coincidental cohesion because it is based on
arbitrary ordering. We excluded sequential cohesion from CoS since it overlaps with CaS.
However, future research could incorporate all six cohesion types to classify them based
on efficiency in terms of program comprehension. Following that, we could derive insights
into the programmer’s cohesion strategy, i.e., which cohesion type is applied the most

39

40 Concluding Remarks

during comprehension. Moreover, combining all cohesion types into a single strategy might
eliminate the necessity of the alphabetical ordering we add.

Additionally, we apply four sequences of the four ordering strategies in the experiment.
Nonetheless, as mentioned in Chapter 4, there are 24 possible sequences out of the four
strategies. Conducting a study with all possible sequences would provide insights into the
effects of method ordering strategies on each other with regards to the position within
the sequence. Combining this approach with the expansion mentioned at the start of this
section, future research can cover all possible combinations with sufficient participants.

Lastly, it would also be interesting to explore the effect of the method ordering strategy
on the cognitive load via fMRI or EEG. For example, the spatial localization provided by
fMRI might offer mappings of method ordering strategies to specific regions in the brain.
Subsequently, future research could relate method ordering strategies to cognitive processes
such as memory or attention, which would help identify suitable ordering strategies
based on the strengths and weaknesses of programmers. Additionally, the eye tracking
methodology can be expanded upon to include more metrics and a larger pool of participants
to yield significant eye movement results.

A
Appendix

a.1 Code Snippets

Listing A.1: The warmup code snippet used at the start of the experiment.

public static boolean taskWarmUp(int[] input) {

boolean understood = true;

for (int i = 0; i < input.length - 1; i++) {

if (input[i] > input[i + 1]) {

understood = false;

break; }}

return understood; }

public static void main(String[] args) {

int[] input = {1, 2, 3, 4};

boolean result = taskWarmUp(input);

System.out.println(result); }

41

42 Appendix

Listing A.2: "Palindrome" code snippet used in the subjective preference [1]. The snippet is ordered
with StCS.

public class LowestBasePalindrome {

public static boolean isPalindromicInBase(int number, int base) {

checkNumber(number);

checkBase(base);

if (number <= 1) { return true; }

if (number % base == 0) { return false; }

return isPalindromic(computeDigitsInBase(number, base)); }

public static int lowestBasePalindrome(int number) {

int base = 2;

while (!isPalindromicInBase(number, base)) { ++base; }

return base; }

public static void main(String[] args) {

System.out.println(LowestBasePalindrome.isPalindromicInBase(2222, 4));

System.out.println(LowestBasePalindrome.lowestBasePalindrome(2222222)); }

private static void checkBase(int base) {

if (base <= 1) { throw new IllegalArgumentException("base must be greater than
1 . "); }}

private static void checkNumber(int number) {

if (number < 0) {

throw new IllegalArgumentException("number must be nonnegative . "); }}

private static ArrayList<Integer> computeDigitsInBase(int number, int base) {

var result = new ArrayList<Integer>();

while (number > 0) {

result.add(number % base);

number /= base; }

return result; }

private static boolean isPalindromic(ArrayList<Integer> list) {

for (int pos = 0; pos < list.size() / 2; ++pos) {

if (list.get(pos) != list.get(list.size() - 1 - pos)) { return false; }}

return true; }

}

A.1 Code Snippets 43

Listing A.3: "Palindrome" code snippet used in the subjective preference [1]. The snippet is ordered
with CaS.

public class LowestBasePalindrome {

public static void main(String[] args) {

System.out.println(LowestBasePalindrome.isPalindromicInBase(2222, 4));

System.out.println(LowestBasePalindrome.lowestBasePalindrome(2222222)); }

public static int lowestBasePalindrome(int number) {

int base = 2;

while (!isPalindromicInBase(number, base)) { ++base; }

return base; }

public static boolean isPalindromicInBase(int number, int base) {

checkNumber(number);

checkBase(base);

if (number <= 1) { return true; }

if (number % base == 0) { return false; }

return isPalindromic(computeDigitsInBase(number, base)); }

private static void checkNumber(int number) {

if (number < 0) {

throw new IllegalArgumentException("number must be nonnegative . "); }}

private static void checkBase(int base) {

if (base <= 1) { throw new IllegalArgumentException("base must be greater than
1 . "); }}

private static boolean isPalindromic(ArrayList<Integer> list) {

for (int pos = 0; pos < list.size() / 2; ++pos) {

if (list.get(pos) != list.get(list.size() - 1 - pos)) { return false; }}

return true; }

private static ArrayList<Integer> computeDigitsInBase(int number, int base) {

var result = new ArrayList<Integer>();

while (number > 0) {

result.add(number % base);

number /= base; }

return result; }

}

44 Appendix

Listing A.4: "Palindrome" code snippet used in the subjective preference [1]. The snippet is ordered
with CoS.

public class LowestBasePalindrome {

public static void main(String[] args) {

System.out.println(LowestBasePalindrome.isPalindromicInBase(2222, 4));

System.out.println(LowestBasePalindrome.lowestBasePalindrome(2222222)); }

private static void checkBase(int base) {

if (base <= 1) { throw new IllegalArgumentException("base must be greater than
1 . "); }}

private static void checkNumber(int number) {

if (number < 0) {

throw new IllegalArgumentException("number must be nonnegative . "); }}

private static ArrayList<Integer> computeDigitsInBase(int number, int base) {

var result = new ArrayList<Integer>();

while (number > 0) {

result.add(number % base);

number /= base; }

return result; }

private static boolean isPalindromic(ArrayList<Integer> list) {

for (int pos = 0; pos < list.size() / 2; ++pos) {

if (list.get(pos) != list.get(list.size() - 1 - pos)) { return false; }}

return true; }

public static boolean isPalindromicInBase(int number, int base) {

checkNumber(number);

checkBase(base);

if (number <= 1) { return true; }

if (number % base == 0) { return false; }

return isPalindromic(computeDigitsInBase(number, base)); }

public static int lowestBasePalindrome(int number) {

int base = 2;

while (!isPalindromicInBase(number, base)) { ++base; }

return base; }

}

A.1 Code Snippets 45

Listing A.5: "Board" code snippet used in the experiment [35]. The snippet is ordered with StCS.

public int currentP = 1;

private int[][] board = new int[3][3];

public static void main(String[] args) {

Example example = new Example(); // Creates an instance of this class

example.makeMove(2,0);

example.makeMove(1,0);

System.out.println("Player " + example.currentP +

((example.isWinner()) ? " Won! " : " Lost ! ")); }

public boolean isWinner() {

return checkR() || checkC() || checkD(); }

public void makeMove(int row, int col) {

board[row][col] = currentP;

currentP = (currentP == 1) ? 2 : 1;}

private boolean checkC() {

for (int i = 0; i < 3; i++) {

if (checkLine(board[0][i], board[1][i], board[2][i])) {

return true; }}

return false; }

private boolean checkD() {

return (checkLine(board[0][0], board[1][1], board[2][2]) ||

checkLine(board[0][2], board[1][1], board[2][0])); }

private boolean checkLine(int a, int b, int c) {

return (a != 0 && a == b && b == c); }

private boolean checkR() {

for (int i = 0; i < 3; i++) {

if (checkLine(board[i][0], board[i][1], board[i][2])) {

return true; }}

return false; }

46 Appendix

Listing A.6: "Board" code snippet used in the experiment [35]. The snippet is ordered with CaS.

public int currentP = 1;

private int[][] board = new int[3][3];

public static void main(String[] args) {

Example example = new Example(); // Creates an instance of this class

example.makeMove(2,0);

example.makeMove(1,0);

System.out.println("Player " + example.currentP +

((example.isWinner()) ? " Won! " : " Lost ! ")); }

public void makeMove(int row, int col) {

board[row][col] = currentP;

currentP = (currentP == 1) ? 2 : 1;}

public boolean isWinner() {

return checkR() || checkC() || checkD(); }

private boolean checkR() {

for (int i = 0; i < 3; i++) {

if (checkLine(board[i][0], board[i][1], board[i][2])) {

return true; }}

return false; }

private boolean checkC() {

for (int i = 0; i < 3; i++) {

if (checkLine(board[0][i], board[1][i], board[2][i])) {

return true; }}

return false; }

private boolean checkD() {

return (checkLine(board[0][0], board[1][1], board[2][2]) ||

checkLine(board[0][2], board[1][1], board[2][0])); }

private boolean checkLine(int a, int b, int c) {

return (a != 0 && a == b && b == c); }

A.1 Code Snippets 47

Listing A.7: "Board" code snippet used in the experiment [35]. The snippet is ordered with CoS.

public int currentP = 1;

private int[][] board = new int[3][3];

public static void main(String[] args) {

Example example = new Example(); // Creates an instance of this class

example.makeMove(2,0);

example.makeMove(1,0);

System.out.println("Player " + example.currentP +

((example.isWinner()) ? " Won! " : " Lost ! ")); }

private boolean checkC() {

for (int i = 0; i < 3; i++) {

if (checkLine(board[0][i], board[1][i], board[2][i])) {

return true; }}

return false; }

private boolean checkD() {

return (checkLine(board[0][0], board[1][1], board[2][2]) ||

checkLine(board[0][2], board[1][1], board[2][0])); }

private boolean checkR() {

for (int i = 0; i < 3; i++) {

if (checkLine(board[i][0], board[i][1], board[i][2])) {

return true; }}

return false; }

public void makeMove(int row, int col) {

board[row][col] = currentP;

currentP = (currentP == 1) ? 2 : 1;}

private boolean checkLine(int a, int b, int c) {

return (a != 0 && a == b && b == c); }

public boolean isWinner() {

return checkR() || checkC() || checkD(); }

48 Appendix

Listing A.8: "Board" code snippet used in the experiment [35]. The snippet is ordered with RaS.

public int currentP = 1;

private int[][] board = new int[3][3];

private boolean checkC() {

for (int i = 0; i < 3; i++) {

if (checkLine(board[0][i], board[1][i], board[2][i])) {

return true; }}

return false; }

public static void main(String[] args) {

Example example = new Example(); // Creates an instance of this class

example.makeMove(2,0);

example.makeMove(1,0);

System.out.println("Player " + example.currentP +

((example.isWinner()) ? " Won! " : " Lost ! ")); }

private boolean checkLine(int a, int b, int c) {

return (a != 0 && a == b && b == c); }

private boolean checkD() {

return (checkLine(board[0][0], board[1][1], board[2][2]) ||

checkLine(board[0][2], board[1][1], board[2][0])); }

public void makeMove(int row, int col) {

board[row][col] = currentP;

currentP = (currentP == 1) ? 2 : 1;}

public boolean isWinner() {

return checkR() || checkC() || checkD(); }

private boolean checkR() {

for (int i = 0; i < 3; i++) {

if (checkLine(board[i][0], board[i][1], board[i][2])) {

return true; }}

return false; }

A.1 Code Snippets 49

Listing A.9: "Buffer" code snippet used in the experiment [47]. The snippet is ordered with StCS.

private final List<Integer> integers = new ArrayList<>();

public static Example initialize(List<Integer> integers) {

Example example = new Example();

for (int i : integers) { example.integers.add(i); }

return example; }

public static void main(String[] args) {

Example example = Example.initialize(new ArrayList<>(Arrays.asList(2, 3, 9, 1)));

Example example2 = example.nextExample(4);

System.out.println(example.next() + " "
+ example.next() + " " + example2.fold()); }

public Integer fold() {

int i = 0;

while (hasNext()) { i += next(); }

return i; }

public Integer next() {

if (hasNext()) return integers.remove(0);

else return null; }

public Example nextExample(int size) {

List<Integer> integers = nextS(size);

return Example.initialize(integers); }

private boolean hasNext() {

return !integers.isEmpty(); }

private List<Integer> nextS(int size) {

List<Integer> integers = new ArrayList<>();

while (size > 0) {

if (hasNext()) integers.add(this.integers.remove(0));

else break;

size--; }

return integers; }

50 Appendix

Listing A.10: "Buffer" code snippet used in the experiment [47]. The snippet is ordered with CaS.

private final List<Integer> integers = new ArrayList<>();

public static void main(String[] args) {

Example example = Example.initialize(new ArrayList<>(Arrays.asList(2, 3, 9, 1)));

Example example2 = example.nextExample(4);

System.out.println(example.next() + " "
+ example.next() + " " + example2.fold()); }

public Example nextExample(int size) {

List<Integer> integers = nextS(size);

return Example.initialize(integers); }

public static Example initialize(List<Integer> integers) {

Example example = new Example();

for (int i : integers) { example.integers.add(i); }

return example; }

public Integer fold() {

int i = 0;

while (hasNext()) { i += next(); }

return i; }

public Integer next() {

if (hasNext()) return integers.remove(0);

else return null; }

private List<Integer> nextS(int size) {

List<Integer> integers = new ArrayList<>();

while (size > 0) {

if (hasNext()) integers.add(this.integers.remove(0));

else break;

size--; }

return integers; }

private boolean hasNext() {

return !integers.isEmpty(); }

A.1 Code Snippets 51

Listing A.11: "Buffer" code snippet used in the experiment [47]. The snippet is ordered with CoS.

private final List<Integer> integers = new ArrayList<>();

public static Example initialize(List<Integer> integers) {

Example example = new Example();

for (int i : integers) { example.integers.add(i); }

return example; }

public static void main(String[] args) {

Example example = Example.initialize(new ArrayList<>(Arrays.asList(2, 3, 9, 1)));

Example example2 = example.nextExample(4);

System.out.println(example.next() + " "
+ example.next() + " " + example2.fold()); }

private boolean hasNext() {

return !integers.isEmpty(); }

public Integer next() {

if (hasNext()) return integers.remove(0);

else return null; }

public Example nextExample(int size) {

List<Integer> integers = nextS(size);

return Example.initialize(integers); }

private List<Integer> nextS(int size) {

List<Integer> integers = new ArrayList<>();

while (size > 0) {

if (hasNext()) integers.add(this.integers.remove(0));

else break;

size--; }

return integers; }

public Integer fold() {

int i = 0;

while (hasNext()) { i += next(); }

return i; }

52 Appendix

Listing A.12: "Buffer" code snippet used in the experiment [47]. The snippet is ordered with RaS.

private final List<Integer> integers = new ArrayList<>();

public Integer next() {

if (hasNext()) return integers.remove(0);

else return null; }

public Integer fold() {

int i = 0;

while (hasNext()) { i += next(); }

return i; }

public static void main(String[] args) {

Example example = Example.initialize(new ArrayList<>(Arrays.asList(2, 3, 9, 1)));

Example example2 = example.nextExample(4);

System.out.println(example.next() + " "
+ example.next() + " " + example2.fold()); }

private List<Integer> nextS(int size) {

List<Integer> integers = new ArrayList<>();

while (size > 0) {

if (hasNext()) integers.add(this.integers.remove(0));

else break;

size--; }

return integers; }

private boolean hasNext() {

return !integers.isEmpty(); }

public static Example initialize(List<Integer> integers) {

Example example = new Example();

for (int i : integers) { example.integers.add(i); }

return example; }

public Example nextExample(int size) {

List<Integer> integers = nextS(size);

return Example.initialize(integers); }

A.1 Code Snippets 53

Listing A.13: "Snake" code snippet used in the experiment [31]. The snippet is ordered with StCS.

public char direction = ’R’;
private int x = 0;

private int y = 0;

public static void main(String[] args) {

Example example = new Example();

example.update();

example.setDirection(’U’);
example.update(); }

public void setDirection(char direction) {

if (this.direction != getOppositeDir(direction)) {

this.direction = direction; }}

public void update() {

move();

if (checkCollision()) die(); }

private boolean checkCollision() {

if (x < 0 || x > 20 || y < 0 || y > 20) return true;

return false; }

private void die() {

System.out.println("Game Over! "); }

private char getOppositeDir(char dir) {

if (dir == ’U’) return ’D’;
else if (dir == ’L’) return ’R’;
else if (dir == ’D’) return ’U’;
else return ’L’; }

private void move() {

if (direction == ’U’) y -= 1;

if (direction == ’D’) y += 1;

if (direction == ’L’) x -= 1;

if (direction == ’R’) x += 1; }

54 Appendix

Listing A.14: "Snake" code snippet used in the experiment [31]. The snippet is ordered with CaS.

public char direction = ’R’;
private int x = 0;

private int y = 0;

public static void main(String[] args) {

Example example = new Example();

example.update();

example.setDirection(’U’);
example.update(); }

public void update() {

move();

if (checkCollision()) die(); }

public void setDirection(char direction) {

if (this.direction != getOppositeDir(direction)) {

this.direction = direction; }}

private void move() {

if (direction == ’U’) y -= 1;

if (direction == ’D’) y += 1;

if (direction == ’L’) x -= 1;

if (direction == ’R’) x += 1; }

private boolean checkCollision() {

if (x < 0 || x > 20 || y < 0 || y > 20) return true;

return false; }

private char getOppositeDir(char dir) {

if (dir == ’U’) return ’D’;
else if (dir == ’L’) return ’R’;
else if (dir == ’D’) return ’U’;
else return ’L’; }

private void die() {

System.out.println("Game Over! "); }

A.1 Code Snippets 55

Listing A.15: "Snake" code snippet used in the experiment [31]. The snippet is ordered with CoS.

public char direction = ’R’;
private int x = 0;

private int y = 0;

public static void main(String[] args) {

Example example = new Example();

example.update();

example.setDirection(’U’);
example.update(); }

private void move() {

if (direction == ’U’) y -= 1;

if (direction == ’D’) y += 1;

if (direction == ’L’) x -= 1;

if (direction == ’R’) x += 1; }

public void setDirection(char direction) {

if (this.direction != getOppositeDir(direction)) {

this.direction = direction; }}

private boolean checkCollision() {

if (x < 0 || x > 20 || y < 0 || y > 20) return true;

return false; }

private void die() {

System.out.println("Game Over! "); }

private char getOppositeDir(char dir) {

if (dir == ’U’) return ’D’;
else if (dir == ’L’) return ’R’;
else if (dir == ’D’) return ’U’;
else return ’L’; }

public void update() {

move();

if (checkCollision()) die(); }

56 Appendix

Listing A.16: "Snake" code snippet used in the experiment [31]. The snippet is ordered with RaS.

public char direction = ’R’;
private int x = 0;

private int y = 0;

private boolean checkCollision() {

if (x < 0 || x > 20 || y < 0 || y > 20) return true;

return false; }

private char getOppositeDir(char dir) {

if (dir == ’U’) return ’D’;
else if (dir == ’L’) return ’R’;
else if (dir == ’D’) return ’U’;
else return ’L’; }

public static void main(String[] args) {

Example example = new Example();

example.update();

example.setDirection(’U’);
example.update(); }

private void die() {

System.out.println("Game Over! "); }

public void setDirection(char direction) {

if (this.direction != getOppositeDir(direction)) {

this.direction = direction; }}

public void update() {

move();

if (checkCollision()) die(); }

private void move() {

if (direction == ’U’) y -= 1;

if (direction == ’D’) y += 1;

if (direction == ’L’) x -= 1;

if (direction == ’R’) x += 1; }

A.1 Code Snippets 57

Listing A.17: "String" code snippet used in the experiment [13]. The snippet is ordered with StCS.

public static void main(String[] args) {

Example example = new Example(); // Creates an instance of this class

String test = " i did not eat anything today . ! : ";
test = example.removeE(test);

test = example.removeC(test);

test = example.removeP(test);

test = example.cap(test);

System.out.println(test); }

public String cap(String input) {

if (input == null || input.trim().equals(" ")) {

return input; }

input = input.trim().toLowerCase();

return input.substring(0, 1).toUpperCase() + input.substring(1); }

public String removeC(String input) {

return remove(input, ’ : ’); }

public String removeE(String input) {

return remove(input, ’ ! ’); }

public String removeP(String input) {

return remove(input, ’ . ’); }

private boolean endsWith(String input, char end) {

return input.charAt(input.length() - 1) == end; }

private String remove(String input, char end) {

if (input == null || input.trim().equals(" ")) { return " "; }

if (endsWith(input, end)) { return input.substring(0, input.length() - 1); }

return input; }

58 Appendix

Listing A.18: "String" code snippet used in the experiment [13]. The snippet is ordered with CaS.

public static void main(String[] args) {

Example example = new Example(); // Creates an instance of this class

String test = " i did not eat anything today . ! : ";
test = example.removeE(test);

test = example.removeC(test);

test = example.removeP(test);

test = example.cap(test);

System.out.println(test); }

public String removeE(String input) {

return remove(input, ’ ! ’); }

public String removeC(String input) {

return remove(input, ’ : ’); }

public String removeP(String input) {

return remove(input, ’ . ’); }

private String remove(String input, char end) {

if (input == null || input.trim().equals(" ")) { return " "; }

if (endsWith(input, end)) { return input.substring(0, input.length() - 1); }

return input; }

private boolean endsWith(String input, char end) {

return input.charAt(input.length() - 1) == end; }

public String cap(String input) {

if (input == null || input.trim().equals(" ")) {

return input; }

input = input.trim().toLowerCase();

return input.substring(0, 1).toUpperCase() + input.substring(1); }

A.1 Code Snippets 59

Listing A.19: "String" code snippet used in the experiment [13]. The snippet is ordered with CoS.

public static void main(String[] args) {

Example example = new Example(); // Creates an instance of this class

String test = " i did not eat anything today . ! : ";
test = example.removeE(test);

test = example.removeC(test);

test = example.removeP(test);

test = example.cap(test);

System.out.println(test); }

public String removeC(String input) {

return remove(input, ’ : ’); }

public String removeE(String input) {

return remove(input, ’ ! ’); }

public String removeP(String input) {

return remove(input, ’ . ’); }

public String cap(String input) {

if (input == null || input.trim().equals(" ")) {

return input; }

input = input.trim().toLowerCase();

return input.substring(0, 1).toUpperCase() + input.substring(1); }

private boolean endsWith(String input, char end) {

return input.charAt(input.length() - 1) == end; }

private String remove(String input, char end) {

if (input == null || input.trim().equals(" ")) { return " "; }

if (endsWith(input, end)) { return input.substring(0, input.length() - 1); }

return input; }

60 Appendix

Listing A.20: "String" code snippet used in the experiment [13]. The snippet is ordered with RaS.

public String removeC(String input) {

return remove(input, ’ : ’); }

public String removeP(String input) {

return remove(input, ’ . ’); }

public String cap(String input) {

if (input == null || input.trim().equals(" ")) {

return input; }

input = input.trim().toLowerCase();

return input.substring(0, 1).toUpperCase() + input.substring(1); }

public static void main(String[] args) {

Example example = new Example(); // Creates an instance of this class

String test = " i did not eat anything today . ! : ";
test = example.removeE(test);

test = example.removeC(test);

test = example.removeP(test);

test = example.cap(test);

System.out.println(test); }

private String remove(String input, char end) {

if (input == null || input.trim().equals(" ")) { return " "; }

if (endsWith(input, end)) { return input.substring(0, input.length() - 1); }

return input; }

private boolean endsWith(String input, char end) {

return input.charAt(input.length() - 1) == end; }

public String removeE(String input) {

return remove(input, ’ ! ’); }

A.2 Snippet and Demographic Questions 61

a.2 Snippet and Demographic Questions

Table A.1: Questions for the "Board" snippet. The fourth answer "I do not know" is excluded because
of repetition.

Question 1. Answer 2. Answer 3. Answer

What is the output of the main
method?

Player 2 Lost! Player 1 Lost! Player 2 Won!

What does the checkLine() method
check for?

Checks
whether a,
b, and c are
either 1 or 2

Checks
whether only
a is not equal
to 0

Always re-
turns true

How is the player switched? The main
method

The make-
Move()
method

The player is
static

Table A.2: Questions for the "Buffer" snippet. The fourth answer "I do not know" is excluded because
of repetition.

Question 1. Answer 2. Answer 3. Answer

What is the output of the main
method?

2 3 15 null null 15 2 3 10

Is there a way to add integers to an
Example instance?

Yes, by call-
ing nextS()

No, there is
not

Yes, by
calling nex-
tExample()

What happens if the main method
declares example2 by calling Exam-
ple.initialize similar to example?

The output is
"2 3 10"

The output is
"2 3 15"

Nothing
changes

62 Appendix

Table A.3: Questions for the "Snake" snippet. The fourth answer "I do not know" is excluded because
of repetition.

Question 1. Answer 2. Answer 3. Answer

What is the output of the main
method?

"Game Over!" Nothing Two times
"Game Over!"

If the movement were to be rendered,
where would the starting point be on
a grid?

Top-left cor-
ner

Centered Bottom-left
corner

What happens if the main method
sets the direction to ’L’ instead of
’U’?

An exception
is raised

The direction
changes to ’L’

The direction
stays ’R’

Table A.4: Questions for the "String" snippet. The fourth answer "I do not know" is excluded because
of repetition.

Question 1. Answer 2. Answer 3. Answer

What is the output of the main
method?

I did not eat
anything to-
day

I did not eat
anything to-
day.!

I Did Not Eat
Anything To-
day

What is the purpose of the remove()
method?

Removes
all ending
characters
that equal
"end"

Removes
only the last
character if
it is equal to
"end"

Removes
the last oc-
currence of
"end"

What happens if the main method
calls cap() twice?

Nothing The second
word is capi-
talized

The first
word returns
to lowercase

A.2 Snippet and Demographic Questions 63

Table A.5: The questions and possible answers presented in the demographic questionnaire. The
questions are divided into: personal, general programming, and Java-related.

Question Possible answers

What year were you born? Between 1924 and 2024

What is your gender? Male, female, prefer not to say

What is your main occupation at the
moment?

Student, employed at the university
(no HiWi), no job, other

What is your highest degree? High school diploma, apprentice-
ship, bachelor, master, doctorate, no
Degree, other

Which semester are you currently in? 0 to 50

How many hours a week do you
spend on your own projects?

0 to 168

How do you rate your programming
skills compared to your fellow stu-
dents?

1: very inexperienced to 5: very ex-
perienced

How many years of experience do
you have with Java?

Zero to hundred

How well do you know Java? Basic knowledge, project experience,
regular, expert

What other programming languages
do you know?

Free-response

Bibliography

[1] The Algorithms. The Algorithms - Java. https://github.com/TheAlgorithms/Java/
blob/master/src/main/java/com/thealgorithms/others/LowestBasePalindrome.

java. 2023.

[2] Dionysis Athanasopoulos and Apostolos V. Zarras. “Fine-Grained Metrics of Cohesion
Lack for Service Interfaces.” In: 2011 IEEE International Conference on Web Services.
2011, pp. 588–595. doi: 10.1109/ICWS.2011.27.

[3] M. S. Bartlett. “Properties of Sufficiency and Statistical Tests.” In: Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences 160.901 (1937),
pp. 268–282. issn: 00804630. url: \url{http://www.jstor.org/stable/96803}
(visited on 03/15/2024).

[4] Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes C. Hofmeister, and Sven
Apel. “Indentation: Simply a Matter of Style or Support for Program Comprehension?”
In: 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC). 2019,
pp. 154–164. doi: 10.1109/ICPC.2019.00033.

[5] Roman Bednarik. “Expertise-dependent visual attention strategies develop over time
during debugging with multiple code representations.” In: Int. J. Hum.-Comput. Stud.
70 (Feb. 2012), pp. 143–155. doi: 10.1016/j.ijhcs.2011.09.003.

[6] Benjamin Biegel, Fabian Beck, Willi Hornig, and Stephan Diehl. “The Order of Things:
How developers sort fields and methods.” In: 2012 28th IEEE International Conference
on Software Maintenance (ICSM). 2012, pp. 88–97. doi: 10.1109/ICSM.2012.6405258.

[7] Raymond P.L. Buse and Westley R. Weimer. “Learning a Metric for Code Readability.”
In: IEEE Transactions on Software Engineering 36.4 (2010), pp. 546–558. doi: 10.1109/
TSE.2009.70.

[8] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. “Eye Movements in Code Reading:
Relaxing the Linear Order.” In: 2015 IEEE 23rd International Conference on Program
Comprehension. 2015, pp. 255–265. doi: 10.1109/ICPC.2015.36.

[9] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. “Analysis of code reading
to gain more insight in program comprehension.” In: Proceedings of the 11th Koli
Calling International Conference on Computing Education Research. Koli Calling ’11. Koli,
Finland: Association for Computing Machinery, 2011, pp. 1–9. isbn: 9781450310529.
doi: 10.1145/2094131.2094133.

[10] K. R. Chowdhary. “On the evolution of programming languages.” In: CoRR (2020).
doi: \url{https://doi.org/10.48550/arXiv.2007.02699}.

65

https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/others/LowestBasePalindrome.java
https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/others/LowestBasePalindrome.java
https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/others/LowestBasePalindrome.java
https://doi.org/10.1109/ICWS.2011.27
\url{http://www.jstor.org/stable/96803}
https://doi.org/10.1109/ICPC.2019.00033
https://doi.org/10.1016/j.ijhcs.2011.09.003
https://doi.org/10.1109/ICSM.2012.6405258
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1145/2094131.2094133
https://doi.org/\url{https://doi.org/10.48550/arXiv.2007.02699}

66 bibliography

[11] Igor Crk and Timothy Kluthe. “Toward using alpha and theta brain waves to quantify
programmer expertise.” In: 2014 36th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, EMBC 2014 2014 (Aug. 2014), pp. 5373–6. doi:
10.1109/EMBC.2014.6944840.

[12] Sarah Fakhoury, Devjeet Roy, Adnan Hassan, and Vernera Arnaoudova. “Improving
Source Code Readability: Theory and Practice.” In: 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). 2019, pp. 2–12. doi: 10.1109/ICPC.2019.
00014.

[13] Fewlaps. PrettyStrings. https://github.com/fewlaps/PrettyStrings/blob/master/
src/main/java/com/fewlaps/prettystrings/PrettyString.java. 2017.

[14] Jack Flynn. 40 Fascinating Mobile App Industry Statistics [2023]: The Success Of Mo-
bile Apps In The U.S. https://www.zippia.com/advice/mobile- app- industry-
statistics. 2023.

[15] Milton Friedman. “The Use of Ranks to Avoid the Assumption of Normality Implicit in
the Analysis of Variance.” In: Journal of the American Statistical Association 32.200 (1937),
pp. 675–701. issn: 01621459. url: \url{http://www.jstor.org/stable/2279372}.

[16] Yorai Geffen and Shahar Maoz. “On method ordering.” In: 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). 2016, pp. 1–10. doi: 10.1109/ICPC.2016.
7503711.

[17] Todd Hoff. C++ Coding Standard: Documentation. https://possibility.com/Cpp/
CppCodingStandard.html. 2008.

[18] H. Hunter-Zinck, A. F. de Siqueira, V. N. Vásquez, R. Barnes, and C. C. Martinez.
“Ten simple rules on writing clean and reliable open-source scientific software.” In:
PLoS computational biology 17.11 (2021). doi: 10.1371/journal.pcbi.1009481.

[19] Jorge E. Ibarra-Esquer, Félix F. González-Navarro, Brenda L. Flores-Rios, Larysa
Burtseva, and María A. Astorga-Vargas. “Tracking the Evolution of the Internet of
Things Concept Across Different Application Domains.” In: Sensors 17.6 (2017). doi:
10.3390/s17061379.

[20] Attila Kővári, Jozsef Katona, and Cristina Pop. “Evaluation of Eye-Movement Metrics
in a Software Debugging Task using GP3 Eye Tracker.” In: Acta Polytechnica Hungarica
17 (Jan. 2020), pp. 57–76. doi: 10.12700/APH.17.2.2020.2.4.

[21] Ivano Malavolta, Roberto Verdecchia, Bojan Filipovic, Magiel Bruntink, and Patricia
Lago. “How Maintainability Issues of Android Apps Evolve.” In: 2018 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). 2018, pp. 334–344. doi:
10.1109/ICSME.2018.00042.

[22] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson. 2008.

[23] Steve McConnell. Code Complete, 2nd Edition. Cisco Press. 2004.

[24] Sun Microsystems. Code Conventions for the Java Programming Language. https://www.
oracle.com/java/technologies/javase/codeconventions-contents.html. 1999.

[25] Sami Naim. EyeTracking. https://gitlab.cs.uni-saarland.de/boc/students/sami-
naim-method-ordering. 2024.

https://doi.org/10.1109/EMBC.2014.6944840
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1109/ICPC.2019.00014
https://github.com/fewlaps/PrettyStrings/blob/master/src/main/java/com/fewlaps/prettystrings/PrettyString.java
https://github.com/fewlaps/PrettyStrings/blob/master/src/main/java/com/fewlaps/prettystrings/PrettyString.java
https://www.zippia.com/advice/mobile-app-industry-statistics
https://www.zippia.com/advice/mobile-app-industry-statistics
\url{http://www.jstor.org/stable/2279372}
https://doi.org/10.1109/ICPC.2016.7503711
https://doi.org/10.1109/ICPC.2016.7503711
https://possibility.com/Cpp/CppCodingStandard.html
https://possibility.com/Cpp/CppCodingStandard.html
https://doi.org/10.1371/journal.pcbi.1009481
https://doi.org/10.3390/s17061379
https://doi.org/10.12700/APH.17.2.2020.2.4
https://doi.org/10.1109/ICSME.2018.00042
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://gitlab.cs.uni-saarland.de/boc/students/sami-naim-method-ordering
https://gitlab.cs.uni-saarland.de/boc/students/sami-naim-method-ordering

bibliography 67

[26] ORACLE. The Java® Language Specification. https://docs.oracle.com/javase/specs/
jls/se7/html/jls-8.html. 2015.

[27] Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. “A Survey on the
Usage of Eye-Tracking in Computer Programming.” In: 51.1 (2018). issn: 0360-0300.
doi: 10.1145/3145904. url: \url{https://doi.org/10.1145/3145904}.

[28] Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando Castor. “Evaluating
Code Readability and Legibility: An Examination of Human-centric Studies.” In: 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME). 2020,
pp. 348–359. doi: 10.1109/ICSME46990.2020.00041.

[29] Stack Overflow. Most used programming languages among developers worldwide as of 2023.
https://www.statista.com/statistics/793628/worldwide-developer-survey-

most-used-languages/. 2023.

[30] Python. Python 3.12.2 documentation. https://docs.python.org/3/tutorial/classes.
html. 2024.

[31] Rnickle79. Snake. https://github.com/rnickle79/Snake/blob/master/src/Snake.
java. 2022.

[32] Tobias Roehm and Walid Maalej. “Automatically detecting developer activities and
problems in software development work.” In: 2012 34th International Conference on
Software Engineering (ICSE). 2012, pp. 1261–1264. doi: 10.1109/ICSE.2012.6227104.

[33] H. Sackman, W. J. Erikson, and E. E. Grant. “Exploratory experimental studies com-
paring online and offline programming performance.” In: Commun. ACM 11 (Jan.
1968), pp. 3–11. doi: 10.1145/362851.362858.

[34] Yui Sasaki, Yoshiki Higo, and Shinji Kusumoto. “Reordering Program Statements for
Improving Readability.” In: 2013 17th European Conference on Software Maintenance and
Reengineering. 2013, pp. 361–364. doi: 10.1109/CSMR.2013.50.

[35] Saxenaaviral11. HactoberFest2023. https://github.com/Saxenaaviral11/HactoberFest2023/
blob/4227d8c76004cfd81f177ce209875bc4fd7f957e/tictactoejava. 2023.

[36] Todd Sedano. “Code Readability Testing, an Empirical Study.” In: 2016 IEEE 29th
International Conference on Software Engineering Education and Training (CSEET). 2016,
pp. 111–117. doi: 10.1109/CSEET.2016.36.

[37] S. S. Shapiro and M. B. Wilk. “An Analysis of Variance Test for Normality (Complete
Samples).” In: Biometrika 52.3/4 (1965), pp. 591–611. issn: 00063444. url: \url{http:
//www.jstor.org/stable/2333709} (visited on 03/15/2024).

[38] Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. “Eye-
Tracking Metrics in Software Engineering.” In: 2015 Asia-Pacific Software Engineering
Conference (APSEC). 2015, pp. 96–103. doi: 10.1109/APSEC.2015.53.

[39] Zohreh Sharafi, Zéphyrin Soh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. “Women
and men — Different but equal: On the impact of identifier style on source code
reading.” In: 2012 20th IEEE International Conference on Program Comprehension (ICPC).
2012, pp. 27–36. doi: 10.1109/ICPC.2012.6240505.

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html
https://doi.org/10.1145/3145904
\url{https://doi.org/10.1145/3145904}
https://doi.org/10.1109/ICSME46990.2020.00041
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://github.com/rnickle79/Snake/blob/master/src/Snake.java
https://github.com/rnickle79/Snake/blob/master/src/Snake.java
https://doi.org/10.1109/ICSE.2012.6227104
https://doi.org/10.1145/362851.362858
https://doi.org/10.1109/CSMR.2013.50
https://github.com/Saxenaaviral11/HactoberFest2023/blob/4227d8c76004cfd81f177ce209875bc4fd7f957e/tictactoejava
https://github.com/Saxenaaviral11/HactoberFest2023/blob/4227d8c76004cfd81f177ce209875bc4fd7f957e/tictactoejava
https://doi.org/10.1109/CSEET.2016.36
\url{http://www.jstor.org/stable/2333709}
\url{http://www.jstor.org/stable/2333709}
https://doi.org/10.1109/APSEC.2015.53
https://doi.org/10.1109/ICPC.2012.6240505

68 bibliography

[40] Janet Siegmund. “Measuring program comprehension with fMRI.” In: Softwaretechnik-
Trends Band 34, Heft 2 (2014). url: \url{https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=36c351cffaa51bc1e4918c1df8147da9dedb00da}.

[41] Janet Siegmund. “Program Comprehension: Past, Present, and Future.” In: 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER).
Vol. 5. 2016, pp. 13–20. doi: 10.1109/SANER.2016.35.

[42] Lars Stahle and Svante Wold. “Analysis of variance (ANOVA).” In: Chemometrics and In-
telligent Laboratory Systems 6.4 (1989), pp. 259–272. issn: 0169-7439. doi: \url{https://
doi.org/10.1016/0169-7439(89)80095-4}. url: \url{https://www.sciencedirect.
com/science/article/pii/0169743989800954}.

[43] Yahya Tashtoush, Zeinab Odat, Izzat Alsmadi, and Maryan Yatim. “Impact of Program-
ming Features on Code Readability.” In: International Journal of Software Engineering
and Its Applications 7 (Nov. 2013), pp. 441–458. doi: 10.14257/ijseia.2013.7.6.38.

[44] Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto.
“Analyzing individual performance of source code review using reviewers’ eye move-
ment.” In: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications.
ETRA ’06. San Diego, California: Association for Computing Machinery, 2006, pp. 133–
140. isbn: 1595933050. doi: 10.1145/1117309.1117357.

[45] A. Von Mayrhauser and A.M. Vans. “Program comprehension during software main-
tenance and evolution.” In: Computer 28 (1995), pp. 44–55. doi: 10.1109/2.402076.

[46] Larry LeRoy Yourdon Edward; Constantine. Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. Yourdon Press. 1979.

[47] Yoyosource. YAPI. https://github.com/yoyosource/YAPI/blob/master/src/main/
java/yapi/datastructures/IntegerBuffer.java. 2021.

[48] Shehnaaz Yusuf, Huzefa Kagdi, and Jonathan I. Maletic. “Assessing the Comprehen-
sion of UML Class Diagrams via Eye Tracking.” In: 15th IEEE International Conference
on Program Comprehension (ICPC ’07). 2007, pp. 113–122. doi: 10.1109/ICPC.2007.10.

\url{https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=36c351cffaa51bc1e4918c1df8147da9dedb00da}
\url{https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=36c351cffaa51bc1e4918c1df8147da9dedb00da}
https://doi.org/10.1109/SANER.2016.35
https://doi.org/\url{https://doi.org/10.1016/0169-7439(89)80095-4}
https://doi.org/\url{https://doi.org/10.1016/0169-7439(89)80095-4}
\url{https://www.sciencedirect.com/science/article/pii/0169743989800954}
\url{https://www.sciencedirect.com/science/article/pii/0169743989800954}
https://doi.org/10.14257/ijseia.2013.7.6.38
https://doi.org/10.1145/1117309.1117357
https://doi.org/10.1109/2.402076
https://github.com/yoyosource/YAPI/blob/master/src/main/java/yapi/datastructures/IntegerBuffer.java
https://github.com/yoyosource/YAPI/blob/master/src/main/java/yapi/datastructures/IntegerBuffer.java
https://doi.org/10.1109/ICPC.2007.10

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Motivational Example
	1.3 Overview

	2 Background
	2.1 Code Readability
	2.2 Method Ordering Strategies
	2.3 Program Comprehension
	2.4 Eye Tracking

	3 Related Work
	3.1 Method Order and Program Comprehension
	3.2 Eye Tracking in Program Comprehension

	4 Methodology
	4.1 Research Questions
	4.2 Participant Recruitment
	4.3 Snippet Selection
	4.4 Experiment Design
	4.5 Variables
	4.5.1 Independent Variables
	4.5.2 Dependent Variables

	4.6 Analysis
	4.6.1 Behavioral Methods
	4.6.2 Eye Tracking

	5 Evaluation
	5.1 Results
	5.1.1 RQ1: Task Correctness Comparison
	5.1.2 RQ2: Response Time Comparison
	5.1.3 RQ3: Effect on Eye Movements
	5.1.4 RQ4: Subjective Preference and Behavior
	5.1.5 RQ5: Subjective Preference and Eye Movements

	5.2 Discussion
	5.3 Threats to Validity
	5.3.1 Internal Validity
	5.3.2 Construct Validity
	5.3.3 External Validity

	6 Concluding Remarks
	6.1 Conclusion
	6.2 Future Work

	A Appendix
	A.1 Code Snippets
	A.2 Snippet and Demographic Questions

	 Bibliography

