
University of Passau

Department of Informatics and Mathematics

Bachelor Thesis

Analyzing Developer Networks
Based on GitHub Issue Data

Author:

Raphael Nömmer

September 30, 2017

Advisors:

Prof. Dr.-Ing. Sven Apel

Chair of Software Engineering I

Claus Hunsen

Chair of Software Engineering I

Thomas Bock

Chair of Software Engineering I

Nömmer, Raphael:
Analyzing Developer Networks Based on GitHub Issue Data
Bachelor Thesis, University of Passau, 2017.

Abstract

Communication is a vital part of software development. To better understand how it
influences the software development process, research is done using data from open-
source projects and their communication channels. In this thesis, we look at a source
of communication data that, to our knowledge, has not been used in network-based
developer communication analysis: the GitHub issue tracker. To analyze issue-
based communication networks, we extract the data from GitHub and integrate
it into our library for network construction. We then construct issue-based author
networks which we examine using several metrics. In a comparison to a mail-based
network, we find that the issue-based network for OpenSSL and the mail-based
ones share similar characteristics. When analyzing issue-based author networks for
several open source software projects, we find that they show mostly consistent
results. We conclude that the issue-based networks can be used for the analysis of
communication among software developers, as an addition to, or a replacement for
the mail-based networks that are in use now.

v

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Background 3
2.1 Network Basics . 3

2.1.1 Developer Networks . 3
2.1.2 Network Metrics . 4

2.2 GitHub . 6
2.2.1 The GitHub Issue-Tracker . 6
2.2.2 Issue-Based Developer Networks 8

2.3 Codeface . 8
2.4 Related Work . 8

3 Implementation 11
3.1 Extracting Issue Data from GitHub 11

3.1.1 The GitHubWrapper . 12
3.1.2 Getting User Identification . 13
3.1.3 Performance Improvements 13

3.2 Processing Issue Data . 15
3.3 Network Construction . 16

3.3.1 The Network Library . 16
3.3.2 Integration of GitHub Issues into the Network Library 17

3.4 Network Metrics . 17

4 Evaluation 21
4.1 Subject Projects . 21
4.2 Results and Discussion . 22

4.2.1 OpenSSL . 22
4.2.2 Other Projects . 29

5 Conclusion 33

Bibliography 35

List of Figures

2.1 Local clustering coefficient visualization 5

2.2 Hierarchy Visualization . 7

3.1 An overview of the issue extraction and network building process . . 12

3.2 Issue extraction with the GitHubWrapper tool 12

3.3 The activities performed by the IssueProcessor. 15

3.4 The Structure of the data extraction and preparation process 17

3.5 Sample Network . 18

3.6 Simplified sample network . 19

4.1 Hierarchy Graph for the OpenSSL issue-based author network 24

4.2 Graph visualization for issue-based author network for OpenSSL . . 25

4.3 Hierarchy Graph for the OpenSSL mail-based author network 27

4.4 Graph visualization for the mail-based author network for OpenSSL 28

4.5 Results of the simple metrics applied to the issue-based author networks. 29

4.6 Results of the complex metrics applied to the issue-based author net-
works. 30

4.7 Hierarchy plots for the remaining four projects. 31

x List of Figures

List of Tables

3.1 Sample issue data . 18

4.1 Overview of the . 22

4.2 Metrics results for the issue-based author network of OpenSSL . . . 23

4.3 Comparison between mail-based and issue-based author network for
OpenSSL . 26

xii List of Tables

1 Introduction

A critical aspect of large-scale software projects is the collaboration among develop-
ers. According to Herbsleb et al., inadequate communication causes a lack of knowl-
edge about the states of the separate parts of the project and can lead to issues not
being addressed [HM01]. Furthermore, a lack of communication or poor communi-
cation is often stated as one of the main reasons for the failure of software projects
[Cha05]. Since development, especially in open-source projects, has been becoming
increasingly community-based and decentralized for several years now, new ways of
communication have to be found, particularly in large-scale open-source projects
where direct communication is not possible.

The first communication option that comes to mind are e-mails. They have been a
widespread solution for a long time. However, there are other technical solutions that
are becoming increasingly popular. The means of communication we are interested
in are issue-tracking systems, which nowadays are more integrated into the software
development process than e-mails. These tracking systems are implemented by tools
such as Bugzilla or OpenProject. Online repository providers like GitHub,
Bitbucket, or Atlassian offer similar systems.

The goal of this thesis is to explore which new insights we can gain from analyzing
issue data using network analyses. To achieve this, we are integrating issue data into
an existing network building toolchain. The goal of this toolchain is to assist the
analysis of the software development process in a network-based fashion by providing
methods for network construction and examination. The toolchain offers ways to
obtain data from git repositories and mailing lists.

In this thesis, we focus on data we retrieve from the GitHub Issue Tracker. With
over 57 million projects, GitHub is one of the largest providers of online code
hosting for private or open-source projects. In our analyses, we focus on five mid to
large scale projects.

Before this thesis, the library that we use for network construction (which we call
Network Library from this point) only used one source of communication among
developers: mailing lists. However, an increasing number of projects are using

2 1 Introduction

bug-tracking systems alongside mailing lists or using the issue tracker exclusively.
Adding this data to the existing toolchain and analyzing the resulting networks will
hopefully allow for further insights into developer communication and its impact on
the project. Also, it is very likely that this data will become increasingly important
as more and more developers are using GitHub and its features.

The integration of GitHub issue data into the toolchain consists of two main steps.
First, we extract and process the data provided by GitHub. For the retrieval
part, we use the functionality that the GitHubWrapper tool provides with some
extensions. We have expanded this tool to increase its performance and support
new features. We have also implemented post-processing on the data we obtain
from the GitHubWrapper. Second, after retrieving the data and preparing it,
we have to build networks for our analyses. For this purpose, we extend the Net-
work Library. We add functionality to support the issue data. We also add
network analysis so we can get new information on characteristics of the issue data
- or, rather, the communication of developers and outside contributors in the issue
tracker.

From the network analyses, we investigate five projects, one of which we discuss in
detail including a comparison of the mail-based network and the issue-based one.
We then compare the results of the five projects to see whether the results are
consistent. We find that the issue-based author network behaves mostly similar to
the the mail-based one and that most of the analysis results with the exception of
the global clustering coefficient and the scale-freeness are comparable among the
different projects or seem to be correlated to the network size. We conclude that
issue-based networks are most likely suitable as an addition or an alternative to
mail data depending on what is available though further research with an increased
sample size should be conducted to confirm this.

The remainder of this thesis is structured as follows: In Chapter 2, we discuss
terms and basics around the topic of this thesis that we use later. Specifically, we
present some network-theory basics, then we take a look at GitHub and related
papers. In Chapter 3 we explain the implementation of the new network type, issue-
based author networks, and how we obtain the necessary data to construct them.
The results of the network evaluation based on several metrics, are presented and
discussed in Chapter 4. Here we have a look at the findings followed by an in-depth
discussion thereof.

2 Background

We begin this chapter with a short introduction to networks where basics on network
theory are introduced. We then take a look at GitHub, the development platform
from which we retrieve the issue data that we are using to build networks. Finally,
we take a look at related work.

2.1 Network Basics

Networks are a structure that is frequently used to study relationships among people
or things. When they are used to analyze people and their mutual interactions, we
call them social networks. In social networks, the actors represent the nodes and
edges are represented by their relationship, communication or mutual activities.
The data for social networks is mostly mined from social-media platforms, however,
since we are focused on developer collaboration we use interaction data from software
development to construct social networks. This form of social networks is also called
developer networks [AJS11, LLH06, LLFGB04]. They will be examined in detail in
Section 2.1.1.

To describe networks, we use notations from the field of graph theory. A graph
G = {V,E} consists of a set of nodes V and a set of edges E where each edge e ∈ E
connects two nodes in V . Graphs can be directed or undirected. In a directed graph
every edge has a direction which means that 〈x, y〉 6= 〈y, x〉 where 〈x, y〉 is the edge
from x to y. In an undirected graph those two edges are identical. A graph can
also be simplified. When a graph is simplified all edges from one node to another
are contracted into one edge if the network is undirected and into two edges if the
network is directed, one for each direction. The number of edges that connect these
two is the edge weight. If the graph is not simplified, there can be more than one
connection between two nodes.

2.1.1 Developer Networks

When developers work together in open source projects, a lot of data about their
communication and collaboration is generated. By connecting people involved in

4 2 Background

the same project that have communicated or have worked on the same parts of the
project, we get a network. We refer to this kind of network as a developer network
[AJS11, LLH06, LLFGB04]. Joblin et al. separates developer networks into two
categories, developer coordination networks and developer communication networks
[Job17]. Developer coordination networks are derived from data that is mined from
a version-control system. The main part of this data is commit data. Using the
commits, we can analyze how developers coordinate among each other and how
it affects the progress of the project. Developer communication networks on the
other hand are built using data from direct communication channels used by the
developers. These direct communication channels could be mailing-lists or issues
which we are using.

One thing we cannot deduce from the network is the quality of the communication.
We cannot tell whether a conversation has importance to the project or whether
it is completely off-topic. Still, it has been shown that developer communication
networks of open-source projects are correlated with activities in the source code
[XF14][BPD+08].

2.1.2 Network Metrics

In this subsection, we introduce and explain several network metrics which we will
later use in the developer network analyses. First, we examine the more basic
metrics. These are mostly concerned with the size and connectivity of the network.

The number of nodes is a simple way to get the size of the network and in our case
the amount of people in the network. The average node degrees and the maximum
node degree give a rough estimate of the networks characteristics. The degree of a
node is the amount of edges that originate from or end in that node. The average
path length is the mean length of the shortest path between every pair of nodes in
the network. A path between two nodes vi and vj is comprised of the nodes and
edges vi, e1, v2, e2, ..., en, vj with ek ∈ E, vk ∈ V, k ∈ N and each edge ek appearing
no more than once. The shortest path between two nodes is the one that contains
the least edges [BE05].

These were the basic network metrics, now we take a look at some more complex
metrics that we use in the network analyses. The first of these complex metrics is
the clustering coefficient. It is a number between zero and one that is low when
the network shows no sign of groups forming and is close to one when it consists
of groups the members of which are strongly connected among each other. There
are different ways to calculate the clustering coefficient (also called transitivity).
One way to calculate the so-called global clustering coefficient is cc = 3∗#triangles

#connectedtriples

where cc is the global clustering coefficient of the network n [WF95]. A triangle
in this context is a construct of three nodes that are connected with each other
while a connected triple is a connected subgraph that contains three nodes and
two edges. Because a triangle can be seen as three different connected triples, this
number ranges from zero to one. The other form of clustering coefficient is the
local clustering coefficient. It can be calculated for a node by dividing the number
of edges among the neighboring nodes of the node in question by the number of
possible edges among the neighbors. From this, we can deduce the average local

2.1. Network Basics 5

clustering coefficient which was measured by Watts and Strogatz and can be used
as an alternative to the global clustering coefficient [WS98]. The drawback of this
average local clustering coefficient is, that it ignores the node degrees. A node with
only two neighbors has a clustering coefficient of one since all possible connections
are present and it is weighted as much as any other node. In Figure 2.1 we show
what networks with low and high clustering coefficient tend to look like.

Graph with low clustering coefficient Graph with high clustering coefficient

Figure 2.1: With these two networks that have the same number of nodes, we show
the difference between low and high average local clustering coefficient. The left
graph has an average local clustering coefficient of 0.175. The network and the
groups within the network are both loosely connected. The right graph on the other
hand has an average local clustering coefficient of 0.803 which is caused by the tightly
connected subclusters.

The next metric that we examine is small-worldness. A small-world network refers
to a type of network in which the mean shortest path distance between nodes is
sufficiently short as compared to the number of nodes in the network. This char-
acteristic is implied by a high clustering coefficient and a small average shortest
path length [BE05]. To quantify small-worldness, we use a method developed by
Humphries and Gurney [HG]. Their approach compares the network of interest to
a random network that has the same number of nodes and edges. For this compar-
ison four values are calculated: the clustering coefficients C and Cr for the original
and random network respectively and the average shortest path lengths L for the
network to be analyzed and Lr for the random one. A value S = σ

λ
with σ = C

Cr
and

λ = L
Lr

is then calculated from the clustering coefficients and average shortest path
lengths. If S > 1, the network is categorized as a small-world-network. This means

6 2 Background

that either the clustering coefficient of a small-world-network is higher than that of
a random one or the average shortest path length is smaller or both.

Scale-freeness is another one of the more complex network metrics. A network is
called scale-free if its node degree distribution obeys a power law. When this is the
case, there are few nodes with high degree and many nodes with low degrees. The
Barabasi-Albert model explains the formation of scale-free networks with two main
factors, growth and preferential attachment [BA99]. Growth means the network
starts as a small network and additional nodes supervene over time. Preferential
attachment means that there are few central nodes that have a lot of connections,
also called hubs which are preferred candidates for new connections.

The second but last metric that we inspect is network modularity. While scale-
freeness informs about individual nodes and their degree distribution, the connectiv-
ity of a node’s neighborhood is ignored. The modularity metric defined by Newman
and Girvan allows for quantification of said connectivity of the local neighborhood.
We assume that the network that we analyze consists of k disjunct communities.
Then we compute a k ∗ k matrix where an entry aij is the number of edges that
links the subgraph i to subgraph j in the matrix. With this, network modularity is
defined as Nm =

∑
aii −

∑
a2ij. Nm is close to one if the network modularity is

high, that means the nodes within each community are well connected, it converges
zero if the nodes within the communities are loosely connected. However, a value
close to one is very rare, so a network has high modularity if Nm is in the range of
0.3 to 0.7 [NG].

The final metric that we have a look at is network hierarchy. After looking at scale
freeness and network modularity, which describe the distribution of edges amidst
nodes and the grouping of nodes respectively, we now take a look at network hi-
erarchy which combines these two concepts by looking at the relative arrangement
of local groups. Hierarchical networks are characterized by a lot of nodes with a
low node degree and high clustering coefficient and a few nodes with low clustering
coefficient but high node degrees. These few nodes are on the top of the hierarchy,
the others are ranked lower. In Figure 2.2 we show what a hierarchical network
tends to look like in comparison to a random, non hierarchical one.

2.2 GitHub

GitHub is an online code hosting platform that offers remote repositories for Version
Control Systems. It is git-centric but supports subversion as well. With more than 57
million repositories and over 20 million users reported in April 2017, GitHub is the
largest source code hosting platform. It offers free hosting for public repositories as
well as a paid service for private repositories. Aside from source code, GitHub offers
several other features, for example Wikis, seamless code reviews, visualizations of
several development aspects like commit frequency over time, and the feature which
we are concerned with, the issue-tracker.

2.2.1 The GitHub Issue-Tracker

Issues are a means to keep track of tasks, enhancements and bugs for software
projects. An issue in an open source repository can be opened by anyone and usually

2.2. GitHub 7

Random graph Hierarchical graph

Figure 2.2: The network on the left is a random network that shows no hierarchy.
The node degrees and local clustering coefficients are roughly uniformly distributed
among the network. The graph on the right differentiates itself from the random
network through small cohesive clusters within a larger less tightly connected cluster.
It is hierarchical because there are few nodes with high degrees and low clustering
coefficients and a lot of nodes with lower node degrees but higher local clustering
coefficients.

8 2 Background

contains a complaint or problem, a bug-report or a suggestion for possible changes
or extensions. It contains information related to that itself like state, comments and
commits to the version control system.

The issue-tracker allows a project’s developers to manage a set of issues that everyone
can see and aims to give an overview of the tasks at hand. The public access to
the issue-tracker enables users of the software to report bugs and ask questions
in a central place. Developers, besides answering those questions, can talk about
the state of the project, discuss bug fixes etc. In comparison to mailing-list it is
embedded into the development environment which means issues for example can
be closed with a commit, people can be linked to an issue and will get notified and
commits can be referenced to name a few of the features available.

For the purpose of this thesis, we include pull-requests with the issues. Pull-requests
are a mechanism for developers to notify team members about changes done to a
branch or fork and suggest a merge of those changes. In a fashion very similar to
issues, the developers can then comment, assign people and reference people, issues,
commits etc. The fact that GitHub treats issues and pull-requests very similar
simplifies the inclusion of pull-requests a lot. If however we want to look at pull-
requests or issues exclusively, they can be filtered using a flag that is part of the
data that we get from GitHub.

2.2.2 Issue-Based Developer Networks

The type of networks, that we analyze in Chapter 4 are issue-based developer net-
works. As mentioned above developer networks use authors as nodes with inter-
actions among them as edges. For the issue-based developer networks, an edge is
constructed between two developers, when they have participated in the same issue.

While Joblin et al. use the mailing-list as an approximation of the complete com-
munication among developers [Job17], issue-trackers usage is increasing as either
a supplement to the mailing-list or as a replacement. This means that these net-
works allow us to capture communication that is ignored when solely looking at
mailing-lists.

2.3 Codeface

Codeface is a tool for the analysis of software development projects. It can extract
data from different sources such as version control systems, mailing-lists and bug-
tracking systems. The resulting data is written to a MYSQL database, from which
we then extract the data to CSV files. Codeface delivers a variety of data, but the
parts that we are interested in and extract from the database, is the list of commits
and the list of mails. For our analyses, we use it to obtain extract the mailing-list
data, that we use for a comparison of mail-based and issue-based networks.

2.4 Related Work

Several papers up to this point have analyzed different aspects of the cooperation
of software developers using mailing-lists. Some of them have also used a network-
based approach like Joblin et al. [MJM17] who used mailing-list data to classify

2.4. Related Work 9

developers into core and peripheral. The network-based analysis, in this case, was
used to improve upon a count-based approach where only the numbers of mails,
commits etc. were taken into account. Compared to the general analysis of issue-
based author network that we perform, the paper by Joblin et al. had the goal
of improving the classification of developers. Performing the same classification
using issue-based networks and comparing the results might be of interest for future
research.
Just like we do, Neumann et al. [DN10] look at issue-tracking data from a large
software vendor. They use issue-based author networks as well, but they connect
issues to software components and compare progress in the software components to
the characteristics of the issue networks.
Rahman and Roy [RR14] investigate successful and unsuccessful pull-requests in 78
GitHub projects.

10 2 Background

3 Implementation

In this chapter, we discuss the integration of issue data into the Network Library
and the implementation of the network metrics that we use for evaluating these
networks. The chapter is divided into four parts: The first part is to get the desired
issue data from GitHub. To accomplish this, we use the GitHubWrapper tool.
Next, we convert the issue data into CSV format which makes it easier to build
networks later. At this stage, we also align the issue authors with the authors in the
database from the Codeface analysis. This helps when building bipartite networks
that are not build from issue data exclusively. Once the data is prepared, we can
start with the construction of networks using the Network Library. The last
part of the implementation are the network metrics that we use for our analyses.

In Figure 3.1 we give an overview of the whole process that is necessary to build
issue-based networks. Here is a short explanation for each of the steps which are
sequentially executed: (1) The GitHubWrapper tool requests the issue data from
the GitHub API. (2) The GitHubAPI sends back the list of issues in JSON format
and the GitHubWrapper tool adds data missing from the initial request. (3) The
list of issues is saved on the disk in JSON format (4) The IssueProcessor reads
the data from the disk (5) Users are verified using Codeface’s IDService for the
authors of the issues and comments. Users that were missing from the database
are added. (6) The IDService returns the inspected users from the database to the
IssueProcessor. (7) The IssueProcessor writes the resulting data to the disk in
CSV format. (8) The CSV list is read from the disk by the Network Library.
(9) The Network Library builds the network according to the parameters given
by the user.

3.1 Extracting Issue Data from GitHub

The first step of the implementation is the retrieval of the issue data. GitHub
offers two APIs for this purpose. One of them uses GraphQL, a query language
developed by Facebook, the other one uses REST1. For the issue data extraction,

1GitHub REST API: https://api.github.com/

12 3 Implementation

GitHub REST API

GitHubWrapper
Disk

IssueProcessor

IDService

(3) Issues

(7) Write Issues to Disk

(4) Read Issues

(2) Issue Data (1) Get Data

Network Library

(8) Read issues

(6) User Data (5) Match User

(9) Network

Figure 3.1: An overview of the issue extraction and network building process

the GitHubWrapper tool, which we utilize for obtaining the issue data, uses the
REST API which can be accessed using HTTP-requests and provides data in JSON
format. In this section, we first look at the GitHubWrapper in general and then
at the two major challenges that occurred during its usage and how we dealt with
them.

3.1.1 The GitHubWrapper

Repeat for every Issue

(1) Get Issues
from GitHub API

(2) Process issue
(3) Get, deserialize
and add comment

data

(4) Get, deserialize
and add event

data

Try to find author e-mail
address and name on

GitHub

(5) Return
deserialized data

Figure 3.2: Issue extraction with the GitHubWrapper tool

3.1. Extracting Issue Data from GitHub 13

The GitHubWrapper2 is a tool that offers a Java API for GitHub’s REST inter-
face, specifically for issues and pull-requests. It is an extension to the GitWrap-
per3 library which provides a API around Git native calls. The GitHubWrapper
tool uses Gson for JSON serialization and deserialization.

In order to use the GitHubWrapper, we have to add functionality for starting the
process and saving the data to the disk, since the GitHubWrapper only provides a
library that we can use. However, we will, for simplicities sake, still refer to the tool
including the entry point we added as GitHubWrapper. The main method loads
the authentication tokens which we will talk about more in Section 3.1.3, creates an
instance of the GitHubWrapper’s central class and makes the API call to retrieve
the issues to said instance.

In Figure 3.2 we illustrate what happens when the call to retrieve the issues is made
to the GitHubWrapper.

(1) The GitHubWrapper first makes the HTTP-request to get a list of all issues
for the GitHub repository that is being analyzed. The next steps are repeated for
each issue. (2) Then the tool deserializes the current issue from its JSON representa-
tion to a Java object to make editing it simpler. (3) Next, the GitHubWrapper
makes a query to the GitHub API to get a list of comments for the issue that is be-
ing treated. These comments are then deserialized in the same way as the issues and
added attached to the issue. (4) After that, the same is done with the event data.
Events are all the things that can be done with an issue aside from commenting.
This includes for example referencing someone in a comment, assigning a person to
the issue or adding a label to the issue. This data is also attached deserialized and
added to the issue. (5) The last step is to save the list of issues on the disk. For
this purpose they are serialized back to their JSON representation and written to
the disk.

3.1.2 Getting User Identification

The GitHub API only provides the username to identify a user with. Since, later
in the process of preparing the issues for network construction, we need to match
the authors found in the issue data with the developers found by Codeface in the
analysis of the version control data, we try to get the e-mail addresses and the real
name. For this, we attempt to get the e-mail address and name used by a person
to make commits on GitHub. We can get a user’s commit data by looking at his
recent pushes. A significant disadvantage of this method is, that we can only get
e-mails and names for users who have recently made code contributions to a project
on GitHub. For users that are not developers in any projects or have not made
any recent pushes, we have no possibility of getting the identification data.

3.1.3 Performance Improvements

Naturally, extracting issue data from GitHub is part of the critical path. The
extraction has two considerable performance bottlenecks. The first of those per-
formance limiting factors is the GitHub API access limit. To keep the degree of

2GitHubWrapper: https://github.com/se-passau/GitHubWrapper.git
3GitWrapper: https://github.com/se-passau/GitWrapper

14 3 Implementation

capacity utilization under control, GitHub limits the number of requests that can
be made to its API per user to 5000 requests per hour when using a GitHub access
token. But 5000 calls still do not cover the number of requests that the GitHub-
Wrapper makes to the GitHubAPI when analyzing larger scale projects. At least
3 calls are needed for per issue and big projects can have 10000 or more issues4.

The second factor that slows the GitHubWrapper down, is the latency of the
HTTP requests. The time it takes from making a call to the GitHubAPI until
receiving the response ranges from around 400 to 800ms. This was tested using the
bash to make the calls and measure the time they take.

To tackle the first problem, we use multiple authentication tokens. These tokens
need to belong to different users, since the access limit is account bound. We also
use pooling to manage the tokens. When all tokens are at their limit, we wait until
there is a token available again. So the GitHubWrapper can work with one token
but more tokens will significantly increase performance.

What multiple tokens also allow us to do, is making parallel calls to the GitHub
API. We can run one thread per token since the limiting factors in terms of perfor-
mance is mainly the HTTP latency and not CPU power. Another step to increase
performance is to reduce the amount of HTTP calls we have to make by caching
user data. Since the same user can appear a lot in different issues or within one
issue this can reduce the number of requests that the GitHubWrapper needs to
make.

4For example owncloud has over 12000 issues: https://github.com/owncloud/core

3.2. Processing Issue Data 15

3.2 Processing Issue Data

Repeat for every Issue

(1) Read Issue
Data from Disk

(2) Match Users
with Database

(3) Reformat
Output Data

(4) Write output
to Disk

Figure 3.3: The activities performed by the IssueProcessor.

After the issue retrieval process is finished, the data needs to be transformed to
make it suitable for the construction of networks in the next step. For this purpose,
we have implemented a python script which we refer to as IssueProcessor, the
procedure of which we depict in Figure 3.3:

(1) First the IssueProcessor reads the list of issues in JSON format. (2) In
the second step, the IssueProcessor matches the authors found in the issue data
with the developers that are in the Codeface database already. If an author
does not yet exist, they are created at this point. This step makes sure that when
building networks that use Codeface data and GitHub issue data, the authors
can be matched correctly. (3) Now the IssueProcessor reformats the data to a
CSV format, a table format where one line represents one event of an issue. This
again makes the network building process simpler since it is in line with the other
types of data, i.e., mails and commits. (4) Finally, the IssueProcessor writes the
formatted data to the disk.

One problem that occurred at this point, was the difference in encoding between the
IssueProcessor and the Codeface IDService which is the part of Codeface
that we use for the retrieval of the author data in step (2). The Codeface IDSer-
vice used latin1 encoding which caused problems with authors that have names
containing characters that are not part of latin1. The existing behavior replaced
unknown characters with question marks which could lead to multiple persons be-
ing treated as one leading to a falsification of the results. To fix this behavior, we
changed the encoding of the whole toolchain, including the Network Library
which also used to be limited to latin1, to UTF-8 and also employ UTF-8 as the
output encoding for the IssueProcessor.

16 3 Implementation

3.3 Network Construction

In this section, we discuss the construction of issue-based developer networks and
how we implement it. Before looking at the integration of the issue data, we explain
how the network construction process works with the example of mail-based devel-
oper networks. We use the same technique that is used for these networks for the
new issue-based networks.

3.3.1 The Network Library

The Network Library is intended to build networks in order to examine the
software development process. To do so, it uses data from Git repositories, mailing
lists and, with the addition of issues, data from GitHub. With this data, several
types of networks based on authors/developers, commits, mails and issues can be
built.

The Network Library has two central classes, NetworkBuilder and Pro-
jectData, which, as the names imply, are responsible for the construction of the
networks and the preparation and handling of the data respectively. Additionally,
two configuration classes manage the settings, where the data is read from, what
type of network to build etc. There is a lot of complementing functionality like
reading data, plotting networks, splitting networks or data by time etc. which is
contained in several script files.

To get an overview of the network building process we will examine how a network
with authors as nodes and thread contribution as edges is built using Figure 3.4:
(1) First the user makes a call to get the author network from the outside to the
NetworkBuilder instance (using either an R script or the R console). (2) The
NetworkBuilder then requests the data from the ProjectData instance. (3)
If the data has not been read yet, the ProjectData instance calls the read method
for the mail data. This method changes depending on what type of network we want
to build. (4), (5) The list of mails is read from the disk. (6) It is then translated
into a data frame that contains one mail per row. Also, a standardized naming
scheme is applied to the columns which allow for generic network construction. (7),
(8) The data frame is then returned to the ProjectData instance where the mails
are prepared for the network construction process. For this purpose, a list is created
that contains the mails from the data frame split by the mail thread which they
belong to. This means there is one entry for every thread with the thread id as
the list entry’s name and a data frame containing the mails in that thread as the
values. (9), (10) This list is then returned to the NetworkBuilder. At this point
the network construction itself begins. For this every thread is treated individually.
For every thread, the authors in said thread are connected and the edge attributes
are set according to the mails in the thread. (11) When the construction process is
finished, the network is returned.

There are other networks with more than one node type. Bipartite networks can
display the same relation as the author networks. A bipartite network with the mail
relation for example connects authors to the mail threads they were a part of. The
other network type with multiple types of nodes are multi-networks where the nodes
are connected among the same type as well as with the other type.

3.4. Network Metrics 17

Another feature of the library is splitting data. When splitting data, we divide it
into several portions specified by time windows or by an amount of activity. This
allows for the construction of several networks for one project. With these networks,
we can look at if and how the development process of a project changed over time.
The splitting can also be performed on networks after the construction process.

Network Builder ProjectData Read

(2) Get Data (3) Read Data

Disk

(1) Get Author Network

(9) Network Data

(6) Structure Data(8) Prepare data for Network(10) Build Network

(5) Raw Data (4) Read from Disk

(7) Struct. Data (11) Author Network

Figure 3.4: The Structure of the data extraction and preparation process

3.3.2 Integration of GitHub Issues into the Network Library

With the extraction and preparation of the issue data done as explained in Sec-
tion 3.1 and Section 3.2, the integration of issues into the Network Library itself
is fairly straightforward. The process of building issue-based author networks in-
volves the steps shown in Figure 3.4 that we discussed above so we will not explain
them again here.

To explain the network construction in detail, we take a look at some sample issue
data, listed in Table 3.1 and how the corresponding author network is built. The
sample data contains three issues. Every line represents one event in an issue each
of which has an author and a date. In Figure 3.5 we display the network, built from
this data. For every author in the issue data, a node is created. The nodes are then
connected according to their activity in the issues. We have assigned one color to
each issue in the graph. The issue with id one is represented by the red edges, issue
number two is has green edges the edges for the last issue are blue. In Figure 3.5
we can see that all authors that work together on one issue are connected. The
connections are created so for each event that a person has performed, edges are
created to every other participant within the issue that the event is part of.

Some of the metrics that we apply to the networks, require the network to be simpli-
fied. This functionality is already provided by the Network Library. We show
the simplified version of the graph in Figure 3.5 in Figure 3.6. The edges between
two nodes are contracted to only one edge, in which the data that was previously
distributed among multiple edges, is stored.

3.4 Network Metrics
For the analyses of the issue networks, we use the metrics that we discussed in
Section 2.1.2. With these metrics, we aim to get an overview of the characteristics of

18 3 Implementation

IssueID AuthorName AuthorMail Date Event
1 Adam adam@gmail.com 2014-10-17 13:16:09 created
1 Clark clark@gmail.com 2014-10-17 13:17:18 commented
1 Baker baker@gmail.com 2014-11-19 20:24:19 closed
2 Evans evans@gmail.com 2015-02-10 11:17:11 created
2 Davis davis@gmail.com 2015-03-16 10:09:42 commented
3 Evans evans@gmail.com 2015-10-17 13:16:09 created
3 Adam adam@gmail.com 2015-11-24 18:07:03 commented
3 Baker baker@gmail.com 2015-12-13 20:24:19 closed

Table 3.1: Sample issue data used for visualization of the network construction
process reduced to the most important data

created

commented

created

closed

co
m

m
en

te
d

cl
os

ed

commented

created

co
m

m
en

te
d

co
m

m
en

te
d

commented

closed

com
m

ented

closed

Adam

Clark

Baker

Davis

Evans

Figure 3.5: Issue-based author network constructed from the data in Table 3.1. The
edge labels display the event that causes the edge. The color of the edges show to
which issue they belong.

3.4. Network Metrics 19

c("created", "commented")

c("created", "closed", "commented", "closed")

c("commented", "commented")

c("commented", "closed")

c("commented", "closed")

c("
co

mmen
ted

",
"c

re
ate

d"
)

Adam

Clark

Baker

Davis

Evans

Figure 3.6: Simplified version of the issue-based author network in Figure 3.5. The
edges between two nodes are contracted to only one edge per pair of nodes.

issue-based author networks and whether they are suitable to be used in conjunction
with mail-based networks for future analysis of developer communication in software
projects. We aim to find out whether the issue-based networks deliver consistent
results and whether the results networks behave similar to mail-based ones. Using
the metrics, we can obtain information about the network and its underlying data.
The implementation of these metrics was fairly simple due to the fact that igraph
provides implementations for most of the metrics.

20 3 Implementation

4 Evaluation

In this chapter, we analyze issue-based author networks for five open-source projects
using several network metrics. First we take a look at the projects themselves.
Then we present the results that we got from the metrics and discuss their potential
implications.

4.1 Subject Projects

We examine the following five projects: OpenSSL1, Glasklart2, Thimble3,
Brackets4 and Owncloud5. In this section we will give some context on these
projects to allow for a better interpretation of the experiment results. We now take
a closer look at each of the five projects:

OpenSSL is a toolkit that implements the SSL and TLS transport layer security
protocols. It also offers a general purpose cryptography library. With about 1,000
issues and 3,000 pull-requests that range from May 2013 to September 2017, the
project is in the middle among the projects that we analyze in terms of size. Since
we have mailing-list data available for OpenSSL which we have downloaded from
the public mailing-list archive Gmane6, we will compare the mailing-list-analysis
results to the issue results for this project. The mail data ranges from September
2001 to February 2016, but we cut it the range of February 2008 to February 2016.
The reason for this is explained in Section 4.2.1.

Glasklart is a theme for IOS. This project has around 9,200 issues and only 24
pull-requests which range from March 2012 to September 2017. Since they only have
64 people who have contributed to the source code of the project on GitHub at
this time, this could either mean they use issues extensively or the project gets a lot

1https://github.com/openssl/openssl
2https://github.com/glasklart/hd
3https://github.com/mozilla/thimble.mozilla.org
4https://github.com/mozilla/brackets
5https://github.com/owncloud/core
6http://gmane.org

22 4 Evaluation

of issues from non-developers. Either of these possibilities might have an impact on
the results of the metrics.

Thimble and Brackets are both code editors intended for use with HTML,
JavaScript and CSS developed by Mozilla, though Brackets is forked by
Mozilla from Adobe. The difference between them is that Thimble is a modified,
web based version of Brackets that runs in the browser. Brackets has about
300 issues and 550 pull-requests which date from July 2014 to September 2017 at
the time of the download and Thimble is at 1,300 issues and 3,000 pull-requests
within the time frame from April 2013 to September 2017.

Owncloud is a cloud-hosting software. With around 16,000 issues and 12,000 pull-
requests in the period from August 2008 to September 2017, it is the largest project
that we analyze.

Project
Issues +
pull-requests

Number of
Developer

Number of
Contributors
(Issues)

Time frame

OpenSSL 4327 291 1354 2013-05 : 2017-09
Glasklart 9194 61 490 2012-03 : 2017-09
Thimble 2501 179 360 2013-04 : 2017-09
Brackets 877 315 95 2014-07 : 2017-09
Owncloud 29110 432 9554 2008-08 : 2017-09

Table 4.1: Overview of all the projects, their associated number of developers, is-
sue contributors and the time frames within which our data is situated. The high
developer count and low issue contributor count of Brackets is due to it being a
fork.

4.2 Results and Discussion

In this section we present the results of the network analyses that we performed on
the projects listed in Section 4.1. We first examine OpenSSL in detail and compare
the issue results of the project with the mailing-list results. Then we take a look
at the rest of the projects and see whether they show similar results for the issue-
based networks or whether they show noticeable differences. We use undirected and
simplified network for all the analyses that we conduct.

4.2.1 OpenSSL

Analysis of Issue-Based Networks

In Table 4.2 we show the simple metrics for the issue-based author network for
OpenSSL. The maximum total degree is at 880 which in contrast to the average
degree of roughly 7.9 tells us that some people participate in a lot of issues, while the
majority is only involved in few issues. We can observe this structure in Figure 4.2
where we can see few central nodes with plenty of connections and a large number
of nodes in between and around them with fewer connections. When looking at
the total number of nodes and comparing it to the maximum total degree, we can

4.2. Results and Discussion 23

see that at least one person has interacted with two thirds of the people that have
contributed to the issues of the project. The density of the network is fairly low with
0.5% which means the whole network is connected rather loosely, which confirms that
most people only contribute in few issues. Finally the number of nodes, which is the
number of people who have contributed to at least one issue, is considerably higher
than the number of people who have contributed to the source-code, which, at the
time of writing this thesis, is at 291. This means that the issue tracker is used for
questions and bug reports a lot.

Simple Metrics Value
Number of Nodes 1354
Avg. Degree 7.926
Avg. Pathlength 2.284
Max. Total Degree 880
Density 0.00586
Number,of Contributors 291
Complex Metrics
Clustering Coefficient (L) 0.919
Clustering Coefficient (G) 0.0484
Modularity 0.137
Smallworldness 15.074
Scale-Freeness
alpha 2.397
x min 6
KS p 0.879

Table 4.2: Metrics results for the issue-based author network of OpenSSL. The (L)
and (G) behind the clustering coefficient stand for the local and global clustering
coefficient respectively.

Now we get to the complex metrics which we display in Table 4.2 and Figure 4.1.
With a value of about 0.92, the average local clustering coefficient (marked with
(L)) of the network is very high. This is most likely because the network has a lot
of low degree nodes with connected neighbors, which can distort the result of this
metric. However, the global clustering coefficient (marked with (G)) is fairly low.
So the graph has a fairly low clustering behavior.
The modularity on the other hand is fairly low which means that the network does
not consist of strongly connected subgroups with loose connections to the other
communities. This fits with what we can see in Figure 4.2. Most nodes of the graph
are nodes that are evenly scattered with a few central nodes. For the issue network
this indicates that there are no groups within the project that handle issues among
themselves but rather that people contribute to issues multiple topics in the project
without strict topic limitations.
When calculating scale-freeness, we get three values. The most relevant one of
them being KSp. It represents the p-value for the Kolmogorov-Smirnov test. If
this value is below 0.05, a power-law does not fit to the degree distribution of the
graph. Since the value for the OpenSSL results is well beyond 0.05, the network
is scale-free. The other values tell us the exponent of the power-law distribution

24 4 Evaluation

(alpha) and the minimum node degree from which the power-law distribution fits the
degree distribution of the network (x min). As described in Section 2.1.2, a scale-free
network can be explained as a result of preferential attachment and network growth.
Preferential attachment makes sense for this network because as we have seen, that
there are developers that interact with a majority of people in the network. These
nodes are favored for the connection of new nodes because these core nodes are the
developers that respond to most of the issues. And the network has of course grown
with the course of the development.
Next, we take a look at the small-worldness. Since the value for this metric is a
lot higher than one, the network is considered a small-world network. It means
that most nodes can be reached from any other node within a few hops. This
categorization is caused by the issue-based author network being a social network
which tend to be small-world networks. A lot of new issues that are created in a
project, are responded by the few central authors which we can see in Figure 4.2.
This keeps the average path length low, since the central developers are connected
to a lot of other developers.
Finally we inspect the hierarchy graph in Figure 4.1. The nodes with a low position
in the hierarchy are in the top left of the graph, the nodes at the top of the hierarchy
are on the bottom right. There are a few authors that have a very high position in
the hierarchy and many with a low position. This behavior can be seen in Figure 4.2
as well. There are few central nodes that are at the top of the hierarchy while most
of the nodes are fairly evenly scattered across the graph with none of them obviously
standing out in terms of the number of edges. The hierarchy structure tells us that
there are a few very important people that participate in most of the issues but since
there is only a small number of people in the middle of the hierarchy, the hierarchy
is not very well balanced.

−4

−3

−2

−1

0

2 4 6

log(degree)

lo
g(

cl
us

te
rin

g
co

ef
fic

ie
nt

)

2

4

6

deg

log(degree) vs. log(clustering coefficient) openssl

Figure 4.1: Hierarchy Graph for the OpenSSL issue-based author network

4.2. Results and Discussion 25

Figure 4.2: Graph visualization for issue-based author network for OpenSSL. The
nodes represent people who have contributed to the issues in the project, an edge
between two nodes means that the two issue authors have participated in the same
issue.

26 4 Evaluation

Comparison of Issue-Based and Mail-Based Author Networks

We now take a look at the mail-based author network for OpenSSL and check if
the metrics show a different outcome or whether we get similar results. Since the
mailing-list contains data from 2001 to 2016 while the issues only begin in 2013, the
mail-network is significantly larger than the issue-based one both in the number of
nodes and the number of edges. In order to get a comparable amount of data, we
cut the earlier years of the mailing-list so the number of edges is about equal. We
consider the number of edges more important than the number of nodes because the
interactions are more interesting to us than the number of participants.

Simple Metric Value (Mail) Value (Issue)
Number of Nodes 1533 1354
Avg. Degree 7.14 7.926
Avg. Pathlength 3.028 2.284
Max.Total Degree 408 880
Density 0.00466 0.00586
Complex,Metrics
Clustering,Coefficient (L) 0.729 0.919
Clustering,Coefficient (G) 0.137 0.0484
Modularity 0.342 0.137
Smallworldness 38.182 15.074
Scale-Freeness
alpha 1.89 2.397
x min 3 6
KS p 0.152 0.879

Table 4.3: Comparison between mail-based and issue-based author network for
OpenSSL

In Table 4.3 we can see that the number of nodes for the mail network is about 200
higher, combined with the average node degree, which is a bit lower, the number of
edges is about equal to the issue-based network. The density is a little lower and
the average path length is a bit higher. The only simple metric that shows a clear
difference is the maximum total degree. It is only half of what it is in the issue based
network. This is also reflected in Figure 4.4 where we can observe nodes with more
connections than the rest but not as distinctly as in Figure 4.2.

The clustering coefficient shows roughly the same characteristics as it does for the
issue-based network. The average local clustering coefficient (marked with (L)) is
fairly high, once again most likely caused by a lot of low degree nodes. The global
clustering coefficient (marked with G) is low again even though it is twice as high as
it was for the issue-based network which is a noticeable difference, so the mail-based
network seems to show a stronger clustering behavior.
The modularity is considerably higher for the mail-based network than it is for the
issue-based one. Since the value is over 0.3, we consider it to be a modular network.
The reason might be that people keep more to mail threads that they are strictly
involved in while in issues people respond more liberally if they have something to
contribute and thus cause the network to have less well defined modules. However

4.2. Results and Discussion 27

this is speculation since we only compare the network metrics for mail-based and
issue-based author networks for one project.
The mail-based author network, like the issue network is scale-free. The p-value is
lower, but it is still over 0.05. Xmin is also lower which means that more of the
nodes fit with the power-law’s degree distribution. With a value of about 38, the
small-worldness is way beyond one, so the mail-based author network for OpenSSL
is a small-world network, just like with the issue-based one. Since, as mentioned
above, most social networks are small-world networks, this is not surprising.
Lastly, we take a look at the hierarchy graph for the mail network, depicted in
Figure 4.3. While the base structure is similar once again, the nodes in the mail-
based network are more evenly spread out. There are more nodes with higher degrees
and a lower clustering coefficients but at the same time, the maximum hierarchy
position is not as high as the highest ranked nodes issue-based network. Altogether
there is a stronger, more obvious hierarchy in the mail-based network.

Conclusively we can say, that issue-based and mail-based author networks have
similar tendencies as far as the metrics that we apply are concerned. The results
differ in some aspects, but they both share the same tendencies, which makes sense
considering both of them are based on communication in a software development
environment and the data sources fulfil a similar purpose.

−3

−2

−1

0

2 4 6

log(degree)

lo
g(

cl
us

te
rin

g
co

ef
fic

ie
nt

)

1

2

3

4

5

6
deg

log(degree) vs. log(clustering coefficient) OpenSSL

Figure 4.3: Hierarchy Graph for the OpenSSL mail-based author network

28 4 Evaluation

Figure 4.4: Graph visualization for the mail-based author network for OpenSSL.
The nodes represent people who have written mails in the mailing-list, an edge
between two nodes means that the people have written mail(s) in the same thread.

4.2. Results and Discussion 29

4.2.2 Other Projects

After analyzing the issue-based author network for OpenSSL and comparing it to
the mail-based network, we now take a look at the issues-based networks of several
other projects.

Once again, we first look at the simple metrics shown in Figure 4.5 and cover the
more complex metrics afterwards. The number of nodes and maximum degree show
the relative scale of the issue usage of the projects. Owncloud is by far the largest
project in terms of the number of authors and the maximum degree, which fits in
with the number of issues. Interestingly, the average degree in general does not seem
to increase with the number of issues, though we cannot make a universal claim since
we only look at five projects. The average path length appears to be independent
from the size of the network. Density on the other hand seems to decrease with
the number of nodes which indicates that the number of connections does increases
fairly slow compared to the number of nodes.

O
w

nc
lo

ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0

2500

5000

7500

10000

am
ou

nt
.n

od
es

Number of Nodes

O
w

nc
lo

ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0.0

0.5

1.0

1.5

2.0

av
g.

pa
th

le
ng

th

Average Pathlength

O
w

nc
lo

ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0

2000

4000

de
gr

ee

Max Degree
O

w
nc

lo
ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0.00

0.02

0.04

0.06

0.08

de
ns

ity

Density

O
w

nc
lo

ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0

5

10

15

20

25

av
g.

de
gr

ee

Average Degree

Figure 4.5: Results of the simple metrics applied to the issue-based author net-
works of the five projects: Brackets, Glasklart, OpenSSL, Owncloud and
Thimble.

Now, we examine the remaining, more complex metrics that we have depicted in
Figure 4.6 and Figure 4.7. The local clustering coefficient (marked with (L)) is very
high and almost equal in all of the networks. This is most likely due to a lot of nodes
with few edges in all of the networks, have too large of an impact on the result. The
global clustering coefficient (marked with (G)) shows more interesting results. We
can observe a quite strong divergence in the global clustering coefficient that does
not seem to correspond with the network size. Since there is no obvious reason
for the different clustering coefficients, further research would have to be done to
determine the cause of this.
The modularity value seems to be about equal for most of the network with the
exception of Owncloud, which still does not go above the value of 0.3 to be con-
sidered a highly modular network. The reason for Owncloud being having a higher

30 4 Evaluation

modularity is not evident from the data and results we have. It could be connected
to size since OpenSSL, the second largest project in terms of issue data, also shows
a slightly higher modularity but this is not conclusive, especially since the rest of
the projects, despite their size differences, show no clear difference in modularity.
From the data that we have, the small-worldness value of the issue-based networks
appears to scale with the size of the corresponding network, though they are all cat-
egorized as small-world networks since the value for smallest network, Brackets,
is about 2.2.
All of the five networks, except Owncloud, are considered scale-free since the p-
value after fitting a power law is above 0.05 for all of them. For the four projects that
are scale-free, this means that they have a few central hub nodes with high degrees
and plenty of lower degree nodes. Since the network for Owncloud, like the oth-
ers, has a high maximum node degree and a comparatively low average node degree,
something must be different with the curve of the degree distribution. However we
do not know why this is the case or what causes it.

O
w

nc
lo

ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0.00

0.25

0.50

0.75

cl
us

te
rin

g.
co

ef
f

Clustering Coefficient (L)

O
w

nc
lo

ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0

20

40

60

sm
al

lw
or

ld
ne

ss

Smallworldness

O
w

nc
lo

ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0.00

0.05

0.10

0.15

0.20

cl
us

te
rin

g.
co

ef
f

Clustering Coefficient (G)

O
w

nc
lo

ud

O
pe

nS
S

L

G
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s

0.00

0.25

0.50

0.75

1.00

K
S

.p

Scale−Freeness

O
w

nc
lo

ud

O
pe

nS
S

LG
la

sk
la

rt

T
hi

m
bl

e

B
ra

ck
et

s
0.0

0.1

0.2

0.3

m
od

ul
ar

ity

Modularity

Figure 4.6: Results of the complex metrics applied to the issue-based author net-
works of the five projects: Brackets, Glasklart, OpenSSL, Owncloud and
Thimble. The red lines in the plots for modularity, small-worldness and scale-
freeness show the minimum value for the network to be considered modular, small-
world and scale-free.

Finally we inspect the hierarchy results in Figure 4.7. They all show very similar
hierarchy characteristics. All of them seem to have a hierarchy with few nodes
with drastically higher degrees and lower local clustering coefficients and most of
the nodes having low degrees and high local clustering coefficients. The hierarchy
behavior seems to be independent of network’s size.

4.2. Results and Discussion 31

−5

−4

−3

−2

−1

0

2.5 5.0 7.5

log(degree)

lo
g(

cl
us

te
rin

g
co

ef
fic

ie
nt

)

Owncloud

−3

−2

−1

0

1 2 3 4 5

log(degree)

lo
g(

cl
us

te
rin

g
co

ef
fic

ie
nt

)

Thimble

−3

−2

−1

0

2 4 6

log(degree)

lo
g(

cl
us

te
rin

g
co

ef
fic

ie
nt

)

Glasklart

−2

−1

0

1 2 3 4

log(degree)

lo
g(

cl
us

te
rin

g
co

ef
fic

ie
nt

)

Brackets

Figure 4.7: Hierarchy plots for the projects except OpenSSL. The hierarchy plot
for OpenSSL can be found in Figure 4.1

32 4 Evaluation

5 Conclusion

Because communication is an essential part of software development, it is important
to get a better understanding of how this communication works and how it influ-
ences the development process itself. Up to this point, plenty of research has been
done using mailing-lists as the source of communication data but an increasing por-
tion of the communication around software projects is conducted using other means
than e-mails like the GitHub issue tracker that we use as our source for commu-
nication data. By analyzing this issue data, we hope to provide a complementing
in addition to the mail data, as well as a replacement option for projects that do
not use a mailing-list. Since issues are a way of communication that is integrated
into the development environment, they might also open up new ways of connecting
communication to the collaboration on the source-code.

To determine the usefulness of the issue data, we have integrated it into a tool-chain
for network-based software project analysis. We first mined the data from REST
API that GitHub offers. We then prepared the issues for network construction
and matched it to the data of that is already in use, so both types can be used
together in later research. From the prepared issue data we then constructed issue-
based author networks that we then used to perform some metric-based network
analyses. To get an estimate for how issue and mails compare as a communication
medium, we constructed networks for both and compared the metric results. Even
though no clear definite conclusion is possible, since we only applied the comparison
of mail-based and issue-based networks to OpenSSL, this case-study shows a lot
of similarities among the two data sets. Modularity and the maximum total degree
showed the strongest divergences where the mail-based network is categorized as
strongly modular, while the issue-based network is not and the issue network has
over twice the maximum total degree as the mail-based one. As for the compari-
son of the five projects that we analyzed the issue-based networks for, OpenSSL,
Glasklart, Thimble, Brackets and Owncloud, the most surprising result
was the differences in the clustering coefficient and that Owncloud’s issue-based
author network was not scale-free as compared to the other four networks. The
clustering coefficient was varying considerably between the different projects and
it did not appear to correlate to the size of the network. We cannot explain the

34 5 Conclusion

differences in the clustering coefficient or the sticking out of Owncloud in terms
of scale-freeness with the analyses we performed but they could be a candidate for
future research on issue-based author networks.

In conclusion, the issue-based networks seem to show fairly consistent results to
the point where they could be used as either an addition or as a replacement for
mailing-lists in the network based analysis of software projects. Still because of the
small sample size that we used for our analyses, more research should be done to
ensure the consistency over a larger number of projects. For the future, utilizing
issue-based networks for analyzing a project’s development over time, as well as
researching topics that have already been analyzed with mail-based networks, might
deliver interesting results.

Bibliography

[AJS11] A. Sillitti A. Jermakovics and G. Succi. Mining and visualizing de-
veloper networks from version control systems. Proceedings of the 4th
International Workshop on Cooperative and Human Aspects of Software
Engineering, page 24–31, 2011. (cited on Page 3 and 4)

[BA99] Albert-László Barabási and Réka Albert. Emergence of scaling in ran-
dom networks. Science, 1999. (cited on Page 6)

[BE05] Ulrik Brandes and Thomas Erlebach. Network Analysis: Methodological
Foundations. Springer, 2005. (cited on Page 4 and 5)

[BPD+08] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and
Premkumar Devanbu. Latent social structure in open source projects.
Proceedings of the International Symposium on Foundations of Software
Engineering (FSE), pages 24–35, 2008. (cited on Page 4)

[Cha05] Robert N. Charette. Why software fails. IEEE Spectrum, pages 42–49,
2005. (cited on Page 1)

[DN10] Arne Beckhaus ans Lars M. Karg Dirk Neumann. The impact of collab-
oration network structure on issue tracking’s process efficiency at a large
business software vendor. Proceedings of the 43rd Hawaii International
Conference on System Sciences, 2010. (cited on Page 9)

[HG] Mark D. Humphries and Kevin Gurney. Network ‘small-world-ness’:
A quantitative method for determining canonical network equivalence.
(cited on Page 5)

[HM01] J. D. Herbsleb and D. Moitra. Global software development, volume 18.
IEEE, Mar 2001. (cited on Page 1)

[Job17] Mitchell Joblin. Structural and Evolutionary Analysis of Developer Net-
works. PhD thesis, Universität Passau, Germany, 2017. (cited on Page 4

and 8)

[LLFGB04] G. Robles L. Lopez-Fernandez and J. M. Gonzalez-Barahona. Apply-
ing social network analysis to the information in cvs repositories. 1st
International Workshop on Mining Software Repositories (MSR), page
101–105, 2004. (cited on Page 3 and 4)

36 Bibliography

[LLH06] Jesus L. Lopez, G. Robles and I. Herraiz. Applying social network
analysis techniques to community-driven libre software projects. Inter-
national Journal of Information Technology and Web Engineering, page
27–48, 2006. (cited on Page 3 and 4)

[MJM17] Claus Hunsen Mitchell Joblin, Sven Apel and Wolfgang Maurer. Classi-
fying developers into core and peripheral: An empirical study on count
and network metrics. IEEE/ACM 39th International Conference on
Software Engineering, 2017. (cited on Page 8)

[NG] Mark E.J. Newman and Michelle Girvan. (cited on Page 6)

[RR14] Mohammad M. Rahman and Chanchal K. Roy. An insight into the pull
requests of github. 2014. (cited on Page 9)

[WF95] Stanley Wasserman and Katherine Faust. Social Network Analysis:
Methods and Applications. Cambridge University Press, 1995. (cited

on Page 4)

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 1998. (cited on Page 5)

[XF14] Qi Xuan and Vladimir Filkov. Building it together: Synchronous devel-
opment in oss. Proceedings of the International Conference on Software
Engineering (ICSE), pages 222–233, 2014. (cited on Page 4)

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Bachelorarbeit selbständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausführungen, die wörtlich oder sinngemäß übernommen wur-
den, als solche gekennzeichnet sind, sowie dass ich die Masterarbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Raphael Nömmer

Passau, den 30. September 2017

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Network Basics
	2.1.1 Developer Networks
	2.1.2 Network Metrics

	2.2 GitHub
	2.2.1 The GitHub Issue-Tracker
	2.2.2 Issue-Based Developer Networks

	2.3 Codeface
	2.4 Related Work

	3 Implementation
	3.1 Extracting Issue Data from GitHub
	3.1.1 The GitHubWrapper
	3.1.2 Getting User Identification
	3.1.3 Performance Improvements

	3.2 Processing Issue Data
	3.3 Network Construction
	3.3.1 The Network Library
	3.3.2 Integration of GitHub Issues into the Network Library

	3.4 Network Metrics

	4 Evaluation
	4.1 Subject Projects
	4.2 Results and Discussion
	4.2.1 OpenSSL
	4.2.2 Other Projects

	5 Conclusion
	Bibliography

