
A S S E S S I N G T H E S C O P E O F S A F E T Y P R O P E RT I E S

peter dahlberg

Master’s Thesis

Faculty of Computer Science and Mathematics
University of Passau

March 29, 2017

Peter Dahlberg: Assessing the Scope of Safety Properties, Master’s Thesis,
© March 29, 2017

supervisors:
Prof. Dr.-Ing. Sven Apel
Prof. Dr. Christian Lengauer
Andreas Stahlbauer

A B S T R A C T

Recent advancements in the efficiency of software model checking
tools have increased the feasibility to formally verify large real-word
software systems. This also moves the formal specification they prove
more into the focus of the attention which, for such a software sys-
tem, typically is complex consisting of a considerably vast number of
safety properties. This work determines and assess the scope of such
safety properties which we define as that part of the abstract state
space of the model checker which is needed to prove the respective
property. We present a heuristic to determine the scope of a safety
property which greatly leverages of existing analyzes present in the
software model checking framework CPAchecker and show visual-
ization approaches which emphasize that part of the state space as
well as show the distribution of property scopes inside a program.
Our experimental evaluation on two different commonly used bench-
mark sets with a total of 6986 program and property pairs yields
interesting insights into the data coverage, data locality and distribu-
tion of property scopes inside the programs of benchmark sets. We
also explore the effect of overlapping scopes of safety properties on
the performance of a multi-property analysis.

iii

C O N T E N T S

1 introduction 1

1.1 Goals 1

1.2 Contributions 2

1.3 Structure 2

2 background 3

2.1 Software Model Checking 3

2.2 Configurable Program Analysis 3

2.2.1 Control-Flow Automata 3

2.2.2 Concrete States and Reachability 4

2.2.3 Data Structures and Operators of CPA 4

2.2.4 Reachability algorithm for CPA 6

2.2.5 Abstract Reachability Graph 6

2.2.6 Composition of CPAs 7

2.3 Predicate Analysis with Adjustable-Block Encoding 7

2.3.1 Logical Representation of the Concrete State Space 7

2.3.2 Predicate Abstraction 8

2.3.3 CPA for Predicate Analysis with ABE 8

2.3.4 Block Adjustment 9

2.3.5 Computing a Suitable Precision 10

2.4 Safety Properties 11

2.4.1 Specification Automata 11

2.4.2 Specification Analysis and Specification Language 12

2.4.3 Relevance of a Property 12

2.5 Program Slicing 12

3 determination of property scopes 13

3.1 Property Scope CPA 13

3.1.1 Property Scope Location 13

3.1.2 Abstract Domain 13

3.1.3 Transfer Relation with Strengthening 14

3.1.4 Precision Adjustment with Strengthening 15

3.1.5 Merge Operator and Termination Check 16

3.1.6 Incompleteness for Violated Properties 16

4 visualization of property scopes 17

4.1 Overlap and Distribution inside Programs 17

4.1.1 Property Scope Call Graph 17

4.1.2 Arc Diagrams for Property Scopes 17

4.2 Property Scopes inside the State Space 20

4.2.1 Property Scope Graph 20

4.2.2 Property Scope Structure Graph 20

iv

contents v

5 evaluation 25

5.1 Research Questions 25

5.1.1 Assessing Property Scopes of Benchmark Sets 25

5.1.2 Property Scopes and Multi-Property Verification 26

5.2 Setup 27

5.2.1 Benchmark Suite 27

5.2.2 Experiments 27

5.2.3 Analysis Domain 29

5.2.4 Benchmarking Environment 29

5.2.5 Presentation 30

5.3 Results 30

5.3.1 RQ1.1: Distribution of Property Scopes inside
Programs 30

5.3.2 RQ1.2: Program Variables inside the Property
Scope 33

5.3.3 RQ1.3: Data Locality inside Property Scopes 34

5.3.4 RQ1.4: Global Variables inside the Property Scope 34

5.3.5 RQ2.1: Overlap of Property Scopes 34

5.3.6 RQ2.2: Performance of Verifying Overlapping
Properties Together 35

5.3.7 RQ2.3: Reached Set Size with Overlapping Prop-
erties 36

5.4 Discussion 37

5.4.1 RQ1.x: Assessing Property Scopes of Benchmark
Sets 37

5.4.2 RQ2.x: Property Scopes and Multi-Property Ver-
ification 39

6 future work 42

7 related work 43

7.1 Construction of Program Slices 43

7.2 Assessment of Program Slices 43

7.3 Property Specification Patterns 44

8 conclusion 45

bibliography 46

L I S T O F F I G U R E S

Figure 1 Expample of a CFA for a simple program as
represented in CPAchecker 4

Figure 2 CEGAR Loop 10

Figure 3 Heat coloring used to represent the value of
the property scope importance 18

Figure 4 Property scope Arc diagrams for a file multi-
props.c using 4 different properties 18

Figure 5 A property scope arc diagram for a linux ker-
nel module drivers-char-tlclk.c 19

Figure 6 Property scope structure graphs for two exam-
ple programs 21

Figure 7 Property scope graph for fopen_malloc_expl.c with
the properties malloc.spc and fopen.spc 23

Figure 8 Property scope graph for fopen_malloc_expl.c with
the properties malloc.spc and fopen.spc 24

Figure 9 Percentage of functions in scope of the prop-
erty (product-lines, by product) 31

Figure 10 Percentage of functions in scope of the prop-
erty (SV-COMP and LDV-250) 32

Figure 11 Percentage of relevant variables in scope of the
property 33

Figure 12 Percentage of variables in abstraction formulas
in scope of the property defined in the same
function 35

Figure 13 Percentage of global variables in abstraction
formulas in scope of the property 36

Figure 14 Relationship between the speedup of a multi-
property analysis and the overlap of property
scopes 37

Figure 15 relationship between the growth of the final
reached set of a multi-property analysis and
the overlap of property scopes 38

Figure 16 Simplified ARG for verification of fopen_mal-
loc_expl.c and fopen_malloc_nooverlap:.c with prop-
erties fopen.spc and malloc.spc 40

vi

L I S T O F TA B L E S

Table 1 Safety properties for the LDV-250 set (taken
from [4]) 28

Table 2 Dominating reached sets 39

L I S T O F L I S T I N G S

Listing 1 fopen_malloc_expl.c 22

Listing 2 fopen_malloc_noexpl.c 22

Listing 3 malloc.spc 22

Listing 4 fopen.spc 22

L I S T O F A L G O R I T H M S

Algorithm 1 CPAalg(D, e0,π0) (taken from [6]) 6

Algorithm 2 ↓precPS 15

vii

1
I N T R O D U C T I O N

Defective computer programs are a major problem in the industry
causing huge costs while often even posing threads to safety and se-
curity. It is often desirable to find defects before actually running the
program using tools for static software analysis on its source code. Es-
pecially in security or safety critical systems formal verification meth-
ods such as software model checking which are able to prove that the
program’s behavior adheres to a given formal specification are of high
value.

A software system is typically formally specified by an often large
set of safety properties, each describing a particular wanted or un-
wanted behavior. For example a property may describe a specific rule
for the usage of an API like, in a C program, ensuring that free() is
called on a resource obtained by malloc() or may simply forbid the
program to ever execute a certain statement.

As tools for software model checking mature, getting more and more
suitable for verification of real world software, properties become an
increasingly interesting subject. One problem is that verifying each
property inside an individual analysis run is expensive due to their
typically large number. Previous work [4] comes to the conclusion
that verifying multiple properties together in one analysis run can
safe a lot of verification time. Certain combinations of properties how-
ever interact with each other which can lead to a state space explosion
and slow down the analysis, sometimes even hinder its completion in
a reasonable time frame.

Another aspect where safety properties are interesting is the devel-
opment and evaluation of software model checking tools. They often
rely on a rather fixed set of benchmarks which are used to compare
to competing efforts and to which they optimize for but in contrast to
real word scenarios often a rather limited set of properties is verified.

1.1 goals

The goal of this work is to determine and asses the scope of safety
properties. The scope of a safety property is that part of the abstract
state space (i.e. program statements and variables) which is necessary
to prove it.

The first objective is to identify such scopes inside the state space
and to develop useful visualizations for usage on a case by case ba-
sis. Additionally we want to experimentally asses the scopes of safety
properties in existing common benchmark sets quantified by various

1

1.2 contributions 2

metrics to learn about how strongly they differ from each other and
if we can spot interesting patterns. Furthermore, we aim to evaluate
how scopes of safety properties can be used to understand how over-
lapping property scopes impact the performance of a multi property
analysis.

1.2 contributions

The following summarizes the contributions of this work:

• We implement a heuristic analysis built into the software model
checking framework CPAchecker [7] which determines the scope
of safety properties based on predicate abstraction with adjustable-
block encoding [8].

• We describe three visualization methods for property scopes
where we reduce the often large visual representation of the
state space focusing on making scopes more visible as well as
present ways to visually compare scopes of different properties
in a program.

• We perform an extensive experimental evaluation on two differ-
ent benchmark existing benchmark sets. One consisting of 3486
programs with one property for each and the other of 250 pro-
grams and 14 properties. We determine and measure the scope
of each pair of program and property by various metrics and
investigate the performance impact of overlapping scopes on a
multi- property analysis on the second set.

1.3 structure

In chapter 2 we start with an overview about the software model
checking techniques and other important concepts the work bases on.
With that knowledge in mind, chapter 3 presents our approach to
determine scopes of safety properties. Chapter 4 is concerned with
visualizing several aspects of such scopes. In chapter 5 we describe
our experiments as well as present and discuss the results. Before we
conclude the work in chapter 8 we are proposing opportunities for
future work in chapter 6 and take a look at related work in chapter 7.

2
B A C K G R O U N D

To familiarize the reader with the foundations our work is based on,
this chapter provides background information on software model check-
ing using predicate abstraction with adjustable block encoding based the
concept of configurable program analysis. Furthermore, we talk about
safety properties and their representation as a specification automaton.
At the end we give a short overview on program slicing.

2.1 software model checking

Software Model checking is a formal approach for static software ver-
ification. A software model checker verifies that a given program ad-
heres to a given formal specification in an exhaustive, precise and au-
tomatic way by constructing an abstract model of the program. The
output of the model checker is either TRUE if the program satisfies
the specification, FALSE if a violation is found (typically it outputs
a witness in addition) or UNKNOWN if time or space limits are hit.
The key challenge is to find sound and complete abstract representa-
tions of the typically huge state space of real world programs to make
the analysis efficient.

2.2 configurable program analysis

The work relies on the model checking framework CPAchecker

[7] for verification of programs in the C programming language,
which implements configurable program analysis (CPA) D = (D,
,merge, stop,prec) [5] with dynamic precision adjustment [6]. The
following explains key concepts and definitions needed later follow-
ing closely the definitions in the literature.

2.2.1 Control-Flow Automata

A control-flow automaton CFA(L, l0,G) describes a program as a set of
control locations L with l0 ∈ L as the entry location. These locations
are connected by a set of control-flow edges G ⊆ L Ops L with Ops
being the operations which let the control flow from one location to
another. Each such operation may either be an assignment operation
or an assume operation which represents the boolean condition al-
lowing the control flow during execution.

In practice a CFA is typically enriched by additional types of control-
flow edges representing e.g. variable declarations or function calls and

3

2.2 configurable program analysis 4

returns to provide the analysis with additional information the pro-
gramming language provides. Figure 1 shows an example of a CFA
constructed from a C program with two functions.

1 int inc(int a) {

2 return a+1;

3 }

4

5 int main() {

6 int a = 1;

7 while(1) {

8 a = inc(a);

9 }

10 }

Figure 1: Expample of a CFA for a simple program as represented in
CPAchecker

2.2.2 Concrete States and Reachability

A concrete state of a program c is a specific assignment of all variables
of the program to a value at a specific location l ∈ L. The set of
all concrete states of a program is denoted by C and a subset r of
C is called a region. To make a transition from one concrete state to
another we go along a control flow edge g ∈ G which leads to a
labeled transition relation

g−→⊆ C× {g}×C and finally to a transition

relation −→ which is the union of
ĝ−→ for every control flow edge

ĝ ∈ G.
“A concrete state cn is reachable from a region r denoted by cn ∈

Reach(r) if there exists a sequence of concrete states ci such that c0 ∈ r
and for all 1 6 i 6 n, we have ci−1 −→ ci.” [6]

2.2.3 Data Structures and Operators of CPA

According to the literature [6] the abstract domain D = (C, ξ, [[·]]) con-
sists of the set of concrete states C, a semi-lattice ξ = (E,>,⊥,v,t)
of abstract states and a concretization function [[·]] which takes an ab-

2.2 configurable program analysis 5

stract state and returns the corresponding set of concrete states. The set
E contains the abstract domain elements (possibly infinite), including
the top element > and the bottom element ⊥. v is a partial order
over the elements of E and t : E× E → E is the join operator. For
soundness of the analysis it is required that:

1. [[>]] = C and [[⊥]] = ∅

2. ∀e, e ′ ∈ E : e v e ′ =⇒ [[e]] ⊆ [[e ′]]

3. ∀e, e ′ ∈ E : et e ′ ⊇ [[e]]∪ [[e ′]]
(The join operator must always over approximate if not precise)

The set Π determines the possible precisions of the abstract domain.
Each abstract state has a (possibly different) precision π consisting of
elements from Π assigned, thus a pair (e,π) is called an abstract state
with precision π.

The transfer relation ⊆ E × G × E × Π assigns new ab-
stract states e ′ to an existing abstract state e . We write
e
g
 (e ′,π) if such a transfer with the control-flow edge

g ∈ G exists. For every fixed precision is required to
over approximate the respective concrete transitions:

∀e ∈ E,g ∈ G,π ∈ Π :
⋃

e
g
 (e ′,π)

[[e ′]] ⊇
⋃

c∈[[e]]

{
c ′|c

g−→ c ′
}

The merge operator merge : E×E×Π→ E weakens the sec-
ond parameter using information of the first and returns
a new abstract state with the precision of the third param-
eter. The merge result can only be more abstract than the
second parameter:

∀e, e ′ ∈ E,π ∈ Π : e v merge(e, e ′,π)

The termination check stop : E× 2E → B checks if the ab-
stract state given as the first parameter is already covered
by the set of abstract states given by the second with the
precision given by the third. The following is required:

∀e ∈ E,R ⊆ E,π ∈ Π : stop(e,R,π) =⇒ [[e]] ⊆
⋃
e ′∈R

[[e ′]]

The precision adjustment function prec : E×Π× 2E×Π com-
putes a new abstract state and a new precision, for a
given abstract state with precision and a set of abstract
states with precision. The precision adjustment function

2.2 configurable program analysis 6

may perform widening of the abstract state, in addition to
a change of precision. The following is required:

∀e, e ′ ∈ E,π,π ′ ∈ Π,R ⊆ E×Π :

(e ′,π ′) = prec(e,π,R) =⇒ [[e]] ⊆ [[e ′]]

[formal definitions reproduced directly from 6]

2.2.4 Reachability algorithm for CPA

The algorithm CPAalg (algorithm 1) computes from an initial abstract
state with precision a set of reachable abstract states by producing suc-
cessor abstract states through the usage of the transfer relation of the
given CPA. This is iterated until a fixed point is reached. The result is
a set reached of abstract states which is thus an over-approximation
of the set of reachable concrete states.

Algorithm 1: CPAalg(D, e0,π0) (taken from [6])
Input : A CPA D = (D, ,merge, stop,prec); an initial abstract

state e0 ∈ E where E denotes the set of elements of the
semi-lattice of D; an initial precision π0 ∈ Π

Output : A set of reachable abstract states
begin

waitlist := {(e0,π0)}
reached := {(e0,π0)}
while waitlist 6= ∅ do

(e,π) := pop(waitlist)
// Adjust the precision

(ê, π̂) = prec(e,π, reached)
foreach e ′ with ê (e ′, π̂) do

foreach (e ′′,π ′′) ∈ reached do
// Combine with existing abstract state

enew := merge(e ′, e ′′, π̂)
if enew 6= e ′′ then

waitlist := (waitlist∪ {(enew, π̂)}) \ {(e ′′,π ′′)}
reached := (reached∪ {(enew, π̂)}) \ {(e ′′,π ′′)}

if ¬stop(e ′, reached) then
waitlist := waitlist∪ {(e ′, π̂)}
reached := reached ∪ {(e ′, π̂)}

return reached

2.2.5 Abstract Reachability Graph

The abstract states contained in the set reached are the nodes of an
abstract reachability graph (ARG). The ARG is a directed graph with the

2.3 predicate analysis with adjustable-block encoding 7

root node being the initial abstract state given to CPAalg. An edge in
the ARG connects an abstract state with its successor.

2.2.6 Composition of CPAs

A typical analysis is composed of several component CPAs: most of-
ten in form of a CPA which implements the main part of the analysis,
one or more CPAs which check the specification and several generic
helper CPAs which e.g. track the call-stack or function pointers.

To compose two1 CPAs D1 and D2 which share the same set
of concrete states into one, a composite CPA C = (D1, D2,Πx, x
,mergex, stopx,precx) as described in the literature [6] can be used.
With the cross product E1xE2 of their respective sets of abstract
states and a composite set of precisions Πx a composite transfer re-
lation x , a composite merge operator mergex, a composite ter-
mination check stopx and a composite precision adjustment opera-
tor precx can be defined, analogous to those in section 2.2.3. These
composites are expressions over the components of D1, D2 and Πx
(i,mergei, stopi,preci, [[·]]i,Ei,>i,⊥i,vi,ti).

One important aspect of the composite CPA is the introduction of the
strengthening operator ↓ into each of the component CPAs. It is called
inside x after all transfer relations of the wrapped component CPAs
are finished and allows the respective component CPA to take infor-
mation out of the abstract states of the other component CPAs and
strengthen it’s own abstract state using it. The version of CPAchecker

used here is extended by a post precision adjustment strengthening
operator ↓prec which follows the same idea and is called at the end
of precx.

2.3 predicate analysis with adjustable-block encoding

This section recites and explains key concepts of the predicate analy-
sis with adjustable-block encoding (ABE) [8] which serves as a basis
for the approach described in this work.

2.3.1 Logical Representation of the Concrete State Space

Given the definitions in section 2.2.1 and section 2.2.2 the following
describes how to represent a program using first-order logic. A region
is represented as a first-order formula ϕ with free variables from the
set X of program variables i.e. ϕ represents all concrete states that
imply ϕ.

The concrete semantics of an operation op ∈ Ops is defined by the
strongest postcondition operator SPop(·). For a formula ϕ. SPop(ϕ)

1 This can be trivially extended to any finite number of CPAs

2.3 predicate analysis with adjustable-block encoding 8

represents all abstract states which are reachable from the region rep-
resented by ϕ after executing op.

SPop(ϕ) =

∃ŝ : ϕ[s→ŝ] ∧ s = e[s→ŝ] for an assignment s := e

ϕ∧ p for an assume operation
assume(p)

A path σ is defined as a sequence 〈(op1, l1), · · · , (opn, ln)〉 of pairs
of program locations and the operation leading to the respective loca-
tion. A path σ is called a program path if it starts at the entry location
l0 and walks along the CFA i.e. there exists a edge g = (li−1,opi, li)
inside the CFA for every 1 6 i 6 n.

The concrete semantics of a program path is defined as the succes-
sive application of the strongest postcondition operator: SPσ(ϕ) =

SPopn(· · ·SPop1(ϕ) · · ·). The result of SPσ(ϕ) is called a path formula.
“A program path is feasible if SPσ(true) is satisfiable. A concrete state
is reachable if there exists a feasible program path to its location. A
program is safe if no error location is reachable.” [8]

2.3.2 Predicate Abstraction

As it is not practically possible to feed whole programs into an SMT
solver, abstractions need to be performed. For the predicate analysis
the literature primarily knows about the Cartesian predicate abstraction
and the boolean predicate abstraction with the latter being more precise.

Let P be the set of predicates over program variables in a quantifier-
free theory (a predicate could be e.g. x = 7). A precision for formulas
π ∈ Π consists of a finite number of elements from P. The boolean
predicate abstraction (ϕ)π of a formula ϕ thus is the strongest boolean
combination of all the predicates from the precision π. A technique
to obtain the boolean predicate abstraction using a SMT solver can be
found in the literature [8].

Using the boolean predicate abstraction, a abstract version of the
strongest postcondition operator (SPop(ϕ))

π can be defined which
first applies SPop(ϕ) and then performs the boolean predicate ab-
straction. Given a suitable precision π, (SPop(ϕ))

π greatly over-
approximates SPop(ϕ) leading to a most of the time small enough
formula to solve inside a practical time-frame.

2.3.3 CPA for Predicate Analysis with ABE

Now we explain the workings of the predicate analysis with ABE on
the basis of its implementation as a CPA as described in [8].

The elements e ∈ E of the abstract domain are tuples

(l,ψ, lψ,ϕ) ∈ (L∪ {l>})×P× (L∪ {l>})×P

2.3 predicate analysis with adjustable-block encoding 9

with l modeling the program counter, ψ being the abstraction for-
mula consisting of a boolean combination of predicates occurring in
the precision Π and ϕ being a conjunctive path formula representing
some or all paths from lψ to l. There is a fundamental distinction be-
tween an abstraction state and a non-abstraction state: an abstract state
e is an abstraction state iff ϕ = true and lψ = l. The top element of
the lattice is defined as > = (l>, true, l>, true) The partial order v is
defined such that for elements e1, e2 ∈ E with ei = (li,ψi, l

ψ
i ,ϕi) the

following holds:

e1 v e2 ⇔ (e2 = >)∨ ((l1 = l2)∧ (ψ1 ∧ϕ1 ⇒ ψ2 ∧ϕ2))

The join operator t yields the least upper bound of the operands
according to the partial order defined above.

The transfer relation operates in two modes producing either
abstraction states or non-abstraction states. The decision is made
by a block-adjustment operator2 blk(e,g) (with g being the control-
flow edge) which is given to the analysis as a parameter. If a non-
abstraction state is to be produced for the new location l ′ takes
the path-formula ϕ and computes a new path-formula ϕ ′ = SPop(ϕ)
while copying the abstraction formula ψ and its location lψ from
the old state. To produce an abstraction state ϕ ′ is set to true, lψ

′

is set to l ′ and a new abstraction formula ψ ′ is computed: ψ ′ =

(SPop(ϕ∨ψ))π.
The merge operator is able to combine two abstract states e1, e2 ∈ E

with ei = (li,ψi, l
ψ
i ,ϕi) if their location is the same and their ab-

straction formula and the location of the abstraction formula is the
same. It does so by building a disjunction of the two path formulas,
or formally merge(e1, e2,π) =(l2,ψ2, lψ2 ,ϕ1 ∨ϕ2) if (l1 = l2)∧ (ψ1 = ψ2)∧ (lψ1 = lψ2)

e2 otherwise

The termination check checks if e ∈ E is covered by another state in
the reached set R by using v:

∀e ∈ E,R ⊆ E : stop(e,R) = ∃e ′ ∈ R : (e v e ′)

2.3.4 Block Adjustment

The main goal of Adjustable Block Encoding is to reduce expen-
sive calls to the SMT solver. There are multiple possibilities to im-
plement the block-adjustment operator blk(g, e): It can be be tailored
to the SMT solver to not overwhelm it e.g. computing abstractions

2 If the transfer leads to an error location blk(e,g) is ignored and an abstraction state
is produced

2.3 predicate analysis with adjustable-block encoding 10

when the path formula becomes too large. Additionally, one can com-
pute abstractions at specific locations inside the CFA, such as function
entries/returns, loop heads or join locations where the control flow
meets. It is also possible to configure a simplified variant of the pred-
icate analysis which computes always abstraction states by using a
block-adjustment operator which always returns true, called blkSBE.

2.3.5 Computing a Suitable Precision

A vital part of the predicate analysis is to compute the predicates to
put into the precision Pi. The goal is to track as few as possible to
archive good performance but enough to actually prove the program.
To archive this an approch based on Counterexample Guided Abstraction
Refinement (CEGAR) [12] is used which learns the predicates from
spurious counterexamples.

Initially the predicate analysis is started with an empty3 precision
π ∈ Π. As illustrated in Figure 2 the next step is to check if an er-
ror location was reached. If that is not the case the abstraction was
fine-grained enough and the program is proven safe, otherwise the
counterexample leading to that location is is checked for feasibility.
A feasible counterexample implies that the program is unsafe. An
infeasible one on the other hand indicates that the analysis was too
abstract and the precision needs to be refined for the next iteration of
the CEGAR loop.

Figure 2: CEGAR Loop

A counterexample is a program path leading to an error location which
gets then converted to a path formula. When using ABE multiple
paths through the ARG to an abstract state at an error location are
possible but there is still only one formula built: as a merge never
occurs at abstraction states the ARG can be simplified to a tree look-
ing only at those, so the final path formula can be constructed from
the path formulas which lead to the abstraction states (which may al-
ready be disjunctions of multiple path formulas). The feasibility check
then boils down to asking an SMT solver about the satisfiability of
that formula. New predicates to refine the precision are learned by

3 It’s also possible to prepopulate π with predicates retrieved through some other
heuristic

2.4 safety properties 11

computing the Craig Interpolant [14] of path formulas leading to con-
secutive abstraction states using, again an SMT solver while exam-
ining the counterexample following the method of Lazy Abstraction
[18].

2.4 safety properties

According to Apel et al. [4] a safety property p represents a desired be-
havior of a program. We focus on properties which can be expressed
by a formal specification which represent a set of desired finite pro-
gram executions and can be expressed by temporal-logic formula or
by a finite automaton [19].

“The set P = {p1, · · · ,pn} consists of all properties of a program to
be verified. A partitioning P ⊆ 2X of a set X is a set of non-empty sets
where all elements P1,P2 ∈ P with P1 6= P2 are pairwise disjoint and
X =

⋃
P∈P P.” [4]

2.4.1 Specification Automata

One or more properties can be represented by a specification automaton.
“A specification automaton encodes a set of properties and observes,
but not restricts, the state space of an analysis run. A specification
automaton (Q,Σ, δ,q0, F) for a CFA(L, l0,G) is a non-deterministic fi-
nite automation with a finite set of control states Q, an alphabet
Σ ⊆ 2G × S∗ × R∗, a transition relation δ ⊆ Q × Σ ×Q, an initial
control state q0 ∈ Q and a set F of accepting control states.” [4] S∗

represents all possible sequences over assignment operations and R∗

represents all possible sequences over assume operations respectively.
A transition of the automaton into a state qp ∈ F is equivalent to a vi-
olation the property p ∈ P (a path through the CFA was found which
violates p).“A symbol (γ, s, r) ∈ Σ consists of a set γ of control flow
edges, a sequence s of assignment operations and and a sequence r
of assume operations.” [4]

The described automaton supports on-the-fly weaving [4] of oper-
ations into the transfer relation of the predicate analysis which al-
lows to leverage precision adjustment techniques as described in sec-
tion 2.3.5. The automaton allows three modes of operation:

• A pure automata-based mode where nothing is weaved in and ev-
ery possible state of the specification is represented as a state of
the automaton

• A pure weaving mode where the automaton stays in its initial
state q0 until it finally transitions into a target state qp ∈ F.
Every state of the specification is weaved in as variables.

2.5 program slicing 12

• A hybrid mode which combines the first two modes. This can
be used to only trigger the weaving process when the program
enters a context where the property is relevant.

2.4.2 Specification Analysis and Specification Language

CPAchecker implements a specification analysis as a composite CPA
Ds which is based on the previously described automatons. Automa-
tons are given to Ds in a text based format. Details about Ds as well
as the specification language can be found in the literature [4, 22].

2.4.3 Relevance of a Property

“A property p is relevant for a given program if the specification au-
tomaton has a transition τ to a control state q ′ with p ∈ P(q ′) or
p ∈ P(τ and τ matches a control-flow edge of the program.” [4]

2.5 program slicing

Program slicing [11, 16] is a simplification technique for programs
which keeps only parts of the program which do effect specific se-
mantic aspects and deletes program statements which do not. These
semantics are given by a slicing criterion. The literature generally dif-
ferentiates between static, dynamic and conditioned slicing.

The most basic form is static slicing using a slicing criterion (V ,n)
with V being a set of variables and n being a specific point of inter-
est inside the program. From a given slicing criterion either a forward
slice or a backward slice can be constructed. A backwards slice con-
tains all program statements which have some effect on the variables
in V at n, a forward slice contains all program statements which are
affected by the variables V at n. Static slicing makes no assumptions
on the input of the program, i.e. it considers all possible executions
of the program.

Dynamic slicing on the other hand extends the slicing criterion by a
set of input values of the program which restricts the set of possible
executions. A dynamic slice only includes the statements which affect
(or are affected by) the variables in V at n during these executions.
If we want to be less precise about the input values and thus the
possible executions conditioned slicing can be used where rather than a
set of input values a boolean expression over the input values is given,
e.g. for possible input values x,y we could restrict the executions of
the program to compute a slice for to cases where x > y+ 1 holds.

3
D E T E R M I N AT I O N O F P R O P E RT Y S C O P E S

This chapter presents an heuristic approach which was implemented
in CPAchecker along with this work to approximate the scope of
a safety property by primarily observing the predicate analysis as
described in section 2.3 and the specification analysis described in
section 2.4.2.

We define the scope of a safety property p ∈ P for a given program as
a projection of an ARG consisting of a subset Ω of its abstract states
which are required to prove that p holds.

In the context of program slicing a safety property p ∈ P, specified
through a specification automation a can be seen as an implicitly
stated conditioned slicing criterion for a backwards slicing from the
program locations where a transitions into a target state with the
condition being equivalent to the set of violating program executions
described by p. With this we define the set of control-flow edges Γ ={

control-flow edge entering e
∣∣e ∈ Ω} as the scope slice of p.

3.1 property scope cpa

The property scope CPA PS = (DPS, PS,mergePS, stopPS,precPS) is
designed to be a component of a composite analysis CPS along with
the location CPA which tracks the location (i.e. nodes of the control-
flow graph) the abstract state is at, the call-stack CPA which tracks
entering and exiting functions by maintaining a call-stack, the previ-
ously described predicate CPA and one or more specification automaton
CPAs.

3.1.1 Property Scope Location

A property scope location locPS(g, idPS,∇PS) consists of a control flow
edge g ∈ G, an identifier for an abstract state idPS and a property scope
reason ∇PS with ∇PS ∈ {pred∇,autom∇,>∇}. This CPA (implicitly)
yields a final set of property scope locations which describes an approx-
imation of the scope of the properties used in the analysis by using
idPS to map back into the abstract state space of the analysis.

3.1.2 Abstract Domain

The elements E of the abstract domain DPS are tuples consisting of the
following:

13

3.1 property scope cpa 14

• The state identifier idPS

• The predecessor property scope state eprev

• A set LOCPS of property scope locations

• A set LOCcPS of candidate property scope locations

• A set ASTATES =
⋃
16i6n(sa

i,qi,pdmi) where sai is a spec-
ification automaton out of n automatons which are part of the
composite analysis and qi is the state it’s in at the current com-
posite state. pdmi is the number of matches of the respective
automaton

• An abstraction Formula ψlc

• AMPS, a set of pairs (sa,q0) where sa is an element of the
set of specification automatons which are part of the composite
analysis and q0 being the initial state of sa. It may contain at
most one such pair for each specification automaton which is
part of the composite analysis

The initial state at the beginning of the analysis is the tuple (idPS =

0, eprev = >,LOCPS = ∅,LOCcPS = ∅,ASTATES = ∅,ψlc =

true,AMPS = ∅). The partial order for abstract states e1, e2 ∈ E

is defined by the following relation: e1 v e2 ⇔ (e2 = >) ∨((
LOCPS1 ⊆ LOCPS2

)
∧
(
LOCcPS1 ⊆ LOC

c
PS2

))
. The join operator t

returns the least upper bound according to the partial order.

3.1.3 Transfer Relation with Strengthening

The transfer relation PS produces an intermediate abstract state e
which will be enriched inside strengthening steps. It carries ψlc,
AMPS, LOCcPS over from the previous state. ASTATES is set to the
empty set as well as AMPS.

Inside the strengthening operator ↓PS e is transformed to e↓ by
performing the following steps:

1. The state identifier idPS is set to a new unused number idPSnew

2. The set of candidate property scope locations LOCcPS is ex-
tended by a new property scope location consisting of the cur-
rent control flow edge g, the current call-stack cst extracted
from the call-stack state, the identifier idPSn ew of the new state
and a placeholder scope reason >∇

3. The set of automaton states ASTATES↓ is filled by examining
the states of the specification automaton CPAs

4. The previous set of specification states ASTATESprev and cur-
rent ASTATES↓ are observed:

3.1 property scope cpa 15

• If any automaton sai has matched (pdmi↓ > pdmiprev) a
new property scope location is added to LOCPS as we can
safely assume that locations where an automaton matches
are always part of the scope of a property. The new prop-
erty scope location consists of the current control-flow
edge g, the current call-stack cst extracted from the call-
stack state and the scope reason autom∇.

• For each automaton sai we add a new pair (sai,qi) to
AMPS if sai transitioned from its initial state qi0 to another
state qi 6= qi0, remove the corresponding pair from AMPS

if it transitioned from a state qi 6= qi0 back to the initial
state qi0 or otherwise do nothing

3.1.4 Precision Adjustment with Strengthening

The precision adjustment operator precPS does not change the state
so e↓ = eprec. Because the predicate CPA as implemented in
CPAchecker delays the abstraction computation to its precision ad-
justment operator the post precision adjustment strengthening oper-
ator ↓precPS is used to incorporate information about predicate ab-
stractions. See algorithm 2 for the definition of ↓precPS .

Algorithm 2: ↓precPS
Input : eprec, the result of precPS
Output : e↓prec
Data: Predicate abstract state epred with abstraction formula ψ
begin

e↓prec := copy(eprec)

if isAbstractionState (epred) then
foreach (gc, _) ∈ eprec

[
LOCcPS

]
do

if usesAnyVariable(gc,ψ)∧ eprec
[
ψlc

]
6= ψ then

e↓prec [LOCPS] := e↓prec [LOCPS]∪ {gc,pred∇}
e↓prec

[
ψlc

]
:= ψ

e↓prec
[
LOCcPS

]
:= ∅

The function usesAnyVariable(g,ψ) tests if any variable v con-
tained in in the formula ψ is actually read or written by the control
flow edge g. This step is useful to filter out control-flow edges which
are unable to contribute to the scope, especially if we do not configure
single block encoding by using blksbe we would have to assume that
the whole block is part of the scope because the abstraction formula
abstracts over the whole block. The implementation utilizes a basic
dependency analysis already present in CPAchecker called variable
classification which provides an over-approximated mapping between
control-flow edges and variables.

3.1 property scope cpa 16

usesAnyVariable(g,ψ) can also be seen in the context of program
slicing. We construct a slicing criterion (V ,g) with V being the set of
variables encoded in ψ and test if the control-flow edge leading to
the abstraction state epred is part of the static forward slice under
that criterion.

3.1.5 Merge Operator and Termination Check

The merge operator mergePS(e1, e2,π) combines the components of e1
and e2 to a new element enew:

idPSnew = some not yet used number (1)

eprev = > (2)

LOCPSnew = LOCPS1 ∪ LOCPS2 (3)

LOCcPSnew = LOCcPS1 ∪ LOC
c
PS2

(4)

AMPSnew = AMPS1 ∪AMPS2 (5)

ψlcnew = ψlc2 (6)

ASTATESnew =
⋃

16i6n

(
sai2,qi2,max

(
pdmi1,pdmi2

))
(7)

We implicitly presume that LOCPSnew and LOCcPSnew contain copies
of their property scope locations with their state id set to idPSnew. It is
possible to assume that ψlc2 = ψlc1 and ASTATES2 and ASTATES1
only differ in the number of matches because enew is only used inside
the composite CPA if all its other components agree the merge when
the control flow meets. ψlc is only changed when an abstraction state
occurs but the predicate CPA only merges iff both of its abstract states
have the same abstraction state as a predecessor. The specification
automaton CPAs do not merge if the automatons are in the same
state.

The termination check stopPS is configured to always return true
because we only want to observe what the other component CPAs
are doing.

3.1.6 Incompleteness for Violated Properties

The scope of one or a set of properties determined by this CPA is
likely incomplete if at least one property is violated. There may be
more than one path through the CFA which possibly cause the prop-
erty being violated but the predicate CPA causes the analysis to stop
declaring the program unsafe after it finds some feasible counterex-
ample and never explores further possibilities.

4
V I S U A L I Z AT I O N O F P R O P E RT Y S C O P E S

The following presents tree different ways to visualize the scope of
properties. We present reductions of the visual representation of the
ARG. Furthermore we visualize the distribution inside the program
and the overlap of several property scopes by using arc diagrams.

4.1 overlap and distribution inside programs

This section presents an approach to visualize how the scope of a
property is distributed throughout the respective program at a func-
tion level. We use arc diagrams [17] which due to their one dimensional
nature are well suited for comparing scopes of different properties for
a program and thus allowing a optical assessment of how much they
overlap.

4.1.1 Property Scope Call Graph

A property scope call graph PSC = (NPSC,EPSC) is a directed graph of
nodes NPSC and edges EPSC which is built by traversing the ARG of
the property scope analysis described in section 3.1 . A node nPSC ∈
NPSC represents a function of the program and an edge ePSC ∈ EPSC
represents the presence of at at least one call from a function f1 to a
function f2 inside the ARG, i.e. the control-flow edge between two
abstract states indicates a function call. Nodes have some additional
attributes attached, most importantly:

• The property scope importance impps of the function which is a
value between 0 and 1 indicating how much of the function
takes part in the scope of the property. It is the ratio of abstract
states which are inside the function to abstract states which are
inside the function and part of the scope.

• The number of times ncallps the function is called inside the
ARG.

4.1.2 Arc Diagrams for Property Scopes

We use the previously described PSC = (NPSC,EPSC) as a basis to
draw an arc diagram. The nodes (representing functions of the pro-
gram) are laid out as circles in a straight line with the function names
annotated below. Two nodes n1,n2 ∈ NPSC are connected by an arc
above them if (n1,n2) ∈ EPSC ∨ (n2,n1) ∈ EPSC, i.e. the direction

17

4.1 overlap and distribution inside programs 18

of the function calls is ignored. The size of the circle representing a
node n ∈ NPSC is given by the radius rn which indicates the value of
ncall

ps
n with rn = 1+ 0.5 · log10(ncallpsn) if ncallpsn > 0 else rn = 0.

Finally the value of imppsn for a node n is represented by coloring the
respective circle using a heat coloring which can be seen in Figure 3.
At the left side of the line of circles the relevant properties for which
the scope is visualized are annotated.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Heat coloring used to represent the value of the property scope
importance inside the diagrams (for values of 0 white is used)

dgap_event

dt3k_ns_to
_tim

er
expldmainmul

probetest
div-by-zero

dgap_event

dt3k_ns_to
_tim

er
expldmainmul

probetest
null-pointer

dgap_event

dt3k_ns_to
_tim

er
expldmain mul

probe test

rwlocks

dgap_event

dt3k_ns_to
_tim

er
expldmain mul

probe test
spinlocks

Figure 4: Property scope Arc diagrams for a file multiprops.c using 4 different
properties

Figure 4 shows four examples of such diagrams. Each represents
the result of a different run of the property scope analysis on the
same program multiprops.c with one distinct relevant property. This
provides us with a clear overview about the distribution of the scopes
of the respective properties throughout the functions of the program
and enable us to compare them. As one example we see that the
scope of the property div-by-zero seems to be mostly concentrated
in the function mul where the scope of spinlocks clearly concentrates

4.1 overlap and distribution inside programs 19

inside the function dgap_event but also spreads comparatively widely
throughout the program.

For large real world programs arc diagrams tend to grow consider-
ably in size taking up a lot of space while making overlaps hard to see.
Figure 5 presents an example of an approach to draw multiple PSCs
for the same program but different properties into one combined arc
diagram. Let PSCi = (NPSCi ,EPSCi) be the i’st of m such PSCs. To
save space we only show nodes for the functions which are present
in at least one of the ARGs, i.e. a function out of all functions inside
the program f ∈ Fprog is shown if ncallps > 0 at at least one node
nf ∈

⋃PSC
i where nf represents f. For every NPSCi the respective

nodes are drawn in a straight line as explained initially while using
a fixed ordering for the functions, but now these lines are stacked on
top of each other. Only one set of arcs is drawn at the top where an
arc is drawn if ∃i with 1 6 i 6 m : (n1,n2) ∈ EPSCi ∨ (n2,n1) ∈ EPSCi .
At this point we trade in potential information loss for a more com-
pact representation so it might be desirable to single out a PSCi into a
separate diagram if its set of function calls differs considerably from
the others.

INIT_
·_H

EA
D

IS_
ER

R
PT

R_
ER

R
__b

ui·
xp

ec
t

cle
ar_

bit

co
py

·
us

er inb
kza

llo
c

ldv
_a

llo
c

ldv
_c·

sta
te

ldv
_i·a

lize
ldv

_is
_e

rr

ldv
_m

·_lo
ck

ldv
_m

·tib
le

ldv
_m

·nl
oc

k

ldv
_m

·ck
_5

9

ldv
_m

·ck
_6

0

ldv
_m

·ck
_6

1
ldv

_p
·r_

err

ldv
_r·

hrd
ev

ldv
_r·

ev
_4

7
ldv

_r·
ap

pe
r

ldv
_s·

_lo
ck

ldv
_s·

nlo
ck

ldv
_s·

re_
28

ldv
_st

op
ldv

_u
·iti

ve

ldv
_u

·ev
_4

8

ldv
_u

·eg
ionmainou
tb

pla
tf·n

da
ta

pla
tf·i

mple
reg

is·
hrd

ev
req

ue
·t_

irq
sp

in_
·st

ore
tes

t_·
t_b

it

tlc
lk·

ea
nu

p
tlc

lk_
ini

t
tlc

lk·
rru

pt
tlc

lk_
op

en
tlc

lk_
rea

d
tlc

lk·
lea

se

un
reg

·hr
de

v
10a

106a
32a
43a

Figure 5: A property scope arc diagram for a linux kernel module drivers-
char-tlclk.c from the LDV-250 set as explained in section 5.2.1 using
4 different properties displayed in a combined view

4.2 property scopes inside the state space 20

4.2 property scopes inside the state space

In this section we present visualizations based on two example pro-
grams, fopen_malloc_expl.c as shown in listing 1 and fopen_malloc_no-
expl.c as shown in listing 2. We determine the combined scope of
the properties malloc.spc (listing 3) and fopen.spc (listing 4) by using
the approach presented in chapter 3, running the analysis with both
specification automatons in parallel. This results in an ARG with an-
notated scope information. As an ARG typically grows very large,
even for such small example programs we want to reduce it showing
only the parts which are part of the scope of the respective properties.

4.2.1 Property Scope Graph

First we present the property scope graph PSG which is a reduced vi-
sual representation of the ARG showing only the abstract states in
scope of the properties. Figure 7 and Figure 8 show such a graph
for each of the previously stated examples. The property scope graph is
built by collapsing the whole subgraph between two abstract states
e1, e2 which are part of the scope into one uncolored summary node
which is annotated with the number of states inside that subgraph
and the number of paths through that subgraph from e1 to e2. If
an abstract state e which is in scope is only followed by a subgraph
of abstract states which are not in scope we collapse that subgraph
into an uncolored node to indicate the existence of that "irrelevant"
subgraph.

A node representing an abstract state e which is part of the scope
is colored with one or more colors. Each distinct color ca represents
a specification automaton a and is shown if a is not inside its initial
state at e. If no automaton is outside of its initial state at e we use
a special color cs reserved for this case. An automaton being out of
it’s initial state is used as a rough estimate for attributing an abstract
state which is in scope to the property that automaton represents
when determining a combined scope.

Furthermore we annotate the node of an abstract state e which
is in scope with the function it is in and add a label Automaton if
the property scope reason autom∇ is present in one of the associated
property scope locations and a label Formula if pred∇ is present. The
edge going into the node is labeled with the control-flow edge the
abstract successor computation followed producing e.

4.2.2 Property Scope Structure Graph

Last we present the property scope structure graph PSSG which is a fur-
ther reduction of the property scope graph. Figure 6 shows such graphs
for our two examples. The graph is constructed by collapsing the

4.2 property scopes inside the state space 21

colored nodes of the PSG which consist the same set of automatons
which are out of their initial state and have the same set of scope
reasons attached. Uncolored nodes are removed.

Co
lo

rs No active automaton

FopenAutomaton

MallocFreeAutomaton

Formula

Formula Automaton Automaton

Formula Formula Automaton

Automaton Automaton Formula

Automaton

Automaton

(a) fopen_malloc_expl.c

Co
lo

rs No active automaton

FopenAutomaton

MallocFreeAutomaton

Formula

Automaton Automaton Formula

Formula Formula

Automaton Automaton

(b) fopen_malloc_noexpl.c

Figure 6: Property scope structure graphs for two example programs with
the properties malloc.spc and fopen.spc

This is mostly interesting for a scope determination analysis with
multiple properties at once to see in a compact way how the proper-
ties alternate inside the state space. For the accuracy of this Visualiza-
tion the quality of the heuristic which associates a specific property
to a specific part of the combined scope is essential. Especially this
does not yield to useful results with pure weaving automatons as the
presented approach lacks the ability to predict the encoded state.

4.2 property scopes inside the state space 22

1 #include <stdio.h>

2 #include <stdlib.h>

3 int nondet() {int nd; return nd;}

4 char makechar(int a, char** txt) {

5 char* text = *txt; int p = nondet();

6 if(p > a) return text[(a-1) % p];

7 return '0';

8 }

9 int handle_files(char* file1) {

10 int c, x1; x1 = 5;

11 FILE* fd1;

12 char* text = "textblafoo";

13 int alloc = 0; int open = 0;

14 if(file1) {

15 fd1 = fopen(file1, "r");

16 if (fd1 == NULL) return 88;

17 open = 1;

18 }

19 if(nondet()) {

20 text = malloc(5 * sizeof(char));

21 alloc = 1;

22 }

23 char r = makechar(x1, &text);

24 if(r == '5') c = 3; else c = 4;

25 if(alloc) free(text);

26 if(open) {fclose(fd1); fd1 = NULL;}

27 return c;

28 }

29 int main(int argc, char** argv) {

30 if(argc != 2) return 66;

31 return handle_files(argv[1]);

32 }

1 #include <stdio.h>

2 #include <stdlib.h>

3 int nondet() {int nd; return nd;}

4 char makechar(int a, char** txt) {

5 char* text = *txt; int p = nondet();

6 if(p > a) return text[(a-1) % p];

7 return '0';

8 }

9 int handle_files(char* file1) {

10 int c, x1; x1 = 5;

11 FILE* fd1;

12 char* text = "textblafoo";

13 int alloc = 0; int open = 0;

14 if(file1) {

15 fd1 = fopen(file1, "r");

16 if (fd1 == NULL) return 88;

17 open = 1;

18 }

19 if(open) {fclose(fd1); fd1 = NULL;}

20 if(nondet()) {

21 text = malloc(5 * sizeof(char));

22 alloc = 1;

23 }

24 char r = makechar(x1, &text);

25 if(r == '5') c = 3; else c = 4;

26 if(alloc) free(text);

27 return c;

28 }

29 int main(int argc, char** argv) {

30 if(argc != 2) return 66;

31 return handle_files(argv[1]);

32 }

Listing 1: fopen_malloc_expl.c Listing 2: fopen_malloc_noexpl.c

OBSERVER AUTOMATON MallocFreeAutomaton

INITIAL STATE Init;

STATE USEFIRST Init :

MATCH CALL {$? = malloc($1)} ->

ASSUME {((int)$1) != 0} GOTO Alloc;

MATCH CALL {free($1)} ->

ASSUME {((void*)$1) != 0} ERROR;

STATE USEFIRST Alloc :

MATCH CALL {free($1)} ->

ASSUME {((void*)$1) != 0} GOTO Init;

MATCH CALL {$? = malloc($1)} ->

ASSUME {((int)$1) != 0} ERROR;

END AUTOMATON

OBSERVER AUTOMATON FopenAutomaton

INITIAL STATE Init;

STATE USEFIRST Init :

MATCH RETURN {$1 = fopen($?, $?)} ->

ASSUME {((void*)$1) != 0} GOTO Opened;

MATCH RETURN {$1 = fopen($?, $?)} ->

ASSUME {((void*)$1) == 0} GOTO Init;

MATCH CALL {fclose($1)} ->

ASSUME {((void*)$1) != 0} ERROR;

MATCH CALL {fclose($1)} ->

ASSUME {((void*)$1) == 0} GOTO Init;

STATE USEFIRST Opened :

MATCH RETURN {$1 = fopen($?, $?)} ->

ASSUME {((void*)$1) != 0} ERROR;

MATCH RETURN {$1 = fopen($?, $?)} ->

ASSUME {((void*)$1) == 0} GOTO Opened;

MATCH CALL {fclose($1)} ->

ASSUME {((void*)$1) != 0} GOTO Init;

MATCH CALL {fclose($1)} ->

ASSUME {((void*)$1) == 0} GOTO Opened;

END AUTOMATON

Listing 3: malloc.spc Listing 4: fopen.spc

4.2 property scopes inside the state space 23

Colors

No active automaton

FopenAutomaton

MallocFreeAutomaton

2404@N23 r 28
handle_files

Formula

Irrelevant Leafs
3644@N24 r 27

handle_files
Formula

Line 1689:
int open = 0;

3766@N5 r 0
makechar exit

Formula

Irrelevant Leafs
3770@N39 r 13

handle_files
Formula

Line 1699:
Return edge from makechar to handle_files

3698@N37 r 16
handle_files

Formula

Irrelevant Leafs Irrelevant:12
Paths: 1

3700@N37 r 16
handle_files

Formula

Irrelevant Leafs Irrelevant:12
Paths: 1

3930@N50 r 3
handle_files
Automaton

Irrelevant Leafs

3696@N36 r 17
handle_files
Automaton

Line 1697:
alloc = 1;

Irrelevant Leafs
3895@N45 r 5

handle_files
Formula

Irrelevant Leafs

3740@N39 r 13
handle_files

Formula

Irrelevant Leafs Irrelevant:3
Paths: 1

Irrelevant Leafs Irrelevant:3
Paths: 1

3650@N27 r 25
handle_files
Automaton

Irrelevant Leafs Irrelevant:10
Paths: 1

Irrelevant:21
Paths: 1

3736@N5 r 0
makechar exit

Formula

Line 1699:
Return edge from makechar to handle_files

Irrelevant Leafs

3694@N36 r 17
handle_files
Automaton

Line 1697:
alloc = 1;

Irrelevant Leafs

3830@N39 r 13
handle_files

Formula

Irrelevant Leafs Irrelevant:3
Paths: 1

3796@N5 r 0
makechar exit

Formula

Irrelevant Leafs
3800@N39 r 13

handle_files
Formula

Line 1699:
Return edge from makechar to handle_files

0@N54 r 391
main entry

Irrelevant Leafs Irrelevant:395
Paths: 1

3898@N45 r 5
handle_files

Formula

Irrelevant Leafs Irrelevant:1
Paths: 1

3906@N47 r 6
handle_files
Automaton

Irrelevant Leafs

Irrelevant Leafs Irrelevant:8
Paths: 1

Irrelevant:19
Paths: 1

Irrelevant:1
Paths: 1

3904@N46 r 7
handle_files

Formula

Irrelevant Leafs
3908@N47 r 6

handle_files
Automaton

Line 1701:
free(text);

3826@N5 r 0
makechar exit

Formula

Line 1699:
Return edge from makechar to handle_files

Irrelevant Leafs

3928@N50 r 3
handle_files
Automaton

Irrelevant Leafs

Irrelevant Leafs Irrelevant:2
Paths: 1

Irrelevant Leafs Irrelevant:3
Paths: 1

3901@N46 r 7
handle_files

Formula

Line 1701:
free(text);

Irrelevant Leafs

Lines:
1696: text = malloc(5);

Lines:
1701: [alloc == 0]

Lines:
1683: return '0';

Lines:
1683: return '0';

Lines:
1696: text = malloc(5);

Lines:
1683: return '0';

Lines:
1683: return '0';

Lines:
1702: fclose(fd1);

Lines:
1701: [!(alloc == 0)]

Lines:
1689: int alloc = 0;

Lines:
1701: [alloc == 0]

Lines:
1701: [!(alloc == 0)]

Lines:
1691: fd1 = fopen(file1, 'r');

Lines:
1702: fclose(fd1);

Figure 7: Property scope graph for fopen_malloc_expl.c with the properties
malloc.spc and fopen.spc

4.2 property scopes inside the state space 24

Colors

No active automaton

FopenAutomaton

MallocFreeAutomaton

2379@N31 r 23
handle_files

Formula

Irrelevant Leafs Irrelevant:2
Paths: 1

2449@N5 r 0
makechar exit

Formula

Irrelevant Leafs
2453@N43 r 9

handle_files
Formula

Line 1700:
Return edge from makechar to handle_files

0@N54 r 391
main entry

Irrelevant Leafs Irrelevant:395
Paths: 1

2373@N27 r 25
handle_files
Automaton

Irrelevant Leafs Irrelevant:1
Paths: 1

2391@N34 r 19
handle_files
Automaton

Irrelevant Leafs

2479@N5 r 0
makechar exit

Formula

Irrelevant Leafs
2483@N43 r 9

handle_files
Formula

Line 1700:
Return edge from makechar to handle_files

2524@N51 r 2
handle_files
Automaton

Irrelevant Leafs

2365@N23 r 28
handle_files

Formula

Irrelevant Leafs
2367@N24 r 27

handle_files
Formula

Line 1689:
int open = 0;

Irrelevant Leafs Irrelevant:20
Paths: 1

Irrelevant:1
Paths: 1

Irrelevant:9
Paths: 1

2417@N40 r 13
handle_files
Automaton

Irrelevant Leafs Irrelevant:13
Paths: 1

Irrelevant Leafs

Irrelevant Leafs Irrelevant:4
Paths: 1

Lines:
1683: return '0';

Lines:
1695: fclose(fd1);

Lines:
1689: int alloc = 0;

Lines:
1702: free(text);

Lines:
1693: open = 1;

Lines:
1683: return '0';

Lines:
1691: fd1 = fopen(file1, 'r');

Lines:
1697: text = malloc(5);

Figure 8: Property scope graph for fopen_malloc_expl.c with the properties
malloc.spc and fopen.spc

5
E VA L U AT I O N

This chapter presents a series of experiments enabled by the approach
developed in this work.

5.1 research questions

The evaluation is guided by 7 research questions which can be di-
vided into two groups. The first group asses programs and associ-
ated properties which are part of various benchmark sets regarding
the scope of the properties. The second group focuses on the impact
of overlapping property scopes onto a multi-property analysis.

5.1.1 Assessing Property Scopes of Benchmark Sets

The following research questions form the basis to asses existing
benchmark sets by various metrics regarding the scope of the respec-
tive properties.

5.1.1.1 RQ1.1: Distribution of Property Scopes inside Programs

We first want to know, how the scope of a property is distributed
throughout programs. Is it concentrated inside a small part of a pro-
gram or more widely spread throughout it? This leads us to the fol-
lowing concrete question: How many functions are in scope of a property
(i.e. at least one abstract state which is part of the scope Ω is located inside
the respective function) in comparison to the functions of a program and the
functions visited by the analysis?

5.1.1.2 RQ1.2: Program Variables inside the Property Scope

Another interesting aspect is the number of variables of the program
which are affected by a property, or more precise: How many unique
variables occur in abstraction formulas at abstraction states which have at
least one property scope location attached compared to the number of vari-
ables relevant1 for the analysis?

5.1.1.3 RQ1.3: Data Locality inside Property Scopes

In addition to how much of the program is affected by a property
it’s also interesting if a property can be proven by using mostly local

1 There may be variables declared inside the program which are never used.
CPAchecker computes through a simple dependency analysis a set of relevant vari-
ables whose size is used here as a baseline for comparison.

25

5.1 research questions 26

variables: What percentage of the unique variables inside a function which
occur in abstraction formulas at abstraction states with at least one property
scope location are defined in the same function?

5.1.1.4 RQ1.4: Global Variables inside the Property Scope

Finally we take the opposite perspective of RQ1.3 and look at how
many global variables are involved in proving the property. What per-
centage of unique variables which occur in abstraction formulas at abstrac-
tion states with at least one property scope location attached are global?

5.1.2 Property Scopes and Multi-Property Verification

This group of research questions focuses on the impact the scope of
properties has onto the behavior of an analysis which verifies mul-
tiple safety-properties together. According to Apel et al. [4] such
a multi-property analysis is often more efficient than proving each
property in a separate verification run. Though it is important to
identify which subsets of properties should be verified together for
a given program to yield the best possible performance overall and
even avoid slowdowns in some cases. We want to explore if the knowl-
edge about the scopes of properties can lead to a viable heuristic.

At the first time it would be necessary to verify every property
separately and simultaneously collect the scope using the presented
method. Subsequent analysis runs could benefit, e.g. for new ver-
sions of the analyzed program or new versions of the verification
tool. Assuming that both usually evolve through gradual changes,
the found partitioning of the property sets should in general still be
good enough for some time.

5.1.2.1 RQ2.1: Overlap of Property Scopes

To what extent do the scopes of pairs of properties overlap?

5.1.2.2 RQ2.2: Performance of Verifying Overlapping Properties Together

Is there a correlation between the performance of a multi-property verifica-
tion and the overlap of the scopes of the pair of properties which is verified
together?

5.1.2.3 RQ2.3: Reached Set Size with Overlapping Properties

How does the size of the reached set change when multiple properties are
verified together and does the reached set grow over proportion if the property
scopes overlap?

5.2 setup 27

5.2 setup

5.2.1 Benchmark Suite

The experiments are performed on two different benchmark sets. The
first set which will be referred to as the SV-COMP set is a specific
subset taken from the benchmark suite of the Competition on Software
Verification2. It contains 3486 programs in total, divided into the cat-
egories ReachSafety-ControlFlow (94 programs), Systems_DeviceDriver-
sLinux64_ReachSafety (2795 Linux kernel modules from various ver-
sions) and ReachSafety-ProductLines (597 programs of 3 product-lines
originally originating from SPLverifier

3[2, 3]).
These programs are designed to serve as a common benchmark for

multiple software verification tools which implement different speci-
fication languages. As a result of that they contain safety properties
which are weaved into their source code so the verification tool has
to check for the reachability of error locations to prove them. The pro-
grams inside ReachSafety-ProductLines represent an interesting special
case as there exists set of different specifications for each of the prod-
uct lines, so these programs each represent a specific product of the
respective line with a specific specification of the line weaved in.

The second benchmark set which will be referred to as the LDV-
250 set consists of 250 randomly chosen Linux 4.0-rc1 kernel modules
(out of 4336) which is the same as described in [4]. In contrast to the
SV-COMP set there are no safety properties weaved into the code but
instead the set is accompanied by a set of 14 properties encoded as
specification automata. Table 1 describes them in detail.

5.2.2 Experiments

As a foundation for all experiments the scope of every property and
every program present inside both benchmark sets is determined by
running the property scope analysis. This results in 3500 benchmark
tasks for the LDV-250 set and 3486 tasks for the SV-COMP set.

5.2.2.1 RQ1.x: Assessing Property Scopes of Benchmark Sets

The research questions RQ1.x are answered by examining the ARGs
of these analysis runs. We generally only look at the 1654 results for
SV-COMP and 3359 for LDV-250 where the analysis has been success-
fully finished and has proven the program to be safe. Unsafe results
are excluded because incomplete results are very likely which would
distort the statistics as explained in section 3.1.6. In addition to that

2 The full benchmark suite can be found online at https://github.com/sosy-lab/

sv-benchmarks

3 SPLverifier can be found online at http://www.infosun.fim.uni-passau.de/spl/
FAV/

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks
http://www.infosun.fim.uni-passau.de/spl/FAV/
http://www.infosun.fim.uni-passau.de/spl/FAV/

5.2 setup 28

Property Description

08a Each module that was referenced with module_get must be released
by module_put.

10a Each memory allocation that gets performed in the context of an in-
terrupt must use the flag GFP_ATOMIC.

32a The same mutex must not be acquired or released twice in the same
process.

43a Each memory allocation must use the flag GFP_ATOMIC if a spinlock
is held.

68a All resources that were allocated with usb_alloc_urb must be released
with usb_free_urb.

68b Each DMA-consistent buffer that was allocated with usb_alloc_coherent
must be released by calling usb_free_coherent.

77a Each memory allocation in a code region with an active mutex must
be peformed with the flag GFP_NOIO.

101a All structs that were obtained with blk_make_request must be re-
leased by calling blk_put_request afterwards.

106a The modules gadget, char, and class that were registered with usb_-
gadget_probe_driver, register_chrdev, and class_register must be unreg-
istered by calling usb_gadget_unregister_driver, unregister_chrdev and
class_unregister correspondingly in reverse order of the registration.

118a Reader-writer spinlocks must be used in the correct order.

129a An offset argument of a find_bit function must not be greater than
the size of the corresponding array.

132a Each device that was allocated by by usb_get_dev must be released
with usb_put_dev.

134a The probe functions must return a non-zero value in case of a failed
call to register_netdev or usb_register.

147a RCU pointer/list update operations must not be used inside RCU
read-side critical sections.

Table 1: Safety properties for the LDV-250 set (taken from [4])

for RQ1.1 we only look at 482 results for LDV-250 and 1263 results
for SV-COMP where the property is relevant. For RQ1.2, RQ1.3 and
RQ1.4 the result set is restricted to results where the specification
automaton once reached a target state so at least one predicate ab-
straction refinement was made (without every abstraction formula is
true), this are 171 results for LDV-250 and 1268 results for SV-COMP.

5.2.2.2 RQ2.x Property Scopes and Multi-Property Verification

To answer RQ2.x, a multi-property analysis as described above is
used. First a subset of 186 programs from the LDV-250 set is assem-
bled which were proven safe during the run of the property scope
analysis and where still at least two properties are relevant. This re-
sults in 437 benchmark tasks where for each program one property of
the remaining relevant and non-violating properties is verified. This
is a single property verification but the same multi-property analysis

5.2 setup 29

configuration is used so this can serve as a baseline which we com-
pare to.

We build a second set of 324 benchmark tasks, one for every pro-
gram and every possible pair of the remaining relevant and non-
violating properties for that program as described above. These are
then verified together while forcing the multi-property analysis to not
decompose them but verify them in one single run of the predicate
analysis.

Based on the property scope call-graph PSC as presented in sec-
tion 4.1.1 we calculate a percentage of how much the scopes of the
pairs of properties for each of the 186 programs overlap. For a pair
of properties p1,p2, the set F of functions of the program, and the
respective numbers of functions nvisited1 ,nvisited2 visited during the
respective runs of the property scope analysis the following is calcu-
lated:

overlap% =

∣∣∣{f ∈ F∣∣imppsf1 > 0∧ imppsf2 > 0}∣∣∣
0.5 · (nvisited1 +nvisited2)

· 100

5.2.3 Analysis Domain

To determine the scopes of properties a composite analysis which
observers the predicate analysis and the specification analysis as de-
scribed in section 3.1 is configured. The predicate analysis is config-
ured to use blkSBE to get the most accurate results possible. We also
add the coverage CPA and configure it in a mode where it extracts
information also from all refinement steps which gives us the num-
ber of functions visited during the whole analysis and not only those
which are part of the final reached set. For the LDV-250 set an exist-
ing set of several configuration options (ldv-adjustments) which adjust
CPAchecker to peculiarities of that set compared to the default con-
figuration is more suited for the SV-COMP set is used in addition.

For the multi-property analysis the existing configuration based
on what is described in the literature [4] is used. It is configured to
use the AllThenNone decomposition operator which effectively dis-
ables the specification decomposition heuristics and always analyzes
all properties simultaneously.

5.2.4 Benchmarking Environment

All experiments are run on a fork odysseus of CPAchecker at
git revision 9af1e5a9ac where the approach described here is im-
plemented. CPAchecker is executed using Java 8 on machines
running Linux. The predicate analysis uses SMTInterpol version
2.1-238-g1f06d6a-comp as its underlying SMT solver.

5.3 results 30

For benchmark tasks where we determine the scope of a property
the resource limits are set following other typical setups for a predi-
cate analysis for the respective benchmark set as the property scope
CPA should not add a considerable overhead to that. For the set SV-
COMP the process is limited to 11GB of Java heap memory, 15GB of
overall memory, 4 CPU cores, a soft runtime limit of 1300 s and a hard
runtime limit of 1600 s. Processes of the set LDV-250 are limited by
26GB of Java heap memory, 30GB of overall memory, 4 CPU cores,
a soft runtime limit of 12 660 s and a hard runtime limit of 14 000 s.
For this type of analysis runs we are not interested in measurements
of any time or memory usage but only about the completion of a
large enough amount of analysis runs so we do not need to limit
this to a specific machine. Machines using The following CPU mod-
els equipped with enough memory and CPU cores for the respective
task were used: Intel Core i7-{2600, 4770, 6700} and Intel Xeon {E3-
1230 v5, E5-2650 v2}

The benchmark tasks which are based on the multi-property anal-
ysis configuration, where we measure time are run inside an envi-
ronment with better comparability. A cluster of identically built ma-
chines with 135GB RAM and a 32 core Intel Xeon E5-2650 v2 CPU is
used. The resources for a process executing a single task are limited
by 26GB of Java heap memory, 30GB of overall memory, 4 CPU cores,
a soft runtime limit of 12 660 s and a hard runtime limit of 14 000 s.

5.2.5 Presentation

The results are graphically presented in histograms, scatter plots and
violin plots with quantile strokes at 25%, 50% and 75%. Numbers in
general are rounded to one significant digit.

5.3 results

5.3.1 RQ1.1: Distribution of Property Scopes inside Programs

First we look at the SV-COMP set. In Figure 10a we see a huge dif-
ference in the percentage of functions in scope of the respective prop-
erty weaved into the program by category of the benchmark set. At
most programs inside the Systems_DeviceDriversLinux64_ReachSafety
category the number of visited functions which are part of the scope
stays most of the time below the 25% mark with a median value at
7.7% where in contrast the programs in ReachSafety-ControlFlow show
the opposite behavior with a median value of 85.7%.

The category ReachSafety-ProductLines which lies very much in be-
tween these extremes deserve a closer look. First we only see results
of the email and the minepump product-line, the third one (elevator)
timeouts in all cases with our configuration. As clearly visible in Fig-

5.3 results 31

ure 10b the percentage of visited functions in the scope of the prop-
erty for the programs inside the minepump product-line falls into two
clusters, one between 25% and 50%, the other between 50% and 75%.
It does not look like the specification has a considerable influence but
as we see in Figure 9a it is dependent on the product. Products be-
low 33 fall inside the first cluster and those above and including 33
fall inside the second cluster. The product-line email shows a similar
behavior although we have lesser data points available here due to
timeouts. Figure 9b shows a significantly elevated value only for two
specific products (12 and 28).

0%

25%

50%

75%

100%

01 05 10 15 20 25 30 35 40 45 50 55 60 Sim

Products (minepump)

V
is

ite
d

F
un

c.
 in

 S
co

pe

(a) the minepump product line

0%

25%

50%

75%

100%

03 05 07 08 09 10 11 12 13 17 18 19 23 24 25 27 28 36 37 38 39 40

Products (email)

V
is

ite
d

F
un

c.
 in

 S
co

pe

(b) the email product line

Figure 9: Number of functions which are part of the scope of the property
in relation to the number of functions visited at least once during
the whole runtime of the analysis for the product lines inside the
SV-COMP set differentiated by product

The results for the LDV-250 set are displayed in Figure 10c. We over-
all see a very low number of affected functions compared to visited
functions with a median value of just around 3.6%. Although we see
a very huge spread with a minimum value of only 0.3% with prop-
erty 10a and a maximum of 71.4% with property 08a. The median
values for the different properties in isolation range from 2.3% (10a)
over 3.2% (43a), 3.6% (32a), 4.9% (77a), 7.7% (101a), 7.8% (118a),
9.0% (134a), 13.7% (68a), 20.5% (106a), 21.0% (08a), 24.9% (129a),
27.8% (147a) and 30.2% (132a) up to 30.7% (68b).

5.3 results 32

... #Functions in Program ... #Visited Functions

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
0

200

400

#Functions in Scope / ...

B
en

ch
m

ar
k

Ta
sk

 C
ou

nt Categories
ReachSafety−
ControlFlow
ReachSafety−
ProductLines−
email
ReachSafety−
ProductLines−
minepump
Systems−Device
DriversLinux64−
ReachSafety

(a) SV-COMP set, 1263 of 3486 tasks total

email minepump

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

0

10

20

30

Functions in Scope to Visited Functions

B
en

ch
m

ar
k

Ta
sk

 C
ou

nt

Specs
1

2

3

4

5

6

7

8

9

10

(b) The product line category of the SV-COMP set

... #Functions in Program ... #Visited Functions

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

0

100

200

300

#Functions in Scope / ...

B
en

ch
m

ar
k

Ta
sk

 C
ou

nt

Property
08a

101a

106a

10a

118a

129a

132a

134a

147a

32a

43a

68a

68b

77a

(c) LDV-250 set, 482 of 3500 tasks total

Figure 10: Number of functions part of the scope of the property, both in
relation to the total number of functions which are defined inside
the verified program and the number of functions visited at least
once during the whole runtime of the analysis

5.3 results 33

5.3.2 RQ1.2: Program Variables inside the Property Scope

The violin plot in Figure 11a shows that the percentage of relevant
variables which are part of the scope of the property inside the Sys-
tems_DeviceDriversLinux64_ReachSafety category of the SV-COMP set
is very small. The median value is only at 0.4% with some out-
liers concentrated at around the 10% mark. For the programs inside
the ReachSafety-ProductLines category we see median values of 10.7%
(minepump) and 13.2% (email) with a low variation. Especially with
the minepump product-line we see a split into two clusters, very simi-
lar to the observations in section 5.3.1 . The category with the highest
percentage of relevant variables in scope is ReachSafety-ControlFlow
with a median value of 41.0%, highly scattered between 20.7% and
95.2%.

Figure 11b shows that inside the LDV-250 set the percentage of
variables in scope is at the lower area in general, ranging from 0.2%
(147a) to 37.7% (129a). Nevertheless there are still some visible differ-
ences between the properties: the median values for the individual
properties are scattered between 0.7% (10a) and 12.5% (68b).

988 229 38 13

0%

25%

50%

75%

100%

Systems−Device
DriversLinux64−

ReachSafety

ReachSafety−
ProductLines−

minepump

ReachSafety−
ProductLines−

email

ReachSafety−
ControlFlow

P
er

c.
 o

f R
el

ev
an

t V
ar

ia
bl

es

 in
 A

bs
. F

or
m

ul
as

(a) SV-COMP: Differentiated by Category

25 1 40 6 15 10 29 5 7 6 13 10 4

0%

25%

50%

75%

100%

10a 101a 43a 118a 32a 129a 134a 132a 68a 08a 106a 147a 68b

P
er

c.
 o

f R
el

ev
an

t V
ar

ia
bl

es

 in
 A

bs
. F

or
m

ul
as

(b) LDV-250: Differentiated by Property

Figure 11: Number of unique variables which occur in abstraction formulas
at abstraction states which are part of the scope of the property
compared to the number of variables relevant for the analysis; the
diamond indicates the median value; the number of programs is
shown on top

5.3 results 34

5.3.3 RQ1.3: Data Locality inside Property Scopes

When looking at Figure 12a we see that the percentage of variables in
abstraction formulas which are defined in the same function where
the abstraction state is located varies greatly between the categories of
the SV-COMP set. The scopes of the vast majority of benchmark tasks
inside the category Systems_DeviceDriversLinux64_ReachSafety are not
very local at all by this metric, except a very small number of outliers
the value is very close to 0%. The category ReachSafety-ControlFlow
shows more locality with a median value of 21.3% and scattered be-
tween 12.3% and 100%. Looking at ReachSafety-ProductLines we see
a huge difference between the minepump product line with a median
value of 26.5% and the email product line with a median value of
79.1%. Inside the minepump product line the values do not vary much.
For most cases inside the email product line the values stay close to
the median but we see a small number of benchmark tasks centering
around 30%.

The LDV-250 set shows great variation of locality depending on
property as shown in Figure 12b . The median values range from
40.1% (147a) to 100% (10a), although in an overall view the scopes
are far more local than not with a median over all tasks of 84.8% with
147a and 132a being notable exceptions.

5.3.4 RQ1.4: Global Variables inside the Property Scope

Looking at Figure 13 we unsurprisingly notice that we tend to see
more global variables where less variables are local to the function
but it’s not the clear opposite in most cases. The properties of LDV-
250 generally do not involve a lot of global variables with a overall
median for all tasks at 1.9% with 147a with a median value of 15.2%
as the most noticeable exception. Most of those may furthermore be
variables weaved into by the specification at runtime as those appear
like global variables inside the formula.

The SV-COMP category Systems_DeviceDriversLinux64_ReachSafety
sticks out in property scopes being not only not very local but track-
ing only global variables with negligible exceptions. The ReachSafety-
ProductLines category differs between the email and minepump
product-lines. Where inside email close to 0% of variables are global
in minepump the median is 36.4%. At ReachSafety-ControlFlow the me-
dian is at 21.7% but the values for the individual tasks also relatively
scattered.

5.3.5 RQ2.1: Overlap of Property Scopes

Only in 86 out of 324 cases there is at least one function which is
classified as in scope of the property which is common for both prop-

5.3 results 35

988 13 229 38

0%

25%

50%

75%

100%

Systems−Device
DriversLinux64−

ReachSafety

ReachSafety−
ControlFlow

ReachSafety−
ProductLines−

minepump

ReachSafety−
ProductLines−

email

V
ar

ia
bl

es
 d

ef
. i

n
sa

m
e

F
un

ct
io

n

(a) SV-COMP: Differentiated by Category

10 5 6 4 15 10 13 7 6 40 29 1 25

0%

25%

50%

75%

100%

147a 132a 08a 68b 32a 129a 106a 68a 118a 43a 134a 101a 10a

V
ar

ia
bl

es
 d

ef
. i

n
sa

m
e

F
un

ct
io

n

(b) LDV-250: Differentiated by Property

Figure 12: Percentage of unique variables inside a function which occur
in abstraction formulas at abstraction states which are part of
the scope of the property and are defined in the same function
(for each program the mean value over all qualified functions is
taken); the diamond indicates the median value; the number of
programs is shown on top

erties. Looking closer only at those cases, we can see in e.g. Figure 14

that at maximum 47.2% of the functions visited by the analysis are
part of the scope of both properties and that most of these overlaps
are quite small with a median value of 2.9%.

5.3.6 RQ2.2: Performance of Verifying Overlapping Properties Together

As we can see clearly in Figure 14 there seems to be no direct cor-
relation between the speedup regarding the CPU time for analysis
of a multi-property verification and the percentage of visited func-
tions which are in the scope of both properties. It’s especially visible
that when verifying properties with a considerable scope overlap to-
gether the analysis is in most cases still considerably faster and their
speedup stays, except rare outliers, inside the same range of those
with no overlap.

5.3 results 36

38 13 229 988

0%

25%

50%

75%

100%

ReachSafety−
ProductLines−

email

ReachSafety−
ControlFlow

ReachSafety−
ProductLines−

minepump

Systems−Device
DriversLinux64−

ReachSafety

G
lo

ba
l V

ar
ia

bl
es

(a) SV-COMP: Differentiated by Category

1 25 15 7 40 4 10 6 29 6 5 13 10

0%

25%

50%

75%

100%

101a 10a 32a 68a 43a 68b 129a 08a 134a 118a 132a 106a 147a

G
lo

ba
l V

ar
ia

bl
es

(b) LDV-250: Differentiated by Property

Figure 13: Percentage of unique variables which occur in abstraction formu-
las at abstraction states which are part of the scope of the prop-
erty which are global; the diamond indicates the median value;
the number of programs is shown on top

5.3.7 RQ2.3: Reached Set Size with Overlapping Properties

Looking at Figure 15 and Table 2 we see that the set reached is most of
the time dominated by one of the the two properties verified together
or very often the same size. It more or less never shrinks below the
size of the set reached of the reached set produced in single verifica-
tions of either property. Only in 19 of the 324 cases the set reached
grows to more than 100.1% of the larger set of the runs with sin-
gle properties. Moreover a direct correlation between the overlap of
property scopes and the size of the set reached is not visible. If we
see the size of the set reached as a rough metric for the difficulty of
a verification run this agrees with the result of RQ2.2: a state space
explosion rarely occurs at a considerable scale and is not correlated
to the overlap of the scopes of the properties.

5.4 discussion 37

1.0 1.5 2.0 2.5 3.0 3.5
Speedup of Multi-prop. Analysis Over Sum of Single-prop. Analysis

0

20

40

Sc
op

e
Ov

er
la

p
(%

 o
f V

isi
te

d
Fu

nc
.)

Figure 14: Scatter plot which shows the relationship between the speedup of
a multi-property analysis and the overlap of property scopes (cal-
culated per function) for pairs of properties; for the speedup only
the cputime of the analysis itself is compared to exclude distort-
ing effects resulting from startup or tear down of CPAchecker;
only verification runs where the verification result is true and
where both properties are relevant are shown

5.4 discussion

5.4.1 RQ1.x: Assessing Property Scopes of Benchmark Sets

Looking at the SV-COMP category Systems_DeviceDriversLinux64_-
ReachSafety despite being one of the larger parts of the benchmark
set the set of properties used does not seem to be very diverse re-
garding the shape of their scope. Their scopes seem to be in general
very narrow, covering only a smaller part of the program and only
very few of the programs variables. Those variables are in most cases
global which may be due to the fact that these programs make heavy
use of globally defined structs.

The properties used inside the ReachSafety-ControlFlow category on
the other hand seem to be overall more balanced in their dependence
on local and global variables and more diverse in how much of the
programs variables they cover. The very high percentage of functions
in scope can be explained by the simple fact that many of these pro-
grams only consist of a hand full of functions so this metric which as-
sumes a reasonably uniform distribution of code into functions does
not fit very well in this case.

We take a closer look at the clearly noticeable clustering of the re-
sults around two values inside the minepump product-line which is
especially visible in the percentage of functions which are in scope of
the property. Of the 5 specifications which are used in this product
line, all but specification 3 can explicitly only be violated if the pump
is active. The pump only ever gets activated by the feature highWa-
terSensor which is only active on product 33 and above, exactly where
we see the property scope covering vastly more functions. Specifica-
tion 3 however which may also be violated if the pump is inactive is

5.4 discussion 38

0 20 40 60 80 100 120 140 160
Size of Multi-prop. Reached Set in Relation to Avg. of Single-prop. (%)

0

20

40

Sc
op

e
Ov

er
la

p
(%

 o
f V

isi
te

d
Fu

nc
.)

100 150 200 250 300 350 400 450
Size of Multi-prop. Reached Set in Relation to Min. of Single-prop. (%)

0

20

40

Sc
op

e
Ov

er
la

p
(%

 o
f V

isi
te

d
Fu

nc
.)

0 20 40 60 80 100
Size of Multi-prop. Reached Set in Relation to Max. of Single-prop. (%)

0

20

40

Sc
op

e
Ov

er
la

p
(%

 o
f V

isi
te

d
Fu

nc
.)

Figure 15: Scatter plots which show the relationship between the growth of
the final reached set of a multi-property analysis and the overlap
of property scopes (calculated per function) for pairs of proper-
ties; only verification runs where the verification result is safe and
where both properties are relevant are shown

violated in cases the pump never gets started. As we exclude unsafe
verification results we never see the impact of it at products below 33.
The similar observation made inside the email product line is likely
caused by one or more specifications which are only weaved into a
program if the Encrypt feature is active on the product the program
represents. Of our results this is the case only in product 12 and 28
where we see an increased percentage of functions in scope of the
property.

Looking at the results for the LDV-250 set we can clearly see that
the scopes of the individual properties are shaped differently. As one
example properties 10a and 43a which ensure some flag is set to a
specific value on specific function calls which occur after entering a
specific execution context involve a small amount of variables where
many are local and the scope covers a small number of functions.
The flag itself is most of the time set to a fixed value shortly before
the function which results in a very local property scope. If the flag
is set to the desired value in any case it does not enlarge the scope
significantly, otherwise it must be proven that the program is not
inside the violating context which seems not to depend on a lot of
conditions inside these programs for these contexts.

5.4 discussion 39

� 08a 106a 10a 118a 129a 132a 134a 147a 32a 43a 68a 68b

08a 100 0 33 100 67

106a ... 100 ... 0 86 75

10a ... 0 100 14 ... 0 0 94 75

118a 0 ... 100 25 ... 43

129a ... 0 100 0 ... 100 80

132a 0 ... 100 67 0 ...

134a 0 ... 73 ... 0 0 0 100 62

147a 33 ... 100 100 0 100 80

32a 100 0 94 ... 40 0 0 0 71 50 50

43a 33 0 96 57 0 0 0 0 90 0 0

68a 0 100 100 33

68b 50 100 33

Table 2: Rows show the percentage of cases (programs where the pair of
properties is relevant and the verification result is safe) where the
final reached set of a single property verification contains the same
number of states as the final reached set of a multi-property verifi-
cation with the property defining the column in addition.

Another example are 68a and 68b which involve a relatively high
number of variables and cover a comparatively high number of func-
tions. This could be due to the fact that there often is a lot of code be-
tween a call to usb_alloc* and the corresponding call to usb_free* where
a lot assumptions in different functions involving different variables
must be true to prove that an usb_free* call is reached in every corner
case.

5.4.2 RQ2.x: Property Scopes and Multi-Property Verification

The hypothesis that overlapping property scopes can correlate with
a negative performance impact of a multi-property analysis is based
on the fact that the abstract state space is unable to merge when the
control flow meets. The termination check is also unable to recognize
coverage if one of the specification automatons changes its state. If
such events happen successively, the state space splits again which
in a worst case scenario may lead into near exponential explosion of
the state space. This can also happen if the state of the automaton is
weaved into the analysis as the state is then encoded into a variable
which often leads to different abstraction formulas which also hinders
the predicate analysis with ABE to merge or report coverage. Listing
1 (chapter 4) shows a program fopen_malloc_expl.c which illustrates
such behavior when running a predicate analysis with ABE with the
properties malloc.spc shown in listing 3 and fopen.spc shown in listing

5.4 discussion 40

4. After the branching of the control flow in line 14 fopen.spc changes
its state to Opened in only one branch 15 which hinders the states to
merge or to cover. At line 20 malloc.spc transitions in a similar fashion
as above to Alloc which leads the state space to split again at both of
the previous branches as illustrated in Figure 16.

0 L0 @ N54 r 391
main entry

AbstractionState: ABS0: true
 PropertyScopeState: SL: 0 SI: 0

1822 L389 @ N16 r 35
handle_files entry

AbstractionState: ABS50: true
 PropertyScopeState: SL: 0 SI: 0

2541 L388 @ N53 r 0
main exit

AbstractionState: ABS200: true
 PropertyScopeState: SL: 0 SI: 0

2378 L402 @ N25 r 21
handle_files

AbstractionState: ABS158
 PropertyScopeState: SL: 19 SI: 3

 AutomatonState: FopenAutomaton: Opened

2219 L1 @ N25 r 21
handle_files

AbstractionState: ABS125
 PropertyScopeState: SL: 15 SI: 2

 AutomatonState: FopenAutomaton: Opened

2363 L398 @ N25 r 21
handle_files

AbstractionState: ABS157
 PropertyScopeState: SL: 13 SI: 0

covered by

2223 L404 @ N1 r 3
nondet entry

AbstractionState: ABS126
 PropertyScopeState: SL: 2 SI: 2

 AutomatonState: FopenAutomaton: Opened

2229 L407 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 2
 AutomatonState: FopenAutomaton: Opened

2231 L408 @ N35 r 19
handle_files

AbstractionState: ABS127
 PropertyScopeState: SL: 4 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1695:
Return edge from nondet to handle_files

2241 L412 @ N32 r 15
handle_files

AbstractionState: ABS129
 PropertyScopeState: SL: 6 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

2234 L409 @ N32 r 15
handle_files

AbstractionState: ABS128
 PropertyScopeState: SL: 1 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1695:
[__CPAchecker_TMP_0 == 0]

2275 L414 @ N6 r 7
makechar entry

AbstractionState: ABS136
 PropertyScopeState: SL: 2 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

2283 L418 @ N1 r 3
nondet entry

AbstractionState: ABS137
 PropertyScopeState: SL: 4 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

2289 L421 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 3
 AutomatonState: FopenAutomaton: Opened

 AutomatonState: MallocFreeAutomaton: Alloc

2291 L422 @ N10 r 3
makechar

AbstractionState: ABS138
 PropertyScopeState: SL: 4 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

Line 1681:
Return edge from nondet to makechar

2297 L424 @ N5 r 0
makechar exit

AbstractionState: ABS139
 PropertyScopeState: SL: 2 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

2299 L424 @ N5 r 0
makechar exit

AbstractionState: ABS140
 PropertyScopeState: SL: 2 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

2301 L425 @ N39 r 13
handle_files

AbstractionState: ABS141
 PropertyScopeState: SL: 1 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

Line 1699:
Return edge from makechar to handle_files

2317 L428 @ N40 r 8
handle_files

AbstractionState: ABS143
 PropertyScopeState: SL: 3 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

2325 L428 @ N40 r 8
handle_files

AbstractionState: ABS145
 PropertyScopeState: SL: 3 SI: 3

 AutomatonState: FopenAutomaton: Opened
 AutomatonState: MallocFreeAutomaton: Alloc

2342 L431 @ N45 r 5
handle_files

AbstractionState: ABS151
 PropertyScopeState: SL: 4 SI: 2

 AutomatonState: FopenAutomaton: Opened

2357 L432 @ N48 r 1
handle_files

AbstractionState: ABS155
 PropertyScopeState: SL: 1 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1702:
[open == 0]

2519 L435 @ N48 r 1
handle_files

AbstractionState: ABS189
 PropertyScopeState: SL: 4 SI: 0

2523 L433 @ N15 r 0
handle_files exit

AbstractionState: ABS191
 PropertyScopeState: SL: 1 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1703:
return c;

2531 L434 @ N60 r 2
main

AbstractionState: ABS195: true
 PropertyScopeState: SL: 0 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1707:
Return edge from handle_files to main

2529 L429 @ N60 r 2
main

AbstractionState: ABS194: true
 PropertyScopeState: SL: 0 SI: 2

 AutomatonState: FopenAutomaton: Opened

covered by

2504 L428 @ N48 r 1
handle_files

AbstractionState: ABS185
 PropertyScopeState: SL: 1 SI: 0

covered by

covered by

covered by

2247 L411 @ N6 r 7
makechar entry

AbstractionState: ABS130
 PropertyScopeState: SL: 2 SI: 2

 AutomatonState: FopenAutomaton: Opened

2255 L415 @ N1 r 3
nondet entry

AbstractionState: ABS131
 PropertyScopeState: SL: 4 SI: 2

 AutomatonState: FopenAutomaton: Opened

2261 L418 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 2
 AutomatonState: FopenAutomaton: Opened

2263 L419 @ N10 r 3
makechar

AbstractionState: ABS132
 PropertyScopeState: SL: 4 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1681:
Return edge from nondet to makechar

2269 L421 @ N5 r 0
makechar exit

AbstractionState: ABS133
 PropertyScopeState: SL: 2 SI: 2

 AutomatonState: FopenAutomaton: Opened

2271 L421 @ N5 r 0
makechar exit

AbstractionState: ABS134
 PropertyScopeState: SL: 2 SI: 2

 AutomatonState: FopenAutomaton: Opened

2273 L422 @ N39 r 13
handle_files

AbstractionState: ABS135
 PropertyScopeState: SL: 1 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1699:
Return edge from makechar to handle_files

2323 L425 @ N40 r 8
handle_files

AbstractionState: ABS144
 PropertyScopeState: SL: 3 SI: 2

 AutomatonState: FopenAutomaton: Opened

2315 L425 @ N40 r 8
handle_files

AbstractionState: ABS142
 PropertyScopeState: SL: 3 SI: 2

 AutomatonState: FopenAutomaton: Opened

covered by

2328 L426 @ N45 r 5
handle_files

AbstractionState: ABS146
 PropertyScopeState: SL: 2 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1701:
[alloc == 0]

2517 L430 @ N48 r 1
handle_files

AbstractionState: ABS188
 PropertyScopeState: SL: 4 SI: 0

2349 L427 @ N48 r 1
handle_files

AbstractionState: ABS153
 PropertyScopeState: SL: 1 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1702:
[open == 0]

2500 L423 @ N48 r 1
handle_files

AbstractionState: ABS184
 PropertyScopeState: SL: 1 SI: 0

covered by

2521 L428 @ N15 r 0
handle_files exit

AbstractionState: ABS190
 PropertyScopeState: SL: 1 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1703:
return c;

Line 1707:
Return edge from handle_files to main

2537 L430 @ N53 r 0
main exit

AbstractionState: ABS198: true
 PropertyScopeState: SL: 0 SI: 2

 AutomatonState: FopenAutomaton: Opened

Line 1707:
return __CPAchecker_TMP_0;

covered by

2383 L400 @ N1 r 3
nondet entry

AbstractionState: ABS160
 PropertyScopeState: SL: 2 SI: 0

2389 L403 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 0

2391 L404 @ N35 r 19
handle_files

AbstractionState: ABS161
 PropertyScopeState: SL: 4 SI: 0

Line 1695:
Return edge from nondet to handle_files

2401 L408 @ N32 r 15
handle_files

AbstractionState: ABS163
 PropertyScopeState: SL: 6 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

2394 L405 @ N32 r 15
handle_files

AbstractionState: ABS162
 PropertyScopeState: SL: 1 SI: 0

Line 1695:
[__CPAchecker_TMP_0 == 0]

2435 L410 @ N6 r 7
makechar entry

AbstractionState: ABS170
 PropertyScopeState: SL: 2 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

2443 L414 @ N1 r 3
nondet entry

AbstractionState: ABS171
 PropertyScopeState: SL: 4 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

2449 L417 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 1
 AutomatonState: MallocFreeAutomaton: Alloc

2451 L418 @ N10 r 3
makechar

AbstractionState: ABS172
 PropertyScopeState: SL: 4 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

Line 1681:
Return edge from nondet to makechar

2459 L420 @ N5 r 0
makechar exit

AbstractionState: ABS174
 PropertyScopeState: SL: 2 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

2457 L420 @ N5 r 0
makechar exit

AbstractionState: ABS173
 PropertyScopeState: SL: 2 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

covered by

2461 L421 @ N39 r 13
handle_files

AbstractionState: ABS175
 PropertyScopeState: SL: 1 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

Line 1699:
Return edge from makechar to handle_files

2485 L424 @ N40 r 8
handle_files

AbstractionState: ABS179
 PropertyScopeState: SL: 3 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

2477 L424 @ N40 r 8
handle_files

AbstractionState: ABS177
 PropertyScopeState: SL: 3 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

covered by

2497 L427 @ N45 r 5
handle_files

AbstractionState: ABS183
 PropertyScopeState: SL: 4 SI: 0

Line 1702:
[open == 0]

2527 L429 @ N15 r 0
handle_files exit

AbstractionState: ABS193
 PropertyScopeState: SL: 1 SI: 0

Line 1703:
return c;

2535 L430 @ N60 r 2
main

AbstractionState: ABS197: true
 PropertyScopeState: SL: 0 SI: 0

Line 1707:
Return edge from handle_files to main

2533 L425 @ N60 r 2
main

AbstractionState: ABS196: true
 PropertyScopeState: SL: 0 SI: 0

covered by

2407 L407 @ N6 r 7
makechar entry

AbstractionState: ABS164
 PropertyScopeState: SL: 2 SI: 0

2415 L411 @ N1 r 3
nondet entry

AbstractionState: ABS165
 PropertyScopeState: SL: 4 SI: 0

2421 L414 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 0

2423 L415 @ N10 r 3
makechar

AbstractionState: ABS166
 PropertyScopeState: SL: 4 SI: 0

Line 1681:
Return edge from nondet to makechar

2431 L417 @ N5 r 0
makechar exit

AbstractionState: ABS168
 PropertyScopeState: SL: 2 SI: 0

2429 L417 @ N5 r 0
makechar exit

AbstractionState: ABS167
 PropertyScopeState: SL: 2 SI: 0

covered by

2433 L418 @ N39 r 13
handle_files

AbstractionState: ABS169
 PropertyScopeState: SL: 1 SI: 0

Line 1699:
Return edge from makechar to handle_files

2475 L421 @ N40 r 8
handle_files

AbstractionState: ABS176
 PropertyScopeState: SL: 3 SI: 0

2483 L421 @ N40 r 8
handle_files

AbstractionState: ABS178
 PropertyScopeState: SL: 3 SI: 0

2488 L422 @ N45 r 5
handle_files

AbstractionState: ABS180
 PropertyScopeState: SL: 2 SI: 0

Line 1701:
[alloc == 0]

Line 1702:
[open == 0]

2525 L424 @ N15 r 0
handle_files exit

AbstractionState: ABS192
 PropertyScopeState: SL: 1 SI: 0

Line 1703:
return c;

Line 1707:
Return edge from handle_files to main

2539 L426 @ N53 r 0
main exit

AbstractionState: ABS199: true
 PropertyScopeState: SL: 0 SI: 0

Line 1707:
return __CPAchecker_TMP_0;

covered by

covered by

0 L0 @ N54 r 391
main entry

AbstractionState: ABS0: true
 PropertyScopeState: SL: 0 SI: 0

2047 L388 @ N53 r 0
main exit

AbstractionState: ABS100: true
 PropertyScopeState: SL: 0 SI: 0

1602 L389 @ N16 r 35
handle_files entry

AbstractionState: ABS8: true
 PropertyScopeState: SL: 0 SI: 0

2045 L426 @ N53 r 0
main exit

AbstractionState: ABS99: true
 PropertyScopeState: SL: 0 SI: 0

covered by

1770 L398 @ N25 r 21
handle_files

AbstractionState: ABS40
 PropertyScopeState: SL: 13 SI: 0

1910 L402 @ N25 r 21
handle_files

AbstractionState: ABS69
 PropertyScopeState: SL: 19 SI: 2

 AutomatonState: FopenAutomaton: Opened

1789 L399 @ N32 r 17
handle_files

AbstractionState: ABS43
 PropertyScopeState: SL: 2 SI: 0

Line 1695:
[open == 0]

1923 L401 @ N1 r 3
nondet entry

AbstractionState: ABS72
 PropertyScopeState: SL: 2 SI: 0

1929 L404 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 0

1931 L405 @ N39 r 15
handle_files

AbstractionState: ABS73
 PropertyScopeState: SL: 4 SI: 0

Line 1696:
Return edge from nondet to handle_files

1943 L409 @ N36 r 11
handle_files

AbstractionState: ABS76
 PropertyScopeState: SL: 6 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

1936 L406 @ N36 r 11
handle_files

AbstractionState: ABS75
 PropertyScopeState: SL: 1 SI: 0

Line 1696:
[__CPAchecker_TMP_0 == 0]

1977 L411 @ N6 r 7
makechar entry

AbstractionState: ABS83
 PropertyScopeState: SL: 2 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

1985 L415 @ N1 r 3
nondet entry

AbstractionState: ABS84
 PropertyScopeState: SL: 4 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

1991 L418 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 1
 AutomatonState: MallocFreeAutomaton: Alloc

1993 L419 @ N10 r 3
makechar

AbstractionState: ABS85
 PropertyScopeState: SL: 4 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

Line 1681:
Return edge from nondet to makechar

2001 L421 @ N5 r 0
makechar exit

AbstractionState: ABS87
 PropertyScopeState: SL: 2 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

1999 L421 @ N5 r 0
makechar exit

AbstractionState: ABS86
 PropertyScopeState: SL: 2 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

covered by

2003 L422 @ N43 r 9
handle_files

AbstractionState: ABS88
 PropertyScopeState: SL: 1 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

Line 1700:
Return edge from makechar to handle_files

2027 L425 @ N44 r 4
handle_files

AbstractionState: ABS92
 PropertyScopeState: SL: 3 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

2019 L425 @ N44 r 4
handle_files

AbstractionState: ABS90
 PropertyScopeState: SL: 3 SI: 1

 AutomatonState: MallocFreeAutomaton: Alloc

covered by

2039 L428 @ N49 r 1
handle_files

AbstractionState: ABS96: true
 PropertyScopeState: SL: 0 SI: 0

2030 L423 @ N49 r 1
handle_files

AbstractionState: ABS93: true
 PropertyScopeState: SL: 0 SI: 0

covered by

1949 L408 @ N6 r 7
makechar entry

AbstractionState: ABS77
 PropertyScopeState: SL: 2 SI: 0

1957 L412 @ N1 r 3
nondet entry

AbstractionState: ABS78
 PropertyScopeState: SL: 4 SI: 0

1963 L415 @ N0 r 0
nondet exit

PropertyScopeState: SL: 0 SI: 0

1965 L416 @ N10 r 3
makechar

AbstractionState: ABS79
 PropertyScopeState: SL: 4 SI: 0

Line 1681:
Return edge from nondet to makechar

1973 L418 @ N5 r 0
makechar exit

AbstractionState: ABS81
 PropertyScopeState: SL: 2 SI: 0

1971 L418 @ N5 r 0
makechar exit

AbstractionState: ABS80
 PropertyScopeState: SL: 2 SI: 0

covered by

1975 L419 @ N43 r 9
handle_files

AbstractionState: ABS82
 PropertyScopeState: SL: 1 SI: 0

Line 1700:
Return edge from makechar to handle_files

2025 L422 @ N44 r 4
handle_files

AbstractionState: ABS91
 PropertyScopeState: SL: 3 SI: 0

2017 L422 @ N44 r 4
handle_files

AbstractionState: ABS89
 PropertyScopeState: SL: 3 SI: 0

covered by

Line 1702:
[alloc == 0]

2041 L424 @ N15 r 0
handle_files exit

AbstractionState: ABS97: true
 PropertyScopeState: SL: 0 SI: 0

Line 1703:
return c;

2043 L425 @ N60 r 2
main

AbstractionState: ABS98: true
 PropertyScopeState: SL: 0 SI: 0

Line 1707:
Return edge from handle_files to main

Line 1707:
return __CPAchecker_TMP_0;

1919 L406 @ N32 r 17
handle_files

AbstractionState: ABS71
 PropertyScopeState: SL: 5 SI: 0

1933 L408 @ N1 r 3
nondet entry

AbstractionState: ABS74
 PropertyScopeState: SL: 2 SI: 0

covered by

Figure 16: Simplified ARG (reduced to abstraction states) for verification
of fopen_malloc_expl.c (left) and fopen_malloc_noexpl.c (right) with
properties fopen.spc and malloc.spc

Both properties obviously meet our function based scope overlap-
ping criterion in fopen_malloc_expl.c but this is also the case in the
slightly modified program fopen_malloc_noexpl.c shown in listing 2.
Here fopen.spc returns into its initial state before malloc.spc transitions
into Alloc. As we see in Figure 16 the termination check is now able
to report coverage before malloc.spc transitions into Alloc resulting in
a similar behavior as if the properties where analyzed separately and
a lot fewer states than in the previous example.

We see that overlapping property scopes can theoretically increase
the chance of a state space explosion but even then it only happens to
a noticeable extent in rather special cases and is more related to state
changes of the specification automaton.

Furthermore other effects may tone down the explosion of the state
space as well as the negative impact on verification performance in
those cases where the reached set actually grows:

• The at least partial usage of on-the-fly property weaving by the
specification automatons increases the likelihood of a success-
ful merge or a successful coverage detection due as the richer
abstraction techniques of the predicate analysis.

• A state space explosion might occur in a very deep branch of
the ARG and only produce a moderate number of additional
abstract states

5.4 discussion 41

• The performance penalty of very similar abstraction computa-
tions may be very small due to various caching mechanisms
employed by the predicate analysis and the underlying SMT-
solver.

6
F U T U R E W O R K

In section 3.1.6 a limitation of the property scope CPA is mentioned
which can lead to incomplete property scopes if a property violation
is found because the predicate analysis ends in this case. As one pos-
sible solution it needs to be investigated if and how the predicate
analysis can be modified to continue after a violation is found.

Another task for future improvements is a better attribution of an
abstract state which is part of the combined scope of all properties in-
side a multi-property scope analysis to one specific property. As men-
tioned in section 4.2.2 the implementation only guesses right now by
a specification automaton being out of its initial state i.e. enabled or if
it matches at a specific abstraction state, which has several problems.
First this does not work with pure weaving automata which encode
their state into the predicate analysis. It may be possible to extract
this implicit state from the formulas by looking at the weaved in state
variables of the automaton. Second this is imprecise in both direc-
tions as even if the automaton is enabled we can’t reliably attribute
an abstract state to its scope, we only assume it to be likely. One possi-
bly better approximation could be the usage of static program slicing
to rule out states whose incoming control-flow edge has no control
or data dependency relation to the program locations where the au-
tomaton transitions into a target state. Another possibility to explore
is to look more closely to the individual steps of the predicate refine-
ment process and record which property is responsible for a specific
predicate in the precision. One could then try to rule out a specific
abstraction state for a given property using the predicates attributed
to that property and the abstraction formula.

As greatly discussed in section 5.4.2 we were not able to find a con-
nection between state space explosions or other performance impacts
onto a multi-property verification and the overlap overlap% of prop-
erty scopes on a per function level, defined in section 5.2.2.2. At least
for our examples fopen_malloc_expl.c and fopen_malloc_noexpl.c even a
more fine grained look at statement level would be insufficient. It
seems that at least for the example the overlap of the parts of the pro-
gram where the respective property is enabled is crucial. Future work
could try to improve on the detection of when a property is enabled as
stated above and reevaluate RQ1.x using a notion of overlap tailored
to that.

42

7
R E L AT E D W O R K

Because property scopes and the presented approach have a lot of
resemblance with program slicing we put a focus on related work on
that topic.

7.1 construction of program slices

Several approaches use dynamic program slicing as a debugging aid
[1, 20, 23] to help the programmer with localizing faulty program
statements. This is done by slicing backwards from the location where
the error appears, either where a wrong output is received from the
program or a crash occurs. This has some resemblance with property
scopes but limited to concrete executions.

Comuzzi and Hart [13] present an approach to perform program
slicing using logical predicates and by computing weakest precondi-
tions which shows some similarities to the refinement techniques of
the predicate analysis described in section 2.3.5 we rely on for scope
determination.

7.2 assessment of program slices

Related to the assessment of property scopes we look at some ap-
proaches which perform measurements on program slices and com-
pare several program slices with each other.

Binkley, Gold, and Harman [10] study all static forward and back-
ward slices of a set of C programs by measuring the slice size us-
ing different configurations of a slicing tool involving, amongst other
things the granularity of the slicing (statements vs. functions) and the
inclusion of the calling context.

Meyers and Binkley [21] use program slices to measure the cohe-
sion inside of software modules. They develop various cohesion met-
rics based on slices including but not limited to overlap (common
statements in slices), coverage (length of slices compared to the length
of the modules) and parallelism (the number of slices which have
more than en number of statements in common). Bieman and Ott [9]
measure cohesion on a per procedure level by computing data slices
at the output of a procedure. A data slice is built out of of a combined
forward and backward program slice which consists of variable and
constant definitions and references called data tokens. The data slice is
then further abstracted and compared.

43

7.3 property specification patterns 44

7.3 property specification patterns

Dwyer, Avrunin, and Corbett [15] describe observations about pat-
terns which temporal safety properties commonly adhere to. They
divide them into Order patterns which talk about the relative order
events must occur during execution and Occurrence patterns which
talk about if an event occurs during execution. Patterns also have a
scope where they are enabled determined by a start and a end event.

8
C O N C L U S I O N

First we presented an approximative technique to determine the
scope of safety properties inside the abstract state space of a software
model checker by observing an existing analysis based on predicate
abstraction.

Second we developed valuable ways to visualize property scopes
by reducing the the visual representation of the typically extensive
state space, providing an overview about the coarse structure of the
scopes inside the state space of a multi-property verification and ex-
plain how to display the distribution of property scopes inside the
program as well as their overlap points in a clear and compact way
using arc diagrams.

Third our experimental assessment offers valuable insights into the
data coverage, data locality and distribution of property scopes in-
side the programs of two substantial benchmark sets. Furthermore
we found out through experimental evaluation that there exists no
direct correlation between overlapping property scopes an the perfor-
mance on multi-property.

Forth we proposed interesting opportunities for future work espe-
cially focusing more on the areas of the state space where properties
are enabled.

45

B I B L I O G R A P H Y

[1] Hiralal Agrawal, Richard A. Demillo, and Eugene H. Spafford.
“Debugging with dynamic slicing and backtracking”. In: Soft-
ware: Practice and Experience 23.6 (1993), pp. 589–616. issn: 1097-
024X. doi: 10.1002/spe.4380230603. url: http://dx.doi.org/
10.1002/spe.4380230603.

[2] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von
Rhein, and Dirk Beyer. “Detection of Feature Interactions Us-
ing Feature-aware Verification”. In: Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engi-
neering. ASE ’11. Washington, DC, USA: IEEE Computer Soci-
ety, 2011, pp. 372–375. isbn: 978-1-4577-1638-6. doi: 10.1109/
ASE.2011.6100075. url: http://dx.doi.org/10.1109/ASE.
2011.6100075.

[3] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von
Rhein, and Dirk Beyer. Feature-Aware Verification. Tech. rep. MIP-
1105. University of Passau, Germany, 2011. eprint: arXiv:1110.
0021. url: https://arxiv.org/abs/1110.0021.

[4] Sven Apel, Dirk Beyer, Vitaly Mordan, Vadim Mutilin, and An-
dreas Stahlbauer. “On-the-fly decomposition of specifications
in software model checking”. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. ACM. 2016, pp. 349–361.

[5] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz.
“Configurable Software Verification: Concretizing the Conver-
gence of Model Checking and Program Analysis”. In: Proceed-
ings of the 19th International Conference on Computer Aided Verifi-
cation (CAV 2007, Berlin, July 3-7). Ed. by W. Damm and H. Her-
manns. LNCS 4590. Springer-Verlag, Heidelberg, 2007, pp. 504–
518. isbn: 978-3-540-73367-6.

[6] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz.
“Program Analysis with Dynamic Precision Adjustment”. In:
Proceedings of the 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2008, L’Aquila, September 15-
19). IEEE Computer Society Press, Los Alamitos (CA), 2008,
pp. 29–38. isbn: 978-1-4244-2187-9.

[7] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for
Configurable Software Verification”. In: Computer Aided Verifica-
tion: 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and
Shaz Qadeer. Berlin, Heidelberg: Springer Berlin Heidelberg,

46

https://doi.org/10.1002/spe.4380230603
http://dx.doi.org/10.1002/spe.4380230603
http://dx.doi.org/10.1002/spe.4380230603
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ASE.2011.6100075
http://dx.doi.org/10.1109/ASE.2011.6100075
http://dx.doi.org/10.1109/ASE.2011.6100075
arXiv:1110.0021
arXiv:1110.0021
https://arxiv.org/abs/1110.0021

Bibliography 47

2011, pp. 184–190. isbn: 978-3-642-22110-1. doi: 10.1007/978-
3-642-22110-1_16. url: http://dx.doi.org/10.1007/978-3-
642-22110-1_16.

[8] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. “Pred-
icate Abstraction with Adjustable-Block Encoding”. In: Proceed-
ings of the 10th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2010, Lugano, October 20-23).
FMCAD, 2010, pp. 189–197. url: http://www.sosy-lab.org/
~dbeyer/cpa-abe/.

[9] James M Bieman and Linda M Ott. “Measuring functional co-
hesion”. In: IEEE transactions on Software Engineering 20.8 (1994),
pp. 644–657.

[10] David Binkley, Nicolas Gold, and Mark Harman. “An Empiri-
cal Study of Static Program Slice Size”. In: ACM Trans. Softw.
Eng. Methodol. 16.2 (Apr. 2007). issn: 1049-331X. doi: 10.1145/
1217295.1217297. url: http://doi.acm.org/10.1145/1217295.
1217297.

[11] David Binkley, Sebastian Danicic, Tibor Gyimóthy, Mark Har-
man, Akos Kiss, and Lahcen Ouarbya. “Formalizing executable
dynamic and forward slicing”. In: Source Code Analysis and Ma-
nipulation, 2004. Fourth IEEE International Workshop on. IEEE.
2004, pp. 43–52.

[12] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. “Counterexample-guided abstraction refinement
for symbolic model checking”. In: Journal of the ACM (JACM)
50.5 (2003), pp. 752–794.

[13] Joseph J. Comuzzi and Johnson M. Hart. “Program slicing us-
ing weakest preconditions”. In: FME’96: Industrial Benefit and
Advances in Formal Methods: Third International Symposium of For-
mal Methods Europe Co-Sponsored by IFIP WG 14.3 Oxford, UK,
March 18–22, 1996 Proceedings. Ed. by Marie-Claude Gaudel and
James Woodcock. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1996, pp. 557–575. isbn: 978-3-540-49749-3. doi: 10.1007/
3-540-60973-3_107. url: http://dx.doi.org/10.1007/3-540-
60973-3_107.

[14] William Craig. “Linear reasoning. A new form of the Herbrand-
Gentzen theorem”. In: The Journal of Symbolic Logic 22.03 (1957),
pp. 250–268.

[15] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
“Patterns in Property Specifications for Finite-state Verification”.
In: Proceedings of the 21st International Conference on Software En-
gineering. ICSE ’99. Los Angeles, California, USA: ACM, 1999,
pp. 411–420. isbn: 1-58113-074-0. doi: 10.1145/302405.302672.
url: http://doi.acm.org/10.1145/302405.302672.

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://www.sosy-lab.org/~dbeyer/cpa-abe/
http://www.sosy-lab.org/~dbeyer/cpa-abe/
https://doi.org/10.1145/1217295.1217297
https://doi.org/10.1145/1217295.1217297
http://doi.acm.org/10.1145/1217295.1217297
http://doi.acm.org/10.1145/1217295.1217297
https://doi.org/10.1007/3-540-60973-3_107
https://doi.org/10.1007/3-540-60973-3_107
http://dx.doi.org/10.1007/3-540-60973-3_107
http://dx.doi.org/10.1007/3-540-60973-3_107
https://doi.org/10.1145/302405.302672
http://doi.acm.org/10.1145/302405.302672

Bibliography 48

[16] Mark Harman and Robert Hierons. “An overview of program
slicing”. In: Software Focus 2.3 (2001), pp. 85–92. issn: 1529-7950.
doi: 10.1002/swf.41. url: http://dx.doi.org/10.1002/swf.
41.

[17] Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky. “A Tour
Through the Visualization Zoo”. In: Queue 8.5 (May 2010),
20:20–20:30. issn: 1542-7730. doi: 10.1145/1794514.1805128.
url: http://doi.acm.org/10.1145/1794514.1805128.

[18] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gré-
goire Sutre. “Lazy Abstraction”. In: Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’02. Portland, Oregon: ACM, 2002, pp. 58–70.
isbn: 1-58113-450-9. doi: 10.1145/503272.503279. url: http:
//doi.acm.org/10.1145/503272.503279.

[19] Orna Kupferman and MosheY Vardi. “Model checking of safety
properties”. In: International Conference on Computer Aided Verifi-
cation. 1999, pp. 172–183.

[20] Shinji Kusumoto, Akira Nishimatsu, Keisuke Nishie, and Kat-
suro Inoue. “Experimental Evaluation of Program Slicing for
Fault Localization”. In: Empirical Software Engineering 7.1 (2002),
pp. 49–76. issn: 1573-7616. doi: 10.1023/A:1014823126938. url:
http://dx.doi.org/10.1023/A:1014823126938.

[21] Timothy M. Meyers and David Binkley. “An Empirical Study
of Slice-based Cohesion and Coupling Metrics”. In: ACM Trans.
Softw. Eng. Methodol. 17.1 (Dec. 2007), 2:1–2:27. issn: 1049-331X.
doi: 10.1145/1314493.1314495. url: http://doi.acm.org/10.
1145/1314493.1314495.

[22] Alexander von Rhein. “Verification Tasks for Software Model
Checking”. MA thesis. Universität Passau, Aug. 2010.

[23] Xiangyu Zhang, Haifeng He, Neelam Gupta, and Rajiv Gupta.
“Experimental Evaluation of Using Dynamic Slices for Fault Lo-
cation”. In: Proceedings of the Sixth International Symposium on
Automated Analysis-driven Debugging. AADEBUG’05. Monterey,
California, USA: ACM, 2005, pp. 33–42. isbn: 1-59593-050-7.
doi: 10.1145/1085130.1085135. url: http://doi.acm.org/
10.1145/1085130.1085135.

https://doi.org/10.1002/swf.41
http://dx.doi.org/10.1002/swf.41
http://dx.doi.org/10.1002/swf.41
https://doi.org/10.1145/1794514.1805128
http://doi.acm.org/10.1145/1794514.1805128
https://doi.org/10.1145/503272.503279
http://doi.acm.org/10.1145/503272.503279
http://doi.acm.org/10.1145/503272.503279
https://doi.org/10.1023/A:1014823126938
http://dx.doi.org/10.1023/A:1014823126938
https://doi.org/10.1145/1314493.1314495
http://doi.acm.org/10.1145/1314493.1314495
http://doi.acm.org/10.1145/1314493.1314495
https://doi.org/10.1145/1085130.1085135
http://doi.acm.org/10.1145/1085130.1085135
http://doi.acm.org/10.1145/1085130.1085135

E R K L Ä R U N G

Hiermit versichere ich, dass ich diese Masterarbeit selbständig
und ohne Benutzung anderer als der angegebenen Quellen und
Hilfsmittel angefertigt habe und dass alle Ausführungen, die wörtlich
oder sinngemäß übernommen wurden, als solche gekennzeichnet
sind, sowie dass ich die Masterarbeit in gleicher oder ähnlicher Form
noch keiner anderen Prüfungsbehörde vorgelegt habe.

Passau, March 29, 2017

Peter Dahlberg

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	1 Introduction
	1.1 Goals
	1.2 Contributions
	1.3 Structure

	2 Background
	2.1 Software Model Checking
	2.2 Configurable Program Analysis
	2.2.1 Control-Flow Automata
	2.2.2 Concrete States and Reachability
	2.2.3 Data Structures and Operators of CPA
	2.2.4 Reachability algorithm for CPA
	2.2.5 Abstract Reachability Graph
	2.2.6 Composition of CPAs

	2.3 Predicate Analysis with Adjustable-Block Encoding
	2.3.1 Logical Representation of the Concrete State Space
	2.3.2 Predicate Abstraction
	2.3.3 CPA for Predicate Analysis with ABE
	2.3.4 Block Adjustment
	2.3.5 Computing a Suitable Precision

	2.4 Safety Properties
	2.4.1 Specification Automata
	2.4.2 Specification Analysis and Specification Language
	2.4.3 Relevance of a Property

	2.5 Program Slicing

	3 Determination Of Property Scopes
	3.1 Property Scope CPA
	3.1.1 Property Scope Location
	3.1.2 Abstract Domain
	3.1.3 Transfer Relation with Strengthening
	3.1.4 Precision Adjustment with Strengthening
	3.1.5 Merge Operator and Termination Check
	3.1.6 Incompleteness for Violated Properties

	4 Visualization of Property Scopes
	4.1 Overlap and Distribution inside Programs
	4.1.1 Property Scope Call Graph
	4.1.2 Arc Diagrams for Property Scopes

	4.2 Property Scopes inside the State Space
	4.2.1 Property Scope Graph
	4.2.2 Property Scope Structure Graph

	5 Evaluation
	5.1 Research Questions
	5.1.1 Assessing Property Scopes of Benchmark Sets
	5.1.2 Property Scopes and Multi-Property Verification

	5.2 Setup
	5.2.1 Benchmark Suite
	5.2.2 Experiments
	5.2.3 Analysis Domain
	5.2.4 Benchmarking Environment
	5.2.5 Presentation

	5.3 Results
	5.3.1 RQ1.1: Distribution of Property Scopes inside Programs
	5.3.2 RQ1.2: Program Variables inside the Property Scope
	5.3.3 RQ1.3: Data Locality inside Property Scopes
	5.3.4 RQ1.4: Global Variables inside the Property Scope
	5.3.5 RQ2.1: Overlap of Property Scopes
	5.3.6 RQ2.2: Performance of Verifying Overlapping Properties Together
	5.3.7 RQ2.3: Reached Set Size with Overlapping Properties

	5.4 Discussion
	5.4.1 RQ1.x: Assessing Property Scopes of Benchmark Sets
	5.4.2 RQ2.x: Property Scopes and Multi-Property Verification

	6 Future Work
	7 Related Work
	7.1 Construction of Program Slices
	7.2 Assessment of Program Slices
	7.3 Property Specification Patterns

	8 Conclusion
	Bibliography
	Declaration

