Master’s Thesis

TRACKING FEATURE-MODEL CHANGES
OVER THE HISTORY OF SOFTWARE
PROJECTS

PASCAL DUPRE
June 10, 2021

Advisor:
Florian Sattler Chair of Software Engineering

Christian Kaltenecker Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Sebastian Hack Compiler Design Lab

Chair of Software Engineering
Saarland Informatics Campus
Saarland University

@@

UNIVERSITAT
I

DES
SAARLANDES

Pascal Dupré: Tracking Feature-Model Changes over the History of Software Projects, © June 2021

Erklarung

Ich erklare hiermit, dass ich die vorliegende Arbeit selbsténdig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that | have written this thesis on my own and that | have not used
any other media or materials than the ones referred to in this thesis

Einverstandniserklarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veréffentlicht wird.

Declaration of Consent

| agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbricken,

(Datum/Date) (Unterschrift/Signature)

ABSTRACT

Black-box approaches in performance analyses of configurable systems are inferior to
white-box approaches in regards to the extractable information about feature interactions.
White-box approaches, however, may require a mapping from features to source code that
needs to be updated for different source code versions. A control or data flow analysis could
utilize the mapping to offer feature specific insights. Updating or creating such a mapping
for many feature models, as an evaluation of the approach might require, is tedious and
error prone. In this thesis, we explore an approach to approximate feature models for new
source code versions on the basis of existing feature models. Our tool FMstimator enables
users to create a feature model tailored to a source code revision with minimal manual
labor.

CONTENTS

1 INTRODUCTION 1
1.1 Goalof thisThesis 2
1.2 OVerview 2
2 BACKGROUND 3
2.1 Software Features and Feature Models 3
22 Git. ..o 4
2.3 Diff Unified Format 5
2.4 AbstractSyntaxTrees L L oL o 6

3 IMPLEMENTATION
3.1 Overview 9
3.2 Preparation. 11
33 Tracking 12
3.3.1 Tracking Heuristic 14
3.4 Merging 18
4 EXPERIMENTS 21
4.1 SyntheticProject. 22
42 lrzip . ..o 22
4.3 VPXENC . .t vttt 23
4o GTEP « v i 23
4.5 Curl . . .o 23
5 EVALUATION 25
5.1 Operationalization 25
5.2 Synthetic Repositories 0 L. 26
53 lrzipo 27
5 VPXEINC © v v vt e e e e e e e e 27
5.5 BIED . . i e e e e 28
56 Curl . .. 29
57 Results 30
5.8 Discussion 31
59 Threatsto Validity 32
5.9.1 Internal Validity 32
5.9.2 External Validity 33
RELATED WORK 35
CONCLUDING REMARKS 37
7.1 Conclusion 37
7.2 Future Work 37
A APPENDIX 39

vii

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1

Feature model represented as feature diagram 4
Git history represented as graph 5
An AST of the for loop in the examplecode 7
Overview of FMstimator’s workflow 10

LIST OF TABLES

Table 5.1 Statistics of experiments on synthetic repository 26
Table 5.2 Statistics of experimentsonIrzip 27
Table 5.3 Statistics of experimentsonvpxenc 28
Table 5.4 Statistics of experimentsongrep, 29
Table 5.5 Statistics of experimentson Curl 30
Table A.1 Selected features for synthetic project at commit e96e20d0 39
Table A.2 Selected features for synthetic project at commit 17dffclf 39
Table A.3 Selected features for Irzip at commit v0.600 39
Table A.4 Selected features for Irzip at commit v0.630 40
Table A.5 Selected features for vpxenc at commit vl.2.0 40
Table A.6 Selected features for vpxenc at commit vli.3.0 41
Table A.7 Selected features for grep at commit v2.20 41
Table A.8 Selected features for grep at commitv3.6 42
Table A.9 Selected features for Curl at commit curl-7.30_.0 42
Table A.10 Selected features for Curl at commit curl-7_40_0 43
LISTINGS
Listing 2.1 Example File A 6
Listing 2.2 Diff between File A and B in unified format. 6
Listing 2.3 ExampleFileB 6
6

Listing 2.4

viii

Example C++code

INTRODUCTION

Software has become ubiquitous in the modern world. With software entering more domains,
the demand for more customized software products has risen. However, developing multiple
customized solutions from the ground up, tailored specifically to every customer, is not
feasible and too expensive. Therefore, it has become the norm to develop configurable
software system that can be fitted to the customer’s individual needs. Configurable software
systems accumulate the common functionality, reducing needed development effort and
reducing code duplication. The software system is divided into features, which represent
user-visible functionality, which can be enabled or disabled by configuration options.
Interactions and dependencies between features are represented and documented in feature
models. One of the main advantages of this software design is that bug fixes and other
improvements need to be implemented just once instead of multiple times. Afterwards, the
software is configured and shipped along with the bugfix to the customers. The product
for each customer is no longer customized software, but a customized configuration of the
software system, which can be devised with a fraction of the original effort.

Building configurable software system creates a new challenge; there is not a single
correct configuration for each customer but multiple. Of course, it is desirable to find the
best configuration for each customer considering their requirements, e. g., some prioritize
runtime, while other prioritize memory usage. Measuring each potential configuration and
picking the best in a brute-force approach is not feasible in most cases, due to the sheer
amount of configurations. The number of configurations grows exponentially with the
configuration options. Instead, a representative subset of configurations is sampled and
measured. The results are used to train a performance model to predict the performance
of arbitrary configurations [11] [8] [10] [9]. The performance models are also of interest to
developers to identify possible feature interaction with a bad performance. Approaches
of this kind view the software system as a black box and do not consider the actual
implementation. The performance prediction views the software as a function that receives
the configuration as input and returns the performance metric. This ignores the true
complexity of the actual software. While it is possible to extract the performance impact
of some feature combinations, they might not reflect the actual cause, which limits the
usefulness of this information.

Therefore, research is turning towards white-box approaches [17] [16]. Depending on the
underlying analysis of these approaches it is necessary to provide an analyses with entry
points for each feature. A mapping from features to source code is required. While such a
mapping is easy to provide for a single version, updating or creating it for many is tedious
and potentially error prone. Furthermore, during development features might be added or
removed, which also requires to amend the feature model accordingly. To make white-box
approaches that rely on a mapping from features to source code scalable, we must reduce
the manual labor required to create a feature model.

INTRODUCTION

1.1 GOAL OF THIS THESIS

In this thesis, we explore an approach to approximate feature models for selected source-
code revisions. We analyze the problem of keeping feature-to-source-code mappings up to
date, and, based on our insights, we design, implement, and evaluate our tool FMstimator as
a first prototype. FMstimator approximates a feature model for a chosen revision based on
two initial feature models, one for an earlier revision and one for a later revision. The given
feature models are updated based on code changes between revision towards the chosen
revision. A series of heuristics estimates the changes to the feature model and source-code
mappings based on the source-code changes. In a final step, the updated feature models are
merged into the final approximated feature model for the target revision. The final feature
model also contains the updated feature-to-source-code mappings.

We discuss possible source-code changes and their handling in our heuristics. Further-
more, we conduct a case study to assess our approach and gain insights into necessary
future improvements. The evaluation on different case studies also provides insight on
changes that we should handle with future improvements to our tool.

1.2 OVERVIEW

The thesis is structured as follows. Chapter 2 introduces features and feature models, and
introduces the core concepts of Git, the version control system, which is used by many
open-source projects. Furthermore, we introduce the unified format for diffs and give a brief
introduction to abstract syntax trees. Chapter 3 presents the design choices and details of
FMstimator. The chapter discusses the individual phases separately in Section 3.2, Section 3.3,
and Section 3.4. Chapter 4 states our research questions and presents the projects we selected
for our case studies. In Chapter 5, we present the results of our experiments and answer the
previously stated research questions. We discuss threads to the validity of our experiments
in Section 5.9. In Chapter 6 we set our works in relation to other research. We summarize
our findings in Chapter 7 and give an outlook on future work.

BACKGROUND

In this chapter, we introduce the conceptual abstraction of software features, which represent
the user-visible functionality, and feature models, that group features hierarchically and
represent dependencies between them, as they are the central objects of this thesis. Further-
more, we discuss the version control system Git, which we use to analyze the development
history of software projects. Our tool uses diffs to analyze changes between version, we
introduce the diff unified format to represent these changes. Lastly, we give a brief overview
of abstract syntax trees, which we use in one of our tracking heuristics.

2.1 SOFTWARE FEATURES AND FEATURE MODELS

Modern software is usually configurable, in the sense that its behavior is not static but the
user is able to configure it such that the behavior fits the use case. Enabling or disabling
different configuration options add or remove certain functionality fro the software. We
refer to these user-visible, configurable functionalities as features.

A feature is a distinct user-visible aspect or characteristic [12] in software, or a "charac-
teristic or end-user-visible behavior of a software system" as Apel et al. [1] define it. For
example, a database system might allow users to enable or disable data compression. Such
a compression feature is, in this case, binary in nature as only two states exists: enabled
or disabled. Furthermore, there are numeric features. In contrast to binary features, they
are always assigned a numerical value in a specified range and cannot be disabled. For
instance, compression algorithms often allow to configure how aggressive they should try
to compress data, for example, with a value in a range between o and 9, where o stands for
no compression and 9 stands for the best compression.

In many cases features depend on other features and cannot be configured independently.
Imagine a database that offers different storage engines. Each storage engine is represented
by a binary feature, however, only one can be used. To represent these dependencies, feature
models are used to structure and express them.

In Figure 2.1 we show a feature model, based on our database examples, displayed as
a feature diagram. It collects all features of a software and it displays dependencies and
relationships between features. The feature diagram represents features in boxes; a solid
border denotes binary features and a dashed border denotes numeric features. Furthermore,
a child can only be enabled if the parent is enabled; a numeric child is ignored or configured
with a default value, if the parent is disabled.

The Root feature on top represents the non-configurable code, also referred to as base, and
cannot be disabled. It has two children, Compression and Storage. Compression is marked
as optional by the hollow circle on top. Level is a numeric feature, [0 — 9] represents the
allowed value range; it is also possible to specify a finite set of possible values. The filled
circle on top of Storage denotes that it is not optional, i.e., it is mandatory and must be
enabled. Mandatory features are not configurable in the strict sense and are usually used

4

BACKGROUND

Deprecated

R
©

Legacy — Level > 4 Legend
® Mandatory option
O Optional option

AAIternative group

Figure 2.1: Feature model represented as feature diagram

to encode structure or groups of similar features. The arc between the connections to its
children indicates that Storage is an alternative group, i. e., exactly one of its children must
be enabled.

Further relationships, also known as cross-tree-constraints, are noted below the diagram
as propositional formulas. In the example, the Legacy storage engine requires that Level is
set to at least 4. Wherever possible, relationships should be encoded in the tree structure
and cross-tree-constraints should only be used if necessary.

2.2 GIT

Git' is a version control system. Version control systems are used to manage repositories
and track changes in its files such as source code. Many open-source projects host their
source code via public git repositories, allowing virtually everyone to help development
or inspect the project’s code and history. During development developers create revisions,
also known as commits, to archive and share their changes to files. Commits save the new
version of the changed files and some meta information, such as author name and email, a
message, and parent commits, i. e., commits on which the new version is based upon. Each
commit can be uniquely identified by a hexadecimal hash. In order to simplify the handling
of these, Git also allows to create tags to provide a meaningful name for important commits,
e.g., version releases.

One of Git’s benefits is its branching model. In most projects developers work in parallel
on the same code basis. Git allows to easily create branches and merge them again when
needed. In many projects development is performed exclusively on branches which are
later merged into the primary branch (usually called master or main) of the project. This
development style keeps the primary branch clean, prevents conflicts, and allows to have a
working version at all times in this branch.

Figure 2.2 shows a git commit history as directed graph. Each circle represents one commit
and the arrows point to parent commits, forming a chain. The commits are chronologically
ordered from left to right. The leftmost commit is the first and initial commit and the

1 https://git-scm.com/

https://git-scm.com/

2.3 DIFF UNIFIED FORMAT

Figure 2.2: Git history represented as graph; circles represent commits and outgoing arrows point to
parent commits.

rightmost is the latest commit. After the second commit the history branches off. This
happens when multiple future commits are based on the same commit, e.g., when two
developers are working in parallel. This branch merges back into the primary commit chain
at the second to last commit. The merge commit has two parent commits: the last commit of
the branch and the last commit of the original commit chain.

In this thesis, we also refer to a commit as older than another, if it is an ancestor of it.
Furthermore, a commit’s parents are sorted in the order given during creation. The first
parent commit is usually the last commit on the same branch and the remaining parents
stem from other branches. However, it is possible to change or circumvent this behavior.
The first commit in the list of parents is also called the first parent.

2.3 DIFF UNIFIED FORMAT

In many scenarios it is useful to view the changes between two files. For example, in code
reviews it is often sufficient to inspect and discuss changes to existing code. Difference
algorithms create an edit script, also known as patch or diff, that contains instructions on
the needed changes to transform one file into the other.

One of the most popular difference algorithms was invented by Myers [13]. It has a
O(ND) time and space complexity, where N is the length of both files combined and D is
the size of the resulting edit script. There are multiple formats to represent the differences,
however, we use the unified format? for its better readability.

Consider Listing 2.1 as file A and Listing 2.3 as file B. The second paragraph of file A
is deleted and the last paragraph of file B is added. Listing 2.2 shows an edit script to
transform file A to file B, or vice versa, if the instructions are inverted accordingly. The
unified format starts with a two line header which contains labels for the old (---) and
new (+++) file. The header is followed by one or more hunks. A hunk is a collection of
differences which are considered to be close to each other. Usually, they also contain context
lines before and after changes for better readability. Hunks in unified format start with a
single-line header, starting and ending with @@ (Line 3 and line 13 in Listing 2.2). Hunk
headers contain two number pairs, one for each file. The first number in a pair is the starting
line and the second number is the number of lines the hunk spans in the respective file. If
a hunk contains only a single line, the second number is omitted. The first number pair,
marked by -, specifies the hunk’s location in the old file, while the second pair, marked by

2 https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html

5

https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html

O 00N ONUl B W N R

R e
N R O

BACKGROUND

This paragraph will not 1|--- file_a.txt
change in the next version. 2 |+++ file_b.txt
3|@ -1,9 +1,6 @@

This paragraph will be 4 | This paragraph will not
deleted in the next version. | 5 | change in the next version.
6

This paragraph will not 7 | -This paragraph will be
change in the next version. 8 | -deleted in the next version.
However, we can always add 9 |-
more text below. For 10 | This paragraph will not
demonstration purposes, this | 11 | change in the next version.
text needs to be this long. 12 | However, we can always add
13 |@@ -11,3 +8,5 @@
Listing 2.1: Example File A 14 | demonstration purposes, this
15 | text needs to be this long.
16
17
18

O 00N ONUl AW N R

HooR R
N R O

Listing 2.2: Diff between File A and

B in unified format

This paragraph will not
change in the next version.

This paragraph will not
change in the next version.
However, we can always add
more text below. For
demonstration purposes, this
text needs to be this long.

This is a new paragraph, it
was not here the last time.

Listing 2.3: Example File B

+. After the header, the added, removed or context lines are listed. The first character in each

line indicates the kind of change.
¢ +indicates an added line.
e _ indicates a removed line.

* a whitespace indicates no change.

2.4 ABSTRACT SYNTAX TREES

An abstract syntax tree (AST) is a representation of source code in the form of a tree. This
data structure is primarily found in compilers and code analysis tools. An AST represents
the source code’s syntactical structure in a tree. The tree representation allows to encode
certain source code details implicitly, such as delimiters, parentheses, etc. Depending on the
AST implementation it contains additional information, e. g., a mapping of the tree nodes to

source code locations.

Listing 2.4 shows some source code in C++, while Figure 2.3 shows a simplified AST

representation of the for loop spanning lines 3-5.

1 [int nsum(int n) {

int acc = 0;

for (int 1 =1; i <= n; ++1) {
acc = acc + 1i;

}

return acc;

N s~ WN

Listing 2.4: Example C++ code

2.4 ABSTRACT SYNTAX TREES

prefix ++ | CompoundStmt

Figure 2.3: An AST of the for loop in the example code

The for statement is represented by the node for. The node has four child nodes:

1. VarDecl represents the declaration of the integer loop variable i with the initial value
1.

2. The binary operator <= represents the loop condition i <= n. The node has two
children which represent the left and right operand.

3. The unary operator prefix ++ represents the step function ++i.
4. CompoundStmt represents the loop body.

The loop body consists of one line acc = acc + i;. This line is parsed in the AST
according to the parentheses and operator precedence; + has precedence over =. Finally, the
line is represented with the binary operator = on top, with the variable acc as left operand
and the subtree for acc + i on the right.

7

IMPLEMENTATION

This chapter describes our approach of tracking feature model changes over the history
of software projects and describes relevant implementation details that are crucial when
implementing the approach. First of all, we present an overview over the different phases of
our tool FMstimator. Furthermore, the tool’s functionality is discussed in-depth.

The goal of this tool is to estimate a feature model for a given target commit. Manual
creation of multiple feature models is tedious and FMstimator aims to reduce the manual
work needed. At the core of our approach, we work with user-supplied feature locations. A
feature location is a source code location which is essential for a features presence, i.e., if
the location is removed, we can assume that the feature no longer exists.

Starting from a given feature model that is valid at a known commit, we incrementally
analyze the code changes in the software’s revisions towards the target commit and update
feature code locations accordingly. If our analysis determines that code essential to a feature
is removed, we remove the feature from the estimated feature model.

Of course, this technique only allows to detect feature deletions. To compensate for this
limitation, we work with a second feature model in a similar manner. However, in this case
we reverse the direction. Starting from a newer commit, we analyze the reverted changes to
source code. If we observe a code deletion in this scenario, we, in fact, have observed the
first introduction of the code, and in consequence the introduction of the connected feature.

Due to the approximation from two sides, we receive two approximated feature models
for the target commit, which need to be unified. To achieve this, we have developed a
merging algorithm that performs a union-like operation on feature models.

In the current version, the resulting feature model is intended to give an idea of a correct
feature model and not to be a usage-ready version. We can accept this limitation, since the
goal of this implementation is to explore the viability of this approach and not to deliver a
perfect solution. We chose Python 3.8 for this implementation to allow a fast development
of this prototype. It is available on Github.

3.1 OVERVIEW

Our tool aims to approximate a feature model at a given target commit based on a number
of existing feature models. The core idea is that the tool observes source code locations that
are associated with a feature and depending on changes to this source code it decides if a
feature was removed, added, or if only the formatting changed.

Without domain specific knowledge it is not possible to detect when features are intro-
duced. In order to work around this, we work with two feature models. The first one belongs
to a commit that is an ancestor of the target commit and the second one belongs to a commit
that is a descendant of the target commit. The second feature model contains all added
features and by observing the commit history in reverse we can detect their introduction

1 https://github.com/padupr/FMstimator

https://github.com/padupr/FMstimator

10

IMPLEMENTATION

+A1 +A2 +As +Aa +As +Ae

Figure 3.1: Overview of FMstimator’s workflow

which looks like a removal in the reverse perspective. Features that are introduced and
removed in between cannot be tracked, since they are not known in either model. From
here on, we refer to the commits belonging to the first and second feature model as first
and second commit, respectively.

Furthermore, where possible, features should be annotated with source code locations,
otherwise, they cannot be tracked. This task has to be done manually by the user or,
preferably, a domain expert. In most projects it is easy to find source code related to features
in command line option parsers or configuration file parsers. Also, these locations are
usually the first code that is feature specific. Some features cannot be linked to any specific
code location. Exemplary, the Root feature, which represents the non-configurable code base.

We implemented our approach in FMstimator. Its design splits the approach into three
phases. This allows us to replace or update the functionality of each phase individually in
the future. The three phases are:

1. Preparation
2. PFeature and code location tracking
3. Merging of feature models

In the first phase, FMstimator traverses the project’s commit history to find a commit
sequence between two commits, corresponding to the given feature models that includes
the target commit. We use this sequence to generate two commit sequences that start at the
corresponding feature models and end on the target commit. Our tool offers two versions
to find a commit sequence. The first creates sequences of commits that exist in the project’s
commit history, i. e., adjacent commits in the returned sequences are also adjacent in the
commit history. The second creates two sequences that consist of one of the initial commits
and the target commit. The first one is used for an incremental analysis of the history and
the second is used for a direct analysis. An incremental analysis can observe code changes in
a finer granularity than a direct analysis, possibly enabling better results. On the other hand,
a direct analysis does not observe changes that are reverted again. This can be beneficial, if
the removal of a feature’s code location is reverted.

Figure 3.1 shows an overview of the workflow in the second phase. Initially, feature
models FM A (left) and FM B (right), and the respective commit sequences towards the target
commit are known. Here, the arrows between commits show the tracking direction. Starting
from the commit of the first feature model FM A we calculate the diff (A1) to the next commit
in the commit sequence. We then apply the diff A; on FM A to estimate a feature model FM

3.2 PREPARATION

A’ for the next commit. To estimate the next feature model we use a series of heuristics to
update the locations of each feature. The heuristics analyze the diff for changes that affect
the tracked locations. For now, the implemented heuristics focus on updating the location
and tolerate formatting changes. If none of the heuristics is able to provide an update to the
location, we must assume that the code was removed and delete the location from its feature.
If a feature loses its last location, we also remove the feature from the updated model.
This process is repeated for every pair of consecutive commits in the commit sequence to
incrementally update the feature model until we receive the final model FM Ax.

The same process is performed on the second feature model FM B with corresponding
commit sequence to receive the model FM Bx. This case does not require any special handling,
since the commit sequence is already given in the correct order from the first phase. This
phase results in two feature models that contain all features that persisted from their original
commit to the target commit. The final two feature models are passed to the third phase for
merging.

In the third phase, both feature models are merged into one. This process requires both
feature models to have a similar structure, i. e, features have the same parent feature and
properties in both models. While this requirement seems restrictive, it can be fulfilled by
creating one of the two feature models and adapting a copy to fit to the other commit.

We discuss each of these phases in the following sections in greater depth. This also in-
cludes the presentation of implementation details and the design decision for the heuristics.

3.2 PREPARATION

In the preparation phase FMstimator parses inputs and collects data for the next phase. At
first, FMstimator parses the given feature model files into an internal representation. For
this, we use the python bindings of the VaRA feature library>. As part of this thesis, we also
participated in the development of this library. The feature model is given in XML; the used
format is based on the format that is also used by SPL Conqueror3. In order to include more
information, we extended the format; most importantly a commit reference can be included
as XML attribute and features can be annotated with code locations. Each code locations
consist of five values: a file path, a start line and column, an end line and column, which
uniquely identify the location of a feature variable in the source code.

In the next step, we collect the commit sequence, which we analyze in the second phase.
For this, we use pygit2* (python bindings for libgit2). Starting at the commit belonging to
the second feature model, we always move to the first-parent commit and record it until
we find the commit belonging to the first feature model. At last, we need to verify that the
target commit is part of the found sequence.

This method of obtaining the commit sequence limits the selection of initial and target
commits depending on the second commit. If a commit is not in the line of first-parent of
the second commit, it cannot be found with this method. However, in most repositories the
interesting commits, e. g., releases, are compatible with our method. In this prototype, we
wanted to evaluate the feature model approximation and location tracking, which is not

2 https://github.com/se-sic/vara-feature
3 https://www.se.cs.uni-saarland.de/projects/splconqueror/
4 https://www.pygit2.org/ and https://libgit2.org/

https://github.com/se-sic/vara-feature
https://www.se.cs.uni-saarland.de/projects/splconqueror/
https://www.pygit2.org/
https://libgit2.org/

12

IMPLEMENTATION

limited by this approach. In order to solve this shortcoming, we could implement a more
sophisticated commit search. The commit history of Git is essentially a directed acyclic
graph, so we could use a graph search algorithm, such as Dijkstra’s algorithm [4], to find
a path from the second commit to target commit and then continue the search to the first
commit.

Depending on the chosen analysis type, incremental or direct, we create the sequences for
the second phase. For an incremental analysis, we slice the found sequence at the target
commit such that we have two sequences: one starting at the first commit and one starting
at the second commit, both ending on the target commit. For a direct analysis we create two
sequences containing two elements each. The first contains the commit corresponding to the
first feature model and the target commit. The second contains the commit corresponding
to the second feature model and the target commit.

3.3 TRACKING

In the tracking phase, we update the given code locations based on code differences and
remove features from their feature model if their locations are lost. Algorithm 1 shows the
tracking algorithm.

Algorithm 1: Feature tracking over commit chain
Input: Feature Model FM, Commit List Commits

1 OldCommit = Commits.PopFront()

2 for each NewCommit in Commits do

3 Diff = ComputeDifference(OldCommit, NewCommit)

4 for each Feature in FM do

5 if Feature.hasNoLocations() then

6 L continue

7 for each Location in Feature do

NewLocation = EstimateNewLocation(Location, Diff, OldCommit,
NewCommit)

9 if NewLocation found then

10 L Feature.UpdateLocation(Location, NewLocation)
11 else

12 L Feature.RemovelL.ocation(Location)
13 if Feature lost all locations then

14 L Feature.MarkRemoved()
15 OldCommit = NewCommit

The loop in line 2 walks over all commits in the given commit list. It remembers the last
one and computes the the difference to the current one, i.e., which changes were made.
In our implementation, we use the default difference algorithm provided by pygit25. We

5 https://www.pygit2.org/diff.html#pygit2.Repository.diff

https://www.pygit2.org/diff.html#pygit2.Repository.diff

3.3 TRACKING

also apply the find_similar® function to the diff to detect file renaming and moving. In
the following, all features that are annotated with code locations are processed. Based on
the known feature location and computed difference, a new feature location is estimated
(line 8) with heuristics. If a new location could be estimated, the old location is updated,
otherwise, it is removed. Should a feature lose all of its locations, it is marked as removed.

There are multiple cases of a feature’s removal (or introduction) in the observed commit
range which we need to consider. As long as one of the two remaining feature models
contains a feature, it needs to be included in the final feature model that is built during the
merging phase. The simplest case is a feature that persists throughout the tracked range
and the feature should exist in both feature models after tracking. In the following, we list
cases in which features are added or removed at different moments in the observed commit
range and how they are handled.

¢ In the first case, consider a feature that is removed between the first and target commit.
It is removed from the first feature model during tracking and is not part of the second
one from the beginning. Neither of the resulting feature model have this feature.

* In the second case, consider a feature that is added between the first and target commit.
It is not contained in the first feature model, but in the second one. While tracking the
second feature model, the feature is not removed, hence, the second resulting feature
model contains it.

¢ In the third case, consider a feature that is added between the target and second
commit. It is not contained in the first model and during tracking of the second model
the addition is detected, hence, none of the resulting models contain this feature.

¢ In the last case, consider a feature that is removed between the target and second
commit. The feature is only contained in the first model and not in the second. During
tracking it remains part of the first model.

Note that the last two cases mirror the first two, respectively. Removing a feature before the
target commit is similar to adding a feature after it. They can be transformed by swapping
both feature models and reversing the commit sequence, effectively changing the removal
to an addition and moving it to the other side of the target commit.

We created a heuristic pipeline to estimate new feature locations. It consists of multiple
heuristics that are queried sequentially. If one heuristic returns a new location, the pipeline
stops and returns that location. This design decision also allows to easily append more
heuristics if needed. We have designed three heuristics that compliment each other. While
the first heuristic H; is detecting line movements by analyzing the given diff, the second
heuristic H, tries to find new code that matches the old code. The third heuristic Hj
compares the AST of the old and new file version to find a new location. This design saves
time by only executing the lowest heuristics possible to get a result.

6 https://www.pygit2.org/diff.html#pygit2.Diff.find_similar

13

https://www.pygit2.org/diff.html#pygit2.Diff.find_similar

IMPLEMENTATION

3.3.1 Tracking Heuristic

Our tracking heuristics operate on the given difference between two commits and a location
consisting of five values: path, start line, start column, end line, and end column. We write
a location as <path(startline:startcolumn-endline:endcolumn)>.

40 // do something...

41 if (opt == "¢’) {
42 compression = true;
3] 1}

44 // do more...

For example, imagine that we want to track the statement compression = true; in the
code above. The code’s location is <Foo.cpp(42:5-42:24)>7.

Before we start with a deeper analyses, we check if the file, specified in the tracked
location, was moved or changed. This information is provided by the computed diff and we
update the old path to the new one, if the file was moved, or do nothing if the file was not
changed.

If the file was changed, there are several types of code changes, which we need to cover.
At first, we list our categorization of code changes. Then, we present the handling of these
cases by our heuristics.

Case 1: Lines added/removed before:
When code lines are added or removed all of the following code is moved down or
up, respectively.

Case 2: Lines added/removed after:
The tracked code is not moved by added or removed lines below.

Case 3: Tracked code is removed:
We can only observe that the code is removed, so we cannot provide a new code
location.

Case 4: Tracked code is moved:
This is an extension of the third case. We can observe that the tracked code is removed,
but we can also observe that it is added at a different location.

Case 5: Tracked code is modified
This case is objectively the hardest. We can observe that the tracked code is removed,
but we do not observe that the same code is added at a different location.

The first two cases are handled by heuristic H;. It is entirely based on counting added
and removed lines for the file in the given location. Consider this example for the first case:

@@ -28,2 +28,5 @@
// code

// more code

7 We start counting at 1 for lines and columns; The end is marked by the first character that is not included.

3.3 TRACKING

In this example, three lines are added above, so the tracked code is also moved down
three lines. We can either count added and removed lines or subtract the length of the
hunk in the old version from the new version, if the tracked code is not part of the hunk.
Of course, only lines are need to be considered that are before the beginning of tracked code.

Consider this example for the second case:

@@ -75,2 +75,5 @@
// code

// more code

In this example, three lines are added below, so the tracked code is not moved. In fact, we
do not have to consider code changes after the tracked location at all. Hj is the first heuristic
in the pipeline and can handle both cases without failure, therefore, the remaining heuristic
do not need to handle this case.

Consider the following code for the third case:

@@ -40,5 +40,2 @@
// do something...

if (opt == 'c’') {
compression = true;

}

// do more...

In this example, three lines are deleted, one of them contains the tracked code. If these
are the only lines, we have to assume that the code is removed indefinitely. In this case,
no heuristic should find a correct new location. H; does not return a location if part of
the given location is removed. H, and H3 will search for a new location but fail, since the
removed code is not added again.

To summarize the logic of Hy: If lines are added/removed before the tracked location, the
code location shifted down/up accordingly. If lines are added /removed after the tracked
location, the location is unaffected. If the tracked line is removed, the heuristic does not
estimate a new location but reports it as removed.

The following cases are handled by H, and Hjs. Both of heuristics try to relocate removed
code. The heuristic H; tries to recover the tracked code from the added lines. Our imple-
mentation assumes that it is placed after H; in the heuristic pipeline, so the original code is
assumed to be removed. It searches in the added lines of the diff for equivalent code and,
if found, returns its location as new estimated location. We only consider added lines as
potential new locations to prevent false mappings to existing duplicated code. H3 works
similarly, but on a semantical level. At first, it parses the old code to an AST and searches
for a subtree that represents the tracked code. Then it parses the new version of the same
file and tries to find an equivalent subtree. If successful, it returns the location of the code
that the new subtree represents. Similar to H», the new location must be partially added in
the given diff.

15

16 IMPLEMENTATION

Consider the following diff for the fourth case:
@@ -40,5 +40,2 @@
// do something...

- if (opt == "c’) {
- compression = true;
-}
// do more...
@@ -61,2 +58,5 @@
// did more...

// still more to do...

Here, the tracked code was moved from line 42 to line 60. By searching the added lines
for the tracked code we can find a correct new code location in line 6o.

FMstimator also supports the tracking of code that spans more than a single line. In this
case we have to consider that sometimes only part of the original code is added and handle
it correctly. Consider the following code:

40 // do something...
41 if (opt == "¢’) {
42 compression =
43 true;

44| }

45 if (opt == "f’) {
46 foo =

47 true;

48 }

49 | if (opt == "b") {
50 bar =

51 true;

52 }

53 // do more...

Here, we want to track the location <Foo.cpp(42:5-43:12)>. If the last conditional is
removed and the first is moved to the end, we can receive the following diff:

@@ -40,6 +40,2 @@
// do something...

- if (opt == 'c’) {
- compression =
- true;
-}

if (opt == 'f’") {
@@ -48,4 +44,4 @@

}
- if (opt == 'b") {
- bar =

true;

3.3 TRACKING

While the tracked code is removed completely in the first hunk, only a part of the tracked
code is shown as added in the end. This diff gives instructions to remove only the first two
lines of the last conditional and replace it with the first two of the first conditional; this
allows for a shorter diff.

In order to successfully recover the code in this case, we have to be able to recover only
parts of the code from the added lines but also find the remaining code. H, approaches this
by collecting all added lines and splitting the tracked code into lines. In the next step, we
search the content of split tracked code lines in the added lines, and if we find a matching
pair, we can compute a possible new location based on the matched code. In this example,
the tracked code spans two lines and we find a match for the first line, so we have to also
check the next line for the remaining code. Lastly, we must check if the found location is
actually equal to the original code; if it is not we have to continue searching. This solution
does not allow the changes to reduce the number of tracked lines.

Next, consider the following diff for the same code example as before, however, in this
case the second conditional is removed.

@@ -42,6 +42,2 @@
compression =
true;
}
if (opt == "f’) {
foo =
true;

This diff does delete part of the tracked code, but does not add any lines. We did not
consider this case during implementation and are not able to handle it, albeit the new
location is equal to the old new. There are two solutions to handle this.

Hj returns no new location if part of the tracked location is in a removed line. Instead
of aborting the tracking and returning no location, we could perform a comparison first
between the original code and the code after tracking and return the new location if it is
equal. Of course we would still need to consider line changes before the tracked code. H
and Hj currently only considers added lines to recover code. If we also considered the
immediate context lines for recovery, we could also find the correct location here.

The fifth case must be treated carefully. Our first two heuristics do not use any syntactic
nor semantic knowledge, so we cannot decide if a change to the tracked code does not delete
the tracked feature. The second heuristic allows changes to leading and trailing whitespaces
in the tracked code, in order to detect changes in indentation.

To allow at least the tracking of syntactic changes, we implemented a heuristic that is
based on the abstract syntax tree of the tracked code. A detailed description can be found
below. Similarly to the second heuristic, it only considers added lines as new locations, so it
also does not handle changes correctly if no part of the original code is added. The solution
would be similar.

Hj complements the previous heuristics. As noted before, the heuristics that are only
based on line content do not use any deeper understanding of the code. This heuristic
tries to find an AST subtree of the tracked code and rediscover it in the next commit. It is

17

18

IMPLEMENTATION

implemented as a recovery strategy and is only used to find a new location if the tracked
code is removed. Therefore, we only consider code if parts of it were added. Furthermore,
this heuristic expects that there is an AST subtree that represents the tracked code.

At first, the file of the tracked code is parsed with Clang 8 to receive an AST. In the next
step, we try to find the AST subtree that represents the tracked code. Starting at the AST’s
root node, we traverse the tree until we find a node, whose source location is the same as or
inside of the tracked location. Since we move down the tree and a node’s children’s source
location can only become more precise, we will eventually find the most coarse AST subtree,
if the AST contains it.

Unfortunately, the python bindings of Clang are limited and do not expose all code
location information that is known to the AST. This causes our implementation to sometimes
miss the subtree, specifically, if the start or end of the tracked code contains pre-processor
macros. In this case, the reported code location refers to the code that was inserted in place
of the macro. We believe that the C++ API of Clang also offers the source locations before
macros resolution, so this problem should be solvable with better API access.

If a correct subtree is found, we continue by also parsing the new version of the file to
receive a second AST. In this second AST, we search for a subtree that is similar to the
subtree that we found before. If we find one, we can use its source location as new location.
As before, we still check if at least part of the new location was added.

This heuristic has several drawbacks. Firstly, it is language specific. The previous heuristics
work on all text-based files; this one does only work on languages that are supported by
Clang. Secondly, parsing source code is slow. This can be mitigated by using it only when
the need arises, which our implementation does; this heuristics is only used if both previous
heuristics fail. Furthermore, Clang must be able to find files included by the parsed files,
otherwise the AST might be incomplete. FMstimator allows the user to pass arguments that
are forwarded to the parsing process to allow the specification of non-standard include files.
Ideally, this information should be obtained in a more autonomous manner.

Lastly, we acknowledge that these heuristics can fail to recognize that code is moved
into a comment, or is no longer reachable. However, it is considered as bad coding style
to move code into comments and most projects will not accept code contributions that do
so. It is usually advised to remove code and retrieve it from the version control system if it
is needed again. Furthermore, we do not expect the selected code to become unreachable,
however, this also depends on the selected code locations, e. g., the command line parser is
usually always reachable during a normal development history.

3.4 MERGING

For the last phase, we receive both final feature models from the previous phase. The goal
of this phase is to merge both feature models into one. If a feature is contained in either of
the given feature models, it should also be contained in the merged feature model; this can
also be viewed as a union of both.

Algorithm 2 shows the merging algorithm. It receives a feature model and a feature
model node as input. Initially, it should be called with the root feature of the other model
that is merged.

8 https://clang.llvm.org/

https://clang.llvm.org/

3.4 MERGING 19

Algorithm 2: Merging of two Feature Models
Input: Feature Model FM, Feature SubtreeRoot

1 Function mergeSubtree(FM, SubtreeRoot):

2 if SubtreeRoot in FM then

3 if not similar(SubtreeRoot, FM.get(SubtreeRoot)) then
4 L raise error
5 else
MergeGroupProperties()
7 MergeLocations()
8 else

9 L FM.addFeature(SubtreeRoot.copy(), SubtreeRoot.parent())

10 for each Child in SubtreeRoot.children() do
11 L mergeSubtree(FM, Child)

In a first step, the algorithm checks if there is a feature in the feature model with the
same name as SubtreeRoot?. If a matching feature is found, it continues to check if other
properties are also similar, such as parent feature, feature kind (binary or numeric), optional
or mandatory. This similarity check is implemented in a very strict manner. It requires
the parents to have the same name and to be of the same kind. Furthermore, the features
themselves also must have the same kind, binary features must both be optional or both
mandatory, and numeric features must allow the same values. Should the matched features
differ to strongly, the merging process is aborted. In this case, the user has to perform the
merge manually.

If the features match, we try to merge potential potential group properties and locations,
i.e., alternative groups. The used XML format does not allow to represent alternative groups
with fewer than two children. If new children are added to a group it is possible that only
one of the models is aware of the alternative group. Therefore, we allow to merge a feature
with another that is the parent of an alternative group, iff the feature has less than two
children, otherwise an error is raised. Merging locations is a union of the feature’s locations
in both models.

We decided to use a strict approach to ensure that the final model does not create new
and possibly false constraints. For example, attaching a feature to a different parent also
creates a different implicit implication. If changes to the structure of the feature model or to
the properties of single features are needed, we want the user to resolve them instead of
returning a model with false properties that is potentially used.

In the case that there is no matching feature to SubtreeRoot, we create a copy of the
feature and add it. It is added as a child to a feature that shares the name of SubtreeRoot’s
parent. Such a parent must exist; either it existed from the beginning of the merging process
or was added previously.

Lastly, the merging process is performed recursively with each child node of SubtreeRoot.
This merging process does not consider cross-tree-constraints. Feature models do not carry

9 A feature’s name is assumed to be unique.

20

IMPLEMENTATION

sufficient information on the origin of constraints to safely merge them. However, we do
preserve constraints that are embedded in the tree structure itself. While the similarity check
seems very restrictive, it should not abort the merging process if it is considered during the
creation of the initial feature models.

Finally, the merged model is written in XML-format. If the merging failed, we output
the estimated feature models at the target commit in XML-Format, such that the user can
merge them manually.

EXPERIMENTS

This chapter describes the experiments we conducted to analyze the precision and applica-
bility of our approach, when applied to real world software projects.

Initially, we created a small project ourselves to test our approach in a familiar setting
and test specific edge cases. Furthermore, we chose four open-source projects: Irzip, vpxenc,
Curl, and grep to evaluate our precision on real world software projects.

All of the selected open-source projects are implemented in C and/or C++ and have
tagged commits that belong to releases, allowing us to easily identify them. Furthermore, all
projects offer a command-line interface, allowing us to map features to the corresponding
command-line parser code. The experiments on open-source projects allow us to identify
previously unconsidered strengths and weaknesses of our approach on a real development
history.

For each project, except our own, we chose a commit range that covers several hundred
commits. In the next step, we reviewed the present features at the beginning and the end.
After selecting an initial set of features, we created a feature model for the later commit first
and then adopted it to the earlier commit. We assume that software and, as consequence,
feature models become increasingly complex during development, therefore, creating the
later model first is reasonable to include the tree structures for, possible future, feature
groups in the earlier model. The created feature models are not aimed to be complete
but to include a representative set of features for the project. Where possible, features are
annotated with a code location in the command line parser. Whenever possible, we included
features that are added or removed in the selected range. A full list of features included in
the initial feature models is included in Appendix A.

In each project, we selected three target commits in the commit range. If present, we
selected tagged release commits. While selecting commits, we tried to space them evenly over
the whole range. For each selected commit, we run our tool twice; once with incremental
commit analysis and once with direct commit comparison. This experiment setup requires
six tool executions, three target commits with two settings, for each project, so 30 in total.

For our experiments, we modified the behavior of the heuristic pipeline; If the first
heuristic fails to update the location, we estimate a new location with both recovery
heuristics. This allows us to compare estimated locations and provides more opportunities
to evaluate the behavior of H3. The result of Hj, if present, is preferred such that he output
of the heuristic pipeline does not change.

The goal of these experiments is to answer the following research questions:

RQ 1: How common are code changes, which we cannot handle with the current heuristics?
RQ 2: How often is user intervention required to merge or correct the final feature model?
RQ 3: Is the incremental commit analysis more precise than the direct commit comparison?

The research questions are answered in the discussion of our evaluation.

21

EXPERIMENTS

In the following, we present each project and the selected commits. Furthermore, we
present a simplified commit history of each project. The commit history is reduced to
the start and end commit of the commit range and the three selected target commits.
Additionally, we list relevant added and removed features between commits.

4.1 SYNTHETIC PROJECT

We implemented a small command line tool" that implements the context-sensitive image
cropping algorithm seam carving®. The project’s history deliberately contains changes to test
our heuristics; This includes file renaming, feature deletion and addition, reordering of the
command line parser, and changing the indentation style from two spaces to four spaces.
The project contains 16 commits. We selected every fourth commit as our target commits.

The following list shows the hashes of selected commits and the feature changes until the
next commit. Note that we interpret the replacement of a binary feature with a numeric
feature as removal and addition of features. Selected commits:

€96e20d0
5f6el7ea
— Add Sobel feature
103c787b
— Remove binary logging feature
- Add numeric logging feature
fbf2c148
— Remove dualGradient feature
17dffclf

4.2 LRZIP

Irzip is a compression utility. Its name is an abbreviation for Long Range ZIP or LZMA RZIP.
We chose v0.600 as the first commit and v0.630 as the second. Both feature model contain
12 features of which nine are annotated with a location. None of the features is removed or
added in the observed commit range. This case study allows us to evaluate our approach
with feature models that should remain unchanged except for the feature locations. All
selected commits are listed below:

v0.600
* v0.610
e v0.614
* v0.620
* v0.630

1 https://github.com/padupr/seamcarving
2 https://en.wikipedia.org/wiki/Seam_carving

https://github.com/padupr/seamcarving
https://en.wikipedia.org/wiki/Seam_carving

4.3 VPXENC

4.3 VPXENC

vpxenc is a command-line video encoding tool for the codecs VP8 and VP9. It is part of libupx
that serves as reference implementation of both codecs. We chose to run our experiments in
the commit range between v1.2.0 and v1.3.0. The VP9 codec was officially introduced in
release v1.3.0, so we expect to changes to the argument parser in this range.

The command-line option parser in this project is not completely straightforward, so we
will discuss it briefly. The source code specifies possible options in structs. These include a
short and long name, if it has a value, and a description. The command-line parser tries
to match the given options against the structs. For general options, valid for both codecs,
it uses a standard cascade of if-conditionals, however, options that are specific to a codec
are matched in a loop, that does not have any code specific to the options. Therefore, if
the option is not explicitly parsed in the argument parser, we selected the definition of the
appropriate struct. The selected commits and feature changes are listed below:

° v1.2.0
— Add lossless feature
— Add frameparalleldecoding feature
82c415328
adfc54a46
660dcfeba
v1.3.0

4.4 GREP

grep is a utility to search files for lines matching specified pattern.

We conduct our experiment between the release commits v2.26 and v3.6. Both feature
models have a total of 12 features of which we annotated 10 with a location. In the observed
range none of the features are added or removed. All selected commits are listed below:

e v2.20
e v2.25
* v3.0
e v3.3
* v3.6

4.5 CURL

Curl is a utility to transfer files. It supports a variety of web protocols. The project documents
the first version in which an option is introduced3, which makes it a great case study, because
we know every feature addition. Unfortunately, the document does not list when features
were removed. We conduct our experiment between the release commits curl-7_30_6 and
curl-7_40_0. The feature model for the first commit has a total of 17 features of which we

3 https://github.com/curl/curl/blob/curl-7_77_0/docs/options-in-versions

23

https://github.com/curl/curl/blob/curl-7_77_0/docs/options-in-versions

24

EXPERIMENTS

annotated 11 with a location. The second feature model has a total of 26 features of which
we annotated 20 with a location.

The following list shows the tags of selected commits and the feature changes until the
next commit.

® curl-7_30_0

— Add sasl-ir feature
e curl-7_32.0

— Add httpl.1 feature
Add http2 feature
Add tlsvl.0 feature
Add tlsvl.1 feature

— Add tlsvl.?2 feature
e curl-7_35_0

— Add no-alpn feature

— Add no-npn feature
e curl-7_38_0

— Add pinned-pubkey feature
e curl-7_40_0

EVALUATION

In this chapter, we present the results of our experiments. First, we explain how we evaluate
the experiments to answer each research question. We discuss the results for each case study
separately and highlight specific problems and errors of our heuristics. In Section 5.7, we
provide an overview over all case studies. In the end, we discuss the results and possible
threats of validity to our evaluation.

We present the statistics for each case study separately and show them in a table. The
table shows the target commit, if analysis was done incrementally (inc.) or direct (dir.),
analyzed diffs in each tracking direction, expected failures of a perfect heuristic H*, and
for each heuristic successes (v') and failures (X). The perfect heuristic H* serves as ground
truth to which we compare our heuristics. A perfect heuristic is unable to estimate a new
location, iff the feature was removed. If a heuristic returns a new location, it is counted as
a success. The amount of failures of H* is the sum of features removed before the target
commit and features added after the target commit. Keep in mind that more failures than
expected do not necessarily result in missing features in the final model due to possibly
redundant features in both initial features. The final feature models and log files of the
experiments are available on Github*

5.1 OPERATIONALIZATION

In the following, we describe our methodology to answer the research questions.

For RQ 1, we investigate the unexpected failures of heuristics H, and H3. Before the
experiments, we determined which features should be removed in each experiment. If a
heuristic is unable to estimate a new location for a feature that should not be removed, we
count it as an unexpected failure. Furthermore, we also check the final feature locations. We
chose the feature locations in both initial feature models such that they should be equal in
the final models. If they differ, this hints at an error during tracking. We also present the
problematic code changes in each project and discuss possible solutions in Section 5.8.

For RQ 2, we check if the final feature model is correct. We check if all features are
included as expected and if the tree structure, i. e., parent-child relationships and groups, is
correct.

For RQ 3, we compare the results of the experiments with incremental analysis against
direct analysis for the same target commit. We are especially interested in cases where
one of the analysis types is able to retain a feature and the other loses it incorrectly. We
anticipate that incremental analysis calls the heuristics more often since it also process more
changes. Here, we are only interested in a difference of heuristics failures.

1 https://github.com/padupr/FMstimator

25

https://github.com/padupr/FMstimator

26

EVALUATION

5.2 SYNTHETIC REPOSITORIES

The statistics for this case study are shown in Table 5.1. In the first two experiments, we
expect two features to be removed: the features Sobel and the numeric logging feature should
be removed from the second feature model during tracking from fbf2c148 to 5f6el7ea. In
the experiments for target commit 103c787b, we only expect the numeric logging feature to
be removed. In the last two experiment, the binary logging feature should be remove during
forward tracking.

Table 5.1: Statistics of experiments on synthetic repository. The columns show the target commit, if
type of analysis was incremental (inc.) or direct (dir.), analyzed diffs in forward (fw.) and
backwards (bw.) tracking direction, and successes and failures of each heuristic

Diffs Heuristics

Commit Type | fw. bw. | H* H; H; Hs

X| v X|v x|V X
5f6el7ea inc. 3 12 2|54 7|5 2|5 2
5f6el7ea dir. 2| 5 5/ 3 2|3 2
103c¢787b inc. 7 8 1/58 6|5 1|5 1
103¢787b dir. 1 1 1| 5 5|4 1|4 1
fbf2c148 inc. 11 4 1|57 6|5 1|5 1
fbf2c148 dir. 1 1 1| 4 6|5 1|5 1

Concerning RQ 1, we have found one change example, that H; is not handling correctly.
While H, and Hj are both able to find locations when expected, the returned location is
different for two features. We discuss only one of these cases, because they are similar.

The varying locations occurs during the analysis of a diff that changes the indentation
style of the whole project. This diff removes most lines to add them again but adapted to the
new indentation style. The argument parser declares several variables to store the parsed
option values but also assigns a default value, i.e., bool vertical = true;. However, it
also offers to explicitly specify the default value over command line options, i.e., vertical
= true;. We are tracking the latter, so when the line is removed, H; searches the added
lines for the old code. Both lines are removed and added again with different indentation,
and are viable candidates to track for Hy, however, H, always chooses the first match, which
is the wrong decision in this case. H3 does not consider the variable declaration due to the
different AST structure and chooses the correct location.

Concerning RQ 2, in this case study, features were removed as expected and the resulting
feature models are also correct.

Concerning RQ 3, the results of incremental and direct analysis does not differ. H, and
Hj reported the same amount of failures for both analysis types. Both analysis types also
produce the wrong location described before.

5.3 LRZIP

5.3 LRZIP

The statistics for this case study are shown in Table 5.2. H* has no failures since no features
are removed in the observed history.

Table 5.2: Statistics of experiments on Irzip. The columns show the target commit, if type of analysis
was incremental (inc.) or direct (dir.), analyzed diffs in forward (fw.) and backwards (bw.)
tracking direction, and successes and failures of each heuristic

Diffs Heuristics
Commit Type | fw. bw. | H* H; H, H;

X| v X|v/ X| vV X
v0.610 inc. | 100 162 0/198 9| 0 9|0 9
v0.610 dir. 1 1 0 9 9/ 0 9|0 9
v0.614 inc. | 155 107 0[153 9| 0 9| 0 9
v0.614 dir. 1 1 0 9 9/ 0 9|0 9
v0.620 inc. | 205 57 o|117 9| 0 9| 0 9
v0.620 dir. 1 1 0 9 9/ 0 9|0 9

Concerning RQ 1, all tracked features are lost during forward tracking in the same
step. Irzip stores the results of the command line parser in a dedicated struct. Initially, the
command line parser writes to the struct with a structure reference, i.e., a.b. However, the
structure reference is replaced with a structure dereference, i.e., a->b. H is unable to find a
new location, because the source code has changed and Hj is unable to find a new location,
because there is no matching AST subtree.

Concerning RQ 2, while the features were incorrectly removed in one feature model, they
were not removed in the other feature model. This allowed the merging algorithm to create
a correct feature model for all experiments of this case study.

Concerning RQ 3, the results of incremental and direct analysis does not differ. H, and
Hj reported the same amount of failures for both analysis types.

5.4 VPXENC

The statistics for this case study are shown in Table 5.4. H* has no failures since no
features are removed in the analyzed range. We would observe the removal of lossless and
frameparalleldecoding during backwards tracking from 82c415328 to v1.2.0.

Concerning RQ 1, H, works as expected and is always able to provide a new location.
Hs, on the other hand, repeatedly fails to provide a new location. In all of these cases the
heuristic already fails to find an AST subtree in the old version. While parsing the source
code, clang is unable to find vpx_config.h. This file is created by the project’s build system
and is not present in the repository. vpx_config.h defines a series of preprocessor directives
to configure the compilation process. If it is missing, the preprocessor does not include
certain source code, among others, this also removes the source code mapped to some of
our features, which therefore is not included in the AST.

27

28

EVALUATION

Table 5.3: Statistics of experiments on vpxenc. The columns show the target commit, if type of analysis
was incremental (inc.) or direct (dir.), analyzed diffs in forward (fw.) and backwards (bw.)
tracking direction, and successes and failures of each heuristic

Diffs Heuristics
Commit Type | fw. bw. | H* H, H, Hj

X o X| /O X/ X
82c415328 inc. | 306 912 o275 11|11 O | 7 4
82c415328 dir. 1 1 o| 13 9| 9 o] 6 3
adfc54a46 inc. | 610 608 o|275 11|11 O | 7 4
adfch54a46 dir. 1 1 o| 13 9| 9 o] 6 3
660dcfeba inc. | 914 304 0263 11|11 O| 7 4
660dcfe6a dir. 1 1 o| 13 9| 9 o] 6 3

Concerning RQ 2, all final feature models are correct.

Concerning RQ 3, while all feature models are correct, we found a different result in the
estimated locations. In the experiment runs for target commit 660dcfe6a the incremental
analysis is able to keep track of the correct code for goodQuality in the argument parser.
However, the direct analysis chooses the wrong code location during recovery. In this case,
H, and Hj both pick the same new location. The new location is a new assignment that
enables goodQuality by default. While this new location is also evidence of the features
existence, the removal of this code is not a sign of the features removal, only a sign that
it is no longer enabled by default, therefore we consider the new location as wrong. The
incremental analysis handles this situation correctly, since the diff that introduces the new
default assignment does not remove the correct location and H; is able to provide a correct
update.

5.5 GREP

The statistics for this case study are shown in Table 5.4. H* has no failures since no features
are removed in the observed history.

Concerning RQ 1, the results of this case study are very similar to those of Irzip. While
no features and, in consequence, no locations should be lost, the heuristics fail several times.
Here, the errors occur in two different steps. Between v2.20 and v2.25 the argument parser
is partially updated. The type of some variables is changed from integer to bool and, in
consequence, the assigned values are also updated accordingly, e.g., foo = 1to foo = true.
Between v2.25 and v3.0 the argument parser is updated further. Previously, the pattern
type was set by

case 'E’:
setmatcher ("egrep");

5.6 CURL

Table 5.4: Statistics of experiments on grep. The columns show the target commit, if type of analysis
was incremental (inc.) or direct (dir.), analyzed diffs in forward (fw.) and backwards (bw.)
tracking direction, and successes and failures of each heuristic

Diffs Heuristics
Commit Type | fw. bw. | H* Hy Hp Hs

X X\ X\ VX
v2.25 inc. | 238 436 o|1126 9| 0 9| 0 9
v2.25 dir. 1 1 0 11 9| 0 9| 0 9
v3.0 inc. | 444 230 0 969 9| 0 9| 0 9
v3.0 dir. 1 1 0 11 9| 0 9| 0 9
v3.3 inc. | 531 143 0 798 9| 0 9| 0 9
v3.3 dir. 1 1 0 11 9| 0 9| 0 9

but in the newer version it is changed to
case 'E’:
matcher = setmatcher ("egrep", matcher);

This is one of the most complex case, which we encountered. We can observer two significant
changes. The signature of the used function has changed, and the return value is saved.
Concerning RQ 2, although several features are incorrectly lost before merging, they were
still present in one of the feature models that were passed to merging algorithm. The final
feature models are all correct.
Concerning RQ 3, the final feature models were equal and the heuristics H, and Hj3 also
fail equally often.

5.6 CURL

The statistics for this case study are shown in Table 5.5. In the selected commit range, features
are only added but not removed, so we only have feature deletions in the backwards analysis.
While tracking changes from curl-7_40_0 to curl-7_38_0 the feature pinned-pubkey should
be removed. Continuing to curl-7_35_0 the features no-alpn and no-npn should be removed.
In the last section, five features should be removed: http1.1,2, tlsvi.o,1,2.

Concerning RQ 1, we have found two cases that are handled incorrectly. In the first,
the features trace and verbose are removed incorrectly during tracking changes between
curl-7_35_0 and curl-7_38_0. They are mutually exclusive and which option is selected is
saved in the same variable:

case ‘g’:
config->tracetype

// other cases

case 'v':
config->tracetype

TRACE_BIN;

TRACE_PLAIN;

U e W R

The feature is lost when the struct member tracetype is moved from the config into global
or vice versa. Due to the code change, H» is unable to provide a new location.

29

30

EVALUATION

Table 5.5: Statistics of experiments on Curl. The columns show the target commit, if type of analysis
was incremental (inc.) or direct (dir.), analyzed diffs in forward (fw.) and backwards (bw.)
tracking direction, and successes and failures of each heuristic

Diffs Heuristics
Commit Type | fw. bw. | H* H; Hp Hs

X o X\ v X voX
curl-7_32_0 inc. 345 2,376 8|753 13| 2 11| 0 13
curl-7_32_0 dir. 1 1 8| 18 13| 2 11| 0 13
curl-7_35_0 inc. | 1,088 1,633 3|75t 7|2 5|0 7
curl-7.35.0 dir. 1 1 31 24 7|2 5|0 7
curl-7_38_0 inc. | 2,022 699 1|53 5|2 3|0 5
curl-7_38_0 dir. 1 1 1] 26 5|2 3|0 5

In the second case, sasl-ir is incorrectly removed. The command line parser of Curl allows
to explicitly enable or disable each option, so every --option has a respective - -no-option.
Before looking up which option it is currently processing the parser check if it starts with
--no- and saves is in the variable toggle. The value of toggle is later copied to the config-
variable to enable or disable it. The command line parser of version curl-7_32_60 does not
allow to explicitly disable sasl-ir.

1 |case 'K': /x --sasl-ir x/
2 |config->sasl_ir = TRUE;

A few commits later, this is updated to

1 |case 'K’: /% --sasl-ir x/
2 |config->sasl_ir = toggle;

According to the commit message, this change was done to several options. Due to the
change of the assigned value, H, is unable to provide a new location.

Note that H3 is not able to find an AST subtree that fits to the original code. While parsing
the given file, Clang’s preprocessor is unable to include curlbuild.h. This file is not present
in the repository, but is created by the build system.

Concerning RQ 2, the resulting feature models are correct except for the feature models
of curl-7_32_0, which are missing sasl-ir. The responsibility to notice and repair this error
is on the user. We cannot warn the user of this error, since that would require us to be aware
of the false feature removal before.

Concerning RQ 3, there is no difference between incremental and direct analysis in this
case study.

5.7 RESULTS

In this section, we provide a brief summary of the results over all case studies.
RQ 1: How common are code changes, which we cannot handle with the current
heuristics? Each case study has shown changes that none of our heuristics could han-

5.8 DISCUSSION

dle or were handled incorrectly resulting in a false location. We have also seen that Hj is
often unable to function properly. H, could not handle all code changes in three out of five
case studies. H3 could not handle all code changes in four out of five case studies.

RQ 2: How often is user intervention required to merge or correct the final feature
model? Our tool was able to create a correct feature model in all but two cases. The two
remaining cases in the Curl case study only require the addition of one feature.

RQ 3: Is the incremental commit analysis more precise than the direct commit com-
parison? The incremental analysis and direct comparison produced a different result in one
case. In the case study on vpxenc the direct analysis produced a false location. This location
is still related to the feature, however, not as strongly as the correct one. Overall, heuristics
H, and Hj3 have shown the same amount of failures for the same target commits and the
merged feature models are also equal.

5.8 DISCUSSION

We discuss the implications to our approach of the results for RQ 2 and RQ 3 first, and then
discuss the results for RQ 1 and the found problematic changes and errors we found in the
case studies.

The evaluation to RQ 2 shows that our merging approach is working as intended. The
only case in which it failed is caused by an error in the tracking phase. The case study on
Irzip and grep highlights the value of redundant information in two feature models to our
approach. Even if a feature is incorrectly removed in one of the tracking directions it can be
included in the final results if the other feature model retains it. This mechanic makes the
final feature model more robust against errors in the tracking phase.

For RQ 3, we evaluated if an incremental commit analysis is useful or if a we can skip
to the end immediately with a direct analysis. We found one case in which the heuristics
produced different results. Our heuristics are currently too strict to allow a large difference
in behavior. If we create a heuristic to accept small changes to the tracked code, these
changes could accumulate over multiple steps. However, we usually encountered only a
single change to the tracked code, so the the incremental analysis might be unnecessary
if the user is only interested in the final feature model. The incremental analysis offers a
better understanding of the time and reason a feature was removed.

In the evaluation for RQ 1, we have seen multiple problems in our heuristics. In our
synthetic project H, found a false location, and in vpxenc H, and Hz both found the same
false location. Two solutions come to mind: Heuristics could take the surrounding code
into account to narrow down possible new locations, or they could calculate an assumed
position and prefer locations in its vicinity, e. g., we prefer a location if its close to the old
one. In general, the next revision of heuristics should make a more elaborate choice when
they find multiple possible candidates instead of taken the first.

The errors in the case study on Irzip have shown that our heuristics must allow some
changes to the tracked code.

However, the allowed changes must be selected carefully and the accumulative effect of
incremental analysis must be considered.

grep has presented two types of changes, we could not handle. First, it changed variable’s
types and in the following also the default values. While this could be solved with certain

31

32

EVALUATION

allowed changes, a more general solution is desirable. The second case involves the intro-
duction of a new variable and a modified function signature. A safe and general solution to
this case is not possible without significantly altering the heuristics. Generally, we do not
think that this case should be handled with high priority without further assessment to the
prevalence of changes of this extent.

Curl has also presented two types of unhandled changes. First, the code is slightly
changed, such that a different value is assigned. Second, the variable associated to a feature
is moved to a different struct. In our current heuristics, both are not easy to solve. However,
these changes suggest that instead of tracking statements, we could possibly track variable
declarations and definitions that are connected to features.

We categorize the unhandled change in three groups: syntactic modifications, semantic
modifications, and code refactoring. The syntactic modifications includes formatting changes.
Formatting changes can cause our heuristics to recover incorrect source code, i.e., the
estimated location is not the intended one. This type change occurs if the tracked code
is moved to a new location and equivalent code is also added before the new location
of the added code. The challenge to solve in this category is the selection of the correct
source code location our of multiple. A more informed decision process is required by the
heuristics. The semantic modifications comprises small changes to the source code that extend
past formatting changes. This includes most of the previously described changes, like type
changes as seen in grep, switches between a structure reference and dereference, or moving
a variable that stores the features state to a different struct. The code refactoring includes
larger changes to the code, e. g., changes to function signatures. We have only encountered
this in grep when the parsing of the pattern options was updated, i.e., a function call got
changed to a variable assignment of the return value of the call.

5.0 THREATS TO VALIDITY

In this chapter we discuss threads to validity that arise for our evaluation. First, we discuss
internal validity, and, afterwards, focus on external validity.

5.9.1 Internal Validity

A threat to validity are possible bugs in our code. We created several tiny projects to test
our tool. Each project consists of exactly two commits and we created a feature model for
each that also contains the expected locations.

Another threat to validity are bugs in the used libraries. The VaRA feature library is still
in early development and not widely used. While the library has tests, it is not bug free. For
the evaluation, we implemented bug fixes where needed and will contribute them to the
project with tests later. libgit2 and libclang are widely used and well tested. We consider it
unlikely to be affected by any bugs in them.

Lastly, the tool is unable to verify if a given location is correct and cannot detect false
locations. For now, the locations must be entered manually in the feature model files and it
is possible that the users misspells them. To mitigate this problem, our tool displays the
features with location and the code at that location for the feature model’s commit. This
allowed to check if the location was entered correctly.

5.9 THREATS TO VALIDITY

5.9.2 External Validity

One threat to external validity is the selection of projects for our case studies. We tried to
mitigate this by selecting projects from different domains, i.e., image processing in our
synthetic project, file compression in Irzip, video encoding in vpxenc, plain-text filtering in
grep, and a network utility in Curl.

Furthermore, all selected projects are implemented in C or C++. Different programming
languages might require different heuristics. Hz, for example, only works on languages in
the C-family. We expect similar results for other languages, however, expanding the tool to
handle more languages was out of scope of this thesis.

Another threat to validity is the selection of code locations. In order to have comparable
results, we decided to choose locations in the argument parser. This limits our insights in
possible code changes that might occur in other parts of the projects. However, while a
domain expert might be able to quickly locate other parts of the projects that are connected
to the feature, an average user usually is not. The argument parser is often easy and fast to
locate in a new project.

33

RELATED WORK

Nieke et al. [14] proposed a new approach to feature models. They suggested the use of a
meta model to describe the planned evolution or document past evolutions. Our tool can
assist the documentation of past evolution by providing an approximate feature model. This
allows easier adoption of the proposed meta models if past evolution is not documented.

Feichtinger et al. [6] developed an approach to extract feature dependencies from source
code in order to aid development. Their approach facilitates the mapping of features to code
locations as well. They successfully demonstrated their tool in different case studies. We
believe that our tool could benefit from their research by checking the final feature models
with their approach and implementing the given suggestions.

Our approach relies heavily on the quality of the calculated differences and the informa-
tion we can mine from their results. A study on different diff algorithms was conducted by
Nugroho et al. [15]. In their work, they compare Git’s default diff algorithm Myers against
histogram. While they advise developers to use historgram for code comparisons, there is no
explicit recommendation for analysis tools using diff algorithms. However, they also report
that the choice of diff algorithms has a noticeable impact on results. Their research inspires
an evaluation of the effect of the chosen diff algorithm for our work.

There are also diff algorithms that target source code instead of general text. The change
distilling approach by Fluri et al. [7] use bigram string similarity to match statements and
subtree similarity by Chawathe et al. [3] to match syntactic structures in ASTs. Falleri et al.
[5] build an algorithm that works at an AST granularity and also detects node movement
instead of representing it as a deletion and addition at its new location.

Baxter et al. [2] presented an approach to detect and remove code duplication using ASTs.
In their work they present a metric to measure subtree similarity, which we could utilize in
a heuristic that allows small syntactic and/or semantic changes.

35

CONCLUDING REMARKS

In this chapter, we summarize the contributions of this thesis and discuss possible improve-
ments to FMstimator.

7.1 CONCLUSION

Performance analysis and prediction of configurable software view the subject as black box
in most cases. White box approaches require a connection between a feature and associated
source code. While it is possible to supply manual mappings from feature to source code in
small studies, this technique does not scale for larger studies.

Our approach tackles this issue by approximating a feature model for a target commit,
reducing the need of manual labor. Starting from two feature models for a project annotated
with feature source locations, we perform a stepwise analysis over the project’s Git history
towards the target commit. Based on the feature source locations, we update the feature
models to reflect the changes to the source code. The analysis utilizes three heuristics that
analyze the diff between two Git commits to estimate an updated feature source locations
for the next step. The used heuristics are very strict and only allow changes to the formatting
of the source code. In a final step, we merge the two feature models, approximated for the
target commit, into a single approximated feature model for the target commit.

We implemented our approach in FMstimator and evaluated it in experiments on five
projects. The evaluation revealed source code changes that need to be handle beyond
formatting changes. Furthermore, we learned that the use of two feature models hardens
the approach against incorrectly missing features in the final feature model. As long as a
feature is present in one of the two feature models it is also included in the merged feature
model. Lastly, we found evidence that an incremental analysis, applying changes step wise
to the feature model, is beneficial over a direct analysis, that applies all changes at once on
the feature model.

Overall, our approach is promising but requires some improvements. Our approach
approximates correct feature models in a majority of our experiments, successfully reducing
the required manual labor. In its current state, the final feature models should be used with
caution, since they can be slightly inaccurate. Furthermore, we identified the problematic
code changes that caused our heuristics to fail in the experiments and most of them can be
handled with more sophisticated heuristics.

7.2 FUTURE WORK

We have demonstrated that our approach is promising, however, our tool still needs im-
provements and further evaluation, which we discuss in the following.

Our tool requires several improvements, which we have mentioned before and briefly
summarize here. The creation of the commit sequences in the first phase must be extended

37

38

CONCLUDING REMARKS

such that it considers more paths than just the first-parents. We discussed several problems
of our heuristics in Section 5.8 and the suggested solutions should be implemented. Another
very prominent problem is the inability of H3 to work on some projects. This must be
improved in the future to enable a better analysis and open the path to better heuristics.
While a fully automated process is preferable, a user-supplied script to enable the analysis
might also be an acceptable intermediate solution.

Furthermore, we should eventually support cross-tree-constraints and consider them
when updating the models. Especially, the handling of constraints containing a feature
that is removed from the model is interesting. Ideally, common constraints are handled
autonomously, and if needed the user is asked for support.

We currently have a limited understanding of the importance of the chosen feature
location. An in-depth study is needed that explores possible advantages or disadvantages
of chosen location and number of chosen locations. In extension to this, a categorization
of code locations could help to improve our tool’s performance. Some code locations, for
example enabling the feature by default, are not essential to a feature’s existence, and
their deletion does not suggest that the feature was removed, however, it is evidence that
the feature still exists, if other locations are removed. This categorization allows a better
interpretation of observed changes.

Of course, the development of new heuristics is also important. The current heuristics are
not flexible enough and must allow some changes to allow a correct tracking of source code
locations. A possible new heuristic could employ the approach of Baxter et al. [2] to detect
code duplication on an AST level to detect possible new code locations.

APPENDIX

Table A.1 to Table A.10 list the selected feature and chosen location for the experiments.

Table A.1: Selected features for synthetic project at commit e96e20d0

Name Source Code Location

horizontal <Main.cpp(30:7-30:24)>
vertical <Main.cpp(33:7-33:23)>
dualGradient | <Main.cpp(46:9-46:39)>
gradient <Main.cpp(44:9-44:35)>
logging <Main.cpp(27:7-27:22)>

Table A.2: Selected features for synthetic project at commit 17dffclf

Name Source Code Location

horizontal | <main.cpp(39:13-39:30)>
vertical <main.cpp(42:13-42:29)>
gradient <main.cpp(53:17-53:43)>
sobel <main.cpp(55:17-55:40)>
logging <main.cpp(31:13-31:41)>

Table A.3: Selected features for Irzip at commit v0.600
Name Source Code Location
545:4-545:41)>
594:4-594:38)>

compressionBzip2 <main.c
compressionDisabled <main.c
€(566:4-566:40)>
584:4-584:39)>

.c(
- C(
compressionGzip <main.c(
.c(

compressionZpaq <main.c(663:4-663:40)>
- C
- C
e
.c(

compressionLzo <main.c
level <main.c(587:4-587:45)>
c(658:4-658:34)>
c(618:4-618:35)>

€(638:4-638:40)>

maxWindowSize <main

processorCount <main

thresholdTestingDisabled | <main

39

40 APPENDIX

Table A.4: Selected features for Irzip at commit v0.630

Name Source Code Location

compressionBzip2 <main.c(339:4-339:42)>
compressionDisabled <main.c(402:4-402:39)>
compressionGzip <main.c(366:4-366:41)>
compressionLzo <main.c(389:4-389:40)>
compressionZpaq <main.c(486:4-486:41)>
level <main.c(392:4-392:46)>
maxWindowSize <main.c(481:4-481:35)>
processorCount <main.c(430:4-430:36)>
thresholdTestingDisabled | <main.c(460:4-460:38)>

Table A.5: Selected features for vpxenc at commit v1.2.0

Name Source Code Location
allowResize <vpxenc.c(1856:13-1856:66)>
arnrMaxFrames | <vpxenc.c(1136:1-1137:62)>
arnrStrength <vpxenc.c(1138:1-1139:59)>
autoAltRef <vpxenc.c(1134:1-1135:79)>
passes <vpxenc.c(1609:13-1609:51)>
bestQuality <vpxenc.c(1627:13-1627:52)>
goodQuality <vpxenc.c(1629:13-1629:52)>
rtQuality <vpxenc.c(1631:13-1631:48)>
threads <vpxenc.c(1835:13-1835:58)>
tokenParts <vpxenc.c(1132:1-1133:81)>

APPENDIX

Table A.6: Selected features for vpxenc at commit v1.3.0

Name Source Code Location
allowResize <vpxenc.c(1382:7-1382:60)>
arnrMaxFrames <vpxenc.c(543:1-544:70)>
arnrStrength <vpxenc.c(545:1-546:67)>
autoAltRef <vpxenc.c(541:1-542:87)>

frameparalleldecoding | <vpxenc.c(562:1-563:79)>

lossless <vpxenc.c(560:1-560:81)>
passes <vpxenc.c(1144:7-1144:45)>
bestQuality <vpxenc.c(1159:7-1159:46)>
goodQuality <vpxenc.c(1161:7-1161:46)>
rtQuality <vpxenc.c(1163:7-1163:42)>
threads <vpxenc.c(1363:7-1363:52)>
tokenParts <vpxenc.c(535:1-536:81)>
Table A.7: Selected features for grep at commit v2.20
Name Source Code Location
count <src/grep.c(2063:9-2063:27)>

ignore-case
invert-match
line-buffered
no-message
silent

basic
extended
pearl

string

<src/grep.c(2112:9-2112:25)>
<src/grep.c(2163:9-2163:27)>
<src/grep.c(2242:9-2242:27)>
<src/grep.c(2159:9-2159:29)>
<src/grep.c(2146:9-2146:27)>
<src/grep.c(2022:9-2022:29)>
<src/grep.c(2010:9-2010:30)>
<src/grep.c(2018:9-2018:29)>
<src/grep.c(2014:9-2014:30)>

41

42 APPENDIX

Table A.8: Selected features for grep at commit v3.6
Name Source Code Location
2599:9-2599:30)>
2664:9-2664:28)>
invert-match | <src/grep.c(2719:9-2719:27)>
line-buffered | <src/grep.c(2811:9-2811:30)>
2715:9-2715:32)>

count <src/grep.c

ignore-case <src/grep.c

no-message <src/grep.c

silent <src/grep.c(2702:9-2702:30)>
basic <src/grep.c(2557:9-2557:48)>
extended <src/grep.c(2545:9-2545:49)>
pearl <src/grep.c(2553:9-2553:48)>

string <src/grep.c(2549:9-2549:49)>

Table A.9: Selected features for Curl at commit curl-7_30_0

Name Source Code Location

compressed <src/tool_getparam.c(472:9-472:35)>
dump-header | <src/tool_getparam.c(1123:7-1123:44)>
http1.0 <src/tool_getparam.c(874:7-874:51)>
include <src/tool_getparam.c(1273:7-1273:40)>
ipv4 <src/tool_getparam.c(890:7-890:30)>
ipvé <src/tool_getparam.c(894:7-894:30)>
no-keepalive <src/tool_getparam.c(769:9-769:52)>
ssl-allow-beast | <src/tool_getparam.c(1202:11-1202:44)>
tlsvi <src/tool_getparam.c(878:7-878:51)>
trace <src/tool_getparam.c(423:9-423:39)>
verbose <src/tool_getparam.c(1562:9-1562:41)>

Name

Table A.10: Selected features for Curl at commit curl-7_40_0

Source Code Location

compressed
dump-header
http1.0

http1.1

http2

include

ipv4

ipv6

no-alpn
no-keepalive
no-npn
pinnedpubkey
sasl-ir
ssl-allow-beast
tlsvi

tlsvi.o

tlsvi.1

tlsvi.2

trace

verbose

<src/tool_getparam.c(581:9-581:35)>
<src/tool_getparam.c(1275:7-1275:44)>
<src/tool_getparam.c(1000:9-1000:53)
<src/tool_getparam.c(1004:9-1004:53)
<src/tool_getparam.c(1008:9-1008:53)>
<src/tool_getparam.c(1421:7-1421:40)
<src/tool_getparam.c(1042:7-1042:30)
<src/tool_getparam.c(1046:7-1046:30)>
<src/tool_getparam.c(539:9-539:47)>
<src/tool_getparam.c(878:9-878:52)>
<src/tool_getparam.c(529:9-529:46)>
<src/tool_getparam.c(1363:9-1363:48)>
<src/tool_getparam.c(971:9-971:34)>
<src/tool_getparam.c(1354:11-1354:44)>
<src/tool_getparam.c(1016:9-1016:53)>
<src/tool_getparam.c(1020:9-1020:55)>
<src/tool_getparam.c(1024:9-1024:55)>
<src/tool_getparam.c(1028:9-1028:55)>
<src/tool_getparam.c(526:9-526:39)>
<src/tool_getparam.c(1703:9-1703:41)>

APPENDIX

43

BIBLIOGRAPHY

[1] Sven Apel, Don Batory, Christian Kastner, and Gunter Saake. Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer, 2013.

[2] L.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone Detection Using
Abstract Syntax Trees. In Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272), pages 368-377, 1998.

[3] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change Detection in Hierarchically Structured Information. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, page 493-504. ACM,

1996.

[4] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. NUMERISCHE
MATHEMATIK, 1(1):269—271, 1959.

[5] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Mon-
perrus. Fine-grained and Accurate Source Code Differencing. In Proceedings of the
International Conference on Automated Software Engineering, pages 313—324, Vdsteras,
Sweden, 2014.

[6] Kevin Feichtinger, Daniel Hinterreiter, Lukas Linsbauer, Herbert Prahofer, and Paul
Griinbacher. Guiding feature model evolution by lifting code-level dependencies.
Journal of Computer Languages, 63, 2021.

[7] Beat Fluri, Michael Wiirsch, Martin Pinzger, and Harald Gall. Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction. IEEE Transactions on
Software Engineering, 33:725-743, 12 2007.

[8] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej Wa-
sowski. Variability-aware Performance Prediction: A Statistical Learning Approach. In
2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 301-311, 2013.

[9] Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. Combining
Multi-Objective Search and Constraint Solving for Configuring Large Software Product
Lines. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 517-528, 2015.

[10] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven Apel. The
Interplay of Sampling and Machine Learning for Software Performance Prediction.
IEEE Software, 37(4):58-66, 2020.

[11] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo, and Sven
Apel. Distance-based sampling of software configuration spaces. In 2019 IEEE/ACM
q1st International Conference on Software Engineering (ICSE), pages 1084-1094, 2019.

45

46

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-9o-TR-21, Software Engineering Institute, 1990.

Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1:251-266, 1986.

Michael Nieke, Adrian Hoff, and Christoph Seidl. Automated Metamodel Augmen-
tation for Seamless Model Evolution Tracking and Planning. In Proceedings of the
18th ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences, GPCE 2019, Athens, Greece, October 21-22, 2019, pages 68-80. ACM, 2019.

Yusuf Sulistyo Nugroho, H. Hata, and K. Matsumoto. How Different Are Different
Diff Algorithms in Git? Empirical Software Engineering, 25:790—23, 2019.

Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Kastner.
White-Box Analysis over Machine Learning: Modeling Performance of Configurable
Systems. In Proceedings of the International Conference on Software Engineering (ICSE),
pages 1072-1084, 05 2021.

Max Weber, Sven Apel, and Norbert Siegmund. White-Box Performance-Influence
Models: A Profiling and Learning Approach. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 1059-1071, 05 2021.

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Overview

	2 Background
	2.1 Software Features and Feature Models
	2.2 Git
	2.3 Diff Unified Format
	2.4 Abstract Syntax Trees

	3 Implementation
	3.1 Overview
	3.2 Preparation
	3.3 Tracking
	3.3.1 Tracking Heuristic

	3.4 Merging

	4 Experiments
	4.1 Synthetic Project
	4.2 lrzip
	4.3 vpxenc
	4.4 grep
	4.5 Curl

	5 Evaluation
	5.1 Operationalization
	5.2 Synthetic Repositories
	5.3 lrzip
	5.4 vpxenc
	5.5 grep
	5.6 Curl
	5.7 Results
	5.8 Discussion
	5.9 Threats to Validity
	5.9.1 Internal Validity
	5.9.2 External Validity

	6 Related Work
	7 Concluding Remarks
	7.1 Conclusion
	7.2 Future Work

	A Appendix

