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Abstract

Contemporary software systems are often highly configurable and additionally they
change over time (evolve). These changes do not only affect the functionality but
also non-functional properties such as performance and energy consumption. While
performance has always been important and in the focus of optimizations, recently
energy consumption is becoming increasingly more relevant. However, reducing
energy consumption while maintaining or even improving performance at the same
time is not trivial and requires an understanding of the relation between performance
and energy consumption and their behaviour with respect to software evolution. Ex-
isting studies in this field have either considered only the performance but not the
energy consumption or have compared performance and energy consumption with-
out considering the aspect of evolution. In this thesis, we combine these aspects
in an exploratory manner by measuring and evaluating the performance and energy
consumption of different releases and configurations of four case studies — HSQLDB,
Apache httpd, PostgreSQL and libvpz VPS8. For the evaluation, we directly compare
performance and energy consumption and also investigate influences of specific con-
figuration options on the performance and energy consumption. Additionally, we
consider the correlation between performance and energy consumption. We find
that there are changes in performance and energy consumption over the course of
time and that changes equally affect performance and energy consumption. We are
also able to attribute changes to specific configuration options in some cases. Addi-
tionally, we find that there are changes in the correlation, but we cannot determine a
clear relation between changes in the correlation and specific configuration options.
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1. Introduction

Nowadays, software systems are complex. Not only are they often highly config-
urable, offering a vast number of configuration options, allowing the software to be
adapted to many different scenarios. They are also not static but are updated over
time, they change. Software is said to ewvolve. These changes do not only affect
the codebase and functionality of software, but they can also have an impact on
non-functional properties, such as performance or energy consumption.

Performance in software systems has always been important, be it for high-perfor-
mance computing or simply for user experience. Who wants to wait for a program to
produce some result? With an ever increasing demand for computing power, there
is also more and more energy consumption from computers. In contrast to that, the
reduction of energy consumption as a whole is becoming more and more important.
Reducing energy consumption while maintaining a high performance is not trivial for
evolving configurable software systems. Every single configuration option and every
single change can not only extend or modify the functionality of the software system,
but can potentially also influence the non-functional properties. Such optimizations
require an understanding of the relation between these two non-functional properties
and their evolutionary behaviour.

There has been previous work in this field, investigating specific aspects of this
topic. Siegmund et al. [SGAKI15] investigate the performance in configurable soft-
ware systems without considering the aspects of energy consumption or software
evolution. In another related study, Tsirogiannis et al. [THS10] are concerned with
the connection between performance and energy consumption without explicitly
considering configurable systems or evolution. In our own previous work [Werl7],
we investigated interactions of performance and energy consumption in configurable
systems, combining the previous two studies while still not considering evolution.
Finally, Hasreiter [Has19] combined the aspect of evolution with performance in
configurable systems, but without considering the energy consumption.

This thesis builds upon our own previous work and the work of Hasreiter to com-
bine all of these aspects: We investigate the evolution of performance and energy
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consumption in configurable systems. We measure the performance and energy con-
sumption of four case studies, the database servers HSQLDB and PostgreSQL, the
web server Apache httpd and the video encoder libvpz VPS8. We then evaluate our
measurement results to answer the question of whether and how performance and
energy consumption of software systems, as well as the relation between those two
non-function properties, change over time. For this evaluation, we investigate the
measured performance and energy consumption directly, employ with influence mod-
els a modelling approach introduced by Siegmund et al. [SGAKI15] to investigate
the impact of specific configuration options on performance and energy consump-
tion, and additionally consider the correlation between these two non-functional
properties.

This thesis is structured as follows:

First, we present an overview on related work in Chapter 2. There we demonstrate
how this work relates to other studies related to this subject, in particular the
aforementioned ones.

Then, in Chapter 3, we provide relevant background information and introduce
terminology used throughout this thesis, starting with different types of software,
configurable software and software evolution. We define what we consider as per-
formance and energy consumption, and describe influence models and the Pearson
correlation, which we use as part of our operationalization.

Afterwards, we describe our methodology in Chapter 4. First, we introduce our
research questions. Then, we describe our case studies and experimental setup.
Finally, we explain the operationalization, detailing how we answer the research
questions.

In the evaluation in Chapter 5, we answer the research questions one by one, pre-
senting and discussing the results for each.

Having presented the results, we dedicate Chapter 6 to our consideration regarding
both the internal and external validity of our findings.

Finally, we conclude this thesis in Chapter 7 with a summary, and outline ideas for
possible future work.



2. Related Work

In this chapter, we provide an overview on work related to one or more of the aspects
of this thesis. We point out differences between this thesis and the related work and
at the same time motivate this thesis.

Performance and Energy Consumption
There have been several studies comparing performance and energy consumption.

Tsirogiannis et al. [THS10] analyse the energy efficiency of database systems. They
measure the performance and energy consumption of so called ‘micro-benchmarks’,
that they developed specifically for this purpose, and additionally specific algorithms
that are used by the popular database system PostgreSQL. Energy consumption is
measured for individual hardware components rather than the system as a whole,
with the evaluation being focused on the energy consumption of the CPU. The
comparison is performed between performance and energy efficiency, which are both
defined to include the amount of work done. The measurements are performed
with different combinations of software and hardware configurations. Their findings
indicate a correlation between performance and energy efficiency.

In this work, we take a less fine-grained approach by measuring energy consumption
of the whole system and using complete software systems, rather than only ‘micro-
benchmarks’.

Another study, by Costa et al. [CAKLR11], also compares performance and energy
efficiency. The authors define a notion of performance and energy efficiency. En-
ergy consumption is measured for the whole system, as opposed to measuring for
individual components like in the study by Tsirogiannis et al. The study indepen-
dently determines break-even points in data deduplication systems for performance
and energy efficiency. Similar to the previously described study, different hardware
configurations are used. They find that newer hardware systems are increasingly
more power-proportional, i.e. the power consumption is proportional to the re-
source utilization. They conclude that tradeoffs exist between performance and
energy optimizations for such newer hardware.
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We perform a more direct comparison between performance and energy consump-
tion. The hardware we use for our measurements falls into the category of newer
hardware as described by Costa et al.

Finally, Xu et al. [XTW10] evaluate the performance and power consumption of
database systems to find power—performance tradeoffs. They use PostgreSQL with
a benchmark based on TPC. Power consumption and energy consumption are mea-
sured for the whole system and are compared directly with run time. They do not
use a notion of performance or of efficiency. The comparisons are performed for
multiple workloads. They find that tradeoffs exist between power and performance
and describe how software could considerably decrease its power consumption while
only marginally affecting performance, by making software aware of its power con-
sumption.

We take a similar approach regarding the direct comparison of energy and run time
without a notion of efficiency and also measure complex software systems.

While Tsirogiannis et al. consider software configurations to some extent, none of
these studies explicitly consider configurable systems or the influences of specific
configuration options on the performance or energy consumption.

Performance Influences of Configurable Systems

Among others, Siegmund et al. and Jamshidi et al. investigate the performance
of configurable software systems. In particular, they model the influences of spe-
cific configuration options and interactions between options on the performance of a
system. Siegmund et al. [SGAKI15] propose an approach for creating performance-
influence models, that describe the influence of individual configuration options
and interactions among them on performance or other non-functional properties.
Jamshidi et al. [JSVT17] apply transfer learning to these models to avoid or reduce
the cost of relearning models by adapting them to environmental changes.

Performance and Energy in Configurable Systems

In previous work [Werl7|, we combined the previous two approaches, of on the one
hand, comparing performance and energy consumption, and on the other hand, in-
vestigating performance influences of configuration options in configurable software
systems. We investigated influences of configuration options on both the perfor-
mance and energy consumption and compared performance and energy consumption,
as well as their correlation, for different configurations. We found that performance
and energy consumption are generally linearly correlated, however, how strong the
correlation is, depends on the type of software system. We identified two different
types of software systems, application software and infrastructure software, with
different correlation behaviour, namely that there is generally a stronger correlation
between performance and energy consumption in application software. We found
that the correlation behaviour also depends on specific configuration options. In
particular, for infrastructure software, only specific configuration options result in
the weaker correlation compared to application software.

In this thesis, we take a similar approach of comparing performance and energy
consumption of configurable software systems, additionally considering the aspect



of software evolution. We also consider again the correlation between performance
and energy consumption and investigate whether the correlation changes over time.

Performance Evolution

The work of Sandoval Alcocer et al. [SBDD13] is concerned with the the evolution
of performance, i.e. changes in performance caused by the evolution of software.
Software evolves by being changed over time. They propose a visualization approach
to aid in investigating performance evolution.

Miihlbauer et al. [MAS19] model the evolution of performance in different software
systems, including configurable systems. They use machine learning to estimate the
evolution of performance with a minimal measurement effort.

In his master’s thesis, Hasreiter [Has19] combined two different aspects, one of them
being performance influences in configurable software systems and the other one
being performance evolution. In his exploratory study, he measured the performance
for multiple configurations and releases of different software systems. He found that
performance changes can be attributed to specific releases and in some cases also to
specific configuration options. Additionally, he investigated whether these changes
are also reflected in documentation.

We combine the approach of Hasreiter with that of our own previous work to investi-
gate performance changes but also energy changes and the relation between the two,
in configurable and evolving software systems, i.e. we consider both configurations
and releases of a software system.



2. Related Work




3. Background

In this chapter, we provide background information related to the topic of this thesis
and introduce terminology used throughout the following chapters.

3.1 Types of Software

The related work in Chapter 2 indicates, that the behaviour of performance and
energy consumption, and in particular their correlation is different depending on
the type of software system.

Therefore, we continue to use the terminology we used in our previous work [Wer17]
and distinguish between application software and infrastructure software.

Infrastructure software is typically used in a server—client scenario. It runs continu-
ously, whether it is currently in use (e.g. serving requests) or not. This means, that
resources are consumed whether the software is performing a task or not. Examples
for this type of software include web servers and database servers.

Application software, on the other hand, only runs when it is actually in use. Re-
sources are only used when the software performs a task; when there is no task
to perform, the software does not run. Examples for this type of software include
compression tools and video encoders.

3.2 Configurable Software Systems

Nowadays, most software is configurable. Being configurable means that there are
configuration options (also called features), that make it possible to enable or disable
specific functionality of the software or to change the behaviour of specific function-
ality. Configuration options can provide variability at compile-time or at runtime.
We focus on configuration options that can be specified at runtime, e.g. as com-
mand line parameters or in a configuration file (with one exception of a configuration
option that we need to specify at compile-time for compatibility reasons).
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We distinguish between two different types of configuration options. Binary options
can either be selected (enabled) or deselected (disabled). Numeric options have a
specific real number value from a set of valid values for the particular option.

A specific valid combination of configuration options is a configuration. Not all com-
binations of configuration options are valid. There may be constraints on the set of
valid combinations, e.g. a configuration option may be required or two configuration
options might be mutually exclusive.

Configuration options and configurations can mathematically be represented as sets.
We reuse the notation used by Siegmund et al. [SGAK15] and denote the set of all
configuration options as O and the set of all configurations as C. The set of all
configurations is also called the configuration space. A configuration ¢ € C is a
function ¢ : O — R. For a binary option o, € O, c(0p) = 1 if the option is selected in
the configuration ¢, ¢(o,) = 0 otherwise. For a numeric option o, c¢(0,) = =,z € R
where z is the value for option o, in the configuration ¢ and z is a valid value for
option o,. Constraints on valid configurations are Boolean expressions.

In some situations we want to express a specific subset of the configuration space.
We can define such a subset Cs C C by a constraint s.

The size of the configuration space grows exponentially with the number of configu-
ration options and is huge for many contemporary software systems as discussed by
Xu et al. [XJFT15]. We use a feature model, consisting of the set of configuration
options, together with a set of constraints to represent the configuration space.

A feature model can be graphically represented as a feature diagram which consists
of a tree visualizing the configuration options with their constraints and additional
so called cross-tree constraints, which are constraints that cannot be represented in
the tree.

In Figure 3.1, we show an example for a feature diagram using our notation. The
feature diagram visualizes a feature model describing configurations of the software
‘ExampleDatabase’. The set of configuration options is:

O = {OS, Windows, Unix, Encryption, HardwareAcceleration,

Transactions, CacheSize}.

‘OS’ is a mandatory option, denoted by a filled circle, i.e. it has to be present in

every configuration. This is equivalent to the constraint simply consisting of the
variable OS.

‘Transaction’, ‘Encryption’ and ‘HardwareAcceleration’ are optional, denoted by an
empty circle. Since ‘HardwareAcceleration’ is a child of ‘Encryption’; it may only
be present in configurations with ‘Encryption’. This is equivalent to the following
constraint:

HardwareAcceleration = Encryption

‘Windows’ and ‘Unix’ form an alternative group. One of these options is required
(for configurations in which the parent option is present, which is always the case
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Legend:

Example

Database ‘ Concrete 4 Mandatory ‘

’ Numeric ‘ Alternatlve
Value Alternatlve

o Transactions ‘

Cross-tree constraints:
—Encryption V = Transactions

Figure 3.1:  Example feature diagram for a database with binary configuration
options ‘OS’, ‘Windows’, ‘Unix’, ‘Encryption’, ‘HardwareAcceleration’ and ‘Trans-
actions’, and a numeric configuration option ‘CacheSize’.

in the example since ‘OS’ is mandatory), but they are mutually exclusive. This is
equivalent to the following constraints:

Windows V Unix = OS
—=Windows V —Unix

The option ‘CacheSize’ is numeric and has the set {10,100, 1000} of valid values.

In the example, ‘Encryption’ and ‘Transactions’ are mutually exclusive, which can-
not be represented as part of the tree of the feature diagram. The corresponding
constraint is simply included underneath the tree as a cross-tree constraint.

3.3 Software Evolution

According to Lehman [Leh80], a piece of software, once developed, is not static but
there is a constant need for improvement. Software evolves over time. Some of the
most common reasons for the need to modify existing software are the fixing of bugs,
the mitigation of security issues or the addition of new functionality.

Nowadays, the source code for most software is stored in a version control system
such as Git' or Subversion? (SVN) . In these systems, changes to the source code
can be committed and assigned a descriptive message. Changes are typically only
committed when a meaningful increment to the software has been implemented
(e.g. one specific bug fixed). We call each of these small, meaningful increments of
a software revisions.

Thttps://git-sem.com/ — last visited on 2019-08-18
Zhttps:/ /subversion.apache.org/ — last visited on 2019-08-18
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In many cases, a revision is not considered to be a finished version of the software
(e.g. new functionality is implemented in several small increments over the course
of several revisions). Only some revisions are thus considered to form a new version
of the software and are assigned a version number. These are then published, or
released, by the maintainer of the software. We call such a revision a release.

In this thesis, we focus only on releases.

3.4 Performance

Performance can be defined and measured in different ways. The term is commonly
used to refer to how well or how fast a system operates. How well a system performs,
can be seen as either the amount or quality of the work performed.

Tsirogiannis et al. [THS10] define performance generically as a ratio of the amount
or quality of work done to the time needed for it:

Performance = w (3.1)
Time
In this thesis, we do not consider any qualitative attributes of the performed work
and are instead only interested in the time it takes to perform a specific workload.
Since the amount of Work done is now constant, performance is only defined by the
time it takes to execute the workload. Thus, we can use a simplified definition of
performance:

Performance = Run time (3.2)

The different types of software we introduced in Section 3.1, application software
and infrastructure software, require different approaches to measuring performance.

Application software directly executes the workload and runs exactly for the amount
of time it needs to perform it. Performance can be measured directly by determining
the execution time of the measured software.

Infrastructure software runs in a client—server setup where the measured software
runs as server. The server may already be running before the workload is started
and will remain running after it is completed. The workload itself is executed with
the help of a benchmark client that communicates with the measured software over
a network. The benchmark client runs only for the duration of the workload. Conse-
quently, while performance is still determined by the execution time of the workload,
it is no longer measured directly at the measured software but rather at the bench-
mark client.

Note, however, that while the performance is determined by the execution time of a
benchmark, this does not necessarily mean that the time span from starting a process
to its end is measured. In many cases, both application software and benchmark
clients for infrastructure software write accurate timing information to a log file.
These times can more accurately represent the execution time of the workload and
we use them whenever they are available.

Throughout this thesis, we use the symbol p to denote a specific performance.
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3.5 Energy Consumption

We measure the energy consumption of the whole system, rather than the energy
consumption of individual components like the CPU.

Due to restrictions in the experimental setup, we cannot directly measure the energy
consumption, but we can measure the power consumption periodically. Since energy
is defined as the product of power and time, we can calculate the energy consumption
as a sum of power consumption values over time:

[ ]
E= P(t At) - At (3.3)

Ltstart J
At

E is the energy consumption between the start of the measurement tg.,.; and the
end of the measurement t.,q. P(t) is the power consumption measured at the time ¢
and At is the interval between individual measurements of the power consumption.

Since we can only accurately measure energy consumption for time spans that are
multiples of the measurement interval At, and the accuracy of the energy consump-
tion generally depends on the accuracy of the power consumption measurements,
we want to set the measurement interval as short as possible.

With our measurement setup, setting At = 1s is reasonable. Since we want to
determine the energy consumption in units of power consumption per second, this
interval considerably simplifies the calculation for energy consumption. Energy con-
sumption can simply be calculated as the sum of power consumption values for each
second during the measurement:

{tend“

E= ) P(t)1s (3.4)

t= LtstartJ

tstart and tenq are measured in seconds. E and P(t) are used as above.

Just as the distinction between application software and infrastructure software af-
fects the definition of performance, it also has an impact on the notion of energy
consumption.

For application software, measuring energy consumption is straightforward. Energy
consumption is simply measured and calculated according to Equation 3.4 from the
start time until the end time of the execution of the workload.

Infrastructure software, on the other hand, behaves different from application soft-
ware in that it runs even when it is not performing any tasks. While this is irrelevant
for performance, it is of interest for energy consumption, since the system running
the software consumes energy even when the software is idle. This raises the ques-
tion of whether and how the idle energy consumption should be included in the
measurement. While in a real world scenario, one could certainly argue to define
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the energy consumption of one period of active use to include the idle energy con-
sumption before or after that period up to the next period of active use. However,
this is not suitable in an experimental environment, where the duration of the idle
period is not determined by the utilization of the infrastructure software but rather
by the experimental setup which defines when a measurement begins and when it
ends. Moreover, for some comparisons of performance and energy consumption it is
desirable to include the idle energy consumption to emulate a real world scenario,
whereas for other comparisons, using the same definition of energy consumption as
for application software is preferable.

In this thesis, we answer the question by determining what we call the fized time
energy consumption and using this notion of energy consumption whenever appro-
priate. Conceptually, fized time energy consumption is the energy consumption of
infrastructure software during a fixed time span that is the same for all configura-
tions of a case study. The fixed time span has to be large enough to contain the
execution time of the slowest configuration. Fixed time energy consumption includes
the energy consumption during active use and the idle energy consumption until the
end of the fized time.

c vidle c
S - - S !
g g L idle
> 35 1
2 2
o o
o (&)
) D 3 D
2 <29 2 <2dd
time : : time
tstart tend tfixed tstart tend tfixed

Figure 3.2:  Fixed time energy consumption for infrastructure software. The left
graph shows the energy consumption over the course of a measurement for a slow
configuration and the right graph for a fast configuration. The energy consumption
after the end of the benchmark t¢.,q until the conceptual end of the measurement
with a fixed duration tgeq is the idle energy consumption of the system. The actual
measurement starts at ¢y, and ends at tepq + tadd-

Since in many cases there is a large discrepancy in the execution time between the
fastest and slowest configurations of a case study, it is not practical to measure all
configurations for the whole duration of the fixed time. Instead, we assume that
the idle energy consumption is sufficiently constant for each configuration to be
extrapolated from a short period of time t,q4. We define the extrapolated fized time
energy consumption Eg..q with fized time g4 as follows:

t b'¢ - ten
Eﬁxed =EF+ fixed d : Eadd (35)
tadd

E is the energy consumption between tg..; and te,q as defined above. F.qq is anal-
ogously the energy consumption between tenq and teng + tadd-



3.6. Performance-Influence and Energy-Influence Models

13

We illustrate the situation in Figure 3.2.

Throughout this thesis, we use the symbol e to denote a specific energy consumption.
Since the fixed time energy consumption is only defined for infrastructure software,
we use e/ to denote the fized time energy consumption for infrastructure software
but the (regular) energy consumption for application software.

3.6 Performance-Influence and Energy-Influence
Models

Siegmund et al. [SGAK15] introduce the concept of a performance-influence model
to describe the performance of configurable systems. More specifically, such a model
describes the influence of individual configuration options and interactions between
configuration options on the performance of all configurations.

Interactions of configuration options are influences that only appear with a certain
combination of configuration options, but not with the individual configuration op-
tions by themselves. Interactions can have obvious reasons such as the existence of
code that is only ever executed with a specific combination of configuration options.
Sources of interactions can however be more subtle. For example, in a database
system, a configuration option ‘Encryption’ might not change its behaviour whether
another configuration option ‘Compression’ is selected or not, and will always exe-
cute the same code. However, when compression is enabled, the performance impact
of the encryption might still change, simply because compression results in a reduc-
tion of the amount of data that needs to be encrypted.

While these models are introduced as performance-influence models, they can be
used to describe influences of configuration options on any measurable non-functional
property, in particular also the energy consumption. We use the term performance-
influence model for a model of the performance and the term energy-influence model
for a model of the energy consumption. When generically referring to a model of
any non-functional property, we simply use the term influence model.

In addition to introducing influence models, Siegmund et al. [SGAK15] also propose
an iterative machine-learning algorithm to derive such models from a sample of
measured configurations (or the whole population) and provide an implementation
of the algorithm with the tool SPL Conqueror®. We use SPL Conqueror to generate
the performance-influence and energy-influence models for this thesis.

We generate performance-influence and energy-influence models for each release of
each case study and use them to compare between releases and between performance
and energy consumption. This requires us to have comparable models. While both
binary and numeric configuration options can be represented in influence models, we
choose to convert numeric options to binary options by discretizing them. Conse-
quently, we only need to represent binary configuration options in influence models.
To discretize a feature model, each numeric configuration option is replaced with an
alternative group with one alternative for each valid value of the numeric option.

3https://github.com /se-passau/SPLConqueror — last visited on 2019-08-18
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The general form of a performance-influence model is as follows:

I(c) = Bo+ Y do(c(0)) + Y. Poy0,(c(01)-c(0n)) (3.6)

0eO 01..0n,€0

I1(c) is the performance of a configuration ¢ € C. The set of all configuration options
O and the set of all configurations C are used as defined in Section 3.2. 3 is a con-
stant base value for the performance of all configurations, which is independent of the
configuration. ¢,(c(0)) is the influence on the performance of a single configuration
option o € O based on its presence in the configuration ¢ and ®,, ,, (c(01)..c(0y,))
is the influence on the performance from multiple configuration options o0y..0, € O
based on their presence in the configuration c.

Analogously to the definition of a performance-influence model 11(c), we denote an
energy-influence model as E(c).

The following example could be an excerpt from a performance-influence model for
the example database system described in Section 3.2 with the feature diagram in
Figure 3.1. Abbreviations are used for the configuration options: Transactions (T),
Encryption (E), HardwareAcceleration (H), CacheSize=10 (Cg), CacheSize=1000

(Cl 000)-

II(c) = 100 + 20 - ¢(T) 4 50 - ¢(E) — 30 - ¢(E) - ¢(H) 57)
+ 15 . C(E) . C(Clo> — 10 . C(T) . C(CIOOO) '

In the example, there are interactions between ‘Encryption’ and ‘HardwareAccelera-
tion‘, between ‘Encryption’ and a ‘CacheSize’ of 10, as well as between ‘Transactions’
and a ‘CacheSize’ of 1 000. From the model, the performance of a configuration could
be calculated by simply plugging in a configuration c into the formula. For example,
a configuration c; with ‘Encryption’, ‘Transactions’ and a ‘CacheSize’ of 10 would
have the following performance according to the model:

I(c1) =100 420 -1 (T) + 50 - ¢1(E) —30 - c1(E) - 1 (H)
+15-¢1(F) - 1(Cro) — 10 - ¢1(T) - ¢1(Coo0)
=100+20-1+50-1—-30-1-0+15-1-1—-10-1-0
=100+204+50—-0+4+15—-0 =185

(3.8)

When comparing influence models, it is desirable to have the same terms, i.e. config-
uration options and interactions, in all models. This is impractical with the default
learning approach of SPL Congueror, which is iterative: An optimal term is added
in every iteration until the algorithm terminates, either once a certain error rate has
been reached or when an iteration no longer yields an improvement that exceeds a
specified threshold. Consequently, models for different datasets that have a common
set of configuration options will usually not all contain the same terms.
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SPL Conqueror offers an alternative to the iterative approach: a fitting algorithm
that takes model terms as input and determines only the factors for each given term.

We combine these two approaches by using the iterative algorithm to determine
relevant terms and then manually combine and filter those terms from different
models. We then use the resulting set of terms to generate all models using the
fitting algorithm.

3.7 Pearson Correlation

Since we are examining the correlation between performance and energy consump-
tion, we need a metric for the correlation. We use the Pearson correlation coefficient,
which was developed by Pearson towards the end of the 19th century [Pea96]. It is a
measure for the linear correlation between two variables. Benesty et al. [BCHCO09]
define the Pearson correlation coefficient as follows:

cov(a,b
pla,b) = #
0q0p
b) = LN~ — bi — b
cov(a,b) = - 2 (ai —a)(b; —b) (3.9)
Oq = n 4 (al a)

p(a,b) is the Pearson correlation coefficient of a and b, cov(a, b) is the cross-correla-
tion, or covariance, between a and b, and o, is the standard deviation of a. a is the
mean of a.

The Pearson correlation coefficient can assume values ranging from —1 to 1. A
Pearson correlation coefficient of 0 indicates no linear correlation, while a Pearson
correlation coefficient with an absolute value approaching 1 indicates a strong linear
correlation. An absolute value of less than 0.5 is generally said to indicate only a
weak linear correlation. Absolute values greater than 0.8 typically indicate a strong
correlation.
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4. Methodology

In this chapter, we describe the methodology we use in this thesis. First, we intro-
duce our research questions. Next, we list the case studies we use for our experi-
ments. It follows our experimental setup and we conclude the chapter with a more
in-depth description of the operationalization of our case studies.

4.1 Research Questions

We have two research questions which are subdivided into respectively three and
two subordinate questions with different levels of abstraction. In the first research
question we investigate the evolutionary behaviour of performance and energy con-
sumption independently and compare between the two. In the second research ques-
tion, we investigate the correlation between performance and energy consumption
and how it changes between different releases.

4.1.1 RQ1: Performance and Energy Consumption

In our first research question, we consider the two non-functional properties per-
formance and energy consumption independently and compare between them. We
investigate if there are changes in the performance and energy consumption of soft-
ware systems across releases, i.e. over time, and whether these changes behave
similarly for performance and energy consumption.

RQ1: Are there changes in the performance and energy consumption across
releases?

RQ1.1: Are there changes in the mean performance and mean energy
consumption across releases?

In the first subordinate question, we do not consider individual configurations but
rather use the mean of the performance and energy consumption over all configu-
rations for each release. We investigate both the quantity and quality of changes
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in performance and energy consumption between consecutive releases. Addition-
ally, we compare whether these results are the same or different for performance
and energy consumption. Using the mean values allows us to get an overview on the
evolutionary behaviour of performance and energy consumption in a simple manner,
without having to consider a value for every single configuration.

RQ1.2: Are there changes in the performance and energy consumption
of individual configurations across releases?

Increasing the granularity, we now consider individual configurations in the second
subordinate question. Again, we consider the quantity and quality of changes in per-
formance and energy consumption between consecutive releases and whether there
are differences in our observations between performance and energy consumption.
The increased granularity (individual configurations rather than mean over all con-
figurations) allows us to detect changes that may not affect all configurations or
even opposing changes that may cancel each other out and may not appear in the
mean values of the previous research question at all.

RQ1.3: Are changes in performance and energy consumption caused by
specific individual features or feature interactions?

In a third step, we further increase the level of abstraction by investigating configu-
ration options instead of configurations. To achieve this, we apply the learning al-
gorithms of SPL Conqueror to generate performance-influence and energy-influence
models. Now we are no longer investigating individual configurations but rather the
influence of specific configuration options and combinations of configuration options.
This allows us to relate specific changes in the performance and energy consumption
to specific configuration options and interactions.

4.1.2 RQ2: Correlation between Performance and Energy

In the second research question, we consider the correlation between performance
and energy consumption. We investigate whether the correlation between perfor-
mance and energy consumption changes across releases.

RQ2: Are there changes in the correlation between performance and energy
consumption across releases?

RQ2.1: Are there changes in the correlation between performance and
energy consumption across releases?

In the first subordinate question concerned with the correlation, we compare the
correlation between performance and energy consumption of consecutive releases.
In this question, we consider the correlation of all configurations for each release.
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RQ2.2: Are changes in the correlation between performance and energy
consumption caused by specific individual features?

For this subordinate question, we increase the granularity and consider the cor-
relation between performance and energy consumption for different subsets of the
configuration space. We take a subset of the configuration space for each configura-
tion option and for each valid value of the respective configuration option. We then
compare whether changes in the correlation across consecutive releases are different
depending on the configuration option. This allows us to abstract from the con-
figurations and investigate the correlation behaviour of the different configuration
options.

4.2 Case Studies

In the previous section we presented our research questions. To answer these ques-
tions, we measure the performance and energy consumption of four case studies and
evaluate the results. In this section, we describe the case studies. Three of the case
studies, HSQLDB, Apache httpd and PostgreSQL are infrastructure software. The
fourth case study, libvpx VPS§ is application software. For each of the case studies,
we present a feature model to describe the configuration space, explain which releases
we selected and describe the workload or benchmark we use.

4.2.1 HSQLDB

Our first case study, HyperSQL DataBase', or HSQLDB, is a SQL database written
in Java. It can be embedded into applications or run as stand-alone database server.
We are using it as database server, which makes it an example for infrastructure
software.

Configuration Space

We used the documentation? of HSQLDB to identify configuration options and
selected suitable configuration options based on previous experience with measuring
HSQLDB.

In the following list, we describe the configuration options and in Figure 4.1 we show
the corresponding feature model.

memoryTables: By default, HSQLDB stores database tables completely in mem-
ory. This configuration option indicates the default behaviour.

cachedTables: This configuration option configures HSQLDB to store database
tables on disk and only keep some of the data in memory.

cacheSize: This numeric configuration option configures the amount of data to
keep in memory for cached tables. The unit is kilobytes. The default value is
10 000.

Thttp://hsqldb.org/ — last visited on 2019-08-23
2http:/ /hsqldb.org/doc/2.0/guide/guide.pdf — last visited on 2019-08-23
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Figure 4.1: Feature diagram for the HSQLDB case study

log: This configuration option specifies whether HSQLDB should write data changes
to a file which could be used to recover from an abrupt shutdown. Logging is
enabled by default.

logSize: This numeric configuration option configures the maximum size of the log
file used with the log option. When the file reaches the limit (in megabytes),
HSQLDB performs a checkpoint which updates the persistent storage and
clears the log file. We did not include the default value of 50 to be able to use
a wider range of values, and previous experience with HSQLDB has shown
us that lower values are more likely to affect the performance and energy
consumption.

defrag: This configuration option specifies whether HSQLDB should defragment
the persistent storage, i.e. rewrite the persistent storage file to free unused
space. By default, defragmentation is not performed automatically.

defragLimit: This numeric configuration option specifies a percentage of wasted
space that needs to be present in the persistent storage file before defragmen-
tation is performed.

encyption: This configuration option specifies whether HSQLDB should encrypt
the database.
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aes, blowfish: These configuration options specify whether to use AES or Blowfish
for database encryption. ECB mode is used in both cases, since specifying an
IV is only supported in HSQLDB since release 2.4.1. No encryption is used
by default.

incrementalBackup: This configuration option specifies whether to update the
persistent storage incrementally during operation, rather than all at once dur-
ing a checkpoint. Incremental backups are enabled by default.

locks, mvlocks, mvcc: These configuration options specify which transaction con-
trol mode to use. The default mode is LOCKS. The other modes are MV-
LOCKS and MVCC.

This feature model represents a total number of 864 configurations.

Releases

The source code of HSQLDB is available in an SVN repository®. Each release is
indicated with a tag labelled with a version number.

The first release we measured was 2.1.0, which was released in March of 2011. While
there have been releases before 2.1.0, we would have needed to use Java version 6
or earlier to compile and run them. All releases starting with 2.1.0 can be compiled
and run with Java 8. There are two reasons why we did not use older releases
of HSQLDB. Firstly, it is difficult to acquire and run Java JDK 6 on a current
operating system. Secondly, we did not want to use different version of the Java
runtime to run different releases since this could lead to unexpected influences on
the performance and energy consumption arising from differences in the Java version
rather than changes in HSQLDB.

The last release we measured was 2.4.1, which was released in May of 2018. At the
time of this writing, version 2.5 is available, but it had not yet been released when
we performed the measurements for this case study.

We did not leave out any releases between 2.1.0 and 2.4.1, resulting in a total count
of 19 releases of HSQLDB, spanning seven years.

A complete list of releases for this case study is included in Section A.2 of the
appendix.

Workload

We used the database benchmark PolePosition* in version 0.6.0 to generate load on
the database server. PolePosition offers a number of different scenarios, including
both simple and complex queries. We did not consider concurrent scenarios, because
they require specifying a fixed duration which is incompatible with our notion of
performance as execution time. Out of the remaining scenarios, we used all those

3https:/ /sourceforge.net/p/hsqldb/svn/ — last visited on 2019-08-23
4http:/ /www.polepos.org/ — last visited on 2019-08-23
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that are compatible with JDBC, which is used to communicate with the HSQLDB
server.

PolePosition offers parameters for each of the scenarios to adjust the number of
iterations and amount of data involved. We chose values for these parameters ex-
perimentally, such that for each of the configurations, none of the scenarios would
run too long and none of the scenarios would complete within only a few seconds.
This is to ensure that measurements complete within the available time and at the
same time that all scenarios are represented in the results for each configuration.

We used two instances of PolePosition with identical configuration to increase the
load on the server.

4.2.2 Apache httpd

Our second case study, Apache HTTP Server®, or Apache httpd, is a popular open-
source web server written in C. Like the previous case study, it is another example
for infrastructure software.

Configuration Space

As with the previous case study, we used the documentation® of Apache httpd to
identify configuration options and selected suitable configuration options based on
previous experience with measuring Apache httpd.

In the following list, we describe the configuration options and cross-tree constraints,
and in Figure 4.1 we show the corresponding feature model.

maxClients
512 1024 2048 4096
ratio option P T P T P T P T

moreProcesses 128 4 128 & 256 8 256 16
evenThreadRatio 16 32 32 32 32 64 64 64
moreThreads 4 128 8 128 8 256 16 256

Table 4.1: Process (P) and thread (T) counts for the Apache httpd case study

prefork, worker: Apache hilpd uses a multi-processing module (MPM) to accept
connections and to create child processes or threads to handle requests. The
configuration options prefork and worker select the MPM of the same name.
The fundamental difference between the prefork and worker MPMs is that the
prefork MPM uses only processes while the worker MPM uses both processes
and threads.

Shttp://httpd.apache.org/ — last visited on 2019-08-23
Shttp://httpd.apache.org/docs/current /en/ — last visited on 2019-08-23
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Figure 4.2: Feature diagram for the Apache httpd case study

moreThreads, evenThreadRatio, moreProcesses: With the worker multi-pro-
cessing module, Apache hittpd uses multiple processes and multiple threads
within each process. These configuration options configure the ratio between
processes and threads per process. Table 4.1 lists the number of processes and
threads for each of these options.

sendfile: This configuration option enables Apache hittpd to use the operating sys-
tem’s sendfile function to directly send static files over the network without
the need to read the file into a buffer first and then send the file from that
buffer.

compression: This configuration option specifies whether to compress responses
with GZip.

compressionLevel: This numeric configuration option specifies the compression
level to use for GZip compression.
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tls: This mandatory option represents the use of a TLS encrypted connection. We
only measured configurations with TLS encryption for the simple reason that
without TLS encryption, many configurations are so fast that the limiting
factor is the network between server and client, and we wanted to measure the
performance of the server and not of the network.

tlsAes265, tlsAes128: These configuration options indicate which cipher suite is
used for TLS, DHE-RSA-AES256-SHA or DHE-RSA-AES128-SHA, respec-
tively.

keepalive: This configuration option enables Apache httpd to use persistent HTTP
connections that can be used to serve multiple requests. Connections are
reused for up to five requests.

maxClients: This numeric configuration option specifies the maximum number of
requests that Apache httpd can handle at the same time. For the prefork MPM,
this is the number of processes. For the worker MPM, this is the product of
the numbers of processes and threads. Table 4.1 lists the number of processes
and threads for each value of this option.

basicAuth: This configuration option specifies the use of HT'TP basic authentica-
tion.

—~compression V —keepalive: This cross-tree constraint is necessary due to a
restriction of HT'TP 1.0, which our benchmark client uses. HT'TP 1.0 requires
responses to keepalive requests to include a response length in the header,
which is not known ahead of time with compression.

This feature model represents a total number of 640 configurations.

Releases

The source code of Apache httpd is available in an SVN repository. There is also a
Git mirror” available, which we used.

While there are tags with version numbers in the source repository, not all of these
tagged revisions have actually been released. Since we focus only on releases, we
used the official list of releases which is included in the source repository.

Due to difficulties in compiling and running release prior to 2.2.0, we decided not to
consider older versions, leaving us with the ranges 2.2.%, 2.3.* and 2.4.* of releases.
However, while some 2.3.* versions are listed as having been released, these are
preview versions for 2.4 and thus do not fit our definition of releases.

We chose not to measure releases from the 2.2.* range that are newer than the
oldest 2.4.* to achieve a more even distribution of releases over time. From the then
available ranges 2.2.0 to 2.2.22 and 2.4.1 to 2.4.38, we chose 21 releases spread out
as evenly across the covered time span of approximately 13 years as possible, leaving

Thttps://github.com/apache/httpd — last visited on 2019-08-23
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us with 2.2.0 from December 2005 as first release and 2.4.38 from January 2019 as
last releases.

A complete list of releases for this case study is included in Section A.2 of the
appendix.

Workload

We used ApacheBench, or ab, which is a part of Apache httpd, to generate load on
and measure the performance of the server.

We configured ab to send a total of 100 000 requests with 1000 concurrent requests.
Since under this kind of load, the server is not always able to answer requests, we
accepted up to 2.5% failing requests.

Requests were sent for a single static HTML file of size 2 kilobytes, which we ex-
perimentally determined to be a good compromise between high network utilization
and having to send more requests than the server can handle.

4.2.3 PostgreSQL

Our third case study, PostgreSQL®, is an SQL database written in C. It is our third
instance of infrastructure software.

Configuration Space

As with the previous case studies, we used the documentation® of PostgreSQL to
identify configuration options. Since we wanted to use a wide range of releases
and use only configuration options that can reasonably be assumed to impact per-
formance and that are relevant with our workload at all, only few configuration
options were available for us. We experimentally determined which of those configu-
ration options do not have any impact on performance in our scenario by measuring
some configurations. We excluded those configuration options from consideration
and used all remaining configuration options for this case study.

In the following list, we describe the configuration options and in Figure 4.3 we show
the corresponding feature model.

fullPageWrites: This configuration option specifies that PostgreSQL should under
certain conditions write full memory pages to disk instead of only modified
portions. This ensures that the database can recover from a crash. This
option is enabled by default.

sharedBuffers: This numeric configuration option specifies the amount of memory
(in megabytes) available for shared buffers. The default value is 128.

synchronousCommit: This configuration option specifies whether a transaction
has to wait until all data is physically written to disk before it is reported as
successful. Synchronous commits are enabled by default.

8https://www.postgresql.org/ — last visited on 2019-08-23
https://www.postgresql.org/docs/manuals/ — last visited on 2019-08-23
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Figure 4.3: Feature diagram for the PostgreSQ)L case study

fsync: This configuration option specifies whether PostgreSQL should ensure that
updates are physically written to disk, allowing the database server to recover
from crashes. This option is enabled by default.

tempBuffers: This numeric configuration option specifies the amount of memory
(in megabytes) available for temporary tables within each database session.
The default value is 8.

trackActivities: This configuration option allows PostgreSQL to gather informa-
tion on commands and timing information. This option is enabled by default.

trackCounts: This configuration option allows PostgreSQL to gather statistics on
database activity and table sizes, which is required for certain optimization.
This option is enabled by default.

workMem: This numeric configuration option specifies the amount of memory (in
kilobytes) available for sorting and hashing operations. If these operations
require more space, data is written to the disk. The default value is 4 096.

This feature model represents a total number of 864 configurations.

Releases

The source code of PostgreSQL is available in a Git repository!®. We used the tags
to identify releases.

Ohttps://github.com/postgres/postgres — last visited on 2019-08-23
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A new major version of PostgreSQL is released approximately once a year. Major
versions receive updates in the form of minor releases for five years. This means,
that at any time, approximately five different major versions of PostgreSQL are
officially supported and receive updates'®.

Similar to the Apache httpd case study, we decided not do use releases from a major
version that are newer than the next major version. In this way, the ranges of
releases we measured for different major version do not overlap.

The first release we measured was 8.3.0, the initial release of the 8.3.* major version,
which was released in February of 2008. We did not use any releases before that,
since three of the configuration options we used, synchronousCommits, trackActivi-
ties and trackCounts, were only introduced in 8.3.0.

The last release we measured was 11.2 from the 11.* major version, which was
released in February of 2019. At the time of the measurements, this was the most
recent release of PostgreSQ)L.

From each of the major versions out of the range 8.3.% to 11.*, we used two releases,
including the first one, for an even distribution of all releases over the covered time
spam. This results in a total number of 22 releases of PostgreS()L, spanning eleven
years.

A complete list of releases for this case study is included in Section A.2 of the
appendix.

Workload

For the PostgreSQL case study, we used the same benchmark as in the Apache httpd
case study, PolePosition 0.6.0. Since JDBC is used to communicate to PostgreSQL
as well, we also used the same scenarios of PolePosition. We also used the same
parameters for the different scenarios that we used for the HSQLDB case study.

We used two instances of PolePosition with identical configuration to increase the
load on the server.

4.2.4 libvxp VPS8

Our fourth and final case study is the VP8 encoder of libupz'?, a video encoder for
the WebM format, written in C. It is our only application software case study.

Configuration Space

We used the documentation of libupz VP8 to identify configuration options and
selected suitable configuration options based on the documentation and the results
of Hasreiter [Has19].

In the following list, we describe the configuration options and in Figure 4.4 we show
the corresponding feature model.

Hhttps:/ /www.postgresql.org/support /versioning/ — last visited on 2019-08-23
2https: / /www.webmproject.org/code/ — last visited on 2019-08-23
Bhttps: //www.webmproject.org/docs/encoder-parameters/ — last visited on 2019-08-23
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Figure 4.4: Feature diagram for the libvpz VPS8 case study

best, good, rt: These three configuration options specify if the encoder should
focus on high output quality or speed. With best, libupx VPS8 produces the
best quality output at the expense of time. With rt (real-time), the encoder
focuses only on speed and the quality depends on the available resources. The
option good is the compromise between quality and speed.

twoPass: This configuration option controls whether libupx VP8 should encode in
two passes. The first pass of two-pass encoding only gathers statistics for use
in the second pass. This allows the second pass to use information about future
frames. When two-pass encoding is not used, only a single encoding pass is
performed which does not have access to statistics about subsequent frames.

autoAltRef: This configuration option allows the encoder to use a constructed
(or alternate) reference frame!'* which is included in the output but is not a
displayable frame. This reference frame may be derived from one or more
future frames and is consequently only available with two-pass encoding.

Mhttps://groups.google.com/a/webmproject.org/forum/#!topic/codec-devel /[LUYpX2MUXgc
— last visited on 2019-08-23
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arnrMaxFrames: This numeric configuration option controls the behaviour of lib-
vpx VP8 when constructed reference frames are used. The value specifies the
maximum number of future frames that may be used to derive a reference
frame.

arnrStrength: This numeric configuration option controls the behaviour of libuvpz
VP8 when constructed reference frames are used. The value specifies the level
of noise filtering that is applied during the construction of reference frames.

constantBitrate: This configuration option specifies that the encoder should at-
tempt to encode frames with a constant bitrate.

threads: This numeric configuration option specifies the number of threads used to
encode portions of a frame in parallel. Not all steps of the encoding process
can be parallelized.

allowResize: This configuration option controls whether the encoder is allowed to
downscale frames during encoding.

tokenParts: This numeric configuration option specifies the logarithm (base two)
of the number of partitions to use during encoding. Using more than one
partition (value 0) allows more steps of the encoding process to be parallelized
when using multiple threads.

We did not specify the default values for the listed configuration options since they
are not specified in the documentation and may be different depending on the release.

This feature model represents a total number of 2736 configurations.

Releases

The source code for libupz is available in a Git repository'®. All releases are marked
with tags. When we performed the measurements, there were only 17 releases. We
did not use the first release, v0.9.0, since it did not produce correct output files.
We were also unable to use v1.6.0 due to an incompatibilty with the experimental
setup. We used all the remaining 15 releases for this case study.

The first of our releases was v0.9.1 from June 2010. The last of our releases was
v1.8.0 from February 2019, for a range of nine years.

Workload

Since libvpz VPS8 is application software, we do not need an additional client ap-
plication to measure the performance. We can simply execute a specific workload
with libupx VP8 and measure the execution time. Our workload was encoding an
uncompressed video file to VP8 WebM (*.webm file format). As input video file,
we used the *Sintel* trailer'® in YUVAMPEG2 (*.y4m file format) format with 480p
resolution.

Bhttps://chromium.googlesource.com/webm/libvpx — last visited on 2019-08-23
https: //media.xiph.org/ — last visited on 2019-08-23
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4.3 Experimental Setup

In this chapter, we describe the experimental setup that we used to measure the
case studies. We first describe the general hardware and measurement setup and
then specify details that are relevant for the individual case studies.

4.3.1 Hardware and Measurement Setup

We measured all of our case studies on a cluster of workstation PCs. The cluster
consists of 14 nodes with Intel Core i5-4590 processors. The processors have four

cores with a single thread per core and a base frequency of 3.3GHz. The nodes have
16GB of RAM and use SSDs for storage.

All nodes have a 1Gb/s Intel Ethernet Connection 1217-LM and are connected to a
single Superstack 4 5500G switch with 48 ports.

A minimal installation of Debian 9.9 is used as operating system.

All nodes are connected to power distribution units (PDUs), which measure the
power consumption, independently for all the connected nodes. Twelve of the nodes
are connected to an IPT iPower P1 with 18 sockets and the remaining two nodes
are connected to another IPT iPower P1 with three sockets.

The PDUs measure the power consumption with a frequency of 1Hz. To log these
power consumption values for later evaluation, we need to query these values over
the network. Since querying and processing the data can introduce a small delay,
we may end up with seconds without a value when querying exactly once every
second. Since our definition of energy consumption (Section 3.5), where we sum up
the power consumption values to directly obtain the energy consumption, relies on
us having exactly one power consumption value for every second, we need to make
sure that we do not miss a value for any second. For this purpose, we query power
consumption values at a slightly higher rate of one value every 900 milliseconds, and
simply discard a value when we have multiple values for the same second.

Since this client, that queries the power consumption values, has some power con-
sumption of its own, we run it on a different host than the measured software so it
cannot influence the results. Likewise, for case studies that consist of a server and
client, we run the two on different nodes of the cluster, so that the client cannot
impact the performance and energy consumption of the server.

4.3.2 Case Studies

In this section, we outline specific properties of our case studies that are relevant
with our particular experimental setup.

HSQLDB

Since HSQLDB is written in Java and runs in the Java Virtual Machine (JVM),
just-in-time (JIT) compilation can substantially impact the performance as stated
by Georges et al. [GBEO7]. Since we are not interested in measuring the start-up
performance, we include a warm-up phase before the measurements for the HSQLDB
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case study. The warm-up phase uses the same server instance that is used for the
benchmark but uses a separate database. While we are using two clients for the
actual benchmark, we are only using a single client for the warm-up phase. To make
sure that, during the warm-up phase, all code is executed on the server that is later
used during the benchmark, so that it is already JIT compiled during the benchmark,
we use a similar configuration for the client, PolePosition, for the warm-up phase
as we use for the benchmark, just with a reduced number of iteration to save time.

We compiled all of our selected releases of HSQLDB as documented.

For this case study, we did not directly measure the performance as the execution
time of the client, PolePosition, but instead used the run time reported by PolePo-
sition in its log output.

Apache httpd

In the Apache httpd case study, the benchmark client ab sends a large number of
requests to the server and needs to open a large number of sockets. Since, on Linux,
sockets count towards the limit of open file handles, we had to raise this limit on
both client and server.

To build older releases of Apache hittpd on our modern systems, we had to deviate
from the documented build steps. The tool libtool is used during the build process.
We could use the current version 2 of libtool for versions 2.4.% of Apache hitpd but
had to use libtool 1 for versions 2.2.*. Apache httpd has a dependency on OpenSSL.
Older versions of Apache hitpd are incompatible with new versions of OpenSSL.
However, we found that the rather old version 0.9.8zh of OpenSSL was compatible
with all of our Apache hitpd releases, so we used this version for all releases to prevent
different OpenSSL versions from impacting the performance. Apache hittpd depends
on the two libraries APR and A PR-Util, which are also developed by Apache. Since
we were not able to use the same versions of these libraries for all versions of Apache
httpd, and we could not find documentation stating which version of APR and APR-
Util should be used for which version of Apache httpd, we decided to use for every
Apache httpd version, the versions of these libraries that had been the latest ones at
the time the Apache httpd version was released.

Older versions of Apache httpd need to be compiled for a single specific multi-process-
ing module (MPM). Since we consider two different MPMs as configuration options,
we need to compile Apache httpd twice for every release, once for the ‘worker” MPM
and once for the ‘prefork” MPM. In addition to the respective MPM, we enabled
the following modules during the compilation of Apache httpd: ssl, deflate, socache-
shmcb.

Similar to the HSQLDB case study, we did not directly measure the performance
as the execution time of ab. Instead we used the reported run time of ab.

PosgreSQL

To compile old releases of PostgreSQ)L with a new compiler, we had to disable ag-
gressive loop optimizations with the compiler parameter -fno-aggressive-loop-
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optimizations!?, to prevent segmentation faults at runtime. To prevent this miss-
ing optimization from having an unwanted influence on the performance of different
releases, we disabled the optimization for all versions of PostgreSQL.

Since we used the same benchmark client as in the HSQLDB case study, we also
used the same approach of extracting a value for the performance from the output
of PolePosition.

libvpx VP8

To compile older releases of libvpxz VPS8 with a modern compiler, we had to explicitly
specify an older language standard of C89 with GNU extensions.

We measured the performance directly as the execution time of the encoder.

4.4 Operationalization

In this section, we formally describe the strategies we employ to evaluate our mea-
surement results, which we will use in the following chapter to answer the research
questions.

4.4.1 RQI1.1: Changes in Mean Performance and Energy

For our first research question, we investigate changes in the mean performance and
mean enerqgy consumption over all configurations for consecutive releases. We define
the mean value of a non-functional property as follows:

1
T, = — E 4.1
xr ’C’ xr,c ( )

ceC

x is an non-functional property, either performance (p) or energy consumption (e).
Z, is the mean value for a specific release r € R. C is the set of configurations and
Z, . is the non-functional property value for a specific release r and configuration c.

We determine what we call prominent releases. We consider a release to be a
prominent release for an non-functional property if there is a substantial change in
that non-functional property from the preceding release.

A substantial change is a change in the value of a mon-functional property that
exceeds some threshold that is based on the relevant deviation. We define the
absolute change A7 in the mean value of a non-functional property x as the difference
of mean values for two consecutive releases r;_1,r; € R, where r;_; is the release
directly preceding r;:

Ai =Tr; = Tp;_, (4'2)

For this research question, we consider one mean value for each release and non-
functional property. Consequently, we also need one mean deviation value for each

Thttps: / /stackoverflow.com/a /34204352 — last visited on 2019-09-06
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release and non-functional property. We use the root mean square (RMS) average
over the deviation values of all relevant configurations to determine these mean
deviation values.

5" = ﬁszCV (4.3)

o’ is the mean deviation of the non-functional property x for a specific release r

T
and o7, is the deviation of the non-functional property x for a specific release r and

configuration c. The other symbols have the same meaning as in the formula above.

For a single release, we set the threshold to the mean standard deviation of that
release. We then set the threshold 67 for substantial changes between two consecu-
tive releases r;_1,r; € R, as the sum of the thresholds of these two releases, i.e. as
the sum of mean deviations for these releases:

T _ =T
67’1‘ =0y

+ o, (4.4)
With this approach, we can be certain that every substantial change we observe is in
fact a change in the non-functional property value and not only caused by inaccurate
measurements, as might be the case when the change does not exceed the deviations.

Formally, the set Ry, C R of prominent releases for a non-functional property x is
defined as follows, using the symbols defined above and the absolute value function

abs:

REom =11 € R|abs(A?) > 67 } (4.5)

prom

Once we have determined the prominent releases for both performance and en-
ergy consumption, we determine how many prominent releases there are for each
non-functional property and if the releases are the same for both non-functional
properties.

For releases that are prominent releases for both performance and energy consump-
tion, we will compare the magnitude of the changes. Since we cannot directly
compare the absolute values of these two non-functional properties with different
units, we will determine relative change values:

e s = (4.6)

A7 is the absolute change in the mean value for non-functional property x from the
release r;_1 € R preceding r; to the release r; € R as defined above. Analogously,
4% is the relative change.
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4.4.2 RQ1.2: Changes in Performance and Energy of Con-
figurations

For the second research question, we increase the granularity and examine the per-
formance and energy consumption of individual configurations rather than the mean
over all configurations.

Similar to the previous research question, we find configurations that have a substan-
tial change in performance or energy consumption between two consecutive releases.
Again, the change in the value of a non-functional property x is defined simply as
the difference between the values of the non-functional property for two consecutive
releases r;_1,7; € R.

Afiyc = Trie = Tri_ic (47)
xr. is the value of the non-functional property for a specific release r and configu-
ration c.

Since we are now investigating individual configurations, we have to define a different
threshold for which changes we consider to be substantial. We set the threshold for an
individual configuration and release to the standard deviation of the measurements
for that configuration and release. For the change between two consecutive releases
ri—1,7; € R, we set the threshold Gf;’i’c for a configuration ¢ € C to the sum of the
thresholds of the two releases for that configuration, i.e. the sum of the respective
standard deviations:

0 = 0% ol (4.8)
Since there are too many configurations to examine every single one of them, we
only focus on the number of configurations with substantial changes for each release,
only distinguishing between positive and negative change values. First, we define
the sets Coif, ., Conc . € C of prominent configurations for non-functional property
x and the releases r € R with respectively positive and negative changes that exceed
the relevant threshold value:

cot  ={cec|ar, >6,}

prom,r

Coonr ={ceC|A?, < —07}

prom,r

(4.9)

Then we can count the configurations in each of these sets. We denote these numbers
as N:

N7t =[Gt | w10,
NP~ =|coo ] ’
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Finally we can also determine the number of configurations that are prominent for
a specific release for both performance (p) and energy consumption (e). We denote
these numbers as N™™ (for ‘common’):

N:om,Jr — ‘CpHr nCet |

prom,r prom,r
e e et | (4.11)
T — |Yprom,r prom,r

4.4.3 RQ1.3: Changes in Performance and Energy of Fea-
tures

In the third research question, we increase the amount of usable information by
increasing the level of abstraction. Instead of considering individual configurations,
we now investigate the influences of configuration options and combinations of con-
figuration options on the performance and energy consumption.

To obtain that information from our measurements, we use SPL Conqueror. We pro-
ceed in five steps to obtain comparable performance-influence and energy-influence
models.

In a first step, we use the iterative learning algorithm of SPL Conqueror to generate
performance-influence and energy-influence models for each release. This results
in models with different terms, in particular between performance and energy con-
sumption, but also between different releases. We take the union of the terms from
all models and proceed with the next step.

In the second step, we manually investigate the set of terms obtained in the first
step to remove and replace terms according to the following rules: