
University of Passau

Department of Informatics and Mathematics

Bachelor Thesis

Performance and Energy
Interactions of Configurable

Systems

Author:

Niklas Werner

October 11, 2017

Advisors:

Prof. Dr.-Ing. Sven Apel

Chair of Software Engineering I

Christian Kaltenecker

Chair of Software Engineering I

Alexander Grebhahn

Chair of Software Engineering I



Werner, Niklas:
Performance and Energy Interactions of Configurable Systems
Bachelor Thesis, University of Passau, 2017.



Abstract

In the past, performance was the focus of optimizations in software, which is nowa-
days usually configurable. Recently, energy consumption became another important
factor. Existing studies have compared performance and energy consumption with
different results. Other studies have investigated the influence of different configu-
ration options on the performance. In this thesis, we compare the performance and
energy consumption for three case studies: HSQLDB, Apache, and x264. Addi-
tionally, we generate performance-influence and energy-influence models with SPL
Conqueror and compare them. Before we conduct the case studies, we perform
sanity checks for our measurement setup. We find, that performance and energy
consumption correlate for application software, but not for infrastructure software.
The influence models are almost equal for application software and different for
infrastructure software.
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1. Introduction

While, in the past, the focus of optimizations in software was on performance, re-
cently also energy consumption becomes increasingly important. Additionally, most
software systems are nowadays configurable to adapt to the requirements of different
customers and fields of application.

Existing studies have focused on the influence of configuration options on the perfor-
mance. Other studies have compared performance and energy consumption – with
different results. Some studies come to the conclusion, that a correlation between
performance and energy consumption exists, while others find that such a correlation
does not exists.

In this thesis, we combine these two areas of interest and compare the performance
and energy consumption for configurable software systems and investigate the influ-
ences from configurations options on both the performance and energy consumption.
In an attempt to explain the different results regarding a correlation between perfor-
mance and energy consumption in existing studies, we identify two different types
of software systems – infrastructure software and application software – that exhibit
a different behaviour regarding this correlation.

For this comparison of performance and energy consumption, we conduct three
case studies from different domains: the database server HSQLDB , the web server
Apache, and the video encoder x264 .

Mytkowicz et al. [MDHS09] show, that there are many factors that can influence a
measurement and possibly even lead to wrong results. For that reason, we perform
sanity checks for our measurement setup before we conduct the case studies.

Using the results from the case studies, we investigate the correlation between per-
formance and energy consumption and compare the influences from configuration
options on both performance and energy consumption.
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This thesis is structured as follows:

Following this introduction, we provide an overview on related work in Chapter 2,
where we describe and compare three studies that compare performance and energy
consumption and that come to different conclusions.

Then, we provide some background necessary to understand the topics covered in this
thesis, and introduce relevant terms in Chapter 3. First, we describe the difference
between infrastructure software and application software. Then, we explain the
most important terms for this thesis: configurable system, performance, and energy
consumption. Finally, we provide some information on performance-influence and
energy-influence models as well as the Pearson correlation coefficient, which we use
for the evaluation.

The general background is followed by the more specific methodology in Chapter 4.
In that chapter, we introduce our research questions and the case studies we conduct
to answer the research questions. We introduce each of the three case studies –
HSQLDB , Apache, and x264 – and describe the configuration options we used.

In Chapter 5, we describe the general experimental setup that is common for all
case studies, and specific additions for each case study. Here, we also conduct sanity
checks for the measurement setup.

Afterwards, we use the results from the case studies for the evaluation in Chapter 6.
We answer each research question in one section by describing the operationalization
and presenting and discussing the results.

Every experimental setup contains potential threats to the validity of the results. In
Chapter 7, we discuss both the internal and external validity of our findings.

Finally, in Chapter 8, we conclude the thesis with a summary and an outlook on
possible future work.



2. Related Work

Several papers investigate the performance and energy consumption of different ty-
pes of systems. However, they differ in their measurement setup and, consequently,
they do not all come to the same conclusion.

Tsirogiannis et al. [THS10] analyse the energy efficiency of database systems. This is
accomplished by investigating the performance and energy consumption of specially
developed ‘micro-benchmarks’ which implement core database operations. Additi-
onally, the energy efficiency of specific algorithms in PostgreSQL is evaluated. The
energy consumption is measured for the individual hardware components in their
experimental setup and the evaluation focuses on the energy consumption of the
CPU. They compare the performance, which they define as the ratio of work done
to run time, with the energy efficiency, which is the ratio of work done to energy
consumption. For various combinations of hardware and software features, they
compare the configurations with the highest performance and the highest energy
efficiency. Their results show that the most energy efficient configuration usually
has the best performance.

Besides, Costa et al. [CAKLR11] evaluate power–performance tradeoffs in data
deduplication systems. Unlike in the study by Tsirogiannis et al., Costa et al. define
the performance as the ratio of run time to work done and they define the energy
efficiency as the ratio of energy consumption to work done. The energy consumption
is measured for the whole system and not for individual components like in the
previous study. For varying similarity ratio in the test data, they determine the
break-even points between enabled and disabled data deduplication. They do this
independently for performance and energy efficiency and compare the break-even
points of both. They find that the existence of such tradeoffs depends on the used
hardware because new hardware systems are increasingly power-proportional, i.e.,
the power consumption is proportional to the resource utilization. For such new
systems, tradeoffs exist between power and performance optimizations.

Another evaluation of performance and power consumption of database systems is
conducted by Xu et al. [XTW10]. Their goal is to explore power–performance trade-
offs. For the measurements, PostgreSQL is used with benchmark scenarios derived
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from the TPC benchmarks. The energy consumption is measured for the whole
system like in the study by Costa et al., but unlike in the other two studies, they
additionally measure the power consumption and have no notion of energy efficiency.
Likewise, instead of calculating a value for the ‘performance’, they directly compare
the run time. Comparing the power and energy consumption and the run time
for different workloads, they conclude that power–performance tradeoffs exist and
that software which is aware of power consumption, could apply optimizations that
greatly decrease the power consumption while only minimally affecting performance.

While all three of those studies investigate the performance and energy or power
consumption, they come to different conclusions. The findings of Tsirogiannis et
al. [THS10] indicate that energy consumption correlates with performance. Both
the studies of Xu et al. [XTW10] and Costa et al. [CAKLR11] do not indicate
such a strong correlation. This indicates, that the correlation between performance
and energy consumption is not the same for all types of software systems. Software
that runs continuously whether or not it is actively used, seems to have a different
behaviour regarding performance and energy consumption than software that only
runs for a limited time during which it actively used.



3. Background

In this chapter, we provide an overview of the general topic of this thesis – perfor-
mance and energy measurements – and explain the terminology used throughout
the following chapters.

First, in Section 3.1, we describe two different types of applications. Since this
thesis investigates performance and energy interactions of configurable systems, we
then provide an introduction to the integral terms for this topic. We provide an
introduction to the term ‘configurable system’ and related terms in Section 3.2.
Then we introduce the term ‘performance’ and how it is defined in this thesis in
Section 3.3 and the term ‘energy consumption’ and how it can be measured in
Section 3.4. In Section 3.5, we provide an overview on performance-influence and
energy-influence models as a way to compare performance and energy consumption.
Finally, in Section 3.6, we introduce the Pearson correlation coefficient which we will
use to investigate linear correlations in our results.

3.1 Application Types

The related work in Chapter 2 indicates that performance and energy interactions
are different depending on the type of software system. In this thesis, we distinguish
between two different types of systems: server-like software that runs continuously
(‘24/7’) and software that runs only for a limited amount of time to perform a
certain task.

We denote software that runs continuously as infrastructure software. Examples
for this type of software include web servers or database servers. Infrastructure
software runs even when it is not actively used, and consequently, a computer has
to run permanently and consumes energy permanently.

Software that only runs when needed will be denoted as application software. Ex-
amples for this type of software include video encoding or compression tools. In
contrast to infrastructure software, application software only runs when it is used.
When it is not used, it does not run. Thus, no computer has to run and consume
energy while the application is not used.
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3.2 Configurable Systems

A configurable (software) system is software with configuration options. Configura-
tion options are features. A feature is a distinct piece of functionality, which can be
optional or mandatory. Optional features can be either selected or deselected. They
can be ‘turned on and off’. There are two different types of such optional features,
distinguished by when they can be turned on and off. Variability at compile time
is achieved with features that are optional at compile time but cannot be changed
after compilation. On the other hand, variability at runtime is achieved with fea-
tures that are still toggleable after compilation, for example, by passing command
line arguments to the software.

Throughout this thesis, the term feature will be used to denote a usually optional
feature, i.e. a configuration option.

Usually, not all combinations of features are valid. For example, a feature might
actually be required. Or two features might be mutually exclusive. The term confi-
guration is used to denote a valid combination of features .

Features and configurations can be represented mathematically as sets. We denote
the set of all features (configuration options) as O and the set of all configurations
as C. A configuration c ∈ C is a function O → {0, 1}. For a feature o ∈ O, c(o) = 0
if the feature is not selected for the configuration c and c(o) = 1 if the feature is
selected.

A feature model consists of a set of features and their constraints. Consequently, a
feature model describes all valid configurations.

A feature diagram is a graphical notation of a feature model in the form of a tree.
Figure 3.1 shows an example for a feature diagram.

Unix Delete

OS

Windows

EncryptionBase

AESRead

Transactions

Append

ExampleDatabase

Operations

Blowfish

Encryption  ⇒  Append

Legend:

Mandatory
Optional
Or
Alternative
Abstract
Concrete

Figure 3.1: Example for a feature diagram showing the features and their constraints
for the system ‘ExampleDatabase’

In this example, the software system ‘ExampleDatabase’ has the concrete features
‘Base’, ‘Windows’, ‘Unix’, ‘Transactions’, ‘Append’, ‘Read’, ‘Delete’, ‘AES’, and
‘Blowfish’. ‘OS’, ‘Operations’, and ‘Encryption’ (and ‘ExampleDatabase’) are not
actually features in the sense that they provide functionality. Rather they are ab-
stract features, used in the diagram to group other features, which allows expressing
certain constraints between features. Different types of edges are used to repre-
sent different types of constraints. The features ‘Base’, ‘OS’, and ‘Operations’ are
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mandatory, as denoted by an edge with a filled circle. They are selected for all con-
figurations . The features ‘Transactions’ and ‘Encryption’ are optional, as denoted
by the edges with a blank circle. The blank arc between the edges of ‘Windows’
and ‘Unix’ denote an alternative. Exactly one of these features is required. This
constraint can be seen as an exclusive or. On the other hand, edges with a filled
arc denote an inclusive or constraint. At least one of the features ‘Append’, ‘Read’,
and ‘Delete’ is required. A feature that appears below another feature in a feature
diagram must not be used when the feature above it is not used. In the example,
the features ‘AES’ or ‘Blowfish’ can only be used for configurations with the feature
‘Encryption’.

While constraints between features can be arbitrarily complex in a feature model ,
the tree representation of a feature diagram can only express a few basic constraints
as described in the example above. To ensure that the feature diagram accurately
describes the feature model with all its constraints, additional constraints that can-
not be expressed with the tree, can be added to the feature diagram as Boolean
expressions. These expressions contain the features as variables and have to be true
for valid configurations . Such additional constraints that complement the tree in a
feature diagram are called cross-tree constraints .

In the example, Encryption ⇒ Append is such a constraint that cannot be
represented in the tree. It specifies, that for configurations with ‘Encryption’, the
feature ‘Append’ is required.

Usually, a mandatory feature is included in the feature model that does not represent
a configuration option but rather the core functionality of the system, that is avai-
lable regardless of any configuration options. In the above example and throughout
this thesis, we call this mandatory feature ‘Base’.

The term feature as defined above, only refers to the concrete features of a fea-
ture diagram since the abstract features of a feature diagram do not correspond to
functionality.

3.3 Performance
There are different ways to measure what can be called the performance of a system.
In fact, how performance can be measured depends on one’s definition of the term.
For example, performance can be defined as the time taken to produce a result or
as some quality attribute of the result.

Tsirogiannis et al. [THS10] define performance as the ratio of work done to time:

Performance =
Work done

Time
(3.1)

In this thesis, we always determine performance by the time taken to produce a
result, or more specifically, the time taken to execute a benchmark. We do not
consider any quality attributes of the result. Thus, the work done is always the
same (the execution of a specific benchmark). We define that constant work to be
1. The performance is then only defined by the time taken to execute a benchmark:

Performance =
1

Run time
(3.2)
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Since, in this thesis, time is the only factor influencing performance, we use a slightly
different and simpler definition of performance throughout this thesis. We define
performance as follows:

Performance = Run time (3.3)

The difference between infrastructure software and application software has an im-
pact on how performance can be measured.

Application software runs on a single computer and the measured software directly
executes the benchmark. Consequently, the performance is determined by the exe-
cution time of the measured software.

Infrastructure software, on the other hand, runs in a client–server setup where the
measured software runs as a server and the benchmark runs as a client application.
Hence, while the performance is still determined by the execution time of the ben-
chmark, it is not the execution time of the measured infrastructure software, but
rather the execution time of the client application.

Note, however, that in this context, execution time does not necessarily mean that
the actual execution time from the start of a process to the end is measured, but
it may be possible to extract a more accurate value from the output of the process.
For example, a benchmark application might write accurate start and end times of
the benchmark to a log file. These times can more accurately represent the run time
of the benchmark and we use them whenever they are available.

3.4 Energy Consumption

The energy consumption is another integral term for this thesis.

We measure the energy consumption of the whole system, rather than the energy
consumption of individual components like the CPU.

Due to restrictions in the experimental setup, we cannot directly measure the energy
consumption, but we can measure the power consumption periodically. Since energy
is defined as the product of power and time, we can calculate the energy consumption
as a sum of power consumption values over time:

E =

tend
∆t∑

t=
tstart
∆t

P (t ∆t) ∗∆t (3.4)

E is the energy consumption between the start of the measurement tstart and the
end of the measurement tend , P (t) is the power consumption measured at the time
t and ∆t is the period with which power consumption values can be measured.

This calculation is simplified by the fact that with our experimental setup we can
set ∆t = 1s. In other words, the energy consumption is calculated as the sum of
power consumption values for each second during the measurement:

E =

tend∑
t=tstart

P (t) ∗ 1s (3.5)
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tstart and tend are measured in seconds.

The difference between infrastructure software and application software affects not
only the definition of performance but also the definition of energy consumption.
While the notion of energy consumption for application software is quite straightfor-
ward, the same is not the case for infrastructure software. For application software,
which only runs when needed, the energy consumption is measured during the whole
time the application runs. On the other hand, for infrastructure software, the soft-
ware runs also when it is not actively used. In fact, it runs continuously – idly while
not used – so this raises the question of whether and how the idle energy consump-
tion should be included in the measurement. While in a real world scenario, one
could certainly argue to define the energy consumption of one period of active use
to include the idle energy consumption before or after that period up to the next
period of active use. However, this is not suitable in an experimental environment,
where the duration of the idle period is not determined by the utilization of the
infrastructure software but rather by the experimental setup which defines when a
measurement begins and when it ends.

In this thesis, we answer the question by running all the measurements of each case
study for the same fixed duration, which includes the energy consumption during
active use and the idle energy consumption until the end of the measurement. This
simulates a real world scenario where the infrastructure software is used periodically
with a fixed period. Only this combination of active use and idle period define the
energy consumption for infrastructure software for this thesis.

Figure 3.2: Fixed duration for the energy consumption of infrastructure software.
The left graph shows the energy consumption over the course of a measurement
for a slow configuration and the right graph for a fast configuration. The energy
consumption after the end of the benchmark (tend) until the end of the measurement
with a fixed duration (tfixed) is the idle energy consumption of the system.

The fixed duration for the energy consumption of infrastructure software is illustra-
ted in Figure 3.2. The measurement and benchmark start at tstart and the benchmark
ends at tend. The measurements continues until tfixed, which is the same for all con-
figurations . In the experimental environment, tfixed is the end of the measurement.
In a real world scenario, it would be the start of the next period of active use. In
the figure, there is a slow configuration on the left and a fast configuration on the
right. Both measurements include the idle energy consumption until tfixed, which is
more for the fast configuration.
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3.5 Performance-Influence and Energy-Influence

Models

A performance-influence model describes the performance of configurations . More
specifically, it describes the influence of individual features and interactions between
features on the performance of all configurations ([SGAK15]).

Interactions of features are influences that only appear with a certain combination
of features . They can simply be caused by code that is only executed for a com-
bination of features , but interactions can also be less obvious. For example, in a
database system, the code of a feature ‘Encryption’ might not change depending on
whether the feature ‘Compression’ is enabled or not, however, at runtime the feature
‘Compression’ might still have an influence on the performance of ‘Encryption’, be-
cause ‘Compression’ will result in ‘Encryption’ having to encrypt a smaller amount
of data.

These influence models are not restricted to describing the performance of a sy-
stem, but can be used for other measurable attributes as well, for example, energy
consumption. We use the term performance-influence model for a model of the
performance and the term energy-influence model for a model of the energy con-
sumption.

The general form of a performance-influence model is as follows:

Π(c) = β0 +
∑
i∈O

φi(c(i)) +
∑
i..j∈O

Φi..j(c(i)..c(j)) (3.6)

Π(c) is the performance of a configuration c ∈ C. The set of all features O and the
set of all configurations C are defined in Section 3.2. β0 is a constant base value
for the performance of all configurations , which is independent from the feature
selection. φi(c(i)) is the influence on the performance of a single feature i based
on its presence in the configuration c and Φi..j(c(i)..c(j)) is the influence on the
performance from multiple features i..j based on their presence in the configuration
c.

We denote a performance-influence model as Π(c) and an energy-influence model as
E(c).

For the example database system from Figure 3.1 in Section 3.2, the following might
be an excerpt from the performance-influence model for the features ‘Transactions’
(T), ‘Append’ (A), ‘Read’ (R), ‘Delete’ (D), and ‘Blowfish’ (B):

Π(c) = 100 + 25 · c(T ) + 20 · c(B) + 10 · c(T ) · c(D)

+ 35 · c(A) · (B) + 5 · c(T ) · c(A) · c(B)
(3.7)

In the example, ‘Transactions’ and ‘Delete’ interact, as do ‘Append’ and ‘Blowfish’.
Additionally, there is an interaction between the three features ‘Transactions’, ‘Ap-
pend’, and ‘Blowfish’. From the model, the performance of a configuration could be
calculated by simply plugging in a configuration c into the formula.
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In addition to introducing performance-influence models , Siegmund et al. [SGAK15]
also propose a machine-learning algorithm to derive such models from a sample of
measured configurations and provide an implementation of the algorithm with the
tool SPL Conqueror1.

We use SPL Conqueror to generate the performance-influence models and energy-
influence models for this thesis.

Our primary use for these models is to generate both performance-influence models
and energy-influence models for each case study and compare the models to analyse
differences between performance and energy consumption.

3.6 Correlation

To compare performance and energy consumption, we will investigate the correlation
between them. For this purpose we calculate a correlation coefficient.

The Pearson correlation coefficient was developed by Pearson towards the end of
the 19th century ([Pea96]). It is a measurement for the linear correlation between
two variables. Benesty et al. [BCHC09] define the Pearson correlation coefficient ρ
as follows:

ρ(a, b) =
E(a, b)

σaσb

E(a, b) =
1

n

n∑
i=1

(ai − ā)(bi − b̄)

σa =
1

n

n∑
i=1

(ai − ā)2

(3.8)

ρ(a, b) is the Pearson correlation coefficient of a and b, E(a, b) is the cross-correlation
or covariance between a and b, and σa is the standard deviation of a. ā is the mean
value of a.

The Pearson correlation coefficient can range from -1 to 1. A Pearson correlation
coefficient of 0 indicates no linear correlation while a Pearson correlation coefficient
with an absolute value approaching 1 indicates a strong linear correlation. Absolute
values less than 0.5 are usually said to indicate only weak correlation and absolute
values greater than 0.8 indicate strong correlation.

We will use the Pearson correlation coefficient to investigate the correlation between
performance and energy consumption.

1http://www.infosun.fim.uni-passau.de/se/projects/splconqueror/ – last visited on 2017-09-05

http://www.infosun.fim.uni-passau.de/se/projects/splconqueror/
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4. Methodology

In this chapter, we introduce the general methodology that we use in this thesis.
The methodology comprises of the research questions and the case studies we use
to answer them. We develop the research questions in Section 4.1 and introduce the
case studies in Section 4.2.

4.1 Research Questions

In this section, we summarize the previous chapters to develop our research questions
and introduce the case studies we conduct to answer the research questions.

Our first research question will cover the general relationship between performance
and energy consumption by examining whether a correlation exists between them.
Since the related work in Chapter 2 indicates that infrastructure software and appli-
cation software behave differently regarding performance and energy consumption,
we will also examine the correlation independently for both types of software sys-
tems.

In our second research question, we will further analyse the differences between per-
formance and energy consumption by comparing the performance-influence models
and energy-influence models obtained with SPL Conqueror for our case studies.

Overall, this leads us to the following list of research questions:

RQ1: Is there a correlation between performance and energy consumption?

RQ1.1: Is there a correlation between performance and energy consumption in
infrastructure software?

RQ1.2: Is there a correlation between performance and energy consumption in
application software?

RQ2: Do the performance-influence models and energy-influence models contain
the same terms?
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4.2 Case Studies

To answer the research questions, we conducted three different case studies. To keep
within reasonable bounds for a bachelor thesis, we selected HSQLDB and Apache
as two examples for infrastructure software and x264 as one example for application
software.

In the following sections, we provide an overview of these three software systems
and describe the features that we used.

4.2.1 HSQLDB

HyperSQL DataBase1, or HSQLDB , is an open source relational database system
written in Java. While HSQLDB can run as embedded database in applications, in
which case it might behave like application software, we used it in standalone server
mode, which makes it an example for infrastructure software.
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Figure 4.1: Feature diagram for the HSQLDB case study

In the following list, we describe the features2 we used for the case study and in
Figure 4.1 we show the corresponding feature diagram. The feature model for the
HSQLDB case study describes 864 configurations .

no write delay: The write delay specifies the interval, in which changes to the
database are persisted to the disk. The default value is 0.5 seconds. With
the feature ‘no write delay’ enabled, the write delay is set to 0, which means
changes are immediately written to disk.

small cache, large cache, default cache: The default in HSQLDB is to keep
tables completely in memory for faster read access. The three ‘cache’ features
change the default table type to ‘cached tables’ which are only partially kept
in memory. The default amount of memory used for cached tables is 10 MB.
The features ‘small cache’ and ‘large cache’ change this cache size to 1 MB
and 100 MB, respectively.

1http://hsqldb.org/ – last visited on 2017-08-26
2http://hsqldb.org/doc/2.0/guide/guide.pdf – last visited on 2017-09-13

http://hsqldb.org/
http://hsqldb.org/doc/2.0/guide/guide.pdf
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memory tables: This feature uses the default table type which completely caches
tables in memory.

compressed script: The ‘script file’ is used to persist a database on the disk. The
default format is plain text. With the feature ‘compressed script’, the script
file is compressed.

crypt aes, crypt blowfish: With either of these features selected, the database
contents that are written to the disk, are encrypted. AES encryption is used
with ‘crypt aes’ and Blowfish encryption is used with ‘crypt blowfish’.

txc locks, txc mvlocks, txc mvcc: The three ‘txc’ features specify the concur-
rency control model (transaction control). The default ‘two phase locking’ is
used with ‘txc locks’, ‘two phase locking with snapshot isolation’ is used with
‘txc mvlocks’, and ‘txc mvcc’ uses the ‘MVCC’ model.

small log: HSQLDB writes changes to a so called log file. When the log file reaches
a certain size, the changes are written to the script file and the log file is cleared.
By default, this happens when the log file reaches a size of 50 MB. With the
feature ‘small log’ selected, this limit is reduced to 5 MB.

logging, detailed logging: The feature ‘logging’ enables logging events to a file
with the default log level. The feature ‘detailed logging’ increases the log level
to include more details in the log file.

4.2.2 Apache

The Apache HTTP Server 3, or ‘httpd’, in this thesis simply Apache, is an open
source HTTP server written in C. It is another example for infrastructure software.
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Figure 4.2: Feature diagram for the Apache case study

3http://httpd.apache.org/ – last visited on 2017-09-07

http://httpd.apache.org/
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In Figure 4.2, we illustrate the features of this case study and their constraints. We
describe the cross-tree constraints after the following description of the features4.
The feature model describes 580 configurations for the Apache case study.

prefork, event, worker: Apache uses a ‘Multi-Processing Module’ (MPM) which
is responsible for accepting and handling requests and creating child processes
or threads for this purpose. The features ‘prefork’, ‘event’, and ‘worker’ select
the MPM with the respective name.

keepalive: This feature allows Apache to use persistent HTTP connections that
can be used for multiple requests. The same connection can be used for up to
65 requests. A connection is closed when it remains unused for 5 seconds.

servercache: Allows the server to cache responses in a shared memory-based cache.

minthreadlimit, maxthreadlimit: The ‘ThreadLimit’ value restricts the maxi-
mum number of threads per child process. This value can only be used with
the ‘event’ and ‘worker’ MPMs. The features ‘minthreadlimit’ and ‘maxthre-
adlimit’ set this value to 64 and 128, respectively.

sendfile: The feature ‘sendfile’ allows Apache to use the operating systems capabi-
lities to directly send a static file to the client without the need to buffer the
file contents between reading and sending.

status: The feature ‘status’ enables the ‘ExtendedStatus’ of Apache, which keeps
track of extended status information for requests and creates a utilization
summary.

minserverlimit, maxserverlimit: The ‘ServerLimit’ together with the ‘Thread-
Limit’ restricts the maximum number request workers. For both the MPMs
‘event’ and ‘worker’, the features ‘minserverlimit’ and ‘maxserverlimit’ set this
value to 16 and 32, respectively. For the MPM ‘prefork’ (which does not sup-
port ‘ThreadLimit’), the value is set to 256 and 512, respectively, by these
features.

compression: Enables gzip compression for response bodies.

html10k, html5k: These features do not represent functionality of Apache but
different workloads used for the case study. We used two HTML files of size
10 KB and 5 KB which are selected by the features ‘html10k’ and ‘html5k’,
respectively.

Two cross-tree constraints were necessary for the feature model of the Apache case
study.

The first constraint, event∨worker ⇐⇒ threadlimit, models the restriction
of the ‘prefork’ MPM that does not support setting the ‘ThreadLimit’. Conse-
quently, the feature ‘threadlimit’ can be used only with ‘event’ or ‘worker’.

4https://httpd.apache.org/docs/2.4/en/ – last visited on 2017-09-13

https://httpd.apache.org/docs/2.4/en/
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The second constraint, keepalive ∨ servercache ∨ html10k ∨ sendfile ∧
¬compression, is necessary due to a restriction in our experimental setup which
is not capable of measuring certain configurations (see Section 5.3.2). It excludes
combinations of features with the small html file (‘html5k’) but without the features
‘servercache’ and ‘keepalive’ when the feature ‘compression’ is selected and ‘sendfile’
is not selected, from the set of valid configurations . Note, that the logical and
operator (∧) has a higher precedence than the logical or operator (∨).

4.2.3 x264

x264 5 is an encoder for the video compression format H.264. It is an example for
application software.
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Figure 4.3: Feature diagram for the x264 case study

Figure 4.3 shows a feature diagram for the features that we used for the case study.
Most of the features correspond directly to command line parameters of x264 .
A short description of those features follows. More information about the featu-
res is available in the built-in documentation of x264 (command line parameter
--fullhelp). The feature model for the x264 case study describes 4,608 configura-
tions .

no asm: Disables CPU optimizations, which may lead to unpredictable influences
and are enabled by default.

no 8x8dct: Disables the 8x8 discrete cosine transform.

rc lookahead 20, rc lookahead 40, rc lookahead 60: Changes the number of
frames for frametype lookahead. The default value is 40. It can be chan-
ged to 20 and 60 with the features ‘rc lookahead 20’ and ‘rc lookahead 60’,
respectively.

no cabac: Disables context adaptive binary arithmetic coding (CABAC), which
can decrease the output size but also decreases the decoding speed.

5https://www.videolan.org/developers/x264.html – last visited on 2017-08-26

https://www.videolan.org/developers/x264.html
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no deblock: Disables the deblocking loop filter which can increase the output qua-
lity but decrease both the encoding and decoding speed.

no fast pskip: Disables early skip detection for P-frames.

ref 1, ref 5, ref 9: Changes the number of reference frames. Higher values de-
crease the encoding speed and can increase the output quality. The features
‘ref 1’, ‘ref 5’, and ‘ref 9’ change this value to 1, 5, and 9, respectively.

no mbtree: Disables macroblock-tree ratecontrol. Using ‘no mbtree’ increases the
encoding speed but decreases the output quality.

no mixed refs: Disables the use of different reference frames for each partition.
This can increase the encoding speed.

core1, core2, core3, core4: The ‘core’ features do not change the functionality
of x264 but restrict the number of CPU cores that x264 runs on. With the
features ‘core1’, ‘core2’, or ‘core3’ selected, the x264 process is restricted to
use only the first 1, 2, or 3 cores of the CPU, respectively. The features ‘core4’
does not restrict the CPU cores available to x264 .

no weightb: Disables an optimization for B-frames that can increase the output
quality.
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In this chapter, we describe the general experimental setup, that we used for all case
studies, and details that are specific to the experimental setup of the individual case
studies.

5.1 Hardware

The case studies were conducted using workstation PCs from a cluster called Zmiy.
The cluster Zmiy consists of 4 nodes with Intel Core i7 processors and 14 nodes
with Intel Core i5 processors. In the following, these nodes are denoted as i7 nodes
and i5 nodes , respectively. The i7 nodes have Intel Core i7-4790 processors with 4
cores and 8 threads and a base frequency of 3.6 GHz. The i5 nodes have Intel Core
i5-4590 processors with 4 cores (and 4 threads) and a base frequency of 3.3 GHz.
Both the i7 nodes and i5 nodes have 16 GB of RAM. For storage, the i7 nodes have
HDDs and the i5 nodes have SSDs.

Each node has a 1 Gb/s Intel Ethernet Connection I217-LM network interface card
and they are all connected to a single Superstack 4 5500G switch with 48 ports.

The cluster nodes use a minimal installation of Ubuntu 16.04.3 LTS.

Depending on the requirements of each case study, one or more nodes can be used
for each configuration.

Since there are only 4 i7 nodes available, measuring all configurations on the i7 nodes
would take much longer than using the i5 nodes , of which there are 14 available.
Thus, only the i5 nodes were used for measuring the case studies.

5.2 Measurement Setup

All nodes are connected to power distribution units (PDUs) which measure the
voltage, current, power consumption, power factor, and frequency, independently
for all nodes. Note, that the PDUs do not measure the energy consumption, so the
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energy consumption has to be calculated from the power consumption as explained
in Section 3.4. All i7 nodes and 12 of the i5 nodes are connected to an IPT iPower
P1 PDU with 18 sockets and the remaining 2 i5 nodes are connected to another
IPT iPower P1 PDU with 3 sockets.

A small Java-based tool called PDUGetterV2 was developed to periodically query
the measured values from the PDUs and write them to a log file. The values are
queried every 990 milliseconds to ensure that at least one set of values is logged
every second. Values much lower than 1 second can result in the PDU not replying
to queries and setting exactly 1 second as interval can lead to seconds without a
value because querying the values from the PDUs and processing the response can
take some time. The value of 990 milliseconds has proven to not lead to either of
those problems.

In addition to logging the values measured by the PDUs, the CPU load for all used
nodes is logged every second.

5.3 Case Studies

In addition to the general experimental setup from the previous sections, some parts
of the experimental setup are specific to the individual case studies. We describe
these specific additions in this section.

5.3.1 HSQLDB

The HSQLDB case study uses a client–server setup where the database system runs
in server mode and the benchmark application acts as a client. Because only the
energy consumption for the database system should be measured, the client runs
on a separate node. We used version 2.4.0 of HSQLDB , running on the OpenJDK
1.8.0 131 64-Bit Server VM.

To generate load on the HSQLDB server, we used the PolePosition1 benchmark.
PolePosition is an open source benchmark for databases, which has built-in support
for HSQLDB . PolePosition provides different scenarios ranging from read-focused
to write-focused and from simple queries to very complex queries. We used version
0.6.0 of the PolePosition benchmark with a custom configuration using the three
scenarios ‘Complex’, ‘InheritanceHierarchy’, and ‘FlatObject’, which consist of both
reading and writing queries with varying complexity.

Since HSQLDB is written in Java and runs in the Java Virtual Machine (JVM),
just-in-time compilation (JIT compilation) can substantially impact the start-up
performance as sated by Georges et al. [GBE07]. We do not want to measure the
start-up performance, so we execute a warm-up phase for the HSQLDB case study.
This warm-up phase is executed before the measured benchmark run, using the same
HSQLDB server instance. To make sure, that all server code that is used during the
measurement is JIT compiled, the warm-up phase uses the PolePosition benchmark
with a similar configuration as the one used for the measurement, but with fewer
iterations.

1http://polepos.sourceforge.net/ – last visited on 2017-09-07

http://polepos.sourceforge.net/
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5.3.2 Apache

Since Apache is a web server, the Apache case study uses a client–server setup.
Apache acts as server and the benchmark application Gatling acts as client. Just
like in the HSQLDB case study, only the energy consumption of the server should
be measured, so the client runs on a separate node.

We used version 2.4.25 of Apache. It was compiled with APR in version 1.5.2 and
APR-Util in version 1.5.4.

We used Gatling2 to benchmark Apache. Gatling is a tool for performance and load
testing of web applications. We used Gatling version 2.2.5 to simulate 1000 clients
(threads) each sending 1500 requests to Apache for static a HTML file. The size of
the HTML file is 10 KB or 5 KB, depending on the used configuration. Since Apache
cannot respond to that many requests within the default time-outs of Gatling , we
increased the time-out values.

Even though Gatling is written in Scala – which means it is executed by the JVM
– start-up performance due to JIT compilation is not an issue because we enabled
the built-in warm-up phase included in Gatling .

Several restrictions limit the client’s ability to maintain multiple open connections
to the server. While we were able to increase the number of open file descriptors
available to the client process, the number of available ports for outgoing connecti-
ons was too low for some configurations where the server took particularly long to
complete requests but was able to accept many concurrent connections. This is the
case for configurations with the small html file (‘html5k’) that do not use the features
‘keepalive’ and ‘servercache’. However, this problem does not affect configurations
with ‘sendfile’, unless ‘compression’ is enabled as well. Since this restriction means
that we cannot measure these configurations , we introduced it as a constraint in our
feature model as shown in Figure 4.2 in Section 4.2.2.

Using multiple clients for this case study would likely have prevented the need for
this constraint, but we observed considerably higher deviations between repeated
measurements of the same configuration when using a second client.

5.3.3 x264

We used version 0.152.2851 (ba24899) of x264 .

Since x264 is application software, it directly executes the benchmark and no ad-
ditional benchmark application is required. For a video encoder, the benchmark is
a certain input video file. We used a lossless version of the ‘Sintel’ trailer in y4m
format with 480p resolution. The output format was a raw H.264 video stream for
all configurations .

This case study was executed using different numbers of CPU cores. The features
‘core1’, ‘core2’, and ‘core3’ denote configurations that were executed using only 1,
2, or 3 CPU cores, respectively. All 4 cores of the CPU were used for configurations
with the feature ‘core4’. We used the command taskset to ‘pin’ the process to
certain CPU cores.

2http://gatling.io/ – last visited on 2017-09-13

http://gatling.io/
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5.4 PDU Characteristics

The PDUs of the Zmiy-cluster are organized in units of three phases (sockets). The
PDU with 18 sockets consists of two parts with three such units each, the small
PDU only has one such unit. This layout is depicted in Figure 5.1. The small (red)
numbers above each socket denote the number of the cluster node that is connected
to the socket. Phase 1 of the unit A1 is defective and two phases are not currently
used. In the following, the notation ‘A1’ will be used to refer to the first unit of
part A of the large PDU, ‘A1-P1’ refers to the first phase of that unit. The colours
(borders) of the sockets visualize the results and are described later in this section.
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Figure 5.1: Layout of the PDUs from our experimental setup. One PDU consists of
two parts A and B with three units each, the other PDU only consists of one part
(C) with one unit. Boxes indicate units and circles are sockets (phases). The red
numbers above the sockets are the numbers of the connected cluster nodes. The
colour (border) of the sockets indicates the deviation of the socket.

Based on previous experiences with the PDUs, we made the assumption that offsets
exist between the measured values from the different sockets, or phases, of the PDUs.
This may be due to the PDU measuring its own power consumption on one of the
phases in addition to the power consumption of the connected load.

To be able to use the PDUs for the case studies, these offsets must at least be
predictable and the PDUs must meet certain conditions:

Offsets: Offsets between PDUs and PDU phases in the measured values should be
equal. Alternatively, they need to be predictable.

Consistency: Constant energy consumption must result in (largely) constant me-
asurements.
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Comparability: Equal measurements with different meters should yield the same
results.

Repeatability: Equal measurements with the same meter repeated over time must
yield the same results.

Isolation: Simultaneous measurements on different phases of the same PDU must
not influence one another.

Since, in general, energy measurements can be quite inaccurate under different cir-
cumstances ([LKM16]) and to test whether the offsets exist and if these conditions
are met, we conducted sanity checks for the PDUs before measuring the case studies.

PDU Sanity Checks Setup

First, the individual phases of the PDUs were measured. The measurements for
each phase were conducted with four different load scenarios. For the first scenario,
one of the i5 nodes was connected to the phase that was measured and no load was
connected to all other phases of the PDU. The i5 node was idle with a CPU load
close to 0%. For the second and third scenario the same i5 node was used again, but
this time the tool stress-ng was used to generate 50% (partial load) and 95% (full
load) CPU load, respectively. For the fourth scenario a regular 40W light bulb was
used instead of the i5 node. A light bulb has an almost constant power consumption
and 40W is similar to the power consumption of the used computers with ranges
roughly from 20W to 60W.

The three scenarios with an i5 node were measured for 15 seconds and 2 minutes,
with 10 and 5 repetitions, respectively. For both the short and long measurements,
the relative standard deviation between the repetitions was calculated. Measure-
ments with a relative standard deviation greater than 10% were repeated. The
fourth scenario was measured for 2 minutes without repetitions, because the power
consumption of the light bulb was observed to be fairly constant and no significant
deviations between repetitions were to be expected.

To determine a ground truth for the power consumption of all four scenarios, the
same scenarios were also measured with a Watts up? meter.

The three scenarios with an i5 node were measured for the Watts up? meter with
the same durations and repetitions as for the PDU phases. The light bulb scenario
was measured for 10 minutes without repetitions.

Additionally, a test was conducted to examine the influence from load on multiple
phases of the same PDU on the measurements. This test was measured exemplarily
for only one phase of each PDU.

For the PDU C, the light bulb was connected to phase C1-P1 and two i5 nodes
running on full load were connected to the other two phases. The power consumption
was measured for the phase of the light bulb. For the PDU with 18 sockets, two
different scenarios of this test were conducted. Since the PDU is organized in units of
three phases each, the same test as for the small PDU was conducted using only the
unit B3. Additionally, the test was repeated with full load cluster nodes connected
to all 16 other phases.
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PDU Sanity Check Results

To compare the results and determine the offsets, the differences of the values me-
asured by the PDU phases to the values measured by the Watts up? meter for the
same scenario were calculated. Theses differences are visualized in Figure 5.2. On
the x-axis are the four different scenarios. The y-axis shows the absolute offsets from
the Watts up? meter in watts. Each dot represents one PDU phase. Most PDU
phases and the Watts up? meter measure almost the same values. Those values
are assumed to be the true values. Only few phases measure values that deviate by
more than 1W in either direction. Three phases were identified that always measure
values higher than the true values and two phases always measure values lower than
the true values. The phases with deviations are marked in Figure 5.1.

Figure 5.2: Absolute offsets from Watts up? in watts. For all four scenarios, each
dot represents the offset of one PDU phase.

The predicted offsets exist, but only for five phases.

We then attempted to approximate the offsets as constants and linearly. For that,
we calculated the relative standard deviation for each type of measurement bet-
ween the values of all phases and tried to reduce that deviation as much as possible
by subtracting different offsets for those five phases. Both the constant and li-
near approximations yielded comparable improvements in the deviation. Without
subtracting any offsets, the relative standard deviations for the different scenarios
ranged from 3.0% to 4.7%. With constant integral offsets, the deviations were be-
tween 1.0% and 2.3%. With linear offsets, the deviations were between 0.9% and
2.3%. Since subtracting the linear offsets results in non-integral values while the
measured values from the PDUs are only integral, we decided to use the constant
offsets. For scenarios with considerably higher power consumption we expect greater
differences between using constant and linear offsets but for our measurements both
approximations appear equally acceptable.
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Using these constant approximations of the offsets, we can use the PDUs to mea-
sure the case studies. To make the measurements from all phases comparable, the
determined constant offsets are simply subtracted from the values measured during
the case studies. Table 5.1 lists the approximated offsets.

Table 5.1: Approximated offsets of the PDU phases

Phase Offset

B3-P2 -2 W
B3-P3 -1 W
C1-P1 5 W
C1-P2 2 W
C1-P3 2 W

The results of the measurements with light bulb and load on multiple phases were
compared to the light bulb test without other loads that was measured on the same
phase. The observed differences were less than 1W for all scenarios. Since the
resolution of the PDUs is 1W, those differences are likely caused by measurement
inaccuracy. Consequently, the PDUs can be used to measure multiple configurations
at the same time on different phases and the measurements are not expected to
influence one another.

Furthermore, the repetitions of the load tests with i5 nodes showed a relative stan-
dard deviation of less than 10% and the tests with the light bulb showed virtually
constant power consumption measurements. This indicates, that repeating measu-
rements over time always yields approximately the same results.

In the following list we summarize the results with respect to the conditions described
above:

Offsets: While the offsets for some phases differ, theses differences are predictable
and can be subtracted from the measured values.

Consistency: The constant energy consumption of the light bulb resulted in con-
stant measurements.

Comparability: Except for the phases with different offsets, the PDUs and the
Watts up? meter measured approximately the same values.

Repeatability: Equal measurements with the same meter repeated over time re-
sulted in the same values with a relative standard deviation of less than 10%
between the repetitions.

Isolation: The test with light bulb and load on other phases showed that simulta-
neous measurements on different phases of the same PDU have no influence
on one another.
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6. Evaluation

In this chapter, we present the evaluation of the case studies and answer the re-
search questions. We cover one research question in each section in this chapter,
beginning each section with the research question. Then, we explain, what metrics
we use to answer it, and provide the corresponding results from the case studies.
After the presentation of the results, we discuss them and conclude each section by
summarizing the answer to the research question.

6.1 General Correlation

In our first research question, we examine the general correlation between perfor-
mance and energy consumption:

RQ1: Is there a correlation between performance and energy consumption?

Operationalization

To answer the question, whether a correlation between performance and energy
consumption exists, we calculate the Pearson correlation coefficient for the results
from each case study.

Additionally, we plot the results of the case studies with the performance on the x-
axis and the energy consumption on the y-axis, to graphically interpret the results.

Results

In Table 6.1, we show the Pearson correlation coefficients for the case studies.

In Figure 6.1, Figure 6.2, and Figure 6.3, we show the results of the HSQLDB ,
Apache, and x264 case studies, respectively. Each dot represents one configuration.
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Table 6.1: Pearson correlation coefficients between performance and energy con-
sumption for the case studies

Case study ρ

HSQLDB 0.9070
Apache 0.9082
x264 0.9653
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Figure 6.1: Results for performance and energy consumption of the HSQLDB case
study. Each dot represents one configuration.
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Figure 6.2: Results for performance and energy consumption of the Apache case
study. Each dot represents one configuration.
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Figure 6.3: Results for performance and energy consumption of the x264 case study.
Each dot represents one configuration.

Discussion

The Pearson correlation coefficients (see Table 6.1) are greater than 0.9 for all three
case studies, which indicates a strong linear correlation between performance and
energy consumption.

However, for both the HSQLDB and Apache case studies, there are configurations
with approximately equal energy consumption and substantially differing perfor-
mance. For example, the HSQLDB case study has configurations with an energy
consumption of approximately 16 kJ and a performance of about 260 s and 480 s.
Similarly, the Apache case study has configurations with a performance of about 80 s
and 150 s which have approximately the same energy consumption of 6.5 kJ. In both
cases, there is a configuration with approximately the same energy consumption as
another configuration and almost double its performance.

The same is the case for the x264 case study. For example, there are configurations
with an energy consumption of approximately 3 kJ and a performance of about 50 s
and 90 s. However, these two configurations were using a different number of CPU
cores. When comparing only configurations with the same number of CPU cores,
there are no two configurations with approximately equal energy consumption with
such a big difference in their performance. Here, the difference between the perfor-
mance values for configurations with approximately the same energy consumption
is at most about 15 % of the performance of those configurations .

Graphically, while, for the HSQLDB and Apache case studies, a linear correlation
between performance and energy consumption is visible, it does not appear to be
very strong. For the x264 case study, however, the linear correlation is visible in
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the plot. Actually, the plot for the x264 case study shows four distinct lines which
correspond to the four features that represent different numbers of CPU cores.

Since the correlation between performance and energy consumption appears to be
different for infrastructure software and application software, we further investigate
the correlation independently for infrastructure software in Section 6.2 and for appli-
cation software in Section 6.3. For the general correlation, we come to the following
conclusion:

There is a strong linear correlation between performance and energy consump-
tion. The correlation is stronger for application software than for infrastructure
software.

6.2 Correlation in Infrastructure Software

In the first research question, we investigated the general correlation between per-
formance and energy consumption. Since the correlation appears to be different
for infrastructure software and application software, we examine the correlation for
infrastructure software in more detail, which leads to the following research question:

RQ1.1: Is there a correlation between performance and energy consumption in
infrastructure software?

Operationalization

To investigate the correlation between performance and energy consumption speci-
fically for infrastructure software, we analyse the plots of performance and energy
consumption from the HSQLDB and Apache case studies in more detail and compare
the Pearson correlation coefficients for different sets of configurations .

Results

In Table 6.2, we show the Pearson correlation coefficients for various sets of confi-
gurations for the HSQLDB and Apache case studies.

Table 6.2: Correlation coefficients between performance and energy consumption for
various sets of configurations of the infrastructure software case studies.

Case study Configurations ρ

HSQLDB (all) 0.9070
HSQLDB ¬crypt blowfish 0.2508
Apache (all) 0.9082
Apache ¬servercache 0.7736

In Figure 6.4 and Figure 6.5 we show the results from the HSQLDB and Apache case
studies in more detail. The plots are enlarged versions of the plots in Figure 6.1 and
Figure 6.2, only showing the top right corner while still showing all configurations .
Configurations with features that have a dominant influence on both performance
and energy consumption leading to clustering, are highlighted.
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Figure 6.4: Dominant influences from features in the HSQLDB case study. Each
dot represents one configuration. The plot only shows the upper right corner of
Figure 6.1. Thus, axes do not start at zero.
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Discussion

Both the HSQLDB and Apache case studies show a strong linear correlation between
performance and energy consumption with ρ > 0.9. However, the correlation is only
strong when considering many configurations with largely varying performance and
energy consumption. Both case studies have one feature with a huge influence on
both performance and energy consumption which dominates the linear correlation.

For HSQLDB , this feature is ‘crypt blowfish’ as shown in Figure 6.4. Blowfish
encryption is a compute-intensive task and consequently leads to a high energy
consumption due to high CPU usage, and takes long, increasing the performance.

For Apache, it is ‘servercache’ as shown in Figure 6.5. Using caching on the server re-
sults in requests being answered much faster, drastically decreasing the performance,
because it almost completely avoids slow disk access. Additionally, some computa-
tions will not be required when using cached responses. This, in combination with
the reduced disk usage, also decreases the energy consumption.

In the second research question in Section 6.4, we investigate the influences from
individual features in more detail.

For both case studies, leaving out the feature with the highest influence on perfor-
mance and energy consumption drastically reduces the correlation. For the HSQLDB
case study, configurations without the feature ‘blowfish’ only have a weak linear cor-
relation of ρ ≈ 0.25. Similarly, for the Apache case study, configurations without
‘servercache’ only have a linear correlation of ρ ≈ 0.77, which is neither weak nor
strong.

This indicates, that only one or few features with a huge influence on performance
and energy consumption exhibit a correlated behaviour regarding performance and
energy consumption. Most features, however, do not show this correlation.

The linear correlation between performance and energy consumption for infra-
structure software appears to be strong. This strong correlation is caused by
certain individual features with a dominant influence on both performance and
energy consumption. Excluding such features results in a weak linear correlation.

6.3 Correlation in Application Software

In the previous sections, we examined the correlation between performance and
energy consumption in general and specifically for infrastructure software. In this
section, we examine the correlation in more detail for application software:

RQ1.2: Is there a correlation between performance and energy consumption in
application software?

Operationalization

To investigate the correlation between performance and energy consumption speci-
fically for application software, we investigate the plot for performance and energy
consumption of the x264 case study in more detail and compare the Pearson corre-
lation coefficients for various sets of configurations .
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Results

In Table 6.3, we show the Pearson correlation coefficients for various sets of confi-
gurations of the x264 case study.

Table 6.3: Correlation coefficients between performance and energy consumption for
various sets of configurations of the application software case study x264 .

Configurations ρ

(all) 0.9653
core1 0.9955
core2 0.9956
core3 0.9947
core4 0.9680
¬no mixed refs 0.9641
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Figure 6.6: Dominant influences from features in the x264 case study. Each dot
represents one configuration.

In Figure 6.6, we show the results from the x264 case study in more detail. Con-
figurations with features that have a dominant influence on both performance and
energy consumption leading to clustering, are highlighted. Those features are those
describing differences in the experimental setup using a certain number of CPU
cores.
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Discussion

By investigating the plot in Figure 6.6, we can see that only the four different vari-
ations of the experimental setup with different numbers of CPU cores form clusters.
No other feature of the case study seems to have a dominant influence on either
performance or energy consumption and, thus, no other feature appears to domi-
nate the linear correlation. In fact, not even the ‘core’ features dominate the linear
correlation. Rather, there appears to be a strong linear correlation within each
cluster.

In Table 6.3, we show the Pearson correlation coefficients for the configurations
using different numbers of CPU cores. The x264 case study shows a very strong
linear correlation between performance and energy consumption with ρ > 0.96. The
configurations which were restricted to use only certain CPU cores even show an
almost perfect linear correlation of ρ > 0.99.

By calculating the Pearson correlation coefficients for each set of configurations
leaving out one single feature, we can confirm the observation we made from the
plot, that no feature dominates the linear correlation. The lowest Pearson correla-
tion coefficient that is possible for the x264 case study by leaving out one feature
is ρ ≈ 0.96 for configurations without the feature ‘no mixed refs’. This is al-
most the same correlation as for all configurations including configurations with
‘no mixed refs’.

The linear correlation between performance and energy consumption for appli-
cation software is very strong. This strong correlation is not caused by single
individual features .

6.4 Comparison of Influence Models

In the first research question, we investigated the correlation between performance
and energy consumption. In this research question, we further compare perfor-
mance and energy consumption by comparing the performance-influence models and
energy-influence models :

RQ2: Do the performance-influence models and energy-influence models contain
the same terms?

Operationalization

To compare the performance-influence models and energy-influence models, we first
generate the models with SPL Conqueror . Since the models cannot be more accurate
than the underlying measured data, we calculate an average value (squared average)
of the relative standard deviations of our measurements. We use this average as
the minimum error rate for the performance-influence models and energy-influence
models.

Then, we compare the models by comparing, which features and interactions of
features appear in the models. To additionally compare the factors in the models,
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we normalize the models by dividing each factor by the factor of ’base’ (β0). To aid
this comparison of factors, we plot the normalized values.

Since the first research question (see Section 6.3) showed us, that, for the x264 case
study, four similar clusters exist in the results, one for each ‘core’ feature, we examine
the performance-influence models and energy-influence models independently for
each ‘core’ feature and compare the models.

Results

In Table 6.5, Table 6.6, and Table 6.7, we show the terms of the performance-
influence models and energy-influence models, φ and ε, respectively, for each of the
case studies. Additionally, the tables contain normalized values for the terms for
easier comparison. The normalized values φ̂ and ε̂ for φ and ε, respectively, are
obtained by dividing the value by the corresponding value for ‘base’.

The normalized values are plotted in Figure 6.7, Figure 6.9, and Figure 6.10. In the
plots, the inner area of the circle represents values less than 0 with the centre of the
circle being -1. The outer area of the circle represents positive values with the outer
line being 1. The two bold lines show the influences in performance and energy
consumption for the features and interactions of features indicated by the labels
around the circle. An empty dot on the bold lines indicates that the corresponding
feature or interaction is not a part of the model.

For the HSQLDB case study, the normalized values are additionally plotted in Fi-
gure 6.8. Since this type of plot requires a lot of space, the plots for Apache and
x264 are not included here, but are available in Section A.2 of the appendix. The
left and right text columns contain the features and interactions of features with an
influence on the performance and energy consumption, respectively. The coloured
area in the plot represents values from -1 on the left to 1 on the right. An empty
dot on the bold lines indicates that the corresponding feature or interaction is not
a part of the model.

In Table 6.4, we show the averages of the relative standard deviations and the errors
of the models generated by SPL Conqueror . The average deviations are a minimum
value for the model error, because the model cannot be more accurate than the data
used to generate the model.

Table 6.4: Error rates of the performance-influence models and energy-influence
models and average deviations of the underlying measurement results

Case study Model Average deviation Model error

HSQLDB performance 0.16 % 0.62 %
HSQLDB energy consumption 0.27 % 2.5 %
Apache performance 3.5 % 14 %
Apache energy consumption 0.66 % 2.9 %
x264 performance core4 0.53 % 3.8 %
x264 energy consumption core4 1.1 % 4.4 %
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Table 6.5: Terms of the performance-influence models and energy-influence models
for the HSQLDB case study

Features φ ε φ̂ ε̂

base 250 14 1.0 1.0
cached tables 13 0.20 0.052 0.014
crypt blowfish 248 0.89 0.99 0.063
memory tables × crypt blowfish -179 -0.72
memory tables × crypt blowfish × txc locks 30 0.12
crypt blowfish × txc locks -32 -0.13
cached tables × crypt blowfish 1.9 0.13
no write delay -0.34 -0.024
large cache 0.47 0.034
large cache × small log -0.47 -0.033

base

cached tables

crypt blowfish

memory tables
×crypt blowfish

memory tables
×crypt blowfish
×txc locks

crypt blowfish×txc locks

cached tables×
crypt blowfish

no write delay

large cache

large cache×
small log

Legend

Relevant infuence

No relevant infuence

performance

energy consumption

Figure 6.7: Normalized terms of the performance-influence models and energy-
influence models for the HSQLDB case study
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Figure 6.8: Normalized terms of the performance-influence models and energy-
influence models for the HSQLDB case study
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Table 6.6: Terms of the performance-influence models and energy-influence models
for the Apache case study

Features φ ε φ̂ ε̂

base 125 7.0 1.0 1.0
compression 8.4 0.17 0.068 0.024
servercache -82 -1.4 -0.65 -0.20
keepalive -18 -1.1 -0.15 -0.15
keepalive × servercache 9.3 0.55 0.074 0.079
keepalive × worker -3.5 -0.028
event -1.1 -0.0089
servercache × compression -6.1 -0.048
prefork 3.5 0.028
keepalive × html10k 0.33 0.047

base

compression

servercache

keepalive

keepalive
×servercache

keepalive×worker

event

servercache×
compression

prefork

keepalive×
html10k

Legend

Relevant infuence

No relevant infuence

performance

energy consumption

Figure 6.9: Normalized terms of the performance-influence models and energy-
influence models for the Apache case study
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Table 6.7: Terms of the performance-influence models and energy-influence models
for configurations with four CPU cores of the x264 case study

Features φ ε φ̂ ε̂

base 45 2.5 1 1
no 8x8 dct -1.5 -0.10 -0.032 -0.040
ref 1 -21 -1.2 -0.47 -0.49
ref 5 -11 -0.61 -0.24 -0.24
ref 5 × no mixed refs -4.1 -0.23 -0.091 -0.093
no mbtree 1.3 0.12 0.028 0.047
ref 5 × no fast pskip 2.1 0.12 0.047 0.049
rc lookahead 20 -0.65 -0.014
rc lookahead 60 0.020 0.0081

base

no 8x8 dct

ref 1

ref 5

ref 5×
no mixed refs

no mbtree

ref 5×
no fast pskip

rc lookahead 20

rc lookahead 60

Legend

Relevant infuence

No relevant infuence

performance

energy consumption

Figure 6.10: Normalized terms of the performance-influence models and energy-
influence models for configurations with four CPU cores of the x264 case study
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Discussion

The models show, that, for the HSQLDB case study, the feature ‘crypt blowfish’
has a large impact on both performance and energy consumption. This is the same
feature that we already identified in the first research question as the one feature ha-
ving a dominant influence. Another high influence comes from the interaction of the
features ‘memory tables’ and ‘cached tables’ with ‘crypt blowfish’. The interaction
with ‘memory tables’ appears only in the performance-influence model and the in-
teraction with ‘cached tables’ appears only in the energy-influence model. Initially,
the influences of these interactions seem to be the largest difference between the
performance-influence model and energy-influence model. However, the influence of
the interaction with ‘memory tables’ is negative and the influence of the interaction
with ‘cached tables’ is positive and the two features are mutually exclusive. Hence,
the influences from those interactions are actually very similar.

The feature ‘crypt blowfish’ is very compute intensive resulting in longer execu-
ting time with high CPU load, which has a large influence on both performance and
energy consumption. The other encryption feature – ‘crypt aes’ – has a much smaller
influence because of hardware support for AES encryption (Intel AES New Instructi-
ons). Whether the feature ‘cached tables’ or ‘memory tables’ is used, has a high
impact on both performance and energy consumption because using ‘cached tables’
results in much more disk access. This difference in influences mainly occurs in
the interaction with ‘crypt blowfish’, because HSQLDB only encrypts data that is
written to the disk, which means that with ‘memory tables’ almost no encryption
takes place.

There are, however, considerable differences in the performance-influence model and
energy-influence model for HSQLDB . Several features only have an influence on
either performance or energy consumption. For example, interactions with ‘txc locks’
only have an influence on the performance and the features ‘no write delay’ and
‘large cache’ only have an influence on the energy consumption.

In a similar way, the performance-influence model and energy-influence model for
Apache have similarities and differences. While the features ‘servercache’ and ‘keepa-
live’ have a large influence on both performance and energy consumption, many
features like ‘event’, ‘prefork’, or ‘html10k’ only influence either the performance or
energy consumption.

The largest influences on performance and energy consumption are caused by the
following features : The ‘servercache’ feature drastically reduces the number of disk
accesses and the feature ‘compression’ is compute intensive. With the ‘keepalive’
feature, reusing connections reduces the overhead from opening and closing con-
nections.

Furthermore, for both HSQLDB and Apache, all influences on the energy consump-
tion are considerably smaller than on the performance. This is likely caused by the
idle energy consumption that is measured for all configurations .

Both the results from the HSQLDB and Apache case studies indicate, that, for in-
frastructure software, while some features have a high influence on both performance



6.4. Comparison of Influence Models 41

and energy consumption, there are considerable differences between the terms in the
performance-influence models and energy-influence models.

For the x264 case study, we expect that the features restricting the number of
CPU cores have the largest influence on both performance and energy consumption.
Additionally, we expect that the influences from all other features would vary with
the number of CPU cores, leading to a performance-influence model and energy-
influence model with many terms for interactions with ‘core’ features . For that
reason, we generate the models independently for four sets of configurations , one for
each ‘core’ feature.

We show only the model for four CPU cores in Table 6.7 and Figure 6.10. The
models for one, two, and three CPU cores are very similar to the model for four
cores. With normalized factors, all four models are approximately equal.

For the x264 case study, the performance-influence model and energy-influence
model are very similar. Not only do they contain the same terms, save for the
‘rc lookahead’ features with an influence of only about 1% which is less than the er-
ror rate of the models. The influences are also almost the same for both performance
and energy consumption. In fact, the normalized performance-influence model and
energy-influence model are almost the same.

The graphical representation of the models impressively shows how similar the per-
formance-influence model and energy-influence model are: In the plot in Figure 6.10,
it is barely possible to see the line for the performance, because it is ‘behind’ the
line for the energy consumption.

For infrastructure software, performance-influence models and energy-influence
models have terms for features with a dominant influence on performance and
energy consumption in common, but differ otherwise. For application software,
the performance-influence models and energy-influence models are very similar.
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7. Validity

7.1 Internal Validity

This section lists potential sources of errors and restrictions in our experimental
setup, that might lead to inaccurate or invalid results, and explains measures taken
to mitigate these threats to validity.

CPU

Modern CPUs have several features that attempt to improve the performance or
reduce the energy consumption under certain conditions. These conditions are vir-
tually impossible to predict and could differ between multiple measurements.

Software that is executed on multiple CPU cores may not always use the same cores
but the CPU can dynamically assign the software to different cores. This can lead to
cores frequently switching from idle to an active state and can have an unpredictable
impact on the energy consumption and performance.

Two such features supported by the CPUs from our experimental setup are Intel
Turbo Boost1 and Enhanced Intel SpeedStep2. Turbo Boost can increase the fre-
quency of individual CPU cores under certain conditions when only few cores are
used. SpeedStep allows the operating system and applications to dynamically adjust
the frequency of the CPU to reduce energy consumption.

We have disabled both these features for our measurements.

For software that is intended to run on only some cores of the CPU, we assigned
specific cores to the running process to reduce the influence from switching cores.

1https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/
turbo-boost-technology.html – last visited on 2017-08-31

2http://download.intel.com/design/network/papers/30117401.pdf – last visited on 2017-08-31

https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://download.intel.com/design/network/papers/30117401.pdf
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Background Software

Software running in the background during a measurement, such as automatic up-
dates, can influence the performance and especially the energy consumption.

The minimal installation of the operating system in our experimental setup ensu-
res that only very few background applications are present. Most of the time, the
CPU load from background applications is less than 1% and often even measured
as 0% (with the command top). If they still influence a measurement, the influ-
ence happens very likely only during a short time and can thus be detected by
repeating measurements and comparing the results (see paragraph ‘Repetitions and
Deviation’).

Measurement Setup

One piece of software that has to run during the measurements, is PDUGetterV2
(see Section 5.2), which periodically queries the power consumption values from the
PDUs .

To make sure that PDUGetterV2 does not influence the measurements, another
node from the cluster is allocated for this tool in addition to the nodes used to run
each configuration.

Figure 7.1: Experimental setup with multiple nodes. Three cluster nodes are con-
nected to a PDU. The server and client node communicate over the network. The
PDUGetterV2 runs on a separate node and queries the server node’s power con-
sumption from the PDU.

We illustrate an example measurement setup with multiple nodes in Figure 7.1.
‘zmiy05’, ‘zmiy06’, and ‘zmiy07’ are three of the i5 nodes from our cluster which are
connected to three sockets of a PDU. PDUGetterV2 , the measured infrastructure
software and the benchmark client run on three different nodes and, consequently,
cannot influence one another’s performance or energy consumption. The arrows
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indicate that the client and the server communicate over the network and that
PDUGetterV2 queries the power consumption values from the PDU. In this example,
only the power consumption of the server node is relevant (indicated by a bold,
coloured line).

PDUs

The PDUs could be the source of invalid measurements just as well as the hardware
or software of the nodes. Measurements could yield different results when repeated
over time or when measured on different phases (‘sockets’) of the PDUs. Simulta-
neous measurements on different phases could influence one another and result in
different measured values.

In Section 5.4, we investigated whether the PDUs used in our experimental setup
cause any such invalid measurements, motivated by previous experiences with the
PDUs, and came to the conclusion that this is not the case.

Network

For the case studies with a server–client setup, the network connecting the nodes
running the server and the client might be a limiting factor. In that case, the
performance measured would mainly be the performance of the network, rather
than the performance of the server node which should be measured.

All user files on the cluster node are located in a network file system. Executing the
measured software or the benchmark from the network file system could impact the
performance of measurements.

In our experimental setup, we cannot rule out that the network does in fact greatly
influence the measurements, but we expect that the influence of the network is
approximately the same for all measured configurations . Since the CPU load of the
server during the measurements is still substantially higher than 0%, we expect that
the server is not only waiting for the network and we still at least partially measure
the performance of the server itself.

To avoid the impact from the network file system on performance, the files required
for the measurement are copied to the local disk of the cluster node prior to the
execution of the measurement.

Warm-Up

Applications running on a cluster node directly before a measurement – or the
absence of such an application – can influence the measurements. Especially the
temperature of the CPU can influence the performance as stated by Mytkowicz et
al. [MDHS09].

To ensure equal initial conditions for all measurements, a warm-up phase for the
CPU precedes all measurements. The warm-up phase uses the tool stress-ng3 to
maintain a CPU load of about 95% for 30 seconds.

3http://kernel.ubuntu.com/˜cking/stress-ng/ – last visited on 2017-08-20

http://kernel.ubuntu.com/~cking/stress-ng/
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Repetitions and Deviation

All the above measures can not completely rule out unpredictable influences. They
also cannot ensure that repeated measurements will yield the same results.

To detect such influences and ensure that repeated measurements actually produce
(approximately) equal results, all configurations are measured 5 times and the re-
lative standard deviation between those 5 repetitions is calculated. The relative
standard deviation is calculated as the absolute standard deviation divided by the
mean value. If the relative standard deviation for performance or energy consump-
tion is greater than 10%, the measurements for the configuration are repeated.

7.2 External Validity

In this section, we discuss the generalizability of our results.

With HSQLDB and Apache, we measured two examples for infrastructure software
from different domains – a database system and a web server. Considering that the
results for both case studies were very similar, we assume that other examples for
infrastructure software have a similar behaviour regarding performance and energy
consumption. However, only two case studies cannot be enough to generalize our
findings for all infrastructure software.

For application software, x264 was the only case study we conducted. We expect
most application software to have a strong correlation between performance and
energy consumption because application software can usually fully utilize the avai-
lable resources. On the other hand, the performance and energy consumption of
infrastructure software can vary over time because it depends on the presence and
needs of clients. Nevertheless, only one case study cannot be enough to conclude
that our findings are applicable to all types of application software.

To be able to generalize our results we would need case studies from multiple domains
for both infrastructure software and application software. This was not possible
within the time frame available for a bachelor thesis.



8. Conclusion

8.1 Summary

In this thesis, we investigated performance and energy interactions of configurable
systems. More specifically, we explored a possible correlation between performance
and energy consumption and analysed differences in the performance-influence model
and energy-influence model generated by SPL Conqueror .

Before we could measure and evaluate case studies to answer our research questions,
we had to conduct sanity checks for our measurement setup. We found that the
measurement setup is suitable for the case studies.

Afterwards, we conducted three case studies – HSQLDB , Apache, and x264 – and
used the results to answer our research questions.

In the first research question, we analysed the correlation between performance and
energy consumption. We found, that performance and energy consumption are line-
arly correlated, and the correlation is weak for infrastructure software, but strong
for application software.

In the second research question, we compared the performance-influence models
and energy-influence models that we obtained from the measurement results of the
case studies. We found that the models for infrastructure software contain different
influences for performance and energy consumption, while the performance-influence
models and energy-influence models for application software are very similar.

8.2 Future Work

In this section, we outline possible future work based on this thesis.

In Section 7.2 we explained, that we cannot generalize our results because we only
measured a very limited number of three case studies. In future work, the same
comparisons we conducted could be applied to more case studies from different
domains to generalize the results.
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We measured the energy consumption of the whole system. Future work could
extend the measurement setup by measuring the energy consumption of individual
hardware components like in the study by Tsirogiannis et al. [THS10]. This would
allow a more detailed analysis of influences from features , which might only impact
the energy consumption of some hardware components but not of others.

In our first research question (see Section 6.2), we found that for infrastructure
software some features cause a linear correlation between performance and energy
consumption, while others do not. We argued, that this is caused by a compara-
bly huge influence on both performance and energy consumption. In future work,
the difference between such features with and without correlation could be further
analysed, by, for example, involving the developers of the software systems.



A. Appendix

A.1 Content of the Accompanying CD

The accompanying CD contains the files necessary to conduct the case studies and
the results of the case studies. The Sintel trailer used as benchmark for x264 is not
included on the CD, because it is too large for a CD. At the time of this writing
(2017-10-09), it is available for download on https://media.xiph.org/.

The following files and directories are included on the CD:

thesis.pdf: This thesis as PDF file.

PDUGetterV2.zip: Source code of PDUGetterV2 . A compiled JAR file is inclu-
ded in energymetering.zip.

energymetering.zip: Shell script used to run the case studies. Includes additional
files required to use the script.

hsql: Contains the following files from the HSQLDB case study:

hsqldb.zip: The HSQLDB database.

polepos.zip: The PolePosition benchmark.

apache: Contains the following files from the Apache case study:

httpd-2.4.25.zip: Source code of Apache with included APR and APR-Util.

gatling.zip: The Gatling load testing tool.

x264: Contains the following files from the x264 case study:

x264: The x264 binary.

In addition to the files listed above, each of the directories for the case studies also
contains the following files:

featuremodel.xml: Feature model the case study for SPL Conqueror .

https://media.xiph.org/
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configurations.list: Text file containing all measured configurations , one in each
line.

splc.csv: Results of the case study as CSV file for SPL Conqueror .

run.sh: Shell script used to start the measurements for the case studies. The di-
rectory contains several additional files used by this script.

A.2 Additional Plots

This section contains additional plots that were omitted from Section 6.4 for brevity.
Analogous to the plot in Figure 6.8, the plots in Figure A.1 and Figure A.2 visualize
the performance-influence models and energy-influence models for the Apache and
x264 case studies, respectively.
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Figure A.1: Normalized terms of the performance-influence models and energy-
influence models for the Apache case study
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Figure A.2: Normalized terms of the performance-influence models and energy-
influence models for configurations with four CPU cores of the x264 case study
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