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A B S T R A C T

With the advent of the information age, software engineering has become one of
the most prominent occupations. However, marginalization of women still remains
one of the biggest issues in this field. Biases against female developers in software
development have been investigated in a variety of studies. In this study, we further
explore this issue by studying differences between the outcomes of participation of
male and female developers in open-source software (OSS) projects. After collecting
data and analyzing nine open-source projects, we first classify developers according
to gender using a name-to-gender inference tool. We then proceed to compare the
two groups based on the number of created pull requests, created issues, merge
operations, merged pull requests, pull request comments, issue comments, commits,
changed files, changed lines, and the developer importance.

Our results suggest that there are small differences between male and female
developers in the overall contribution process. Therefore, certain particularities can
be pointed out. We observe that in certain projects male developers appear to be
much more active than their female counterparts in issue-related contributions.
However, we do not deem it to be true in general, since this difference can only be
seen in 6 out of 9 projects. It was also the case that in 3 of the projects, all merge
operations for pull requests were exclusively performed by male developers, which
can indicate marginalization of female developers. When it comes to developer
importance, i.e. the measure of "coreness" of a developer within a project, both
genders follow a similar distribution over the coreness scale in the issue-related
contributions, although in total there are much more male developers than female
ones. Unlike the issue-related contributions, analysis of code contributions also
reveals a partly similar distribution between the two groups. However, in both code
and issue-related contributions, male developers constitute a large proportion of
the top contributors.
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1
I N T R O D U C T I O N

In the last decade, open-source software (OSS) projects have become increasingly
popular thanks to fast development cycles and decentralized community structures.
The popularity of OSS projects has been increased by individuals as well as com-
panies. These projects are a large part of today’s IT infrastructure and commercial
companies are willing to be part of the OSS development [6] [2] [28]. Extensive
usage of OSS projects makes these projects great samples to draw a general picture
of the software development industry. Moreover, these projects bring people of
varied cultural and educational backgrounds, gender, age, country, and expertise
together. For example, students, professional programmers, people whose hobby
is programming, and others can work together in an OSS project. According to a
study by Alexander Hars [1], self-determination and human capital are the main
motivations of these people to participate in OSS projects. Additionally, the research
shows that students and hobbyists are self-motivated internally, while professional
programmers are willing to gain profit by selling products and services.

Vasilescu, Filkov, and Serebrenik [33] conducted a research that shows diversity in
a team brings new opinions, skills, and alternative solutions. For example, diversity
in experience level has an advantage and a disadvantage. Communication with more
junior developers increases understanding of own thoughts, while communication
with more senior developers helps to learn new ropes. On the other hand, senior
developers should spend additional time to prevent junior developers from making
mistakes and help them to follow best practices. The paper also notes that nationality
and language diversity may lead to communication problems in a team. Moreover,
gender diversity has a negative impact on women. Some of them use fake GitHub
names to be assumed as male. In addition to this research, also Terrell et al. [32]
find that hiding one’s gender in the GitHub profile affects the code acceptance rate
positively, which means that a female profile whose gender information is invisible
gets better acceptance rates than a female profile that shows gender information
explicitly. Besides, a majority of code contributions are made by men, while women
contribute in other ways such as leading and coordinating [27].

Ashcraft, McLain, and Eger [4] state that the percentage of computing-related
occupations held by women declined from 36% to 25% between 1991 and 2015,
although several researches [13] [34] note that gender-balanced teams are more
productive and show better performance in comparison with teams dominated by
men or women.

The information described above explains the importance of gender diversity in
the IT industry. Big tech companies such as Google, Facebook, and Apple prepare

1



2 introduction

annual reports to draw attention to diversity. On a global scale, the percentage of
tech positions held by women in Google increased from 16.6% in 2014 to 23.6%
in 2020

1. Similarly, the Facebook diversity report2 demonstrates that 15% of tech
positions were held by women in 2014 and this percentage reached 24.1% in 2020.
Additionally, according to the Apple diversity report3, the percentage of women
who work in a tech position increased slightly from 20% to 24% between 2014 and
2020. As a result, we can say that the number of positions held by women have been
increasing in recent years.

Our motivation to study this topic is understanding differences between genders
in terms of contributions and developer importance. The research may help to
answer how females are represented in OSS projects. Moreover, understanding
differences between genders may help to reduce female marginalization and create
gender-balanced teams.

For these reasons, the goal of this thesis is to find out the main differences
between male and female developers in OSS projects. In this study, we do not
assume anyone’s gender to assign them to a specific gender group. We just work
with binary genders assumed based on names. Simply, we take people’s names and
predict the probable genders of these names.

The projects we use for this research are Vscode, Tensorflow, Atom, Keras,
Nextcloud, Vue, Three.js, Deno, and Reveal.js, for which we mine data from
GitHub and their git repositories. The main data we use, are the list of commits,
issues, and developers. Once we have mined the data, we use GenderAPI, a name-
to-gender inference tool, to group developers into the male and female groups.

In the first part of the analysis, we compare genders using statistical tests to
understand whether one gender predominates the other one in terms of the gen-
eral contribution statistics which are created pull requests, created issues, merge
operations, merged pull requests, pull request comments, issue comments, commits,
changed files, and diff size.

In the second part of the analysis, we compare genders in terms of developer
importance. For the comparison, we build three developer networks: co-change
networks, issue networks, and co-change-issue networks. Co-change networks use
the commit data as a base, while issue networks are based on the issue data. Co-
change-issue networks use both commit and issue data to describe relationships
between developers. After building networks, we calculate coreness values for each
developer in each network. For the calculation, we use two different network metrics:
eigenvector centrality and hierarchy. Then, we use the coreness values as a proxy
for developer importance. In the last step, we compare male and female developers
in terms of the coreness values with the help of statistical tests and plots.

1 https://diversity.google/annual-report, last accessed on 05/05/2021

2 https://diversity.fb.com/read-report, last accessed on 05/05/2021

3 https://www.apple.com/diversity, last accessed on 05/05/2021

https://diversity.google/annual-report
https://diversity.fb.com/read-report
https://www.apple.com/diversity


introduction 3

Our results show that the number of male developers is more than that of female
developers in all the projects. Although some projects show a statistically significant
difference between genders in terms of the general contribution statistics, we can
not accept or reject our hypotheses completely, since the results differ from OSS
project to OSS project. Our results depict that all merge operations are performed by
only male developers in some projects. In other words, there is no female developer
that performs a merge operation. The next outcome of the study is that there is no
statistically significant difference between genders in the code contribution process.
On the other hand, the results of most projects evidence that male developers
participate actively in the issue-related contributions. These results are similar to
the results of the second part of the analysis in which we look at the differences in
terms of developer importance which is explained by coreness values. The results of
the second part lead us to conclude that the difference between genders in terms of
coreness values is not statistically significant in code contributions, although male
developers dominate the top of the organizational hierarchy. Differently from the
code contributions, also female developers take some of the most important roles in
issue-related contributions of all the projects, despite that male developers generally
have a higher importance level in some projects. Moreover, both genders follow a
similar coreness distribution, except in the upper parts of the scale, which means
that gender matters only in the upper parts. Furthermore, we can see there are male
developers in all parts of the coreness scale in all types of networks. However, there
are no female developers in some parts of the scale, usually upper parts. Until the
90th percentile of the coreness scale, upper parts have fewer male developers in
comparison with lower parts. This pattern exists for only male developers in the
co-change networks, for both genders in the issue and co-change-issue networks.

The rest of this thesis is structured as follows: In Chapter 2, we give an overview
of the topics that are relevant to this thesis, such as OSS development, developer
networks, and related work. Chapter 3 is about our hypotheses and details of
the approach we use to evaluate these hypotheses. In Chapter 4, we present the
outcomes of the analysis and discuss them. Moreover, we introduce threats that
may have influences on our results. In the final chapter, Chapter 5, we outline the
most important points of this thesis and give some ideas about future work.





2
B A C K G R O U N D

In this chapter, we cover topics that are relevant to the thesis. It gives an insight into
open-source software (OSS) development and developer networks. Moreover, we
provide an overview of related work.

2.1 open-source software development

An OSS project is a software published on the internet under licenses that gives users
certain rights except for private property rights. OSS development is a production
model to develop OSS projects in a way that exploits the distributed intelligence of
participants in online communities [17]. It constitutes a significant part of global
software development. It allows people not only to access and use feature-rich
software for free, but also permits them to view the source code of the software
and modify it according to their needs. In this way, some projects create large
communities by engaging the attention of thousands of developers. Moreover,
OSS projects give an opportunity to developers to interact with more experienced
developers. Thus, developers may feel motivated to participate in OSS projects to
gain experience and learn from skilled developers [36].

While OSS is publicly available and managed by the community, proprietary
software is not publicly available and can be modified by only a company or team
which has created it. OSS has some advantages and disadvantages over proprietary
software. The main advantage is that OSS is completely free and accessible to every-
one. Moreover, OSS projects are supported and maintained by large communities.
Therefore, they are much faster to fix bugs and provide support to users. The main
disadvantage is that competitors can develop similar products easily because of
publicly available source code.

Many commercial companies tend to develop and release OSS products [28].
Commercial companies contribute to OSS projects because of three different motiva-
tional factors which are building great innovative products better and faster, gaining
profit by selling complementary services such as training, technical support, consul-
tancy and certifications, and cost reduction because of large community support [2].
Moreover, Lakhani and Wolf [18] show that about 40% of the developers get money
from their employers to contribute to free and open-source software development.

5
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2.1.1 GitHub

GitHub is a website that allows developers to share code, communicate, and col-
laborate for developing large-scale software. It uses the version control system
Git to manage projects and keep track of source code history. GitHub is one of
the most popular software development platforms, which hosts over 100 million
repositories and 56 million developers 1. Furthermore, social coding platforms, such
as GitHub, creates an opportunity for developers to demonstrate their skills and
experiences [9]. Hence, employers consider GitHub profiles as portfolio of work in
the hiring process [11].

2.1.2 Contribution Process

Since OSS projects are usually developed with developers from all around the world,
a substantial number of projects have many contributors. For this reason, some tools
are used to regulate the code and establish a communication protocol. Mainly, two
main approaches are used: pull-request-based and patch-based [39]. In this thesis, we
analyze the projects that use the pull-request-based approach. Hence we explain
only the pull-request-based approach. However, there are several pull-request-based
services, we focus on GitHub.

Once a developer aims to contribute to a repository, the repository of the project
should be copied to the personal GitHub account. This process is known as forking.
Then, the created copy is cloned to the local machine. This step is called cloning. Once
the repository is cloned, the necessary changes are made to this copy. Afterward,
all changes are added to a commit and the created commit is published on the
local repository. The last two steps can be repeated until the required feature or
changes are implemented. Following implementation, a pull request that contains all
commits is created from the local repository against the official repository. Thereafter,
other developers review the pull request to either add some comments to request
some changes or reject the pull request if it is completely unnecessary. Subsequently,
the creator of the pull request can publish new commits that contain required
changes until the pull request gets approved and merged into the official repository
by a developer who has the necessary rights. It is also possible that reviewers reject
and close the pull request if it is completely wrong or unacceptable [38] [37]. The
general workflow of the code contribution process is shown in Figure 2.1.

[htbp]

The contribution process is not only about addition of code to the repository.
People can contribute to the project by reporting bugs, giving ideas about new
features, reviewing code, providing user support, and participating in the discus-
sions. As a consequence of developing software globally, organizing a meeting

1 https://github.com, last accessed on 06/02/2021

https://github.com
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Figure 2.1: GitHub contribution process. A developer changes code and sends a pull request
to reviewers. They either merge it into the official repository, request changes or
reject the pull request completely.
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with contributors is quite difficult. To make communication easier, GitHub has a
section called issues. This section helps people to make discussions about bugs, new
features and get help. A contributor simply creates an issue to discuss a related
topic and others can add comments to the issue. Additionally, a pull request can
be linked to an issue to show that the necessary code changes for the issue has
been sent by this pull request. After merging the linked pull request, the issue is
closed automatically. Moreover, an issue can be assigned to multiple people who
are responsible for moving the issue forward and fixing it. Another important point
is that, GitHub returns both issues and pull requests in search results. GitHub use
type qualifier to distinguish pull requests and issues. Simply, a pull request is an
issue whose type is pull request, while an issue is an issue whose type is issue.

2.2 developer roles

In OSS projects, developers are separated into several groups depending on their
roles in the development. Nakakoji et al. [24] point out eight different roles ranging
from passive user to project leader. The layered structure of the roles is shown in
Figure 2.2. These roles are not connected to any attributes such as age or title.
Accordingly, roles are not assigned by someone else. Instead, a role is gained as a
result of contributions and activities.

Figure 2.2: General structure of the roles in OSS projects. The darkness of blue changes in
proportion to the impact of the role. The role in the darkest rectangle has the
largest impact.
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All groups make contributions to the development of the project, except readers
and passive users. The group which contributes the least is bug reporters. Though
they do not participate in the code contribution, they test software and report bugs.
Most of the reported bugs are fixed by bug fixers. The next contributing group is
peripheral developers who participate sporadically in the development of new features.
Additionally, active developers group is one of the main groups in OSS development.
They are involved actively in the development of the project and bug fixing. One of
two groups that play an important role in decision-making is core members whose
members have participated in the development process for a long time and have
extensive knowledge of the software. Another group is project leader that usually
has only one member. This member is a person who started the project and is
responsible for the overall direction of the project. As shown in Figure 2.2, a core
member has a larger impact than an active developer whose impact is larger than
that of a peripheral developer, and so on. We group active developers, peripheral
developers, bug fixers, and bug reporters together and consider all of them as
peripheral developers. Therefore, the developers who contribute to the code base
are coarsely represented as two groups: core developers and peripheral developers [7]
[10] [15] [30].

2.3 developer genders

There are several techniques to detect people’s gender: face-to-gender inference [25] [23] [20],
name-to-gender inference [19] [22], and gender detection from writing style [3]. We
use the name-to-gender technique, in which, gender is predicted from person’s
name. Santamaría and Mihaljević [29] compare five name-to-gender inference tools
which are GenderAPI, NameAPI, genderize.io, gender-guesser, and NamSor,
in terms of different performance metrics. Since the comparison deduces that Gen-
derAPI shows the best performance among these services, we use GenderAPI in
this research. The tool provides an API to access it with different programming
languages. Simply, a get request that contains name, should be sent to the API in
order to retrieve the gender. Additionally, it is possible to upload a list of names to
determine their genders using the website2. In both ways, before the determination
of gender, GenderAPI parses the full name into first name and last name. As a
response, it returns one of the gender labels which are male, female, and unknown,
as well as the confidence parameters samples and accuracy. The samples shows the
number of matched database records, while accuracy indicates the reliability of the
estimated gender.

2 https://gender-api.com, last accessed on 07/06/2021

https://gender-api.com
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2.4 developer networks

Another important part of this thesis is building social-network graphs for devel-
opers. Social networks are used in many different fields to describe relationships
between people [8]. Vertices represent people and edges represent relationships
between people. Since we analyze relationships between developers, we call these
graphs developer networks [21].

Such networks can be directed or undirected. Directed edges are used to represent
asymmetric relationships, while undirected edges define symmetric relationships [8].
For example, if a developer reviews another developer’s pull request, it is an
asymmetric relationship. Since this relationship has direction: from reviewer to the
owner of the pull request. On the other hand, if two developers make changes to the
same file, it is a symmetric relationship. Since the actions performed by developers
are independent of each other.

The same asymmetric relationship may exist multiple times between the same
developers. These relationships can be unified into one relationship to be represented
by one edge instead of multiple edges that have the same direction. This process
decreases the number of edges and increases simplicity [8].

It is possible to build different networks on the basis of relationships between
developers. We build three types of developer networks for this research: co-change,
issue, and co-change-issue. A co-change network connects developers who change
the same source code artifact, while an issue network connects developers who
contribute to the same issue. A co-change-issue network is the combination of both.
It connects developers who contribute to the same source code artifact as well as
developers who contribute to the same issue.

2.5 network-based metrics

After building developer networks, the developers can be classified into the core or
peripheral groups, as described in Section 2.2. To do that, we need some metrics to
assign values to each developer in the network. There are different metrics for that.
For this research, we use only two of them: eigenvector centrality and hierarchy.

Eigenvector centrality metric describes the centrality of a developer in the network.
Since more important developers play more important roles in code contribution
and discussions, we expect that they have more connections with others and take
central positions in the network. Therefore, we assume that the eigenvector centrality
metric correlates with the importance of developers [15]. Eigenvector centrality is
determined by the number of connections. It is the sum of eigenvector centralities of
a vertex’s neighbors. Figure 2.3 illustrates eigenvector centrality in a small network.
It is calculated with the following formula:
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Figure 2.3: A network comprising nine vertices and eight edges. The gray vertex has the
highest eigenvector centrality value, since it is connected to two vertices that
are connected to three other vertices. The blue vertices have the second highest
eigenvector centrality values. Since they have connections with three vertices
that have one connection and one vertex that has two connections.

xi =
1
λ ∑

j∈N(i)
xj (2.1)

xi is eigenvector centrality for vertex i, N(i) is the collection of neighbors and λ is
a proportionality constant [14].

Hierarchy metric allows us to split the network into hierarchical groups and
explain stratification between these groups. These groups are called clusters. The
stratification depends on the node clustering coefficient and node degree that
represents the number of connections [16]. We show the difference between a
random network and a hierarchically organized network in Figure 2.4.

The clustering coefficient is a metric that indicates modularity and is based on
neighborhood connectivity. It gives us a quantitative measure that explains what to
extent a vertex is embedded in a cluster. The clustering coefficient ci for a vertex i is
calculated with the following formula:

ci =
2ni

ki(ki − 1)
(2.2)

ki is the number of neighbors of the vertex i, ni is the number of edges between
neighbors. The clustering coefficient is equal to the fraction of existing edges
between neighbors divided by the total number of possible edges between neighbors.
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Figure 2.4: This figure is taken from [16] Fig. 4. The figure describes a random network
on the left side and a hierarchical network on the right side. In the hierarchical
network, clusters create a clustered network by connecting to each other. The
top vertex of the hierarchy is the one in the middle because it is connected to
vertices of all other clusters, not only vertices in its small cluster.

ki(ki − 1)/2 is the number of possible edges that can exist between neighbors. A
high clustering coefficient means that there are many edges between the neighbors,
while a low clustering coefficient indicates the existence of fewer edges between
neighbors of the vertex [14] [16]. The variables ki, ni, and the calculated clustering
coefficient c for a vertex in two different networks are shown in Figure 2.5.

The degree of nodes decreases from the top of the hierarchy to the bottom of
the hierarchy, while the clustering coefficient increases. In other words, vertices
that are located at the top of the hierarchy have a high node degree and a low
clustering coefficient. In a hierarchical network, core developers are located at the
top of the hierarchy, while peripheral developers are placed at the bottom of the
hierarchy [14] [16].

2.6 core periphery detection

The metrics described in the preceding section can be used to classify developers as
core or peripheral in the social networks. In the other words, each developer gets an
assigned value based on these metrics and developers are classified with the help of
assigned values.

One of the most prevalent approaches is to classify developers based on their
commit count. Specifically, the number of commits made by each developer is
calculated and a threshold is defined at 80th percentile. Developers whose commit
counts are above the threshold are included in the core group, while developers
with commit counts below the threshold are included in the peripheral group.
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Figure 2.5: The variables ki and ni as well as the calculated clustering coefficient c for the
blue vertex in two different networks. In both networks, k is 3 because the
vertex has three neighbors. The network on the left has two edges between the
neighbors of the blue vertex therefore n is . The clustering coefficient is 0 for the
network on the right side since there is no edges between neighbors.

Since the number of commits has a Zipf distribution, we expect around 80% of the
contributions to be made by 20% of the developers [10] [26] [31]. In our research,
we use values from the network metrics above instead of commit count.

2.7 coreness

After the construction of networks, the method explained in Section 2.6 can be used
to classify developers into core and peripheral groups. However, we do not group
developers, since the research by Fedorov, Mannino, and Zhang [12] reveals that
conversion of a continuous outcome to a binary outcome can lead to information
loss which is a problem in terms of hypothesis testing and statistical estimation.
Therefore, we compare developers based on their metric values which we get by
applying the network metrics described in Section 2.5 instead of the groups they
belong to. From now on, we call these values coreness values. Simply, coreness values
are calculated using these network metrics and serve as a proxy value for the
importance of each developer in the network.

2.8 related work

There are many studies that deal with the diversity in OSS projects. In this part, we
present how other researchers analyze gender inequality in OSS projects. Vedres
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and Vasarhelyi [35] compare the importance of gendered behavior and categorical
gender for success and survival. Success is represented by the number of repository
stars, while survival indicates whether the user performed any action in a year.
Gendered behavior explains the relationship between gender and behavior. In this
research, gendered behavior is evaluated as the probability of femaleness of behav-
ior. The femaleness of behavior indicates the strength of the relationship between
females and the behavior. If it is high, females generally tend to demonstrate the
behavior, otherwise, it is seen very rarely. A Random Forest model is applied to
measure femaleness of behavior based on activity, partners, and specializations in
programming languages classified for gender using principal component analysis.
In more detail, Vedres and Vasarhelyi look at statistics such as how many reposito-
ries each person has, how many pull requests have been opened by each person,
in which field each person specializes, genders of people each person follows,
genders of collaborators, and etc. GitHub is the main data source. Github API and
githubarchive.org are used to acquire information about repositories, developers,
and their activities. In addition, the 2016 US baby name dataset is used for name-
based gender detection. As a result, the difference between men and women is
found not to be statistically significant (8.76 stars for women and 13.26 stars for
men on average) in terms of success if gender is considered as a category (men
and women). Moreover, 88.2% of women and 92.8% of men are active after a year.
According to the analysis, 84.5% of the women’s disadvantages in success and
34.8% of disadvantages in survival can be explained by femaleness of behavior. In
summary, the research shows that gendered behavior has a stronger relationship
with success than categorical gender. In other words, women’s disadvantages are
because of their activities, not their actual gender.

Another related topic is gender bias in OSS projects. Terrell et al. [32] explore
the difference between genders in terms of the acceptance rate of pull requests
and investigate reasons for the difference. The GHTorrent dataset that contains
data about pull requests, users, and projects is the main data of the research. Data
about pull requests such as status, description, and comments are extracted from
GitHub in order to expand the GHTorrent dataset. For gender inference, GitHub
accounts are linked with Google+ social network accounts where users can provide
gender information. The research reveals that 78,7% (111,011 out of 141,177) of the
pull requests created by women and 74.6% (2,181,517 out of 2,923,550) of the pull
requests created by men are merged. Contrary to expectations, the merge rate of
women’s pull requests is higher. They find that 12.4% of women’s pull requests and
13.2% of men’s pull requests refer to issues. A pull request referencing an issue is
considered as a needed contribution. Additionally, they analyze pull requests in
terms of the number of lines added and removed, changed files, and commits. The
result shows that women’s pull requests contain more changed lines and commits.
Furthermore, the study emphasizes that women maintain a higher acceptance rate
for almost all programming languages. Another remarkable point is that women’s
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acceptance rate is lower than men’s when they are neither owners nor collaborators
of the project and gender is identifiable.

Since we also look at the developer roles in this thesis, another related study
is a study conducted by Bosu and Carver [7]. The study highlights the influence
of developer roles on the code review process. To understand the influence, they
explore some parameters such as first feedback interval, review interval, code acceptance
rate, and the number of patch revisions. The first feedback interval is defined as a space
of time between the submission of a code review request and the first comment
written by a reviewer. The review interval is the elapsed time from submission of a
code review request until the end of the review process. The code acceptance rate is
the ratio of merged requests to all requests sent by a developer. The number of patch
revisions is the number of patchsets sent until all modifications requested by the
reviewer are implemented and the code is merged successfully. To understand the
relationship between developer roles and these variables, data of eight popular OSS
projects is extracted from Gerrit 3. After cleaning the data, undirected social network
graphs are generated. Subsequently, developers are divided into two groups: core
and peripheral. Finally, non-parametric hypothesis tests are used to understand the
relationship between developer roles and the variables. The result shows that the
first feedback interval of core developers is shorter than the that of peripheral
developers. Moreover, the acceptance rate is higher for core developers compared
to peripheral developers. Furhtermore, the difference between developer groups in
terms of the number of patch revisions is not strong. The last finding is that the
review process takes 2 - 19 times longer for peripheral developers in comparison
with core developers.

Another paper that deals with this research is written by Bird et al. [5]. They
mined mailing list archives and source code repositories to construct a social
network of the participants and understand communication between individuals.
The research shows that sub-communities emerge within projects as long as the
projects improve. Additionally, the people within a sub-community communicate
more intensively with the people in their own sub-community in comparison with
the people from different sub-communities. Moreover, social networks constructed
from discussions directly related to the source code, are more modular. Other
topics such as high-level architecture, licensing, policy decisions affect everyone.
It means that everyone should participate. Therefore, social networks constructed
from discussions about these topics, are less modular. The last relevant finding is
that developers within the same sub-communities have higher collaboration levels
in comparison with developers outside. i.e, work in the same areas of the code. In
other words, the community structure of the social networks is connected with the
actual development effort.

3 https://www.gerritcodereview.com

https://www.gerritcodereview.com




3
A P P R O A C H A N D H Y P O T H E S E S

This chapter is about our research approach. It introduces our hypotheses and
projects. Moreover, this chapter contains the pertinent details of gender detection,
network construction, and coreness detection. The final part of this chapter covers
details of our approach to investigate the hypotheses.

3.1 research questions and hypotheses

In this thesis, we investigate the differences between male and female developers.
For this reason, we try to answer the following research questions:

Research question 1: Are there differences between male and female developers in terms
of general contribution statistics in open-source software projects?

Research question 2: Are there differences between male and female developers in terms
of developer coreness in open-source software projects?

As shown in the research questions, our comparison consists of two parts: gen-
eral contribution statistics and developer coreness. We present each part in the following
sections.

3.1.1 Comparison of General Contribution Statistics

In this part, we compare genders from the viewpoint of the following parameters:
created pull requests, created issues, merge operations, merged pull requests, pull request
comments, issue comments, commits, changed files, and diff size. We present two different
approaches for the comparison.

In the first approach, we hypothesize male developers have higher statistics than
female developers. We show the hypotheses of this approach in Table 3.1. We call
this approach male approach from now on. The hypotheses whose labels start with
H.M belong to this approach.

In the alternative approach, we hypothesize that female developers have higher
statistics than male developers. We list the hypotheses of this approach in Table 3.2.
We call this approach female approach from now on. The hypotheses of this approach
start with H.F label.

17
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Table 3.1: The hypotheses of the male approach

H.M1 : Male developers create more pull requests than female developers.
H.M2 : Male developers create more issues than female developers.
H.M3 : Male developers perform more merge operations than female developers.
H.M4 : Male developers have more merged pull requests than female developers.
H.M5 : Male developers add more comments to pull requests than female developers.
H.M6 : Male developers add more comments to issues than female developers.
H.M7 : Male developers create more commits than female developers.
H.M8 : Male developers change more files than female developers.
H.M9 : Male developers change more lines than female developers.

Table 3.2: The hypotheses of the female approach

H.F1 : Female developers create more pull requests than male developers.
H.F2 : Female developers create more issues than male developers.
H.F3 : Female developers perform more merge operations than male developers.
H.F4 : Female developers have more merged pull requests than male developers.
H.F5 : Female developers add more comments to pull requests than male developers.
H.F6 : Female developers add more comments to issues than male developers.
H.F7 : Female developers create more commits than male developers.
H.F8 : Female developers change more files than male developers.
H.F9 : Female developers change more lines than male developers.



3.2 approach 19

3.1.2 Comparison of Developer Coreness

In this section, we look at the differences between male and female developers in
terms of developer coreness explained in Section 2.7. Firstly, we build networks
explained in Section 2.4 and calculate both coreness values for each developer
using the developer metrics described in Section 2.5. After assigning values to each
developer, we try to find out whether there are statistically significant differences
between the genders in terms of the coreness values. To answer this question, we
use the same two approaches as described in Section 3.1.1. Therefore, we pose a
hypothesis for each approach.

Table 3.3: The hypotheses for the comparison in terms of coreness values

H.M10 : Male developers have higher coreness values than female developers.
H.F10 : Female developers have higher coreness values than male developers.

In addition to the investigation of these hypotheses, we analyze the distribution
of coreness values for each gender. To evaluate H11 described in Table 3.4, we look
at the distribution shape of coreness values for each gender. Moreover, we split
the coreness scale into different parts to look at what percentage of each gender
constitutes each part of the scale. Then we try to evaluate H12 described in the
following table:

Table 3.4: The hypotheses for the comparison in terms of distribution of the coreness values

H11 : The coreness values of both genders follow a similar distribution.
H12 : Both genders are shared equally within different parts

of the coreness scale.

3.2 approach

To investigate hypotheses and questions listed in the previous section, we perform
few steps such as data collection, gender detection, network construction, and
calculation of coreness values. We present all the details of the approach in the
following subsections.
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3.2.1 Case studies

We choose nine OSS projects to evaluate our hypotheses. The first project is VsCode
1,

which is an integrated development environment (IDE) made by Microsoft. The
second project is Tensorflow

2 which allows developers and researchers to develop
applications using machine learning techniques. Atom

3 is the third project. It is a
text editor that is mainly used by developers. The next project is a deep learning
API called Keras

4. The fifth project, Nextcloud
5, is a file share and collaboration

platform. The last four projects are related to the JavaScript environment. Deno
6

allows creating an environment to run JavaScript and TypeScript codes. The other
three projects, Vue

7, Three.js8, and Reveal.js9 are JavaScript tools to create modern,
and interactive user interfaces. We perform our analyses based on the data collected
from these projects.

3.2.2 Data Extraction

To analyze the projects, we need to extract data. For this research, we need three
types of data from each project: authors, commits, and issues. For data extraction,
we use codeface

10, a tool developed by Siemens, and an extension to it called
codeface-extraction

11. This tool uses author keyword to represent a developer.
The commit data is extracted directly from the git repository of each project, while
the issue data is mined from GitHub. The developer data is extracted from both
sources. After that we have some post-processing on the data to unify commit and
issue data with the developer data.

Once the data is mined, it is saved into a MySQL database by codeface. After
that, data is extracted into CSV files using codeface-extraction. As a result, we
have three CSV files: authors.list, commits.list, and issues.list.

Before starting to analyze, we cut the commit and issue data to the same date
range to be sure that both data represent the same time frame of the project lifetime.

We show an overview of the extracted data for each project through Table 3.5. One
can see that different size projects are analyzed. Vscode, Tensorflow, and Atom

can be considered as large projects, while Keras and Nexcloud can be categorized

1 https://code.visualstudio.com/
2 https://www.tensorflow.org/
3 https://atom.io/
4 https://keras.io/
5 https://nextcloud.com/
6 https://deno.land/
7 https://vuejs.org/
8 https://threejs.org/
9 https://revealjs.com/

10 https://github.com/siemens/codeface
11 https://github.com/se-sic/codeface-extraction

https://code.visualstudio.com/
https://www.tensorflow.org/
https://atom.io/
https://keras.io/
https://nextcloud.com/
https://deno.land/
https://vuejs.org/
https://threejs.org/
https://revealjs.com/
https://github.com/siemens/codeface
https://github.com/se-sic/codeface-extraction
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Table 3.5: The number of the extracted developers, commits, and issues for each project and
the time frames the data are cut to

Project # developers # commits # issues time frame

Vscode 68,675 68,350 111,126 2015-11-13 / 2020-12-22

Tensorflow 36,848 92,432 45,664 2015-11-09 / 2020-12-22

Atom 21,402 32,402 21,163 2012-01-21 / 2020-12-10

Keras 13,604 4,626 13,512 2015-03-28 / 2019-11-06

Nextcloud 10,139 16,228 22,726 2016-03-23 / 2020-09-22

Vue 9,869 3,124 9,351 2016-04-11 / 2020-11-24

Three.js 8,623 27,201 20,856 2010-04-25 / 2020-12-22

Deno 3,198 4,805 8,762 2018-05-29 / 2020-12-22

Reveal.js 3,047 2,242 2,769 2011-06-07 / 2020-10-12

as mid-size projects. In comparison with these projects, Vue, Three.js, Deno, and
Reveal.js are small projects.

3.2.3 Gender Detection

We upload a CSV file that contains a list of developers’ full names for a project
to the website of GenderAPI. As a response, the website gives us a CSV file that
contains six columns: full name, first name, last name, gender, accuracy, and samples.
We remove all columns except the full name and gender columns, since we need only
these two columns for the analyses. GenderAPI leaves the gender column empty
for names that can not be classified as male or female. Hereby, we add unknown
label to the gender column for these names. We perform this process for all projects.
Consequently, we have a CSV file called gender for each project. Finally, we merge
this gender data into the developer data to classify developers according to each
gender. As a result, gender column is added to the developer data. We show the
number of genders in each project in Table 3.6.

3.2.4 Network Construction

After the data extraction, we construct three developer networks explained in
Section 2.4. We use a R library called coronet

12 to build developer networks. The
library allows us to build networks based on different data sources such as commits,
issues or e-mails. We use only commits and issues to build developer networks. The

12 https://github.com/se-sic/coronet

https://github.com/se-sic/coronet
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Table 3.6: The number of genders in each project

Project # males # females # unknown

Vscode 41,126 2,950 19,599

Tensorflow 22,098 2,319 12,431

Atom 15,750 1,009 4,643

Keras 8,268 886 4,450

Nextcloud 5,751 356 4,032

Vue 6,249 469 3,151

Three.js 5,521 425 2,677

Deno 2,195 152 851

Reveal.js 2,268 162 617

library has two different configuration classes: ProjectConf and NetworkConf. The
ProjectConf class holds configuration parameters such as data paths and project
name which are necessary for the configured project. The second configuration
class, NetworkConf, is used to define configuration parameters related to data
retrieval and network construction. The main parameters of these classes are author
relation which describes relations among developers, directedness of edges, network
simplifying achieved by edge contraction, and developer elimination depending on
the chosen author relation.

For this thesis, we create non-simplified directed developer networks. The network
type is defined by the author relation parameter. The author relation parameter
should be set to "cochange" for co-change networks, "issue" for issue networks, and
c("cochange", "issue") for co-change-issue networks. All type of networks contain
only developers remaining after elimination depending on the network type. The
remaining developers are developers that have been active in the associated data
source. For example, only developers that have made at least one commit appear
in co-change networks, whereas issue networks contain only developers who have
contributed to at least one issue. Since co-change-issue networks are considered as a
combination of both networks, they contain developers that have committed a code
or contributed to at least one issue.

3.2.5 Coreness Detection

We use eigenvector centrality and hierarchy metrics to determine the coreness
values of the developers. As described in Section 2.5, each metric is represented as a
numerical value. The value range of the eigenvector centrality metric is between 0

and 1, while the value of the hierarchy metric can be greater than 1. Therefore, we
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use a normalization technique to shift and rescale the values of the hierarchy metric
to fit the values within the interval of 0 to 1. So that, the ranges of both metrics end
up between 0 and 1.

To detect the coreness values, we construct networks as explained in the preceding
subsection. Then, we calculate the coreness values of each developer in all networks
based on each network metric. After that, we use these coreness values to analyze
the hypotheses listed in Table 3.3 and Table 3.4.

3.2.6 Approach for the Comparison of the General Contribution Statistics

Having done all the steps explained above, we can analyze the hypotheses. In this
section, we present the details of our approach for evaluation. We use R-scripts for
the analysis.

To analyze genders in terms of general contribution statistics, we evaluate the
hypotheses listed in Section 3.1.1. As can be seen in Table 3.1 and Table 3.2, each
hypothesis is related to a different parameter such as pull request, issue, and merge
operation. For example, to compare genders in terms of the created pull requests, we
calculate the number of created pull requests for each developer. Then we compare
male and female developers using the Wilcoxon Mann-Whitney test to evaluate the
related hypothesis. For a successful comparison, there must be data for both groups,
since it is not possible to compare groups if one of them is empty. We run the
test twice with different arguments to investigate both approaches: male approach
and female approach. For the analysis of all hypotheses described in Section 3.1.1,
these sequential steps are performed for each parameter separately: created pull
requests, issues, merge operations, merged pull requests, pull request comments,
issue comments, commits, changed files, and changed lines.

3.2.7 Approach for the Comparsion of Developer Coreness

As described in Section 2.7, developer importance is explained by coreness values.
We compare genders in terms of coreness values in three steps. The first step is the
investigation of the hypotheses described in Table 3.3. To do so, we use a similar
approach as the one used for the analysis of the general contribution statistics. After
detection coreness values as explained in Section 3.2.5, we split the developers into
the male and female groups. Then, we use the Wilcoxon Mann-Whitney test to
compare these groups in terms of the coreness values. We do these steps for both
metrics to analyze the hypotheses listed in Table 3.3. Like the analysis of the general
contribution statistics, we run the test twice for each metric to investigate the male
and female approaches.

In the second step, we compare the distribution of coreness values to evaluate
H11 described in Table 3.4. For the comparison, we create QQ plots and boxplots
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for both genders. QQ plots show the distribution shape of coreness values, while
boxplots give us a good indication of how the values are spread out. We create four
QQ plots and four boxplots for each metric to look at the different parts of the scale.
The first one shows the distribution of coreness values over the full scale. The other
three plots show only values that exceed specific percentiles of the coreness scale:
80th percentile, 90th percentile, and 95th percentile. As a result, the QQ plots give us
information about the distribution shape of the coreness values for both genders.
Additionally, we compare distribution of the coreness values of each gender with
the help of boxplots.

In the final step, we evaluate the hypothesis H12 described in Table 3.4. To do so,
we split the coreness scale into different ranges: 0% - 50%, 51% - 75%, 76% - 90%,
91% - 95%, and 96% - 100%. Then, we find the number of males and females in
each range. Lastly, we present the number of males and females as percentages. As
a result, we can see what percentage of each gender falls within the certain range of
the coreness scale.
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In this chapter, we describe the results of our analysis and discuss them in detail.
We summarize the most important results of the analysis. The rest of the results for
the co-change and issue networks can be found in Appendix A. We do not show the
results of the co-change-issue networks, since these networks are the combination of
the co-change and issue networks and the results of the co-change-issue networks
are quite similar to the results of the issue networks. Lastly, we discuss all the
results.

4.1 results

The following subsections outline the results of our analysis. Since we have a large
amount of results, we only present results of the selected cases and representative
figures.

4.1.1 General Contribution Statistics

We explain how we compare male and female developers in terms of the general
contribution statistics in Section 3.2.6. In this subsection, we show the results of
both approaches of this analysis. Since we use the Wilcoxon Mann-Whitney test, we
consider the statistical significance level p-value as an indication of significant result.

Table 4.1 contains the p-values of the male approach. The first noticeable result
is that Vue, Three.js, and Reveal.js have no results for the merge operations. The
reason is that all merge operations have been performed by male developers in these
projects. Therefore, we have no data on the female groups. Hence, we can not per-
form the Wilcoxon Mann-Whitney test. Despite the fact that we have many results,
only some show statistical significance with a p-value below 0.05. We can say that
the difference between male and female developers in terms of the created issues is
statistically significant in the Atom, Deno, and Reveal.js projects. Moreover, the
results of VsCode, Atom, Keras, Three.js, and Deno.js exhibit p-values of less than
0.05 for the issue comments, as shown in Table 4.1. Additionally, the statistically
significant difference between genders according to the commits exists only in the
Three.js project. Since the results of some projects are statistically significant and
that of some are not significant, we cannot generalize the results.

25
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In conclusion, the results for the hypotheses listed in Table 3.1 are overall inconclu-
sive, since the results of certain projects support the hypotheses, while the results
of other projects do not support the hypotheses.

The results of the female approach are shown in Table 4.2. In this approach, only
Tensorflow shows significant results. According to the results for Tensorflow,
there are significant differences between male and female developers in terms of
the created pull requests, merged pull requests, pull request comments, commits,
changed files, and diff size. In other words, females create more pull requests and
more commits, write more comments on pull requests, change more files and more
lines, and most of the merged pull requests belong to female developers. This
indicates that females participate more actively in this project. Because of the reason
explained above, we can not perform tests for merge operations of the same projects
in the female approach, too.

Since only the results for Tensorflow support some of the hypotheses listed
in Table 3.2, we have to conclude that the results for the hypotheses overall are
inconclusive.

4.1.2 Developer Coreness

As explained in Section 3.2.7, the comparison of male and female developers in
terms of developer coreness consists of three steps.

Table 4.3 and Table 4.4 contain the results of the first step in which we evaluate
the hypotheses listed in Table 3.3. After performing the steps described in the first
paragraph of Section 3.2.7, we get the p-values of the Wilcoxon Mann-Whitney tests.
We show the p-values of the male approach for each metric in all three networks
with Table 4.3. Only Keras shows statistical significance in the result of the hierarchy
metric in the co-change network. The VsCode, Tensorflow, Atom, Keras, Three.js,
and Deno projects get the p-values below 0.05 for both metrics in the issue and
co-change-issue networks, while all the p-values for Nextcloud and Reveal.js are
greater than 0.05. Additionally, the results for Vue show statistical significance for
only the hierarchy metric in the issue and co-change-issue networks.

Only some projects support H.M10, not all of them. At least 6 out of 9 projects
show results that could support hypotheses H.M10 in issue and co-change-issue
networks. In the co-change networks, only the Keras project supports H.M10 based
on the coreness values derived from the hierarchy metric. Therefore, we conclude
the results for hypotheses H.M10 to be inconclusive.

We show the results for the female approach of this analysis with Table 4.4. Unlike
the male approach, we have only one the p-value below 0.05. This result is derived
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from the hierarchy metric of Tensorflow in the co-change network.

We do not have sufficient results to accept hypothesis H.F10. There is only one result
that supports the hypothesis based on the coreness values derived from the hiearchy
metric , while we do not have any results that support the hypothesis based on the
eigenvector centrality metric. Overall, we can not accept hypothesis H.F10

Now, we describe the results of the comparison in terms of the distribution of the
coreness values. As explained in the second paragraph of Section 3.2.7, we look at
QQ plots and boxplots to evaluate H11 described in Table 3.4. QQ plots are used
to compare distributions of our coreness values against the normal distribution.
Quantiles of the normal distribution are plotted along the x-axis which is called
Theoretical quantiles, while quantiles of our coreness values are plotted along the y-
axis. First, we look at the distribution shapes of the coreness values of both genders.
As an example of the co-change networks, we look at Figure 4.1 which contains
the distribution of coreness values calculated using eigenvector centrality in the
co-change network of the Tensorflow project. The most important result is that
coreness values of male and female developers follow a similar distribution shape
in the Tensorflow project, as well as other projects. Unsurprisingly, the number of
male developers is more than that of female developers across the coreness scale.

Figure 4.1: QQ-plots for the coreness values of male and female developers in Tensorflow

project. The metric is eigenvector centrality. The network type is co-change. The
data is shown in a logarithmic scale.

As expected, the number of male and female developers decreases going to
the upper parts of the coreness scale. There are even projects such as VsCode,
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Nextcloud, Vue, Deno, Reveal.js, where the upper parts do not contain female
developers. For example, the coreness distribution of the Vscode project is shown
in Figure 4.2. As can be seen, there is no female developer in the top 10% of the
scale. The coreness values obtained through hierarchy metric show similar patterns
on the eigenvector centrality metric. Therefore, we present these results only in the
main thesis.

Figure 4.2: QQ-plots for the coreness values of male and female developers in the Vscode

project. The coreness metric is eigenvector centrality. The network type is co-
change. The data is shown on a logarithmic scale.

We show overview of the distribution of the coreness values in the issue networks
through Figure 4.3. The figure contains data of the Vscode project. The main
difference between the co-change and issue networks is that we have much more
data points in the issue networks. Unlike the co-change networks, female developers
exist in all parts of the distribution in the issue networks. Despite these differences,
the main similarity is the distribution shape. As such in the co-change networks,
coreness values of male and female developers follow a similar distribution shape
in the issue networks, too.

As we explained in Section 2.4, a co-change-issue network is the combination of
co-change and issue networks. Figure 4.3 evidence that the issue networks have
much more data points than the co-change networks. Therefore, the co-change-issue
networks are similar to the issue networks. Overall, the results of the co-change-issue
networks are quite similar to the results of the issue networks.

Furthermore, as evident in Figure 4.4, the male group have more outliers in all
types of networks. These patterns can be seen in all the projects. Furthermore, the
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Figure 4.3: QQ-plots for the coreness values of male and female developers in the Vscode

project. The coreness metric is eigenvector centrality. The network type is issue.
The data is shown on a logarithmic scale.

range of coreness scale differs from project to project. The certain projects have wide
ranges of coreness scale, whereas others have narrow ranges of coreness scale.

The results suggest that the coreness values of both metrics follow a similar distri-
bution for both gender in all the projects. Overall, we accept H11.

Lastly, we present the results of the third step of the analysis explained in Sec-
tion 3.2.7. In the co-change networks, projects show different results. An interesting
point is that the upper parts of VsCode, Nextcloud, Vue, Deno, Reveal.js contain
only male developers, while all parts of other projects contain both genders. For
example, Figure 4.5 shows the distribution of the Vscode project in the co-change
network. In this example, the coreness values are calculated using the eigenvector
centrality metric. According to this figure, we can not say that both gender groups
are distributed equally in each range. As shown in the figure, 50% of male and 42%
of female developers fall within the lowest range, 0% - 50%. It means that 50% of
male and 42% of females developers’ coreness values are less than 50th percentile
of the coreness scale and this inequality between genders is shown in other ranges.
Even the top 10% of the coreness scale belong to only male developers. Overall,
there is no distribution pattern that all the projects follow. Each project has different
gender distribution over the coreness scale. One coreness distribution we need to
address here belong to the Keras project which is described in Figure 4.6. Keras is
the only project where distributions of both genders are quite similar to each other.
The difference in the lowest range of the coreness scale, 0% - 50%, is a little bit high.
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Figure 4.4: Boxplots for the coreness values of male and female developers in the Tensor-
flow project. The coreness metric is eigenvector centrality. The network type is
co-change. The data is shown on a logarithmic scale.

However, we can say that the percentages of both genders are almost equal in all
ranges of the coreness scale.

The coreness values based on the hierarchy metric show similar patterns as the
coreness values of the eigenvector centrality metric. Each project shows different
distribution of of male and female developers over the coreness scale. The projects
whose upper ranges contain only male developers in the comparison based on
eigenvector centrality metric, show the same pattern also in the comparison ac-
cording to hierarchy metric. Only Three.js is a project where both genders show
quite similar percentages in each range of the coreness scale based on the hierarchy
metric. We show this similarity in Figure 4.7.

The results of the issue networks are more interesting. Unlike co-change networks,
all ranges of all the projects contain both genders. Additionally, both genders are
shared almost equally in all ranges. We show a summary of the distributions of
genders over the coreness scale in the issue networks in Figure 4.8 taking the Vscode

project as an example. As can be seen in the figure, the highest difference between
male and female developers is about 4% which exists in the 0%-50% range. The
coreness values of the hierarhcy metric show similar results like the coreness values
of the eigenvector centrality metric. Although distribution of both genders are quite
similar in each range, Atom, Three.js, Deno, Reveal.js projects show the difference
more than 5% in the lowest range of both metrics, 0% - 50%. Moreover, Nextcloud

and Deno show the difference more than 5% in the 51% - 75% range. The difference
in the Nextcloud project is related to the hiearchy metric, while the difference of
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Figure 4.5: Distribution of the male and female developers over the coreness scale of the
Vscode project. The coreness metric is eigenvector centrality. The network type
is co-change.

Figure 4.6: Distribution of the male and female developers over the coreness scale in the
Keras project. The coreness metric is eigenvector centrality. The network type is
co-change.
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Figure 4.7: Distribution of the male and female developers over the coreness scale in the
Three.js project. The coreness metric is hierarchy. The network type is co-change.

Deno is related to the eigenvector centrality metric. All the differences in the other
ranges is less than 5%. The related figures can be found in Appendix A. Like other
results of the co-change-issue networks, these results are similar to the results of the
issue network.

As far as we described all the results, it is time to evaluate H12. As we mentioned
above, the results of the coreness values based on the eigenvector centrality metric
are similar to the results of the hierarchy metric. That is why, the conclusion is the
same for the coreness values of both metrics.

Male and female developers are not shared equally in the ranges of the coreness
scale in the co-change networks. Contrary to this, the percentages of both genders
are almost equal in the issue and co-change-issue networks. It means that the
distribution of each gender over different ranges is completely different in the
co-change networks, while the distribution is similar for both genders in the issue
and co-change-issue networks. Overall, we can accept H12 for only the issue and
co-change-issue networks, not the co-change networks.

4.2 discussion

The results presented in Section 4.1 revealed several interesting facts. Below we
discuss the relevance and potential explanations of the results.
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Figure 4.8: Distribution of the male and female developers over the coreness scale in the
Vscode project. The coreness metric is eigenvector centrality. The network type
is issue.

4.2.1 General Contribution Statistics

In the first part of the analysis, we compare genders in terms of the contribution
related parameters such as created pull requests, created issues, merge operations
and others. As we explained in Section 3.1.1, we have two different approaches for
the comparison. The results show that the differences between male and female
developers differ from OSS project to OSS project. The results indicate that merge
operations are performed by only male developers in Vue, Three.js, and Reveal.js.
It is an indication that the last decisions about the source code are made by only
male developers in these projects. The interesting point we need to address here is
that we have much more statistically significant results in the male approach than
the female approach. The simplest reason is that there are more male developers
than female developers in all the projects as shown in Table 3.6. Although we
have many supported hypotheses in the male approach, we can not accept any
of them, since the most supported hypothesis are supported by only five projects.
The supported hypotheses are related to the created issues, issue comments, and
commits. Looking at these results, we can say that there is no statistically significant
difference between genders in terms of code contribution, since only one project
shows statistical significance in the comparison in terms of commits. On the other
hand, male developers participate actively in issues of most of the projects. In the
Atom, Deno, and Reveal.js projects, they create more issues than females, whereas
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they write more comments on the issues in the VsCode, Atom, Keras, Three.js,
and Deno.js projects. In the female approach, only the results for Tensorflow show
statistically significance in the results. Although there is a significant difference
between the number of male and female developers in the Tensorflow project,
female developers show better results in terms of different parameters such as
created pull requests and merged pull requests. About this project, we can say that
female developers are much more active in the code contribution process.

4.2.2 Developer Coreness

The next differences between genders we want to discuss are related to coreness
values. The p-values for H.M10 and H.F10 in each network type are shown through
Table 4.3 and Table 4.4. In the co-change networks, only one results supports H.M10
in each approach. This underlines the result we get from the comparison of the
general contribution statistics and indicates that none of the genders predominates
the other one in terms of developer coreness in the code contribution process. The
statistically significant result in the co-change networks of the female approach is
related to the Tensorflow project, while the significant result of the male approach
is related to the Keras project. In fact, the result of Tensorflow is an expectable
result. Since the results of the general contribution statistics show that female
developers are more active in the code contribution process of Tensorflow. The
most noticeable result is that H.M10 is supported in the issue networks of most
projects. This result gives us another evidence that strengthens the result we get
from the analysis of the general contribution statistics. The result shows that male
developers take on more significant roles in the issue related contributions. Although
the co-change-issue networks show approximately the same results, so we do not
draw a conclusion about these results. Considering the results of both networks,
we estimate that significant results of the co-change-issue networks come from the
issue networks. Since as explained in Section 2.4, a co-change-issue network is a
combination of co-change and issue networks. Moreover, the co-change networks
have only one statistical significant result, while the issue networks show multiple
significant results.

The last hypotheses of this thesis are related to the distribution of the coreness
values. In one of them, H11, we hypothesize that both genders follow a similar
distribution. The supported results allow us to accept H11 and conclude that both
genders follow a similar distribution in terms of the coreness values in all types
of the developer networks. In the middle and lower parts of the scale, we see the
same distribution for males and females which simply means that in these parts
of the distribution gender does not matter, gender matters only in the upper parts.
In other words, generally, the most crucial roles are taken by male developers.
Even in the co-change networks, the upper ranges of 5 out of 9 projects consist
of only male developers. Like other results, also this result indicates that there
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is no female developer play a significant role in the code contribution process.
Unlike the co-change networks, the top 5 percentage of the coreness scale contains
both genders in the issue networks of all the projects. This indicates that female
developers play standard roles as well as significant roles in the issue related
contributions, although, most of the significant roles are taken by male developers.
Having more outliers in the male groups shows that there are many male developers
who demonstrate different behaviors and get higher or smaller coreness values than
others individually. Morover, the range of coreness scale differ from OSS project to
OSS project.

The evaluation of the hypothesis H12 shows that both genders are not distributed
equally over coreness scale in the co-change networks. This result indicates that
female developers get only lower importance levels and the highest importance
levels are dominated by male developers in the VsCode, Nextcloud, Vue, and Deno,
Reveal.js projects. However, one gender does not predominate the other one, this
demonstrates the importance of male developers in the code contribution process
of these projects. Unlike the co-change networks, the issue networks show similar
distributions of genders over the coreness scale, although the difference between
genders is more than 5% in the lowest range of 4 out of 9 projects. Another difference
is that each range contains both genders, which means that female developers take
also significant roles like male developers in the issue-related contributions. In the
co-change networks, the distribution of male developers follows a pattern. The
pattern is that male developers exist in each range of the coreness scale and as
the range percentage increases, the percentage of males decreases until the 90th
percentile. Unlike male developers, female developers have no such pattern. In
projects such as Deno and Reveal.js, there are some middle and upper ranges
that do not contain female developer. Additionally, in some cases, the upper ranges
have a higher percentage of females. Differently from the co-change networks, both
genders follow the pattern explained above in issue and co-change-issue networks.

4.3 threats to validity

In the last section of the evaluation, we discuss the threats to validity of our analysis.

One of the main threats is our project selection. The most obvious threat is the
number of chosen projects. Our analysis is based on nine OSS projects. Although
we analyzed different size projects, it is difficult to generalize our results to all OSS
projects. Additionally, chosen projects use the pull-request-based tool as a contri-
bution tool. We can not determine whether projects that use different contribution
tools show similar results. The next threat is the chosen time range of each project.
We analyzed data of the specific time range of each project in which both commit
and issue data exist. It is unclear whether we can experience the same results in the
whole lifetime of the projects.
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For gender detection, we chose the name-to-gender inference method. The name-
to-gender method is a threat, since many people use some kind of usernames or do
not use real names. Moreover, some names can be both male and female depending
on the geography and ethnicity of the person. So, we do not know real genders
of all the developers. We just estimate genders from names provided on GitHub.
Therefore, it is inevitable to determine some developers’ genders incorrectly.

The next big threat is the selected tools. GenderAPI does not predict genders
of all the developers. There are lots of developers that are not part of our analysis
because of unknown gender. It can be possible to get different results with the full
gender data. In addition to GenderAPI, there are other tools that lead to threats
for our analysis. We mined data from GitHub. We do not know whether other pull
request systems such as Bitbucket, Gitlab show similar results. Another important
threat is related to gender detection. Another tool we have to rely on is Codeface,
since data extraction forms the base of our analysis.

Some important threats are related to networks we use to represent reality
accurately. It is possible that used networks do not reflect the truth. Another threat
is the detection of developer coreness values using network metrics. Each network
metric relies on different parameters. We are not sure these parameters are good
proxies for the developer importance in OSS projects. There may be other parameters
that can represent developer importance more accurately.
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C O N C L U D I N G R E M A R K S

In this chapter, we summarize our analysis and its results. Additionally, we give an
outlook of future work.

5.1 conclusion

In this thesis we analyzed whether there are important differences between male and
female developers in OSS projects. The analysis consists of two parts. In each part,
we looked at differences between genders in terms of different measurable quantities.
In the first part, the main parameters for the comparison are the general contribution
statistics which are created pull requests, created issues, merge operations, merged
pull requests, pull request comments, issue comments, commits, changed files, and
diff size. In the second part, the main parameter is the coreness value which serves
as a proxy value for the developer importance.

To analyze the differences, we mined the commit data, issue data, and developer
data of nine projects from GitHub and their git repositories. The projects are Vscode,
Tensorflow, Atom, Keras, Nextcloud, Vue, Three.js, Deno, and Reveal.js.
Before the comparison, we used the GenderAPI tool to assume the gender of
each developer from developer’s name. After assigning developers that can be
classified as male or female to the corresponding group, we analyzed differences
between those groups. For the first part of the analysis, we performed Wilcoxon
Mann-Whitney tests to check whether the differences between genders in terms of
general contribution statistics are statistically significant. For the second part, we
constructed three different types of developer networks: co-change networks, issue
networks, and co-change-issue networks. After building networks, we calculated
coreness values by applying two different network metrics: eigenvector centrality
and hierarchy. Then, we performed Wilcoxon Mann-Whitney tests to understand
the differences between genders in terms of the coreness values. Additionally, we
created different types of plots to investigate differences between distributions of
coreness values of both genders. Lastly, we looked at how genders are distributed
over the coreness scale.

Since our findings evidence that different OSS projects show various differences
between male and female developers, we can not accept or reject all the hypotheses
completely. One result we need to address here is that all pull requests of three
projects are merged by only male developers, which means that male developers
make the final decision about the code. Another important point is that the number
of male developers is more than that of female developers in all the projects. Despite

41
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this important difference, none of the genders dominate the code contribution
process, which means that the differences between genders in terms of commits,
changed files, diff size are not significant in this process. On the other hand, male
developers predominate female developers in the issue-related contributions of
most of the projects and create more issues, and write more comments on the issues.
In both code and issue-related contributions, male developers take the most crucial
roles. In 5 out of 9 projects, there is no female developer on top of the organizational
hierarchy which indicates women marginalization in the code contribution process.
Although male developers generally have higher coreness values in 6 out of 9

projects, female developers take standard as well as crucial roles in the issue-related
contributions. Additionally, gender has an influence on only the top 10% of the
coreness values, not lower percentages. Another interesting outcome of our analysis
is that in all the types of developer networks, there are male developers with values
all over the coreness scale, however, female developers are not as predominantly
present in the top of the coreness scale. Unlike male developers, female developers
show the same pattern only in the issue and co-change-issue networks, not the co-
change networks. Furthermore, both genders are shared almost equally in different
ranges of the coreness scale in the issue and co-change-issue networks. The last
finding is that there are many male developers who get much higher coreness
values in comparison with other male developers. Though they are not as many as
male developers, there are some females who show the same pattern among female
developers.

In conclusion, our goal for this thesis was to understand differences between
male and female developers in terms of contributions and developer importance.
According to our results, we cannot find general differences between male and
female developers. However, there are more male developers than female developers
in the upper parts of the coreness scale. The only significant result we found is that
coreness values of both male and female developers follow a similar distribution
shape until reaching the top of the scale. The top of the scale is dominated by male
developers. Furthermore, we cannot completely accept or reject other hypotheses,
since some projects support them, while other projects suggest the opposite. The
differences between genders depend on the projects and parameters chosen for the
comparison.

5.2 future work

The first thing we need to do is to analyze more OSS projects. This could help
to get more generalizable results. Moreover, we can investigate differences in the
projects which use patch-based contribution tools. This would help us to generalize
our results independently of the used contribution tool. In addition to different
contribution tools, it would be possible to perform our analysis using different
gender detection tools, even different gender detection methods. We have to find a



5.2 future work 43

way to reduce data loss because of the unknown gender. Therefore, it would also be
good to find some kind of combination of different gender detection methods or
tools to reduce the number of developers whose genders are unknown. This would
increase the validity of the analysis.

Another good idea to do in the future is to split the projects into different time
ranges and looking at differences in each range individually. This would help us to
understand how the differences evolve during the development of the projects.

Lastly, projects can be grouped under different categories such as frontend,
backend, mobile. Then, the differences between genders can be analyzed in each
group. It might be possible that differences between genders depend on the project
type, which means that the differences between genders in a frontend project might
be smaller than the differences in a backend project or vice versa.
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Atom

Keras

Figure A.1: QQ-plots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is co-change. The data is
shown on a logarithmic scale. The projects are Atom and Keras.
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Figure A.2: QQ-plots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is co-change. The data is
shown on a logarithmic scale. The projects are Nextcloud, Vue and Three.js.
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Figure A.3: QQ-plots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is co-change. The data is
shown on a logarithmic scale. The projects are Deno and Reveal.js.
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Figure A.4: QQ-plots for the coreness values of male and female developers. The coreness
metric is hierarchy. The network type is co-change. The data is shown on a
logarithmic scale. The projects are Vscode, Tensorflow, and Atom.
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Figure A.5: QQ-plots for the coreness values of male and female developers. The coreness
metric is hierarchy. The network type is co-change. The data is shown on a
logarithmic scale. The projects are Keras, Nextcloud, and Vue.
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Figure A.6: QQ-plots for the coreness values of male and female developers. The coreness
metric is hierarchy. The network type is co-change. The data is shown on a
logarithmic scale. The projects are Three.js, Deno and Reveal.js.
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Figure A.7: Boxplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is co-change. The data is
shown on a logarithmic scale. The projects are Vscode and Atom.
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Figure A.8: Boxplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is co-change. The data is
shown on a logarithmic scale. The projects are Keras,Nextcloud, and Vue.
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Figure A.9: Boxplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is co-change. The data is
shown on a logarithmic scale. The projects are Three.js, Deno, and Reveal.js.
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Figure A.10: Boxplots for the coreness values of male and female developers. The coreness
metric is hierarchy. The network type is co-change. The data is shown on a
logarithmic scale. The projects are Vscode, Tensorflow, and Atom.
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Figure A.11: Boxplots for the coreness values of male and female developers. The coreness
metric is hierarchy. The network type is co-change. The data is shown on a
logarithmic scale. The projects are Keras, Nextcloud, and Vue.



56 appendix

Three.js

Deno

Reveal.js

Figure A.12: Boxplots for the coreness values of male and female developers. The coreness
metric is hierarchy. The network type is co-change. The data is shown on a
logarithmic scale. The projects are Three.js, Deno, and Reveal.js.
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Figure A.17: Barplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is co-change. The projects
are Tensorflow, Atom, Nextcloud, and Vue.
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Figure A.21: Barplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is co-change. The projects
are Three.js, Deno, and Reveal.js.
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Figure A.26: Barplots for the coreness values of male and female developers. The coreness
metric is hierarchy . The network type is co-change. The projects are Vscode,
Tensorflow,Atom, and Keas.
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Figure A.31: Barplots for the coreness values of male and female developers. The coreness
metric is hierarchy . The network type is co-change. The projects are Vue,
Deno, Reveal.js, and Nextcloud.
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Figure A.32: QQ-plots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is issue. The data is shown
on a logarithmic scale. The projects are Tensorflow and Atom.
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Figure A.33: QQ-plots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is issue. The data is shown
on a logarithmic scale. The projects are Keras, Nextcloud, and Vue.
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Figure A.34: QQ-plots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is issue. The data is shown
on a logarithmic scale. The projects are Three.js, Deno, and Reveal.js.
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Figure A.35: QQ-plots for the coreness values of male and female developers. The core-
ness metric is hierarchy. The network type is issue. The data is shown on a
logarithmic scale. The projects are Vscode, Tensorflow, and Atom.
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Figure A.36: QQ-plots for the coreness values of male and female developers. The core-
ness metric is hierarchy. The network type is issue. The data is shown on a
logarithmic scale. The projects are Keras, Nextcloud, and Vue.
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Figure A.37: QQ-plots for the coreness values of male and female developers. The core-
ness metric is hierarchy. The network type is issue. The data is shown on a
logarithmic scale. The projects are Three.js, Deno, and Reveal.js.
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Figure A.38: Boxplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is issue. The data is shown
on a logarithmic scale. The projects are Vscode, Tensorflow, and Atom.
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Figure A.39: Boxplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is issue. The data is shown
on a logarithmic scale. The projects are Keras, Nextcloud, and Vue.



appendix 69

Three.js

Deno

Reveal.js

Figure A.40: Boxplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is issue. The data is shown
on a logarithmic scale. The projects are Three.js, Deno, and Reveal.js.
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Figure A.41: Boxplots for the coreness values of male and female developers. The core-
ness metric is hierarchy. The network type is issue. The data is shown on a
logarithmic scale. The projects are Vscode, Tensorflow, and Atom.
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Figure A.42: Boxplots for the coreness values of male and female developers. The core-
ness metric is hierarchy. The network type is issue. The data is shown on a
logarithmic scale. The projects are Keras, Nextcloud, and Vue.
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Figure A.43: Boxplots for the coreness values of male and female developers. The core-
ness metric is hierarchy. The network type is issue. The data is shown on a
logarithmic scale. The projects are Three.js, Deno, and Reveal.js.
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Figure A.48: Barplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is issue. The projects are
Tensorflow, Atom, Keras, and Nextcloud.



74 appendix

Vue Three.js
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Figure A.53: Barplots for the coreness values of male and female developers. The coreness
metric is eigenvector centrality. The network type is issue. The projects are Vue,
Three.js, Deno, and Reveal.js.
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Figure A.59: Barplots for the coreness values of male and female developers. The coreness
metric is hierarchy . The network type is issue. The projects are Vscode,
Tensorflow, Atom, Keras, and Nextcloud.
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Vue Three.js
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Figure A.64: Barplots for the coreness values of male and female developers. The coreness
metric is hierarchy . The network type is issue. The projects are Vue, Three.js,
Deno, and Reveal.js.
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