
Bachelor’s Thesis

Impact of Type Annotation and Usage
Context on Copilot’s Code Completion:

An Empirical Study
Minh-Khue Pham

September 4, 2024

Advisor:
Dr. Norman Peitek Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Vera Demberg Chair of Computer Science and Computational Linguistics

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Minh-Khue Pham: Impact of Type Annotation and Usage Context on Copilot’s Code Completion:
An Empirical Study, © September 2024

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

Mobile User
04.09.2024

Abstract

Large Language Models (LLMs) have demonstrated a tremendous impact across multiple
domains, significantly transforming various aspects of academia and industry. In June
2022, GitHub and OpenAI launched Copilot, a code completion tool that exemplifies the
practical application of LLMs in software engineering. Despite its extraordinary ability in
code prediction, little is known about which factors affect Copilot’s suggested code, and
no study has investigated the impact of type annotation and usage context on Copilot
prediction. In this study, we propose to close this gap by evaluating the accuracy and
complexity of suggested function bodies by Copilot, given four types of query contexts: no
type annotation, no usage context; type annotation, no usage context; no type annotation,
usage context; type annotation, usage context. Overall, we found that Copilot’s completions
for CodeCheck problems have average accuracy and low complexity, with substantial
variations between four query contexts. The amount of information in CodeCheck queries
shows a positive correlation with the accuracy of Copilot’s predictions, while tending to
negatively correlate with their complexity. LeetCode problems, on the other hand, have
extremely high accuracy and low complexity, with no obvious variations between the four
query contexts. These results allow us to better understand which input variables should be
given to Copilot in order to improve the quality of its code predictions.

v

Contents
1 Introduction 1

1.1 Overview . 2
2 Background and Related Work 5

2.1 Code Completion . 5
2.2 Large Language Models and GitHub Copilot 7
2.3 Data Type and Type Annotations . 9
2.4 Usage Context . 10

3 Methodology 11
3.1 Research Questions . 11
3.2 Materials . 11

3.2.1 Programming Language: Python . 11
3.2.2 Programming Problems: CodeCheck and LeetCode 12

3.3 Variables . 17
3.3.1 Independent Variables: Type Annotation and Usage Context 17
3.3.2 Dependent Variables: Accuracy and Complexity 18

3.4 Procedure . 19
4 Results 23

4.1 RQ1: Accuracy . 23
4.2 RQ2: Complexity . 26

5 Discussion 31
5.1 RQ1: Accuracy . 31
5.2 RQ2: Complexity . 32

6 Threats to Validity 35
6.1 Internal Validity . 35
6.2 External Validity . 36

7 Concluding Remarks 37
7.1 Conclusion . 37
7.2 Future Work . 37

A Appendix 39

Bibliography 43

vii

List of Figures

Figure 1.1 Copilot suggested an inappropriate incomplete function body 2
Figure 2.1 Copilot’s code completion . 5
Figure 2.2 Copilot’s ranked list of possible completions 6
Figure 2.3 Python code snippet without type annotations (left) and with type

annotations (right) . 9
Figure 2.4 Usage context in Python . 10
Figure 3.1 TreeNode class . 12
Figure 3.2 ListNode class . 12
Figure 3.3 CodeCheck coding environment . 14
Figure 3.4 CodeCheck submission status . 14
Figure 3.5 LeetCode coding environment . 15
Figure 3.6 LeetCode submission statuses . 15
Figure 3.7 NONE: No type annotation, no usage context query 18
Figure 3.8 TA: Type annotation, no usage context query 18
Figure 3.9 CON: No type annotation, usage context query 18
Figure 3.10 TA_CON: Type annotation, usage context query 18
Figure 3.11 Example of Copilot’s code completion 19
Figure 3.12 Modify CodeCheck’s coding environment to measure accuracy . . . 21
Figure 3.13 Modify LeetCode’s coding environment to measure accuracy 21
Figure 4.1 Similar Copilot’s completions for NONE and TA, only return param-

eters are different . 25
Figure 4.2 Copilot’s completion contains backtrack helper function 26
Figure 4.3 SyntaxError: miss closing parenthesis 26
Figure 4.4 SyntaxError: append type annotations on no-type-annotation query 26
Figure 4.5 SyntaxError: redundant type annotations 27
Figure 4.6 Cyclomatic complexity of Copilot’s completions for 50 CodeCheck

problems . 28
Figure 4.7 Cyclomatic complexity of Copilot’s completions for 50 LeetCode

problems . 28
Figure 4.8 Cognitive complexity of Copilot’s completions for 50 CodeCheck

problems . 29
Figure 4.9 Cognitive complexity of Copilot’s completions for 50 LeetCode prob-

lems . 29
Figure 5.1 Similar Copilot’s completions for TA and TA_CON, only compared

strings are different . 32
Figure 5.2 Copilot’s predicted arguments for usage context are identical to the

example arguments on the LeetCode website 32

viii

List of Tables

Table 4.1 Frequency of patterns in Copilot’s predictions 24
Table A.1 Accuracy of Copilot’s completions for 50 CodeCheck problems . . . 40
Table A.2 Accuracy of Copilot’s completions for 50 LeetCode problems 41
Table A.3 Accuracy of Copilot’s completions for 37 LeetCode problems, for

which Copilot predicted similar usage context arguments to the
LeetCode website . 42

Acronyms

LLMs Large Language Models

IDEs Integrated Development Environments

NLMs Neural Language Models

ix

1
Introduction

Recent breakthroughs in deep learning have resulted in the growing prominence of LLMs that
are capable of generating novel human-like content. GPT-3 [4], which has been developed
utilizing the underlying deep learning technology used in LLMs, is able to comprehend
and generate realistic text. DALL-E [31] is a text-to-image model that generates images
based on textual prompts. This model can produce highly detailed images in multiple styles
based on the user’s instructions. In 2024, OpenAI released SORA [36], a text-to-video model
that further developed DALL-E’s capabilities from static images to dynamic videos. SORA
has impressed the academic and industrial worlds with its realistic and inventive scenes
generated from input text descriptions. Codex [7] is another AI model created by OpenAI
that has been fine-tuned to comprehend and generate code, thereby boosting developer
productivity.

Automatic code generation has long been a software engineer’s fantasy. It reduces the
need for remembering and manually coding, guarantees consistency and quality, and
accelerates the development process. After less than one year in technical preview, in June
2022, GitHub and OpenAI released Copilot, an automatic code completion model claiming
to be developers’ “AI pair programmer”. When provided with contexts, such as comments,
method names, or surrounding code, Copilot can automatically suggest code completion
in different programming languages. With its extraordinary performance and ability to
interface with popular Integrated Development Environments (IDEs), such as Visual Studio
Code, JetBrains, and Neovim, Copilot has created a “hype” among developers in the tech
world and is the most likely AI assistant to be adopted by them.

As software projects grow in complexity and size, it becomes impractical for engineers to
continue writing code from scratch. Knowing how to utilize an autonomous code generation
model, such as Copilot, will be a significant advantage and possibly a required skill in the
future. However, Copilot "can’t give any assurance that the code is bug free" [15] and is
heavily dependent on the input prompts. Figure 1.1 depicts an example of an inappropriate
suggestion from Copilot. The expected solution is the correct function body for function
romanToNumber, which converts input from a Roman character into its equivalent numeric
value. However, Copilot generated an inappropriate incomplete function body in this
example. Understanding the interplay between Copilot’s input queries and output enables
developers to modify the queries to acquire the desired code suggestions. Autonomous code
generation models can drastically alter the way developers learn to program by requiring
them to only understand how to generate appropriate queries rather than writing code from
scratch. As these models can significantly improve productivity, reduce development costs,
enhance code quality, and support software projects’ scalability [15], the ability to design

1

2 Introduction

Figure 1.1: Copilot suggested an inappropriate incomplete function body

effective queries that generate correct predictions will have the potential to be a required
human-computer interaction skill for developers in the future.

Given that the modern world is composed of billions of lines of code and the relevance of
automatic code generation models in code production, a concrete investigation of variables
affecting these models is merited. The goal of this thesis is to empirically assess the impact
of type annotation and usage context on Copilot’s prediction. In particular, we evaluate
Copilot by requesting it to predict function bodies for 100 Python programming problems
given four types of query contexts: no type annotation, no usage context; type annotation,
no usage context; no type annotation, usage context; type annotation, usage context. We
then evaluate and compare the accuracy and complexity of four suggested variations within
each problem. While preliminary, we aim to provide deeper insight with this study into
how type annotation and usage context can change Copilot’s prediction, mitigate threats of
validity, and lay the groundwork for future studies.

1.1 Overview

We evaluated Copilot’s ability to complete function bodies for programming problems from
two public question pool websites, CodeCheck [10] and LeetCode [25]. These two websites
provide us with the necessary information to generate comprehensive query contexts
for Copilot, such as problem descriptions, function names, number of input and return
parameters, and type annotations of input and return parameters. Since Copilot is non-
deterministic and returns a ranked list of suggestions, we only took into account the first
suggested function bodies. To evaluate the accuracy of Copilot’s suggested function bodies,
we run against corresponding test cases that are already provided on the two websites.
To evaluate the complexity of the suggested function bodies, we use SonarQube [41] to
measure the cyclomatic and cognitive complexity. Overall, we tested Copilot’s prediction
on 100 programming problems, including 50 from CodeCheck and 50 from LeetCode. For
each problem, four queries were generated and evaluated, totaling 400 evaluations for 400
queries.

We found that Copilot’s predictions for LeetCode problems have high accuracy, low
complexity, and small variation across four queries. In particular, the total number of test
cases passed for all four queries exceeds 90%, with query contexts that include only type
annotations generating suggestions that pass the highest number of test cases (95.5%).
All four queries have the same median 4 of cyclomatic and cognitive complexity. On the
contrary, Copilot predictions for CodeCheck problems are less accurate and have a greater
variation over four queries. The amount of information is positively correlated with the

1.1 Overview 3

accuracy of Copilot’s predictions and tends to be negatively correlated with their complexity.
Function bodies generated by queries with no type annotation, no usage context passed
the lowest percentage of total test cases (41.4%), while those generated by queries with
both type annotation and usage context passed the most (72.8%). There is also a substantial
variation in complexity between queries with no type annotation, no usage context and
those with both. Specifically, suggestions for queries with no information have the highest
cyclomatic and cognitive complexity (median 3 and 4, respectively), while queries containing
both information have the lowest cyclomatic and cognitive complexity (median 2 and 1.5,
respectively).

We also observed several notable patterns in Copilot’s code completion, which will be
described in more detail in Chapter 4 (Results).

2
Background and Related Work

In this chapter, we provide necessary background information and a brief summary of
relevant research.

2.1 Code Completion

Code completion is an essential feature in IDEs that supports developers by suggesting
completions for partially written code. It can predict and display in near-real-time possible
completions based on the context and available code elements. Figure 2.1 shows an example
of using the auto-code completion feature on GitHub Copilot. The suggested completion
appears below the query after the cursor position and can be accepted using the Tab key.
Copilot provides not only one completion, but also generates a ranked list of possible
completions when pressing Ctrl + Enter, as shown in Figure 2.2. Code completion can
optimize developer productivity by mitigating the need to implement code manually, pre-
venting syntax errors, and speeding up the coding process. As the suggestions are displayed
nearly in real-time, code completion relies heavily on compile-time type information to
predict the next tokens based on the current context [43]. This works well for statically
typed languages such as Java but is less supported for dynamically typed languages like
Python, as type annotation is not mandatory in these languages. Several researchers have
adopted various approaches to increase the accuracy of code completion in IDEs.

In a 2012 publication, Hindle et al. [19] proposed the "naturalness of software" hypothesis,
arguing that real-world programs that are written by humans are actually simple, repetitive,
and predictable despite the complexity of programming languages. This means they can
leverage language models to capture predictable characteristics of programs and apply
them to solve software engineering tasks. In particular, they employed the n-gram model to
construct a simple code completion engine for Java, which successfully improved the IDEs’
code completion ability.

Figure 2.1: Copilot’s code completion

5

6 Background and Related Work

Figure 2.2: Copilot’s ranked list of possible completions

Tu et al. [43] conducted a follow-up study on the "localness of software", claiming that
human-written programs have useful local regularities that can be captured. For example,
they aimed to predict the next token in a sequence for (int. Assume that in the training
data, 30% of the time i is the next token, while 5% of the time size is the next token, thus
i is selected. This would be a reasonable choice in an isolated line. However, if multiple
preceding lines in the same file contained for (int size, while none contained for (int

i, the token size should be selected instead. To address this challenge, they exploited the
localness of software by introducing a cache language model that included both n-gram
and an additional cache. This new model performs significantly better in code completion
tasks than the language model that only consists of n-gram.

However, the above-mentioned articles predict the next tokens based on a limited set
of shallow features, namely the n code tokens that precede the prediction. Such features
are a poor choice since they blindly capture dependencies that are only syntactically local
to the token to be predicted by the model. Understanding this problem, Raychev et al.
[33] proposed a different approach for the code completion task by using decision tree
learning. The main idea is to recursively split the training data similarly to decision trees
and then learn smaller, specialized probabilistic models for each branch of the tree. This
approach served as the foundation for the development of the statistical code completion
system, DEEP3. DEEP3 can predict the next tokens of dynamically typed languages such as
JavaScript and Python with precision exceeding 82% and 69%, respectively, and significantly
outperforms other previous approaches in overall prediction accuracy.

According to Karampatsis et al. [22], source code differs from natural language in
that developers can freely generate new identifier names, leading to a larger and more

2.2 Large Language Models and GitHub Copilot 7

sophisticated vocabulary. All models trained on a large-scale software corpus must deal
with an incredibly broad and sparse vocabulary and therefore have difficulty scaling beyond
as few as a hundred projects. Another problem is that models cannot anticipate identifiers
that do not appear in the training set. Given these two problems, they proposed an open-
vocabulary Neural Language Models (NLMs) approach for code completion tasks that can
both handle identifiers not seen in training and reduce vocabulary by three orders of
magnitude, scaling to a hundred times larger corpora than previous NLMs approaches. The
results demonstrated that the open-vocabulary NLMs outperform both n-gram language
models and closed-vocabulary NLMs in the code completion task.

2.2 Large Language Models and GitHub Copilot

LLMs are self-supervised and semi-supervised learning artificial neural networks that have
been trained on massive amounts of data to predict billions of parameters, hence the name
"large". LLMs use deep learning in order to understand how characters, words, and sentences
interact with one another, allowing them to recognize and interpret human language or other
complicated data. LLMs are often further tailored to the particular tasks, such as interpreting
questions and generating responses (e.g., GPT-3 [4]), generating images (e.g., DALL-E [31])
or videos (e.g., SORA [36]) from prompts, and comprehending and automatically suggesting
code (e.g., Codex [7]).

Based on the concept of general-purpose programming model Codex, in June 2022,
GitHub and OpenAI launched GitHub Copilot to the public as a plug-in to the IDEs, such as
Visual Studio Code, Neovim, and JetBrains. Copilot is an artificial intelligence tool that can
automatically generate source code from natural language problem descriptions. While both
these LLMs are geared towards developers, Copilot is more ideal for developers working on
GitHub repositories, as it has been trained on a vast amount of code from GitHub public
repositories and has strong GitHub ecosystem support. The Copilot extension offers several
key features for multiple programming languages, such as code completion, translating
code from one programming language to another, generating comments and documentation,
etc. This thesis focuses on exploring the first feature, code completion, which is triggered
when a user provides query context. We refer to the combination of function name, function
parameters, and/or type annotations, usage context, as the query context.

In a 2022 article, Moroz et al. [28] generally examined and summarized the potential
and the remained problems of Copilot. The first problem is the quality of Copilot training
data. The training data contains unmaintained, legacy, and low-quality code, such as code
from novice developers, code with poor style or inefficient algorithms, code that cannot run
or compile, and code with deprecated uses of libraries and language syntax. The second
problem is that Copilot can only understand limited context and cannot detect different
dependencies within the project. Another problem is the over-reliance of novice developers,
who make up the majority of Copilot’s target audience. And due to the non-deterministic
nature of the AI model, Copilot’s suggestions are irreproducible. Copilot is also exposed to
safety issues, copyright problems, and harmful content.

In another paper, Nguyen and Nadi [29] compared the accuracy and complexity of
Copilot’s suggested solutions across four programming languages: Python, Java, JavaScript,

8 Background and Related Work

and C. After examining 33 LeetCode problems, they found that Java suggestions have the
highest accuracy (57%) and JavaScript has the lowest (27%). They used SonarQube [41] to
quantify complexity by measuring the cyclomatic and cognitive complexity of Copilot’s
suggestions. The results showed that there were minuscule variations in understandability
amongst the four programming languages, and all suggestions were of low complexity.
The study also pointed out some notable shortcomings of Copilot, such as the fact that the
proposed code can sometimes be further simplified or relies on undefined helper methods.

Vaithilingam et al. [44] conducted a within-subjects study with 24 participants to under-
stand how developers use and perceive Copilot. Participants were asked to complete three
real-world Python programming tasks with different levels of difficulty: editing CSV (easy),
web scraping (medium), and graph plotting (hard). The study discovered that, even though
Copilot did not improve task completion time or success rate, it did provide a useful starting
point for the users, even if the generated code was incorrect. Nevertheless, since Copilot
only suggested one code completion option, developers missed out on the opportunity to
compare different sources and community discussions in comparison to searching for code
on the internet. The study also observed that participants had difficulty comprehending
and troubleshooting the code generated by Copilot.

In contrast to the study of Vaithilingam et al. [44], in which participants have diverse
experiences with programming, Denny et al. [12] emphasized the influence of Copilot on
students. The article presented the first exploration of the efficacy of query context for
Copilot in an introductory programming environment. CodeCheck [10] is a public website
that provides introductory programming problems with description comments, function
names, and input parameters for students to practice by themselves. In this experiment,
Copilot was asked to predict the function body for 166 Python problems in CodeCheck. If
the prediction failed any test case, no other changes were permitted; only natural language
changes to the description comments were permitted in order to further clarify the problem.
The results showed that Copilot can successfully solve around half of these problems on its
first attempt and 60% of the remaining problems with only natural language changes to the
input queries.

Wermelinger [45] also focused on the impact of Copilot on software engineering pedagogy
and reported his experience in using Copilot as he portrayed the perspective of a student.
This study compared the quality and variety of generated code, tests, and explanations of
Copilot to Codex and answered the question, "If the suggestion is incorrect, can we lead
Copilot to the correct one?". Similar to other studies, he discovered that Copilot solutions are
not very reliable, and the model cannot rectify its answers unless the queries are specifically
modified.

Since the official launch of Copilot, there have been a variety of publications examining the
model’s potential and limitations. Despite the fact that Copilot is very sensitive to the input
query context, only few studies have systematically investigated the connection between the
modified query context and suggested code quality. To the best of our knowledge, our study
is the first to explicitly evaluate the implications of type annotations and usage context on
Copilot’s predictions.

2.3 Data Type and Type Annotations 9

Figure 2.3: Python code snippet without type annotations (left) and with type annotations (right)

2.3 Data Type and Type Annotations

A data type is the characteristic of a variable that determines what kind of data it holds
within the program. There are two main types of typing in programming: static typing
and dynamic typing. Statically typed languages, for example, C, C++, and Java, require
developers to explicitly declare the data type for each variable. These types of languages
enforce type checking already at compile time. This allows code completion tools to make
predictions without executing the code by leveraging the provided type information. In
dynamically typed languages, such as Python and JavaScript, variables are bound to data
types at runtime instead of during compilation. Dynamically typed languages have become
increasingly popular in recent years [42]. Their flexibility enables concise code and ease
of use, as developers do not have to specify every data type. Naturally, the absence of
type annotation comes with the trade-offs of program safety, difficulty in maintenance, and
limiting autocompletion support from IDEs [17, 32].

A type annotation is a notation used for explicitly defining the type of variables, function
parameters, or return variables. Type annotations are prominent in statically typed languages
and are becoming more common in dynamically typed languages through mechanisms
such as type hints. Figure 2.3 shows an example of a Python code snippet without type
annotations on the left and one with type annotations on the right. Type annotations can
help to improve code readability, documentation, and support from tools, resulting in more
resilient, maintainable, and error-free code [17, 32].

Di Grazia and Pradel [13] published a large-scale analysis of 1,414,936 type annotation
changes in Python to understand the characteristics and evolution trend of type annotations
and type errors over time. The paper highlighted several intriguing findings. The first
finding is that, despite becoming increasingly popular, type annotations in Python are
still far from being the norm. However, this trend is gradually shifting in favor of more
annotations. The second finding is that type annotation is used regularly in projects with
more contributors, while it is used only occasionally in projects with fewer contributors.
The last finding is that the number of type annotations added correlates positively with the
number of detected type errors. Nevertheless, 78.3% of the commits were still committed
despite having errors. This study concluded that adding type annotations is a long-term
investment because they are rarely modified later on. The fact that more than 90% of
program elements were not yet annotated highlights the need for tools that can infer and
anticipate data types.

In recent years, multiple approaches have been proposed to assist developers in managing
type annotations in dynamically typed languages. There are three basic techniques for
predicting data types in dynamically typed languages. The first technique is static type

10 Background and Related Work

Figure 2.4: Usage context in Python

inference [3, 14, 21], which relies on abstract interpretation or type constraints to propagate
type annotations at compile time. While it can detect type errors early on, the dynamic
nature of languages such as JavaScript and Python limits its applicability. The second
technique is dynamic type inference [2, 35], which tracks data flows to determine the
types of expressions, variables, and functions at runtime. This approach yields precise
data types, but errors can be more difficult to trace since they occur during execution. The
third technique is probabilistic type prediction, which infers type annotations leveraging
statistical methods [46] or machine learning [1, 18, 26, 30, 34] based on patterns observed
within the project and external open source code. Copilot utilizes this third technique to
predict type annotations, and one of our study goals is to examine how accurate these
predictions are.

2.4 Usage Context

Usage context in programming consists of the surrounding code environment in which the
function or software component is called and used. Figure 2.4 shows an example of usage
context, where function power is called and consumed by variable myPower. According to
several studies [37–39], developers spent more time looking up definitions of functions and
their uses than variables, statements, or code fragments. As the size of a software project
expands, it requires more collaboration among developers. This makes developers often
struggle to understand huge codebases, and usage context is usually used as a starting point
to understand the role of each function in a program. McMillan et al. [27] thereby presented
Portfolio, a code search engine that provides assistance in the discovery of relevant functions
and how those functions are used by retrieving and visualizing relevant functions and their
applications. While usage context is vital for developers, it is unclear whether it is similarly
valuable for LLMs. In addition to type annotation, our study also investigates how usage
context influences Copilot’s predictions.

3
Methodology

In this chapter, we describe our research questions, the materials required, the experiment
variables, and the experiment procedure.

3.1 Research Questions

Our study investigated the influence of type annotation and usage context on Copilot’s
predictions by addressing two following questions:

RQ1
How do type annotation and usage context affect Copilot’s prediction in terms
of accuracy?

Despite the fact that IDEs make heavy use of compile-time type information to provide
predictions [43], there is no exact measurement regarding how much Copilot’s predictions
vary when being provided with type information compared to when not. Moreover, many
studies have proven the value of usage context in navigating developers through large code-
bases [37–39]. While most developers rely on usage context to understand the behavior of a
function, is it similarly important to Copilot? Our study investigated how type annotation
and usage context affect the accuracy of Copilot when predicting function bodies.

RQ2
How do type annotation and usage context affect Copilot’s prediction in terms
of complexity?

Code complexity is a critical aspect of software development. Developers are responsible
for not only developing software but also ensuring that it is reliable, optimal, and easy to
maintain over time. In addition to accuracy, we also investigated how type annotation and
usage context affect the complexity of function bodies predicted by Copilot.

3.2 Materials

3.2.1 Programming Language: Python

We conducted our tests on dynamically typed languages rather than statically typed
languages, as type checking in dynamically typed languages occurs only during program

11

12 Methodology

Figure 3.1: TreeNode class Figure 3.2: ListNode class

execution, and our input queries remain syntactically correct even without type annotations.
We selected Python over other dynamically typed languages because it is the most popular
and widely used general-purpose programming language, particularly in data science and
machine learning [42]. Another reason is that Codex, an ancestor model of Copilot, has
been found to be most capable in Python [7]. And Moroz et al. [28] found that Copilot
demonstrated remarkable results while working with Python, maybe because Python is
easily readable and comparable to human language.

Python consists of multiple data types, such as: numeric data types (int, float, complex),
string data types (str), sequence types (list, tuple, range), binary types (bytes, bytearray,
memoryview), mapping data type (dict), boolean type (bool), and set data types (set,
frozenset). However, in our study we only evaluated commonly used and fundamental
Python data types int, float, str, list, and two custom data types TreeNode (cf. Figure
3.1) and ListNode (cf. Figure 3.2) from LeetCode.

3.2.2 Programming Problems: CodeCheck and LeetCode

To test Copilot’s autocompletion ability, we need a balanced, sufficiently large, and ideally
unbiased set of programming problems. Horstmann’s CodeCheck [10] and LeetCode [25]
are two public online collections that meet our requirement. While CodeCheck was designed
for novice developers, LeetCode focuses more on experienced developers. Each problem
from these two collections also comes with test cases and the relevant information to
compose comprehensive query contexts for Copilot, such as problem descriptions, function
names, number of input and return parameters, and type annotations of input and return
parameters of the function. More importantly, CodeCheck and LeetCode were used to test
Copilot’s autocompletion ability in previous studies by Denny et al. [12] and Nguyen and
Nadi [29]. As Copilot’s suggestions are nondeterministic, it is valuable to investigate the
same programming problems so that future studies can use our findings and compare them
to prior works to determine whether and how Copilot’s predictions have changed in the
course of time.

3.2.2.1 CodeCheck

Horstmann’s CodeCheck [10] is an autograder website that provides a large collection of
publicly accessible common programming problems. This website aims to help instructors
provide self-practice exercises for their students [23]. Each of the CodeCheck problems
comprises the information needed to create a comprehensive query context as well as test
cases to evaluate the accuracy of Copilot’s completions.

3.2 Materials 13

We randomly selected 50 programming problems with several criteria (discussed in
Section 3.4) from the Python test bank on CodeCheck [9]. The 50 problems are divided into
four main categories:

• Branches: These problems required some combination of if/elif/else statements.
We selected 7 problems from this category.

• Strings: These problems required the use of loops (over the characters of an input
string), string slicing, indexing, and basic string methods (e.g., isdigit(), split()),
but without lists or other data structures. We selected 9 problems from this category.

• Lists: These problems involved searching through lists, counting, averaging, adding/re-
moving/swapping elements, etc. We selected 20 problems from this category.

• Two-Dimensional Arrays: These problems involved one-dimensional (list) and two-
dimensional (list of lists) arrays and required processing some combination of all
elements, or corners, borders and diagonals. We selected 14 problems from this
category.

Consider the programming problem swapFirstAndLast as shown in Figure 3.3, lines 2
to 4 contain the natural language problem description, parameter type, and return type
of the function. On line 6, CodeCheck provides the function name swapFirstAndLast and
the input parameter (s). All this information corresponds to the attributes that compose a
comprehensive query context for Copilot.

CodeCheck’s coding environment also contains a set of predefined test cases, allowing
us to measure the behavioral accuracy of Copilot’s suggestions. After pasting the function
body suggested by Copilot in place of the comment # Your code here... and pressing
CodeCheck button, CodeCheck returns the submission statuses for each test case and the
overall number of test cases passed, as shown in Figure 3.4. To be consistent with the
submission statuses in LeetCode, we define three possible statuses for CodeCheck:

• Accepted: submitted code passes all test cases.

• Wrong Answer: submitted code has no errors, but its output is different from the
expected output for at least one test case.

• Runtime Error: submitted code has at least one test case that fails due to errors during
execution (e.g., division by zero).

3.2.2.2 LeetCode

LeetCode [25] is a popular online platform for coding interview preparation and competi-
tions that contains a large number of programming and algorithmic problems. Each of the
LeetCode problems also comprises the information needed to create a comprehensive query
context as well as test cases to evaluate the accuracy of Copilot’s completions.

We randomly selected 50 programming problems from the set of all problems on LeetCode
[24]. The 50 problems are divided into three difficulty levels:

14 Methodology

Figure 3.3: CodeCheck coding environment

Figure 3.4: CodeCheck submission status

3.2 Materials 15

Figure 3.5: LeetCode coding environment

Figure 3.6: LeetCode submission statuses

16 Methodology

• Easy: These problems have straightforward solutions and only test basic data structures
and algorithms. We selected 17 problems from this category.

• Medium: These problems either test more advanced data structures and algorithms,
or basic data structures and algorithms in more complex situations. We selected 21
problems from this category.

• Hard: These problems either test the most advanced data structures and algorithms
within three levels, or they test more obscure and rarely encountered algorithms,
mathematics, and data structures. We selected 12 problems from this category.

Consider a common programming problem, Fibonacci Number, as shown in Figure 3.5.
As LeetCode supports multiple programming languages, we must first manually set the
programming language in the LeetCode coding environment to Python. The left window
contains the natural language problem description and examples of the problem. On line 2
of the right window, LeetCode provides the function name fib and the parameter (self,
n). Because Python does not require type annotations, parameter type and return type are
provided as comments from line 3 to line 6.

LeetCode’s coding environment also contains a set of predefined test cases. After pasting
the function body suggested by Copilot in place of the comment and pressing Submit button,
LeetCode returns the submission status and the overall number of test cases passed, as
shown in Figure 3.6. There are six possible statuses:

• Accepted: submitted code passes all test cases.

• Wrong Answer: submitted code has no errors, but its output is different from the
expected output for at least one test case.

• Time Limit Exceed: submitted code has no errors, but at least one test case exceeds
permitted execution time.

• Memory Limit Exceed: submitted code has no errors, but at least one test case exceeds
permitted execution memory.

• Compile Error: submitted code cannot be compiled (Python is not a compiled lan-
guage, so its code will not result in any compilation error).

• Runtime Error: submitted code has at least one test case that fails due to errors during
execution (e.g., division by zero).

When one test case fails or causes a runtime error, CodeCheck continues executing
other test cases and counts the total number of test cases passed, see Figure 3.4. However,
LeetCode halts execution after the first failed test and reports the number of test cases passed
without executing the remaining. When one test case causes a runtime error, LeetCode
immediately halts execution, indicates the number of tests passed as 0, as shown in Figure
3.6. For that reason, we provided a lower bound for the number of test cases passed in some
cases.

3.3 Variables 17

3.3 Variables

3.3.1 Independent Variables: Type Annotation and Usage Con-
text

We selected two independent variables, type annotation and usage context, based on their
relevance to the theoretical framework guiding this study and their demonstrated impact
in related works. Previous studies have shown that type annotation helps improve IDEs’
support [13, 17, 32]. Usage context represents the surrounding code environment in which
the function is invoked, and Copilot makes predictions based on these surrounding code.
By analyzing type annotation and usage context, we seek to provide a comprehensive
understanding of how much the presence of these two independent variables affects
Copilot’s autocompletion ability, offering insights that can contribute to both theoretical
advancements and practical applications. In our experiment, we compare the four associated
function bodies generated by Copilot when given four different types of query contexts:

• No type annotation, no usage context (NONE): This type of query only contains the
function name and the number of input parameters. For instance, the query context
in Figure 3.7 provides information about the function name fib and the number of
input parameters (input).

• Type annotation, no usage context (TA): This type of query contains the function
name, the number of input and return parameters, and type annotations of input and
return parameters. For instance, the query context in Figure 3.8 provides information
about the function name fib, the number and type annotations of input parameters
(input: int), and the number and type annotation of return parameters -> int.

• No type annotation, usage context (CON): This type of query contains the function
name, the number of input parameters, and an example usage context of the function.
For instance, the query context in Figure 3.9 provides information about the function
name fib, the number of input parameters (input), and an example usage context s
= fib(2).

• Type annotation, usage context (TA_CON): This type of query contains the function
name, the number of input and return parameters, type annotations of input and
return parameters, and an example usage context of the function. For instance, the
query context in Figure 3.10 provides information about the function name fib, the
number and type annotations of input parameters (input: int), the number and
type annotation of return parameters -> int, and an example usage context with
return type annotation s: int = fib(2).

We made two modifications to the initially provided function parameters. The first modi-
fication was to replace all initial parameter names with input to prevent parameter names
from revealing data types and affecting Copilot’s predictions. The second modification
was to remove self from LeetCode functions’ parameters. For example, the LeetCode

18 Methodology

Figure 3.7: NONE: No type annotation,
no usage context query

Figure 3.8: TA: Type annotation,
no usage context query

Figure 3.9: CON: No type annotation,
usage context query

Figure 3.10: TA_CON: Type annotation,
usage context query

function def fib (self, n): will have the NONE query def fib(input):. If we directly
paste Copilot’s suggested function bodies that contain recursive calls into the LeetCode
coding environment, it would create runtime errors. Due to that reason, before submitting
Copilot’s suggestion, we need to explicitly add self. in front of each recursive call, as seen
in Figure 3.6.

3.3.2 Dependent Variables: Accuracy and Complexity

In this study, two dependent variables are the accuracy and complexity of Copilot’s sugges-
tions, which will be discussed in more detail next.

3.3.2.1 RQ1: Accuracy

Accuracy is the primary prerequisite for producing high-quality code, demonstrating how
trustworthy it is. As Copilot is increasingly employed in the software engineering industry,
it is critical that it can generate accurate code, which contributes to the software’s reliability,
security, performance, and efficiency. For accuracy, we employed LeetCode existing test
cases, which ensure that Copilot’s suggestions adhere to various time and space constraints
and pass corner cases for the given problem, as well as CodeCheck test cases, which simply
validate whether the suggestions produce the expected output. All possible submission
statuses were addressed in previous Subsection 3.2.2 (Programming Problems). It should be
noted that the accuracy of some LeetCode cases is only the lower bound because LeetCode
stops executing the remaining tests when one fails, or stops executing then reports zero test
passed when one causes a runtime error.

3.3.2.2 RQ2: Complexity

A secondary prerequisite for high-quality code is complexity, indicating how easy the code
is for developers to test and understand. Because developers are responsible for not just
developing software but also maintaining it throughout time. We used SonarQube [41] to
measure the cyclomatic and cognitive complexity of Copilot’s suggestions. SonarQube is an
open-source platform that statically analyzes code and reports on coding standards, unit
tests, code coverage, code complexity, and security recommendations.

Cyclomatic complexity measures the number of distinct paths through the code, indicating
how complex the logic is. A lower cyclomatic complexity implies simpler, more manageable

3.4 Procedure 19

Figure 3.11: Example of Copilot’s code completion

code, which reduces the possibility of errors and makes it easier to maintain and modify.
A higher cyclomatic complexity implies more branching in the code and more test cases
required to fully cover a function [6]. To calculate cyclomatic complexity, SonarQube starts
with a value of one and increments by one whenever it detects a split in the function
control flow that creates a new conditional branch [40]. Nevertheless, we cannot estimate
the cyclomatic complexity of Python code that is syntactically invalid.

In contrast to cyclomatic complexity, which refers to how difficult the code is to test,
cognitive complexity indicates how difficult the code is to mentally process and understand.
Rather than mathematical models that analyze control flow, SonarQube leverages rules
that map into a programmer’s intuitive understanding of code [5]. To measure cognitive
complexity, SonarQube does not increment the complexity score when shorthands are used
(e.g., using a ternary expression), it increments the score only once for each break in the
code’s linear flow (e.g., a whole switch statement only increments the score by one as it
can often be understood with one scan), and increments the score when flow-breaking
structures are nested.

3.4 Procedure

In this section, we explain four main steps of our experiment.

Step 1: Gather programming problems and generate query contexts

We went through each category of CodeCheck’s Python test bank [9] and each difficulty
level of LeetCode’s problem set [24] to arbitrarily select 100 programming problems, 50
problems per website. To be eligible, the problem must not be longer than 30 lines, not
reveal any data type information in its function name, and contain common Python data
types, such as int, float, str, list. We also selected one problem hasPathSum that contains
data type TreeNode (cf. Figure 3.1) and two problems removeNthFromEnd, swapPairs that
contain data type ListNode (cf. Figure 3.2) from LeetCode.

From the problem description on CodeCheck and LeetCode, for each problem, we
manually extracted information about function name, the number of input and return
parameters, type annotations of input and return parameters, and an example usage context
to create four query contexts NONE, TA, CON, TA_CON (cf. Figures 3.7, 3.8, 3.9, 3.10). Note

20 Methodology

that we did not take into account the parameter self of LeetCode problems. In total, we
generated 400 query contexts for 100 programming problems.

Step 2: Acquire Copilot’s completions.

Applying for GitHub Education [16] offers us free access to Copilot, which was then installed
as a plug-in in IDEs Visual Studio Code. The Copilot version we used in this study is v1.194.0.
We first entered queries from Step 1 into the Visual Studio Code editor, manually invoked
Copilot for each query, waited for Copilot to complete the function body, accepted it by
pressing Tab key, and saved the suggested completions in separate Python files. Figure 3.11
depicts an example of using Copilot. After creating a new Python file on Visual Studio Code
and entering query context def fib(input):, the suggested completion appears after the
cursor position, below the query, and can be accepted using the Tab key. Since Copilot is
non-deterministic and usually produces different suggestions, we only evaluated its first
suggested completion. Overall, we obtained 400 Python files corresponding to 400 query
contexts.

Step 3: Evaluate accuracy.

Figures 3.12 and 3.13 depict how to include Copilot’s suggested completions into CodeCheck’s
and LeetCode’s coding environments. We first need to change the initial function parameter
names to input, then we pasted Copilot’s completions in place of the comment # Your

code here... for CodeCheck coding environment or in place of the data types comment
from line 3 to line 6 for LeetCode coding environment. If the LeetCode suggested function
body contains recursive calls, we manually append self. before each call. After that, we
ran Copilot’s suggested completions against test cases and reported the submission statuses.
The average number of test cases for the 50 CodeCheck selected problems is 4.78 and for the
50 LeetCode selected problems is 345. Tables A.1 and A.2 summarize the accuracy of 400
Copilot’s completions, including the number of tests passed and the submission statuses.

Step 4: Evaluate complexity.

In addition to accuracy, we also assessed the cyclomatic and cognitive complexity of
Copilot’s completions. We ran SonarQube [41] on 400 Python files containing 400 Copilot’s
completions, then summarized the measured cyclomatic complexity on two plot boxes
in Figures 4.6, 4.7 and the measured cognitive complexity on two plot boxes in Figures
4.8, 4.9. We did not remove type annotations and usage contexts from Python files while
running SonarQube, since they did not increase the function complexity. Note that we
cannot measure the cyclomatic complexity of syntactically invalid Python code (6 cases in
LeetCode and 1 case in CodeCheck).

3.4 Procedure 21

Figure 3.12: Modify CodeCheck’s coding environment to measure accuracy

Figure 3.13: Modify LeetCode’s coding environment to measure accuracy

4
Results

In this chapter, we present a summary of the most important results on Copilot’s completion
accuracy and complexity. This summary provides a segue into Chapter 5 (Discussion),
where these results will be discussed in detail.

4.1 RQ1: Accuracy

When evaluating the quality of LLMs such as Copilot, the primary and foremost criteria
to take into account is the accuracy of the models’ predictions. As software grows in size
and complexity, making it impossible for humans to write code from scratch, Copilot has a
significant impact and contribution to the software engineering industry. A highly accurate
output is critical to reducing potential errors and encouraging more developers to rely on
Copilot, leading to more reliable and robust software.

Overall, CodeCheck and LeetCode have completely different accuracy tendencies. In
CodeCheck, the order of least to most accurate queries is NONE, CON, TA, TA_CON, but
in LeetCode it is NONE, CON, TA_CON, TA. Copilot’s suggestions for CodeCheck have
average accuracy and vary substantially across four query contexts. LeetCode, on the other
hand, has exceptionally high accuracy with little to no variation over four queries.

In particular, for CodeCheck, TA_CON query triggered the most accurate completions,
with 72.8% of total test cases passed and 25/50 problems accepted. TA query also has
25/50 acceptances but passes fewer test cases (67.8%). The absence of type annotation and
usage context in NONE query results in the least accurate completions, with only 41.4% of
total test cases passed and 15 problems accepted. It also causes the most runtime errors,
with 12 problems, which is substantially higher than the other three queries (4, 2, and 3
problems). The gap between the most accurate and the least accurate query contexts is 31.4%
of tests passed and 10 accepted problems. We calculated the correlations of the number of
passed/failed tests and four query contexts for a total of six test-hypothesis pairs: NONE vs.
TA, NONE vs. CON, NONE vs. TA_CON, TA vs. CON, TA vs. TA_CON, CON vs. TA_CON.
Since six hypotheses were simultaneously tested, the multiple comparisons problem arises
[20]. To account for this problem, we applied a Bonferroni correction and used r < 0.05/6
as the threshold of statistical significance [8]. The Chi-square test showed that four queries
have a statistically significant influence on the observed passed/failed tests (c2(2) = 57.20,
r < 0.001). We provided a tabular view of each CodeCheck programming problem with its
accuracy rate in Table A.1.

On the contrary, LeetCode has exceptionally high accuracy, with above 90% of the test
cases passed across all four query contexts. In LeetCode, TA query triggers the most accurate

23

24 Results

Table 4.1: Frequency of patterns in Copilot’s predictions

Pattern
Number of problems

CodeCheck LeetCode

Two no-type-annotation queries (NONE, CON)
or two type-annotation queries (TA, TA_CON) trigger similar completions

10 5

Two no-usage-context queries (NONE, TA)
or two usage-context queries (CON, TA_CON) trigger similar completions

6 2

No type annotation, no usage context query (NONE) triggers type-error completion 12 4

Copilot’s completions call helper function 1 6

completions, with 95.5% of tests passed and 37/50 problems accepted. The least accurate
query is still NONE query, with 91.3% of tests passed and 31 problems accepted. Intriguingly,
the gap between the most accurate and least accurate query is very small, only around 4%
and 6 problems difference in the number of total tests passed and accepted completions,
respectively. We also applied a Bonferroni correction, setting r < 0.05/6 as the threshold
of statistical significance for six test-hypothesis pairs and found statistically significant
differences between four query contexts (c2(2) = 268.08, r < 0.001). We provided a tabular
view of each LeetCode programming problem with its accuracy rate in Table A.2.

When comparing TA queries containing only type annotation information with CON
queries containing only usage context information, we noticed that type annotation helps
Copilot predict more accurately than usage context by approximately 10% for CodeCheck
and 2% for LeetCode.

After analyzing 400 Copilot’s completions, we discovered several intriguing patterns,
which we categorized and statistically reported in Table 4.1.

• Two no-type-annotation queries (NONE, CON) or two type-annotation queries
(TA, TA_CON) trigger similar completions: This pattern examines the impact of
type annotations on Copilot’s completions by answering two questions: Are the two
completions triggered by NONE and CON queries similar? Are the two completions
triggered by TA and TA_CON queries similar? We excluded cases in which all four
queries triggered the same completions and only included cases that answered true for
at least one out of the two questions above. We found 10 CodeCheck (one-fifth of the
CodeCheck testing dataset) and 5 LeetCode problems that have identical completions
within the same type annotation query.

• Two no-usage-context queries (NONE, TA) or two usage-context queries (CON,
TA_CON) trigger similar completions: This pattern examines the impact of usage
context on Copilot’s completions by answering two questions: Are the two completions
triggered by NONE and TA queries similar? Are the two completions triggered by
CON and TA_CON similar? We also excluded cases in which all four queries triggered
the same completions and only included cases that answered true for at least one out
of the two questions above. This pattern appears in only 6 CodeCheck and 2 LeetCode
problems, less than the above type annotation patterns.

4.1 RQ1: Accuracy 25

Figure 4.1: Similar Copilot’s completions for NONE and TA, only return parameters are different

• No type annotation, no usage context query (NONE) triggers type-error completion:
This pattern considers cases in which queries with no information about type annota-
tion or usage context trigger Python TypeError and cause runtime errors. This pattern
appears in 12 CodeCheck and 4 LeetCode problems. The most common TypeErrors

are calling unsupported methods in incorrect data types (e.g., call len() in int data
type), concatenating or mathematically comparing different data types, and trying to
interpret list object as an integer.

Interestingly, we found 3 CodeCheck problems in which all four queries generate
correct function bodies, but only NONE and CON, which lack information about type
annotations, return incorrect format output. In Figure 4.1, both queries produce similar
function bodies. However, the query on the left lacks information about the return
type and yields two return values even, odd, whereas the correct return parameter
should be [even, odd] as in the query on the right.

• Copilot’s completions call helper function: This pattern considers problems where
at least one out of its four suggested function bodies contains additional helper
functions. As shown in Figure 4.2, rather than directly implementing the main function
generateParenthesis, Copilot created and implemented a new auxiliary function
backtrack. We found 1 CodeCheck and 6 LeetCode problems have this pattern, and
most of the helper function names are backtrack. In a previous empirical study
on Copilot, Nguyen and Nadi [29] observed the same pattern in which Copilot’s
suggested function body included a helper function and its implementation. The
authors contacted Copilot’s team and confirmed that Copilot’s suggestions should not
include the implementation of helper functions, and this is an unexpected Copilot
behavior.

Aside from the above patterns, we noticed three types of SyntaxError in Copilot’s sug-
gested function body. The first type of SyntaxError is the missing of closing parenthesis
(cf. Figure 4.3), which occurred in 1 CodeCheck and 1 LeetCode problem. The second
SyntaxError type appeared in 2 LeetCode problems where Copilot tried to complete
type annotation for no-type-annotation query contexts (cf. line 1 of Figure 4.4). The third
SyntaxError type is not due to Copilot. Figure 4.5 shows a syntactically correct suggested
function body, but when executed on LeetCode, it indicates two syntax errors on line 3 def

backtrack(s: str, left: int, right: int): and line 11 res: List[str] = []. Remov-
ing type annotations from these two lines resulted in a function body resembling the one
in Figure 4.2, which is still syntactically correct Python code and passes all test cases. This

26 Results

Figure 4.2: Copilot’s completion contains backtrack helper function

Figure 4.3: SyntaxError: miss closing parenthesis

error appeared in 6 TA_CON and 2 TA LeetCode queries, reducing the number of tests
passed by 3.2% and 0.6%, respectively.

Overall, these results lead us to answer our first research question:

RQ1

CodeCheck and LeetCode displayed different accuracy patterns. In
CodeCheck, the accuracy of queries from least to most accurate follows this
order: NONE, CON, TA, TA_CON, while in LeetCode the order is: NONE,
CON, TA_CON, TA. Copilot’s suggestions in CodeCheck exhibited average
accuracy with significant variation across the four query contexts, whereas
in LeetCode, the accuracy is exceptionally high (over 90%) with minuscule
variation.

4.2 RQ2: Complexity

The second criterion we considered to assess Copilot’s prediction is code complexity. Given
that Copilot has recently been released as a commercial product and offered free for students,
the majority of Copilot’s target audiences are novice developers, who are inexperienced and

Figure 4.4: SyntaxError: append type annotations on no-type-annotation query

4.2 RQ2: Complexity 27

Figure 4.5: SyntaxError: redundant type annotations

tend to over-rely on Copilot’s suggested code completions [28]. As these suggestions serve
as a starting point for novice developers, Copilot should provide code suggestions that are
easy to maintain and understand, which means they have low cyclomatic and cognitive
complexity.

Copilot generally produces low-complexity code. While the complexity varies between
four CodeCheck query contexts, there is no notable variation in LeetCode. Figures 4.6 and
4.7 provide a summary of the cyclomatic complexity, while Figures 4.8 and 4.9 summarize
cognitive complexity for 50 CodeCheck and 50 LeetCode programming problems.

The order of highest to lowest complexity queries in CodeCheck is NONE, TA and CON,
TA_CON. Consider four queries in CodeCheck, NONE query with the least information
triggered the most complex completions (cyclomatic and cognitive complexity medians
are 3 and 4, respectively), while TA_CON containing the most information triggered
the least complex completions (cyclomatic and cognitive complexity medians are 2 and
1.5, respectively). TA and CON queries both have the same cyclomatic and cognitive
complexity median of 3. The gaps between queries with the lowest complexity and the
highest complexity in CodeCheck are 1 for cyclomatic and 2.5 for cognitive complexity.
However, the complexity of all four LeetCode queries has the same median of 4.

To determine whether the four queries affect Copilot’s completions in terms of complexity,
we applied the Kruskal-Wallis test. The results indicated that only the cyclomatic complexity
in CodeCheck showed statistical significance with r = 0.02 < 0.05, indicating that the
query selection significantly affects the cyclomatic complexity of Copilot’s predictions for
CodeCheck problems. The other three cases, CodeCheck cognitive complexity and LeetCode
both cyclomatic and cognitive complexity, did not show statistical significance, with r = 0.06,
r = 0.96, r = 0.99 > 0.05, respectively. As a post-hoc analysis, Dunn’s test with Bonferroni-
adjusted r-values was conducted for CodeCheck cyclomatic complexity, which is the only
significant result from the Kruskal-Wallis test. The r-values for the six query pairs showed
that only the difference between the NONE vs. TA_CON queries is statistically significant
with r = 0.03 < 0.05.

One pattern we notice in CodeCheck problems is that Copilot usually invokes Python built-
in methods (e.g., sum(), min(), max(), len(), sort(), etc.) rather than implementing

28 Results

Figure 4.6: Cyclomatic complexity of Copilot’s completions for 50 CodeCheck problems

Figure 4.7: Cyclomatic complexity of Copilot’s completions for 50 LeetCode problems

4.2 RQ2: Complexity 29

Figure 4.8: Cognitive complexity of Copilot’s completions for 50 CodeCheck problems

Figure 4.9: Cognitive complexity of Copilot’s completions for 50 LeetCode problems

30 Results

them from scratch, or compacts the function body (e.g., combining both for-loop and
if-statement into one line). This pattern only appears in 8 TA queries and in 9 CON queries,
where 24 TA_CON queries show this pattern, substantially higher compared to the other
two. This could explain why TA_CON query resulted in the overall lowest complexity
completions.

Overall, these results lead us to answer our second research question:

RQ2

Copilot generates low-complexity code for our queries. In CodeCheck, the
queries tend to follow an order of complexity from highest to lowest: NONE,
TA and CON, TA_CON. In LeetCode, the variation is minuscule, with all
queries having a median complexity of 4. The statistical test showed that
the choice of query only significantly affects the cyclomatic complexity of
Copilot’s predictions for CodeCheck problems, in which only the difference
between the NONE vs. TA_CON queries is statistically significant.

5
Discussion

In this chapter, we address and explain the reasons behind the results in the previous
Chapter 4 (Results).

5.1 RQ1: Accuracy

As already mentioned, although CodeCheck continues to execute the remaining test cases,
LeetCode immediately stops when one test fails or a runtime error occurs, resulting in lower
bound accuracy. This did not affect the submission statuses or the overall results, as the total
LeetCode tests passed of four queries are all over 90%, substantially higher than CodeCheck.
GitHub’s internal evaluation of Copilot showed that it achieved 43% accuracy on the first
try completing Python function bodies [15], similar to the result of our CodeCheck NONE
query (41.4% of tests passed).

We anticipate a pattern where the amount of information positively correlates with
Copilot’s prediction accuracy. The expected order of the least to most accurate queries is
NONE, TA and CON, TA_CON, however, CodeCheck order is NONE, CON, TA, TA_CON
and LeetCode order is NONE, CON, TA_CON, TA. When comparing the expected and actual
accuracy orders, we noticed two differences. The first difference is that type annotation
improves Copilot’s prediction accuracy more than usage context, with TA vs. CON in
CodeCheck is 67.8% vs. 57.7%, and in LeetCode is 95.5% vs. 93.9%. This could be because
type annotation is important in more programming problems than usage context. For
example, Copilot can only predict the correct function body when it knows about the
function return types (cf. Figure 4.1). However, there are some programming problems that
are more biased usage contexts, in which Copilot needs to explicitly know about the usage
context for correct predictions. For example, in Figure 5.1, the below completion is correct
because it recognizes the input string as "R" instead of ’row’ as the above completion. We
cannot conclude whether type annotations or usage contexts are more valuable to Copilot.
The second difference is that in LeetCode, TA has the highest accuracy instead of TA_CON
query. One possible reason could be the third mentioned SyntaxError, where LeetCode
considers function bodies with explicit type annotations behind variables as invalid syntax,
decreasing the number of tests passed by TA_CON query by 3.2%.

To explain why Copilot predicts more accurate completions for LeetCode than CodeCheck,
we hypothesize that LeetCode problems appeared more on Copilot’s training data than
CodeCheck problems. One piece of evidence supporting our hypothesis is the fact that
the predicted arguments for LeetCode’s usage contexts are identical to the example argu-
ments on the LeetCode website. In Figure 5.2, Copilot predicted the usage context argu-

31

32 Discussion

Figure 5.1: Similar Copilot’s completions for TA and TA_CON, only compared strings are different

Figure 5.2: Copilot’s predicted arguments for usage context are identical to the example arguments
on the LeetCode website

ments [["London","New York"],["New York","Lima"],["Lima","Sao Paulo"]] for func-
tion destCity, which is identical to the first example argument provided by LeetCode.
We observed this tendency over 37/50 LeetCode problems, shown in bold in Table A.2.
Therefore, we tested these 37 problems again to see whether providing different usage
context arguments can reduce the accuracy of Copilot’s predictions and reported the results
on Table A.3. The results show that CON query has a substantial decrease in accuracy,
from 99% to only 47.6% test passed (c2(2) = 10478.76, r < 0.001), while TA_CON query
maintains the same accuracy (96%) (c2(2) = 15.19, r < 0.001). The reason behind these
results may be that CON queries only rely on information about usage context, and it was
most influenced by argument changes, whereas TA_CON queries still have information
from type annotation, allowing them to maintain high accuracy.

Although the predictions for LeetCode problems passed over 90% test cases, we anticipate
that Copilot has the potential to achieve even higher accuracy if we keep the existing param-
eter names rather than changing them to input, as this can change Copilot’s probabilistic
determination of what is likely to come next and generate suggestions.

5.2 RQ2: Complexity

Similar to our expectation, CodeCheck’s complexity varies among four queries and tends
to show a negative correlation with the amount of information. The order of queries from
highest to lowest complexity is NONE, TA and CON, TA_CON. However, LeetCode’s
complexity shows no substantial variation and has the same complexity median values
of 4 across four queries. One reason for this occurrence could be that LeetCode problems
were overly represented in Copilot’s training data, making it more likely that Copilot will

5.2 RQ2: Complexity 33

automatically produce identical completions when provided with LeetCode function names,
regardless of any extra information about type annotations or usage contexts.

A prior study by Dakhel et al. [11] comparing Copilot-generated code with human
completions found that Copilot often utilizes built-in methods in its suggested function
bodies. In our study, we further discovered that these built-in methods are more frequently
called in TA_CON queries.

6
Threats to Validity

In this chapter, we address the remaining limitations and threats to validity.

6.1 Internal Validity

The fact that Copilot is a closed-source model makes it difficult to determine whether
and how frequently our tested programming problems appear in Copilot training data.
This potentially introduces bias, as Copilot requires only function names to complete the
function body for problems that frequently appear in the training data, regardless of any
extra information about type annotations or usage contexts. An example of this is when
Copilot predicted identical usage context arguments to LeetCode example arguments, even
when only given the function name, as described in Section 5.1.

The procedure by which CodeCheck and LeetCode evaluate accuracy is different. While
CodeCheck executes all test cases, LeetCode terminates when it encounters a fail test or an
error and reports the lower bound. However, this has a minuscule impact on our study’s
results. Even though LeetCode reports lower bounds in some cases, it still has much higher
accuracy than CodeCheck.

A notable threat to validity is the non-deterministic nature of LLMs like Copilot, raising
concerns about the replicability of our results. Copilot is very sensitive to its input prompts.
Anecdotally, we observed during our experiment different function body suggestions based
on whether we included a colon at the end of the input code. To reduce this threat, we use
a consistent prompt that is always including the colon.

According to the Copilot production team, Copilot makes predictions not only based on
the code in the currently open file and the surrounding lines of the cursor, but also based
on the information included in other files open in the editor and the URLs of repositories
or file paths to identify relevant contexts [15]. As a result, it may be able to learn from the
predictions triggered by other queries saved in other files.

Providing type annotations also provides information about the number of parame-
ters and return variables, which means that TA, TA_CON queries with type annotations
always provide more information than NONE, CON queries with no type annotations.
Even though we attempted to alleviate the imbalance by providing the number of param-
eters as input1, input2 as in Figure 4.3, we were unable to change the query from def

findTheDifference(input1, input2): into def findTheDifference(input1, input2) ->

output: since this is invalid Python syntax.

35

36 Threats to Validity

6.2 External Validity

Since we have to manually build query contexts for each programming problem and to fit
into the scope of a bachelor thesis, our study only examined common Python data types
and is limited to 100 programming problems, totaling 400 queries. Our results may not be
generalizable due to these constraints.

7
Concluding Remarks

7.1 Conclusion

LLMs can manage huge databases that humans cannot, unlocking multiple previously
unknown potentials. Copilot is one such model, capable of synthesizing and autonomously
generating context-related code from its massive GitHub training codebases. With Copilot
now available as a commercial product, a new wave of developers will gain access to it.
It is crucial for developers to understand how to modify their query context effectively
to obtain higher-quality code suggestions and optimize Copilot as their ideal "AI pair
programmer". Our study is the first to explore the impact of type annotations and usage
context on Copilot’s code completions. Overall, we found that Copilot’s completions for
CodeCheck problems have average accuracy and low complexity, with substantial variations
between four query contexts. The amount of information in CodeCheck queries shows a
positive correlation with Copilot’s prediction accuracy and tends to be negatively correlated
with Copilot’s prediction complexity. NONE query has the lowest accuracy (41.4%) and
the highest complexity (cyclomatic 3, cognitive 4), while TA_CON query has the highest
accuracy (72.8%) and the lowest complexity (cyclomatic 2, cognitive 1.5). LeetCode problems,
on the other hand, have extremely high accuracy and low complexity, with no obvious
variations between the four query contexts. The number of passed test cases for all four
queries is above 90%, and their complexity shares a median of 4.

7.2 Future Work

We see various future work opportunities in looking into different kinds of information that
could impact Copilot’s predictions, other than type annotation and usage context. To fit into
the scope of a Bachelor thesis, our study is limited to 100 Python programming problems
from CodeCheck and LeetCode. Consequently, the results might not be generalizable and
might exhibit limited statistical significance. Future study with a larger sample size is
merited, as it reduces variability and may increase the test statistic, which in turn may make
it easier to reach a threshold for significance. Additionally, further investigation into rarely
encountered Python data types, such as dict, set, bytes, is justified to explore whether
Copilot can maintain its accuracy when predicting across a broader range of data types.
Copilot can not only suggest code completion but also generate comments and documents,
as well as translate code between programming languages. These features are all highly
useful for developers and should be further investigated.

37

A
Appendix

39

40 Appendix

Table A.1: Accuracy of Copilot’s completions for 50 CodeCheck problems. The table contains the
number of tests each Copilot’s completion passed and its submission status. The bottom
section contains the total tests passed and the submission status of 50 problems.

Number (%) of test cases passed
Problem #Tests No type annotation,

no usage context
Type annotation,
no usage context

No type annotation,
usage context

Type annotation,
usage context

valuesHaveTheSameSign 5 5 (100%) 4 (80%) 4 (80%) 4 (80%)
coordinatesInSameQuadrant 8 6 (75%) 6 (75%) 6 (75%) 6 (75%)
strict 5 3 (60%) 1 (20%) 0 (0%) 4 (80%)
exactlyTwoTheSame 6 6 (100%) 6 (100%) 2 (33.3%) 2 (33.3%)
closerToTarget 6 1 (16.7%) 5 (83.3%) 5 (83.3%) 5 (83.3%)
areSameColor 5 3 (60%) 3 (60%) 0 (0%) 5 (100%)

Branches

evenlySpaced 6 6 (100%) 6 (100%) 6 (100%) 6 (100%)

swapFirstAndLast 5 5 (100%) 3 (60%) 3 (60%) 3 (60%)
reverseHalves 7 4 (57.1%) 4 (57.1%) 4 (57.1%) 4 (57.1%)
countFrontBackMatches 6 2 (33.3%) 6 (100%) 6 (100%) 6 (100%)
firstPositionDiffer 5 5 (100%) 3 (60%) 4 (80%) 4 (80%)
removeMatchingPrefixSuffix 7 4 (57.1%) 2 (28.6%) 0 (0%) 4 (57.1%)
numbersInside 3 0 (0%) 2 (66.7%) 2 (66.7%) 2 (66.7%)
removeAdjacentDuplicates 2 0 (0%) 0 (0%) 0 (0%) 0 (0%)
firstDoubledVowel 6 2 (33.3%) 0 (0%) 2 (33.3%) 1 (16.7%)

Strings

evenThenOdd 5 0 (0%) 0 (0%) 0 (0%) 5 (100%)

averageFirstTwoAndLastTwo 4 4 (100%) 4 (100%) 4 (100%) 4 (100%)
repeatNumTimes 4 0 (0%) 2 (50%) 0 (0%) 2 (50%)
swapMinAndMax 3 3 (100%) 3 (100%) 3 (100%) 3 (100%)
positionOfLastLargest 4 4 (100%) 4 (100%) 4 (100%) 4 (100%)
firstPositionSame 5 2 (40%) 5 (100%) 5 (100%) 5 (100%)
findClosestValueIndex 5 1 (20%) 1 (20%) 1 (20%) 1 (20%)
countInRange 6 0 (0%) 6 (100%) 6 (100%) 6 (100%)
mostFrequentElement 5 5 (100%) 5 (100%) 5 (100%) 5 (100%)
removeDuplicates 6 0 (0%) 6 (100%) 6 (100%) 6 (100%)
firstRepeatedIndex 6 3 (50%) 3 (50%) 6 (100%) 6 (100%)
averageOfConsecutivePairs 3 3 (100%) 3 (100%) 3 (100%) 0 (0%)
averageWithoutMaxAndMin 2 2 (100%) 2 (100%) 2 (100%) 2 (100%)
largestSumNConsecutive 2 2 (100%) 2 (100%) 2 (100%) 2 (100%)
moveZerosToBack 6 6 (100%) 6 (100%) 5 (83.3%) 6 (100%)
removeEvenElementsOccuringTwice 5 0 (0%) 1 (20%) 4 (80%) 4 (80%)
removeElementsInRange 4 0 (0%) 0 (0%) 0 (0%) 1 (25%)
splitEvenOddIndices 5 0 (0%) 5 (100%) 0 (0%) 5 (100%)
getMinAndMax 5 0 (0%) 5 (100%) 0 (0%) 5 (100%)
largestReverseExists 5 0 (0%) 2 (40%) 0 (0%) 2 (40%)

Lists

largestConsecutiveSum 4 4 (100%) 4 (100%) 4 (100%) 4 (100%)

averageOfCorners 5 5 (100%) 5 (100%) 5 (100%) 5 (100%)
getChessBoardInfo 5 0 (0%) 0 (0%) 2 (40%) 2 (40%)
sumRowOrCol 5 0 (0%) 3 (60%) 5 (100%) 5 (100%)
sumDiagonals 4 2 (50%) 4 (100%) 2 (50%) 2 (50%)
sumBordersWithoutCorners 5 0 (0%) 0 (0%) 0 (0%) 0 (0%)
countNegativeByRow 4 0 (0%) 4 (100%) 0 (0%) 4 (100%)
findLocation 5 0 (0%) 5 (100%) 0 (0%) 5 (100%)
slideRight 4 0 (0%) 0 (0%) 0 (0%) 0 (0%)
replaceNegativesWithZero 5 0 (0%) 5 (100%) 5 (100%) 5 (100%)
largestNeighbor 6 0 (0%) 6 (100%) 6 (100%) 2 (33.3%)
fillNeighbors 3 0 (0%) 0 (0%) 0 (0%) 0 (0%)
copyNeighbors 3 1 (33.3%) 1 (33.3%) 0 (0%) 1 (33.3%)
getGreaterElements 5 0 (0%) 5 (100%) 5 (100%) 5 (100%)

Two-
Dimensional
Arrays

countDistinctElements 4 0 (0%) 4 (100%) 4 (100%) 4 (100%)

Total test cases passed 239 99 (41.4%) 162 (67.8%) 138 (57.7%) 174 (72.8%)

Accepted 15 (30%) 25 (50%) 20 (40%) 25 (50%)
Wrong answer 23 (46%) 21 (42%) 28 (56%) 22 (44%)
Runtime errors 12 (24%) 4 (8%) 2 (4%) 3 (6%)

Appendix 41

Table A.2: Accuracy of Copilot’s completions for 50 LeetCode problems. The table contains the
number of tests each Copilot’s completion passed and its submission status. Problems
predicted with similar usage context arguments to the LeetCode website are in bold. The
bottom section contains the total tests passed and the submission status of 50 problems.

Number (%) of test cases passed
Problem #Tests No type annotation,

no usage context
Type annotation,
no usage context

No type annotation,
usage context

Type annotation,
usage context

hammingDistance 149 0 (0%) 149 (100%) 149 (100%) 149 (100%)
constructRectangle 52 52 (100%) 52 (100%) 52 (100%) 52 (100%)
search 47 47 (100%) 47 (100%) 47 (100%) 47 (100%)
removeOuterParentheses 59 59 (100%) 59 (100%) 59 (100%) 59 (100%)
findTheDifference 54 0 (0%) 0 (0%) 54 (100%) 0 (0%)
isPerfectSquare 71 71 (100%) 71 (100%) 71 (100%) 71 (100%)
twoSum 63 63 (100%) 63 (100%) 63 (100%) 63 (100%)
removeElement 115 115 (100%) 115 (100%) 115 (100%) 115 (100%)
searchInsert 65 65 (100%) 65 (100%) 65 (100%) 65 (100%)
hasPathSum 117 117 (100%) 117 (100%) 117 (100%) 117 (100%)
isPalindrome 485 0 (0%) 485 (100%) 0 (0%) 485 (100%)
containsDuplicate 75 75 (100%) 75 (100%) 75 (100%) 75 (100%)
addDigits 1101 1101 (100%) 1101 (100%) 1101 (100%) 1101 (100%)
countBits 15 0 (0%) 15 (100%) 0 (0%) 0 (0%)
fib 31 31 (100%) 31 (100%) 31 (100%) 31 (100%)
destCity 104 104 (100%) 104 (100%) 104 (100%) 104 (100%)

Easy

longestCommonPrefix 126 126 (100%) 126 (100%) 126 (100%) 126 (100%)

threeSum 313 313 (100%) 313 (100%) 313 (100%) 313 (100%)
maxArea 62 62 (100%) 62 (100%) 62 (100%) 62 (100%)
threeSumClosest 102 102 (100%) 102 (100%) 102 (100%) 102 (100%)
isValidSudoku 507 507 (100%) 507 (100%) 507 (100%) 507 (100%)
nextPermutation 266 262 (98%) 266 (100%) 262 (98%) 0 (0%)
generateParenthesis 8 0 (0%) 8 (100%) 8 (100%) 0 (0%)
permute 26 0 (0%) 0 (0%) 0 (0%) 0 (0%)
combinationSum 160 160 (100%) 160 (100%) 160 (100%) 0 (0%)
myPow 306 306 (100%) 306 (100%) 306 (100%) 306 (100%)
rotate 21 1 (4.8%) 1 (4.8%) 1 (4.8%) 1 (4.8%)
removeNthFromEnd 208 208 (100%) 208 (100%) 208 (100%) 208 (100%)
swapPairs 55 0 (0%) 55 (100%) 55 (100%) 55 (100%)
uniquePaths 63 63 (100%) 63 (100%) 63 (100%) 63 (100%)
insert 157 0 (0%) 0 (0%) 0 (0%) 0 (0%)
merge 170 6 (3.5%) 6 (3.5%) 170 (100%) 170 (100%)
numDecodings 269 269 (100%) 269 (100%) 269 (100%) 269 (100%)
exist 87 0 (0%) 0 (0%) 0 (0%) 0 (0%)
minDistance 1146 1146 (100%) 1146 (100%) 1146 (100%) 1146 (100%)
maximumGap 41 41 (100%) 41 (100%) 41 (100%) 41 (100%)
sortColors 87 87 (100%) 87 (100%) 87 (100%) 87 (100%)

Medium

rangeBitwiseAnd 8270 8270 (100%) 8270 (100%) 8270 (100%) 8270 (100%)

solveSudoku 6 0 (0%) 0 (0%) 0 (0%) 6 (100%)
largestRectangleArea 99 99 (100%) 99 (100%) 99 (100%) 99 (100%)
numDistinct 65 65 (100%) 65 (100%) 65 (100%) 65 (100%)
firstMissingPositive 177 177 (100%) 177 (100%) 177 (100%) 177 (100%)
bestRotation 44 44 (100%) 44 (100%) 44 (100%) 44 (100%)
containsNearbyAlmostDuplicate 52 30 (57.7%) 30 (57.7%) 30 (57.7%) 30 (57.7%)
smallestDistancePair 19 19 (100%) 19 (100%) 19 (100%) 19 (100%)
isNumber 1494 1487 (99.5%) 1487 (99.5%) 1487 (99.5%) 1494 (100%)
isRationalEqual 74 0 (0%) 0 (0%) 0 (0%) 0 (0%)
dieSimulator 32 0 (0%) 2 (6.3%) 1 (3.1%) 1 (3.1%)
shortestPath 55 0 (0%) 5 (9.1%) 1 (1.8%) 31 (56.4%)

Hard

maxSum 82 0 (0%) 0 (0%) 22 (26.8%) 0 (0%)

Total test cases passed 17252 15750 (91.3%) 16473 (95.5%) 16204 (93.9%) 16232 (94.1%)

Accepted 31 (62%) 37 (74%) 36 (72%) 36 (72%)
Wrong answer 7 (14%) 8 (16%) 9 (18%) 5 (10%)
Time limit exceeded 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Memory limit exceeded 1 (2%) 0 (0%) 0 (0%) 0 (0%)
Compile errors 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Runtime errors 11 (22%) 5 (10%) 5 (10%) 9 (18%)

42 Appendix

Table A.3: Accuracy of Copilot’s completions for 37 LeetCode problems, for which Copilot predicted
similar usage context arguments to the LeetCode website. The table contains the number
of tests each Copilot’s completion passed, and its submission status. The bottom section
contains the total tests passed and the submission status of 37 problems.

Number (%) of test cases passed
Problem #Tests No type annotation,

usage context
No type annotation,

different usage context
Type annotation,

usage context
Type annotation,

different usage context

hammingDistance 149 149 (100%) 149 (100%) 149 (100%) 149 (100%)
constructRectangle 52 52 (100%) 52 (100%) 52 (100%) 52 (100%)
removeOuterParentheses 59 59 (100%) 59 (100%) 59 (100%) 59 (100%)
findTheDifference 54 54 (100%0 54 (100%0 0 (0%) 2 (3.7%)
isPerfectSquare 71 71 (100%) 8 (11.3%) 71 (100%) 9 (12.7%)
twoSum 63 63 (100%) 63 (100%) 63 (100%) 63 (100%)
removeElement 115 115 (100%) 86 (74.8%) 115 (100%) 115 (100%)
searchInsert 65 65 (100%) 65 (100%) 65 (100%) 65 (100%)
hasPathSum 117 117 (100%) 117 (100%) 117 (100%) 117 (100%)
containsDuplicate 75 75 (100%) 75 (100%) 75 (100%) 75 (100%)
addDigits 1101 1101 (100%) 1101 (100%) 1101 (100%) 1101 (100%)
countBits 15 0 (0%) 0 (0%) 0 (0%) 15 (100%)
destCity 104 104 (100%) 0 (0%) 104 (100%) 104 (100%)

Easy

longestCommonPrefix 126 126 (100%) 126 (100%) 126 (100%) 126 (100%)

threeSum 313 313 (100%) 313 (100%) 313 (100%) 313 (100%)
maxArea 62 62 (100%) 52 (83.9%) 62 (100%) 62 (100%)
threeSumClosest 102 102 (100%) 102 (100%) 102 (100%) 102 (100%)
nextPermutation 266 262 (98.5%) 138 (51.9%) 0 (0%) 266 (100%)
generateParenthesis 8 8 (100%) 8 (100%) 0 (0%) 0 (0%)
combinationSum 160 160 (100%) 160 (100%) 0 (0%) 160 (100%)
myPow 306 306 (100%) 306 (100%) 306 (100%) 306 (100%)
removeNthFromEnd 208 208 (100%) 202 (97.1%) 208 (100%) 208 (100%)
uniquePaths 63 63 (100%) 37 (58.7%) 63 (100%) 63 (100%)
numDecodings 269 269 (100%) 22 (8.2%) 269 (100%) 269 (100%)
minDistance 1146 1146 (100%) 24 (2.1%) 1146 (100%) 1146 (100%)
maximumGap 41 41 (100%) 41 (100%) 41 (100%) 41 (100%)
sortColors 87 87 (100%) 87 (100%) 87 (100%) 0 (0%)

Medium

rangeBitwiseAnd 8270 8270 (100%) 2193 (26.5%) 8270 (100%) 8270 (100%)

largestRectangleArea 99 99 (100%) 99 (100%) 99 (100%) 99 (100%)
numDistinct 65 65 (100%) 0 (0%) 65 (100%) 0 (0%)
firstMissingPositive 177 177 (100%) 66 (37.3%) 177 (100%) 81 (45.8%)
bestRotation 44 44 (100%) 44 (100%) 44 (100%) 44 (100%)
containsNearbyAlmostDuplicate 52 30 (57.7%) 36 (69.2%) 36 (69.2%) 36 (69.2%)
smallestDistancePair 19 19 (100%) 19 (100%) 19 (100%) 19 (100%)
isNumber 1494 1487 (99.5%) 1487 (99.5%) 1494 (100%) 1491 (99.8%)
isRationalEqual 74 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Hard

dieSimulator 32 1 (3.1%) 0 (0%) 1 (3.1%) 0 (0%)

Total test cases passed 15523 15370 (99%) 7391 (47.6%) 14899 (96%) 15028 (96.8%)

Accepted 31 (83.8%) 20 (54.1%) 29 (78.4%) 27 (73%)
Wrong answer 4 (10.8%) 12 (32.4%) 2 (5.4%) 6 (16.2%)
Time limit exceeded 0 (0%) 3 (8.1%) 0 (0%) 0 (0%)
Memory limit exceeded 0 (0%) 0 (0%) 0 (0%) 1 (2.7%)
Compile errors 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Runtime errors 2 (5.4%) 2 (5.4%) 6 (16.2%) 3 (8.1%)

Bibliography

[1] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. “Typilus: Neural
Type Hints.” In: Proceedings of the 41st ACM Sigplan Conference on Programming Language
Design and Implementation. 2020, pp. 91–105.

[2] Jong-hoon An, Avik Chaudhuri, Jeffrey S Foster, and Michael Hicks. “Dynamic
Inference of Static Types for Ruby.” In: ACM SIGPLAN Notices 46.1 (2011), pp. 459–
472.

[3] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. “Towards Type
Inference for JavaScript.” In: ECOOP 2005-Object-Oriented Programming: 19th European
Conference, Glasgow, UK, July 25-29, 2005. Proceedings 19. Springer. 2005, pp. 428–452.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et
al. “Language Models Are Few-Shot Learners.” In: Advances in Neural Information
Processing Systems 33 (2020), pp. 1877–1901.

[5] G Ann Campbell. “Cognitive Complexity-A New Way of Measuring Understandabil-
ity.” In: SonarSource SA (2018), p. 10.

[6] G Ann Campbell. “Cognitive Complexity: An Overview and Evaluation.” In: Proceed-
ings of the 2018 International Conference on Technical Debt. 2018, pp. 57–58.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. “Evaluating Large Language Models Trained on Code.” In: arXiv preprint
arXiv:2107.03374 (2021).

[8] Shi-Yi Chen, Zhe Feng, and Xiaolian Yi. “A General Introduction to Adjustment for
Multiple Comparisons.” In: Journal of Thoracic Disease 9.6 (2017), p. 1725.

[9] CodeCheck Python Exercises. [Online; accessed 13-August-2024]. url: https://horstmann.
com/codecheck/python-questions.html.

[10] CodeCheck. [Online; accessed 13-August-2024]. url: https://horstmann.com/codecheck/.

[11] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh, Michel
C Desmarais, and Zhen Ming Jack Jiang. “GitHub Copilot AI Pair Programmer: Asset
or Liability?” In: Journal of Systems and Software 203 (2023), p. 111734.

[12] Paul Denny, Viraj Kumar, and Nasser Giacaman. “Conversing with Copilot: Exploring
Prompt Engineering for Solving CS1 Problems Using Natural Language.” In: Pro-
ceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1. 2023,
pp. 1136–1142.

43

https://horstmann.com/codecheck/python-questions.html
https://horstmann.com/codecheck/python-questions.html
https://horstmann.com/codecheck/

44 Bibliography

[13] Luca Di Grazia and Michael Pradel. “The Evolution of Type Annotations in Python:
An Empirical Study.” In: Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2022, pp. 209–220.

[14] Michael Furr, Jong-hoon An, and Jeffrey S Foster. “Profile-Guided Static Typing for
Dynamic Scripting Languages.” In: Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications. 2009, pp. 283–300.

[15] GitHub Copilot - Your AI pair programmer. [Online; accessed 13-August-2024]. 2021. url:
https://copilot.github.com/.

[16] GitHub Education. [Online; accessed 13-August-2024]. url: https://github.com/
education/.

[17] Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and Andreas
Stefik. “An Empirical Study on the Impact of Static Typing on Software Maintainabil-
ity.” In: Empirical Software Engineering 19.5 (2014), pp. 1335–1382.

[18] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. “Deep
Learning Type Inference.” In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering.
2018, pp. 152–162.

[19] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. “On
the Naturalness of Software.” In: Communications of the ACM 59.5 (2016), pp. 122–131.

[20] Jason Hsu. Multiple comparisons: theory and methods. CRC Press, 1996.

[21] Simon Holm Jensen, Anders Møller, and Peter Thiemann. “Type Analysis for JavaScript.”
In: Static Analysis: 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August
9-11, 2009. Proceedings 16. Springer. 2009, pp. 238–255.

[22] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea
Janes. “Big Code!= Big Vocabulary: Open-Vocabulary Models for Source Code.” In:
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 2020,
pp. 1073–1085.

[23] Deepak Kumar. “REFLECTIONS Tools from the Education Industry.” In: ACM inroads
9.3 (2018), pp. 22–24.

[24] LeetCode Problems. [Online; accessed 13-August-2024]. url: https://leetcode.com/
problemset/.

[25] LeetCode. [Online; accessed 13-August-2024]. url: https://leetcode.com/.

[26] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. “NL2Type: Inferring JavaScript
Function Types From Natural Language Information.” In: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). IEEE. 2019, pp. 304–315.

[27] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. “Port-
folio: Finding Relevant Functions and Their Usage.” In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering. 2011, pp. 111–120.

[28] Ekaterina A Moroz, Vladimir O Grizkevich, and Igor M Novozhilov. “The Potential
of Artificial Intelligence as a Method of Software Developer’s Productivity Improve-
ment.” In: 2022 Conference of Russian Young Researchers in Electrical and Electronic
Engineering (ElConRus). IEEE. 2022, pp. 386–390.

https://copilot.github.com/
https://github.com/education/
https://github.com/education/
https://leetcode.com/problemset/
https://leetcode.com/problemset/
https://leetcode.com/

Bibliography 45

[29] Nhan Nguyen and Sarah Nadi. “An Empirical Evaluation of GitHub Copilot’s Code
Suggestions.” In: Proceedings of the 19th International Conference on Mining Software
Repositories. 2022, pp. 1–5.

[30] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. “Typewriter: Neural
Type Prediction With Search-Based Validation.” In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 2020, pp. 209–220.

[31] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. “Zero-Shot Text-to-Image Generation.” In: International
Conference on Machine Learning. Pmlr. 2021, pp. 8821–8831.

[32] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. “A Large
Scale Study of Programming Languages and Code Quality in GitHub.” In: Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 2014, pp. 155–165.

[33] Veselin Raychev, Pavol Bielik, and Martin Vechev. “Probabilistic Model for Code With
Decision Trees.” In: ACM SIGPLAN Notices 51.10 (2016), pp. 731–747.

[34] Veselin Raychev, Martin Vechev, and Andreas Krause. “Predicting program properties
from" big code".” In: ACM SIGPLAN Notices 50.1 (2015), pp. 111–124.

[35] Brianna M Ren, John Toman, T Stephen Strickland, and Jeffrey S Foster. “The Ruby
Type Checker.” In: Proceedings of the 28th Annual ACM Symposium on Applied Computing.
2013, pp. 1565–1572.

[36] SORA. [Online; accessed 13-August-2024]. url: https://openai.com/index/sora/.

[37] Jonathan Sillito, Gail C Murphy, and Kris De Volder. “Questions Programmers
Ask During Software Evolution Tasks.” In: Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 2006, pp. 23–34.

[38] Jonathan Sillito, Gail C Murphy, and Kris De Volder. “Asking and Answering Ques-
tions During a Programming Change Task.” In: IEEE Transactions on Software Engineer-
ing 34.4 (2008), pp. 434–451.

[39] Susan Elliott Sim, Charles LA Clarke, and Richard C Holt. “Archetypal Source Code
Searches: A Survey of Software Developers and Maintainers.” In: Proceedings. 6th
International Workshop on Program Comprehension. IWPC’98 (Cat. No. 98TB100242). IEEE.
1998, pp. 180–187.

[40] SonarQube Metric Definitions. [Online; accessed 13-August-2024]. url: https : / /

docs.sonarsource.com/sonarqube/latest/user-guide/code-metrics/metrics-

definition/#complexity.

[41] SonarQube. [Online; accessed 13-August-2024]. url: https://www.sonarsource.com/
products/sonarqube/.

[42] TIOBE Index. [Online; accessed 13-August-2024]. url: https://www.tiobe.com/tiobe-
index/.

[43] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. “On the Localness of Soft-
ware.” In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 2014, pp. 269–280.

https://openai.com/index/sora/
https://docs.sonarsource.com/sonarqube/latest/user-guide/code-metrics/metrics-definition/#complexity
https://docs.sonarsource.com/sonarqube/latest/user-guide/code-metrics/metrics-definition/#complexity
https://docs.sonarsource.com/sonarqube/latest/user-guide/code-metrics/metrics-definition/#complexity
https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/products/sonarqube/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

46 Bibliography

[44] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. “Expectation vs. Experi-
ence: Evaluating the Usability of Code Generation Tools Powered by Large Language
Models.” In: Chi Conference on Human Factors in Computing Systems Extended Abstracts.
2022, pp. 1–7.

[45] Michel Wermelinger. “Using GitHub Copilot To Solve Simple Programming Prob-
lems.” In: Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1. 2023, pp. 172–178.

[46] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. “Python Proba-
bilistic Type Inference With Natural Language Support.” In: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering.
2016, pp. 607–618.

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Overview

	2 Background and Related Work
	2.1 Code Completion
	2.2 Large Language Models and GitHub Copilot
	2.3 Data Type and Type Annotations
	2.4 Usage Context

	3 Methodology
	3.1 Research Questions
	3.2 Materials
	3.2.1 Programming Language: Python
	3.2.2 Programming Problems: CodeCheck and LeetCode

	3.3 Variables
	3.3.1 Independent Variables: Type Annotation and Usage Context
	3.3.2 Dependent Variables: Accuracy and Complexity

	3.4 Procedure

	4 Results
	4.1 RQ1: Accuracy
	4.2 RQ2: Complexity

	5 Discussion
	5.1 RQ1: Accuracy
	5.2 RQ2: Complexity

	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity

	7 Concluding Remarks
	7.1 Conclusion
	7.2 Future Work

	A Appendix
	 Bibliography

