University of Passau

Department of Informatics and Mathematics

I\u/ 5
UNIVERSITAT
““Z4(| PASSAU

Master’s Thesis

A Comparison of Six Constraint
Solvers for Variability Analysis

Author:

Martin Bauer
September 20, 2019

Examiner:

Prof. Dr.-Ing. Sven Apel

Chair of Software Engineering I

Prof. Dr. Gordon Fraser
Chair of Software Engineering 11

Supervisor:

Christian Kaltenecker

Chair of Software Engineering I

Bauer, Martin:
A Comparison of Siz Constraint Solvers for Variability Analysis
Master’s Thesis, University of Passau, 2019.

Abstract

Variability models are widely used to specify configurable options of highly cus-
tomizable software. In practice, variability models can become quite complex with
thousands of configuration options and ten thousands of constraints among them.
Reasoning over huge variability models is usually done by using sampling strategies
which suggest a sample set, i.e., they select a small, representative subset of all valid
configurations. Many sampling strategies utilize a constraint solver to identify valid
configurations in the search space to create a representative sample set. Using a
constraint solver which traverses the configuration space in a way that benefits the
sampling strategy’s logic can greatly improve this process. Likewise, a poorly chosen
constraint solver can prevent the sampling strategy from computing a representa-
tive sample set. In general, both a good performance of the constraint solver and a
representative sample set is an advantage for the sampling strategy.

In this work, we compare six constraint solvers (Z3, Microsoft Solver Foundation,
Choco, JaCoP, Google’s Operations Research Tools and OptiMathSAT) using sev-
eral aspects, which are vital for practical use in variability analysis. We integrate
those constraint solvers into SPL Conqueror (a software suite for variability analy-
sis) and use them to draw sample sets from configuration spaces of different software
product lines. Based on the performance of the constraint solvers and the represen-
tativity of those sample sets, we aim at providing recommendations which constraint
solver should be used depending on the exact needs of the sampling strategies.

Contents

List of Figures
List of Tables
List of Acronyms
1 Introduction

2 Background

2.1 Constraint Solver
2.2 Variability Modelo
2.3 SPL Conqueror
3 Experiment Setup
3.1 Constraint Solver Requirements
3.2 Constraint Solver Candidates
3.3 Research Questions
3.3.1 Representativity oo
3.3.2 Performance
3.4 Operationalization,
3.5 Subject Systems
4 Evaluation
4.1 Representativityo
4.2 Performance
4.3 Threats to Validityo

5 Related Work

6 Conclusion and Future Work
6.1 Conclusion
6.2 Future Work

A Appendix
A.1 CSP Solver Listing
A2 SMT Solver Listing

Bibliography

vil

1X

xi

10
10
11
11
14

17
17
27
32

33

35
35
36

39
39
39

41

List of Figures

2.1 Example of a variability model

4.1 Variability model of 7z
4.2 Cardinality distribution for 7zo
4.3 Relative frequency difference of the cardinalities for 7z
4.4 Constraint solver ranking based on the cardinality distribution
4.5 Configuration option frequency for 7z
4.6 Relative frequency difference of the configuration options for 7z

4.7 Constraint solver ranking based on the configuration option frequency
4.8 Constraint solver ranking based on their robustness
4.9 Comparision of the constraint solver performance for LLVM

4.10 Constraint solver ranking based on their performance

viii List of Figures

List of Tables

3.1 Overview of constraint solvers in SPLL Conqueror 8
3.2 Overview of subject systems 14
A.1 CSP solver candidates for SPL. Conqueror integration 39

A.2 SMT solver candidates for SPL Conqueror integration 39

List of Tables

List of Acronyms

API
ASIL

BDD

CLR
CSP

ILP

JVM

MSF

OMT

RNG

SAT
SMT

Application Programming Interface

Automotive Safety Integrity Level

Binary Decision Diagram

Common Language Runtime

Constraint Satisfaction Problem

Integer Linear Programming

Java Virtual Machine

Microsoft Solver Foundation

Optimization Modulo Theories

Random Number Generator

Satisfiability
Satisfiability Modulo Theories

XIi

List of Acronyms

1. Introduction

In the context of software product lines, variability models are commonly used to
model configurable software systems in terms of configuration options and relations
among them. From a different point of view, those configuration options and rela-
tions can be seen as variables and constraints, respectively. A well-known tool to
solve problems in such areas is the Satisfiability (SAT) solver. Unfortunately, the
binary nature of the SAT solver also restricts the configuration options to binary
configuration options, i.e., configuration options that can be selected or deselected.
However, there can be numeric configuration options and constraints in variability
models. While SAT usually is extremely efficient, huge effort is required for numeric
problems to be expressed as a SAT instance. A higher level paradigm like Satisfiabil-
ity Modulo Theories (SMT) or Constraint Programming can allow for a more natural
expression of the problem because those paradigms are more general than SAT and
support such kind of constraints out of the box. Benavides et al. go into this matter
and further push into that area of research [BTRC05, BSTRC05, BSTRC06].

Additionally, variability models can become quite complex, i.e., the number of con-
figuration options and constraints can be big. That is why reasoning on (huge)
variability models usually involves a sampling step, i.e., selecting a small, represen-
tative subset of all valid configurations. Among others, Kaltenecker et al. [KGS™19]
propose a sampling strategy, which relies on an off-the-shelf constraint solver. This
means, that the configurations returned by a constraint solver can greatly influence
the outcome of the sampling process (or at least its runtime). In most cases, the
user of such sampling strategies is responsible for selecting an appropriate constraint
solver. If a constraint solver is used that already traverses the configuration space
in a way, that benefits the sampling strategy, the sampling process can be greatly
improved. On the other hand, using a constraint solver with a non-beneficial search
strategy can lead to non-representative sample sets while taking very long compu-
tation time.

In this work, we aim at investigating, how well constraint solvers qualify for the
analysis of software product lines by analyzing the representativity of the sample
sets and the performance of the constraint solvers.

1. Introduction

In summary, our contributions are as follows:

e We determine the requirements for our scenario and select several constraint
solvers which fulfill those requirements.

e We integrate four constraint solvers into the variability analysis tool SPL Con-
queror: Choco', JaCoP?, OR-Tools*, and OptiMathSAT*.

e We perform an empirical study to compare the aforementioned constraint
solvers together with the already integrated ones — Z3° and Microsoft Solver
Foundation® — based on the solutions and the time it took to find them.

e We provide several rankings, which illustrate the abilities of the constraint
solvers in numerous aspects, such as the representativity of the sample sets
and the computation performance.

e We find, that JaCoP and Choco perform well in all aspects and recommend
to replace Z3 with JaCoP as the default constraint solver for SPL Conqueror.

Thttp://www.choco-solver.org

Zhttps://osolpro.atlassian.net /wiki/spaces/JACOP /overview
3https://developers.google.com /optimization
4http://optimathsat.disi.unitn.it /index.html
Shttps://github.com/Z3Prover/z3
Shttps://www.nuget.org/packages/Microsoft.Solver. Foundation

http://www.choco-solver.org
https://osolpro.atlassian.net/wiki/spaces/JACOP/overview
https://developers.google.com/optimization
http://optimathsat.disi.unitn.it/index.html
https://github.com/Z3Prover/z3
https://www.nuget.org/packages/Microsoft.Solver.Foundation

2. Background

In this chapter, we describe all relevant background knowledge, which is necessary
to understand and follow the concepts, that we use in this work.

2.1 Constraint Solver

Satisfiability is the basic and ubiquitous problem of determining if a (boolean) for-
mula has a model, i.e., can the variables of the formula be successively replaced by
some values (e.g., TRUE or FALSE) in such a way that the entire formula evaluates to
TRUE. A supporting (arithmetical) theory captures the meaning of those formulas.

Satisfiability Modulo Theories (SMT) solvers check the satisfiability of formulas built
from boolean variables and operations by relying on efficient satisfiability procedures
for propositional logic — the core concept of Satisfiability (SAT) solvers [dMB11].
Modern SAT procedures can check formulas with hundreds of thousands of variables
and similar progress has been observed for SMT solvers [MZ09]. They have a wide
range of applications in hardware and software verification, static checking, con-
straint solving, planning, scheduling, test case generation, and computer security.
de Moura et al. [IMDS07] give a brief overview of the theory behind SAT and SMT
solving, and present different key algorithms.

A more general approach is used for Constraint Satisfaction Problem (CSP) solvers.
A CSP consists of a set of variables with domains and a set of constraints restricting
the values of the variables. CSP solvers use different techniques like backtracking,
constraint propagation, and local search to find solutions on finite domains [FW74,
VKS6].

Throughout this work, we use the term constraint solvers to refer to both types of
solvers, regardless of their background theory.

2.2 Variability Model

Modern software systems usually provide a large number of configuration options to
tailor the product to the needs of the customers. These configuration options enable

2. Background

the user to change the behavior of the system, tweak computations or modify parts
of the program. For instance, a data compression tool can provide two algorithms,
which mutually exclude each other. Today, there are hundreds of configuration
options in most software systems, which can be combined in various ways. However,
not all combinations of configuration options are valid.

Let O be the set of all configuration options and let C be the set of all valid con-
figurations. A configuration ¢ € C can be presented as a function ¢: O — R which
assigns a value to every configuration option. For binary configuration options, the
range is restricted to {0, 1}:

1, configuration option o is selected,
c(0) = .
0, otherwise.

For numeric configuration options, ¢ returns a number in the range of the correspond-
ing configuration option [SGAK15]. In this work, however, we only consider binary
configuration options. This is no restriction for the variability models because every
numeric configuration can be converted to an alternative group of binary configura-
tion options. A wariability model refers to the textual or visual representation that
defines the configuration options of the configurable system and the relationships
thereof.

A wvariability diagram is a graphical representation of a variability model, which uses
hierarchical tree structures. Each node of the tree represents a configuration option
in the corresponding model. A parent-child relation indicates that the child configu-
ration option is only selectable if the parent configuration option is selected, as well.
Parent nodes are used to define more general concepts, whereas child nodes special-
ize those abstractions. Several graphical notations illustrate additional constraints,
like for instance the information if an option is mandatory or optional [ABKS16].
In Figure 2.1, we give an example of a variability diagram for a hypothetical system.
The alternative group for security forces the selection of either Standard or High.
The optional configuration option Logging enables logging functionality. Further-
more, there is a memory limit in this system, which can have three (numeric) values.

Root

Security | |Logging | |MemoryLimit

Standard | |High ML_1| |[ML_2| |ML_3

Figure 2.1: A visual representation of a hypothetical system. Mandatory and op-
tional configuration options are represented by a filled and an empty circle, respec-
tively. The edges between a parent and its children are connected with an empty
arc if it is an alternative group, where only one option can be selected at a time.

2.3. SPL Conqueror

As described above, we only focus on binary variability models, hence, the numeric
configuration option is converted into a binary alternative group where each child
represents the selection of a single numeric value.

2.3 SPL Conqueror

Given a variability model with a large number of configuration options and con-
straints, it can be difficult to find a configuration that performs as desired. Sieg-
mund et al. [SGAK15] propose to build a so-called performance-influence model,
which describes how configuration options and their interactions influence the per-
formance of the system. This mathematical model does not only give insight into
the (complex) interactions among configuration options but also enables performance
predictions for every possible configuration and subspace of the configuration space.
For instance, the inferred performance-influence model can be used to identify the
best performing configuration under certain constraints (e.g., a specific configuration
option needs to be enabled). It is also a valuable tool to check if the system behaves
as expected by comparing it with the mental model of the developer.

Siegmund et al. infer the performance-influence model for a given configurable sys-
tem in a black-box manner from a series of measurements of a set of sample con-
figurations using machine learning. They benchmark a given system multiple times
using different configurations and learn the influence of those configuration options
and their interactions from the differences among the measurements. They built
their approach on top of SPL Conqueror' which provides several sampling strategies
covering both binary and numeric configuration options. Many of those sampling
strategies make use of a constraint solver to find the best sample set.

For instance, random sampling is one of the most basic strategies. It randomly
assigns a value to every configuration option and uses a constraint solver to check,
if this assignment represents a valid configuration based on the variability model.
However, configuration spaces are often highly constrained, which means that ran-
dom sampling can become challenging because most random samples do not satisfy
the constraints [LVRK™"13]. For instance, Liebig et al. point out, that the Linux ker-
nel can be configured with about 10 000 compile-time configuration options, which
leads to possibly billions of variants that can be generated and compiled on de-
mand. Liebig et al. compute 1000000 random configurations and do not find a
single configuration that fulfills all variability model constraints of the Linux kernel.

For such cases, SPL. Conqueror provides more sophisticated sampling algorithms,
such as distance-based sampling by Kaltenecker et al. [KGS*19]. At the heart of
most sampling strategies lies the constraint solver, which is utilized to find new,
valid configurations, for example, when given a partial configuration with exactly n
selected configuration options. Every constraint solver is used as a black box and
thus, can return any configuration which fulfills the given constraints, irrespective
of whether or not it benefits the sampling strategy. This means, that the choice of
constraint solvers can greatly influence the quality and performance of the sampling
strategies.

Thttps://github.com /se-passau/SPLConqueror

https://github.com/se-passau/SPLConqueror

2. Background

3. Experiment Setup

In Section 3.1, we present the obligatory requirements that have to be fulfilled by
a constraint solver. Afterward, in Section 3.2, we present the constraint solvers
which satisfy all requirements. In Section 3.3, we introduce our research questions
regarding the comparison of the constraint solvers and describe how we attempt to
answer the research questions in Section 3.4. Finally, in Section 3.5, we present the
software systems that we use for the comparison.

3.1 Constraint Solver Requirements

A constraint solver has to fulfill several criteria to be in line for integration into
SPL Conqueror. Some of them represent basic functionality that every constraint
solver offers by definition, while others are included to be able to extend the abilities
of SPL Conqueror in the future. For instance, support for numeric variability models
is currently in an experimental state, i.e., constraint solvers should be able to work
with numeric values, even if we do not use them in this work.

Boolean and Integer’ Domains Constraints are typically specified over specific
domains. Boolean domains (for boolean configuration options) can be handled
more efficiently than integer domains (for numeric configuration options).

Satisfiability Checking As one of the most basic requirements, a constraint solver
must be able to decide, if a given formula is satisfiable or not.

Model Generation If a formula is satisfiable, the constraint solver must be able
to find a valid assignment for all variables in a formula.

Optimization’ Optimizing a given formula is a key part of several sampling strate-
gies in SPL Conqueror, e.g., given a partial configuration, it has to find a
configuration with as few selected configuration options as possible.

tWe do not use this functionality in this work but chose to require it anyway, because SPL Con-
queror will take advantage of this requirement in the future or in scopes outside of this work.

3. Experiment Setup

Platform Independence Since SPL Conqueror is available for all major operating
systems, every constraint solver has to support Linux, macOS, and Windows.

Binary API Since we aim at using the constraint solver in SPL Conqueror, every
constraint solver must provide a binary API. We explicitly allow constraint
solvers written in other programming languages than C+#.

3.2 Constraint Solver Candidates

We use well-known competitions such as the SMT Competition [HNRW19] (interna-
tional satisfiability modulo theories competition) and the MiniZinc Challenge [TS19]
(world-wide competition of constraint programming solvers) to find current state-
of-the-art constraint solvers. Both competitions are held annually and thus provide
a good overview of the many different constraint programming solvers available to
use. Due to our specific needs as described in Section 3.1 many award-winning
constraint solvers were not applicable for our use case. See Chapter A for a list of
all constraints solvers that we considered to use. Eventually, we selected six con-
straint solvers based on the 2018’s results of these competitions, which are listed
in Table 3.1.

Table 3.1: Overview of all constraint solvers in SPL Conqueror. The first two
constraint solvers have already been part of SPL Conqueror before this thesis; the
other four were integrated during the work for this thesis.

Constraint Solver Version Programming Language
73 Theorem Prover 4.8.1 C# bindings for C++
Microsoft Solver Foundation 3.1 C#

Choco 4.10 Java

JaCoP 4.6 Java

Google’s Operations Research Tools 7.0 C++

OptiMathSAT 1.6.3 C

73 Theorem Prover

Z3 [Res19] is an open-source SMT solver from Microsoft Research. It is targeted at
solving problems that arise in software verification and software analysis [dMBOSg].
Since its first external release in September 2007, Z3 has gone through three ma-
jor release cycles and was open-sourced in October 2012. One notable change was
the addition of optimization support in 2015 [BPF15]. The Z3 Theorem Prover is
written in C++ but offers various bindings for different programming languages,
including .NET, Java and Python. It has won many disciplines in the SMT Com-
petition 2018.

Microsoft Solver Foundation

The Microsoft Solver Foundation (MSF) [Mic19] is a .NET library for mathemati-
cal programming, modeling, and optimization. It uses a declarative programming

3.2. Constraint Solver Candidates

model, consisting of simple compatible elements that are solved by built-in or third-
party constraint solvers that employ operations research, metaheuristic, local search,
and combinatorial optimization techniques. The first version was published in
November 2008 and further extended in the following years. Since 2012, the Solver
Foundation team has not been active on the dedicated forums and later announced
that there will not be further standalone releases of the Solver Foundation®.

Choco

Choco [PFL19] is an open-source constraint programming library written in Java.
It originated from an early implementation (written in Claire) within the OCRE
project? — a mnational initiative for an open constraint solver for both teaching
and research. In 2003, it has been rewritten in Java for portability and to allow
easier use for newcomers. For maintenance reasons, Choco has been completely
rewritten in 2011, which has shown significant performance improvements. In the
MiniZinc Challenge 2018, Choco has been awarded “Silver” and “Bronze” in several
disciplines.

JaCoP

JaCoP [KS19] (Java Constraint Programming) is an open-source constraint pro-
gramming solver written in Java. The development began in 2001 and is still
continuously under development. Today, JaCoP provides a significant number of
constraints to facilitate efficient modeling. It also provides a modular search design
to help the user tailor the search to specific characteristics of the problem being
addressed. JaCoP participated in several MiniZinc Challenges in the last years and
has been awarded “Silver” many times.

Google’s Operations Research Tools

Google’s Operations Research Tools [Gool9] (a.k.a. OR-Tools) is an open-source
software suite for solving combinatorial optimization problems. It is written in
C++ but also provides bindings for Python, C#, and Java. The suite contains a
constraint programming solver, a unified interface to several linear programming and
mixed-integer programming solvers (e.g., GLOP, GLPK, and SCIP), several Knap-
sack algorithms, and various graph algorithms (e.g., shortest paths, min-cost flow,
linear sum assignment). OR-Tools have been awarded “Gold” in many disciplines in
the MiniZinc Challenge 2018.

OptiMathSAT

OptiMathSAT [ST19] is an Optimization Modulo Theories (OMT) solver (an um-
brella term for SAT solvers which support optimizations). It builds on the basis of
the SMT solver MathSAT 5 [GCR19] (written in C) and regularly synchronizes with
its development progress. Compared to MathSAT 5, OptiMathSAT adds support for
incremental multi-objective optimization over linear arithmetic objective functions.

Thttps://nathanbrixius.wordpress.com/2012/05/25/
no-more-standalone-releases-of-microsoft-solver-foundation
2https://www.ocre-project.eu

https://nathanbrixius.wordpress.com/2012/05/25/no-more-standalone-releases-of-microsoft-solver-foundation
https://nathanbrixius.wordpress.com/2012/05/25/no-more-standalone-releases-of-microsoft-solver-foundation
https://www.ocre-project.eu

3. Experiment Setup

3.3 Research Questions

Our goal is to compare the six constraint solver listed in Section 3.2 using several
aspects. The main task for a constraint solver in SPL Conqueror is to find a sample
set, i.e., to find valid configurations in the entire search space. To be used in practice,
it is vital for every constraint solver to deliver representative results while at the same
time be performant. Hence, we consider both the representativity of the sample set
and the computation performance when comparing constraint solvers. To this end,
we aim at answering the following research questions.

3.3.1 Representativity

The first part of the research questions deals with the quality of the sample set,
which is defined by the representativity of the configurations (in the sampling set)
with respect to the entire configuration space.

RQ 1.1

How representative are sample sets with respect to the whole population in
terms of the cardinality distribution of the configurations?

Since a configuration is a set of selected configuration options, the cardinality of
a configuration is defined by the cardinality of the option set, i.e., the number of
selected configuration options. The distribution of the cardinalities then gives a
view on the rate of interactions within the sampling set. An interaction among two
or more selected configuration options describes the potential influence, they can
exercise, which can impact the performance or correctness of the software product
line. If the cardinality distribution has only small/big cardinalities, we can assume
that the rate of interactions is small/big, as well.

However, this property alone is not enough to define representativity, since this does
not cover the selection of different configuration options. By only creating a sample
set with good coverage of the configuration cardinalities, the constraint solver may
still miss configuration options. Hence, another criterion is to cover the configuration
options themselves.

RQ 1.2

How representative are sample sets with respect to the whole population in
terms of the configuration option frequency?

The distribution of the individual (selected) configuration options gives information,
how often a configuration option is selected within the sampling set. This allows us
to see if a constraint solver varies at using different configuration options within the
sampling process. Variation is important here because this ensures better coverage
of the entire configuration space and thus leads to a more representative sample set.

3.4. Operationalization

11

RQ 1.3

How robust is the representativity of the sample sets in terms of randomness?

As a cross-cutting concern, randomness is the third component in the research ques-
tions related to representativity. Many constraint solvers make use of a Random
Number Generator (RNG), which is often used to select the value, which is assigned
to the decision variables in the constraint propagation phase. A robust constraint
solver can produce a representative sample set independently from the exact num-
bers returned by the RNG.

3.3.2 Performance

The second part of the research questions focuses on the performant computation of
configurations because even the best results can become useless if it takes excessively
long to compute them.

RQ 2.1

How fast can a constraint solver find all configurations?

There are many sampling strategies in SPL. Conqueror, which all use the constraint
solver differently. For instance, the solver-based sampling strategy uses the con-
straint solver to find n configurations. The distance-based sampling strateqy asks for
configurations, which have a specific set of configuration options selected while at
the same time expects that no more than & configuration options are selected. Due
to the different needs by the sampling strategies, we refrained from measuring the
performance to find one or few configurations and instead use the traversal time of
the entire configuration space for reference.

RQ 2.2

How robust is the performance of a constraint solver in terms of randomness?

Similar to RQ 1.3, we want to know if the seed for the RNG influences on the
performance of the constraint solvers. Constraint solvers which are not affected in
their performance by the RNG are more robust and produce more reliable results.
Additionally, this allows for more accurate performance estimations, independently
of the exact random seed.

3.4 Operationalization

In the following section, we will explain our approach of investigating, evaluating
and answering the previously defined research questions.

Let O be the set of all configuration options and let C be the set of all valid configura-
tions as described in Section 2.2. We use the constraint solvers to find subsets of O,

3. Experiment Setup

which corresponds to the usual procedure realized by sampling strategies. Those
sample sets can be of any size, but, in general, represent a specific portion of the
configuration space (e.g., 5%, 10%). To answer our research questions, we use four
sample sizes and five random seeds.

S = {0.05,0.1,0.2,0.5} R :={1,2,3,4,5}

We denote a sample set with the size “20% of the whole population”, which was
computed by a constraint solver with random seed 3 by Sample(0.2,3) C P(C). Note,
that sampling all configurations always results in the whole population regardless of
the random seed:

Vr € R: Sample(l,7) =C

To answer RQ 1.1, we focus on the cardinality distribution of the configurations in
the sample set. The cardinality of a configuration ¢ € C is defined by the number of
selected configuration options.

Card(c) = [{o € O | ¢(0) = 1} (3.1)

The frequency of a cardinality k£ € N is defined by the number of configurations in
a sample set with that exact cardinality.

Freq(k, s,r) = |{c € Sample(s,r) | Card(c) = k}| where s € S,r e R (3.2)

To be able to compare the frequencies across all subject systems, we define the
relative frequency of a cardinality k& € N by its frequency relative to the size of the
sample set.

Freq(k,s,r)

RelFreq;(k,s,r) =

= where s € S,7r € R (3.3)
|Sample(s,)|

This way, we are able to draw conclusions about the rate of interactions within a
sample set. To be able to compare the constraint solvers among each other, we
compute the difference of the relative frequency for a cardinality £ € N in a sample
set and the whole population.

Diffy(k,s,r) = RelFreq(k,s,r) — RelFreq;(k,1,7) where s € S,r € R (3.4)

Finally, we take the mean value for both frequencies to compensate for the random-
ness of the RNG.

ZTGR Freq(k,s,r)

AvgFreq;(k,s) == R] where s € S (3.5)
Diff,(k
AvgDiff,(k,s) = Lrer 1|R|1(5 7) where s € S (3.6)

To answer RQ 1.2, we focus on the distribution of the configuration options them-
selves. The frequency of a configuration option o € O is defined by the number of
configurations in a sample set containing that exact configuration option.

Freqy(o,s,r) == |{c € Sample(s,r) | c(0) = 1}| where s € S,r € R (3.7)

3.4. Operationalization

13

To be able to compare the frequencies across all subject systems, we define the
relative frequency of a configuration option o € O by its frequency relative to the
size of the sample set.

Freqs(o, s,T)

RelFreqs(o,s,1) = where s € S,7r € R (3.8)

B |Sample(s,r)‘
Here we can see if the constraint solver varies in the choice of configuration options
within the sampling process. Here we can see if the constraint solver varies in the
choice of configuration options within the sampling process. To be able to compare
the constraint solvers among each other, we compute the difference of the relative
frequency for a configuration option o € O in a sample set and the whole population.

Diffy(o,s,r) := RelFreqy(k, s,7) — RelFreqs(o,1,r) where s € S,r € R (3.9)

Finally, we take the mean value for both frequencies to compensate for the random-
ness of the RNG.

ZTGR Freqs(o, s,)

AvgFreqs(o, s) = R where s € S (3.10)
Diff
AvgDiff,(o,s) == Lrer 1|R|2(O’ 57) where s € S (3.11)

To answer RQ 1.3, we focus on the results of the previously described research
questions, since we already perform each sampling procedure multiple times using
different random seeds. We take the standard deviation of both difference functions
(Equation 3.4 and Equation 3.9) for a sample size s € S to see, if the results are
affected by the randomness.

orer (Diffy(k,s,r)) where k € N (3.12)
O'TE'R(Difo(O, 377“)) where 0o € O (3.13)

To answer RQ 2.1, we measure the time it takes to find all valid configurations,
i.e., the time it takes to traverse the entire search space. Due to the different
programming languages and runtime environments (native, JVM and CLR), we
add a warmup phase for every constraint solver.

Runtime(Sample(l,r)) := (3.14)

first, run warmup phase,
then, measure runtime for Sample(1,r)

We perform the measurements five times and use the mean runtime for our evaluation
to compensate for measurement errors.

Runtime(Sample(l,r
AvgRuntime(Sample(1,7)) = 2ass 5(ple(l,1)) (3.15)

Finally, we take the mean runtime to compensate for the randomness of the RNG.

> ,cr AvgRuntime (Sample(1,r))
IR|

(3.16)

3. Experiment Setup

To answer RQ 2.2, we focus on the results of the previously described research
question RQ 2.1, since we already perform each sampling procedure multiple times
using different seeds. We take the standard deviation of the runtime values (Equa-
tion 3.15) to see if the results are affected by the randomness.

OreR <Anguntime (Sample(1, fr))) (3.17)

We aim at giving recommendations for every research question regarding the choice
of constraint solver. The Mann-Whitney U test [MW47] enables us to rank the
constraint solvers in a way, that respects all subject systems, sample sizes, and
random seeds. Note, that for this test, we use the absolute values from Equa-
tion 3.4 and Equation 3.9, because it does not matter if a constraint solver under-
or overrepresents configuration options. The simple fact of deviating from the whole
population is deciding, if a constraint solver can produce a better sample set than
another one.

Experimental Dependencies

In our experiments, the independent variables are the subject systems, the sample
sizes, and the random seeds for the random number generator. The dependent
variables are listed below.

e the distribution of the cardinalities for RQ 1.1

the distribution of the configuration options for RQ 1.2

the standard deviation values for both frequency distributions for RQ 1.3

the runtime values for RQ 2.1

the standard deviation values for the runtime values for RQ 2.2

3.5 Subject Systems

In our experiments, we consider 14 real-world configurable software systems from
different domains and of different sizes. In Table 3.2, we provide an overview of the
subject systems.

Table 3.2: Overview of the subject systems including domain, number of configura-
tion options (|O|) and number of valid configurations (|C).

Subject System Domain 0] |C]

7z File archive utility 44 68 640
Apache Web server 19 580
Berkeley DB-C Embedded database 18 2560
Brotli Compression tool 30 180

Continued on next page

3.5. Subject Systems

15

Continued from previous page

Subject System Domain 0| |C]

Dune Multigrid solver 32 2304
ExaStencils Code Generator 47 86058
HIPA® Image processing 54 13485
HSQLDB Database Management System 18 864
Java GC Garbage collector 39 193536
LLVM Compiler infrastructure 17 65536
Polly Code optimizer 40 60000
TriMesh Multigrid system 68 239360
VP9 Video encoder 42 216000
x264 Video encoder 16 1152

7-Zip (7z) is a file archiver written in C++. Configuration options include vari-
ous compression methods, different sizes of the dictionary, and several compression
options, for example, whether or not timestamps for files should be included.

Apache is an HTTP server. It ships with a selection of Multi-Processing Modules
(e.g., prefork and worker) and includes several directives to set the limit on the
number of simultaneous requests that will be served.

Berkeley DB-C is an embedded database engine written in C. We consider configura-
tion options defining, among others, the page and cache size or the use of encryption.

Brotli is a generic-purpose lossless compression tool. Configuration options include
the size of the sliding window and the compression level.

Dune is a geometric multigrid solver for partial differential equations. As configura-
tion options, we consider different algorithms for smoothing and different numbers
of pre-smoothing and post-smoothing steps to solve Poisson’s equation.

ExaStencils is a highly automatic code generator for a large variety of efficient im-
plementations via the use of domain-specific knowledge. For instance, it offers con-
figuration options for the polyhedron model, which is used for loop parallelization.

The HIPA®® solver is an image processing framework written in C++. It provides,
among others, configuration options for different numbers of pixels calculated per
thread and different types of memory (e.g., texture, local) as configuration options.

HSQLDB is a relational database engine written in Java. We consider configuration
options defining transaction control, cache parameters and the logging mechanism.

Java GC is the garbage collector of the Java VM, which provides several configuration
options, such as disabling the explicit garbage collection call, modifying the adaptive
garbage collection boundary, and adjusting the policy size.

LLVM is a popular compiler infrastructure written in C+4. Configuration op-
tions that we considered concern code optimization, such as enabling inlining, jump
threading, and dead code elimination.

16 3. Experiment Setup

Polly is a loop optimizer that rests on top of LLVM. It provides various configuration
options that define, for example, whether or not code should be parallelized or the
choice of the tile size.

TriMesh is a library for the usage and manipulation of 3D triangle meshes. It comes
with many configuration options to control pre-smoothing and post-smoothing steps.

VPXENC (VP9) is a video encoder which uses the VP9 video coding format. It
provides different configuration options, such as adjusting the quality and bitrate of
the coded video, as well as the number of threads to use.

x264 is a video encoder for the H.264 compression format. Relevant configuration
options include the number of reference frames, enabling or disabling the default
entropy encoder, and the number of frames for rate control and lookahead.

4. Evaluation

We used 14 real-world configurable software systems from different domains and of
different sizes to increase our external validity and evaluate the constraint solvers.
Concerning this vast amount of data, we refrain from depicting all individual results
and instead focus on important parts to illustrate the big picture. Furthermore,
we provide several rankings for all constraint solvers that consider all 14 subject
systems.

4.1 Representativity

The quality of a sample set describes, how well the entire configuration space is
represented. As described in Section 3.4, we use two metrics to evaluate those sample
sets: the distribution of the cardinalities and the distribution of the configuration
options.

For this section, we focus on the file archive utility 7-Zip (7z) to present our results.
Its variability model is illustrated in Figure 4.1. 7-Zip offers configuration options
for various compression methods such as BZip2 and Deflate, different sizes for the
compression dictionary, and several compression options such as, whether or not
timestamps for files should be included. In total, 7z has 44 (binary) configuration
options and 68 640 valid configurations.

As described in Section 3.4, we sampled multiple subsets of the configuration space
and analyzed the resulting sample sets. In more detail, Z3, Choco, JaCoP and
OptiMathSAT each had to compute 20 sample sets (four sample sizes in S and five
random seeds in R). MSF and OR-Tools had to compute four sample sets (four
sample sizes in &) because they do not support a custom random seed. We now
compare these sample sets to the whole population to draw conclusions about their
representativity.

4. Evaluation

18

root

mtOff CompressionMethod HeaderCompressionOff Files filterOff BlockSize tmOff X

=X

LZMA | |LZMA2 | |PPMd| |BZip2| |Deflate 10| --- |100 200 (28] ... |22 ﬂ M -+ 110

Figure 4.1: Variability model of 7z consists of four optional configuration options and one alternative group (CompressionMethod).
Files, BlockSize and x are also represented via alternative groups, because in the initial (numeric) variability model, those have
been of numeric type and were converted into (binary) alternative groups. In total, 7z has 44 configuration options and 68 640 valid

configurations.

4.1. Representativity

RQ 1.1

How representative are sample sets with respect to the whole population in
terms of the cardinality distribution of the configurations?

In Figure 4.2, we illustrate the cardinality distribution of the configurations for
all four sample set sizes (see Equation 3.5). For this subject system, there exist
configurations with 4 to 8 selected configuration options (z-axis). For instance,
there are 25740 configurations with cardinality 6 in the whole population (sample
size 100%). The graph representing the whole population (black line) is the same for
all six constraint solvers, as its shape is solely defined by the variability model and not
influenced by any external factors such as, for example, the constraint solvers. The
actual sample sets (5%, 10%, 20%, and 50%) can have a different shape depending
on the constraint solver. An optimal constraint solver (concerning the cardinality
distribution) would compute a sample set which has a similar cardinality distribution
as the whole population. This comes from the fact, that an optimal constraint solver
uniformly selects configurations from the entire search space, which then have a
cardinality distribution corresponding to the distribution of the whole population.
This is not the case, as the graphs of MSF are shifted to the left, i.e., MSF prefers
configurations with only a few selected configuration options.

To be able to compare the frequencies across all subject systems and to see the dif-
ference to the whole population, we present the difference of the relative frequencies
in Figure 4.3. Again, for MSF, the configurations with less than 6 selected config-
uration options are overrepresented for all sample sizes, whereas the configurations
with at least 6 selected configuration options do not occur as often as they do in the
whole population. A similar pattern is seen with the sample set computed by Z3.
Choco, JaCoP, and OptiMathSAT, on the other hand, were able to sample a very
good subset of the configuration space, that is very similar to the whole population.
In most cases (all constraint solvers, all cardinalities), bigger sample sizes imply less
deviation from the whole population. In particular, this can be seen in those cases
with a bigger difference in the smaller sample sizes like MSF and Z3.

Comparing the average difference from the whole population, Choco and JaCoP,
and OptiMathSAT compute the best sample sets concerning the configuration car-
dinality. MSF computes a less-than-ideal sample set (difference greater than 20%),
even when sampling 20% of the whole population.

Cardinality Distribution — Summary

We presented the cardinality distribution for several sample sizes for 7z. We saw that
some sample sets are representative for the whole population, while others deviate
heavily. This is particularly the case when only a small portion (= 5%) of the entire
configuration space is sampled.

To summarize the results concerning the cardinality distribution, we provide a rank-
ing for all six constraint solvers, which is based on the deviation from the whole
population. For this ranking, we took all subject systems and all random seeds into

20 4. Evaluation
number of selected options
4 5 6 7 8
5 30000 30000
£ 2000 [z8] T 30000
£ 15000 = e i N 15000
5 10000 _— T~ 10000
Z 5000 = T~ 5000
8 0 | E— —— ——————— 3 0
% 30000 30000
25000 | o 25 000
£ %000 | o= — T 20 000
£ 15000 . T 15000
% 10000 e T~ 10000
= i \
S SM=— 5000
S 0 s 0
= 30000 30000
]
1 R — o
= 15000 T T 15000
5 10000 — = - T~ 10000
E h000e— —>~ 5000
3 A — — m— e —
3 0 0
2 30000 30000
2 25000 |[JaCoP 25 000
£ 20000 [72CoP] — T 20000
£ 15000 15000
& 10000 10000
= 5000 5000
! 0 0
2 30000 30000
£ 25000 25000
£ 20000 20 000
£ 15000 15000
& 10000 10000
= 5000 5000
S 0 0
5 30000 _ | 30000
S 3(5) 888 [OptiMathSAT| e 38 888
£ 15000 = i N 15000
5 10000 — - T~ 10000
ER et S L~ 5000
S 0 o § 0
4 5 6 7 8
number of selected options
—eo— 5% —e— 10% —e— 20% —e— 50% —e— 100%

configurations configurations configurations configurations configurations

configurations

Figure 4.2: Cardinality distribution for 7z. We illustrate the average cardinality
across all random seeds (see Equation 3.5). Every line represents a different sample
size relative to the whole population.

4.1. Representativity 21

number of selected options

4 5 6 7 8
0% o] | | | | 40%
5 20% IZT?" - 0% &
]]
= 0% | 0% 3
g -20% rT Trre 20% €
= 40% -40%
40% | 40%
& 20% | 20% S
= 0% 0% =
g -20% 20%
= _40% -40%
40% | 40%
S 900 | L0 20% £
L . -)
= 0% —I——I—-I-?——{-—-I-—-z-—T = 1-1 -f"!'“I_i__?ﬁi_ 0% =
g -20% -20%
= _40% -40%
40% | 40%
? 20% JaCoP | 2007 ?
- DS A ———— |
o -20% -20% o
= _40% -40%
40% | 40%
~Tool
& 00 |L2RT00s | i 20% £
T -20% [20%
= _40% -40%
40% 1o = 40%
§20% |Opt1MathSAT| 20% ?
= 0% —f-x- I =z— =1 =-— (% Z
g -20% 20% €
= 40% -40%

4 5 6 7 8
number of selected options
5% o 10% messs 20% s 50% ——— StDev

Figure 4.3: Relative frequency difference of the cardinalities for 7z. FEvery bar
represents a different sample size relative to the whole population and illustrates the
average relative frequency across all random seeds (see Equation 3.6). The whiskers
indicate the standard deviation caused by the random seeds (see Equation 3.12).

22

4. Evaluation

very good

mediocre

best

good

bad

worst

73 MSF Choco JaCoP OR-Tools OptiMathSAT

(a) Distribution of the rankings. By using the Mann-Whitney U test, we take all 14 subject
systems, 4 sample sizes and 5 randoms seeds into account. The white dots represent the
median rank for every constraint solver.

Cardinality Distribution Ranking

@ OptiMathSAT, Choco, JaCoP

OR-Tools, 73

(3) MSF

(b) On average, OptiMathSAT, Choco, and JaCoP compute the best sample sets concern-
ing the distribution of the cardinalities. OR-Tools and Z3 both can compute a sample
set just as good, but there are cases, where they fail to do so. MSF does not deliver
representative results.

Figure 4.4: Constraint solver ranking based on the cardinality distribution.

4.1. Representativity

23

account and used the Mann-Whitney U test to decide if one sample set deviates less
than another one. The ranking is shown in Figure 4.4.

The worst constraint solver concerning the cardinality distribution is MSF. 75% of
the sample sets computed by MSF are less representative than those computed by
any other constraint solver. OptiMathSAT, on the other hand, is the best constraint
solver, when sample sets are required where the configurations have similar cardinal-
ities compared to the whole population. The other constraint solvers behave almost
identical in the average case, whereby Choco and JaCoP compute better results in
edge cases.

RQ 1.2

How representative are sample sets with respect to the whole population in
terms of the configuration option frequency?

In Figure 4.5, we illustrate the configuration option frequency in a sample set for all
four sample sizes (see Equation 3.10). As illustrated in Figure 4.1, the variability
model for 7z contains 44 binary configuration options. Every variability model has
a root option, which is always part of every configuration. Every alternative group
also has a parent option, which is always selected, if a child option is selected, too.
Hence, those configuration options do not provide any added value to our analysis,
which is why we excluded them for the sake of readability. For 7z, this leaves us
with 39 “important” configuration options spread over the z-axis. For instance, there
are 13728 configurations in the whole population (sample size 100%) that have the
configuration option Deflate selected. Note, that a configuration option can be
selected in more than one configuration.

Similar to the previous figures, the graph representing the whole population (black
line) is the same for all six constraint solvers, as its shape is solely defined by
the variability model and not influenced by any external factors like the constraint
solvers. The actual sample sets (5%, 10%, 20%, and 50%) can have a different shape
depending on the constraint solver. An optimal constraint solver (concerning the
configuration option frequency) would compute a sample set which has a similar
configuration option frequency as the whole population. For example, MSF com-
putes quite ideal sample sets where only a few configuration options deviate from
their optimal frequency.

To better visualize the actual difference, we illustrate the difference of the relative
frequencies with respect to the whole population in Figure 4.6. All six constraint
solver deviate from the frequency distribution of the whole population, whereas some
do more than others. Comparing the average deviation from the whole population,
MSF and OR-Tools seem to able to compute the best sample sets concerning the
configuration option frequency.

Configuration Option Frequency — Summary

We presented the frequency distribution of the configuration options for several sam-
ple sizes for 7z. We saw that every sample set deviates from the whole population,
some more than others.

4. Evaluation

24

01X

X

@un

ﬂun

Nun

Oum

Bouwy
BOu
humOQ
PINdd
CVINZ'T
VINZ'T
poidwop
00Tsert A
068911
08S9td
0.L891tq
098911
0Gsortq
07SeItd
0€s9ltd
0Zsertd
0Tsortg
0ot g
oreged
96073 °1d
870ZP1d
¥coTRId
c19¥o1d
96¢3P1d
8T T31d
793114
cedId
91321d
SM1d
71d
o1d
P1d
gdizg

SUOI)RINGYUOD SUOIJRINGHUOD SUOIJRINGYUOD SUOIRINSHUOD SUOIJRINSHYUOD SUOI)RINSHUOD
e Sl e i o B o T e B e S o B o S o B o S o B o Y o B o B o B o B e S e S e S o S o S o S o S e S e S o S e B o B)
o O O O o OO O o OO O o O O O o O O O o OO O
S 5 5 3 S S 353 S 5 & S S35 5 3 S S35 3 S 5 5 S
o O O O o O O O o O O O o O O O o O O O o O O O
F N N~ F 5 — F A Q —~ F oS> Q —~ F A5 Q —~ F o QN —~
b by 4 / d
ﬁ 1.0
—~— .l —~— /l/‘ ~— —~— —~—
3 S
] 1
R\ K "“\l\ .I.“\ / R\ D‘“\I\ R\ “““
< < < i< << <
Ny
(=]
<
= nm
e IB=
S
— o o i i
! B : S 1 E
4N 1= O — 1O O
, o4 , o~ : T : o~ : T , o
O O O O O O O O O O O O O o oo oo oo oo o oo o0 o oooo
S S S S S S 33 S S S S S S S S S S 3S S S S 38 S
o O O O o O O O o O O O o O O O o O O O o O O O
o o
<t MM AN <t M AN <t M O - <t M AN - <t M AN — <t MM AN
SUOIRINGHUOD SUOIJRINSHUOD SUONIRINGHUOD SUOIPRINSHUOD SUOIRINGHUOD SUOI)RINSHUOD

VINZ1
poxdwop
00Tsel A
06891t
08s9ltq
0.Lsortd
09891t
0Gsortq
0Fsortd
0€sortd
0csoltd
0Tsortd
0so1tq
oregeod
96073°1d
SY0CHRId
yco1R1Id
c191d
96C3 1
STTId
¥93°1d
ceRId
913P1d
SI1d
71d
oP1d
P1d
gdizg

—e— 20% —e— 50% —e— 100%

—— 10%

—— 5%

We illustrate the average fre-

Figure 4.5: Configuration option frequency for 7z.

quency across all random seeds (see Equation 3.10). Every line represents a different

sample size relative to the whole population.

4.1. Representativity

frequency
frequency

frequency
frequency

frequency
frequency

frequency
frequency

frequency
frequency

frequency
frequency

ponS2E 28 o

P NAAAAEmm AR AR REEEREEEEE RO NN SEERYTRER
100% ettt vt i 100%
50% lZ_S‘ 50%
e Lﬁ*yﬂﬁgﬁm&ﬁﬂxmk 0%
-50% 50%
-100% -100%
100% ———— 100%
50% |[MSE | 50%
0% |- L 0%
-50% | u 50%
~100% ? u ~100%
100% —— 100%
50% || Choco L b i 50%
0% mebirsr—e— &w{&-&&z—gm@wr et = 0%
-50% 50%
-100% -100%
100% 100%
507 |[JaCoP ; PR 50%
0% gwwﬁzﬁmwy o }%@m%xﬁfrm Pt o= == 0%
-50% 50%
-100% -100%
100% — 1 100%
50% || OR-Tools | 50%
0% = L. o L 5 - 0%
-50% . 50%
“100% 3 -100%
100% e 100%
507 ||OptiMathSAT| 50%
0% marpmar e i 5 . Tl bl 0%
-50% -50%
2100% L) ~100%

e FEEEEE R E R R L LR B PR

RSN Y

O

s 5% o 10% s 20% osssm 50% —— StDev

Figure 4.6: Relative frequency difference of the configuration options for 7z. Every
bar represents a different sample size relative to the whole population and illus-
trates the average relative frequency across all random seeds (see Equation 3.11).
The whiskers indicate the standard deviation caused by the random seeds (see Equa-
tion 3.13).

26

4. Evaluation

very good

mediocre

best

good

bad

worst

73 MSF Choco JaCoP OR-Tools OptiMathSAT

(a) Distribution of the rankings. By using the Mann-Whitney U test, we take all 14 subject
systems, 4 sample sizes and 5 randoms seeds into account. The white dots represent the
median rank for every constraint solver.

Configuration Option Frequency Ranking

(L) MSF

JaCoP, Choco, OR-Tools

(3) OptiMathSAT, 73

(b) On average, MSF computes the best sample sets concerning the frequency of the
configuration options. JaCoP, Choco, and OR-Tools deliver slightly less representative
results. While OptiMathSAT and Z3 can compute good sample sets, in most cases they
fail to do so.

Figure 4.7: Constraint solver ranking based on the configuration option frequency.

4.2. Performance

27

To summarize the results concerning the configuration option frequency, we provide
a ranking for all six constraint solvers, which is based on the deviation from the
whole population. For this ranking, we took all subject systems and all random
seeds into account and used the Mann-Whitney U test to decide if one sample set
deviates less than another one. The ranking is shown in Figure 4.7.

73 and OptiMathSAT cover the full range, i.e., it completely depends on the subject
system, if the sample set has a similar configuration option frequency as the whole
population. MSF' turns out to win this ranking by far because it computes an almost
perfect sample set for many subject systems.

RQ 1.3

How robust is the representativity in terms of randomness?

Another important part for the quality of the sample sets is the robustness of the
constraint solvers against randomness. Most constraint solvers, namely Z3, Choco,
JaCoP, and OptiMathSAT allow the user to set a random seed. Although OR-Tools
offer a method to adjust the random seed, it does not affect the constraint solver.
MSEF' does not provide this ability at all.

As defined in Equation 3.12 and Equation 3.13, the standard deviation of the dif-
ferences can be seen in both Figure 4.3 and Figure 4.6. Every bar is associated
with a whisker indicating the standard deviation when different random seed values
are used. The cardinality frequencies are not as heavily influenced as the configura-
tion option frequencies and the sample sets computed by the Java-based constraint
solvers (Choco and JaCoP) vary greatly when different random seeds are used. How-
ever, the random seed has increasingly less influence when bigger sample sizes are
used.

To summarize the results concerning the randomness, we provide a ranking for the
four constraint solvers, which support a custom random seed. For this ranking, we
took all subject systems and all random seeds into account and used the Mann-
Whitney U test to decide if one sample set deviates less than another one. The
ranking is shown in Figure 4.8. As mentioned above, OptiMathSAT is least influ-
enced by the random seed, followed by Z3. The representativity of the sample sets
computed by Choco and JaCoP can vary greatly, depending on the seed for the
Random Number Generator.

4.2 Performance

In SPL Conqueror there are several sampling strategies, which ask for a configuration
with a specific set of selected configuration options hundreds of times until some
condition is met. Hence, a constraint solver needs to deliver a solution as fast as
possible to be usable in practice. We explicitly refrained from using such scenarios
to evaluate the performance of a constraint solver, because SPL Conqueror provides
many sampling strategies, which all use the constraint solver in slightly different
ways. Instead, we measure the time it takes to find all configurations in the entire

28 4. Evaluation

best

good

bad

worst

73 Choco JaCoP OptiMathSAT

(a) Distribution of the rankings. By using the Mann-Whitney U test, we take all 14 subject
systems, 4 sample sizes and 5 randoms seeds into account. The white dots represent the
median rank for every constraint solver.

Robustness Ranking

(1) OptiMathSAT

73

(b) On average, OptiMathSAT is least influenced by the randomness, followed by Z3,
Choco and JaCoP. Note, that MSF and OR-Tools do not provide the ability to set a
custom random seed.

Figure 4.8: Constraint solver ranking based on their robustness.

runtime in ms

4.2. Performance 29

search space because this way we are independent of the actual sampling strategy.
All experiments were executed on a machine with an octa-core Intel Xeon E7 with
2.4 GHz and 32 GB RAM.

RQ 2.1

How fast can a constraint solver find all configurations?

The runtime results for the compiler infrastructure LLVM can be seen in Figure 4.9.
We measured two aspects:

e Initialization: before a constraint solver instance can be used, the constraint
solver has to be set up by inserting all variables (i.e., configuration options)
and constraints into the solver object.

e Sampling: once the constraint solver has been set up, we can use it to traverse
the configuration space and find all (here: 65536) solutions defined by the
variability model.

We found, that MSFE, OR-Tools, and OptiMathSAT can be used instantly because
those happen to be static libraries. Static linking compiles all of the library code
directly into the executable, which results in a reduced overhead from no longer
having to call functions from a library and thus leads to faster load times. Choco
and JaCoP — being Java-based constraint solver — need to load the appropriate
Jar-files, i.e., function calls are found in shared code libraries, which have to be
loaded at runtime due to the dynamic nature of Java. While Z3 is written in C++,
we use the official C# bindings, which creates a small overhead during the setup
phase.

108 1d 4h
107 -+ 3h
106 - -+ 17min
10° .+ 2min
10 - -~ 10s
107 " {1
102 i - 4 100ms
10! -+ 10ms
10° _. - —J 1ms
73 MSF Choco JaCoP OR-Tools OptiMathSAT
Initialization m— Sampling Seed Influence +——

Figure 4.9: Comparision of the constraint solver performance for LLVM. We illustrate
the average runtime across all random seeds (see Equation 3.16). The whiskers
indicate the standard deviation caused by the random seeds (see Equation 3.17).

4. Evaluation

For the actual sample phase, JaCoP outperforms all other constraint solvers with
just 164 milliseconds. Choco runs about twice as long (297 milliseconds), followed
by MSF (1 second), and OR-Tools (5 seconds). Z3 (17 minutes) and OptiMathSAT
(3 hours) still run a considerable amount of time longer. A similar picture can be
seen for all other subject systems.

RQ 2.2

How robust is the performance of a constraint solver in terms of randomness?

We executed the experiments for five different random seeds and illustrate the stan-
dard deviation of the runtime in Figure 4.9. For all subject systems, that we used,
we found that the influence of the randomness is negligible (=~ 2%).

Performance — Summary

We saw, that there is a significant difference in the runtime of each constraint solver.
Some operate in the range of milliseconds while others can take up to several hours
to complete the same task.

To summarize the results regarding the performance, we provide a ranking for all six
constraint solvers, which is based on the time it takes to traverse the configuration
space. For this ranking, we took all subject systems and all random seeds into
account and used the Mann-Whitney U test to decide if one constraint solver runs
faster than another one. The ranking is shown in Figure 4.10.

JaCoP is the clear winner for all subject systems, followed by Choco, MSF, and OR-
Tools. On the other hand, Z3 and OptiMathSAT took the most time to complete
their tasks. For bigger variability models (at least 60000 configurations), those two
regularly ran into our maximum runtime limit of ten hours.

Further Findings

In addition to the subject systems listed in Table 3.2, we challenged JaCoP further
by using substantially bigger subject systems.

e The subject system DellFM has 131 configuration options and in total 1 128 674
configurations. JaCoP is still able to find all configurations in about 10 sec-
onds.

e The subject system LargeAutomotiveFM has 18 641 configuration options and
633631 constraints. We increased the memory limit of the JVM to 100 GB
and JaCoP was able to sample up to 50000 configurations in less than one
minute before it exceeded the memory limit.

4.2. Performance

best

very good

good

mediocre

bad

worst

73 MSF Choco JaCoP OR-Tools OptiMathSAT

(a) Distribution of the rankings. By using the Mann-Whitney U test, we take all 14 subject
systems, 4 sample sizes and 5 randoms seeds into account. The white dots represent the
median rank for every constraint solver.

Performance Ranking

OR-Tools

() 73

(6) OptiMathSAT

(b) On average, every constraint solver has its own performance characteristics. JaCoP
operates in the order of hundreds of milliseconds, Choco and MSF in the order of few
seconds, and OR-Tools compute the whole population within a couple of seconds. Z3 can
take several minutes to traverse the entire configuration space. Finally, OptiMathSAT
comes in last, as for many subject systems it can take hours to complete the search. Note,
that both Z3 and OptiMathSAT were not able to sample the whole population within ten
hours for variability models with more than 60 000 configurations.

Figure 4.10: Constraint solver ranking based on their performance.

4. Evaluation

4.3 Threats to Validity

In this section, we present different factors that could affect the validity of our
work. We divide them into internal factors, which threaten our implementation and
evaluation and external factors, which threaten the generalizability of our work.

Internal Validity

Whenever executing performance measurements of all kinds, it has to be ensured
that the results do not get distorted by random fluctuation between different it-
erations. Therefore, we measured the runtime to find all configurations five times
and took the mean value. We ran all performance-related experiments on the same
cluster (see Section 4.2) to eliminate hardware influences.

Due to our selection of constraint solvers, which were written in different program-
ming languages, we had to standardize the measuring of time. That is why, we
added a warmup phase to every execution, such that language-dependent initializa-
tion, constraint solver initialization and additional loading time for dynamic libraries
are not included in our measurements.

We thoroughly tested the implementation, which integrates the new constraint
solvers (Choco, JaCoP, OR-Tools, and OptiMathSAT) into SPL Conqueror and
compared them with the existing constraint solvers (MSF and Z3) based on their
output. This allows us to minimize the risk of programming errors, which would
threaten our work.

External Validity

Every constraint solver has its own set of parameters which can slightly adapt the
search to special cases or change the search strategy entirely. This allows the user
to tune the performance of the constraint solver. However, as Xu et al. [XJF*15]
state, too many knobs do come with a cost: users encounter tremendous difficulties
in knowing which parameters should be set among the large configuration space. We
decided to not make use of such knobs because not all constraint solvers did offer
the same set of tools. Additionally, for the CSP solvers, most parameters only make
sense when numeric values are used and since we only cover binary configuration
options, this is outside of the scope of this thesis.

We evaluated the constraint solvers using numerous subject systems from different
domains. The different number of configuration options and constraints further
increase our external validity and allows us to generalize our findings.

5. Related Work

Benavides et al. [BTRCO05] describe how a variability model can be mapped onto
a Constraint Satisfaction Problem. They also compare Choco and JaCoP in the
automated analyses of variability models and come to the conclusion, that JaCoP is
on average 54% faster than Choco in finding a solution. This is in agreement with
our results, where JaCoP is on average 62% faster than Choco.

Marten [Mar18] compares a SAT solver with a CSP solver and a Binary Decision Di-
agram (BDD) using artificial variability models, which he creates by varying several
attributes such as the number of configuration options, the feature tree depth and
the number of cross-tree constraints. He finds, that the BDD approach is best suited
for SAT problems and that the performance of the CSP solver and the SAT solver
does not directly depend on the types of configuration options (binary/numeric),
rather the number of valid configurations defined by the variability model.

Jomu George and At Mohamed [JGAM11] measure the effectiveness of VCS2009.06
against other commercially available constraint solvers to analyze test coverage re-
sults and adapt the test generation process to improve the coverage. They find, that
V(CS2009.06 is not only powerful but does also provide a simple and rich syntax to
describe the problem.

Benavides et al. [BSTRCO05] attach additional attributes to configuration options and
use constraint programming for automated reasoning on those extended variability
models. This allows for answers to questions such as how many potential products
a model has or which the best product according to some criteria is.

Murashkin et al. [MAG™15] aim at finding all optimal Automotive Safety Integrity
Level (ASIL) allocations using off-the-shelf constraint solvers. They implement their
approach using three major classes of state-of-the-art solvers: Choco for Constraint
Satisfaction Problem, Z3 for Satisfiability Modulo Theories, and CPLEX ILP Solver
for Integer Linear Programming (ILP). However, in their approach, Z3 outperforms
Choco. Compared to our results, this can be explained by the different version
of the constraint solvers. Murashkin et al. use Z3 in version 2.0, while we use
Z3 in version 4.8.1. As mentioned in Section 3.2, Z3 gained the ability to work

34

5. Related Work

with optimization in version 4.4.1. This means, that Murashkin et al. use a highly
optimized SAT solver, while we use an OMT solver. Additionally, they use numeric
constraint in their work, in contrast to our exclusively binary variability models.

6. Conclusion and Future Work

6.1 Conclusion

Variability models are an integral part of the analysis of highly configurable software
systems. They define the configuration options of a system together with numerous
constraints among them. However, deriving all valid configurations (whole pop-
ulation) is usually infeasible for complex systems. Instead, one obtains a small,
representative sample set which covers the configuration space. There exist various
strategies on how to select the configurations for the sample set. However, simple
random sampling is challenging, because most random samples do not satisfy the
constraints, due to the highly constrained configuration spaces. More sophisticated
strategies make use of a constraint solver, whose purpose is to find new valid config-
urations, which can then be incorporated into the individual sampling strategy. Of
course, the properties of the constraint solver can heavily influence the performance
of the sampling process (both runtime and quality of the outcome).

In this work, we compared six off-the-shelf constraint solvers: Z3, Microsoft Solver
Foundation (MSF), Choco, JaCoP, OR-Tools, and OptiMathSAT. We integrated
them into SPL Conqueror (a software suite for variability analysis) and used them
to obtain sample sets from 14 variability models of different size and complexity. We
analyzed those sample sets and ranked the constraint solvers based on their ability
to provide representative configurations, whereby representative configurations can
refer to different metrics based on the research question.

First, we focused on the overall shape of the sample set: the number of selected op-
tions in a configuration, i.e., the cardinality distribution of the sample set. We found,
that MSF does not compute representative sample sets compared to the whole popu-
lation, but prefers configurations with few selected configuration options. Sampling
strategies which aim at projecting the cardinality distribution of all valid configu-
rations onto the sample set should refrain from using Microsoft Solver Foundation.
The best constraint solver (out of our six selected ones) for this task is OptiMath-
SAT. The other constraint solvers all perform equally as good in the average case,
with Choco and JaCoP usually surpassing Z3 and OR-Tools.

6. Conclusion and Future Work

Second, we analyzed the configurations themselves, i.e., the frequency of the con-
figuration options in the sample set. All six constraint solvers deviate from the
frequencies in the whole population — some more than others. Again, JaCoP and
Choco perform very well compared to all other constraint solvers. Only MSF draws
better distributions, which comes not as a surprise, as this constraint solver prefers
configurations with few selected configuration options. This way, it traverses through
most configuration options and creates a distribution similar to that of the whole
population.

Third, we took randomness into account, since both cardinality distribution and the
frequency of the configuration options can be influenced by a random seed. MSF
and OR-Tools do no support a custom random seed. The other four constraint
solver all compute different results when the seed value changes. We found, that
OptiMathSAT and Z3 are more robust against randomness as JaCoP and Choco.

Finally, we measured the runtime of the sampling process. The time for the initial-
ization of the constraint solver is negligible compared to the actual sampling. We
found, that there is a clear ranking among the individual constraint solvers. This
order is (almost) consistent over all 14 variability models and hence is independent
of their size and complexity. JaCoP outperforms all other constraint solvers in all
cases and is even (to a certain degree) able to handle significantly larger variability
models (more than 1 million configurations). Choco — ranked second — also per-
forms very well, but fails to obtain sample sets from the huge variability models due
to memory overflow. Both Java-based constraint solvers complete the sampling pro-
cess in a matter of seconds. Microsoft Solver Foundation has a similar, but slightly
worse performance than Choco. For our subject systems, OR-Tools operate in the
order of tens of seconds. Performance-wise, Z3 and OptiMathSAT were not able to
complete all tasks that the other constraint solvers could do. Both regularly hit our
maximum time limit of ten hours for bigger variability models (more than 60000
configurations). If they completed the sampling in time, Z3 did that in the order of
tens of minutes while OptiMathSAT needed several hours.

In summary, every constraint solver has different characteristics in the different as-
pects that we chose to evaluate them. If special abilities (e.g., representativity in the
cardinalities of the configurations) are required, there are constraint solvers for those
areas, but they come with the drawback of poor performance. In particular, Opti-
MathSAT might compute representative sample sets but does that in a time frame
that is not acceptable in most scenarios. On the other hand, JaCoP and Choco per-
formed quite well in both representativity of the sample set and the performance to
compute those results. Additionally, JaCoP can handle far bigger variability models.
This makes them a good starting point for every sampling strategy regardless of its
needs. We recommend to replace Z3 by JaCoP as the default constraint solver in
SPL Conqueror, since it performs well in all aspects.

6.2 Future Work

In our work, we only made use of variability models with binary configuration op-
tions. Some of the subject systems initially used numeric configuration options, but
we converted those to use exclusively binary configuration options. This does not

6.2. Future Work

limit the applicability of our experiments, because a numeric variability model can
be converted to only use binary configuration options and constraints. Since the
support for numeric variability models in SPL. Conqueror is currently in an experi-
mental state, we did not cover these areas.

Similarly, we did not evaluate the constraint solvers with variability models con-
taining mixed constraints, i.e., constraints containing both binary and numeric con-
figuration options. Once SPL Conqueror and in particular, the sampling strategies
support numeric configuration options, this evaluation can be refined.

Finally, we did not take Integer Linear Programming (ILP) solvers into account, be-
cause of their fundamentally different approach using equations for constraints. This
makes the conversion process (variability model to formula) more expensive but does
not disqualify them for variability analysis, since they fulfill all requirements as de-
scribed in Section 3.1. Based on the promising results of Murashkin et al. [MAG™15],
even a performance improvement over CSP solvers may be expected.

38

6. Conclusion and Future Work

A. Appendix

A.1 CSP Solver Listing

Table A.1: CSP solver candidates for SPL Conqueror integration.

Solver Language Decision Notes

Choco 4 Java v —

iZplus X only available in chinese
JaCoP Java v —

OR-Tools C++ v —

Picat SAT X custom language

sunny-cp - X constraint solver combination
Yuck Scala X no library

A.2 SMT Solver Listing

Table A.2: SMT solver candidates for SPL Conqueror integration.

Constraint Solver Language Decision Notes

ABsolver C++ X no library

Alt-Ergo OCaml X no support for optimization
Barcelogic CH++ X no library

Beaver OCaml X no library

Boolector C X no support for optimization
CV(C4 C++ X no support for optimization

Continued on next page

40

A. Appendix

Continued from previous page

Constraint Solver Language Decision Notes
iSAT X no library
Microsoft Solver NET v —
Foundation
MathSAT C, Python, v via OptiMathSAT extension
Java
MiniSmt X no library
Norn X no library
OpenCog C++, Python X not intended for end-users
OpenSMT C++ X no support for optimization
raSAT X no library
SMTInterpol Java X no support for optimization
SMCHR C X no library
SMT-RAT C++ X toolbox for constraint solver
composing
SONOLAR C X no library
Spear X no library
STP C, C++, X no support for optimization
Python,
OCaml, Java
SWORD X no support for optimization
veriT C/C++ X decent efficiency
Yices C X no support for optimization
73 C/C++, v —
NET, OCaml,

Python, Java

Bibliography

[ABKS16]

[BPF15]

[BSTRCO5]

[BSTRCO6]

[BTRCO5]

[AMBOg]

[dMB11]

[dMDS07]

[FW74]

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, 2016. (cited on Page 4)

Nikolaj Bjgrner, Anh-Dung Phan, and Lars Fleckenstein. vZ — An
Optimizing SMT Solver. In International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 194-199.
Springer, 2015. (cited on Page 8)

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-
Cortés. Using Java CSP Solvers in the Automated Analyses of Feature
Models. In International Summer School on Generative and Transfor-
mational Techniques in Software Engineering, pages 399-408. Springer,
2005. (cited on Page 1 and 33)

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-
Cortés. A First Step Towards a Framework for the Automated Analysis
of Feature Models. Managing Variability for Software Product Lines:
Working With Variability Mechanisms, pages 39-47, 2006. (cited on
Page 1)

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Using Con-
straint Programming to Reason on Feature Models. In SEKE, pages
677-682, 2005. (cited on Page 1 and 33)

Leonardo de Moura and Nikolaj Bjgrner. Z3: An Efficient SMT Solver.
In International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337-340. Springer, 2008. (cited on
Page 8)

Leonardo de Moura and Nikolaj Bjgrner. Satisfiability Modulo Theories:
Introduction and Applications. Communications of the ACM, 54(9):69—
77, 2011. (cited on Page 3)

Leonardo de Moura, Bruno Dutertre, and Natarajan Shankar. A Tu-
torial on Satisfiability Modulo Theories. In International Conference
on Computer Aided Verification, pages 20-36. Springer, 2007. (cited on
Page 3)

Jay Fillmore and Gill Williamson. On Backtracking: A Combinatorial
Description of the Algorithm. SIAM Journal on Computing, 3(1):41-55,
1974. (cited on Page 3)

42

Bibliography

(GCR19]

[Gool9]

[HNRW19)

[JGAMI11]

[KGS+19)

[KS19]

[LVRK*13]

[MAG*15]

[Mar18]

[Mic19]

[MW47]

Alberto Griggio, Alessandro Cimatti, and Sebastiani Roberto. Math-
SAT. Website, July 2019. Available online at http://mathsat.fbk.eu;
visited on July 15th, 2019. (cited on Page 9)

Google. Operations Research Tools. Website, April 2019. Available
online at https://developers.google.com /optimization; visited on April
2th, 2019. (cited on Page 9)

Matthias Heizmann, Aina Niemetz, Giles Reger, and Tjark Weber. In-
ternational Satisfiability Modulo Theories Competition 2018. Website,
March 2019. Available online at http://smtcomp.sourceforge.net/2018/
index.shtml; visited on March 18th, 2019. (cited on Page 8)

Mani Paret Jomu George and Otmane Ait Mohamed. Performance
Analysis of Constraint Solvers for Coverage Directed Test Generation.
In ICM 2011 Proceeding, pages 1-5. IEEE, 2011. (cited on Page 33)

Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jian-
mei Guo, and Sven Apel. Distance-Based Sampling of Software Con-
figuration Spaces. In Proceedings of the International Conference on
Software Engineering, pages 1084-1094. IEEE Press, 2019. (cited on
Page 1 and 5)

Krzysztof Kuchcinski and Radoslaw Szymanek. JaCoP Solver. Web-
site, March 2019. Available online at https://osolpro.atlassian.net/
wiki/spaces/JACOP /overview; visited on March 11th, 2019. (cited on
Page 9)

Jorg Liebig, Alexander Von Rhein, Christian Késtner, Sven Apel, Jens
Dorre, and Christian Lengauer. Scalable Analysis of Variable Software.
In Proceedings of the Joint Meeting on Foundations of Software Engi-
neering, pages 81-91. ACM, 2013. (cited on Page 5)

Alexandr Murashkin, Luis Silva Azevedo, Jianmei Guo, Edward
Zulkoski, Jia Hui Liang, Krzysztof Czarnecki, and David Parker. Au-
tomated Decomposition and Allocation of Automotive Safety Integrity
Levels Using Exact Solvers. SAFE International Journal of Passenger
Cars-FElectronic and Electrical Systems, 8(2015-01-0156):70-78, 2015.
(cited on Page 33 and 37)

Adrian Marten. A Comparison Study of Domain Constraint Solver for
Model Counting. Master’s Thesis, University of Passau, 2018. (cited
on Page 33)

Microsoft. ~ Microsoft Solver Foundation. = Website, July 2019.
Available online at https://www.nuget.org/packages/Microsoft.Solver.
Foundation; visited on July 10th, 2019. (cited on Page 8)

Henry Mann and Donald Whitney. On A Test Of Whether One Of
Two Random Variables Is Stochastically Larger Than The Other. The
Annals of Mathematical Statistics, pages 50—60, 1947. (cited on Page 14)

http://mathsat.fbk.eu
https://developers.google.com/optimization
http://smtcomp.sourceforge.net/2018/index.shtml
http://smtcomp.sourceforge.net/2018/index.shtml
https://osolpro.atlassian.net/wiki/spaces/JACOP/overview
https://osolpro.atlassian.net/wiki/spaces/JACOP/overview
https://www.nuget.org/packages/Microsoft.Solver.Foundation
https://www.nuget.org/packages/Microsoft.Solver.Foundation

Bibliography

43

[MZ09]

[PFL19]

[Res19]

[SGAK15]

[ST19]

[TS19]

[VKS6]

[XJF*15]

Sharad Malik and Lintao Zhang. Boolean Satisfiability From Theo-
retical Hardness to Practical Success. Communications of the ACM,
52(8):76-82, 2009. (cited on Page 3)

Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco
Solver. ~ Website, March 2019. Available online at http://www.
choco-solver.org; visited on March 26th, 2019. (cited on Page 9)

Microsoft Research. Z3 Theorem Prover. Website, July 2019. Available
online at https://github.com/Z3Prover/z3; visited on July 10th, 2019.

(cited on Page 8)

Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian
Késtner. Performance-Influence Models for Highly Configurable Sys-
tems. In Proceedings of the Joint Meeting on Foundations of Software
Engineering, pages 284-294. ACM, 2015. (cited on Page 4 and 5)

Roberto Sebastiani and Patrick Trentin. OptiMathSAT. Website,
March 2019. Available online at http://optimathsat.disi.unitn.it/index.
html; visited on March 25th, 2019. (cited on Page 9)

Guido Tack and Peter J. Stuckey. MiniZinc Challenge 2018. Web-
site, March 2019. Available online at https://www.minizinc.org/
challenge2018 /results2018.html; visited on March 11th, 2019. (cited
on Page 8)

Marc Vilain and Henry Kautz. Constraint Propagation Algorithms for
Temporal Reasoning. In Proceedings of the National Conference on
Artificial Intelligence, pages 377-382, 1986. (cited on Page 3)

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasu-
pathy, and Rukma Talwadker. Hey, You Have Given Me Too Many
Knobs! In Proceedings of the Joint Meeting on Foundations of Software
Engineering, pages 307-319. ACM, 2015. (cited on Page 32)

http://www.choco-solver.org
http://www.choco-solver.org
https://github.com/Z3Prover/z3
http://optimathsat.disi.unitn.it/index.html
http://optimathsat.disi.unitn.it/index.html
https://www.minizinc.org/challenge2018/results2018.html
https://www.minizinc.org/challenge2018/results2018.html

44

Bibliography

Eidesstattliche Erklarung:

Hiermit versichere ich an Eides statt, dass ich diese Masterarbeit selbstdndig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausfithrungen, die wortlich oder sinngeméf {ibernommen wur-
den, als solche gekennzeichnet sind, sowie dass ich die Masterarbeit in gleicher oder
dghnlicher Form noch keiner anderen Priifungsbehorde vorgelegt habe.

Passau, den 20. September 2019

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	2 Background
	2.1 Constraint Solver
	2.2 Variability Model
	2.3 SPL Conqueror

	3 Experiment Setup
	3.1 Constraint Solver Requirements
	3.2 Constraint Solver Candidates
	3.3 Research Questions
	3.3.1 Representativity
	3.3.2 Performance

	3.4 Operationalization
	3.5 Subject Systems

	4 Evaluation
	4.1 Representativity
	4.2 Performance
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A Appendix
	A.1 CSP Solver Listing
	A.2 SMT Solver Listing

	Bibliography

