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Abstract

Hyperparameter optimization is a key factor for learning high performing machine learning
models. However, it is very challenging due to the large number of potential configurations.
This complexity not only increases computational cost but also makes it hard to interpret
how individual hyperparameters affect model performance.

Configurable software systems similarly deal with a huge search space of valid config-
urations and the challenge of understanding how feature interactions impact the overall
system performance. This observation raises the question of whether well-established ap-
proaches from this domain can be effectively applied to the challenges of hyperparameter
optimization.

Therefore, our research investigates the use of sampling-based performance-influence
models to accurately predict machine learning model performance across the full hyperpa-
rameter search space. Our findings demonstrate that sampling a very small subset of all
configurations using diversified distance-based and random sampling, yields performance-
influence models with low prediction errors in most cases and successfully identifies
top-performing hyperparameter settings comparable to Hyperopt-sklearn.
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Introduction

In recent years, the relevance of Artificial Intelligence (Al) has grown continuously. Whether
it’s speech recognition, disease diagnosis, self-driving cars, generative Al, or large language
models like ChatGPT, advances in Al are becoming more prominent in everyone’s daily
life. All these systems are built on complex, resource-intensive Machine Learning (ML)
models and optimizing them typically involves maximizing performance while minimizing
computational costs. A crucial part of developing high-performing ML models is hyper-
parameter tuning. Hyperparameters (i.e., settings that control the learning process) play
a major role in determining both the performance and overall quality of an ML model.
Here, the main challenge is the large number of possible hyperparameter combinations.
Exhaustively testing every combination is inefficient and oftentimes even infeasible due to
the combinatorial explosion of the search space [1].

To address this challenge, automated ML tools such as Hyperopt-sklearn have been
developed [9]. These tools automate the hyperparameter optimization process, which allows
even non-experts to efficiently tune models without exploring the entire search space
manually. AutoML tools simplify the ML pipeline and the development of high-quality ML
models [13]. Current state-of-the-art approaches in automated hyperparameter optimization
use advanced ML techniques like Bayesian optimization to navigate the hyperparameter
search space [14, 25]. For example, Hyperopt-sklearn uses Tree-structured Parzen Estimators
(TPE). This model guides the search towards the most promising regions of the search space,
thereby improving optimization efficiency compared to exhaustive search methods. However,
Bayesian techniques tend to be highly complex and are often difficult to understand and
interpret. This complexity can be problematic when the goal is not only to find optimal
hyperparameters but also to understand the external behavior and the inner workings of
the system.

In the domain of configurable software systems, similar challenges of searching large
search spaces are addressed using sampling techniques. These systems use Performance-
Influence Models (PIMs) that are learned from a subset of configurations. Once trained, these
models can predict the performance across the entire configuration space, thus reducing the
need for exhaustive evaluation [22].

The primary goal of this thesis is to investigate and assess the use of PIMs for predict-
ing the performance of different hyperparameter configurations of ML models (RQ1). A
further objective is to evaluate whether this sampling-based approach can be used for hy-
perparameter optimization, in comparison to a state-of-the-art Bayesian-based optimization
tool, namely Hyperopt-sklearn (RQ2). Specifically, we aim to determine whether PIMs can
serve as an alternative that is not only accurate but also interpretable. To achieve this, we
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represent an ML model as a configurable system by treating the model’s hyperparameters
as its features. In particular, we use sampling (e.g., diversified distance-based and random
sampling) to create a representative subset of the hyperparameter space and ML techniques
(e.g., linear regression) to learn a PIM. To generate the ground-truth performance measure-
ments required both for training our PIMs and for assessing their prediction accuracy, we
will use six scikit-learn classifiers. In the final step, we compare the prediction results from
our approach with the optimization results produced by Hyperopt-sklearn. In contrast to
Hyperopt-sklearn, which concentrates on identifying the optimal configuration, our focus is
on achieving accurate performance predictions across the entire configuration space.

We show that sampling just 1-10% of each classifier’s hyperparameter space and fitting
stepwise linear regression PIMs, we achieve prediction errors below 1% for Multinomial
Naive Bayes, Decision Tree, K-Nearest Neighbors and Random Forest, and 2-5% for Gradient
Boosting, while Stochastic Gradient Descent performed worst. Using the top-3 configurations
predicted by these PIMs, we find hyperparameter configurations that are competitive to the
ones found by Hyperopt-sklearn on five of six classifiers, with improvements from +0.03
to +1.20 pp accuracy, though we underperform on stochastic gradient descent by —0.52
pp.- Moreover, our approach yields a global performance map of the entire hyperparameter
landscape, providing both competitive tuning and full interpretability.



Background

In this chapter, we present important background information to understand and follow
the contents of this thesis. We discuss configurable software systems, feature models,
performance-influence model, hyperparameter optimization and Hyperopt-sklearn for
AutoML.

2.1 Configurable Software Systems

Configurable software systems are designed to offer multiple features, which makes them
adaptable to different requirements and user preferences. The main goal of configurable sys-
tems is to support variability and allow customization of software behavior. The difference
between individual software variants lies in the selection or deselection of specific features.
In this context, features refer to units of functionality that can either be included or excluded
in a given software variant. This flexibility is important in domains such as product line
engineering, where a single core product is modified to produce multiple software variants
based on feature selections [2, 6].

In configurable software systems, features can be classified into three types: binary,
numerical and categorical. Binary features are the simplest, as they involve a straightforward
inclusion or exclusion decision. For instance, enabling a feature means the associated
functionality will be included in the software variant, while disabling it implies the opposite.
For example, a software product may have a Dark Mode feature that is either enabled or
disabled. Numerical features involve selecting a specific value from a predefined range, i.e.
a non-binary decision. For example, the amount of RAM allocated to a software instance
could be modelled as a numerical feature with a value space of 2GB, 4GB, 8GB and 16GB.
On the other hand, categorical features can take on multiple discrete values, where each
value represents a different category. For example, a software product may offer different
database backends such as MySQL, PostgreSQL and MongoDB. Here, the feature Database
Type is categorical because it can take one of several predefined values.

The configuration space C is defined by the Cartesian product of all possible features.
However, due to constraints such as dependencies between features, logical contradictions
and hardware limitations, not every configuration in C is valid. In particular, these con-
straints are Boolean expressions that define whether a configuration is valid or not, i.e.,
which features are allowed in which combinations [12]. By applying these constraints, we
obtain the valid configuration space V C C, which is a subset of C containing only valid
configurations.
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However, configurable software systems are highly complex. The valid configuration
space V expands exponentially with the number of optional and independent features [2],
and each configuration ¢ € V can potentially lead to other system behavior and perfor-
mance. As a result, making use of a simple brute-force approach to analyze performance
becomes infeasible for most larger software systems. Therefore, it is important to develop
efficient methods for understanding how configuration options and their interactions affect
performance.

2.2 Feature Models

Following Apel et al. [2], a Feature Model (FM) defines all valid combinations of features
within the system. There are different ways of defining a FM, but we will focus on the
tree-like representation. This tree structure includes mandatory and optional features,
where each feature is linked through a parent-child relationship. Parent-child relations
define the dependency hierarchy of features, while or-groups (at least one child is selected)
and xor-groups (exactly one child is selected) specify how features can be grouped or
selected together. Additionally, FMs can make use of cross-tree constraints, which define
dependencies or restrictions across different branches of the tree, in order to ensure that the
model accurately reflects the allowed configurations of the system.

Example 1. A FM representing a configurable graph library.

GraphLibrary

(Edgetype| [Weighted]  [Algrithm |
o

//

‘ Directed ‘ ‘ Undirected ‘ ‘ Shortes;cPath ‘ ‘Transpose‘

Transpose = Directed

Example 1 showcases the FM of a simple configurable graph library. For instance, the fea-
ture Edge Type is mandatory and its children are grouped in an xor-group. These constraints
lead to the fact that each configuration is either a directed or undirected graph. On the other
hand, the feature Algorithm is optional and its children are grouped as an or-group, which
indicates that if a configuration supports algorithms, it can include ShortestPath or Transpose,
or both. Transpose = Directed is an example of a cross-tree constraint which defines that
if Transpose is selected, also Directed has to be selected.

2.3 Performance-Influence Models

A Performance-Influence Model (PIM) is designed to describe how features and their
interactions influence the performance of a system. The objectives of PIMs are understanding,
optimization, and debugging of highly configurable software systems. An end-user may use
an optimizer to find the best performing configuration under certain constraints from the
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model. On the other hand, developers can compare the PIM with their own mental model of
the system behavior [22]. Such comparisons can be helpful to validate whether the system
behaves as intended or to detect potential performance bugs. An ideal PIM should have
high prediction accuracy, short computation time and small model size. Usually, there are
tradeoffs between these properties that do not allow to optimize for all of them at once.
However, Kolesnikov et al. [15] state that accurate PIMs can be learned in feasible time.
Thus, a PIM might be an efficient alternative to more complex and costly optimization and
prediction approaches.

Siegmund et al. [22] define PIMs formally as follows: Assume that F represents the set of
all features and V symbolizes the set of all valid configurations. Each configuration c € V
can be modeled as a function c : F — R that assigns a selected value to each feature: For a
binary feature f, ¢(f) = 1 if the option is selected and c¢(f) = 0 if it is not selected. For a
numerical feature f, ¢(f) returns a number in the value range of that feature.

Definition 1. A PIM is a function that maps configurations to a performance metric
IT: V — R. This function is represented by:

IT(c) = Bo+ )_ilc(i)) + Y @ij(c(i).c(f))

i€F i.jeF

In simpler terms, Definition 1 is a sum of the constant base performance, the sum of the
influences of all individual features and the sum of the influences of all interactions among
all features.

Example 2.

IT(c) =50+15-¢(D) =5-c(U) +8-c(W) +4-¢(S)+2-¢(T) —05-c(U) - c(S)+12-
c(D) - c(W) - c(S)

Example 2 showcases the PIM of a simple configurable graph library. It consists of five
options: Directed(D), Undirected(U), Weighted (W), ShortestPath(S) and Transpose(T). For
instance, 50 describes the constant base performance. 15 - ¢(D) describes the performance
influence of the option D and —0.5 - c(U) - ¢(S) describes the performance influence of the
feature interaction between U and S.

2.4 Hyperparameter Optimization

In ML, hyperparameters are key settings which control the learning process, such as model
structure, training dynamics and regularization. Well-tuned hyperparameters can improve
the performance of a model, while badly chosen ones can lead to suboptimal results. A
Ilemobayo et al. [1] emphasize that hyperparameter tuning is a critical factor that affects
the ML performance, alongside the data quality, the choice of algorithm, and the model
complexity. Specific hyperparameters, like learning rate and batch size, can have a strong
impact on these properties.
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Both hyperparameters in ML and features in configurable software systems act as external
"knobs" that can be tuned to shape the behavior and performance of the model and
software system, respectively. They are manually chosen or optimized through optimization
algorithms. This external configuration layer provides flexibility, allowing both data scientists
and software engineers to tailor their systems to meet specific requirements, optimize
performance and adapt to varying contexts. A Ilemobayo et al. [1] cover a range of methods
for hyperparameter tuning:

Grid Search explores all possible combinations of hyperparameters in a structured, evenly
spaced grid, which can provide optimal results but quickly becomes computationally
intensive in high-dimensional spaces.

Random Search randomly selects hyperparameter combinations. This technique is more
computationally efficient than grid search, by exploring a broader set of possibilities without
the cost of an exhaustive search.

Bayesian optimization uses probabilistic models to iteratively select the most promising
hyperparameters, balancing exploration and exploitation, which allows it to find optimal val-
ues with fewer evaluations. Classical Bayesian optimization is based on gaussian processes
and is considered to be well-suited for continuous search spaces. A popular modification
of Bayesian optimization is TPE which is based on density estimation and is preferred for
discrete search spaces [21, 24].

2.5 AutoML: Hyperopt-sklearn

AutoML strives to make ML easier for non-experts by automating the end-to-end ML pipeline,
i.e., performing common data science tasks with minimal effort for the human. A very
important component of this pipeline are AutoMHL frameworks which automate the model
selection and hyperparameter tuning process. By exploring different combinations, these
frameworks search for the best model and parameters for a given dataset [4].

Hyperopt is a popular example of such a framework [3]. It is a python library designed for
hyperparameter optimization and uses TPE to explore complex search spaces efficiently. It is
oftentimes integrated with other AutoML frameworks.

Scikit-learn, also called sklearn, is an open-source ML library in Python, which is built on
top of NumPy, SciPy and Matplotlib [19]. Sklearn provides supervised and unsupervised
learning algorithms (e.g., classification and regression) while keeping it easy and efficient to
use.

Hyperopt-sklearn is an extension of scikit-learn that introduces automated hyperparameter
optimization to the model selection process, by incorporating the Hyperopt library [9, 16].
Hyperopt-sklearn treats the selection of classifiers, regressors and preprocessing methods as
a single large optimization problem. Instead of manually trying different models and tuning
hyperparameters, it automates the process using Hyperopt’s optimization algorithms. This
way one can achieve high accuracy without extensive manual experimentation.

The first step when using Hyperopt-sklearn is to define a search space over all possible
configurations of scikit-learn components, including preprocessing techniques such as nor-
malization, PCA or TF-IDF, classification models like K-Nearest Neighbors, SVM or Random
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Forest, and regression models such as Linear Regression. After establishing the search space,
Hyperopt explores it through three main components: the search domain, which includes
the full range of hyperparameters and model choices; the objective function, which evaluates
each model configuration according to a chosen performance metric such as accuracy or
F1-score; and the optimization algorithm, which guides the selection of the most promising
hyperparameter configurations, whether using TPE, grid search or random search.

Example 3. Hyperopt-sklearn follows a sklearn-like APL The following showcases the
usage of this python library:

Listing 2.1: Python source code example for Hyperopt-sklearn

from hpsklearn import HyperoptEstimator, random_forest_classifier
from hyperopt import hp, tpe

# Define the estimator:
estim = HyperoptEstimator(
algo=tpe.suggest, # Define the optimization algorithm (here we use TPE)
max_evals=100,
trial_timeout=600,
# In this example, we only use random forest with a limited search space for
# n_estimators and max_depth:
classifier=random_forest_classifier(’clf’,
n_estimators=hp.choice( 'n_estimators’, [10, 50, 100]),
max_depth=hp.choice( 'max_depth’, [None, 5, 10, 20]),
),
# Optionally, you can add preprocessing steps here:
preprocessing=[1],
seed=42
)
# Train the estimator:
estim.fit(train_data, train_label)

# Make predictions:
predictions = estim.predict(test_data)

# Get the best model found:
best_model = estim.best_model()






Related Work

In this chapter, we present literature and approaches that are related to our work. In
particular, we discuss the performance prediction pipeline, common sampling techniques,
and different approaches to the learning process of performance-influence model.

3.1 Performance Prediction Pipeline

The Interplay of Sampling and Machine Learning for Software Performance Prediction

Kaltenecker et al. [11] present a four-step performance prediction pipeline: First, a sam-
pling strategy selects a representative yet manageable subset of configurations from the
enormous configuration space. Next, these chosen configurations are empirically measured
to obtain their performance characteristics. Next, an ML algorithm learns a PIM from the
collected performance measurements. Finally, the PIM is used to predict the performance of
new, unmeasured configurations. The prediction accuracy can be assessed by comparing
predictions to actual measurements.

The choice of the sampling strateqy and the ML method have a significant impact on
training cost and prediction accuracy [11]. As different systems have different performance
implications, varying in linearity, interaction effects and noise levels, there does not exist
one combination that is universally optimal. Thus, the techniques used for sampling and
learning have to be chosen wisely.

3.2 Sampling Strategies

A key challenge in the performance analysis of highly configurable software systems is that
the number of software variants grows exponentially in the number of features. Measuring
the performance of each individual variant is infeasible [22, 23]. Therefore, the development
of efficient sampling strategies is important, in order to select a representative subset of
variants that still provide reliable performance measurements.

Distance-Based Sampling of Software Configuration Spaces

Kaltenecker et al. [12] provide an overview of common sampling methods: Random sampling
is a simple sampling technique that tries to cover the configuration space uniformly [12,
17]. As the name suggests, it works by randomly selecting features from the configuration
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space to create a valid configuration. For smaller projects with little to no constraints, this
might be a good option. However, in practice, this technique does not scale, as configurable
software systems usually are highly constrained. Thus, random sampling would produce
invalid configurations most of the time and is therefore considered to be inefficient and
impractical.

Solver-based sampling makes use of constraint solvers, such as SAT solvers, to efficiently
search for valid configurations. However, this approach often results in a locally clustered
set of configurations. In order to solve this problem, Henard et al. [8] present a randomized
solver-based approach.

Coverage-based sampling strategies optimize the sample set according to a specific coverage
criterion. A common method is t-wise sampling, where every combination of ¢ features is
guaranteed to appear in at least one configuration [10].

Distance-based sampling spreads configurations according to a given probability distribu-
tion [12]. It uses a distance metric (e.g., the Manhattan distance) to measure the number
of selected features in each configuration. Using a discrete probability distribution, con-
figurations with different distances are chosen, which leads to a better coverage of the
configuration space. This method helps to capture various interaction patterns between
features that affect performance. In order to further improve the variety within the set of
samples, Kaltenecker et al. [12] extend this strategy by diversity optimization. This diversified
distance-based sampling ensures that configurations are selected more evenly, which leads to
even better prediction accuracy and reliability.

3.3 Learning Performance-Influence Models

Performance-Influence Models for Highly Configurable Systems

Siegmund et al. [22] propose a method for learning interpretable PIMs that explain how
individual features and their interactions affect system performance. This transparency can
be useful for debugging, performance optimization and understanding the overall system
behavior.

In order to learn the function of a PIM from a sample set of measured configurations,
Siegmund et al. [22] use linear regression. By mapping configuration values to performance
measurements, linear regression estimates coefficients for both individual and interaction
terms, which results in a clear understanding of performance influences.

Given that a complete model could contain an exponential number of potential terms,
the paper introduces a stepwise feature selection' algorithm. First, there is a forward feature
selection step and they start by initializing an empty feature set. Then the candidate features
are evaluated, and the candidate term that minimizes the prediction error is added. After
the model is built up, there is the backward feature selection step. Here, each feature is tested
for whether its removal would decrease the accuracy of the model, which ensures that the
final model remains compact and interpretable.

Note that in the context of ML, feature selection has nothing to do with features in configurable software
systems.
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Since exhaustively considering all possible terms is infeasible, the method relies on heuris-
tics to select these candidates that are most likey to influence performance. For example, the
algorithm assumes that interactions are hierarchical (i.e., first identify significant individual
effects before considering their interactions).

Predicting Performance via Automated Feature-Interaction Detection

Siegmund et al. [23] present an approach which automatically detects and quantifies
performance-relevant feature interactions. Their method builds on the insight that the
influence of a feature on performance can vary significantly depending on the presence of
other features.

To capture this, Siegmund et al. [23] introduce the concept of performance deltas, which
quantify the impact of a feature by comparing the performance of configurations with
and without the feature in question. By analyzing differences in deltas across various base
configurations, the method identifies features that likely participate in interactions.

To manage the otherwise intractable number of possible feature combinations, the ap-
proach employs heuristics to narrow the search space: pair-wise interaction detection, which
assumes that most relevant interactions are between two features; a composition heuristic for
identifying higher-order interactions; and the notion of hot-spot features that frequently par-
ticipate in interactions. This targeted strategy reduces the number of required measurements
while maintaining high predictive accuracy.

Cost-Efficient Sampling for Performance Prediction of Configurable Systems

Sarkar et al. [20] combine a cost-aware sampling framework and regression tree modeling
to efficiently learn PIMs. Rather than selecting a fixed-size sample in advance, Sarkar et al.
[20] adapt two dynamic sampling strategies from the data mining domain, which are
progressive sampling and projective sampling, to iteratively determine the optimal number of
configuration measurements.

Both strategies are integrated with Classification and Regression Trees (CART), to learn the
performance model. The core idea is to balance the trade-off between prediction accuracy
and measurement cost through a sampling cost model that incorporates the number of
configurations sampled, the accuracy of the resulting model and the associated overhead.
This sampling-guided learning framework results in cost-efficient and scalable performance
predictions.

DeepPerf: Performance Prediction for Configurable Software with Deep Sparse Neural
Network

Ha and Zhang [7] present a deep learning approach to performance prediction for config-
urable software systems by modeling performance as a non-linear function of configuration
options.

Their method, DeepPerf, makes use of a deep feedforward neural network (FNN) equipped
with L1 sparsity reqularization to construct a PIM from a limited set of sampled configurations.
The deep FNN architecture allows for modeling complex interactions among features, while
the L1 regularization ensures sparsity in the network weights—effectively filtering out

11
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irrelevant interactions and improving generalizability. To handle the challenges of limited
data and high-dimensional configuration spaces, Ha and Zhang [7] introduce a tailored
hyperparameter tuning strategy that efficiently searches for suitable network structures and
learning parameters.

Unlike earlier approaches that focus on interpretability, DeepPerf emphasizes prediction
accuracy, especially for systems with both binary and numeric features. DeepPerf con-
sistently achieves higher accuracy with fewer measurements compared to prior methods,
especially in environments where performance-relevant feature interactions are sparse and
non-linear [7].



Methodology

In this chapter, we present the methodology of the thesis. In particular, we discuss our
research questions, our experiment, and our evaluation pipeline.

4.1 Research Questions

Configurable software systems have shown that by sampling a small, well-chosen sub-
set of configurations and building a PIM, one can both predict behavior across the entire
configuration space and gain interpretable insight into feature effects. In ML, by contrast,
hyperparameter optimization typically uses Bayesian black-box methods (e.g., Hyperopt-
sklearn) that excel at finding a single good setting but offer little transparency about why
certain hyperparameters matter.

In our research, we apply the performance-influence modeling method to ML hyperpa-
rameter tuning: we treat scikit-learn classifiers as configurable systems (hyperparameters =
features), sample a small fraction of the hyperparameter space, and learn PIMs via stepwise
linear regression. Then, we use those PIMs to answer the following two research questions:

Research Question 1: How accurately can performance-influence models predict the
performance of machine learning models across the entire hyperparameter space?

First, we investigate how precisely PIMs can predict the accuracy of different ML models
across the entire hyperparameter space compared to ground-truth performance measure-
ments provided by scikit-learn.

To answer our first research question, we learn PIMs to predict the performance of all
configurations within the respective hyperparameter search spaces. Each prediction is
computed by evaluating the trained regression model on the corresponding hyperparame-
ter configuration, resulting in an estimated performance value. We assess the prediction
accuracy by comparing these estimated values against the ground-truth performance mea-
surements. Furthermore, we want to find out to what extent the chosen sampling techniques
(random sampling and diversified distance-based sampling) and the chosen number of
sampled configurations (1%, 5%, and 10% of the total amount of configurations) have an
impact on the performance prediction results.

13
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Research Question 2: How does our performance-influence model-based approach for
hyperparameter optimization compare to Bayesian-based methods such as Hyperopt-
sklearn in terms of accuracy?

State-of-the-art hyperparameter optimization methods like Hyperopt-sklearn use acquisi-
tion functions to find good settings quickly, but their models are opaque and only guide
the search, not explain it. A PIM is fully interpretable, since each coefficient tells you how
a hyperparameter or interaction affects performance. If it can also serve as a competitive
hyperparameter optimization driver, we get both interpretability and optimization.

To answer our second research question, we compare our PIM-based approach against
Hyperopt-sklearn by evaluating whether we can identify a hyperparameter configuration
of comparable quality just by using our performance predictions. For each classifier, we
select the PIM variant that achieved the lowest prediction error in the first research question
(i.e., using 1%, 5%, or 10% of the hyperparameter space, depending on which sampling rate
yielded the best model). To perform the comparison, we use Hyperopt-sklearn’s TPE as the
underlying search algorithm. We fix max_evals to 10%, the timeout on each optimization run
to 60 seconds, and the random seed to 42, in order to ensure reproducible results. Finally, we
compare the measured accuracy of the best three hyperparameter configurations suggested
by our PIM-guided selection to the best one found by Hyperopt-sklearn.

4.2 Experiment

To answer our research questions, we will conduct an experiment for which we consider
six scikit-learn classifiers; Multinomial Naive Bayes (MNB), Decision Tree Classifier (DTC),
Gradient Boosting Classifier (GBC), Stochastic Gradient Descent (SGD), K-Nearest Neighbors
(KNN), and Random Forest Classifier (RFC) (see Table 4.1). Each classifier will run through
an evaluation pipeline, as we will describe in Section 4.3.

Table 4.1: Overview of the classifiers and their number of features (|F|) and number of valid hyperparameter
configurations (|V|). We will use the abbreviations of the classifiers for the rest of the thesis.

Classifier |F| V|
Multinomial Naive Bayes (MNB) 9 20
Decision Tree (DTC) 13 24
Gradient Boosting (GBC) 21 288
Stochastic Gradient Descent (SGD) 19 896
K-Nearest Neighbors (KNN) 30 960

Random Forest (RFC) 26 1296




4.2 Experiment

4.2.1 Data Set

For our experiments, we use the MNIST dataset [5], which is a standard benchmark for
handwritten-digit classification. MNIST consists of 70 000 grayscale images of digits 0-9 (see
Figure 4.1), split into 60 000 training images and 10000 test images. Each image is 28 x 28
pixels, with intensity values in the range [0, 255]. MNIST’s popularity and widespread use
in research make it a suitable benchmark for our experiments. We are dealing with a typical
classification task: Classify an image of a handwritten digit into the classes 0-9.

000 0006QaoagOo0d (OO
T U L U TV A S T 2 A U Y B T A
2ed 2233222822022 22A
2323333335353 333333
H# Y449 Yy #5449 ¢ 4\ &4
5558535 S$S559<s 58554579
b 6 bbbt Qbbbde 666l
T7927717070207712%F777
¥y 88 8 PSR PTT TP T 3
T199999%9499%4994499%9

Figure 4.1: Extract from the MNIST dataset.

4.2.2 Performance Metrics

In this section, we introduce the metrics used for evaluating the classification accuracy of the
sklearn classifiers, the prediction error of our PIMs, and the quality of our hyperparameter
optimization outcomes.

Measuring the Classification Accuracy

Definition 2. Measured Accuracy
For each configuration ¢ € V, accuracy is defined as the proportion of correctly classified

samples:
_ Number of correctly classified test samples

fe = Total number of test samples 4-1)

This measured accuracy a. indicates how well each scikit-learn classifier configuration
performs on held-out test data (see Section 4.2.1 for more details on the data set). The set of
all measured accuracies is denoted as A — this is the “true accuracy”.

Evaluating the Prediction Accuracy (RQ1)

Definition 3. Predicted Accuracy
When evaluating our PIMs, we compare each 4, i.e., the predicted accuracy for configuration
¢, against its respective a. value. The set of all predicted accuracies is denoted as A.
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Definition 4. Mean
The mean of the true accuracies A (also called the true mean) is defined as:

- 1
A= m E ac, (4-2)

ceV

Definition 5. Median
Let A be a sorted list of accuracies in non-decreasing order. Then, the median of the true
accuracies (med(A)) is defined as:

med(A) — 3(@yij2 +awyjoe), if [V]is even, (4.3)

ll(‘vH,l)/z, if ‘V’ is odd.

Definition 6. Variance and Standard Deviation

Variance and standard deviation are both measures of how spread out or dispersed a set of
numbers is. The variance is the average of the squared differences from the mean and the
standard deviation is the square root of the variance:

(4) = 7 L (o= AP (44)

o(A) = \Jo?(A). (45)

Definition 7. Mean Absolute Percentage Error
The Mean Absolute Percentage Error (MAPE) quantifies the average relative prediction
error as a percentage, comparing predicted accuracies 4. to true accuracies a. over all

configurations c € V:
MAPE — 100% y
‘V| ceV

ac — dc
ac

(4.6)

Evaluating our Predictions against Hyperopt-sklearn (RQz2)

To compare our approach against Hyperopt-sklearn, we take the top-3 configurations by
predicted accuracy and look at their true accuracies. Then, we compare the best accuracy of
those three to the optimum configuration found by Hyperopt:

Definition 8. Top-3 Prediction vs. Hyperopt Optimum

Aace = qu(&lc - ahyperopt) (4-7)
ceV;

where V3 is the set of 3 configurations with highest 4., while a, is the respective true ac-
curacy. dpyperopt 18 the best-found accuracy configuration from Hyperopt-sklearn. A positive
Aacc means PIM-guided optimization found a better configuration.



4.3 Evaluation Pipeline

4.3 Evaluation Pipeline

Each experiment will be conducted by running through our evaluation pipeline (see Fig-
ure 4.2). We used the idea of the evaluation pipeline from Kaltenecker et al. [11] and adapted
it to our needs. The evaluation pipeline consists of four steps, which we will explain in
detail in the following sections.

Figure 4.2: Overview of the evaluation pipeline. HPs = hyperparameters, PIM = performance-
influence model.
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4.3.1 Step 1: Modeling

First, we have to find a way to model an ML problem instance as a configurable software
system. This can be achieved by treating the model’s hyperparameters as its features that
can be tuned. Next, we need to create a FM for each sklearn classifier. By doing so, we define
which classifiers to consider and how their hyperparameters and corresponding value space
look like. We employ FeatureIDE" to create these FMs.

1 https://www.featureide.de/
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Example 4. FM representing the structure of the hyperparameter search space for each
sklearn classifier. Assume hpo1 is non-binary and hpoz is a binary hyperparameter.

‘ classifier-example ‘

[hpOL-option01 | [hp0l-option02] [npOl-option03]

Example 4 is an example of the FM structure that we use for modeling the hyperparameter
search space for each classifier. Non-binary features will be subdivided into an alternative-
group. Binary features will simply be modeled by an optional feature.

Figure 4.3: Feature Model representing the Gradient Boosting Classifier.

‘ gradient,boosting,classiﬁer ‘
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Figure 4.3 showcases our FM of GBC. We limited the search space to six potential sklearn
classifiers; the full list of FMs, which we consider, can be found in Appendix A. For each
classifier, we further simplified its configuration space where we believed it was appropriate.
For this, we use one-hot encoding, i.e., we adjusted some non-binary features by turning
their continuous value spaces into predefined discrete or categorical options. In Figure 4.3,
you can see how feature n_estimators has three options (50, 100, 500), while the full scikit-
learn implementation of GBC potentially takes an arbitrary positive integer. To further
reduce complexity, we decided to ignore some non-binary hyperparameters entirely (e.g.,
min_weight_fraction_leaf, max_depth, or min_impurity_decrease for GBC), which means that
those parameters will always take the default value.

For the classifiers SGD, KNN, and RFC, there is a hyperparameter n_jobs that specifies the
number of parallel jobs for both fit and predict. We set n_jobs=None, i.e., no parallelization.
The classifiers DTC, GBC, SGD, and RFC also provide a random_state hyperparameter to fix
the random seed. We set random_state to o, 1, 2, 3 and 4, in order to run and measure five
independent and reproducible trials, and use the average. All other classifiers do not have a
random seed option, so we perform only a single run for each.

4.3.2 Step 2: Measuring

Next, we need to automatically collect the ground-truth performance measurements required
both for training our PIMs and for assessing their prediction accuracy. For every valid
hyperparameter configuration of each classifier, we record its classification accuracy (see
Example 5).
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Example 5. First ten lines of the final ground-truth performance measurements for GBC.
Each line is one hyperparameter configuration, with the last column being the measured
accuracy (Equation 4.1). Note that some columns have been omitted for clarity.

gbc,criterion, friedman_mse,squared_error,...,warm_start,Performance
1,1,0,1,...,0,0.9637
1,1,0,1,...,1,0.9602
1,1,0,1,...,0,0.9652
1,1,0,1,...,0,0.9461
1,1,0,1,...,1,0.9505
1,1,0,1,...,1,0.8967
1,1,0,1,...,1,0.9459
1,1,0,1,...,0,0.9255
1,1,1,0,...,1,0.8951

In Table 4.2, we report the mean, median, and standard deviation of the true performance
measurements for each classifier which serve as the baseline for all subsequent analyses.
Our classifier selection covers varying levels of measured accuracy, with KNN, RFC, GBC, DTC,
and MNB achieving high to very high mean accuracies with very low standard deviations,
whereas SGD shows a significantly lower mean accuracy and a high standard deviation.

Table 4.2: Ground-truth accuracy for each classifier (in %). We provide the mean (A), median (med(A)),
and standard deviation (ce(A)) for each model.

Classifier A  med(A) ce(A)

MNB 83.58  83.60 0.07
DTC 87.78 87.88 0.80
GBC 9420 94.61 2.17
SGD 62.34  79.54 33.74
KNN 96.83  96.88 0.22
RFC 96.32 96.54 0.63

To streamline and reproduce these measurements, we developed two components:

Main Script  Our main script is located in a dedicated repository”. It loads the MNIST
dataset, iterates over all hyperparameter configurations passed in via command-line argu-
ments, trains the model (here we incorporate sklearn) and outputs the accuracy of each
configuration.

VaRA-TS OOT We forked the VaRA-TS out-of-tree framework? and added one project
per classifier. Each project defines which arguments to use when calling the main script.

2 https:/ /github.com/lukasklein-dev/lk_bachelor_sklearn
3 https://github.com/lukasklein-dev /varats_oot_lukasklein_bachelor
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Additionally, we added an experiment class called SklearnMeasuring, which defines the steps
each project will go through. This also includes building and executing the command for
calling the main script.

Cluster To execute the experiments, each classifier project is submitted as a SLURM job
on the chair’s cluster. For MNB, DTC, SGD, and KNN, we use node eku (Intel Core i5-4590
CPU @ 3.30GHz, 16GB RAM, Debian 12). For GBC and RFC, we use node max! (AMD EPYC
72F3 8-Core Processor, 256GB RAM, Debian 12). For MNB and DTC, we set the timeout to 1
hour. For KNN, SGD, and RFC, the timeout was set to 8 hours, while for GBC it was extended
to 24 hours. Finally, we merge all performance measurements into a single CSV file per
classifier, listing each hyperparameter configuration alongside its measured accuracy.

4.3.3 Step 3: Sampling

Once all ground-truth measurements are in place, we extract a smaller but representative
subset of hyperparameter configurations to train our PIMs.

Sampling Techniques We employ two sampling strategies: diversified distance-based sam-
pling and random sampling, both of which have demonstrated strong performance in prior
work [12]. The distance-based approach is particularly well-suited for larger sample sizes, as
it aims to maximize diversity without requiring access to the full configuration population.
In contrast, random sampling is a straightforward baseline method that also performs
well. However, if the sample size is large and the full population is unavailable or sparsely
populated with valid configurations, random sampling may frequently select invalid ones,
which makes it infeasible in such scenarios. We compare both techniques in our experiments.

Sample Sizes Because the total number of valid configurations varies significantly across
classifiers, we fix our sample sizes to 1%, 5%, and 10% of the full configuration set for each
classifier (see Table 4.3). These percentages offer a trade-off between training data sufficiency
and overall measurement effort, and allow us to compare PIM performance under very low,
low, and moderate sample set sizes.

Table 4.3: Overview of the classifiers and their absolute sample sizes.

Classifier = Sample Size
1% 5% 10%

MNB / 1 2
DTC / 1 2
GBC 3 14 29
SGD 9 45 90
KNN 10 48 96

RFC 13 65 130
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4.3.4 Step 4: Learning

Next, we will learn PIMs based on the sample sets to make predictions about the performance
of each configuration. In the final step, we will compare our prediction results with the
corresponding ground-truth data.

ML Technique We use stepwise linear regression to learn a PIM from the sampled perfor-
mance measurements. Specifically, we fit an Ordinary Least Squares (OLS) regression model,
treating the hyperparameters as independent variables and the observed performance as the
dependent variable. The stepwise procedure iteratively adds or removes hyperparameters
based on their statistical significance. This approach allows us to identify the most influential
hyperparameters for predicting performance while keeping the model clear and concise.

Implementation We utilize the implementations of the sampling strategies and the
regression model on the ml-sampling branch of VaRA-feature*. To ensure reproducibility,
we set sample_seed = 42.

Performance Predictions Finally, we map the entire hyperparameter space by using each
trained PIM to predict the performance of every configuration, then compare those estimates
to the ground-truth measurements from Section 4.3.2 to assess our models” accuracy.

All important data that is related to our experiment, including the FMs, the performance
measurements, the learned PIMs, and the evaluation results, will be available in a dedicated
repository>.

4 https:/ /github.com/se-sic/vara-feature
5 https://github.com/lukasklein-dev/lk_bachelor_data
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In this chapter, we present the results of our experiments and discuss their implications for
answering the research questions.

5.1 Results

Following the evaluation pipeline described in Section 4.3, we present the following re-
sults: first, the performance-prediction accuracy of our learned PIMs (RQ1); and second, a
comparison of our PIM-based hyperparameter optimization against Hyperopt-sklearn (RQz2).

5.1.1 RQu: Prediction Accuracy

The first research question investigates how accurately PIMs can predict the performance
of scikit-learn classifiers across their hyperparameter space (Equation 4.6). The goal is to
assess the prediction quality of PIMs under different sampling strategies and sample sizes,
and to understand the factors that influence their accuracy.

Following the results presented in Table 5.1, MNB yields nearly identical results under
both sampling methods at 5% and 10% sample sizes (MAPE 0.20%), with random sampling
achieving a marginal improvement at 10% (MAPE 0.05%). For DTC, random sampling
reduces MAPE to 0.73% at 1%, whereas diversified distance-based sampling attains the
lowest error of 0.57% at 5%. Both MNB and DTC have a very low spread in their predictions
(oe(A) < 0.06% for MNB and < 0.90% for DTC), which is to be expected given the small scale
of their experiments (see Table 4.3).

KNN’s prediction error steadily declines to 0.16% at 10%, with both sampling approaches
performing practically the same. Similarly, RFC demonstrates uniformly low MAPE (<
0.17%) across all sample sizes, with random sampling offering a slight edge at larger samples
(0.04% vs. 0.13% at 10%). KNN and RFC both achieve high mean predicted accuracies (A ~
96.92% for KNN and =~ 96.33% for RFC) with minimal standard deviations (ce(A) < 0.39%
for KNN and < 0.62% for RFC), indicating very consistent predictions.

GBC yields stable performance predictions as well: at 1%, random sampling slightly
outperforms distance-based (MAPE 2.27% vs. 2.46%), and this gap persists at 5% and 10%,
with random sampling holding errors around 2.27%-2.68% compared to 2.46%-5.22% for
distance-based sampling. GBC shows a slightly larger spread in its predicted accuracies,
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with ce(A) up to 4.27% under diversified distance-based sampling and up to 2.50% under
random sampling, reflecting increased variability relative to MNB, DTC, KNN, and RFC.

In contrast, SGD shows extreme MAPE values (exceeding 700%) regardless of increased
sample sizes, and diversified distance-based sampling performing even worse than random
sampling. SGD has both a low mean predicted accuracy (A ranging from only 51.18% to
92.42% across sample sizes and strategies) and very high variability (ce(A) between 23.94%
and 87.80%). This mirrors the high variability in its true performance measurements (see
Table 4.2).

Some individual predictions for SGD and GBC were so poor that they even fell outside the
valid and meaningful accuracy range [0,1] (e.g., 2.6564 or —1.1853 were among the worst
predictions for SGD), which further amplifies the already high standard deviations in their
performance predictions.

Table 5.1: Performance prediction results. For each learned performance-influence model (under diversi-
fied distance-based sampling, or random sampling and sample sizes corresponding to 1%, 5%,
or 10% of each hyperparameter search space V), we report: mean (A), standard deviation
(ce(A)), and Mean Absolute Percentage Error (MAPE) of the predicted accuracy. We mark
the best MAPE per classifier and the worst red. All data is in %, besides the sample
size which shows the absolute number of configurations.

= S

Classifier Sample Size A ®(A) MAPE
#configs diversified random | diversified random ‘ diversified random

/ / / / / / /

MNB 1 83.41 83.41 0.00 0.00 0.20 0.20
2 83.41 83.54 0.00 0.06 0.20
/ / / / / / /

DTC 1 86.58 88.05 0.00 0.00 1.46 0.73
2 88.13 88.38 0.90 0.33 0.79
3 96.30 93.08 0.21 0.88 2.46

GBC 14 90.51 93.00 427 2.50 5.22 2.68
29 93.37 93.90 4.15 2.09 3.85 2.39
9 73.29 51.18 23.94 29.90 1067.80 835.66

SGD 45 92.42 64.43 87.80 3291 1506.75 845.85
90 62.97 56.37 52.86 49.62 1094.49
10 96.92 96.87 0.14 0.39 0.22 0.34

KNN 48 96.87 96.79 0.14 0.14 0.20 0.20
96 96.84 96.87 0.003 0.10 0.16
13 96.23 96.33 0.59 0.58 0.17 0.10

RFC 65 96.26 96.32 0.62 0.62 0.15

130 96.30 96.33 0.60 0.62 0.13 0.04




5.1 Results

As visualized in the two heatmaps (Figure 5.1 and Figure 5.2), our results imply that
the MAPE generally decreases with larger sample sizes (though only slightly) and the two
sampling strategies perform similarly, with random sampling retaining a small advantage.

For a table covering all metrics of the performance prediction results, see Table A.1. For a
full listing of the best and the worst performing PIMs for each classifier (based on MAPE),

see Table A.2 and Table A.3, respectively.

diversified distance-based random
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:‘: ~
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© <
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Sample Size Sample Size

Figure 5.1: Heatmaps of MAPE for every classifier except stochastic gradient descent to prevent
scaling issues. Each cell represents one performance-influence model.

RQ1 — Results: Overall, highly accurate performance prediction (MAPE < 1%) is
attainable for RFC, MNB, KNN, and DTC using as few as 1%-5% of configurations from
the search space, for both sampling strategies. GBC also achieves good prediction
accuracy (MAPE 2%-5%) for most sample sizes and random sampling performing
slightly better. In contrast, SGD performs the worst with extreme variance in accuracy
leading to exorbitant MAPE values.
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Figure 5.2: Heatmap of MAPE for stochastic gradient descent. Each cell represents one performance-
influence model.

5.1.2 RQ:2: Comparison to Hyperopt-sklearn

The second research question investigates whether we can use our learned PIMs for efficient
hyperparameter optimization, achieving performance comparable to Hyperopt-sklearn
under a limited evaluation budget (Equation 4.7).

Table 5.2: Comparison of the hyperparameter optimization results by our approach and Hyperopt-sklearn. V3
denotes the top-3 configurations suggested by our approach, V5 the measured accuracy of
the suggested configurations, apyperopt the accuracy of Hyperopt-sklearn’s best configura-
tion, and A, the accuracy difference between the two approaches in percentage points

(pp)-

Classifier Vs V; Anyperopt  Dace

MNB {83.57,83.57,83.57} {83.64,83.64,83.63} 83.57 +0.07
DTC {88.65,88.65,88.65} {88.71,88.71,88.65 } 88.27 +0.44
GBC {94.33,94.33,94.33} {97.26,97.26,97.26} 96.06 +1.20
SGD {265.64,265.64,256.50}  {79.51,65.14,91.43} 91.95 —0.52
KNN {96.88,96.88,96.88} {97.17,97.17,97.17} 97.14 +0.03
RFC {96.95,96.95,96.95} {97.07,97.07,97.07 } 97.01 +0.06

In Table 5.2, we compare the measured accuracy of the best hyperparameter configuration
suggested by our PIM-guided selection to the best one found by Hyperopt-sklearn. For KNN,
the top PIM-suggested configuration achieves 97.17% accuracy versus Hyperopt-sklearn’s
97.14% (+0.03 pp). REC attains 97.07% against 97.01% (+0.06 pp). For MNB, the optimal
configuration hits 83.64% accuracy, compared to Hyperopt-sklearn’s 83.57% (+4-0.07 pp). DTC
attains 88.71% against 88.27% (+0.44 pp). GBC even reaches 97.26% compared to 96.06%,
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which results in an improvement of 1.20 pp. However, for SGD our approach suggests
three configurations with a predicted accuracy of around 265%, which is not semantically
meaningful given that accuracy is defined within the interval [o,1]. The actual accuracy
of one such configuration reaches 91.43%, whereas Hyperopt-sklearn’s best configuration
achieves 91.95%, indicating that our method performs 0.52 pp worse.

RQ2 — Results: Our PIM-guided hyperparameter optimization method suggests con-
figurations that match or slightly outperform Hyperopt-sklearn’s optimization results
on five of the six classifiers (KNN +0.03 pp; RFC +0.06 pp; MNB +0.07 pp; DTC +0.44
pp; GBC +1.20 pp) and underperform modestly on SGD (—0.52 pp).
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5.2 Discussion

After presenting our experiment results, we discuss their possible implications.

5.2.1 RQau: Prediction Accuracy

The results in Section 5.1.1 demonstrate both the strengths and limitations of our approach
to mapping the hyperparameter space. MNB, DTC, KNN, and RFC proved robust, exhibiting
narrow accuracy ranges and consistent performance within the defined hyperparameter
spaces (see our FMs in Appendix A). In contrast, GBC and especially SGD were highly
sensitive, showing large variance and notable mean-median discrepancies indicative of
outliers, and consequently higher MAPE. This behavior indicates an insufficient linear
relationship between the hyperparameters and the resulting accuracy for SGD and GBC,
which likely worsened the effectiveness of OLS linear regression and leads to higher
prediction errors (MAPE) for their PIMs.

We therefore hypothesize that the combination of very high standard deviation in per-
formance and a lack of linear dependence between hyperparameters and accuracy is a key
factor contributing to the poor predictive performance of the PIMs for SGD. This finding un-
derscores the importance of the modeling step, where domain knowledge can be leveraged
to select hyperparameters that are more likely to yield stable outcomes and exclude certain
hyperparameter configurations from the beginning that are prone to instability. Indeed,
one could argue that classifiers whose performance is highly sensitive to hyperparameter
changes are of particular interest, as their complex mapping could yield valuable insights
into the hyperparameter space. However, there must be a balance: sufficient variability to
reveal meaningful patterns, yet not so much that MAPE becomes unacceptably large.

Originally, we wanted to include four more classifiers: support vector, bayesian gaussian
mixture, extra trees, and gaussian process. However, we encountered issues during the
measuring step, where they exceeded a runtime limit per configuration; some of them took
significantly longer than 24 hours. In addition, while measuring RFC, we encountered a
conflict between the bootstrap and oob_score parameters, which was an oversight in the
initial modeling step. To resolve this, we fixed bootstrap to True for the RFC experiment.

RQ1 — Discussion: Overall, we observe that classifiers highly sensitive to hyperpa-
rameter tuning (such as SGD and GBC), and with a weak linear relationship between
hyperparameters and accuracy, undermine OLS linear regression and lead to very high
MAPE. This highlights the importance to apply domain expertise during the modeling
phase to select hyperparameters that achieve a balance between (1) offering enough
variability to reveal meaningful patterns and (2) remaining stable enough to keep MAPE
low enough, in order to learn PIMs that accurately map the hyperparameter space (as
demonstrated by MNB, DTC, KNN, and RFC).
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5.2.2 RQ2: Comparison to Hyperopt-sklearn

Our comparison in Section 5.1.2 shows that PIM-guided hyperparameter tuning can match
or even slightly exceed the performance of Hyperopt-sklearn. By fitting a PIM to a smaller
subset of configurations and then choosing the top three predicted hyperparameter settings,
we found true accuracies on par with those returned by the TPE. This confirms that, under
tight evaluation constraints, an interpretable PIM can serve not only as a fast global predictor
but also as an effective parameter tuner. However, it is crucial to remember that our
hyperparameter domains were restricted to the most relevant ranges. Since Hyperopt-
sklearn normally explores a wider range of values, we can only make a fair comparison
within the smaller parameter ranges we defined. How PIM-guided optimization would
behave on a much larger search space remains an open question.

Notably, GBC achieves the largest performance gain over Hyperopt-sklearn, even though it
showed the second-highest MAPE in RQ1 (after SGb—which performed the worst in RQ2 as
well). We hypothesize that this is because GBC strikes a favorable balance between variation
and stability: its performance varies enough to offer substantial improvement potential, yet
not so erratically as to destroy the underlying linear relationship between hyperparameters
and accuracy. Consequently, even though the PIM for GBC shows a relatively high MAPE, it
can still identify high-performing configurations.

When using our learned predictive models for hyperparameter optimization, minimiz-
ing MAPE is less important than preserving the correct ordering of configurations by
performance. In practice, as long as the model ranks configurations in the same relative
order as their true accuracies, we can identify the top-performing hyperparameter setting
without requiring highly precise point estimates. Consequently, even models with modest
overall predictive accuracy can drive effective optimization (as seen for GBC), provided they
maintain a consistent monotonic relationship between predicted and actual performance.

Beyond hyperparameter optimization, the real advantage of our approach lies in the
global performance map it produces. Rather than returning just one "best" configuration,
the learned PIM covers the expected accuracy across the entire hyperparameter landscape.
This allows us to pinpoint which areas of the hyperparameter space consistently deliver
high or low performance, and to explore parameter interactions to identify exactly which
combinations improve accuracy or worsen it. In essence, PIM-guided tuning delivers both a
competitive optimizer and a rich, interpretable model of hyperparameter-accuracy relation-
ships, making it a powerful tool for efficient and insightful hyperparameter analysis.

RQ2 — Discussion: Our PIM-guided optimization performed comparably to Hyperopt-
sklearn’s results within our constrained parameter ranges. In this context, maintaining
the correct ranking of configurations is even more important than producing highly
precise point estimates, allowing models with higher MAPE to still identify top per-
formers. GBC’s notable gain demonstrates that a hyperparameter space with sufficient
variability yet enough stability can yield substantial improvements.
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Evaluation

5.3 Threats to Validity

In this section, we discuss the threats to internal and external validity, to ensure the reliability
and applicability of our findings.

5.3.1 Internal Validity

One key threat to internal validity is our discretization of continuous hyperparameter
spaces: by restricting values (for example, limiting the number of trees or learning rates
to a smaller selection of discrete options), we may miss important regions or optima. To
mitigate this, we selected value options based on scikit-learn’s own defaults and our domain
knowledge, which typically perform reasonably well out of the box.

Reproducibility of our performance measurements is another concern: small differences
in randomness or execution environment can lead to divergent results. We addressed this
by fixing all random seeds, averaging each classifier’s accuracy over five independent runs,
and running every experiment under the same cluster environment.

Finally, our use of ordinary least squares regression assumes linearity and constant
variance of residuals, assumptions that break down for highly non-linear learners. Indeed,
for SGD and GBC some PIM predictions fell outside the valid [0, 1] accuracy range, producing
nonsensical values. While this highlights a limitation of unbounded linear models, we note
that future work could employ clipping or a logit-transform plus sigmoid back-transform
to enforce valid bounds and stabilize variance near the extremes.

5.3.2 External Validity

Our study concentrates on six widely used scikit-learn classifiers (Multinomial Naive Bayes,
Decision Trees, Gradient Boosting, Stochastic Gradient Descent, K-Nearest Neighbors, and
Random Forest). This selection ensures in-depth analysis of their hyperparameter-accuracy
relationships but necessarily restricts the scope of our conclusions. Other classifiers (e.g.,
Support Vector Machines, or Bayesian Gaussian Mixture) often have fundamentally different
hyperparameter spaces and interactions. As a result, the PIM behaviors and sampling
sensitivities we observe here may not hold for models whose performance is strongly
non-linear. Extending our framework to such algorithms will likely require revisiting both
the choice of sampling budgets and the form of the regression model.

Similarly, we only evaluated two sampling strategies, namely uniform random and
diversified distance-based sampling, which means our findings on MAPE may not hold
for alternative methods (e.g., t-wise sampling). As a result, any application of our PIM
framework to other classifiers or sampling paradigms should be preceded by a fresh
validation.



Concluding Remarks

6.1 Conclusion

In this thesis, we investigated whether sampling-based performance-influence models
can accurately predict the performance of ML hyperparameter configurations and serve
as a competitive alternative to Bayesian optimization techniques such as those used by
Hyperopt-sklearn. To this end, we answered two research questions:

Research Question 1

Summary By modeling each of six scikit-learn classifiers as a configurable system
and applying both diversified distance-based and random sampling at budgets of 1%,
5%, and 10% of the full configuration space, we trained PIMs via stepwise ordinary least
squares (OLS) regression. For classifiers with relatively smooth, low-variance accuracy
landscapes (Multinomial Naive Bayes, Decision Tree, K-Nearest Neighbors, Random
Forest), our PIMs achieved exceptionally low MAPE (< 1% at just 1% — 5% sample
size). For Gradient Boosting, prediction error remained modest (~ 2 — 5% MAPE),
while Stochastic Gradient Descent, characterized by highly variable and non-linear
performance, proved unsuitable for a PIV, resulting in unacceptably high error. These
results demonstrate that, when the hyperparameter-accuracy relationship is sufficiently
linear and stable, sampling-based PIMs can model performance accurately.

Research Question 2

Summary Using the top-3 configurations predicted by each classifier’s best PIM and
comparing against Hyperopt-sklearn’s best configuration, we found that PIM-guided
optimization matched or slightly exceeded Hyperopt-sklearn on five of six classifiers
(gains of 4-0.03 pp to +1.20 pp in accuracy). Only for Stochastic Gradient Descent,
where the PIM broke down, did Hyperopt-sklearn perform better (—0.52 pp). Thus,
within controlled hyperparameter ranges, interpretable PIMs can deliver competitive
tuning performance.

Beyond matching Hyperopt-sklearn, our approach provides a global performance map of
the entire configuration space, highlighting not just a single optimum but the full landscape
of how each hyperparameter and interaction affects accuracy.
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Concluding Remarks

6.2 Future Work

Although our study has shown that PIMs trained via stepwise linear regression on diversified
distance-based and random sampling budgets can accurately model classifier performance
and guide hyperparameter selection, several important extensions remain.

So far, we have ignored the runtime and efficiency dimension; future work should
also consider the time required to collect performance measurements and train PIMs, in
order to evaluate whether our approach is not only effective in terms of accuracy but
also efficient in practice. This includes exploring how to reduce the time needed for
performance measurement, which can be significant for complex classifiers, large datasets,
and unconstrained hyperparameter search spaces.

Consequently, another limitation of our approach arises: we constrained our evaluation to
six scikit-learn classifiers and further simplified each configuration space by hard-coding de-
fault hyperparameter settings where deemed appropriate and by transforming continuous
teatures into predefined discrete options. While these choices reduced overall complexity,
they may also have introduced bias and limited the generalizability of our findings. To
address this, subsequent research should relax these simplifications, explore richer, un-
constrained hyperparameter spaces without manual defaults or coarse discretization, and
assess how PIMs perform under higher-dimensional, more heterogeneous domains. This
also includes running experiments on GPUs, since during the collection of performance
measurements for several classifiers we observed some configurations exceeding a timeout
of 24 hours. Thus, reducing the runtime of the measuring step can enable the exploration of
more complex PIMs and therefore larger hyperparameter spaces.
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Figure A.3: Feature Model representing the Gradient Boosting Classifier.
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Appendix

Table A.1: Predicted performance by classifier, sampling strategy and sample size. All metrics are

in % and are further defined in Section 4.2.2. Apjean = A — A, and Apfegian = med(A) —
med(A). A positive A would indicate an over-estimation, while a negative A indicates an
under-estimation. The 95%-Bootstrap CI-L and CI-U columns report the lower and upper
bounds of a 95% confidence interval, estimated via bootstrap resampling.

Classifier | Sampling Strategy | Sample Size A med(A) | ®?(A) | @(A) | Avean | AMedian | CI-L | CI-U | MAPE
/ / / / / / / / / /
diversified-distance 1 83.41 83.41 0.00 0.00 —-0.17 —0.19 | 83.41 | 83.41 0.20
NGB 2 83.41 83.41 0.00 0.00 —-0.17 —0.19 | 83.41 | 83.41 0.20
/ / / / / / / / / /
random 1 83.41 83.41 0.00 0.00 —-0.17 —0.19 | 83.41 | 83.41 0.20
2 83.54 83.57 0.00 0.06 —0.04 —0.03 | 83.51 | 83.56 0.05
/ / / / / / / / / /
diversified-distance 1 86.58 86.58 0.00 0.00 —1.20 —1.30 86.58 | 86.58 1.46
bTC 2 88.13 88.65 0.80 0.90 0.35 0.77 87.79 | 88.48 0.57
/ / / / / / / / / /
random 1 88.05 88.05 0.00 0.00 0.27 0.17 88.05 | 88.05 0.73
2 88.38 88.38 0.11 0.33 0.60 0.50 88.24 | 88.52 0.79
3 96.30 96.37 0.04 0.21 2.10 1.76 96.28 | 96.33 2.46
diversified-distance 14 90.51 | 89.51 1822 | 427 | —3.69 | —5.10 |[90.02 | 91.00 | 522
Je 29 93.37 94.56 17.22 4.15 —0.83 —0.05 92.87 | 93.85 3.85
3 93.08 92.46 0.78 0.88 —-1.12 —2.15 | 9299 | 93.19 227
random 14 93.00 94.07 6.26 2.50 —1.20 —0.54 | 92.70 | 93.29 2.68
29 93.90 93.02 4.35 2.09 —0.30 —1.59 93.65 | 94.14 2.39
9 73.29 86.16 572.86 | 23.94 10.95 6.62 71.72 | 74.81 | 1067.80
diversified-distance 45 92.42 90.59 7708.51 | 87.80 30.08 11.05 86.77 | 98.22 | 1506.75
. 90 62.97 66.78 2793.70 | 52.86 0.63 —12.76 | 59.44 | 66.38 | 1094.49
9 51.18 57.11 893.80 | 2990 | —11.16 | —22.43 | 49.30 | 53.10 | 835.66
random 45 64.43 72.62 1083.36 | 3291 2.09 —6.92 62.33 | 66.55 | 845.85
90 56.37 59.88 246217 | 49.62 | =597 | —19.66 | 53.23 | 59.58 | 712.00
10 96.92 96.92 0.02 0.14 0.09 0.04 96.91 | 96.93 0.22
diversified-distance 48 96.87 96.91 0.02 0.14 0.04 0.03 96.86 | 96.88 0.20
NN 96 96.84 96.88 0.00 0.003 0.01 0.00 96.84 | 96.85 0.16
10 96.87 96.88 0.15 0.39 0.04 0.00 96.85 | 96.90 0.34
random 48 96.79 96.87 0.02 0.14 —0.04 —0.01 | 96.78 | 96.80 0.20
96 96.87 96.91 0.01 0.10 0.04 0.03 96.86 | 96.87 0.16
13 96.23 96.45 0.35 0.59 —0.09 —0.09 96.20 | 96.27 0.17
diversified-distance 65 96.26 96.48 0.38 0.62 —0.06 —0.06 | 96.29 | 96.33 0.15
RFC 130 96.30 96.52 0.36 0.60 —0.02 —0.02 | 96.26 | 96.33 0.13
13 96.33 96.55 0.34 0.58 0.01 0.01 96.30 | 96.36 0.10
random 65 96.32 96.54 0.38 0.62 0.00 0.00 96.29 | 96.36 0.04
130 96.33 96.54 0.38 0.62 0.01 0.00 96.29 | 96.36 0.04
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Table A.2: Overview of the best performance-influence model per classifier (i.e., the one with smallest
MAPE). We report mean (A), median (med(A)), standard deviation (U(A)), and Mean
Absolute Percentage Error (MAPE) of the predicted accuracy. All data is in %, besides the
sample size which shows the absolute number of configurations.

Classifier Sampling Strategy Sample Size A med(A) c(A) MAPE

MNB random 10% 83.54 83.57 0.06 0.05
DTC diversified-distance 10% 88.13 88.65 0.90 0.57
GBC random 1% 93.08 92.46 0.88 227
SGD random 10% 56.37 59.88 49.62  712.00
KNN diversified-distance 10% 96.84 96.88 0.003 0.16
RFC random 5% 96.32 96.54 0.62 0.04

Table A.3: Overview of the worst performance-influence model per classifier (i.e., the one with largest
MAPE). We report mean (A), median (med(A)), standard deviation (¢(A)), and Mean
Absolute Percentage Error (MAPE) of the predicted accuracy. All data is in %, besides the
sample size which shows the absolute number of configurations.

Classifier Sampling Strategy Sample Size = A  med(A) (A) MAPE

MNB random 5% 83.41 83.41 0 0.20
DTC diversified-distance 5% 86.58 86.58 0 1.46
GBC diversified-distance 5% 90.51 89.51 427 5.22
SGD diversified-distance 5% 92.42 90.59 87.80 1506.75
KNN random 1% 96.87 96.88 0.39 0.34

REC diversified-distance 1% 96.23 96.45 0.59 0.17




Statement on the Usage of Generative
Digital Assistants

For this thesis, the following generative digital assistants have been used: We have used
CHATGPT-40 (OPENAI, VERSION MARCH 2025) [18] for ideation, rephrasing, and structuring
ideas. We are aware of the potential dangers of using these tools and have used them

sensibly with caution and with critical thinking.
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