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Abstract

Even well-functioning code often contains hidden code smells - indicators of possible issues
that hinder software quality. Undetected code smells result in maintenance problems, in-
creasing technical debt. This study explores the potential use of Llama 3, the state-of-the-art
Large Language Model (LLM), in detection of different code smells. Our findings demon-
strate that Llama 3 shows competitive performance, particularly in detecting structural code
smells; however, further statistical analysis indicates no significant differences in overall
performance between the LLM and other static analyzers ,i.e, PMD, Checkstyle and Sonar-
Qube. These results suggest that Llama 3 is not yet ready to replace static analysis tools
entirely , but can serve as a valuable complementary tool, sparing a significant amount of
programmers’ time.
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1
Introduction

Recently, there has been a significant increase in the number of people learning how to
code. More young individuals are interested in this field, lowering the age frames of
those entering the programming world [36]. In today’s digital era, programming skills are
becoming more common and are no longer limited to computer science graduates. This leads
to a growing number of potentially inexperienced developers who collaborate on diverse
software projects. Consequently, the ability to write clean, understandable, and maintainable
code has gained importance. Supporting this viewpoint, McConnell further explored this
matter, discussing software construction practices that address maintainability concerns [26].
Chen et al. [4] have revealed shortcomings that arise from neglecting maintenance-related
issues. Addressing this problem, Naseef et al. demonstrated [22] that code smells pose a
substantial threat and are a common issue that results in poor maintainability and reduced
code quality.

Although modern methods of detecting and fixing code smells have been proving their
effectiveness since the beginning of the century, they either are not capturing more complex
relationships between code elements and are lacking understanding of the overall context
of the system or are highly resource-intensive [12, 24]. For example, some machine learning
models, although achieving high accuracy, tend to be computationally expensive, as they
need to train a separate model for each type of code smell [16, 45].

Recent advancements of Large Language Models (LLMs) can not be overseen. They have
proven their usefulness in various domains, including code generation, machine translation,
question answering, speech recognition, and have become an unavoidable helper in the
daily routine of millions of people [13]. The latest advances in the field of Generative
AI (GenAI) have led to significant contributions of LLMs in software development world. The
quantitative findings of Oliver Bodemer demonstrate significant improvements in efficiency
and error reduction, underscoring the value of integrating AI tools into the development
process [2]. A simple prompt, written in natural language, allows LLMs to produce complex
code in a matter of seconds, speeding up all stages of the software development process,
including coding and testing [9].

Using LLMs in code smell detection can be a revolutionary alternative to existing analysis
tools. As noted above, they can process both natural and programming languages, meaning
that they can effectively understand complex relationships within code that might not be
processed by other tools of analysis. This insight is useful in detecting defects that require
further analysis of the system. Moreover, due to the versatility of LLMs, they can learn from
vast amounts of data. This makes them potentially better at identifying new and unnamed
smells and even giving simple refactoring solutions for fixing them.

1



2 Introduction

1.1 Goal of This Thesis

The principal aim of this thesis is to investigate and assess the potential of using LLMs, on
the example of Llama 3, to detect different code smells in source code. In particular, we
are interested in how well LLMs can identify code smells compared to already established
practices, i.e., CheckStyle, SonarQube, PMD, which are further discussed in the following
chapter.

Despite the advancements described above, code quality issues are still prevalent in
AI-generated code [21]. To support this claim, we refer to the study conducted by Yetiştiren
et al., which reveals that the latest versions of ChatGPT, GitHub Copilot, and Amazon
CodeWhisperer generate correct code 65.2%, 46.3%, and 31.1% of the time, respectively [54].
Thus, we are mainly interested in whether LLMs can be used to mitigate code quality issues
rather than generate new code from scratch.

Given this objective, we hypothesize that LLMs perform at least as well as existing code
smell detection tools and that they may even significantly outperform current approaches as
they address the drawbacks of the latter. If this assumption holds, this in turn will contribute
to the development of more efficient and effective methods for code smell detection, which
can ultimately improve software quality, reduce maintenance costs, and enhance developer
productivity.

1.2 Overview

This thesis is structured into five further chapters. Chapter 2 presents a comprehensive
overview of the theoretical fundamentals necessary to understand and follow the content of
this thesis, along with an analysis of related work. The proceeding Chapter 3 introduces
research questions, metrics for further evaluation, as well as the detailed research procedure.
Chapter 4 discusses the results acquired and addresses research questions. Chapter 5

considers possible limitations and threats to validity. The concluding Chapter 6 provides a
summary of this thesis and highlights ideas for future work.



2
Background and Related Work

This chapter provides fundamental background information to understand and follow the
contents of this thesis. We offer a comprehensive overview of code smells with a particular
focus on five specific types relevant for this thesis. Subsequently, we also introduce static
code smell analyzers and LLMs.

2.1 Code Smells

Modern approaches in computer science frequently find origins in nature and utilize these
understandings to address complex problems and create revolutionary technologies. In
the natural world, smells help organisms communicate and evaluate each other [18]. For
example, animals rely on them to mark their territories, find suitable partners, and detect
potential dangers within their habitats. Flowers, following the same principle, release distinct
fragrances to attract, warn, or even repel other species. Scents in these scenarios reveal
hidden signals that help others understand their surroundings and make informed choices.

Analogously, in the software engineering domain, code smells serve a similar role. They
are indicators of potential issues in the source code that may hinder software maintenance
and readability [49]. Fowler [8] highlighted 22 different code smells and introduced respec-
tive refactoring strategies. Rahman et al. [40] have shown that some code smells tend to
occur more frequently than others: Long Parameter List and Complex Method were proven
to be among the most common ones. In order to provide a better insight into how code
smells can affect software development, this section will describe five different types in
more detail. They have been selected to show the majority of problems that programmers
can encounter and to present specific refactoring approaches that can help solve them. The
selection of these code smells is based on their recognized impact on different aspects of
software design and prevalence in real-world projects [30, 39, 48].

2.1.1 Long Parameter List

Long Parameter List [25] is a code smell characterized by a method or function that has
excessively many parameters, making the code complex to comprehend and extend. Such
methods usually expect the callers to provide a lot of context information, making the
method prone to errors. The problem escalates when the method has a number of parameters
of the same type, which can easily lead to confusion and wrong results. Figure 2.1 introduces

3



4 Background and Related Work

an example of such a method, along with the possible refactoring strategy that involves the
encapsulation of the parameters in a separate class.

1 public void printPerson(String firstName,

2 String lastName,

3 String middleName,

4 String maidenName,

5 String nickName,

6 int age,

7 int height) {

8 ...

9 }

1 public void printPerson(Person person) {

2 ...

3 }

Figure 2.1: Long Parameter List: Code smell (left) and refactored version (right)

2.1.2 Complex Method

While an excessive amount of parameters overcomplicate the interface of the method,
resulting in deterioration of software design and posing numerous difficulties during its
utilization, the complexity of the function itself may additionally cause severe maintainability
concerns. It hinders the overall comprehension of the program, and even requires expensive
refactoring during the latter stages of the development process.

Complex Method [48] is detected to be present if the code is cognitively complex, long,
handles many responsibilities, or has difficult control structures, including deep nesting or
multiple loops. The latter can result in code duplication or hidden dependencies. One of the
commonly used refactoring techniques suggests dividing a large and complicated method
into smaller and more specific ones, each of which performs a particular action as shown in
Figure 2.2.

1 public void analyzeString(String word){

2 // 100 lines of code with numerous

3 // nested for-loops and if statements

4 ...

5 }

1 public void analyzeString(String word){

2 analyzeWordStructure(String word);

3 countCharacterOccurrences(String word);

4 detectPartOfSpeech(String word);

5 lemmatizeWord(String word);

6 }

Figure 2.2: Complex method: Code smell (left) and refactored version (right)

2.1.3 Data Class

Data Class code smell suggests that a class is primarily used to store information and has
little or no methods that manipulate the data. These classes are usually composed of fields,
getters, and setters, but do not contain any meaningful logic. Even though data classes
may appear to be quite innocent, they are usually a sign of a bad design and can lead to
violations of the principles of object orientation, such as data encapsulation and information
hiding. Fowler suggested transferring all the methods and behaviors associated with the
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data to the data class, which will improve the cohesion of the class and minimize external
coupling in the program [8].

2.1.4 Multifaceted Abstraction

Multifaceted Abstraction refers to a situation in which an abstraction manages several, fre-
quently unrelated, issues or functionalities. The multiple responsibilities issue infringes the
Single Responsibility Principle (SRP). Martin [25] has argued that violating the SRP results in
low cohesion and high coupling, which inevitably increases technical debt. For example,
java.sql.DataTruncation class from Figure 2.3 can act either as a warning or an exception
based on the function it is used in. This approach violates the principle described above and
could lead to confusion and errors, as warnings and exceptions are handled and caught
differently in the settings of this example. A possible solution to the problem would be to
create two separate classes for each of the functionalities as shown on the right-hand side of
Figure 2.3.

java.lang.Object

java.lang.Throwable

java.lang.Exception

java.sql.SQLException

java.sql.SQLWarning

java.sql.DataTruncation

java.lang.Object

java.lang.Throwable

java.lang.Exception

java.sql.SQLException

java.sql.SQLWarning

java.sql.DataTruncWarning

java.sql.DataTruncException

Figure 2.3: Multifaceted Abstraction: Simplified Class Diagram [35]: The problematic design (left)
and refactored design (right)

2.1.5 Feature Envy

Feature Envy is a code smell that occurs when a method in one class appears to be profoundly
interested in the data or behavior of another class. The method is in the wrong place, because
instead of mainly working with its own data, it interacts with and modifies the data of
an external class. This makes the code less modular and more difficult to manage, as
changes to the data structure or behavior of one class can impact others. To address this
problem, the method should ideally be relocated to the class of its primary interest, which
will enhance the encapsulation. Figure 2.4 illustrates an example scenario of Feature Envy.
The Transaction class contains the method applyFee(). However, this method needs and
modifies the data of the Account class only. The current misplacement creates unnecessary
coupling between the Transaction and Account classes, complicating maintenance. Instead
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of having an extra class, it would prove beneficial to refactor the method into Account

class. By performing this change, the design adheres to the principle of encapsulation and
eliminates the potential errors or overhead resulting from anticipating any changes in case
Account class is modified.

Customer

- name: String
- account: Account

+ getAccount(): Account

Account

- balance: double

+ getBalance(): double
+ deposit(amount: double): void

 uses

Transaction

+ applyFee(customer: Customer): void

 depends on

Customer

- name: String
- account: Account

+ getAccount(): Account

Account

- balance: double

+ getBalance(): double
+ deposit(amount: double): void
+ applyFee(): void

 uses

Figure 2.4: Feature Envy UML Diagram: The problematic design (left) and refactored design (right).

2.2 Code Smell Analysis

We introduced several code smells in the previous section, our goal is to be able to detect
them which leads us into the field of code smell analysis. Code smell analysis has been
an active research area in software engineering for several decades [19], with its inception
marked in 1999 when Fowler and Beck [8] introduced and coined the term code smell. Shortly
afterward, researchers and programmers started identifying patterns that would signal
the presence of undesired artifacts. The first methods were based on manual inspection
using simple rules and code reviews, which were time-consuming and prone to human
errors [15]. To address these limitations, in the mid-2000s automated, metric-based methods
were developed [3, 28, 37]. Most of the tools calculate different measurements, such as Cyclo-
matic Complexity, Lack of Cohesion of Methods, Depth of Inheritance, among others. The
corresponding indicators are computed and compared to predefined thresholds. However,
these thresholds are not uniformly defined and rely on the specific data and interpretation
of the programmer [38].

With the advancements in the machine learning field, researchers searched for the oppor-
tunity to benefit from new approaches in order to improve performance and ensure wider
applicability. Azeem [1] pointed out that computer scientists have tried to apply machine
learning algorithms and models to address the limitations of metric-based approaches. For
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example, Sharma et al. [45] employed a transfer-learning technique to detect code smells,
demonstrating the potential of learning-based approaches in this domain. Specifically, they
concluded that both convolutional and recurrent neural networks, as well as autoencoder
deep learning models can be used for code smell detection, although their performance
highly depends on a specific type of code smell and thus they do not always outperform
other metric-based analyzers. Another prominent example was introduced by Hall et al. [14],
who utilized Random Forest as their core concept. Having solved the problem of under-
standing the context, the machine learning techniques still required experts to perform
feature extraction and leave room for performance and energy consumption improvements.
Even though, DeepSmells, 1D-CNN (Convolutional Neural Network) model, has reached
state-of-the-art performance, although outperforming other machine learning models, trains
a different model for each code smell, which is not ideal [16]. The evolution of code smell
analysis is summarized in Figure 2.5.

Nowadays there have been several efforts to use LLMs to analyze source code, detect bugs,
and code smells, since they are endowed with natural language processing [41]. Most of
these efforts have been directed towards assessing how effectively the well-known model,
namely ChatGPT, can perform this task [46, 47], while excluding a comparative analysis
of other LLMs and their possible efficiency in identifying code smells and software defects.
The application of LLMs to code smell detection offers a promising alternative to traditional
static analysis tools.

1999
Introduction of

Code Smells
Fowler and Beck [8]

2000
Manual

Detection

2006
Metric-Based

Detection

2016
Machine
Learning

2024
LLMs in
Analysis

Figure 2.5: Key milestones in the evolution of code smell analysis: A simplified timeline

2.2.1 Static Analyzers

Static code smell analysis is the process of detecting code smells in the source code without
executing the program. While a plethora of static analyzers exist, we examine three of
the most popular ones in this study according to Yeboah et al.[53]: PMD, Checkstyle, and
SonarQube.

2.2.1.1 PMD

PMD is an extensible multilanguage static code analyzer [37]. It finds common programming
flaws like unused variables, empty catch blocks, and unnecessary object creation, just to
name a few. It is mainly concerned with Java and Apex, but supports 16 other languages. It
operates in a manner that is very similar to conventional static analysis tools. This naturally
means that the tool involves the generation and traversal of an abstract syntax tree [32].

PMD has been shown to be effective in large-scale software projects due to its extensibility
and ability to be integrated with various development environments [53]. Although it
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has been observed that PMD can effectively identify simple code smells, it may not be as
effective in identifying complex patterns or smells on higher abstraction levels that require
the understanding of the code semantics [7, 17].

2.2.1.2 Checkstyle

Checkstyle [3] is a static code analysis tool designed primarily to enforce coding standards
and conventions in Java applications. The tool employs a set of rules that are either pre-
defined or defined by the user to look for problems like absence of Javadoc comment,
non-adherence to common practices and standards or incorrect syntax of code snippets.
Due to its compatibility with build tools such as Apache Maven, Gradle, and continuous
integration environments, it is ideal for large-scale projects to maintain code quality.

2.2.1.3 SonarQube

SonarQube [50] is an open source solution for code quality inspection that supports most
of the programming languages such as Java, C, C++, Python, and JavaScript. It inspects
source code to identify a broad range of quality defects including bugs, security flaws, code
smells, and duplications, and provides all the results in a web interface. Recent studies [29]
highlight SonarQube’s ability to detect a broad spectrum of code issues and its effectiveness
in improving software maintainability.

2.3 Large Language Models

In the scope of this thesis, we aim to investigate whether Large Language Models are
a suitable alternative to static analyzers discussed above. Large Language Models are a
subset of AI models built on deep learning. They process large amounts of data, trying to
comprehend complex statistical dependencies and generate human-like text. In order to
be able to predict billions of parameters they try to understand statistical dependencies
between words and sentences during a self-supervised and semi-supervised training process.
Large Language Models appear in various forms and manners with their unique strengths
and weaknesses. While some of them, such as ChatGPT [33], outperform others in question
answering tasks, others have mastered multilingual understanding (e.g., PaLM 2 [11]), code
completion (e.g., GitHub Copilot [10]) or even advanced content generation tasks, such as
code (e.g., Codex [5]) or image generation (e.g., DALL-E [34]). All of these and many more
models describe different ways of how LLMs have already enriched the field of AI research
and development. They have not only demonstrated the potential to automate complex
tasks but have also provided innovation across industries, from healthcare and education to
entertainment and software engineering.

2.3.1 Llama 3

The third generation of LLMs created by Meta is known as Llama 3 [51]. By adding a
larger and more diverse training set along with more sophisticated training methods, and
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utilization of Grouped-Query Attention this version improves upon its predecessors in
terms of understanding and producing texts that resemble human-generated ones. A greater
understanding of language and its surrounding context is made possible by the model’s
architectural changes, which include an increased number of parameters and improved
procedures. Notably, it uses a tokenizer with a vocabulary of 128.000 tokens, enabling more
efficient language encoding and improved model performance [51].

Many factors motivate the choice to focus on Llama 3 in this study, while many available
LLMs could have been selected instead. Llama 3 shows impressive capabilities in many
natural language processing tasks and it excels at activities such as code completion, text
generation and information retrieval [44]. Strong performance in tasks related to code makes
this model a good fit for code smell analysis compared, for example, to well-known image-
generative DALL-E [34]. Furthermore, due to its open-source nature, users can understand
the reasoning behind some decisions made, which could be helpful for tasks involving
the prompt engineering domain [6]. Llama 3 offers a balance between advanced features,
accessibility, and computational bearability, making it a more practical choice for research
purposes compared to models like ChatGPT.

In this chapter, we introduced LLMs, certain types of code smells along with brief history
of code smell analysis. Code smells remain an obstacle that hinders the maintenance of the
programs. Existing static analyzers are not ideal and leave room for further improvements.
Considering recent advancements in the field of GenAI, LLMs seem to be a good alternative.
In the following chapter, we describe our research design.





3
Methodology

This chapter presents the research questions, outlines the general methodology, and details
the procedures employed to ensure systematical and consistent research.

3.1 Research Questions

In our research, we address the following questions:

RQ1 What types of code smells are most accurately detected by Llama 3?

Even though Llama 3 might generally perform well, its accuracy could vary depending
on the type of a specific code smell. Therefore, we are particularly interested not only in
whether Llama 3 is able to correctly detect code smells, but also in what specific code smell
from our predefined set it identifies best. This research helps us understand the model’s
strengths and shortcomings in terms of the subtle nature of distinct code smells, as well as
whether its perception is consistent with human interpretations.

RQ2
How effective is Llama 3 in detecting and classifying code smells compared
to existing static analysis tools?

Despite recent breakthroughs in development of machine learning and GenAI models,
the quantitative comparison of LLMs and traditional static analysis approaches utilized for
code smell detection is still a venue to explore. In order to provide clearer insights, we
compare the performances of Llama 3 and classic analyzers, such as PMD, Checkstyle and
SonarQube. We evaluate them based on their precision, recall, and F1-score metrics, using an
imbalanced dataset to reflect real-world scenarios. This comparison offers a perspective on
whether Llama 3’s capabilities are superior, complementary, or inferior to current methods
used in industry. This implies that we can assess the potential of Llama 3 to effectively
replace or improve other static analysis techniques.

RQ3
How accurately does Llama 3 prioritize code smells in terms of relevance, that
is at what rank does it correctly identify the most prominent code smell?

Considering the situation when Llama 3 fails to detect the code smell on the first attempt,
can it still identify it later on? This question is designed to test how closely the model can

11



12 Methodology

resemble human priorities for code smells, and how well its ranks align with severity of the
defect. This evaluation allows us to assess the usefulness of Llama 3 for tasks that involve
prioritization, for example, during code review or when deciding on refactoring strategies.

3.2 Operationalization

To answer RQ1 and RQ2, we consider our task to be a multinomial classification problem,
meaning that each code smell corresponds to a class. This involves evaluation of model’s
performance on each class separately, as well as jointly (overall) performance. We employ
precision, recall, and F1-score as per class metrics. In addition, we regard each class as having
equal importance. Consequently, for evaluation of overall performance macro-averaged
metrics are used.

For RQ2, we go a step further to compare the F1-scores of Llama 3 with those of traditional
tools, i.e., PMD, Checkstyle, and SonarQube, using statistical testing. In particular, we
employ the Kruskal-Wallis test in order to assess whether the differences in F1-scores
between the tools are statistically significant. If differences are found to be significant, we
use the Wilcoxon Signed-Rank test in order to determine performance of which tools is
significantly different. This approach provides a solid statistical basis for analyzing and
comparing the overall effectiveness of the tools, which we discuss in further detail below.

Precision

Precision, also known as positive predictive value, is defined as the ratio of true positive
observations (TP) to the total number of positive observations (TP + FP):

Precisioni =
TPi

TPi + FPi
,

where:

• TPi: Number of true positive observations for class i (correctly identified instances).

• FPi: Number of false positive observations for class i (instances incorrectly assigned to
class i).

Macro-average precision is the average precision across all classes:

PrecisionMacro =
1
N

N

∑
i=1

Precisioni,

where:

• N: Total number of classes.

Recall

Recall, also known as sensitivity or the true positive rate, for a class is the ratio of true
positives to the sum of true positives and false negatives:

Recalli =
TPi

TPi + FNi
,
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where:

• TPi: Number of true positive observations for class i.

• FNi: Number of false negative observations for class i (instances belonging to class i
but not identified as such).

Macro-average recall is the average recall across all classes:

RecallMacro =
1
N ∑

i
Recalli,

F1-Score

F1-score is the harmonic mean of precision and recall. This is a comprehensive metric that
provides insight into both false-positive and false-negative errors, balancing precision and
recall.

F1-Scorei =
2 · Precisioni · Recalli
Precisioni + Recalli

,

The macro-average F1 score is the average F1-Score across all classes:

F1-ScoreMacro =
1
N ∑

i
F1-Scorei,

Kruskal-Wallis Test

The Kruskal-Wallis test [20] is a non-parametric statistical test which is used to compare more
than two independent groups of data and to determine whether there are any significant
differences between their medians. It is essentially applicable when the normal distribution
and equal variance assumptions of ANOVA and other similar tests are violated. Due to its
robustness, it is recommended to routinely use Kruskal–Wallis, unless the data is based on
a large sample size and clearly normally distributed [27]. Thus, we use the Kruskal-Wallis
test.

The Kruskal-Wallis test statistic H without ties (duplicates) is calculated as follows:

H =
12

N(N + 1)

c

∑
i=1

R2
i

ni
− 3(N + 1),

where:

• N: Total number of observations in all groups.

• c: Number of groups being compared.

• ni: Number of observations in group i.

• Ri: Sum of the ranks in group i.

The test follows a χ2-distribution with c − 1 degrees of freedom. The null hypothesis
(H0) suggests that the medians of all groups are equal, i.e., there is no significant difference
between them. The alternative hypothesis H1, on the other hand, presumes that at least
one group has a different median. If the p-value is below the significance level, the null
hypothesis is rejected, indicating significant differences between the groups.
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Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test [42] is a non-parametric test with principal aim to compare
two paired groups and to determine whether their population mean ranks differ. It is often
used as a post-hoc test after the Kruskal-Wallis test to compare pairs of groups[27]. In our
study, F1-scores for different analysis tools are calculated for the same set of classes. This
implies that the data is inherently paired, as the performance for each tool corresponds to
the same class.

The Wilcoxon test statistic W is computed as the sum of the ranks of absolute differences:

W =
n

∑
i=1

rank|xi−yi | · signum(xi − yi),

where:

• xi, yi: Paired observations.

• rank|xi−yi |: Rank of the absolute difference between paired observations.

• signum(xi − yi): Sign of the difference between paired observations.

The null hypothesis (H0) states that the median difference between the two groups is
zero, thus, they do not differ. The alternative hypothesis (H1) postulates that the median
difference between the two groups deviated from zero.

Mean Reciprocal Rank

For RQ3, we aim to determine at what rank (attempt) Llama 3 correctly identifies the present
code smell. As an estimate, we use Mean Reciprocal Rank (MRR). MRR is the average of the
reciprocal ranks of the first correct answer. It is calculated as follows:

MRR =
1
Q

Q

∑
i=1

1
ranki

,

where:

• Q: Total number of code snippets analyzed.

• ranki: Rank (attempt) of the first correct prediction for snippet i.

3.3 Procedure

To ensure a fair and comprehensive evaluation, our research process is divided into several
steps.
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Code Smell Type Dataset Count

Complex Method Method DACOS 1 340

Data Class Class MLCQ 4 020

Feature Envy Method MLCQ 3 332

Long Parameter List Method DACOS 1 443

Multifaceted Abstraction Class DACOS 2 402

None - DACOSX 7 463

Total 20 000

Table 3.1: Distribution of code smells in the created dataset

Step 0: Dataset construction

We used two datasets: MLCQ [23] and DACOS (combined with DACOSX) [31]. These
datasets contain a variety of smelly code snippets from real-world Java projects. All the
codes in these datasets have been labeled by programming experts to make sure that
the annotations are accurate and reliable. Manual annotation is crucial in identifying and
confirming the existence of code smells since it reduces biases and mistakes that may
occur during automatic or heuristic-based approach. This is to ensure that the datasets are
valid and appropriate for assessing the performance of the proposed detection methods.
Furthermore, we used the DACOSX, extension of DACOS, to include benign code snippets.
This step ensures that the chosen methods not only correctly handle smelly code, but also
do not identify well-written code as potentially harmful. Various metrics together with
extreme thresholds were introduced to ensure benign code smells are smell-free, thereby
providing a solid background for our research. Due to computational constraints and to
ensure practical feasibility and to ease the reproducibility of our findings, we limit the
number of code snippets to 20 000, the distribution is shown in Table 3.1.

Step 1: Data Collection and Preprocessing

The MLCQ dataset provides links to GitHub repositories, which we use to extract relevant
lines of code as specified in the dataset. The DACOS dataset, on the other hand, provides
the code snippets in form of files. However, these files are saved in a format that is different
from the standard Java source code which is expected by the static analyzers used in our
study. This .code format makes the raw snippets incompatible with automated analysis
tools meaning that these snippets have to be preprocessed in order to get the correct .java

public class ExampleClass {

// content of the code snippet

}

Listing 3.1: Template for wrapping code snippets into a syntactically correct Java class
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ending. Furthermore, code snippets that only contain methods must be wrapped in a class
to ensure syntactically correctness. We use Listing 3.1 as a template to wrap those code
snippets that belong to a method as indicated in Table 3.1.

Step 2: Acquire Predictions

In this thesis we use Meta-Llama-3-8B-instruct model. This model has been specifically
upgraded for handling instruction-based tasks, thus making it appropriate for dealing with
code snippets [51].

The following user prompt addresses RQ1 and RQ2:

Analyze the following code snippet and identify the most prominent

code smell according to established software engineering

principles. If there is no discernible code smell, respond with

’None’.

The creation of proper prompt is vital during investigating the behavior of LLMs [43]. In
this study, we explored different prompt engineering strategies to optimize the instruction
making its responses more relevant. Adhering to concepts of directional-stimulus prompting,
the model is told to "identify the most prominent code smell" or to reply "None" if no code smell
is detected, this helps in minimizing confusion and enhances the coherency of responses.
Principles of generated knowledge prompting postulate that the model should make use
of its embedded understanding, we ensure it by explicitly stating: "according to established
software engineering principles" to provide relevant and domain-specific outputs. Additionally,
the prompt has been optimized through the process of iterational fine-tuning: the prompt
was modified, depending on the initial responses, to make it clearer, more relevant to the
objectives of the research and easier to understand.

We employ a slightly modified prompt for RQ3:

Analyze the following code snippet and identify the most prominent

code smells according to established software engineering

principles. If there are no discernible code smells, respond with

’None’. Rank the detected code smells in order of relevance.

We performed analysis for PMD v7.3.0, Checkstyle v10.17.0, and SonarQube v10.6 through
scripted automation to ensure consistent and efficient analysis. To better reflect the nature of
the datasets, minor adjustments to certain rules were made. Mainly, threshold for Cyclomatic
Complexity was set to 7, maximal number of allowed parameters was set to 4.

Step 3: Analysis and Interpretation of Results

To determine whether the respective tool has correctly identified the presence or absence of
a specific code smell, we use a set of rules and keywords, as summarized in Table A.1.

Unrelated to our research questions, we additionally noticed that Llama 3 can classify a
code snippet as belonging to a class of code smell not presented in the originally constructed
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dataset. As it is infeasible to verify the correctness of such predictions, we decided to
uniformly exclude them from the final evaluation across all analyzer. In order to comply
to the principle of fairness, we firstly processed the output of Llama 3. The total number
of 1646 samples (approximately 8.23%) were excluded from the final evaluation due to the
aforementioned reason. The code snippets for which Llama 3 had provided an incorrect
answer were identified and collected. These snippets were then used to create a more
specific dataset for RQ3 where the focus was on the model’s capability to filter prioritize
relevant code smells. The final metrics relevant for evaluation are calculated as described in
the previous section.





4
Evaluation

In this chapter, we present the results obtained structured along our three research questions
and subsequently interpret and discuss them.

4.1 Results

Following the process described in the previous section, we were able to acquire the
following results.

4.1.1 RQ1: Detection Accuracy

The first research question focuses on investigating the overall performance of Llama 3 in
terms of code smell detection. Furthermore, we are interested in what specific types of code
smells Llama 3 is able to identify most accurately.

Llama 3 demonstrates both strengths and weaknesses in code smell detection. The model
is able to correctly identify Data Class code smell with a high level of precision (0.7342) and
a high recall of 0.9045, giving it a high F1-score of 0.8105. On the contrary, for Multifaceted
Abstraction and Feature Envy, Llama 3 shows the lowest values of precision, recall, and
F1-score. Considering smell-free code and Long Parameter List, although being highly precise,
LLM struggles with recall. In other words, Llama 3 appears to be cautious in identifying
these code smells, yet very accurate when it does. This is relatively consistent with the
Complex Method, it has the precision of 0.7783, recall of 0.6112, and a fairly good F1-score of
0.6847. This means that the model is able to identify this smell rather well but may not get
to grasp certain aspects of it. The lowest precision and recall are equal to 0.1215 and 0.0779

respectively and an F1-score of 0.095. Detailed per code smell metrics are summarized in
Table 4.1.

RQ1

Overall, Llama 3 has shown a moderate performance across the different
code smells, which proves that it is accurate but not always consistent in
terms of the recall especially for more complex smells including Multifaceted
Abstraction and Feature Envy where the higher levels of abstraction are used
and additional data flow analysis is required.

19
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Code Smell TP FP FN TN Precision Recall F1-Score

Data Class 3190 1155 337 1911 0.7342 0.9045 0.8105

Feature Envy 239 1729 2827 1798 0.1215 0.0779 0.0950

Multifaceted Abstraction 232 387 1809 9333 0.3745 0.1135 0.1742

Long Parameter List 507 203 722 10329 0.7142 0.4127 0.5231

Complex Method 744 212 473 10332 0.7783 0.6112 0.6847

None 3162 591 4085 3923 0.8425 0.4363 0.5749

Table 4.1: Overview of the Llama 3 results per code smell. TP: True Positives, FP: False Positives, FN:
False Negatives, TN: True Negatives

4.1.2 RQ2: Performance Across Analyzers

The aim of the second research question was to evaluate how effectively Llama 3 identifies
and classifies different code smells compared to other static analyzers, i.e., PMD, Checkstyle,
and SonarQube.

Table 4.2 shows macro-averaged metrics for each of the analyzers. Llama 3 achieves a
precision of 0.5942, which is higher than that of Checkstyle (0.5219), but lower than the
precision of PMD (0.6524) and SonarQube (0.6592). Considering recall, with the value
of 0.4261 Llama 3 outperforms Checkstyle (0.3329) and PMD (0.3230), but falls short of
SonarQube (0.6001). F1-score performance follows the same trend as the recall, meaning
that Llama 3 (0.4771) performs better than Checkstyle (0.3953) and PMD (0.3989), but does
not reach the level of SonarQube (0.5459). We show detailed results in Table A.2.

Statistical Tests

Figure 4.2 illustrates boxplots of F1-score distributions for each code smell grouped by
analyzer. To assess whether the observed differences between medians are statistically
significant, we performed the Kruskal-Wallis test. We applied it to the results shown in
Figure 4.1. The Kruskal-Wallis test yielded the following results: H = 0.9533, p = 0.8125 >

0.05. Since the calculated p-value is much larger than the chosen confidence level, we fail
to reject the null hypothesis. Thus, we conclude that there is no statistical difference in
the overall performance among all analyzers. Further statistical tests, that is, Wilcoxon

Analyzer Precision Recall F1 - Score

Llama 3 0.5942 0.4261 0.4771

Checkstyle 0.5219 0.3329 0.3953

SonarQube 0.6592 0.6001 0.5459

PMD 0.6524 0.3230 0.3989

Table 4.2: Overview of the joint results: Macro-averaged metrics
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signed-rank tests, would not add anything substantial to the understanding and may
even lead to performing redundant analyses, since if none of the analyzers’ performance
significantly differs from others, it is also impossible that there exists a pair of analyzers
whose performance is statistically unalike.

RQ2

Llama 3 demonstrates competitive performance, particularly in achieving a
balanced trade-off between precision and recall. Generally, it outperforms
PMD and Checkstyle, but is less effective than SonarQube. However, there is
no statistically significant difference between the performance of the tools.

Figure 4.1: Heatmap representing F1-Scores for different code smells across analyzers

4.1.3 RQ3: Ranking Accuracy

The final research question investigated how accurately Llama 3 is able to prioritize code
smells in terms of relevance, assessing its alignment with human priorities. The MRR was
calculated to be 0.2842, meaning average rank of the first correct prediction was:

AvgRank =
1

0.2842
≈ 3.5

.
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Figure 4.2: Boxplot showing the distribution of F1-scores per code smell for different analysis tools

RQ3
Llama 3 shows modest accuracy in prioritizing code smells, with an MRR of
0.2842, corresponding to an average rank of 3.5 for the first correct prediction.

4.2 Discussion

In this section, we further elaborate on results and discuss possible implications and
applications.

4.2.1 RQ1: Detection Accuracy

As the results indicated in the previous section, Llama 3 demonstrated varying performance
depending on a specific type of code smell. The model shows impressive results in identify-
ing the Data class. This also aligns well with the findings of Fontana et al. [7] who showed
that various machine learning models performed best on Data class code smell, indicating
the similarity in performance between machine learning models and LLMs. However, for
Multifaceted Abstraction and Feature Envy, the effectiveness of Llama 3 drops significantly,
highlighting the lowest values of precision, recall, and F1-score. It is worth mentioning
that other static analyzers have mostly shown similar unsatisfying results, as illustrated in
Table A.2, for these two code smells. It inevitably hints at the fact that for these code smells
more surrounding information as well as deeper data flow analysis are required. For other
types of smells and benign code, the model shows moderate results, meaning that while
being able to identify them, the performance cannot be classified as exceptionally good or
bad. We also hypothesize that the results are, to a certain extent, influenced by the different
proportions of respective code smell snippets present in the original training set.

From the personal perspective, anticipated high performance for smells like Data class
and Complex method proves the ability of LLMs to identify code smells that follow a specific
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pattern. Meanwhile, the limited efficiency for Multifaceted Abstraction and Feauture envy
reflects current limitations and suggests areas of further research.

4.2.2 RQ2: Performance Across Analyzers

The competitive performance of Llama 3 highlights the potential of using LLMs in the field
of code smell analysis. Even though the model outperforms Checkstyle and PMD in general,
it struggles to beat SonarQube. The statistical evaluation of overall performance suggests
that there are no important differences in how well the tools perform. Considering all of the
above, we can conclude that LLMs such as Llama 3 may be a suitable supplement to existing
solutions; however, their out-of-the-box versions are not powerful enough to substitute
static analyzers entirely. This finding supports the viewpoint of Wu et al. [52] who tried to
combine metric-based approaches with LLM-based techniques to achieve persuading results
in code refactoring.

4.2.3 RQ3: Ranking Accuracy

The MRR of 0.2842 and respective average rank of approximately 3.5 means that, on average,
Llama 3 correctly identifies the most relevant code smell at the 3rd or 4th position in its
ranked list of predictions. This finding shows that in order to achieve better results, we
could tailor Llama 3 to this specific task, performing fine-tuning. Important improvements
to its prioritization capabilities could be achieved through the incorporation of ranking
algorithms or through the embedding of principles that resemble human comprehension of
the program. The correct smell is placed mostly within the top four ranks and its promising
ability suggests that, with refinement, it could be used as a helpful tool for developers in
tasks of prioritization and refactoring.
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Threats to Validity

Threats to validity are critical to address in any research to ensure the reliability and
applicability of the findings. In this section, we distinguish between internal and external
validity and elaborate on specific issues pertinent to the scope of this thesis.

5.1 Internal Validity

One significant threat to internal validity is the non-deterministic nature of Large Language
Models (LLMs) themselves. Models, such as Llama 3, generate outputs that can fluctuate
based on parameters including input phrasing, the model’s internal state, and external
environmental conditions (e.g., hardware and library versions). This variability poses
a problem for reproducibility as small, often barely noticeable differences can produce
different results. To overcome this challenge, we made sure that there was consistency in
hardware and software conditions and performed the prompting on the same machine and
settings to minimize this threat.

Furthermore, manually annotated datasets add an additional layer of complications.
These datasets may include inherent biases from the annotators, including subjective
interpretations of code smells. Such biases may affect the accuracy and correctness of
the results, complicating the determination of whether the outcomes represent the code’s
quality or are superficial due to the datasets’ nature. In order to mitigate this threat, we
used established databases that were employed in prior research instead of developing a
new one and contributing to the existing bias.

It is also worth mentioning that the mapping between code smells and rules from
static analyzers is not totally and universally agreed upon. Inconsistencies or incomplete
mappings can lead to gaps in detecting certain code smells, potentially skewing the analysis
and making comparisons across different tools unreliable. In order to reduce this risk,
we searched for the existing rules in the documentation of used analyzers trying to find
correspondences among them [3, 37, 50] so that the approach is more comprehensive and
coherent.

5.2 External Validity

External validity concerns the applicability of our conclusions beyond the particular context
and scope of this thesis. A significant constraint is our choice to confine the research to five
code smells within Java code. This emphasis guarantees depth within a limited domain, but
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the results may not be applicable to other programming languages. Differences in syntax,
semantics, and idiomatic conventions among languages may restrict the relevance of our
conclusions to circumstances outside of Java and the five selected code smells.

Furthermore, the particular attributes of the datasets and the dependence on Java-centric
code smells may impede the wider applicability of the research. Other programming
languages may display distinct code smells or emphasize varying facets of code quality,
hence diminishing the relevance of our findings in those instances.

The issue of generalizability also extends to the use of specific LLM. Despite the fact that
the research in this study is based on Llama 3, it is not to be expected that the findings of this
study can be directly applied to other LLMs. Other models may perform different fine-tuning
or tokenization which may lead to different results. This restricts the generalizability of our
findings and therefore calls for more research across a number of models to establish these
differences.

Similarly, the relevance of our findings may not be precise for future generations of
LLMs. It is highly likely that the next generations will incorporate improvements in the
architecture, training, or perform domain-specific enhancement. Our study thus tries to
capture the current trends while preserving resource efficiency and feasibility. However, we
cannot presume that it remains relevant for future versions or the fast-evolving LLMs.

Another possibility is to fine-tune a specific LLM for the task of code smell detection. Even
though general-purpose models like Llama 3 or ChatGPT are highly versatile and flexible,
a model that has been specifically trained on code smells datasets might deliver better
results. In this study, our primary goal was to evaluate the out-of-the-box performance
of a general-purpose model, with no additional fine-tuning, to understand their baseline
capabilities in a realistic scenario.

Therefore, it is also important to note that the study has focused on specific code smells
that are evident in Java language. A LLM might behave differently when identifying other
code smells especially those that are based on different software design principles or are
at a higher level of abstraction. The accuracy of LLMs in identifying such smells is yet to
be established because they may complement the model’s perception of the world more or
contradict it due to having different experiences and training sets. This limitation highlights
the need for more research that involves more types of code smells across a number of
programming languages and levels of abstraction for a better understanding.

Finally, it can also be argued that not all the findings from academic research can
be applied in industries directly. The experimental design, data collected, and analysis
techniques employed might not be able to capture all the aspects and issues that could
lead to biased results and make the findings non-transferable. Thus, keeping in mind the
above, we purposely selected the datasets that contain code samples from real-industrial
software projects, hence augmenting the relevance and applicability of our findings to
practical software development settings.
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Concluding Remarks

6.1 Conclusion

The process of identifying and prioritizing code smells is crucial for maintaining software
quality and managing overall technical debt. Having reliable, energy-efficient, precise, and
fast methods can spare a significant amount of developers’ effort. Modern code smell
analysis approaches are not ideal and fail to fulfill at least one of the criteria described
above. To address this issue, our study aimed at assessing the effectiveness of Llama 3, a
state-of-the-art LLM, in this matter.

We concluded that Llama 3 performs well in detecting structural smells like Data Class,
aligning with related research on machine learning models. However, its performance
is inconsistent for nuanced, context-dependent smells like Feature envy or Multifaceted
abstraction. Although the tool performed better than Checkstyle and PMD in certain aspects,
it was outperformed by SonarQube in most cases and a statistical analysis revealed that
there is no significant difference between the overall performance of Llama 3 compared to
other static analyzers, i.e, PMD, Checkstyle, and SonarQube. In addition, the capability of
Llama 3 in prioritizing code smells as shown by its MRR score, shows the potential of the
model while at the same time pointing to its weaknesses—the model often does not identify
the most critical issue as the most prominent. Considering all of the above, we conclude
that while not being able to substitute modern code smell analysis techniques entirely, LLMs

might prove usefull as complementary tools in improving software quality.
Furthermore, some of questions were not addressed in our research and remain open.

For example, how do training data influence the performance of LLMs? Would fine-tuning
enhance their performance for complex smells? Referring to our conclusion, what hybrid
approaches could effectively integrate LLMs with static analyzers to leverage their respective
strengths, is also an open question.

6.2 Future Work

As discussed in the previous section, this research has revealed the strengths and weaknesses
of Llama 3 in identifying and ranking code smells which presents new research directions.
Our research can become a solid foundation for further investigation on how the fine-tuning
could influence the performance of the model. By choosing another dataset which contains
more labeled samples of complex code smells, emphasizing their contextual nuances, we
could achieve better results. Furthermore, datasets that contain paired entries of smelly
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code snippets together with their refactored versions could significantly contribute to the
ability of model to learn and generalize. Hybrid approaches can involve integration of
the best features of LLMs with static analysis tools. For example, static analyzers can be
used for basic smells detection by applying various metrics while LLMs can be utilized
for complex smells that need deeper semantic analysis. Future experiments may include
scenarios in which Llama 3 assists static analyzers to test the effectiveness of the combination
in various contexts. Additionally, the same methodology can be applied to larger datasets
considering another programming languages or LLMs. By addressing these open questions,
future research could uncover the full potential of LLMs in the field of code smell analysis.
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Table A.1: Detection rules and keywords for code smell identification

Code Smell Rules

Multifaceted Abstraction PMD: God Class, TooManyMethods

Checkstyle: ClassFanOutComplexit, MethodCount

SonarQube: S1448 (Too many methods), S6539 (Class should
not depend on an excessive number of other classes)

Llama 3: God Class, God Object, Multifaceted Abstraction

Data Class PMD: DataClass

Checkstyle: VisibilityModifier, NoFinalizer

SonarQube: S1170 (Public constants should be static), S1104

(Fields should be private), S1820 (Classes should not have too
many fields)

Llama 3: Data Class

Long Parameter List PMD: ExcessiveParameterList, ConstructorWithTooManyPa-
rameters

Checkstyle: ParameterNumber

SonarQube: S107 (Methods should not have too many param-
eters)

Llama 3: Long Parameter List

Feature Envy PMD: LawOfDemeter, CouplingBetweenObjects, ExcessiveIm-
ports

Checkstyle: ClassDataAbstractionCoupling

SonarQube: S1200 (Classes should not be coupled to too
many other classes)

Llama 3: Feature Envy

Complex Method PMD: CyclomaticComplexity, NPathComplexity, Exces-
siveMethodLength

Checkstyle: CyclomaticComplexity, MethodLength, Executa-
bleStatementCount

SonarQube: S3776 (Cognitive Complexity), S1541 (Method
complexity) , S6541 (Brain method)

Llama 3: Complex Method, Long Method



Appendix 31

Table A.2: Overview of the detailed results per code smell across all analyzers. TP: True Positives,
FP: False Positives, FN: False Negatives, TN: True Negatives

Analyzer Code Smell
Metrics

TP FP FN TN Precision Recall F1-Score

PMD

Data Class 393 32 3134 3034 0.9245 0.1113 0.1987

Feature Envy 633 1449 2433 2078 0.304 0.2064 0.2459

Multifaceted Abstraction 158 398 1884 9322 0.2834 0.0772 0.1213

Long Parameter List 365 10 864 10522 0.9725 0.2966 0.4546

Complex Method 818 117 399 10428 0.8754 0.6723 0.7605

None 4065 1962 3182 2552 0.6745 0.5609 0.6125

Llama 3

Data Class 3190 1155 337 1911 0.7342 0.9045 0.8105

Feature Envy 239 1729 2827 1798 0.1215 0.0779 0.095

Multifaceted Abstraction 232 387 1809 9333 0.3745 0.1135 0.1742

Long Parameter List 507 203 722 10329 0.7142 0.4127 0.5231

Complex Method 744 212 473 10332 0.7783 0.6112 0.6847

None 3162 591 4085 3923 0.8425 0.4363 0.5749

Checkstyle

Data Class 17 176 3510 2890 0.087 0.0048 0.009

Feature Envy 324 2983 2742 545 0.098 0.1057 0.1017

Multifaceted Abstraction 413 492 1629 9228 0.4561 0.2021 0.2801

Long Parameter List 472 21 757 10511 0.9576 0.3837 0.5479

Complex Method 806 113 411 10431 0.8767 0.6622 0.7545

None 4508 1532 2739 2982 0.7463 0.6219 0.6785

SonarQube

Data Class 3418 2285 109 782 0.5994 0.9692 0.7407

Feature Envy 2227 2239 839 1288 0.4987 0.7264 0.5914

Multifaceted Abstraction 1821 1901 220 7819 0.4892 0.8921 0.6319

Long Parameter List 369 63 860 10469 0.8547 0.3005 0.4447

Complex Method 715 288 502 10256 0.7128 0.5878 0.6443

None 934 233 6313 4281 0.8004 0.1289 0.2221





Statement on the Usage of Generative
Digital Assistants

For this thesis, the following generative digital assistants have been used:
We have used ChatGPT-4o (OpenAI, version December 2024) [33] for collecting possible

inspiration and exploring alternative phrasing or structuring ideas in certain parts of the
thesis. We are aware of the potential dangers of using these tools and have used them
sensibly with caution and with critical thinking.

In particular, it was utilized to brainstorm different ways of visual representation of
figures in Chapter 2 and Chapter 4, get inspiration for the phrasing of the text in Chapter 6.
The above mentioned tool was used solely as a source of inspiration, and the final text was
created using own words and phrasing.
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