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A B S T R A C T

The version control system Git is a popular tool used by many software developers
to manage their software projects. It stores project histories and helps with effectively
cooperating on a project by providing branching and by working as a distributed system.
Combining software analysis with repository information can be helpful for understanding
how software projects evolve over time. The version control system Git offers the blame

functionality to connect repository information with source code. It does so by assigning to
each line of code the hash of the commit that last modified it. However, it often occurs that
only parts of a line get modified. In these cases the line-based blame information restricts us
from identifying which authors modified which parts of a line because the last modification
is attributed to the whole line. We aim to improve the precision of software analysis
involving repository information by computing git blame information on a per-character
basis.

Software analyses often work on an intermediate representation (IR) that is generated
from a program’s AST. Therefore, we introduce an AST-based blame algorithm that enhances
the precision of commit annotations by computing a separate blame for each AST node. The
main idea is to follow the history of the code of an AST node back until the point where it
was first introduced. We use the commit hash that is returned by the line-based git blame
as a basis and determine whether there has been an actual change at the given position. If
there is no change we continue searching for the actual change starting from the previous
commit. If there is a change, we take the commit returned by the line-based blame.

We evaluate the precision of our improved AST-based blame algorithm by comparing
the results to a manually derived baseline and the line-based blame information. In our
experiments, we observe a significant improvement over the line-based blame information.
To demonstrate how the more precise AST-based blame information can impact program
analysis, we investigate its effects on the commit-interaction analysis from Sattler et al. [10],
an integrated approach that combines low-level program analysis with high-level repository
information. This way, we obtain insights on what we can gain from more fine-grained
information. In the case of a central-code analysis, we are able to more precisely identify
commits that are central in the data-dependency structure of a program.
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1
I N T R O D U C T I O N

The version control system Git
1 is a popular tool used by many software developers to

manage their software projects. The Git repository hosting service GitHub reports over 100

million users2 and a survey of Stack Overflow states that 93% of software developers use
Git

3. Git stores a projects history and helps with effectively cooperating on a project.
The project history consists of multiple commits describing the changes made to the

source code files. Especially in projects that are worked on by multiple developers, it is
crucial that each commit is assigned an author to allow the team to identify who made
specific changes. With this assignment we know who introduced certain code segments
because each commit also has information about the changes made to the source code.
For example, this can help with legal issues on code ownership and improve the work
flow of software engineers. Another benefit of the information about the author is that
people working on the project know who to contact with questions regarding a specific
code segment. Besides the issue of determining authorship, repository information, such
as which commit introduced what code and when, can be helpful in understanding how
software projects evolve over time.

A Git repository stores this information about the authors as metadata. This underlying
data and metadata is essential for history tracking and it provides analysis tools with the
information necessary for their analysis. The research area of repository mining deals with
analysing the vast amount of data from software repositories and using the results to better
understand and to improve the process behind developing software [12]. For example,
Sattler et al. [10] use repository information coupled with a data-flow analysis to gain
a better insight into connections between software developers. We investigate analyses
surrounding commit interactions, i. e., examining relationships and interactions between
different commits. However, there are many different analyses that use blame information.
One other example is the identification of commits that introduced or solved bugs [5, 6].

Git provides the blame functionality to help with this code attribution. For each line of
code, git blame tells us the last commit that changed it and who authored that change.
However, the problem with this line-based approach is that it only gives us information
about the last time someone changed a line, regardless of how large or small the change
might have been. Sometimes, commits change only parts of a line of code. For example,
they only change one parameter of a function call or they rename a variable. In these cases,
the authorship of the full line now gets assigned to the one making the small adjustments.
That way, information about what commit first introduced the functionality and perhaps
provided a significant amount of code to the project can be hidden by such small changes.

1 https://git-scm.com/
2 https://github.blog/2023-01-25-100-million-developers-and-counting/
3 https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
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1.1 goal of this thesis 2

1.1 goal of this thesis

The goal of this thesis is to introduce a more fine-grained blame functionality, that is able
to overcome the line-based attribution problem. Our fine-grained blame assigns commit
annotations to LLVM4 intermediate representation (IR) instructions via a modified Clang

5

compiler.
As an example, in Figure 1.1, we see commit db68f6 modifying one line of code and

the corresponding change in the IR of that line. The modification of the line only adds
one IR instruction that represents the subtraction of 1. With the line-based blame, all four
instructions corresponding to the line are mapped to db68f6, since it was the last commit to
modify that line. However, if we consider the actual change that the commit introduces, it
is more correct to only map the instruction for the subtraction of 1 to commit db68f6 and
leave the rest of the instructions mapped to a previous commit.

int foo(int x) {

int result;

- result = x + 42;

+ result = x + 42 - 1;

return result;

}

%1 = load i32, i32 %x.addr

%add = add nsw i32 %1, 42

+ %sub = sub nsw i32 %add, 1

store i32 %sub, i32* %result

Figure 1.1: Change in source code from commit db68f6

In this thesis, we introduce an algorithm that calculates such a fine-grained mapping from
commit information to IR instructions. Our implementation utilizes Clang’s abstract syntax
tree (AST) to determine the characters belonging to each AST node. A character-based
blame algorithm then computes the correct commit hash for the instructions belonging to
the AST node. To evaluate our optimized blame computation, we compare its results to
the line-based blame on multiple projects. Additionally, we show the effects it has on the
integrated analysis approach introduced by Sattler et al. [10]. More specifically, we inspect
the results of a commit-interaction analysis dealing with the identification of commits
affecting central code.

1.2 overview

In Chapter 2, we provide background information about Git, diff algorithms, Clang, and
VaRA. Afterwards, we look at how we implement the optimized blame computation in
Chapter 3. The implementation chapter contains the compiler integration, introduces a
character-based blame algorithm, and discusses limitations. Next, we present the research
questions and the test repositories with which we evaluate them in Chapter 4. In the follow-
ing Chapter 5, we evaluate the results we obtain in our experiments. At first, we discuss
the benefits of more fine-grained information on common code development scenarios.
Then, we look at the quantitative difference to the previous line-based blame. Finally, we
investigate the impact it has on commit-interaction analysis by running a central-code

4 https://llvm.org/
5 https://clang.llvm.org/

https://llvm.org/
https://clang.llvm.org/


1.2 overview 3

analysis on program files annotated with AST-based blame and comparing its results to the
line-based ones. The next Chapter 6 presents prior research in authorship attribution and in
exploring code development. In the last Chapter 7, we conclude and provide an outlook on
possible future work.



2
B A C K G R O U N D

To understand how we intend to improve the current git blame, first, we need to understand
specific details about Git: how it operates and what information git blame provides, the
various diff algorithms it uses, the adapted diffing we also use later on in the implementation.
Then, we briefly introduce the LibGit2 library1. Another important aspect is the process
into which we incorporate our improved commit mapping algorithm. As we realize the
commit annotations in a modified Clang compiler, used by an anlaysis framework called
VaRA2, we introduce these tools at the end of the chapter.

2.1 git

Git is a version control system that persists the development history of a project in a
repository. A repository is made up of a database of blobs, a set of commits, and metadata.
A commit can be seen as a snapshot of the project at a certain point in time containing
metadata, a list of ancestor commits, and referring to blobs which contain the project data [4].
Commits are identified by commit hashes. The metadata of a commit provides information
about the time of the commit, the author, and the commit message.

Git provides the blame functionality, which maps each line of code in the repository to
the commit hash that last modified the line. It can be used as a command line tool3 but
is also often integrated in different GUIs. The git blame tool annotates each line in the
selected files with a timestamp, the commit which last modified it, and by that, the author
who did the modification. Figure 2.1 gives an example for a file with its corresponding
blame results. We can see that the code in Line 3 was last modified by commit db68f6 while
the remaining lines were last modified by commit ad1a64. However, we cannot say whether
Line 3 was first introduced by that commit or if there was only parts of the line that were
changed or added. This is exactly the information we aim to make more precise in this
thesis.

1 int foo(int x) {

2 int result;

3 result = x + 42 - 1;

4 return result;

5 }

7→ ad1a64

7→ ad1a64

7→ db68f6

7→ ad1a64

7→ ad1a64

Figure 2.1: Example git blame annotation

1 https://libgit2.org/
2 https://vara.readthedocs.io/en/vara-dev/research_tool_docs/vara/vara.html
3 https://git-scm.com/docs/git-blame

4
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2.2 libgit2 5

2.2 libgit2

LibGit2 is a software library that provides most Git core methods to use in many different
programming languages. We use it to interact with Git repositories programmatically in
C++. The functionalities that LibGit2 provides range from modifying the repository by,
e. g., creating commits and branches to retrieving repository information like the line-based
blame and using the diff functionality. For this thesis, the important part is the extracting
of information. With LibGit2, we can obtain the necessary information to compute the
character-based blame. Specifically, we use functionality that retrieves the line-based blame,
parent commits, diff hunks, and the content of the project corresponding to a commit.

2.3 diff algorithms

Diff algorithms are algorithms that, given two strings of text, compute their difference.
This means they return information about the location of changed, removed, or newly
introduced parts. The output of such algorithms usually is a sequence of insertions and
deletions, which describes how to transform the old text to the new one. In Git, these
changes to text sequences are typically referred to as hunks. In the context of git blame,
diff algorithms are used to compare lines and figure out when a line was introduced or last
changed so that the correct commit can be assigned. This shows that the blame functionality
heavily relies on diff algorithms.

Git offers four diff algorithms: Myers, Minimal, Patience, and Histogram4. The default
algorithm used by git diff is the Myers algorithm [8]. Nugroho et al. [9] conclude that out
of the four diff algorithms the Histogram provides better results than the Myers algorithm if
applied on a line basis. They state that, since the Myers algorithm only detects identical lines,
the identified Git hunks are not always as precise as the ones returned from Histogram.
However, in the implementation presented in this thesis, we compare the individual lines
on a character basis, so in our case, there is no advantage in using the Histogram algorithm,
which is why we use the Myers algorithm.

The Myers algorithm transforms the two text sequences into a graph representation and
subsequently converts the task of computing the difference of these sequences into a shortest
path problem. Given two character sequences A with length N and B with length M, the
original algorithm computes a minimal edit script, a sequence of operations that provides
information about how to transform A into B. To do so, a N × M grid is created. Each
intersection of the grid represents a node (x, y) and each node is connected horizontally
and vertically to its neighbours. The variables x and y are the character indices in A and B
respectively. Each horizontal edge describes a deletion in A and each vertical edge describes
an insertion of a character from B. There are additional diagonal edges at the positions,
where the characters in A and B do not differ. The goal is now to get from the top left of
the grid, to the bottom right with the least amount of vertices passed. This describes the
previously mentioned shortest path problem.

Algorithm 1 shows the pseudocode provided by Myers [8] for finding the shortest path.
It keeps track of the end points of multiple possible shortest paths in a vector V. Given
the cost D that we are willing to spend, the algorithm checks for each of the paths how

4 https://git-scm.com/docs/git-diff

https://git-scm.com/docs/git-diff


2.3 diff algorithms 6

Algorithm 1 Pseudocode of the Myers diff algorithm [8]

Constant MAX ∈ [0, M + N]

Var V : Array[−MAX...MAX] of Integer
1: V[1]← 0
2: for D ← 0 to MAX do
3: for k← −D to D in steps of 2 do
4: if k = −D or k ̸= D and V[k− 1] < V[k + 1] then
5: x ← V[k + 1]
6: else
7: x ← V[k− 1] + 1
8: y← x− k
9: while x < N and y < M and ax+1 = by+1 do (x, y)← (x + 1, y + 1)

10: V[k]← x
11: if x ≥ N ∧ y ≥ M then
12: Length of a shortest edit script is D
13: Stop
14: Length of a shortest edit script is greater than MAX

far they get with horizontal edges (deletions) and vertical edges (insertions) costing 1 and
diagonal edges (no change) not costing anything. D is initially set to 0 and increases in each
interation (Line 2). In each iteration, the algorithm inspects the paths that end on diagonals
represented by k = x − y. This means we can pass either one insertion (Line 5) or one
deletion (Line 7) per iteration followed by several diagonal edges (Line 9). The algorithm
ends when we find a path ending at the bottom right of the grid (Line 11). The first path to
reach (N, M) is one with minimal cost since we iteratively increase D representing the cost.
Therefore, the algorithm results in a shortest path.

Figure 2.2 displays an example of such a grid graph. The sequence "ABCAB" is trans-
formed into "CBAB". Each blue edge represents a deletion or an insertion. The red edges
represent identical characters in the two sequences. Each path from (0,0) to (5,4) equals
a transformation from "ABCAB" to "CBAB". A shortest path is indicated in yellow and
includes two deletions and one insertion.

After the shortest path is found, we are provided with a trace—a sequence of the vertices
where there was no change from A to B—but not with an actual edit script. In the example
in Figure 2.2, the trace would be (3,1) (4,3) (5,4). These tuples correspond to the subsequence
"CAB" that both texts have in common. There is no need to compute the edit script since
the trace already provides all the information necessary for our case.

The high-level idea behind the implementation is to compare the line in the blamed
commit to the line in the parent commit. If the position we are currently investigating is in
the trace, we know that there was no change at said position. Subsequently, if it is not in the
trace it implies that there was an actual change at the given column. This information is
then used to either confirm the returned blame information or to disregard it. Chapter 3

explains this in greater detail.



2.4 clang 7

Figure 2.2: Myers grid for transforming "ABCAB" to "CBAB"

2.4 clang

The code that is written and easily readable by human software developers needs to be
transformed into a form that a machine can understand and execute. This task is performed
by compilers. LLVM is a commonly used compiler framework. A compiler built in LLVM
consists of three parts: (1) a language-specific frontend that translates source code into
LLVM-IR, (2) a language-independent optimizer for the IR, and (3) an architecture-specific
backend that translates IR into machine code. Therefore, the problem of translating code
written in a specific programming language into machine code is reduced to transforming it
into LLVM-IR. Clang is the frontend for C/C++, which means it translates C/C++ source
code into LLVM-IR. LLVM then further helps with translating LLVM-IR into machine code.

Figure 2.3 shows a small C++ program and its corresponding IR. There are many different
instructions which handle, amongst others, memory access, binary operations, and control
flow. An overview can be found in the LLVM documentation5.

There are several phases Clang passes to generate LLVM-IR from source code. At first,
the source code is transformed into a stream of tokens by the lexer. Secondly, this stream of
tokens is taken and a concrete syntax tree (CST) is formed by the parser. Afterwards, there
is a semantic analysis which creates an abstract syntax tree (AST) from the CST. Finally,
Clang translates the AST into LLVM-IR during the code generation phase. This translation
is often referred to as lowering. In this last phase, VaRA attaches the additional metadata to
the LLVM-IR instructions to have it available for further analysis. We use this to annotate
the IR instructions with blame information.

One important aspect for this thesis is how source code locations are represented in
AST nodes. That is because our blame algorithm requires the line in combination with the

5 https://llvm.org/docs/Reference.html

https://llvm.org/docs/Reference.html
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column number to look up the correct commit hash. We use functions that extract this
information from the AST node’s location to then pass the position on to our implementation
of the character-based blame algorithm. This happens during the lowering of an instruction.
The character-based blame algorithm, further explained in Chapter 3, uses this position in
combination with the repository information to generate the commit hash of the commit
introducing the specific character. The modified compiler then annotates the resulting
commit hash as metadata to the LLVM-IR instruction.

1 int foo(int x) {

2 int result;

3 result = x + 42 - 1;

4 return result;

5 }

%1 = load i32, i32 %x.addr

%add = add nsw i32 %1, 42

%sub = sub nsw i32 %add, 1

store i32 %sub, i32* %result

Figure 2.3: Example translation from source code to LLVM-IR

2.5 vara

With the help of the analysis framework VaRA one can efficiently build analyses on a
high-level concept without having to deal with complicated low-level details. We can
on a high-level specify to annotate instructions with commit hashes and VaRA provides
the functionality to run a data-flow analysis on such annotated program files. For the
annotations, Sattler et al. [10] introduce a modified Clang compiler6 called Vlang. Vlang

adds additional metadata to the IR instructions during the IR-code generation phase as
explained in Section 2.4. An analysis can utilize this additional information while analyzing
the resulting IR code. Figure 2.4 shows an overview of this process.

Figure 2.4: Simplified VaRA pipeline

6 https://github.com/se-sic/vara-llvm-project

https://github.com/se-sic/vara-llvm-project
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One application of this framework is commit-interaction analysis. The goal of this analysis
is to determine code from which commits interacts with each other on a data-flow level.
For this analysis, Vlang annotates each instruction a commit hash that corresponds to the
blame of the instruction. Afterwards, we use the annotated blame information as input to a
modified data-flow analysis.

Sattler et al. [10] define commit-interaction graphs to represent the results of such a
data-flow analysis. A commit interaction describes data-flow interactions between different
commits (e. g., when code introduced by commit c1 has a data-flow dependency on code
introduced by commit c2, we have a commit interaction between c1 and c2). The relation⇝
represents data-flow interactions between instructions. The function base maps an instruction
to the commit that last modified it, i. e., its blame annotation. Commit interactions are defined
as follows:

CI(i1, i2) = (base(i1), base(i2)) with base(i1) ̸= base(i2) ∧ i1 ⇝ i2

On the IR level, a more fine-grained mapping of commit hashes is possible compared
to the currently implemented line-based approach. With the line-based blame we can only
determine, which commit last modified a full line. If only a small section of a line is modified
by a commit, all instructions corresponding to the line get assigned the new commit. In
Chapter 3, we introduce a blame algorithm that works on a character basis. We use this
information to then annotate the IR instructions with AST-based blame. The annotated
blame information is essential for the data-flow analysis to uncover commit interactions.

A commit-interaction graph further aggregates and summarizes commit interactions
within a software project. It is a directed graph with the interacting commits (C) as nodes
and all commit interactions of a program (CI) as edges, formally written as CIG = (C, CI).
With the help of such graphs, we can answer questions related to the development of
software projects, e. g., what commits affect central code. "Central" in this case means central
in the data-flow dependency structure of a program. We can easily extract this information
from a CIG since it represents the impact commits have on the data-flow dependency
structure of a program. The node degree of a commit within a CIG describes how many
other commits it interacts with and, therefore, is a good indicator of whether the code
introduced by the commit holds a central role within the program. Making the blame

annotation more precise influences these results since the data-flow analysis relies on the
blame information. Section 5.3 further investigates these effects.



3
I M P L E M E N TAT I O N

In this chapter, we discuss AST-based blame annotations. At first, we describe how the
Vlang compiler annotates the IR instructions and what information we can use for the
blame computation. Afterwards, we introduce a character-based blame algorithm with which
Vlang is, subsequently, able to annotate the instructions on an AST basis. Therefore, we
refer to the annotations as AST-based blame and they are computed using a character-based
blame algorithm.

3.1 compiler integration

To create the AST-based blame annotations, we need to assign commit hashes to LLVM
instructions. We achieve this via a modified Clang compiler. As mentioned in Section 2.5,
Vlang can add additional metadata to the IR instructions. We use this ability to add blame

annotations to the IR. This annotation happens during the code generation phase.
In this phase, the compiler translates an AST into LLVM-IR. The AST nodes contain

information about their source code locations. These locations point to the tokens in the
source code that correspond to the AST nodes. When generating the IR instructions for an
AST node, we insert calls to git blame to annotate the instructions with blame information.
With the help of the location from the AST node, we can compute the commit hash that
introduces the token(s) that correspond to the instructions.

Previously, this computation and annotation only used the line number. To make the
blame information more precise, we use line and column information to character-wise
compute the commit hashes (Section 3.2). To sum it up, we compute the blame for each
relevant AST node to then annotate the corresponding instructions with blame information
during the IR-code generation. Since the Clang AST uses a hierarchy for its different node
types, we can ensure that each node type and the corresponding code generation have at
least one call to the blame computation.

3.2 character-based blame algorithm

We implement our AST-based commit mapping feature as part of the Vlang compiler. We
introduce the flag -fvara-ast-GB to the Vlang compiler which enables the AST-based blame
annotations. During the code generation phase, a function adds the commits calculated
by the character-based blame algorithm as metadata to the LLVM-IR. These annotations
are no longer based on a single character and we therefore refer to them as AST-based
blame annotations. To implement this algorithm, we need a function that given a repository,
file path, line number, and column number, computes the commit which introduced the
character at the given location. This differs from the current implementation by using not
only the line information but also the column information. Algorithm 2 outlines how we

10
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compute the character-based blame. The main idea is to follow the history of the character
which is being investigated back until the point where it was first introduced.

Algorithm 2 Character-based commit mapping

1: CurrentBlame := Line-based blame
2: (CurrentLine, ParentHunk) := Extract the relevant lines from CurrentBlame and from its

parent commit
3: Compare CurrentLine to ParentHunk
4: if there has been a change at the given location then
5: return CurrentBlame
6: else
7: CurrentBlame := Line-based blame from parent commit (HEAD)
8: Go to 2

We use the commit hash that is returned by the line-based blame as a base commit (Line
1). Then, we extract the lines corresponding to the investigated character in CurrentBlame
(:= CurrentLine) and its parent commit (:= ParentHunk) (Line 2). CurrentBlame has either
modified or introduced this line. Next, we compare CurrentLine to ParentHunk to determine
whether the individual character was actually changed by the commit CurrentBlame (Line 3).
For the comparison, we use an adjusted version of the Myers algorithm further explained
in Section 3.2.2. If we ascertain an actual change, the CurrentBlame commit introduced the
investigated character, so we return CurrentBlame (Line 5). Otherwise, we know that the
character was not changed by CurrentBlame, so we go one step further back in the commit
history. We again set CurrentBlame to be a line-based blame but now only considering the
history from the parent commit on backwards (Line 7). HEAD is a reference to the commit
that is considered the current version of the project. In Line 7, we set it to refer to the parent
commit. When we then compute the line-based blame we only consider the repository
history from the HEAD commit on backwards. Initially, HEAD usually points to the most
recent commit. This procedure is done iteratively until we find the commit that actually
introduced the investigated character.

3.2.1 Keeping Track of Correct Location

We have different situations in which the location of the investigated character changes. It is
not guaranteed that the line number from our initial state is the same as the line number in
the CurrentBlame commit. There might have been insertions or deletions before the given
position. The same problem occurs when we investigate the parent of CurrentBlame. And
in the case that we determine that we have no actual change from the CurrentBlame to its
parent commit (Line 6), the column information potentially is also different in the parent
commit. At this point, we know that the line contains some modification, so there might
have been insertions or deletions before the investigated character. Therefore, it is very
important and necessary to keep track of the location of our investigated character.

Before we can extract the relevant lines that are used in the comparison (Line 2), we need
to compute the correct line number in CurrentBlame. The content of the line cannot have
been changed between the HEAD commit and the CurrentBlame commit because we are



3.2 character-based blame algorithm 12

looking at the line-based blame. The line-based blame, by definition, is the commit that
introduced the content of the line. So we simply find the line in CurrentBlame and return
the line number. Hence, we can easily extract the line of CurrentBlame.

This is more difficult for the parent commit. We do not know whether a similar line that
was only minorly changed is present in the parent commit or not because CurrentBlame
could have fully introduced and not only modified the line. Therefore, we look at the
diff hunks from the current commit to its parent. We determine in which diff hunk the
relevant text sequence is most likely located and continue working with that diff hunk
(ParentHunk). Now that we have a range of lines possibly containing the investigated line,
we still need to decide whether CurrentBlame newly introduced the line. If that is the case,
no similar line is contained in the ParentHunk. Additionally, if that is not the case, we need
to compute the exact location in the parent commit. We decide and compute these aspects
when comparing CurrentLine to ParentHunk with the help of an adjusted Myers algorithm
explained in Section 3.2.2.

3.2.2 Adjusted Myers Algorithm

In Line 3 of the character-based blame algorithm, we compare multiple lines a ∈ A with a
single line b. Hence, we can not simply use the Myers algorithm as explained in Section 2.3
because it only compares two text sequences. Besides determining whether there is a change
at the given position, we additionally need to identify which line from the multiple lines
A was possibly modified into the single line b and what the column information of the
character in this previous line is. This is not included in the traditional Myers algorithm.

To determine which line in the parent hunk is the interesting one, we run the Myers
algorithm on each pair of lines (a, b) with a ∈ A. The Myers algorithm computes the
minimal number of insertions and deletions needed to transform line a into line b. During
the algorithm, we additionally keep track of the traces of each possible path and finally
return the one corresponding to the shortest edit script. For all the characters that do
not change in the transformation from a to b, the trace contains a pair with the column
information of the character in a and in b. We look for the line a′ ∈ A that results in the
longest trace T, since it represents having the most characters in common with b. This gives
us the line number we might use in a following iteration.

The trace T contains all pairs (ca′ , cb), where ca′ ∈N refers to a column number in a′ and
cb ∈N to a column number in b, for which the character at the column numbers are equal
in a′ and b. Let y ∈N be our investigated position, then we know that there was no actual
change at y if ∃x ∈N : (x, y) ∈ T. In that case, we know by the definition of the trace that
the investigated character was not modified. Finally, if it is included in the trace, we simply
look up the corresponding column position for a′ which is x. This is the column number we
use in the following iteration.

Figure 3.1 illustrates this procedure for the example in Figure 1.1. In this example, we do
not have multiple lines in ParentHunk, so we simply compare the line b from CurrentBlame
to line a′ in its parent commit. T is the trace we obtain when running the Myers algorithm
on the two given lines. For each character that is not changed when translating a′ to b, it
contains a pair of column numbers. If we investigate the character ’1’ which has the column
information of 19, we see that ∄x ∈ N : (x, 19) ∈ T. This shows us that there has been a
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Figure 3.1: Example for the adjusted Myers algorithm

change at the position. If we take a look at the semicolon at column number 20, we find
an entry that fulfills the condition ∃x ∈ N : (x, 20) ∈ T with x = 16. This tells us that
the character itself did not change from a′ to b but the location of the character changed.
Therefore, we need to continue investigating with column number 16 instead of 20.

3.3 limitations

While this character-based blame algorithm can handle many common change-scenarios, our
implementation has some limitations that we address in the following. One of the primary
constraints of the implementation lies in the character basis on which we operate. We only
examine the characters present in the token of the most recent version of the software. Hence,
we can only determine their origin and not inspect characters that possibly were removed
from a token. For example, this occurs when a variable name is shortened. This commit will
be overlooked by the character-based algorithm, since the algorithm determines that all the
characters that we examine were previously present. To solve this problem, we would need
to further information about the token to the character-based blame algorithm. This would
require us to make many adjustments to the algorithm that deal with determining whether
the token changed whenever we iterate. In this thesis, we focus on a character basis. This
possible improvement of the algorithm is out of the scope of this thesis and is left for future
work.

The AST-based blame annotations highly depend on the location which we provide as a
parameter to the character-based blame algorithm. As discussed in Section 3.1, we might
use imprecise or too wide-ranging location information in our blame computation, since
we only hook into the code generation phase of Clang. On the one hand, if we include
more characters from the source code than relevant for the investigated instruction, we
might obtain a commit that is more recent than the commit that actually introduced it. On
the other hand, if we include less characters, we possibly return a commit that is older
than what we would expect. However, we can be sure that the location information is not
completely off since we cover all base node types in the AST hierarchy of Clang.

Some steps of our algorithm rely on Git’s default diff information and the Myers algorithm.
Therefore, flaws in the extraction of the diff hunk and in the Myers algorithm will lead to
errors in the character-based calculation of the blame.

Finally, an important aspect to bear in mind is the limitation associated with the perfor-
mance. With the line-based approach, the annotation is already quite expensive because
we have a blame lookup for every relevant AST node. Caching the blame would certainly
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improve the overall performance. Now for the AST-based approach we iterate over each
character in a token and for each we have at least one but possibly multiple blame lookups
because of the iterative algorithm. Additionally, we need to consider that in each step of the
iteration we use the Myers algorithm to determine whether we have an actual change at the
inspected position. All these aspects lead to a significant runtime overhead.



4
M E T H O D O L O G Y

This chapter describes the methodology through which we evaluate the AST-based blame

functionality. We introduce our research questions in Section 4.1. Afterwards, Section 4.2
presents an overview of the test repositories and programming constructs we use to evaluate
the AST-based blame information. In Section 4.3, we make some remarks about the baseline
used to evaluate RQ1.1.

4.1 research questions

The introduction of more fine-grained blame information should help with answering a
variety of questions. Having precise information about the source of certain code segments is
beneficial in the context of authorship attribution as well as in commit-interaction analyses.
We need to ensure that the AST-based blame information provides an improvement in
precision compared to the the default line-based blame information. Therefore, we take a
look at how well the introduced implementation works as well as what the effects are on a
existing commit-interaction analysis. We want to answer the following questions.

rq1 How much do AST-based commit mappings improve blame information on an IR
level?

The overall goal of the thesis is to figure out how we can improve the blame information
on the LLVM-IR level. We want to get insights about how the introduced algorithm changes
the precision of the blame information. Therefore, we split RQ1 into the following two
sub-questions, approaching the problem qualitatively and quantitatively.

rq1 .1 Which common code development scenarios benefit from AST-based commit
mapping?

rq1 .2 How many instructions are mapped differently in real-world projects with AST-
based blame annotations compared to the line-based blame?

The most important aspect we need to investigate is the correctness of the AST-based
commit annotations. Hence, for RQ1.1, we examine a few smaller projects for which we
manually create a baseline. The baseline consists of a mapping of each instruction to the
commit hash that we expect from a human standpoint. We compare the results from the
implementation to the manually derived baseline. These smaller projects represent common
changes occuring during code development. By working on such small projects, we have
the possibility to review each IR instruction individually. It helps us to see which scenarios
benefit from the more fine-grained blame information.

Additionally, we need to decide whether these AST-based commit annotations signifi-
cantly differ from the line-based annotations returned by git blame. For that reason, to
answer RQ1.2, we use real-world projects, which helps us gain an insight about the impact

15
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of AST-based blame. We investigate the total difference between line-based and AST-based
annotations on said real-world projects.

There are different program analysis techniques as well as repository mining techniques
to gain a better insight into program development. To estimate the impact AST-based blame

can have on modern analyses, we ported a recently published commit-interaction analysis
to AST-based blame, asking the question:

rq2 What is the impact of AST-based blame information on commit-interaction analysis?

To evaluate RQ2, we take a closer look at the impact of the more precise AST-based
commit annotations on the results of a commit-interaction analysis proposed by Sattler et al.
[10]. It uses commit annotations, such as the ones discussed in this thesis, to detect commit
interactions and combines it with the data-flow dependency structure of the program.
This helps with better understanding code development. One interesting aspect is the
identification of the commits that affect central code. Central code is "code which interacts
with lots of other code" [10]. The analysis uses the blame annotations made by Vlang to
identify commits that have a central position in the dependency structure of the analyzed
program. The changes of the blame annotations can therefore lead to different or new
commits being identified as central to the software project.

4.2 test repositories

This section briefly describes the repositories used to evaluate the research questions. For
the small test repositories used for RQ1.1, we examine the functionality each repository
provides, the programming constructs being used, and the changes made to the code.
Table 4.1 sums up the programming constructs that we further investigate in each repository.
C++ is a complex language with many different constructs and many different AST nodes.
Because of the large amount of AST nodes, we can not provide a set of test cases that
includes all nodes. For that reason, we focus on very common programming constructs.
In the following descriptions, a separate consecutive commit introduces each mentioned
alteration.

4.2.1 Case 1: Arithmetic Expression

At first, we inspect a simple change in an arithmetic expression (see Figure 4.1). This is
almost identical to the example which is used in Chapter 2. We have an expression in which
a variable is assigned a value. That value is computed with multiple binary operators. For
this test repository we take a closer look at these binary operators.

result = x + 42; → 5 result = x + 42 - 1;

Figure 4.1: Summary of Case 1: Arithmetic Expression

The history of the repository (A.1.1) is rather short. We added a binary operator to the
computation of result. To be precise we added the - 1 to the expression. Since the different
operators can be nicely differentiated in the IR we want to assign the appropriate hashes to
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Id Name Programming elements Repository history

1 Arithmetic Expression Binary operators (arithmetic) A.1.1

2 Conditional Binary operators (comparison) A.1.2

If-statements

Conditional declarations

3 Class Class constructor A.1.3

Member functions

Object creation

Dynamic memory allocation (new)

Dereference (pointer)

4 Function Call Function calls A.1.4

5 Function Declaration Function signatures A.1.5

Function bodies

6 Loop Basic for-loop A.1.6

Range-based for-loop

Increment operator

7 Namespace Using namespace A.1.7

Table 4.1: Overview of test repositories

each instruction corresponding to these operators. Therefore, in this case we investigate the
addition of a binary operator.

This change in source code introduces one addtitional instruction in the IR. In Figure 4.2
we see all instructions belonging to the one line of code. The change only introduces one
additional instruction, namely the one with the subtraction operation. In this case it is clear
that we only want to assign the newest commit to the new instruction. For the AST-based
blame, we expect the remaining instructions to be assigned to the previous commit.

%1 = load i32, i32* %x.addr

%add = add nsw i32 %1, 42

+ %sub = sub nsw i32 %add, 1

store i32 %sub, i32* %result

Figure 4.2: Change of the IR in Case 1: Arithmetic Expression

4.2.2 Case 2: Conditional

In the next repository, we look at two different if-statements. The first is a conditional
declaration (see Figure 4.3). Here, we investigate an alteration in the variable name, followed
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by a modification of the type of the newly introduced local variable. Two consecutive
commits introduce these changes in the aforementioned order.

if (int y = x * 2) {

return y;

→
→

4 if (float result = x * 2) {

5 return result;

6 }

Figure 4.3: Summary of Case 2: Conditional - Conditional declaration

The other programming construct investigated in this repository is a simple if-statement
(see Figure 4.4). In this case, we modify the comparison operator used in the condition. In
the previous test case, we also look at a binary operator but only the addition of one and
not a change in an already present one.

if (x < y) { → 11 if (x <= y) {

12 return true;

13 }

Figure 4.4: Summary of Case 2: Conditional - Simple if-statement

4.2.3 Case 3: Class

This test repository represents the class construct in C++ (see Figure 4.5). In the declaration
of the class Foo, we change the name of a member variable, the name of a paramater of the
constructor, and the constructor itself. This is again done consecutively in the aforementioned
order.

int i;

Foo(int i) : i(i) {};

int getVal() { return i; };

→

→

→

3 class Foo {

4 int value;

5 public:

6 Foo(int param) : value(param) {

7 setVal();

8 };

9

10 int getVal() { return value; };

11 void setVal() { value = 42; };

12 };

Figure 4.5: Summary of Case 3: Class - Class declaration

We also consider different approaches to object creation (see Figure 4.6). For this, we
introduce many modifications to the source which we omit for brevity. The full history
of the repositories can be found in the Appendix A. By introducing many small changes,
we are able to thoroughly test the character-based blame that is introduced in Chapter 3.
Interesting aspects in this case are the introduction of the allocation with new, correctly
tracing the origin of variable use and also the unary operator for dereferencing (*).
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Foo fooA = Foo(21);

Foo fooB = Foo(42);

fooA.setVal();

→

→
→

15 Foo* fooA = new Foo(21);

16 Foo fooA2 = *fooA;

17 Foo* fooB = new Foo(42);

18 fooB->getVal();

Figure 4.6: Summary of Case 3: Class - Object creation

4.2.4 Case 4: Function Call

Next, we investigate another very small test case. There is an alteration in the call parameters
of a function call (see Figure 4.7). The function takes two parameters in total and we only
change the value of one. Important to note, the call parameters are constants and not
variable. This plays a big role in the translation to the IR, as for variable call parameters
each one would get separate IR instructions. In the case of constant call parameters, this
does not happen and the translation of the function call only consists of one IR instruction.

some_function(4, true); → 8 some_function(4, false);

Figure 4.7: Summary of Case 4: Function Call

4.2.5 Case 5: Function Declaration

This scenario highlights changes in function signatures (see Figure 4.8). We look at a
modification in a parameter name followed by an addition of a new parameter. Therefore,
we have three different commits, including the base commit initially introducing the function,
interacting with a single line. With line-based blame, we can only assign one commit because
we examine single line. This commit has to be the most recent one, because it is the one last
modifying the line. Therefore, we lose the information about the impact of the two other
commits.

int some_function(int x) {

return x;

→
→

3 int some_function(int result , char y) {

4 return result;

5 }

Figure 4.8: Summary of Case 5: Function Declaration

4.2.6 Case 6: Loop

Next, we look at for-loops. In a range-based for-loop (see Figure 4.9), we first change the
type from auto to int. Then, we rename the array used in the loop. Finally, we also rename
the loop variable. These modifications provide us again with multiple commits interacting
with a single line. Once again, with line-based blame we can only assign a single commit to
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the instructions corresponding to that line. We expect our AST-based implementation to be
able to include each commit influencing the line in the annotations.

int array[] = {1, 2, 3, 4};

for (auto n : array) {

result += n;

→

→
→

4 int numbers[] = {1, 2, 3, 4};

5 int result = 0;

6 for (int element : numbers) {

7 result += element;

8 }

Figure 4.9: Summary of Case 6: Loop - Range-based for-loop

We also consider a simple for-loop in which we also rename the loop variable (see
Figure 4.10). Another interesting programming element we encounter here is the increment
operator (++). Clang handles each component in a dedicated manner. Consequently, this
operator is also processed differently than binary operators.

for (int i = 0; i < 4; i++) {

result += i;

→
→

14 for (int count = 0; count < 4; count++) {

15 result += count;

16 }

Figure 4.10: Summary of Case 6: Loop - Basic for-loop

4.2.7 Case 7: Namespace

This test scenario uses the namespace construct (see Figure 4.11). We call a function which
takes an element of a namespace as a parameter. After introducing the namespace with
the using keyword, we no longer need to use the namespace scope resolution operator
(::). This is only a syntactical change, so the AST should not be influenced by this change.
Subsequently, it is difficult to say what to expect in this case. If we say, we want to only
consider the changes to the AST, we expect the result to be the previous commit hash.
Otherwise, if we base our decision on the token we expect the result to equal the line-based
blame.

printf("%d", my_namespace::x); →

7 using namespace my_namespace;

8

9 int main() {

10 printf("%d", x);

11 }

Figure 4.11: Summary of Case 7: Namespace

4.2.8 Real-World Projects

To evaluate RQ1.2 and RQ2, we use the real-world projects used by “SEAL: Integrating
Program Analysis and Repository Mining” [10]. These projects are 13 C/C++ projects
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chosen from different application domains: bison, brotli, curl, grep, gzip, htop, libpng,
libssh, libtiff, lrzip, lz4, opus, and xz. The mentioned paper provides results of a central
code analysis with line-based blame information for these 13 projects. Subsequently, we
can easily compare these results to the ones we obtain using AST-based blame information,
to determine the impact our fine-grained AST-based algorithm has on the calculation of
central code.

4.3 baseline

For the small test repositories that cover basic programming constructs, we manually create
a baseline. This baseline describes the expected results from our AST-based blame. While
creating this baseline, we have to consider some limitations of the AST-based blame imple-
mentation. We map an instruction to the commit introducing the functionality represented
by the instruction but also keeping the source code token relating to the instruction in mind.

For example, a variable occurring in a program is associated with a set of instructions. If
we change the variable name, many of the instructions connected to that variable change
and some remain the same. Ideally, we would assign the different instructions to the new
commit and the unchanged ones to the old commit. However, since the token we inspect
for the instructions is just the one token of the variable name, we can not differentiate the
instructions in such a case.

Now, we change the variable type, e.g., from an integer to a float. The rest of the program
remains the same. In the IR, we see this type change in any variable occurrence. Since the
token in the source code did not change, we do not assign a new commit hash to each
instruction relating to the variable. We only assign the new commit hash to the instructions
regarding the declaration of the variable.
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E VA L UAT I O N

In this chapter, we present the results of our evaluation of the AST-based blame implemen-
tation and we answer the research questions presented in Section 4.1. First, we investigate
what benefits AST-based blame annotations can have on different code development sce-
narios. Afterwards, we look at the differences between the line-based and the AST-based
blame annotations in real-world projects. Finally, we examine what impact of the more
fine granularity have on the results of a specific commit-interaction analysis, namely a
central-code analysis.

5.1 benefits on common code development scenarios

In this section we evaluate RQ1.1 and investigate which code development scenarios can
benefit from an AST-based blame approach. Section 4.2 presents an overview over the test
repositories used for the evaluation.

5.1.1 Evaluation of Test Repositories

Figure 5.1 shows an overview of how many instructions where correctly annotated by the
line-based blame (in red, the left bar for each case) versus the AST-based blame (in blue, the
right bar for each case). The baseline is shown behind the the red and blue bars in grey,
and represents the total number of instructions in the respective test case that get assigned
blame information.
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Figure 5.1: Correct blame annotations for line-based and AST-based approaches.
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We notice the biggest improvement in correct annotations in Case 6. This is also the test
case with the most instructions in total. The only test case where we see no improvement is
Case 4. The test case with the least instructions in total is Case 7. We group the seven test
repositories into three different categories.

1. The AST-based blame shows an improvement to the line-based blame and is now equal
to the baseline. (Cases 1, 5, and 7)

2. The AST-based blame shows an improvement to the line-based blame but is not equal
to the baseline. (Cases 2, 3, and 6)

3. Both the AST-based and the line-based blame are equal to the baseline, so there is no
improvement possible. (Case 4)

We now further inspect each category.

Category 1

This category is about the cases where the AST-based blame shows a significant improvement
to the line-based one and is now equal to our manually derived baseline. The first test case
falling into this category is the one regarding arithmetic expressions (Case 1). The interesting
change in this case was the addition of a binary operator. With line-based blame, we were
unable to differentiate the other operators that where previously in the same line from the
newly added one. This is now solved and only the added operation is assigned to the new
commit.

The second test case in this category is the one regarding function declarations (Case 5).
With the more fine-grained blame information, we now can differentiate between the
different parameters in a function signature if they are in the same line. The introduced AST-
based implementation is able to individually assign blame information to each parameter.

The last test case in this category is the one dealing with namespaces (Case 7). This is a
special case because the introduced change is only syntactical and thus not visible in the
LLVM-IR. We have a function call where one parameter is a variable from a namespace.
There are two IR instructions that are interesting in this case: the loading of the variable x

from the namespace my_namespace and the printf function call (Figure 4.11, Line 10). The
improvement that we gain in this case is that we now correctly assign the printf function
call with the commit before the introduction of the using namespace construct. For the
instruction corresponding to the variable use from the namespace the expected result is not
as clear. On the one hand, it is acceptable to assign the commit that introduced the using

namespace construct because that way we do not lose the information of the change in the
IR. This is what is done by the line-based blame. On the other hand, it is valid to assign
the commit before the change, since the IR does not change. This is what is done by the
AST-based blame.

Category 2

In this category, we find the test cases where we see an improvement to the line-based
blame but there is still room for improvement to the baseline. First, let us examine the
improvements we see in these cases.
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With the AST-based implementation in the test repository dealing with conditionals
(Case 2), we are able to correctly differentiate a change in a conditional declaration in the
form of a type change and a variable name change. If a commit only changes a binary
operator, like the comparison operator in the simple if-statement, we also only assign the
instruction dealing with that operator to the new commit.

In the class test repository (Case 3), we see a significant improvement in correct annotations,
but we also have the highest difference from the baseline. Changes in class attributes,
member functions, and member function calls benefit from the more fine-grained algorithm.
We attribute this to the fact that we inspect individual tokens and not whole lines. It is
often the case that different IR instructions correspond to a single line. An example of this
is a class constructor with an initializer list. If we investigate the source commit of the
individual tokens instead of the whole line, the results are more specific to the corresponding
instruction.

In the test repository about loops (Case 6), we see the biggest improvement in correct
blame annotations. It is also the repository with the most instructions in total. The reason
for this are the many instructions needed for initialization/cleanup of the loop control
variables, condition checks, increment/decrement operations and loop body execution.
Since initialization, condition and increment/decrement operations in a for-loop are often
found in the same line, we can greatly improve the accuracy of the blame annotations by
switching from a line-basis to the AST-basis.

This category is characterised by the fact that not all AST-based commit annotations
are equal to the baseline. In the conditional repository, it is only one instruction. It is an
allocation of a %cleanup.dest.slot in the context of the conditional declaration. This stores
a cleanup flag that indicates whether certain cleanup actions need to be performed. There is
no specific token in the source code which corresponds to this instruction.

The aspect not correctly working in the class test repository is the assignment of in-
structions of landing pads. After the introduction of a memory allocation with new, a
corresponding set of instructions named lpad is introduced. This landing pad contains
instructions dealing with exception handling1. It would be expected that all instructions in
these landing pads are assigned the same commit. However, both the line-based and the
AST-based blame assign parts of the instruction set to a different commit hash. A similar
problem arises for other instructions related to exception handling. We again have no
concrete token in the source code which represents these instructions.

In the loop example, we face the same problem. The loop variables %__range and %__end

and their occurrences throughout the LLVM-IR are assigned to wrong commit hashes. In
the source code, the two loop variables do not have a corresponding token.

Because the AST-based algorithm works by computing the blame of characters, we obtain
these observed faulty annotations. We have no characters that represent the instructions.
Therefore, we can not correctly compute the blame annotations for these instructions.

Category 3

Now, we look at the test case where the line-based results and the AST-based results both
equal the baseline. It is the one regarding function calls (Case 4). We investigate a change

1 https://llvm.org/docs/ExceptionHandling.html

https://llvm.org/docs/ExceptionHandling.html
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in the call parameters in this repository. The call parameters consist of constants. Due to
this fact, Vlang translates the function call to a single LLVM instruction. To not loose
information about the change in the call parameters, we need to assign the newer commit
to that instruction. Subsequently, we do not improve from the line basis, since there is no
room for improvement.

5.1.2 Discussion

In almost all cases, we observe an improvement compared to the line-based commit anno-
tations. We see the highest difference in the test repository regarding loops (Case 6). The
only repository in which we do not have any room for improvement is the one concerning a
change in constant function call parameters (Case 4).

We attribute the reasons for wrong AST-based annotations to one factor. LLVM-IR
instructions do not necessarily have a corresponding token in the source code. This is a
limitation when it comes to the character-based blame computation. We have no locations to
compute the correct commit hashes for the annotations. However, we can say that all wrong
annotations in our test cases are equal to the annotations from the line-based blame or
assign a commit lying between the line-based and the correct value. There is no annotation
of a commit older than the line-based one. Therefore, the AST-based annotations are not
worse than the line-based ones.

To address RQ1.1, we can conclude that almost all the code examples from our test cases
benefit from AST-based blame annotations. The only test case not benefitting from the added
fine granularity is Case 4.

5.2 statistics of difference to line-based blame

In this section, we answer RQ1.2. That is, we investigate the quantitative difference between
the line-based and the AST-based blame annotations. We compile real-world projects once
with line-based blame annotations, once with AST-based blame annotations, and then look
on the total difference between the annotations. Additionally, we compare the AST-based
blame annotations to line-based blame computations based on the line provided by debug
information.

5.2.1 Results

We were unable to compute the AST-based blame for all of the 13 real-world projects. The
reason for this is that the computations were too time consuming. Within a timeframe
of 9 days we were only able to generate results for the projects brotli, htop, lrzip, and
xz. Therefore, we have no results for the projects bison, curl, grep, gzip, libpng, libssh,
libtiff, lz4, and opus.

Figure 5.2 shows the results from comparing the AST-based blame annotations against
(a) the line-based blame annotations and (b) line-based blame computations based on
debug locations. We further refer to (a) as AntDiff and (b) as DbgDiff. For each bar chart,
100% represents the total number of instructions with blame annotations. Note, as we



5.2 statistics of difference to line-based blame 26
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Figure 5.2: Overview of quantitative difference between AST-based and line-based blame

compare against line-based blame computations based on a debug location in DbgDiff, not
all instructions that are annotated with blame information have a debug location. Hence, we
can only compare the subset of the instructions with debug location, seeing overall projects
this affects 6.8% to 11.5% of the instructions with blame annotation.

The percentage of instructions that are equally assigned (eq) range between 60.4% and
89.3% (an average of 77.7%). Subsequently, we observe differently assigned instructions
(diff ) in 10.7% to 31.1% of the instructions (an average of 17.6%). The project htop shows
the highest difference between AST-based and line-based blame. Table 5.1 shows that it is
also the project with the longest runtime. Another interesting observation is that brotli, the
project with the highest total number of instructions, is the project with the lowest difference
between AST-based and line-based blame.

The difference between AntDiff and DbgDiff for diff ranges from 0.4% to 1.3% (average of
0.8%). For brotli and xz, diff is slightly higher for DbgDiff, whereas for htop and lrzip, the
percentage is slightly lower. The percentage of eq is smaller for DbgDiff in all cases.

diff eq AST-based

(a) (b) (a) (b) runtime

brotli 8, 845 9, 475 73, 734 63, 617 72.1 h

htop 15, 009 14, 345 33, 209 29, 113 104.8 h

lrzip 9, 296 8, 847 65, 681 61, 057 63.4 h

xz 1, 591 1, 628 8, 063 7, 100 69.5 h

Table 5.1: Difference between AST-based and line-based blame in numbers of instructions
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5.2.2 Discussion

In Section 5.1.2, we establish that many different code scenarios benefit from the AST-based
blame. This explains why we notice a significant difference between the AST-based and the
line-based results. Without further information about the implementation of the individual
projects, we can not explain the difference in the percentages between the projects. However,
for each instruction not assigned to the line-based blame, we have to look further back in the
history of the repository. Due to this iterative nature of the character-based blame algorithm,
we significantly prolong the runtime. Consequently, it is logical that we observe the highest
runtime in the project with the highest difference (htop).

We observe a slightly higher percentage of diff for brotli and xz DbgDiff compared to
AntDiff because the line-based blame annotations do not 100% correspond to the computa-
tion based on the debug location. The slightly lower percentage we see in the projects htop

and lrzip is explained by the presence of instructions without debug location. This is also
the reason why the percentage of eq is smaller for DbgDiff in all cases.

All projects from which we obtained results took over 2.5 days to compile with AST-
based annotations. Nine out of 13 projects took longer than nine days to compile. We
already mentioned in Section 3.3 that the added fine granularity leads to an overhead in the
performance. Subsequently, we observe this runtime overhead.

To answer RQ1.2, we can say that on average 17.6% of the instructions in the analyzed
real-world projects are mapped differently with AST-based blame annotations compared to
the line-based blame. This is quite the significant percentage. This observation combined
with what we obtain in Section 5.1 indicates that AST-based commit mappings could have a
noticeable, positive influence on blame information on an IR level. Raising further questiosn
on whether this indication proves to be true.

5.3 impact on commit-interaction analysis

To answer RQ2, we perform a central-code analysis on program files annotated with AST-
based blame and compare the results to ones computed by Sattler et al. [10] on line-based
annotations. Again, we face the limitation of the performance overhead. Therefore, we only
investigate the projects brotli, htop, lrzip, and xz.

5.3.1 Results

Figure 5.3 shows the results from running a central-code analysis on program files annotated
with line-based blame (in red) and AST-based blame (in blue). The scatter plots compare
the commit size (measured in the number of line insertions) to the node degree in the
commit-interaction graph. A line between two dots shows that both dots represent the same
commit. Results that are the same for both the line-based and the AST-based approach (in
black) are primarily in the bottom left corner of the scatter plots. We observe one exception
in the brotli project, where one common result is in the top left corner of the plot.

To further compare the two approaches, Figure 5.4 shows the difference between the two
central-code analyses. For all analyzed projects, we observe many commits having a higher
node degree with the AST-based approach compared to the line-based approach. In the
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Figure 5.3: Results from central-code analysis if performed with AST-based annotations
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plots for the brotli project, we highlight the commit 90fd2b60c because it is a commit for
which the AST-based result is significantly higher than the line-based one. In the plot for the
xz project, we highlight the commit 7883d7353 because the value obtained with AST-based
annotations is far lower than the one with line-based annotations. Overall, the difference
for htop is again the most prominent, ranging between −456 and 550 interacting commits.
We observe the minimal change in the project xz, ranging between −39 and 53 interacting
commits. The amount of data points not changing by the transition from the line basis to
the AST basis lies between 0.75% and 4.1%.

5.3.2 Discussion

The AST-based blame leads to a significant difference in blame annotations on an IR level.
This is due to the fact, that we do not look at full lines but at individual characters. These
different annotations lead to a changed commit-interaction graph. The central-code analysis,
therefore, perceives different node degrees for different commits.

In general, a high node degree indicates that the commit introduces code central in
the program execution. Subsequently, when we observe a higher node degree from the
AST-based results compared to the line-based ones, it means that the commit has more
influence on the program execution than previously assumed by the central-code analysis
performed on line-based blame annotations. An example for this is the highlighted commit
90fd2b60c in the brotli project. This shows that the AST-based blame can uncover previ-
ously undiscovered interactions between commits. With the line-based blame, the commit
had a low node degree and did not stand out from other commits since it was in a cluster.
By using AST-based blame, we uncover that even though it is a small commit, it has a big
impact on the dependency structure of a program.

A lower node degree implies that the commit has less influence than previously assumed,
meaning it is less important in the program execution. This is the case for commit 7883d7353
highlighted in the xz project. It is another indicator that the AST-based blame results help to
identify influential commits more precisely.

To answer RQ2, we observe that the AST-based blame annotations have a big impact on
the results from the central-code analysis. An indicator for this is the small percentage of
data points not changing by the transition from the line basis to the AST basis. Therefore,
between 95.9% and 99.25% of the commits have a different node degree than previously
assumed when using the line-based blame. The central-code analysis is only one example
of a commit-interaction analysis. For other commit-interaction analyses, we expect similar
deviations. This observation raises a question for further work on whether the new results
are actually more precise or just an amplification of the line-based results. This can not be
answered without ensuring that all AST-based blame annotations are correct.



5.3 impact on commit-interaction analysis 30

brotli htop

lrzip xz

Figure 5.4: Change in results from central-code analysis if performed with AST-based annotations
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R E L AT E D W O R K

The main reasons we want to add more fine-grained git blame information can be summed
up into two categories: accurate source code authorship attribution and understanding
source code evolution. The approach taken in this thesis improves the granularity of the
blame information to help in these areas. There is a range of different approaches to improve
these aspects. We start out with research that uses blame information and could profit from
more fine-grained data. Then, we discuss a procedure that also tries to improve the blame

information. Later in this chapter, we explore efforts to improve diff algorithms. Finally, we
look at new ways of getting to know more information about authorship and code history.

6.1 use cases for blame information

The blame information is necessary for many different analyses. Sattler et al. [10] annotate
this information onto IR instructions and use it to create commit-interaction graphs. With
the help of these graphs, they answer questions like which commits affect central code
and how authors interact within a software project. Another research area that uses blame

information deals with bug detection. The SZZ algorithm introduced by Śliwerski et al. [13]
identifies commits with bug-fix-inducing changes. After finding a bug-fixing commit, it
uses blame information to extract a set of possible bug-introducing commits.

6.2 improving blame data

German et al. [4] developed a tool called cregit that aims to provide token-based blame

information. They achieved this by creating a so-called repoView of the analyzed repository. A
repoView contains the same information that the original repository contains. The difference
lies in the formatting. To be precise, each token in the repoView now gets a separate line.
Such a transformation also changes the commit hashes. That is why German et al. [4]
describe a procedure to correctly adjust the metadata of the repository with the new commit
hashes. After the creation of the repoView, the blame functionality provided by Git can be
used without any modification and we receive token-based blame information. In this thesis,
we try to provide functionality that does not need any modification or duplication of the
repository and can be directly used in the approach presented by Sattler et al. [10] for
combining program analysis with repository information.

6.3 improving diff algorithms

Besides cregit, there have not been many papers that deal with adding fine-granularity
to the blame functionality. However, there have been efforts to make the diff algorithms
more fine-grained. Canfora et al. [1] introduce a language-independent diff algorithm which
achieves that a line change is no longer interpreted as a line deletion followed by a line
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insertion but can be distinguished from them. Fluri et al. [3] try to achieve something similar
but on the AST layer by looking at and comparing AST nodes. These improvements are also
usable in software development studies to improve the accuracy and gain better results.

6.4 other approaches

Meng et al. [7] try to gain more precise information about the author of certain code by
adding new authorship models. The models introduced are structural authorship, which
includes a subgraph containing all the commits involved in the history of the line, and
weighted authorship, which assigns weights to authors based on their contribution to the line.
This second metric is derived from the subgraph of the first metric.

Another problem that might arise in code authorship attribution can be anonymity. This
is an area that is not addressed in this thesis. Dauber et al. [2] present an approach that uses
random forests to identify the correct author.

Servant and Jones [11] address the issue of better understanding code development by
introducing history slicing, which is an approach that aims to explore source-code history.
This technique tracks the history of each line in the form of history slices which are all past
revisions that modified the inspected line.
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C O N C L U D I N G R E M A R K S

This thesis addresses the line-based attribution problem we face when using git blame to
annotate LLVM-IR instructions. The line-based blame annotates all instructions of one line
with the same commit and that is the one that last modified the line, regardless of the size
of the modification. When the commit only introduces a small change to a line, we lose the
information that a previous commit introduced a subset of the corresponding instructions.

To overcome the line-based attribution problem, we introduce a character-based blame

algorithm to annotate IR instructions with. The algorithm compares the line-based blame of
a character with its parent commit to determine whether the character was already present
in the parent commit. If that is not the case, we found the correct commit. Otherwise, we
look further back into the repository history and investigate the line-based blame from
the parent commit on backwards. This is repeated until the correct commit is found. The
annotation of the IR instructions takes place during Clangs code generation phase. With
our more fine-grained algorithm, we can assign different commit hashes to different IR
instructions of the same line.

To decide whether we can benefit from the added fine-granularity, we construct small
test repositories with changes to common programming constructs. By comparing the
AST-based blame annotations to a manually created baseline, we observe an improvement in
all cases except one, where the line-based result already equals the baseline. When further
investigating the blame annotations of four real-world projects, we ascertain that an average
of 17.6% of the AST-based annotations differ from the line-based ones. These different
annotations lead to different results when performing a central-code analysis on real-world
projects. Almost all commits have a different node degree, when we run the central-code
analysis on program files with AST-based blame annotations compared to the line-based
ones. The majority of the commits have a higher node degree than previously assumed. We
also observe many cases where the node degree is significantly lower than assumed using
line-based blame. Subsequently, we can more precisely identify the impact specific commits
have on the program execution. We conclude that the character-based blame leads us to
more precise annotations and results of commit-interaction analyses.

While our results indicate a substantial improvement over traditional line-based blame
information, there are several limitations the character-based blame approach faces. In Sec-
tion 3.3, we discuss that the character basis limits us when it comes to commits introducing
name shortenings. This could be overcome by adding information about the start and end
position of the tokens to the blame computation and would further improve the precision of
the annotated commit hashes.

Another problem is the performance of the algorithm. This became especially obvious
during the evaluation of RQ1.2 and RQ2, when annotating AST-based blame to the IR code
of real-world projects. Iterating over characters and also using iteration in the character-
based blame algorithm adds a significant overhead to the performance. This overhead

33
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could be reduced by introducing a cache, so that the line-based blame does not have to be
re-computed over and over again.

In the test repository regarding the namespace construct (Section 4.2.7), we noticed that it
is not always clear which commit hash should be annotated to an instruction. Therefore,
it would be interesting to introduce the ability to assign multiple hashes to an instruction.
This also opens room for further commit-interaction analyses.

Another interesting opportunity for future research is the investigation of the different
commit annotations between the line-based and the AST-based blame in more detail. We
can examine, e. g., in how many cases a change in the annotation implies a change in the
author and analyze the time difference between the newly assigned and the previously
assigned commit.

In this thesis, we use a central-code analysis as a representative for commit-interaction
analyses. It would also be interesting to see how the AST-based blame affects other commit-
interaction analyses. Overall, the more fine-grained blame introduced in this thesis opens
up many different starting points for future work.
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A P P E N D I X

a.1 history of test repositories

a.1.1 Case 1: Arithmetic Expression

commit 2553b819d9434f3396727617438dc0d6ae39b056

Add base implementation

main.cpp | 11 +++++++++++

diff --git a/main.cpp b/main.cpp

--- /dev/null

+++ b/main.cpp

@@ -0,0 +1,11 @@

+#include <stdio.h>

+

+int calculate_something(int x) {

+ int result;

+ result = x + 42;

+ return result;

+}

+

+int main() {

+ printf("%d", calculate_something(4));

+}

commit 2b9a08d1adb63d2db9283811f79ac66e373ccfe9

Subtract 1

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -2,7 +2,7 @@

int calculate_something(int x) {

int result;

- result = x + 42;

+ result = x + 42 - 1;

return result;

}

35
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a.1.2 Case 2: Conditional

commit 8b2940f26d20e76ba7212935ccd507736fd8b368

Add base implementation

main.cpp | 12 ++++++++++++

diff --git a/main.cpp b/main.cpp

--- /dev/null

+++ b/main.cpp

@@ -0,0 +1,12 @@

+#include <stdio.h>

+

+bool conditional_function(int x, int y) {

+ if (x < y) {

+ return true;

+ }

+ return false;

+}

+

+int main() {

+ return 0;

+}

commit 73928b0410585375c7bdff62f985d376dec8ea22

Adjust condition

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,7 +1,7 @@

#include <stdio.h>

bool conditional_function(int x, int y) {

- if (x < y) {

+ if (x <= y) {

return true;

}

return false;
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commit 990d0863b3c34b70d05dd4d0ecaed39f26a2d11b

Add function conditional_declaration

main.cpp | 7 +++++++

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,5 +1,12 @@

#include <stdio.h>

+int conditional_declaration(int x) {

+ if (int y = x * 2) {

+ return y;

+ }

+ return 0;

+}

+

bool conditional_function(int x, int y) {

if (x <= y) {

return true;

commit 2f5e3f926af735d3732495c1e0abd1cfe79d8366

Change variable name of conditional decl

main.cpp | 4 ++--

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,8 +1,8 @@

#include <stdio.h>

int conditional_declaration(int x) {

- if (int y = x * 2) {

- return y;

+ if (int result = x * 2) {

+ return result;

}

return 0;

}
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commit 54f96c7a33246c45cc0e6eddccee2bba73322bd1

Change type of conditional decl

main.cpp | 4 ++--

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,7 +1,7 @@

#include <stdio.h>

-int conditional_declaration(int x) {

- if (int result = x * 2) {

+float conditional_declaration(int x) {

+ if (float result = x * 2) {

return result;

}

return 0;

a.1.3 Case 3: Class

commit dea47927754a6bb34009063a4cb893bc91004b2a

Add base implementation

main.cpp | 17 +++++++++++++++++

diff --git a/main.cpp b/main.cpp

--- /dev/null

+++ b/main.cpp

@@ -0,0 +1,17 @@

+#include <stdio.h>

+

+class Foo {

+ int i;

+public:

+ Foo(int i) : i(i) {};

+

+ int getVal() { return i; };

+ void setVal() { i = 42; };

+};

+

+int main() {

+ Foo fooA = Foo(21);

+ Foo fooB = Foo(42);

+ fooA.setVal();

+ return 0;

+}
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commit 3255463271ac4799da8d07590bfefa6c0e99398a

Rename class attribute i

main.cpp | 8 ++++----

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,12 +1,12 @@

#include <stdio.h>

class Foo {

- int i;

+ int value;

public:

- Foo(int i) : i(i) {};

+ Foo(int i) : value(i) {};

- int getVal() { return i; };

- void setVal() { i = 42; };

+ int getVal() { return value; };

+ void setVal() { value = 42; };

};

int main() {

commit 58459cfd97f9c6a8713a5c691fc36aaf0fe9fa67

Rename parameter of constructor

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -3,7 +3,7 @@

class Foo {

int value;

public:

- Foo(int i) : value(i) {};

+ Foo(int param) : value(param) {};

int getVal() { return value; };

void setVal() { value = 42; };
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commit 7837d2aeec0f1bc2acca95184586cb2253689ad9

Add body to constructor

main.cpp | 4 +++-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -3,7 +3,9 @@

class Foo {

int value;

public:

- Foo(int param) : value(param) {};

+ Foo(int param) : value(param) {

+ setVal();

+ };

int getVal() { return value; };

void setVal() { value = 42; };

commit e4d76dc0c7193cfa394e41acda03628cc23a7a48

Change called function

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -14,6 +14,6 @@ public:

int main() {

Foo fooA = Foo(21);

Foo fooB = Foo(42);

- fooA.setVal();

+ fooA.getVal();

return 0;

}
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commit a965214eed5910b381524686c7d022f17b04cf7b

Change object in function call

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -14,6 +14,6 @@ public:

int main() {

Foo fooA = Foo(21);

Foo fooB = Foo(42);

- fooA.getVal();

+ fooB.getVal();

return 0;

}

commit b75ec269d73327f7b8f503026ae4146788b3ff72

Make fooB a pointer

main.cpp | 4 ++--

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -13,7 +13,7 @@ public:

int main() {

Foo fooA = Foo(21);

- Foo fooB = Foo(42);

- fooB.getVal();

+ Foo* fooB = new Foo(42);

+ fooB->getVal();

return 0;

}
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commit 7e56aa94a76be6a0245368cb2bc48eb9158b83c8

Introduce direct initialization

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -12,7 +12,7 @@ public:

};

int main() {

- Foo fooA = Foo(21);

+ Foo fooA(21);

Foo* fooB = new Foo(42);

fooB->getVal();

return 0;

commit 41f1a96b84ab6e8158d4a0ca11babcc734e7e6bd

Add variable with unary operator

main.cpp | 1 +

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -13,6 +13,7 @@ public:

int main() {

Foo fooA(21);

+ Foo* fooA2 = &fooA;

Foo* fooB = new Foo(42);

fooB->getVal();

return 0;
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commit 865ea5dafee6f695e624b6c0079c211ad20d2bc7

Change unary operator

main.cpp | 4 ++--

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -12,8 +12,8 @@ public:

};

int main() {

- Foo fooA(21);

- Foo* fooA2 = &fooA;

+ Foo* fooA = new Foo(21);

+ Foo fooA2 = *fooA;

Foo* fooB = new Foo(42);

fooB->getVal();

return 0;

a.1.4 Case 4: FunctionCall

commit 1de301ecb7d85789569a96aa77506d49962b1b94

Add base implementation

main.cpp | 5 +++++

diff --git a/main.cpp b/main.cpp

--- /dev/null

+++ b/main.cpp

@@ -0,0 +1,5 @@

+#include <stdio.h>

+

+int main() {

+ return 0;

+}
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commit 3dfd6067d07f3cd29c538930b0238c08c74bfa89

Add some_function and function call

main.cpp | 5 +++++

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,5 +1,10 @@

#include <stdio.h>

+int some_function(int x, bool y) {

+ return x;

+}

+

int main() {

+ some_function(4, true);

return 0;

}

commit 3f90e82f596ceaca5f8815959a7cb1dbd341d85b

Change call parameters

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -5,6 +5,6 @@ int some_function(int x, bool y) {

}

int main() {

- some_function(4, true);

+ some_function(4, false);

return 0;

}



A.1 history of test repositories 45

a.1.5 Case 5: FunctionDeclaration

commit 765e3daaf901f82ec4f3fc645ae109b6e9e249c8

Add base implementation

main.cpp | 5 +++++

diff --git a/main.cpp b/main.cpp

--- /dev/null

+++ b/main.cpp

@@ -0,0 +1,5 @@

+#include <stdio.h>

+

+int main() {

+ return 0;

+}

commit a34c3dda0f5ed7a206c147a2490be6278242fac7

Add some_function and function call

main.cpp | 4 ++++

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,5 +1,9 @@

#include <stdio.h>

+int some_function(int x) {

+ return x;

+}

+

int main() {

return 0;

}
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commit f3215786caabbe376c3fd27eb2a59e5eea14b2cc

Add parameter to some_function

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,6 +1,6 @@

#include <stdio.h>

-int some_function(int x) {

+int some_function(int x, bool y) {

return x;

}

commit 6329be0233252da141399cb22ac0ac2af760b19c

Change type of parameter

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,6 +1,6 @@

#include <stdio.h>

-int some_function(int x, bool y) {

+int some_function(int x, char y) {

return x;

}
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commit ac8f8b4a0066d0086772fda69f5a0515f406b0ad

Change name of parameter

main.cpp | 4 ++--

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,7 +1,7 @@

#include <stdio.h>

-int some_function(int x, char y) {

- return x;

+int some_function(int result, char y) {

+ return result;

}

int main() {

a.1.6 Case 6: Loop

commit 9ab9c4366af9b628393332e57541ced8bcd3a304

Add base implementation

main.cpp | 5 +++++

diff --git a/main.cpp b/main.cpp

--- /dev/null

+++ b/main.cpp

@@ -0,0 +1,5 @@

+#include <stdio.h>

+

+int main() {

+ return 0;

+}
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commit 46cfe6f1abd8aceeb4a16eabb324b3bef44a1200

Add function loop_function

main.cpp | 8 ++++++++

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,5 +1,13 @@

#include <stdio.h>

+int loop_function() {

+ int result = 0;

+ for (int i = 0; i < 4; i++) {

+ result += i;

+ }

+ return result;

+}

+

int main() {

return 0;

}

commit 963ab7f6e6730e6fbf8c3c4718ad1e5f3dbc87c7

Change name of loop variable

main.cpp | 4 ++--

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -2,8 +2,8 @@

int loop_function() {

int result = 0;

- for (int i = 0; i < 4; i++) {

- result += i;

+ for (int count = 0; count < 4; count++) {

+ result += count;

}

return result;

}
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commit 6968583cef191220de68d58cff255d1ac8a46bbd

Add function enhanced_loop

main.cpp | 9 +++++++++

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,5 +1,14 @@

#include <stdio.h>

+int enhanced_loop() {

+ int array[] = {1, 2, 3, 4};

+ int result = 0;

+ for (auto n : array) {

+ result += n;

+ }

+ return result;

+}

+

int loop_function() {

int result = 0;

for (int count = 0; count < 4; count++) {

commit 63bb631181eee27b5f89759998fdd52d0fa6265d

Change auto to specific type

main.cpp | 2 +-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -3,7 +3,7 @@

int enhanced_loop() {

int array[] = {1, 2, 3, 4};

int result = 0;

- for (auto n : array) {

+ for (int n : array) {

result += n;

}

return result;
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commit d58b05e5bcb21c8d89d35c078e318822fe1a2d48

Change name of array variable

main.cpp | 4 ++--

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -1,9 +1,9 @@

#include <stdio.h>

int enhanced_loop() {

- int array[] = {1, 2, 3, 4};

+ int numbers[] = {1, 2, 3, 4};

int result = 0;

- for (int n : array) {

+ for (int n : numbers) {

result += n;

}

return result;

commit 2b4f207d0d0890f8ba689e375152ce29c75185fc

Change name of enhanced loop variable

main.cpp | 4 ++--

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -3,8 +3,8 @@

int enhanced_loop() {

int numbers[] = {1, 2, 3, 4};

int result = 0;

- for (int n : numbers) {

- result += n;

+ for (int element : numbers) {

+ result += element;

}

return result;

}
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a.1.7 Case 7: Namespace

commit 87f116f8de58520da4eddb00350b89068bb98398

Add base implementation

main.cpp | 9 +++++++++

diff --git a/main.cpp b/main.cpp

--- /dev/null

+++ b/main.cpp

@@ -0,0 +1,9 @@

+#include <stdio.h>

+

+namespace my_namespace {

+ int x = 42;

+}

+

+int main() {

+ printf("%d", my_namespace::x);

+}

commit beba849763593b915152d64f5ec8a482bfcc0f06

Introduce using keyword

main.cpp | 4 +++-

diff --git a/main.cpp b/main.cpp

--- a/main.cpp

+++ b/main.cpp

@@ -4,6 +4,8 @@ namespace my_namespace {

int x = 42;

}

+using namespace my_namespace;

+

int main() {

- printf("%d", my_namespace::x);

+ printf("%d", x);

}
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