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A B S T R A C T

In open-source software (OSS) projects, certain developers have more privileges than others.
These privileges allow developers to merge commits or lock issues, for example.
Compared to larger closed-source software projects, where developers have defined roles
and the management department is responsible for making decisions, OSS projects typically
lack a strict, predefined organizational hierarchy. The collaborative, decentralized nature of
these projects presents a challenge when it comes to selecting appropriate candidates to
receive privileges. Determining who qualifies as a valid candidate for privileges requires
careful consideration, thus criteria should be established to simplify with the identification
process.
This work is aiming to gain insights into the behavior of developers to find characteristics
that distinguish future privileged developers from unprivileged developers. We analyze the
issue and commit data from 9 different OSS projects hosted on GitHub and build developer
networks from these data to obtain centrality metrics of developers. Using these data and
metrics, we compare the behavior of developers who are later granted privileges with that
of developers who are not granted privileges, and we investigate whether and in which way
the behavior of developers changes after being granted privileges.
Our analyses reveal that future privileged developers are significantly more active than
developers who do not receive privileges, evidenced by a higher number of commits and a
higher number of overall triggered issue events. We also find that the change in behavior
after receiving privileges depends on project size. In large projects with a high number of
privileged developers, commits, and issues, developers become more active after receiving
privileges and also become more centralized in the developer network.
The observed differences between future privileged and unprivileged developers suggest
that one of the main characteristics of suitable developers for privileges is high engagement,
resulting in a high number of commits and issue events. Since developers with these
characteristics become more active after receiving privileges (at least, in large projects), we
can suggest that identifying appropriate candidates based on these attributes is a suitable
approach for finding promising developers for privileges.
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1
I N T R O D U C T I O N

Open-source software (OSS) projects are essential to modern software development. These
projects have a publicly available code base and rely on voluntary contributions from a glob-
ally distributed developer community [26]. In closed-source software projects, centralized
authorities define strict hierarchical structures among developers [13, 51]. In comparison,
OSS projects are not formally organized and do not have a predefined command and control
structure [3]. Developers typically organize themselves in a decentralized manner [3, 13, 51],
hence hierarchical group structures also emerge in OSS projects [4, 43, 50, 52].
Since developers in OSS projects are distributed globally, they usually do not know each
other personally [2, 4, 23]. Good coordination between them is therefore of great importance
to ensure the quality and success of a project [4, 11, 24, 32, 33].

Research has shown that highly successful OSS projects often adopt a hybrid organizational
structure that consists of a hierarchical part and a non-hierarchical part [29]. Even in
the absence of predefined hierarchical group structures, certain developers have specific
responsibilities in the project, including tasks related to maintenance and the implementation
of core functionalities [4]. This leads to the establishment of different roles. Highly engaged
developers, often called maintainers or core developers, play a central role in code contributions
and project evolution [14, 41] and occupy higher positions in the hierarchy [30]. The
remaining developers, often called peripheral developers [28], occupy lower positions in the
hierarchy [30], as they are only involved on an irregular or short-term basis.

Given these different levels of involvement and expertise, not all developers should have
the same privileges within the project. Developers with privileges, i.e., core developers,
have significant influence on the direction of the project [1, 28, 45, 53] through actions
like merging code into the code base or blocking users. Thus, careful consideration of the
possible candidates for granting privileges is essential to ensure the long-term success of
OSS projects. However, the absence of predefined hierarchical structures [3] and centralized
authority [13, 51] presents challenges in identifying suitable candidates.

1.1 goal of this thesis

This study aims to address this problem by finding measures to identify suitable candidates
to receive privileges in OSS projects. We attempt to gain insight into developer behavior
to discover differences between future privileged and unprivileged developers. We obtain
the number of commits and triggered issue events (e.g., commented, commit_added) per
developer from 9 OSS projects on GitHub. Then, we compare the values of future privileged
developers to those of unprivileged developers.
Further, we investigate how developer behavior changes after receiving privileges, by
searching for changes in the number of commit and issue events, as well as changes in the

1



2 introduction

developer’s centrality in developer networks. These analyses provide valuable insights, such
as how developers adapt to new roles and responsibilities, and whether they frequently
help other, less experienced developers. This, in turn, sheds light on whether the observed
behavioral differences between future privileged and unprivileged developers are a reliable
indicator of a developer’s suitability for privileges. For example, if developers generally
become less engaged after being granted privileges, using their pre-privilege behavior as a
benchmark may not be appropriate.

Our results indicate that there is indeed a difference between future privileged and unprivi-
leged developers. The former are significantly more active, contributing to more commits
and triggering more issue events than the latter. Furthermore, once they are privileged, their
activity and centrality within the project increases, at least in those projects with a high
number of privileged developers, commits, and issues. Based on these results, we are able
to identify characteristics of future privileged developers. These characteristics can be used
to help in the process of finding suitable candidates to be given privileges in OSS projects.

1.2 overview

In the following, we give an overview of the structure of this work.

In Chapter 2, we provide a comprehensive overview of the essential background information
relevant to our study.

In Chapter 3, we then present our research questions and the methodology we use to
address them.

In Chapter 4, we present our findings and discuss their implications in depth. Afterward,
we outline potential threats to the validity of our study.

In Chapter 5, we give an overview of relevant prior work and place our work in this context.

Finally, in Chapter 6, we summarize our findings, draw conclusions, and suggest opportu-
nities for future research.



2
B A C K G R O U N D

This chapter provides fundamental background information for this thesis. We give an
overview of the concept of OSS projects and GitHub, in general, and we break down how
the various GitHub events relate to developer roles. Finally, we explain developer networks
and the centrality metric we use.

2.1 oss projects and github

In software projects, developers need to be coordinated to ensure high-quality code and drive
project evolution [11, 24, 32, 33]. However, the coordination of OSS projects is fundamentally
different from that of commercial, closed-source software projects. OSS projects lack a clear,
mandated organizational structure and a centralized authority that can establish leadership
positions [4, 43, 50].

In addition, there is no clear separation between users and developers, since any user can
be a developer [50]. Nevertheless, “hierarchical group structures among developers do
exist” [4], but they evolve according to principles of self-organization [13, 51].

A commonly used platform for OSS development is GitHub
1, which is based on the version

control system Git
2. In the context of our research, GitHub provides a rich source of data

for studying the behavior and activities of developers in OSS projects. In particular, two
types of data available on GitHub are of special interest to our research: issue data and
commit data.

GitHub issues serve as a mechanism for tracking tasks, reporting bugs, and submitting
feature requests within projects [20]. Commits, on the other hand, represent changes made
to the project’s source code and provide a detailed view of development activities, such as
which developer changed which part of the code [17]. Commits are often linked to specific
issues to clarify the connection between tasks and the changes made to the code.

One way to integrate the changes from a commit into the project is for developers to create
a pull request containing the commits they intend to merge [21]. There are several ways to
merge these pull requests into the project, including automatic merging via GitHub [18],
merging done by bots, or manual merging done by developers. In projects using the manual
approach, only developers with additional permissions are able to merge pull requests [4].
A more detailed introduction to permissions on GitHub is given in Section 2.3.

Since pull requests often work on fixing bugs or implementing features, GitHub allows a
pull request to be linked to an issue [20]. This helps developers see that someone is working

1 https://github.com (accessed 2024-03-15)
2 https://git-scm.com (accessed 2024-03-15)
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4 background

on the issue. Internally, within the GitHub system, pull requests are treated as a special
form of issues [4]. Therefore, whenever we talk about issues, this always also includes pull
requests.

2.2 developer roles

Not all developers contribute equally to OSS projects. Some developers take on specific
responsibilities in the project [4], while others participate more irregularly [29]. This leads
to the establishment of different groups of developers.

In the literature, there are different approaches to these groups. One of them is that
developers can have different roles, being project leader, core member, active developer, peripheral
developer, bug fixer, bug reporter, reader, and passive user [50]. Whereas project leaders are the
initiators of the project who are responsible for the overall direction, and core members
“are responsible for guiding and coordinating the development of an OSS project” [50],
peripheral developers only “occasionally contribute new functionality or features to the
existing system” [50], and bug reporters might not even read the source code and only
discover and report bugs.

Another approach is to classify developers into only two different groups. On the one hand,
there are the maintainers, or core developers [27, 28, 35, 38], who take responsibility for specific
tasks in the project and become heavily involved, and on the other hand, there are the
peripheral developers [12, 28, 35, 38], who contribute more sporadically.
Core developers possess in-depth knowledge of the project’s source code and software
architecture [41]. They actively participate in the development of the project [12, 35], hold
decision-making roles [4, 41], and have access to sensitive aspects of the project, e.g., blocking
users [4].
Peripheral developers are less consistently involved, contributing only occasionally [12, 14,
28, 29, 35, 44]. While they may assist with bug fixes or occasional feature additions, their
contributions are not continuous enough to classify them as core developers. This group
also includes one-time contributors, often referred to as newcomers [34, 40, 42].

Since many OSS projects do not provide a public list of core developers, there are several
approaches to identify them.
A state-of-the-art approach suggests, for example, that developers with a high number of
contributions should be considered core developers, since a minority of developers typically
account for about 80 % of the source code contributions [35]. Using this approach, Crowston
et al. [14] showed that the top 20 % of developers are responsible for 80 % of the commits.
Canedo et al. [10] did not use the number of commits, but instead stated that a core
developer must have authored, at least, 50 % of the files in the project.
The approach Bock et al. [4] chose is using the “privileged events in GitHub issue discussions
and pull requests” [4], which is introduced in the following Section 2.3.
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2.3 github events and permissions

To define the criteria to identify which group a developer belongs to, we first need to look
at GitHub issue events3, since we use these events for the definition. As mentioned in
Section 2.1, GitHub issues are used to track tasks. Issue events [19] represent various actions
or activities that occur within those issues, some examples of different types of events are:

• commented: This event occurs when a developer adds a comment to an issue or pull
request.

• commit_added: This event occurs when a commit is added to the pull request’s HEAD
branch.

• mentioned: This event occurs when a user is mentioned in an issue or pull request.

These issue events also provide us insights into the behavior of developers, as we can, for
instance, see which specific events were triggered more or less frequently.

Having established the issue events, we can now define the criteria for classifying developers
into their respective groups. There are various methods to identify which group a developer
belongs to (core or peripheral), as detailed in Section 2.2.
Bock et al. [4] use the different permissions4 GitHub grants to users at the project level,
which are: read, triage, write, maintain, and admin permissions. The permissions stack on top
of each other, meaning that any developer who has, e.g., write permission, also implicitly
has read and triage permission [4].

Using these permissions, they classified the occurring events into 3 categories:

• Common events, which can be triggered by anyone (e.g., writing a comment).

• Extended events, which can only be triggered by users with, at least, triage permission
(e.g., applying a label).

• Privileged events, which can only be triggered with, at least, write permission (e.g.,
merging a pull request).

The exact mapping of GitHub events to role permissions can be found in Table 2.1.

Any user who has triggered a privileged event is considered a core developer, since Bock
et al. [4] assumed that an event that requires, at least, write permission, is either critical
for the maintenance of the project or for decision making, both of which distinguish a core
developer. The remaining users are considered peripheral developers [4].

We use their concept of core and peripheral developers and the 3 categories of events
(common, extended, and privileged events) to figure out which developer belongs to which
group, which then allows us to analyze the differences in behavior between these two
groups.
Since core developers are defined as having triggered a privileged event, we refer to them as

3 https://docs.github.com/en/rest/using-the-rest-api/issue-event-types (accessed 2024-03-15)
4 https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/

repository-permission-levels-for-an-organization#repository-access-for-each-permission-level

(accessed 2023-08-26)

https://docs.github.com/en/rest/using-the-rest-api/issue-event-types
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization#repository-access-for-each-permission-level
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization#repository-access-for-each-permission-level


6 background

Table 2.1: GitHub issue events and the role permissions needed to be able to trigger them, adapted
from Bock et al. [4]

Privileged Events Extended Events Common Events

(write, maintain, or admin permission) (at least, triage permission) (at least, read permission)

added_to_project,

converted_note_to_issue, deployed,

deployment_environment_changed,

locked, merged,

moved_columns_in_project,

pinned, removed_from_project,

review_dismissed, transferred,

unlocked, unpinned, user_blocked

assigned,

demilestoned, labeled,

marked_as_duplicate,

milestoned,

resolution_updated,

type_updated

unassigned, unlabeled,

unmarked_as_duplicate

add_link, automatic_base_change_failed,

automatic_base_change_succeeded,

base_ref_changed, base_ref_force_pushed,

comment_deleted,

commented, commit_added, connected,

convert_to_draft, created,

cross_referenced, disconnected,

head_ref_deleted, head_ref_force_pushed,

head_ref_restored,

mentioned, ready_for_review, referenced,

referenced_by, renamed,

review_request_removed, review_requested,

reviewed, state_updated,

subscribed, unsubscribed

developers with privileges. Peripheral developers who only trigger common and extended
events are referred to as non-privileged developers.

2.4 networks and centrality

To analyze developer behavior, we also use networks in our research. Networks are data
structures that are typically used to visualize relationships between many parties [46]. We
use socio-technical developer networks, a special kind of network that is constructed based
on the contributions of developers to the software. Vertices represent developers and edges
their interactions with other developers [28].
We distinguish between two types of networks that differ in the type of connections between
developers [4] (represented in Figure 2.1), to capture both collaborative and communicative
aspects of developer behavior:

• Developer Collaboration Networks: The foundation of these networks is Git commit
data. Developers are connected by an edge if they contributed changes to the same
artifact, e.g., “when they have edited the same file within the same time window” [4].
These networks are also called cochange networks.

• Developer Communication Networks: The foundation of these networks is com-
munication data, i.e., GitHub issue data. Two developers are connected by an edge
“when they have contributed to the same issue or pull request within the same time
window” [4]. These networks are also called issue networks.

We are particularly interested in the centrality of developers in these networks. Centrality
refers to the importance of a developer within the network and can be measured using
various centrality metrics [46]. One metric we can obtain from developer networks is degree



2.4 networks and centrality 7

Issue #1

Issue #2

Issue #2

Issue #2

File #1

File #1

File
#1

File #2

DevA

DevB

DevC

DevD

DevE

Figure 2.1: Both types of developer networks. Dashed lines represent edges in the cochange network,
while solid lines represent edges in the issue network. The edge labels specify the file or
issue that both developers worked on together.

centrality, which represents the number of edges a developer has to other developers [8].
Another centrality metric is hierarchy degree, which represents the position of a developer
within the hierarchical structure of a network [28]. The centrality metric we use is eigenvector
centrality, which recursively determines the centrality of a developer by the centrality of
its neighboring vertices [6]. This metric can therefore be used to “weight the importance
of developers by the importance of others they are interacting with” [4]. High eigenvector
centrality in developers is observed either when they are linked to a large number of
other developers or when their connections include developers who themselves have high
eigenvector centrality [5–8].





3
M E T H O D O L O G Y

This section introduces the research questions we identify to analyze the behavior of
privileged developers in OSS projects. We then outline our expected findings and explain
our data preparation process. Lastly, we provide details of our analysis methods, including
the statistical tests we use to answer the research questions.

3.1 research questions

The goal of our work is to analyze the differences between privileged and unprivileged
developers. We aim at analyzing the behavior of both groups of developers and to under-
stand the differences between them to obtain metrics to identify potential candidates in OSS
projects who are suitable to be granted privileges. To achieve this, we identify 3 research
questions.

3.1.1 RQ1: Privileged vs. Unprivileged Behavior

First, we are interested in whether there are any noticeable differences between the behavior
of developers without privileges who receive privileges and the behavior of developers with-
out privileges who do not later receive privileges. We aim at analyzing whether they trigger
different events with their actions, work on more issues, or do anything else that makes
their behavior different from the behavior of developers who are not later granted privileges.

RQ1: How does the behavior of developers with privileges before they receive them
differ from the behavior of developers without privileges?

3.1.2 RQ2: Behavior Change After Privileges

After receiving privileges, developers can perform different actions than before. We aim at
investigating whether they use their privileges frequently, and if so, whether this results in
a decrease of tasks that do not require privileges, or if they maintain the same workload but
add additional tasks that require privileges.

RQ2: Does the behavior of developers change after receiving privileges relative to the
behavior before receiving privileges?

9
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3.1.3 RQ3: Centrality Change After Privileges

Furthermore, we are interested in whether developers become more central in the project
after being granted privileges. We aim at analyzing whether they interact more with other
(also central) developers in the project than before receiving privileges and whether they
collaborate more with other (also central) developers on different files.

RQ3: Does the centrality of developers in the communication network or in the collaboration
network change after receiving privileges compared to before?

3.2 expectations

Hypothesis 1: Developers with privileges are much more engaged in the project than
developers without privileges, also before they receive privileges. They trigger more events
than developers who do not receive privileges later, and in particular more relevant events
(e.g., reviewed, state_updated, commit_added) instead of rather unimportant events (e.g.,
renamed, commented).

Explanation: If a developer is given privileges, it is most likely because they have done a
good job before. We therefore expect them to stand out positively from all developers and
trigger the “most important” or most influential events of all events for which no privileges
are required. The hypothesis is validated for each event uniquely.

Hypothesis 2a: After receiving privileges, developers increasingly trigger privileged events,
i.e., consistently and over a longer period of time.

Explanation: This hypothesis is based on the assumption that a developer is given privileges
as a reward for their performance and trustworthiness. Such developers are also implicitly
expected to fulfill the tasks entrusted to them and to actively participate in the coordination
and guidance of project development, which in turn leads to privileged events being trig-
gered on a regular basis.

Hypothesis 2b: After receiving privileges, the overall number of triggered issue events
(common, extended and privileged events) increases.

Explanation: As explained in Hypothesis 2a, we assume that developers are given privileges
as a reward for good performance. We expect these developers to maintain, and most likely
increase, their level of activity because they are now even more motivated and competent.
As a result, we expect them to contribute more to issue discussions and reviews, for example.

Hypothesis 3a: Developers have an increased centrality with regard to communication
networks (i.e., issue networks) in the project after being granted privileges.

Explanation: The hypothesis of the communication centrality being increased after gaining
privileges is based on the greater responsibility and leadership role that comes with priv-
ileges. These developers are most likely to perform more maintenance activities and are
likely to communicate with other highly involved developers, all of which leads to increased
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centrality regarding communication networks.

Hypothesis 3b: Developers do not have an increased centrality in the project in terms
of collaboration networks (i.e., cochange networks) after being granted privileges.

Explanation: The hypothesis that collaboration centrality does not increase after gaining
privileges is based on the explanation of hypothesis 3a. Developers who are busy with
maintenance work do not have as much time to work on code. Thus, based on Hypothesis
3a, we expect them to shift their focus to maintenance and not spend more time working on
code.

3.3 preparation of data

To investigate possible changes in the behavior of privileged developers and to understand
the differences between privileged and unprivileged developers, we use GitHub issues and
commits, which are explained in Section 2.1.

As a first step, we need to extract the issue and commit data from GitHub. Using the tool
Codeface

1 [28, 29, 31], we extract commit metadata from Git, including the developer’s
name, e-mail address, date, and names of the modified files in a commit [4]. The issue meta-
data is extracted from GitHub using the tool GitHubWrapper

2. This data includes which
user initiated which event within which issue or pull-request, along with the corresponding
timestamps [4]. We then use the tool Codeface Extraction

3 to merge the commit and issue
data to match developers based on the same name or e-mail address [4].

It is important to notice that the usage of bots in GitHub projects is growing. These bots can
perform tasks such as reviewing pull requests or closing abandoned issues [9, 22, 47–49].
Without filtering out these activities from the issue data, each bot would be treated as a
developer, which would distort our analysis of the behavior of “real” developers. For this
reason, we remove all events triggered by bots from the extracted issue data using the same
procedure as Bock et al. [4].

From the extracted issue and commit data, we can obtain different relevant information
like the date of the first privileged event from each developer, all triggered events, or the
number of commits and issue events.

However, developer contributions can vary widely over the course of a project. Some
developers are active for the entire project duration, while others are active for only a
few months. Therefore, it is necessary to divide the data into standardized sections to
allow for a more accurate comparison of the values of different developers. Bock et al. [4]
investigated 25 different projects and discovered that in “all but one project more than
88 % of the developers using privileged events have a median time difference of less than
6 months between these events” [4]. Since we use a subset of the 25 investigated projects,
this assumption also applies to our research. Given that privileged events occur at regular

1 https://github.com/se-sic/codeface/ (accessed 2024-03-21)
2 https://github.com/se-sic/GitHubWrapper/ (accessed 2024-03-21)
3 https://github.com/se-sic/codeface-extraction (accessed 2024-03-12)

https://github.com/se-sic/codeface/
https://github.com/se-sic/GitHubWrapper/
https://github.com/se-sic/codeface-extraction
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intervals of less than 6 months, we divide all events into time windows of 6 months to
identify trends and patterns, which is also common in the literature [25, 39].

From each split, we construct communication and collaboration networks (see Section 2.4)
using the R library Coronet

4. The constructed networks are not directed (i.e., the temporal
order of interactions is ignored) and not simplified (i.e., multiple edges between a pair of
developers are allowed, loops are allowed). From these networks, we later obtain centrality
information.

If only consecutive windows were used, two developers who have worked on the same data
source (commits or issues) within 6 months might not be connected by an edge because the
events were separated by splitting. Missing connections between developers could affect
eigenvector centrality, especially if edges between two central developers are dropped.
Consequently, this scenario could have a negative impact on network metrics. Therefore, we
split our data into sliding windows, where subsequent windows are shifted by half of the
time window, i.e., 3 months, “such that subsequent windows overlap and cover the edges
which are neglected when not using such a sliding-window approach” [4].

Before starting the actual analysis, we do one last preparatory step, which is to assign each
developer to the group of privileged or unprivileged developers. To do this, we go through
the list of triggered events of each developer and check if this developer has triggered a
privileged event. Since we are using sliding windows, the first privileged event is included
in two time windows. Any developer who has triggered a privileged event at least once is
considered a privileged developer from that point on for the rest of their active time in the
project, which is discussed further in Section 4.4.1. All other developers who have never
triggered a privileged event belong to the group of unprivileged developers.

3.4 analysis and implementation

Now that we have the commit and issue data, the networks, and the assignment of develop-
ers to privileged and unprivileged, we can start performing the analyses to find answers to
our research questions.

3.4.1 RQ1: Privileged vs. Unprivileged Behavior

To answer RQ1, we evaluate and compare the behavior of each group of developers, the
privileged and the unprivileged.

For the developers without privileges, we consider all available data, that is, all commits
and issues from the entire project period. For the group of developers with privileges, on
the other hand, we only use data from the time before the privileges were granted, as we are
interested in whether their behavior before receiving the privileges differs from the behavior
of unprivileged developers. For the group of privileged developers, we additionally drop
all data from the time windows in which the privileges were granted. The reason behind
this decision is that we cannot use the entire time window, as using data from the period

4 https://github.com/se-sic/coronet (accessed 2024-03-12)

https://github.com/se-sic/coronet
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after receiving privileges would distort the results. The alternative would be to use the
time windows and analyze only the data up to the date of the privilege granting. However,
this is not very reliable since we later calculate the mean value over all time windows per
developer. As we are not using the entire time window in which privileges are granted, this
would distort the results because the values in this time window would be from a shorter
time period than the values in all other time windows.

However, there may be outliers, such as developers whose first activity occurred in the first
3 months of the project. These developers may be project owners who could potentially
distort the results by pushing the original project to the repository when it is opened. This
results in a massive number of commits and activities that might not be comparable to the
activities of other developers. To avoid this bias, we perform our analysis twice. First, we
compare all privileged developers with all unprivileged developers, and then we compare
all but the outliers, i.e., we exclude all developers (privileged and unprivileged) whose first
activity occurred within the first 3 months of the project. We refer to these developers as
“initial members” from now on.

The first step of our analysis is to achieve the number of issue events and commits from each
developer in both groups. To accomplish this, we sum up the total number of triggered issue
events and the total number of commits per developer over all considered time windows. In
addition, we calculate the mean value of both values for each time window per developer to
enable a more accurate comparison, as the time span in which developers work on a project
can vary greatly.

The second step is to count how often the exact events (e.g. commented, commit_added,
mentioned) were triggered by the two groups. To achieve this, we iterate through the list
of issue events per developer in each time window and sum up the occurrences of each
event. Then, we calculate the means of the occurrences of each event per developer per time
window.

We perform both steps (i.e. number of commits, total number of issue events, and exact
issue events) once for the entire group of privileged developers and the entire group of
non-privileged developers, and once without initial members (i.e., developers whose first
activity took place in the first 3months of the project) in both groups.

The resulting values of the performed steps (i.e., the total number of commits and issue
events, the means of commits, issue events, and exact issue events) are then compared using
the Mann-Whitney U test, as this test is well suited for non-normally distributed data and
provides us with a comprehensive understanding of the differences between the groups.
The Mann-Whitney U test is performed twice, once with the values from all developers and
once with the values where initial members are excluded.
We use the null hypothesis that there is no significant difference between the distributions
of the values of privileged and unprivileged developers. The alternative hypothesis is that
the distribution of the values of the privileged developers are greater than those of the
unprivileged developers.
The result of a Mann-Whitney U test then is a p-value, indicating the probability of obtaining
the observed data if the assumption of no difference between the groups (null hypothesis)
were true.
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The smaller the p-value obtained from the test, the more significant the observed difference
between the two groups, with significance defined in our thesis as a p-value below 0.05.
When p < 0.05, we can reject the null hypothesis in favor of the alternative hypothesis.

In addition to the Mann-Whitney U test, we use Cliff’s Delta5 to determine the effect size,
i.e., the extent of the difference between the values of the two groups. The resulting delta (δ)
varies between 1 and −1, where a positive delta indicates that the values in the first group
are greater than those in the second, and a negative delta indicates the opposite. A delta
close to 1 or −1 indicates significant dominance of one group over the other. If δ is close to
0, the groups are stochastically equal [36].

3.4.2 RQ2: Behavior Change After Privileges

To answer RQ2, we analyze the behavior of developers with privileges after receiving
privileges and compare it to their behavior before receiving privileges. For this purpose, we
again analyze the number of issue events, the number of commits, and the exact events that
were triggered by each developer, but only for the group of developers with privileges.

For each developer, we compare all time windows before the two time windows that include
the first privileged event and all time windows after those two time windows, to get a direct
comparison of behavior. Figure 3.1 illustrates the time windows that include the privilege
receipt when using sliding windows. It is important to note that we do not include the two
time windows during which a developer received privileges, because those time windows
do not correspond to the time windows before or after receiving privileges, and therefore
are not valuable for our analysis. The reason why we do not use these time windows instead,
and only use the part of the time window that belongs to before or after receiving, is the
same as for Section 3.4.1.

first privileged event
time windows before time windows after

6-month time window

Figure 3.1: Time windows before and after the first privileged event when using sliding windows.

Comparing only one time window before and one time window after receiving privileges is
not sufficient, as looking at only 6 months is not enough to get a proper understanding of
a developer’s behavior. During that particular time window, a developer may have been
unavailable due to illness or vacation, or they may have been highly motivated immediately
after receiving privileges, but experienced a significant drop in engagement after, for
example, 6 months of receiving privileges.
However, comparing all time windows, including the first time window of a developer, is
also not a good option because developers may behave differently in the initial phase of a

5 https://search.r-project.org/CRAN/refmans/rcompanion/html/cliffDelta.html (accessed 2024-03-15)

https://search.r-project.org/CRAN/refmans/rcompanion/html/cliffDelta.html
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project than in their usual workflow. For instance, they need to familiarize themselves with
the project and gain an overview [16, 34]. Therefore, we also drop the two time windows
during which the first activity of a developer occurred.

Here again, we perform our analysis twice, once with all privileged developers and once
with all but the initial members, which are, as described in Section 3.4.1, those whose first
activity occurred in the first 3 months of the project.

The first step in the analysis is again to sum, for each privileged developer, the total number
of issue events and commits that occurred in the time windows considered before the first
privileged event (i.e., all but the two very first time windows) and after the first privileged
event. In addition, we again calculate the mean of the counted issue events and commits
per time window for each developer, once before and once after receiving privileges. With
the mean value, we can compare their contributions more precisely, as developers may have
been privileged for longer than unprivileged, or vice versa.

We also again count the exact events that were triggered in the time windows before and
after receiving privileges by summing up the occurrences of each single event. Afterward,
we calculate how often each event was triggered on average by each developer per time
window before and respectively after the granting of privileges.

Both steps are performed once for all privileged developers and once for all except the
initial members, i.e., those whose first activity occurred in the first 3 months of the project.

We now have two values for each measurement (the total number of commits and events
for each developer, and the average number of commits, events, and exact events over all
time windows), one from before and one from after the privileges were granted. This allows
us to compare the resulting paired data using the Wilcoxon signed-rank test. The test is
performed twice, once with the values from all privileged developers, and once with the
values where initial members have been excluded.

The Wilcoxon signed-rank test is a suitable choice since it does not require a normal
distribution and is robust to outliers. It reveals potentially significant changes in the
measured values and, therefore, indicates if and in which way the behavior of the developers
has changed. We use the null hypothesis that there is no significant difference between
the values of the first group (i.e., before receiving privileges) and the values of the second
group (i.e., after receiving privileges), and the alternative hypothesis that there is a tendency
for the values of the first group to be smaller than the corresponding values of the second
group.
The test then provides a p-value, which serves as an indicator of the extent to which the
data contradicts the null hypothesis. If p falls below 0.05, it suggests significant evidence
against the null hypothesis, leading to its rejection in favor of the alternative hypothesis.

Along with the Wilcoxon signed-rank test, we also conduct an analysis to derive the effect
size R6, which measures the significance of the difference between the paired samples. The
resulting effect size R ranges from 1 to −1. It is positive when the data in the first group
are greater than in the second group, and negative when the data in the second group

6 https://www.rdocumentation.org/packages/rcompanion/versions/2.3.7/topics/wilcoxonPairedR

https://www.rdocumentation.org/packages/rcompanion/versions/2.3.7/topics/wilcoxonPairedR
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are greater than in the first group [37]. This effect size makes it easier to understand the
practical significance of the change or discrepancy found between the two groups.

3.4.3 RQ3: Centrality Change After Privileges

To answer RQ3, we use the eigenvector centrality (explained in Section 2.4) of each developer
with privileges. We conduct two analyses, one based on an issue network and another
based on a cochange network, to obtain centrality values for both networks, since the
centrality values of a developer may differ between the two networks because edges
between developers are created differently (see Section 2.4).

Similar to Section 3.4.2, we exclude time windows during which a developer received
privileges, as they were both privileged and unprivileged during these time windows,
providing no further information for RQ3. We again drop the two time windows in which
the first activity of a developer occurred. For the analysis, we therefore consider all time
windows except the initial ones before receiving privileges, and all time windows after
receiving privileges for each developer.

We compute the eigenvector centrality for each developer in each considered time window,
once from the issue network and once from the cochange network. Subsequently, for each
developer, we calculate the mean of the values obtained for the two centralities (i.e., issue
and cochange centrality) over all considered time windows before and after receiving
privileges, respectively.

Here, we again have paired values since we have a cochange centrality from before receiving
privileges and a cochange centrality from after receiving privileges for each developer,
as well as for the issue centrality. Once more, we compare these paired values using the
Wilcoxon signed-rank test, since our data are not necessarily normally distributed.
For both centralities, we use the null hypothesis that there are no differences between
the centralities from before and after receiving privileges. For issue centrality, we use the
alternative hypothesis that there is a tendency for the values from before receiving privileges
to be smaller than the corresponding values from after receiving privileges. For cochange
centrality, on the other hand, we use the alternative hypothesis that there is a difference
between both groups, without stating whether the difference is positive or negative.
The test then provides a p-value, which serves as an indicator of the extent to which the data
contradicts the null hypothesis. If p falls below 0.05, it suggests significant evidence against
the null hypothesis, leading to its rejection in favor of the alternative hypothesis. Additionally,
we perform an analysis to calculate the effect size R, as described in Section 3.4.2.



4
E VA L UAT I O N O F T H E P R O P O S E D H Y P O T H E S E S

In this chapter, we present the results of our analyses, starting with an overview of the
projects used in our research. Subsequently, we evaluate the hypotheses by presenting and
discussing the obtained results. Finally, we discuss the potential threats to the validity of
our research.

4.1 projects

We chose 9 different OSS projects hosted on GitHub for our research. The development of
these projects has been active for several years, and we hold data from a range of 2.5 to 6.5
years for each project.

We selected the following projects:

• Angular is a TypeScript-based web application framework.

• Atom is a text editor based on Electron.

• Bootstrap is a front-end framework providing a collection of CSS and JavaScript
components for building websites and web applications.

• Deno is a runtime for executing JavaScript and TypeScript outside of the web browser.

• Electron is a framework that allows to build cross-platform desktop applications.

• Keras is a deep learning framework to efficiently build and train neural networks.

• OpenSSL is a library providing cryptographic functionalities for Transport Layer
Security.

• VSCode is a code editor with support for various programming languages and
extensions.

• Vue is a progressive JavaScript framework to build user interfaces.

The selected projects provide extensive coverage of OSS projects in general, with the number
of developers ranging from 3172 to 68 664, the number of commits ranging from 2257 to
49 817, and the number of issues ranging from 8760 to 111 072.

Specific numbers for each project, including the number of commits, the number of issues,
and the time range of available data, are detailed in Table 4.1.

Table 4.2 provides information about the number of developers in each project, including
privileged developers, developers involved in issues, and developers contributing commits.

17
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Table 4.1: Overview of commit and issue activity, along with the observation period, for the selected
projects.

Project #Commits #Issues Observation Period

Angular 12 357 38 501 2014-9-18 - 2020-9-25

Atom 15 629 21 138 2012-1-21 - 2020-12-10

Bootstrap 2266 31 735 2011-8-19 - 2020-12-22

Deno 3431 8760 2018-5-29 - 2020-12-22

Electron 10 610 26 606 2013-5-6 - 2020-12-22

Keras 3473 13 468 2015-3-28 - 2019-11-6

OpenSSL 8914 11 072 2013-5-13 - 2020-2-17

VSCode 49 817 111 072 2015-11-13 - 2020-12-22

Vue 2257 9325 2016-4-11 - 2020-11-24

Table 4.2: Summary of developer statistics including the total number of developers (Devs), privileged
developers, privileged developers without initial members (w/o) and developers involved
in issues and commits in the selected projects.

Project #Devs #Privileged
Devs

#Privileged
Devs w/o

#Devs
in Issues

#Devs
in Commits

Angular 23 420 70 51 667 22 856

Atom 21 388 54 51 298 21 045

Bootstrap 25 252 21 19 219 24 737

Deno 3172 9 3 3070 348

Electron 15 837 43 39 15 554 391

Keras 13 602 43 41 12 687 716

OpenSSL 8073 19 16 3419 408

VSCode 68 664 52 31 1001 67 877

Vue 9855 14 6 8751 217
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4.2 results

Before presenting the detailed results for each research question, we first present some
general findings to provide an overview of the projects and developer behavior.
In total, we analyze 9 OSS projects with varying amounts of privileged developers, ranging
from 9 to 70. These developers make up between 0.076 % and 0.32 % of all developers, and
it takes between 10 days and 6.5 years for developers to receive privileges. Considering the
average number of occurrences of each issue event across all projects, the most frequently
triggered event is commented. The most frequently triggered privileged event is merged,
followed by added_to_project and moved_columns_in_project.

4.2.1 RQ1: Privileged vs. Unprivileged Behavior

For the following evaluation, the first group is GroupFP and refers to the group of priv-
ileged developers before they receive privileges (i.e., future privileged developers), and
the second group is GroupUP and refers to developers who do not receive privileges later
(i.e., unprivileged developers). A positive effect size therefore indicates that the values of
future privileged developers are significantly greater than those of unprivileged developers,
while a negative effect size indicates the opposite. We define significance as p < 0.05. Tables
providing the exact results for each comparison can be found in the Appendix A.

For the total and average number of commits and issue events per developer, we observe
significant results (p < 2.054 × 10−4) with an effect size of 0.596 < δ < 0.986. The compari-
son of GroupFP and GroupUP with respect to the median of the average number of commits
and issue events is illustrated in Figure 4.1.
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Figure 4.1: Comparison of GroupFP and GroupUP: Median of the average number of commits and
issue events per developer. Dark blue represents GroupUP, light blue represents GroupFP.

For events, we generally observe 3 different outcomes. This results in a clustering of events
into 3 categories, which are listed in Table 4.3.

The results of the events in Category 1.1 show high significance (p < 1.439 × 10−4), but
varying effect sizes for the different projects.
review_requested has effect sizes of δ < 0.487. The effect sizes of head_ref_deleted,
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Table 4.3: Categories of events for RQ1

Category 1.1 Category 1.2 Category 1.3

High significance Mixed significance Not occuring

add_link, commented,

commit_added, created,

head_ref_deleted, mentioned,

referenced_by, renamed,

review_requested, reviewed

assigned, base_ref_changed,

base_ref_force_pushed,

comment_deleted, convert_to_draft,

demilestoned, head_ref_force_pushed,

head_ref_restored, labeled,

marked_as_duplicate, milestoned,

ready_for_review, referenced,

resolution_updated,

review_request_removed, state_updated,

subscribed, type_updated,

unassigned, unlabeled, unsubscribed

automatic_base_change_failed,

automatic_base_change_succeeded,

connected, cross_referenced,

disconnected,

unmarked_as_duplicate

renamed, and reviewed vary between 0.146 and 0.988. Regarding add_link, commented,
commit_added, created, mentioned, and referenced_by, the effect sizes vary between 0.394
and 0.981.

The events in Category 1.2 show mixed results, as the significance and effect size of each
event varies from project to project. This category can be divided into two subcategories:
The first subcategory is demilestoned, milestoned, and resolution_updated. These events
do not occur in every project. However, in all projects where they do occur, they show
significant results. The latter event only occurs in Atom, Electron, VSCode and Vue.
In these projects, it shows significant results (p < 7.747 × 10−138) with effect sizes of
0.133 < δ < 0.182. The other two events occur only in Angular, OpenSSL and VSCode.
They show significant results (p < 5.706 × 10−193) with effect sizes of 0.086 < δ < 0.5.
The second subcategory is assigned, base_ref_changed, base_ref_force_pushed,
comment_deleted, convert_to_draft, head_ref_force_pushed, head_ref_restored,
labeled, marked_as_duplicate, ready_for_review, referenced, review_request_removed,
state_updated, subscribed, type_updated, unassigned, unlabeled, and unsubscribed.
This subcategory does not show significant results consistently across all projects. Each
event shows significant results in only about half of the selected projects, details can be
found in Table 4.4. In projects where significant results are observed, p is less than 0.03, and
the effect sizes are positive and less than 0.859.

The events in Category 1.3 do not occur in any of the selected projects, and therefore cannot
reveal differences between the two groups of developers.

We performed the analysis twice, once with the initial members included and once without,
as described in Section 3.4.1. We found only minor differences between the two analyses,
with only 4 events in total showing different results. Furthermore, the results of these events
differed between the two analyses in only one project. As these differences are negligible
for our analysis, we do not distinguish between results with and without initial members.
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Table 4.4: Events in the second subcategory of Category 1.2 (mixed significance) from RQ1 and their
results regarding the selected projects.

Event Angular Atom Bootstrap Deno Electron Keras OpenSSL VSCode Vue

assigned ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

base_ref_changed ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

base_ref_force_pushed ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

comment_deleted ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

convert_to_draft ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

head_ref_force_pushed ✓ ✓ ✓ (✓) ✓ ✓ ✓ ✓ ✓

head_ref_restored ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗

labeled ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓

marked_as_duplicate ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

ready_for_review ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

referenced ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

review_request_removed ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗

state_updated ✓ ✓ ✓ (✓) ✓ ✓ ✓ ✓ ✓

subscribed ✓ ✓ ✓ (✓) ✓ ✓ ✓ ✓ ✓

type_updated (✓) ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓

unassigned ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

unlabeled ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

unsubscribed ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗

✓ = significant result (i.e., p < 0.05)

(✓) = significant result when including initial members, insignificant otherwise

✗ = insignificant result
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RQ1

Based on the results, we reject the null hypothesis for the total and average number
of commits and issue events, as well as for all issue events in Category 1.1. Since the
results for the events in Category 1.2 are inconclusive, we can neither accept nor reject
the null hypothesis. Additionally, as the events in Category 1.3 do not occur in any of
the projects, we are not able to make a decision regarding the null hypothesis.

4.2.2 RQ2: Behavior Change After Privileges

For the following evaluation, we define significance as p < 0.05. The first group in the
analysis are privileged developers before receiving privileges, and the second group are
the same developers after receiving privileges. Thus, a negative effect size indicates that
the values of developers after receiving privileges are greater than before, while a positive
effect size indicates that the values after receiving privileges are less than before. See the
Appendix A for tables containing the exact results for each comparison.

Regarding the total and average number of commits and issue events, we could not find
consistent results. For Deno, Keras, and Vue, we do not find significant results (p > 0.074),
neither in terms of commits nor issue events.
Considering only the total number of commits, we find significant results (p < 0.027) for
Atom, Angular, Bootstrap, Electron (only for the analysis that includes initial members),
and VSCode, with effect sizes ranging from −0.820 to −0.348. However, looking at the
mean number of commits, this leaves Angular (with initial members), Atom, and VSCode,
with p < 0.007 and effect sizes between −0.4450 and −0.3420.
For the total number of issue events, we again find significant results (p < 2.671 × 10−5) for
Atom, Angular, Bootstrap, Electron, and VSCode, with effect sizes between −0.837 and
−0.599. For the mean number of issue events, we find significant results (p < 0.038) with
effect sizes between −0.647 and −0.253 for Angular, OpenSSL, and VSCode (only when
including initial members). Table 4.5 contains the significance of the results of comparing
commit and issue events for all projects.

Table 4.5: Results of comparison of commits and issue events from RQ2

Angular Atom Bootstrap Deno Electron Keras OpenSSL VSCode Vue

Counted commits ✓ ✓ ✓ ✗ (✓) ✗ ✗ ✓ ✗

Mean of counted commits (✓) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Counted events ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗

Mean of counted events ✓ ✗ ✗ ✗ ✗ ✗ ✓ (✓) ✗

✓ = significant result (i.e., p < 0.05)

(✓) = significant result when including initial members, insignificant otherwise

✗ = insignificant result

In contrast to RQ1, we do not observe any event that shows significant results across all
selected projects. The categorization of events is detailed in Table 4.6.
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Table 4.6: Categories of events for RQ2

Category 2.1 Category 2.2 Category 2.3

Mixed significance No significance Not occurring

add_link, added_to_project,

assigned, base_ref_changed,

base_ref_force_pushed, commented,

commit_added, connected,

convert_to_draft,

converted_note_to_issue, created,

demilestoned, head_ref_deleted,

head_ref_force_pushed,

head_ref_restored, labeled,

marked_as_duplicate, mentioned,

merged, milestoned,

moved_columns_in_project, pinned,

ready_for_review, referenced,

referenced_by, removed_from_project,

renamed, resolution_updated,

review_dismissed,

review_request_removed,

review_requested, reviewed,

state_updated, subscribed,

transferred, type_updated,

unassigned, unlabeled,

unpinned, unsubscribed

automatic_base_change_succeeded,

comment_deleted, disconnected,

locked, unlocked,

unmarked_as_duplicate,

user_blocked

automatic_base_change_failed,

cross_referenced, deployed,

deployment_environment_changed
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The results of Category 2.1 show mixed significance and varying effect sizes, ranging
per event from significant results (p < 0.049) with effect sizes between −0.956 and
−0.367 to insignificant results, depending on the project. However, we also find events
with p slightly above 0.05. For assigned, convert_to_draft, labeled, resolution_updated,
review_request_removed, unlabeled, merged, and pinned, we find in one or at most two
projects p = 0.0502 and effect sizes of R = −0.915. The exact breakdown of which events
have significant or insignificant results for which projects, and which events do not occur at
all in which projects, can be found in Table 4.7. This table also includes the differences that
occurred between the regular analysis and the additional analysis where we exclude initial
members, as these differences occurred only for events of Category 2.1.

The events in Category 2.2 do not show significant results in any project. Not every event
is observed in every project, and if an event is absent in a particular project, it cannot not
reveal significant differences. However, for every other event-project pair within Category
2.2 where the event is present in the specific project, we also do not observe significant
results.

The events in Category 2.3 do not occur in any of the projects and therefore cannot have
significant results.

RQ2

Since the results for the total and average number of commits and issues and for
the events in Category 2.1 are inconclusive, we can neither reject nor accept the null
hypothesis. For the events in Category 2.2, we accept the null hypothesis as we did not
observe any significant results. The absence of events in Category 2.3 in all projects
does not allow us to make a decision about the null hypothesis.
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Table 4.7: Events in Category 2.1 (mixed significance) from RQ2 and their results regarding the
selected projects.

Event Angular Atom Bootstrap Deno Electron Keras OpenSSL VSCode Vue

Common & Extended events:

add_link ✓ ✓ (✓) ✗ ✓ ✗ ✓ ✓ ✗

assigned ✓ ✓ ✓ m ✓ ✗ ✓ ✓ ✗

base_ref_changed ✓ ✗ (✓) ✗ ✓ 0 ✗ (✓) ✗

base_ref_force_pushed (✓) (✓) (✓) 0 ✗ ✗ ✗ 0 ✗

commented ✓ ✓ (✓) ✗ ✓ ✗ ✓ ✓ ✗

commit_added ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗

connected ✓ 0 ✗ 0 0 0 0 (✓) 0

convert_to_draft ✓ ✗ ✓ ✗ m 0 0 (✓) 0

created ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗

demilestoned ✓ 0 ✓ ✗ 0 0 ✗ ✓ ✗

head_ref_deleted ✓ ✓ ✗ (✓) ✓ ✗ ✗ ✓ ✗

head_ref_force_pushed ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗

head_ref_restored (✓) ✓ ✗ ✗ ✓ ✗ ✓ (✓) ✗

labeled ✓ ✓ ✓ m ✓ m ✓ ✓ ✗

marked_as_duplicate ✓ ✗ ✓ ✗ ✓ 0 ✗ ✓ ✗

mentioned ✓ ✓ (✓) ✗ ✓ ✗ ✓ ✓ ✗

milestoned ✓ ✗ ✓ ✗ 0 0 ✗ ✓ ✗

ready_for_review ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ 0

referenced ✓ ✓ ✗ ✗ (✓) ✗ ✗ ✓ ✗

referenced_by ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗

renamed ✓ ✓ (✓) ✗ ✓ ✗ ✓ ✓ ✗

resolution_updated ✗ ✓ m ✗ ✗ ✗ ✗ ✓ ✗

review_request_removed ✓ ✓ m m ✗ ✗ ✓ ✓ ✗

review_requested ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗

reviewed ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗

state_updated ✓ ✓ ✓ (✓) ✓ ✗ ✓ ✓ ✗

subscribed ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗

type_updated ✗ ✓ 0 ✗ ✗ ✗ ✓ ✓ ✗

unassigned ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗

unlabeled ✓ ✓ ✓ ✗ ✓ m ✓ ✓ ✗

unsubscribed ✓ ✓ (✓) ✗ ✓ ✗ ✗ ✓ ✗

Privileged events:

added_to_project ✓ 0 ✓ 0 ✓ 0 ✓ ✗ ✗

converted_note_to_issue (✓) 0 ✗ 0 ✗ ✗ ✗ 0 0

merged ✓ ✓ ✓ m ✓ (✓) ✗ ✓ ✗

moved_columns_in_project ✓ 0 ✓ 0 ✓ ✗ ✓ ✗ ✗

pinned (✓) ✗ ✗ ✗ m 0 ✗ ✓ 0

removed_from_project ✓ 0 ✓ 0 ✓ 0 ✗ ✗ ✗

review_dismissed ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗

transferred ✓ ✓ 0 ✗ ✗ 0 0 ✓ ✗

unpinned ✓ ✗ ✗ ✗ ✗ 0 ✗ ✓ 0

✓ = significant result (i.e., p < 0.05)

(✓) = significant result when including initial members, insignificant otherwise

m = p slightly above 0.05

✗ = insignificant result

0 = event did not occur
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4.2.3 RQ3: Centrality Change After Privileges

For the following evaluation, GroupFP is the first group and refers to privileged developers
before they received privileges, while GroupP is the second group and refers to the same
developers after they received privileges. A negative effect size therefore indicates that the
centralities of developers after receiving privileges are greater than before, while a positive
effect size indicates the opposite. We define significance as p < 0.05. Tables providing the
exact results for each comparison can be found in the Appendix A.
Table 4.8 provides an overview of the results for all projects.

Table 4.8: Results of issue and cochange centrality of the selected projects

Centrality Angular Atom Bootstrap Deno Keras Electron OpenSSL VSCode Vue

Issue ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗

Cochange ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

✓ = significant result (i.e., p < 0.05)

✗ = insignificant result

Regarding the eigenvector centrality in the issue networks, we find significant results
(p < 0.026) in Angular, Atom, Bootstrap, Electron and VSCode, paired with effect
sizes varying between −0.720 and −0.302. In the remaining 4 projects, we find insignificant
results (p > 0.124) paired with effect sizes between −0.594 and −0.212.

For the eigenvector centrality in the cochange networks, we find significant results (p <

2.637 × 10−6) in Angular, Atom and VSCode, all paired with effect sizes smaller than
−0.626. The remaining 6 projects show insignificant results (p > 0.109), all paired with
effect sizes varying between −0.446 and −0.054.

A visual comparison of the average eigenvector centrality of developers before and after
privilege granting in issue and cochange networks of all projects is shown in Figure 4.2.
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Figure 4.2: Eigenvector centralities of developers before receiving privileges (light blue) and devel-
opers after receiving privileges (dark blue), based on issue and cochange networks.
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RQ3

Based on the results, we can reject the null hypothesis regarding issue networks for
Angular, Atom, Bootstrap, Electron and VSCode, and accept it for Deno, Keras,
OpenSSL and Vue.
The null hypothesis regarding cochange networks is rejected for Angular, Atom and
VSCode, and accepted for Bootstrap, Deno, Electron, Keras, OpenSSL and Vue.

4.3 discussion

We now discuss the presented results to gain insights to answer our research questions.

4.3.1 RQ1: Privileged vs. Unprivileged Behavior

We are interested in whether the behavior of future privileged developers (GroupFP) differs
from the behavior of unprivileged developers (GroupUP).

The total and average number of commits and triggered issue events of GroupFP is signif-
icantly higher than that of GroupUP, suggesting that GroupFP is putting more effort into
the project. This trend of higher engagement is also apparent when considering the issue
events separately. GroupFP triggers almost every issue event significantly more often than
GroupUP.
Given this diverse involvement in significantly more issues and their contributions to
significantly more commits compared to GroupUP, we can assume that both the number
of commits and the number of issue events can serve as an indicator of a developer’s
qualification to receive privileges.

We also expect GroupFP to trigger relevant events such as commit_added, reviewed, and
state_updated significantly more often compared to GroupUP, while we expect less signifi-
cant differences for rather irrelevant events such as renamed and commented (see Section 3.2).
The results of our analysis show that GroupFP indeed triggered commit_added, reviewed and
state_updated significantly more often than GroupUP. However, renamed and commented

were also triggered more often by GroupFP than by GroupUP. This suggests that, contrary
to our expectations, these events are not irrelevant to future privileged developers. Since
GroupFPis significantly more active in the project, developers in this group are likely to have
a deeper understanding of and commitment to the project than developers who contribute
only occasionally. As a result, GroupFP may be able to help when GroupUP has problems,
and GroupFP may point out things that can be improved in code related to an issue. This in
turn leads to GroupFP commenting on significantly more issues than GroupUP.

We also observe that some events reveal larger differences between GroupFP and GroupUP

than others, indicated by a higher effect size δ. commented, mentioned, and subscribed

reveal the biggest differences of all events. As mentioned above, we assume that commented
is triggered much more often by GroupFP because of their broad knowledge of the project,
which allows them to comment on a variety of different issues. This is in turn related to
a high occurrence of mentioned, as there is a tight coupling between the two events when
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having conversations with other developers. The high occurrence of subscribed can be
explained by GitHub automatically subscribing developers to issues when certain actions
occur1, such as being assigned to the issue, commenting on it or being mentioned within it.

In summary, our analysis reveals that future privileged developers are indeed significantly
more active than unprivileged developers, as evidenced by a significantly higher number of
commits and triggered issue events per developer. The largest difference between future
privileged and unprivileged developers appears in the occurrence of commented, mentioned,
and subscribed, indicating that future privileged developers communicate more extensively
with other developers.

4.3.2 RQ2: Behavior Change After Privileges

We are interested in whether the behavior of developers changes once they receive privileges.
Specifically, we are interested in whether they trigger more events after receiving privileges,
and whether they use their privileges at all.

The first thing to note is that the Vue project is an outlier in this research question. None
of the privileged developers are truly active after receiving privileges, 92 % of them have
an average of less than 1 commit per time window, and 85 % of them trigger an average
of less than 7 issue events per time window. Therefore, the difference in behavior before
and after receiving privileges is negligible. Hence, we do not include Vue in the following
discussions.

For the events in Category 2.1 (see Table 4.6), we do not observe a consistent pattern over
all projects. However, we identify an interesting pattern regarding the relation of project
size and the number of significant results. Projects with a higher number of privileged
developers, like Angular and VSCode (see Table 4.2), reveal lower numbers of events
showing insignificant differences. In projects with a lower number of privileged developers,
like Deno and Vue, no event reveals significant differences between developer contributions
before and after receiving privileges.
However, there are deviations of this pattern. Even though Keras has a similar number of
privileged developers to Electron, only 3 events (review_requested, review_dismissed

and merged) show significant differences for Keras, while for Electron, 28 events reveal
significant differences. This discrepancy might be due to a smaller number of commits and
issues in Keras. We therefore assume that not only the number of privileged developers, but
also the number of commits and issues in the project have an impact on whether significant
differences are observed. There might also be other factors that affect whether and how
developer contributions increase after privileges are granted, such as personal reasons (e.g.,
motivation or time availability) or the dynamics within the developer community of the
project.

The differences in the total number of commits and triggered issue events by developers
before and after receiving privileges also show the above-mentioned correlation between
significant results and project size. In the 5 largest projects (i.e., Angular, Atom, Bootstrap,

1 https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/

setting-up-notifications/about-notifications#notifications-and-subscriptions

https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/about-notifications#notifications-and-subscriptions
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/about-notifications#notifications-and-subscriptions
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Electron, and VSCode), we observe a significantly higher number of issue events and
commits per developer after receiving privileges than before. Again, not only the number
of privileged developers is a factor for finding significant differences, but also the number
of issues and commits in the project. In the remaining 4 projects, we cannot find significant
differences consistently.

When looking only at the common and extended events in the 4 projects with the highest
number of issues (i.e., Angular, Bootstrap, Electron, and VSCode, see Table 4.1), it is
visible that most of the events are triggered more often after receiving privileges than before.
For smaller projects on the other hand, like Deno and OpenSSL, we did not find significant
differences for all of these events, only for some. This suggests that, in smaller projects, only
some events are triggered more often after receiving privileges, while others are triggered
the same amount or even less often.
Considering only the privileged events in the 4 projects with the highest number of issues,
we can see that merged is the only event that shows significant differences between developer
contributions before and after privileges in all of the 4 projects.
added_to_project, moved_columns_in_project, removed_from_project, review_dismissed
and transferred show significant differences in 3 of these 4 projects.
converted_note_to_issue, pinned, and unpinned show significant differences in, at most,
2 of the 4 projects. This indicates that, at least in large projects, developers do indeed use
their privileges significantly often after receiving them. In smaller projects, however, we are
not able to observe this behavior.

The observed contrast between larger and smaller projects can be due to different factors. A
possible explanation for the relation between project size and the consistently significant
differences between developer behavior before and after receiving privileges is that the larger
number of developers with privileges increases the sample size. Consequently, the influence
of less active privileged developers decreases in a larger sample. In addition, larger projects
are likely to have more structured workflows and a greater need for active management
and coordination, resulting in privileged developers being involved in administrative tasks
that require regular triggering of issue events. Conversely, smaller projects might have more
informal processes and less fixed structures that reduce administrative requirements. In
such contexts, privileged developers may not be involved in as many administrative tasks
or discussions, leading to smaller changes in behavior after receiving privileges. Thus, the
observed discrepancy is likely due to the different sample sizes as well as the different
organizational dynamics and project needs inherent in projects of different sizes.

We also observe that privileged events generally account for a rather small proportion
of all events triggered after privileges are granted. Depending on the project, the sum of
privileged events expressed as a percentage of all triggered events ranges from 0 % to 6.6 %.

The evaluation of our expectation that developers consistently trigger privileged events
depends on the definition of “consistently”. When defining “consistently” as triggering an
average of > 1 privileged event per time window, the percentage of developers meeting
this expectation varies between 15.2 % (Keras) and 77.8 % (Bootstrap) depending on the
project. If it is defined as > 3, the percentage varies between 12.1 % (Keras) and 72.2 %
(Bootstrap). When defined as > 10, the percentage varies between 12.1 % (Keras) and 54 %
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(VSCode).
Figure 4.3 illustrates the total number of developers consistently using their privileges,
depending on the definition of consistence (i.e., the average number of privileges that has to
be triggered per time window to be considered as consistently using privileges).
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Figure 4.3: Number of developers consistently using their privileges, depending on the consistency
threshold (i.e., the number of privileged events that must be triggered to be considered
as consistently using privileges)

In summary, we observe that the change in developer behavior after receiving privileges
varies from project to project, with project size in terms of the number of privileged
developers, the number of issues, and the number of commits playing a key role in the
extent of the behavioral change. In large projects, developers become more active after
receiving privileges, as indicated by a significantly higher number of commits and triggered
issue events. They also trigger significantly more common and extended events than before,
however, of the privileged events, merged is the only one that is triggered significantly often.

4.3.3 RQ3: Centrality Change After Privileges

Finally, we are interested in whether the centralities of privileged developers in issue and
cochange networks change after they receive privileges. We expect two different trends. In
issue networks, we expect the eigenvector centrality to increase, but in cochange networks,
we expect it to decrease, see Section 3.2.

We cannot find consistent results for all projects, but we again find a relationship between
project size and significant differences, as in Section 4.3.2.

We start the evaluation with the eigenvector centrality in issue networks, which are con-
structed from GitHub issue data (explained in Section 2.4). Thus, in the following, we
distinguish between projects with a high number of issues and those with a lower number
based on the median (i.e., Atom).
Considering only the 5 projects with the highest number of issues (i.e., Angular, Atom,
Bootstrap, Electron, VSCode, see Table 4.1), the eigenvector centrality of developers
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in the issue networks increases significantly after receiving privileges. This indicates that
developers do indeed work on more issues, and therefore communicate more with other
developers, after receiving privileges.
For the remaining 4 projects, which have a much smaller number of issues, we do not
observe a significant increase in the eigenvector centrality of privileged developers in the
issue networks. When a project has fewer issues, privileged developers might not have the
opportunity to work on a larger number of issues than before they were privileged. This
limits the number of possible edges in the issue network, as developers are only connected
by an edge if they have contributed to the same issue [4]. This in turn limits the centrality.
Our findings suggest that the threshold for significantly increasing eigenvector centrality in
issue networks is ≈ 21 000 issues. This is demonstrated by the fact that the median project
in terms of the number of issues, with ≈ 21 000 issues, is the smallest project showing
significant differences.

We now evaluate the changes in eigenvector centrality in cochange networks. Since cochange
networks are constructed from commit data (explained in Section 2.4), we distinguish
between projects with a high number of commits and projects with a lower number of
commits. First, we consider the 3 projects with the highest number of commits (i.e., Angular,
Atom, VSCode, see Table 4.1). In these projects, we observe that the eigenvector centrality
of developers in the cochange networks changes significantly after receiving privileges.
Since our alternative hypothesis in this case does not specify whether the values from
before receiving privileges are greater or less than those from after receiving privileges,
p < 0.05 does not reveal any information about this. However, since R is close to −1, we can
assume that the centrality increases significantly after receiving privileges. This suggests
that, contrary to our expectations, developers also spend more time working on the code,
as a higher centrality in cochange networks indicates that the developer is editing many
different files.
The remaining 6 projects have a smaller number of commits. In these projects, the eigenvector
centrality does not increase significantly after receiving privileges. Similar to centrality in
issue networks, the reason for this might be the smaller number of commits in the project,
since this limits the interaction possibilities regarding contributions to the same file, which
in turn limits the centrality regarding cochange networks.
These findings suggest that the threshold for significantly increasing eigenvector centrality
in cochange networks is ≈ 12 000 commits, as the smallest project showing significant
differences has ≈ 12 000 commits.

In summary, we observe that changes in eigenvector centrality after receiving privileges are
related to the number of commits and issues in a project. For projects with a high number
of issues (i.e., > 21 000), our research consistently finds that the centrality of developers in
issue networks increases after they receive privileges. The same applies to the relationship
between the number of commits (i.e., > 12 000) and cochange centrality. However, there
may be other factors that explain the inconsistent results for centrality in both issue and
cochange networks, such as the internal structure of the project or the dynamics of the
community, which vary from project to project.
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4.4 threats to validity

After discussing the results of our research, we now outline the threats to the validity of our
research, categorized into internal and external threats.

4.4.1 Internal Validity

The correctness and completeness of the data we use relies on the completeness of the
GitHub data extracted with Codeface Extraction and the performance of Coronet, since
we use this tool to build our networks. As these tools are well established and have been
used in many previous studies, we assume that they work as intended.

We identify developers with privileges by searching the list of events they have triggered for
an event that requires privileges to be triggered. Some developers may never trigger such
an event, even if they belong to the group of developers with privileges. With our approach,
we can only find those developers that in fact make use of their privileges. Nevertheless, we
assume that the set of identified developers with privileges is sufficient for our study. We
consider the unidentified developers to be exceptional and irrelevant to the analysis. Since
they do not use their privileges, they should not be used as a benchmark for finding new
candidates to be granted privileges.

The method we use to assign developers to the group of unprivileged or privileged devel-
opers (see Section 3.3) implies that once a developer has triggered a privileged event, that
developer is considered a privileged developer for the rest of their time in the project. This
status of being a privileged developer is never changed to unprivileged in our analyses,
which could be a problem for developers who never use their privileges again after a certain
point in time. However, this is also useful information for our research, as it also gives
us insights into how developer behavior changes after receiving privileges. It could be a
problem if a developer’s privileges are revoked, but we assume that privileges are revoked
either because a developer becomes inactive or because they do something that the other
privileged developers do not appreciate. In the first case, this would not bias the results,
since we are only analyzing data from the time the developers were active, and in the latter
case, we assume that it would not bias the results either, since the developer would most
likely stop working on the project if that happened.

We use only quantitative measures (i.e., the number of commits and the number of triggered
issue events overall and for each event separately) for our analyses, and not qualitative ones.
This might not capture the full complexity of developer behavior. Two developers might
have the same number of commits and issue events, but the importance and impact of
their contributions might differ greatly, because not all issue events are of equal importance
to the project. Similarly, not all commits have the same importance, since some commits
might contain large feature implementations, while others might contain only minor issues.
Nevertheless, our approach remains informative for understanding developer behavior as it
provides valuable insights that can serve as a starting point for further analysis.

When using sliding windows, there are two time windows in which a developer receives
privileges, as the windows overlap. We chose to ignore both windows for all of our analyses
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because there is mixed data in these windows, some of which occurred before and some
after the privileges were granted. The full explanation of why we decided not to use these
time windows can be found in Section 3.3. The alternative would be to split all data based
on the date the privileges were received, which would allow us to analyze all time windows,
since there would be no mixing of before and after privileges within a time window. This
would have to be done on a per-developer basis, forcing us to build new networks for each
developer, which would significantly increase the computational complexity of the analysis.

There are some cases where a developer’s first activity occurs within the time window
of privilege granting, for example, because they know the project owner and are granted
privileges immediately. These developers then only have data (i.e., commits, issue events,
and centrality values) for the time after they received privileges, since we ignore the time
windows during which privileges were granted for our analysis. Other developers may
have triggered a privileged event and proceeded to work on the project, but then stopped
working within the window of privilege receipt. Since we do not use data from the exact time
windows in which privileges were granted, we do not have data (i.e., commits, issue events,
and centrality values) from after the privileges were granted for these developers. One
possible method would be to ignore these developers. However, we decided not to ignore
them, but to interpret this inactivity by putting zeros into the means we calculated. In this
way, we can use them for RQ2 and RQ3 and compare their (possibly non-existent) behavior
and centrality before receiving the privileges to their (possibly non-existent) behavior and
centrality after receiving the privileges. The reason for our decision is that this type of
behavior, where developers either stop working directly after receiving privileges or are
granted privileges within the time window of their first activity, can provide valuable
insights into the behavior of privileged developers and how their behavior changes after
receiving privileges. However, we also decided to run the analyses without these developers
as a sanity check.
For RQ2, 20 issue events show different results in 1 project each, while 6 issue events show
different results in 2 projects each. base_ref_force_pushed shows different results in 3
projects. All but 2 of these 27 issue events show significant results in the general analysis,
and insignificant results in the sanity check.
In the sanity check of RQ3, the difference between the centralities in the cochange networks
becomes insignificant for Atom, as well as the difference between the centralities in the
issue networks for Electron.
Nevertheless, as explained above, we are interested in the behavior change of all developers,
including those who receive privileges directly or who stop working immediately after
receiving privileges.

We also decided to compare all but the first time window of a developer from before
privileges to all time windows after privileges for RQ2 and RQ3. Our analysis focuses only
on time windows during which a developer was active, inactive time windows are ignored,
and the analysis ends with the last time window in which a developer was active. However,
it could be that developers slowly change their working behavior towards the end of their
work time, or that they start into the project without working much and become really
engaged at some point. These scenarios might bias our results, so we decided to provide a
sanity check in the form of analyzing only the last time window of each developer before
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receiving privileges to the first time window after receiving privileges for RQ2 and RQ3. For
this check, we use all privileged developers, as we do in the regular analysis, i.e., including
those who only have values for before or after the privileges.
For RQ2, the results regarding the number of commits do not differ from the regular
analysis. The result for the number of triggered issue events differs only in Vue, where we
observe significant differences in our sanity check.
The results of demilestoned and milestoned are equivalent to the results of the regular
analysis. For all other events (except for those that never occur), we observe some differences
between the results of the sanity check and those from the regular analysis. 9 events show a
different result in exactly 1 project each, where the result changes from significant (in the
regular analysis) to insignificant (in the sanity check). 15 events showed different results
in 2 projects each, with the significance changing from insignificant to significant 4 times.
The remaining 14 events showed different results in 3 to 4 projects each, and the results
again changed from insignificant to significant 4 times. When using the results of the sanity
check, connected, converted_note_to_issue, convert_to_draft, pinned, transferred, and
unpinned are now insignificant for all projects. However, these variations are not unexpected,
as we are only comparing two time windows of 6 months each, and it is quite possible that
developers do not contribute equally over the entire period, and therefore some events do
not occur in every time window.
For RQ3, the sanity check finds different results in the eigenvector centrality in cochange
networks for Keras and Electron. These projects show insignificant results in our regular
analysis, and significant results in the sanity check. However, the effect size in the sanity
check is −0.6 < R < −0.4, which indicates that the centrality values from after receiving
privileges are greater than those from before, but the effect is not extremely large. For
the resulting projects, we find no differences in eigenvector centrality between the sanity
check and the regular analysis. For eigenvector centrality in issue networks, Vue has
significant differences (i.e., p < 0.05) when performing the sanity check, with an effect size
of R ≈ −0.669. These differences were also insignificant in our regular analysis.

4.4.2 External Validity

The external validity of our project might be compromised since we only use data from
GitHub projects and not from, e.g., GitLab

2 projects. However, this is not a threat, as these
platforms are almost identical and therefore should not bias our results.

Furthermore, it might be possible that the choice of projects used does not allow generaliza-
tion. We avoid this by using a variety of projects of different sizes, with different numbers
of (privileged) developers, and with different application domains for our analyses, which
allows us to suggest that our results are transferable to other projects.

2 https://about.gitlab.com

https://about.gitlab.com


5
R E L AT E D W O R K

In this chapter, we provide an overview of previous work related to this topic.

5.1 essential characteristics of oss maintainers

Dias et al. [15] provided research on several characteristics that are essential for the career
success of OSS maintainers. The results show that there are indeed some important attributes,
such as domain experience, technical excellence, motivation, diligence, and responsibility.
Maintainers should “know the application domain, be aware of the technologies of the
project, and have the experience to implement a quality process to perform code review and
follow project quality standards” [15].
This is consistent with our findings that privileged developers are highly engaged in the
project and take on more responsibility, as evidenced by performing administrative tasks
such as labeling issues, and by commenting on many issues, indicating their deep and
extensive knowledge of the project.
Even if they identified important attributes that a maintainer should have to be a great
maintainer, they did not provide a solution for finding possible additional maintainers.
Knowing the required traits is obviously helpful, but we still need to find clear metrics for
identifying suitable candidates.

5.2 hierarchy in oss projects

Joblin et al. [28] showed that core developers hold higher positions in the hierarchy and
peripheral developers hold lower ones. This goes along with the fact that the hierarchical
part of OSS projects is occupied by the most active developers of the project and only
rarely with other developers, as shown by Joblin et al. [30]. They stated the hypothesis
that developers “who move up in the hierarchy tend to take more coordination tasks” [30],
and also found that there is a correlation between the time a developer is involved in the
project and their hierarchical position. In addition, developers in the hierarchical part are
performing most of the file edits of the project. This approach confirms our assumption that
developer behavior is crucial for getting a higher position in the hierarchy, which results in
more responsibilities.
The hypothesis that developers who move up in the hierarchy take on more coordination
tasks can be interpreted as being involved in issues and generally communicating with
many other developers. In our work, this would be indicated by a higher centrality in
issue networks, since these are constructed from communication data and developers are
connected when they have contributed to the same issue. Since the eigenvector centrality
of developers in issue networks does indeed increase after receiving privileges, our results
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are consistent with their hypothesis. Developers who receive privileges take on more
coordination tasks, suggesting that moving up in the hierarchy is equivalent to receiving
privileges.
However, they also do not provide any method for identifying potential developers who
could be granted privileges.

5.3 developer roles and migration between roles

As described in Section 2.2, Ye and Kishida [50] found that developers can have different
roles, being project leader, core member, active developer, peripheral developer, bug fixer, bug reporter,
reader, and passive user. They state that the roles of OSS developers might constantly change
depending on the efforts of developers. Roles are not preassigned but evolve dynamically:
New members migrate from passive users to readers, and as they learn more about the
system, start fixing bugs, and add new functionality, they become peripheral developers.
As their developed programs are made publicly available, the community recognizes them.
Depending on the wish and efforts of developers, as the recognition gets higher, they are
trusted with more challenging tasks and finally, they can enter the “highly selected “inner
circle” of core members” [50].
Terceiro et al. [44] found that the processes of migration between roles vary between
different OSS projects. But in general, the main aspect of achieving central roles is merit-
based. Developers who provide continuous and valuable contributions can become leaders.
They also found that core developers contribute code of different complexity than peripheral
developers.
Both studies are consistent with our findings that future privileged developers are more
active and contribute significantly more. However, neither Ye and Kishida [50] nor Terceiro
et al. [44] stated exactly how to find new core developers. They both only stated that
developers who perform more challenging tasks and who contribute valuable code might
join the core team. This still does not allow us to identify behavioral differences between
privileged and unprivileged developers to help find suitable candidates to receive privileges.

5.4 automatic identification of core developers

The work of Bock et al. [4] addresses the automatic identification of core developers and
maintainers. They used the permissions that GitHub grants to users to classify GitHub issue
events into 3 categories: common, extended, and privileged events (see Section 2.3). Common
events can be triggered by anyone, extended events require, at least, triage permission, and
privileged events require, at least, write permission.
They also distinguished between core and peripheral developers, and assigned developers to
these groups based on the events they triggered. Any developer who triggered a privileged
event was identified as a core developer, since they assumed that an event that requires, at
least, write permission, is either critical for the maintenance of the project or for decision
making, both of which distinguish a core developer.
We apply their classification of developers into core and peripheral developers and their
mapping of GitHub’s user permissions to these developer roles, shown in Table 2.1. But
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this method still does not solve our problem as it “cannot be used to identify potential
candidates for future core developers before they get any privileges in the project” [4].

5.5 behavior of elite developers

The work of Wang et al. [45] focused on the behavior of elite developers. They defined
elite developers as developers with administrative privileges, i.e., write permission. This
definition is very similar to the definition of privileged developers proposed by Bock et al.
[4], which we adopt for our research, as they define them by holding write, maintain, or
admin permissions.
According to the findings of Wang et al. [45], the work of elite developers includes more
than just committing source code. They are active in “moderating discussions of an unfixed
issue, documenting changes, organizing the project, and communicating with other contrib-
utors” [45]. To provide better insight, they categorized the GitHub events into high-level
categories: communicative, organizational, supportive, and typical.
The key findings from their analyses were that elite developers participate in a variety of
activities, with technical contributions representing only a small fraction. In addition, as
the project grows, elite developers focus their efforts on supportive and communicative
activities, resulting in a decreasing number of commits. Even as their focus shifts, the
majority of commits are still contributed by elite developers. Overall, elite developers are
the authors of the majority of events, and the number of activities performed is much higher
in all categories compared to non-elite developers.
We also observe that, at least in large projects, privileged (i.e., elite) developers increasingly
comment on issues and communicate with other contributors. However, we find that the
number of commits made by developers after they receive privileges (i.e., after they become
elite) does not decrease in every project, only in smaller ones. In large projects, the number
of commits per developer increases after they receive privileges. Since the number of issue
events per developer in these projects however also increases after receiving privileges, the
higher number of commits does not completely contradict their hypothesis. Developers
might actually shift their focus to support and communication activities, which leads to a
higher number of issue events. But at the same time, they can still contribute more commits
than before receiving privileges, perhaps just not in the same proportion as the increase in
the number of issue events.
Although the work of Wang et al. [45] found interesting and meaningful comparisons, they
did not analyze whether the behavior of elite developers differs from before they became
elite, nor how to identify new elite developers.





6
C O N C L U D I N G R E M A R K S

In this final chapter, we summarize our work and conclude the findings. Afterward, we
provide some ideas for future work.

6.1 conclusion

We aim at finding measures to identify developers who have the potential to be granted
privileges by comparing the behavior of privileged and unprivileged developers in OSS
projects. To achieve this goal, we extracted the issue and commit data from 9 OSS projects
hosted on GitHub. We divided these data into sliding time windows of 6 months to allow
for more precise analyses by using equally large time periods and balancing out very local
contribution behavior. From each time window of data, we constructed an issue network
and a cochange network using the R library Coronet. We then examined the GitHub data
and the networks to understand how developers with privileges behave before they receive
privileges, how this differs from the behavior of developers without privileges, and how the
behavior of developers changes after they receive privileges.

First, we analyzed how the behavior of privileged developers before receiving privileges
differs from the behavior of unprivileged developers. As expected, future privileged devel-
opers are significantly more active than unprivileged developers. The former have a higher
number of commits and overall triggered issue events. This observation also applies when
considering each issue event individually, with almost every event being triggered more
frequently. The highest difference between both groups of developers is visible in issue
events that are correlated with communication. commented, mentioned, and subscribed

reveal the largest differences between future privileged and unprivileged developers.

Second, we analyzed if and how the behavior of developers changes after they receive
privileges. We did not find a consistent pattern of behavior change across all the selected
projects. However, we did find that there is a relationship between the size of a project (i.e.,
#privileged developers, #commits, #issues) and significant changes in developer behavior.
In larger projects, there is a significant increase in developer activity after they receive
privileges. Overall, they trigger more common and extended events, and they also trigger
privileged events, although not to the expected extent. Conversely, in smaller projects, there
are no consistent significant differences in behavior before and after receiving privileges.

Finally, we analyzed whether the average eigenvector centrality of each developer in the
issue and cochange networks changes after receiving privileges. To determine this, we
obtained the eigenvector centrality metric from the constructed networks. We did not find
consistent results across all projects, but we again found a relationship between the size
of a project and significant changes in the eigenvector centrality of developers. However,
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this relationship does not depend on the number of privileged developers, but only on the
number of commits for the centrality in cochange networks, and on the number of issues for
the centrality in issue networks. We found that, in large projects, the eigenvector centrality
of developers in both types of networks increases significantly after receiving privileges. In
smaller projects, however, we did not find any significant differences.

In summary, we observe that future privileged developers are significantly more active than
developers who are never granted privileges. This increased activity is apparent in both the
average and total number of commits and issue events, as well as in their more frequent
triggering of individual issue events.
This allows us to suggest that developers with similar behavior, that is, developers with a
significantly higher number of commits and a significantly higher number of triggered issue
events, are suitable candidates for receiving privileges in OSS projects. These candidates
are characterized in particular by the fact that they increasingly comment on issues, are
mentioned by other developers, and subscribe to issues.
We also observe that, at least in large projects, both the activity and the eigenvector centrality
of developers increase after they receive privileges. They not only make use of their privileges
but also trigger significantly more common and extended events. Therefore, we conclude
that our insights on the behavioral characteristics of privileged developers are valuable and
can be utilized to identify possible candidates to receive privileges.

6.2 future work

While this work is a first step toward identifying suitable developers to be granted privileges
in OSS projects, there are several ways to improve it.

Our analyses focused on quantitative measures such as the number of triggered issue events,
commits, and specific events triggered. One possible improvement to ensure more accurate
suggestions might be to use not only quantitative measures but also qualitative ones, to
gain more insight into how the contributions of privileged developers before they received
privileges differ from those of developers who do not receive privileges. It would also be
useful to find a precise threshold to define when a developer’s contributions are considered
“significantly higher” compared to the contributions of other developers. While we have
identified the need for higher contributions, the exact determination of the point at which a
contribution is “significant” remains unclear.

Although we analyzed 9 OSS projects of different sizes and application domains, the sample
set could be expanded to gain a more comprehensive understanding and more reliable
insights into the differences between developers. This expansion could also validate the
thresholds we established for centrality increases. Furthermore, it would be interesting to
know why exactly the threshold is 12 000 commits for cochange centrality and 21 000 issues
for issue centrality.

A further step might also involve the implementation of algorithms based on our approach
or improved methods. These algorithms could then be integrated into GitHub to automate
the granting of privileges and the identification of suitable candidates.



A
A P P E N D I X

This chapter presents the statistical test results for all research questions in tables.

a.1 results for rq1

Table A.1 to Table A.9 present the results of the one-tailed Mann-Whitney U tests for
RQ1, comparing future privileged developers to unprivileged developers with regard to
each issue event and the number of commits and issue events. The Mann-Whitney U test
evaluates for each variable whether there is a significant difference in the distributions of
the two groups, focusing on whether the distribution of values in the first group (future
privileged developers) tends to be higher than that of the second group (unprivileged
developers). The U-statistic represents the test statistic, while the corresponding p-value
indicates whether the alternative hypothesis is accepted (p < 0.05) or not. Additionally,
Cliff’s Delta provides the corresponding effect size.
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Table A.1: RQ1 Angular

Variable U p-value Cliff’s Delta

Counted commits 894 681.0 0.0 0.707

Counted events 1 003 362.5 0.0 0.915

Mean of counted commits 893 801.0 0.0 0.705

Mean of counted events 977 539.5 0.0 0.865

assigned 785 735.0 0.0 0.499

demilestoned 569 541.0 0.0 0.087

labeled 853 953.5 0.0 0.629

marked_as_duplicate 546 819.0 0.0 0.043

milestoned 626 488.0 0.0 0.195

resolution_updated 524 078.0 1.0 0.0

type_updated 535 448.5 0.0 0.022

unassigned 659 076.0 0.0 0.258

unlabeled 762 951.0 0.0 0.456

unmarked_as_duplicate 524 078.0 1.0 0.0

add_link 925 247.0 0.0 0.765

commit_added 918 012.5 0.0 0.752

referenced 638 760.5 0.0 0.219

automatic_base_change_failed 524 078.0 1.0 0.0

automatic_base_change_succeeded 524 078.0 1.0 0.0

base_ref_changed 546 655.5 0.0 0.043

base_ref_force_pushed 524 055.0 0.518 0.0

comment_deleted 524 078.0 1.0 0.0

commented 993 365.5 0.0 0.895

committed 524 078.0 1.0 0.0

connected 524 078.0 1.0 0.0

convert_to_draft 523 917.0 0.547 0.0

created 942 062.0 0.0 0.798

cross_referenced 524 078.0 1.0 0.0

disconnected 524 078.0 1.0 0.0

head_ref_deleted 755 070.0 0.0 0.441

head_ref_force_pushed 902 259.0 0.0 0.722

head_ref_restored 580 496.5 0.0 0.108

mentioned 931 043.0 0.0 0.777

ready_for_review 569 084.5 0.0 0.086

referenced_by 934 827.0 0.0 0.784

renamed 767 935.5 0.0 0.465

review_request_removed 580 817.0 0.0 0.108

review_requested 692 325.5 0.0 0.321

reviewed 769 452.0 0.0 0.468

state_updated 845 265.5 0.0 0.613

subscribed 859 726.0 0.0 0.64

unsubscribed 543 985.5 0.0 0.038
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Table A.2: RQ1 Atom

Variable U p-value Cliff’s Delta

Counted commits 553 166.5 0.0 0.597

Counted events 683 891.0 0.0 0.975

Mean of counted commits 553 097.5 0.0 0.597

Mean of counted events 667 024.5 0.0 0.926

assigned 409 222.0 0.0 0.182

demilestoned 346 351.5 1.0 0.0

labeled 461 400.5 0.0 0.332

marked_as_duplicate 356 847.0 0.0 0.03

milestoned 346 351.5 1.0 0.0

resolution_updated 409 237.0 0.0 0.182

type_updated 440 620.5 0.0 0.272

unassigned 367 263.0 0.0 0.06

unlabeled 440 646.5 0.0 0.272

unmarked_as_duplicate 346 351.5 1.0 0.0

add_link 525 192.0 0.0 0.516

commit_added 483 492.0 0.0 0.396

referenced 427 945.5 0.0 0.236

automatic_base_change_failed 346 351.5 1.0 0.0

automatic_base_change_succeeded 346 351.5 1.0 0.0

base_ref_changed 346 302.0 0.528 0.0

base_ref_force_pushed 346 351.5 1.0 0.0

comment_deleted 346 335.0 0.516 0.0

commented 593 693.0 0.0 0.714

committed 346 351.5 1.0 0.0

connected 346 351.5 1.0 0.0

convert_to_draft 346 302.0 0.528 0.0

created 552 850.0 0.0 0.596

cross_referenced 346 351.5 1.0 0.0

disconnected 346 351.5 1.0 0.0

head_ref_deleted 437 935.0 0.0 0.264

head_ref_force_pushed 418 646.5 0.0 0.209

head_ref_restored 346 153.5 0.555 −0.001

mentioned 580 598.5 0.0 0.676

ready_for_review 346 269.0 0.536 0.0

referenced_by 541 574.0 0.0 0.564

renamed 470 805.5 0.0 0.359

review_request_removed 346 351.5 1.0 0.0

review_requested 367 244.0 0.0 0.06

reviewed 397 187.0 0.0 0.147

state_updated 500 080.0 0.0 0.444

subscribed 563 098.0 0.0 0.626

unsubscribed 343 926.0 0.685 −0.007
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Table A.3: RQ1 Bootstrap

Variable U p-value Cliff’s Delta

Counted commits 320 774.5 0.0 0.73

Counted events 368 361.0 0.0 0.987

Mean of counted commits 320 102.5 0.0 0.727

Mean of counted events 316 703.0 0.0 0.708

assigned 185 362.5 0.51 0.0

demilestoned 185 370.0 1.0 0.0

labeled 196 922.5 0.0 0.062

marked_as_duplicate 185 370.0 1.0 0.0

milestoned 185 370.0 1.0 0.0

resolution_updated 185 370.0 1.0 0.0

type_updated 185 370.0 1.0 0.0

unassigned 185 362.5 0.51 0.0

unlabeled 185 370.0 1.0 0.0

unmarked_as_duplicate 185 370.0 1.0 0.0

add_link 351 284.0 0.0 0.895

commit_added 361 000.0 0.0 0.947

referenced 218 893.5 0.0 0.181

automatic_base_change_failed 185 370.0 1.0 0.0

automatic_base_change_succeeded 185 370.0 1.0 0.0

base_ref_changed 185 257.5 0.538 −0.001

base_ref_force_pushed 185 370.0 1.0 0.0

comment_deleted 185 370.0 1.0 0.0

commented 341 550.5 0.0 0.843

committed 185 370.0 1.0 0.0

connected 185 370.0 1.0 0.0

convert_to_draft 185 325.0 0.524 0.0

created 348 815.5 0.0 0.882

cross_referenced 185 370.0 1.0 0.0

disconnected 185 370.0 1.0 0.0

head_ref_deleted 319 009.5 0.0 0.721

head_ref_force_pushed 233 831.0 0.0 0.261

head_ref_restored 234 386.5 0.0 0.264

mentioned 337 652.0 0.0 0.822

ready_for_review 209 975.5 0.0 0.133

referenced_by 338 246.0 0.0 0.825

renamed 278 483.0 0.0 0.502

review_request_removed 185 370.0 1.0 0.0

review_requested 209 946.0 0.0 0.133

reviewed 258 431.5 0.0 0.394

state_updated 315 388.5 0.0 0.701

subscribed 326 054.0 0.0 0.759

unsubscribed 181 912.5 0.703 −0.019
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Table A.4: RQ1 Deno

Variable U p-value Cliff’s Delta

Counted commits 12 163.0 0.0 0.987

Counted events 12 162.5 0.0 0.987

Mean of counted commits 12 148.0 0.0 0.985

Mean of counted events 12 136.5 0.0 0.983

assigned 6120.0 1.0 0.0

demilestoned 6120.0 1.0 0.0

labeled 6120.0 1.0 0.0

marked_as_duplicate 6120.0 1.0 0.0

milestoned 6120.0 1.0 0.0

resolution_updated 6120.0 1.0 0.0

type_updated 6120.0 1.0 0.0

unassigned 6120.0 1.0 0.0

unlabeled 6120.0 1.0 0.0

unmarked_as_duplicate 6120.0 1.0 0.0

add_link 11 935.5 0.0 0.95

commit_added 12 019.5 0.0 0.964

referenced 6026.0 0.599 −0.015

automatic_base_change_failed 6120.0 1.0 0.0

automatic_base_change_succeeded 6120.0 1.0 0.0

base_ref_changed 6112.0 0.531 −0.001

base_ref_force_pushed 6120.0 1.0 0.0

comment_deleted 6120.0 1.0 0.0

commented 12 120.0 0.0 0.98

committed 6120.0 1.0 0.0

connected 6120.0 1.0 0.0

convert_to_draft 9099.0 0.0 0.487

created 12 112.0 0.0 0.979

cross_referenced 6120.0 1.0 0.0

disconnected 6120.0 1.0 0.0

head_ref_deleted 10 558.5 0.0 0.725

head_ref_force_pushed 8995.0 0.0 0.47

head_ref_restored 6098.0 0.549 −0.004

mentioned 11 271.0 0.0 0.842

ready_for_review 10 631.5 0.0 0.737

referenced_by 12 108.5 0.0 0.979

renamed 10 530.0 0.0 0.721

review_request_removed 6116.0 0.523 −0.001

review_requested 9101.0 0.0 0.487

reviewed 12 163.5 0.0 0.988

state_updated 10 405.5 0.0 0.7

subscribed 11 051.0 0.001 0.806

unsubscribed 6004.0 0.61 −0.019
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Table A.5: RQ1 Electron

Variable U p-value Cliff’s Delta

Counted commits 393 305.5 0.0 0.69

Counted events 460 287.0 0.0 0.978

Mean of counted commits 393 002.0 0.0 0.689

Mean of counted events 444 140.5 0.0 0.909

assigned 309 974.5 0.0 0.332

demilestoned 232 665.0 1.0 0.0

labeled 363 982.0 0.0 0.564

marked_as_duplicate 240 361.5 0.0 0.033

milestoned 232 665.0 1.0 0.0

resolution_updated 263 659.0 0.0 0.133

type_updated 294 525.5 0.0 0.266

unassigned 271 244.0 0.0 0.166

unlabeled 309 989.0 0.0 0.332

unmarked_as_duplicate 232 665.0 1.0 0.0

add_link 412 169.0 0.0 0.772

commit_added 395 274.0 0.0 0.699

referenced 263 843.0 0.0 0.134

automatic_base_change_failed 232 665.0 1.0 0.0

automatic_base_change_succeeded 232 665.0 1.0 0.0

base_ref_changed 247 967.0 0.0 0.066

base_ref_force_pushed 248 176.0 0.0 0.067

comment_deleted 232 665.0 1.0 0.0

commented 417 039.5 0.0 0.792

committed 232 665.0 1.0 0.0

connected 232 665.0 1.0 0.0

convert_to_draft 232 575.0 0.543 0.0

created 394 232.5 0.0 0.694

cross_referenced 232 665.0 1.0 0.0

disconnected 232 665.0 1.0 0.0

head_ref_deleted 337 251.5 0.0 0.45

head_ref_force_pushed 323 886.0 0.0 0.392

head_ref_restored 240 223.0 0.0 0.032

mentioned 408 935.5 0.0 0.758

ready_for_review 240 084.0 0.0 0.032

referenced_by 417 791.5 0.0 0.796

renamed 343 947.5 0.0 0.478

review_request_removed 263 638.0 0.0 0.133

review_requested 314 111.5 0.0 0.35

reviewed 339 151.0 0.0 0.458

state_updated 403 256.5 0.0 0.733

subscribed 388 582.5 0.0 0.67

unsubscribed 231 855.0 0.627 −0.003
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Table A.6: RQ1 Keras

Variable U p-value Cliff’s Delta

Counted commits 261 974.0 0.0 0.802

Counted events 274 958.0 0.0 0.891

Mean of counted commits 261 424.5 0.0 0.798

Mean of counted events 271 745.5 0.0 0.869

assigned 151 645.0 0.0 0.043

demilestoned 145 394.5 1.0 0.0

labeled 145 325.5 0.542 0.0

marked_as_duplicate 145 371.5 0.525 0.0

milestoned 145 394.5 1.0 0.0

resolution_updated 145 394.5 1.0 0.0

type_updated 145 394.5 1.0 0.0

unassigned 151 646.0 0.0 0.043

unlabeled 145 337.0 0.538 0.0

unmarked_as_duplicate 145 394.5 1.0 0.0

add_link 224 559.5 0.0 0.544

commit_added 256 355.5 0.0 0.763

referenced 150 505.0 0.03 0.035

automatic_base_change_failed 145 394.5 1.0 0.0

automatic_base_change_succeeded 145 394.5 1.0 0.0

base_ref_changed 145 337.0 0.538 0.0

base_ref_force_pushed 145 394.5 1.0 0.0

comment_deleted 145 383.0 0.518 0.0

commented 243 417.0 0.0 0.674

committed 145 394.5 1.0 0.0

connected 145 394.5 1.0 0.0

convert_to_draft 145 394.5 1.0 0.0

created 249 733.0 0.0 0.718

cross_referenced 145 394.5 1.0 0.0

disconnected 145 394.5 1.0 0.0

head_ref_deleted 212 796.0 0.0 0.464

head_ref_force_pushed 175 150.5 0.0 0.205

head_ref_restored 164 159.5 0.0 0.129

mentioned 225 686.5 0.0 0.552

ready_for_review 145 360.0 0.53 0.0

referenced_by 223 184.5 0.0 0.535

renamed 205 932.0 0.0 0.416

review_request_removed 145 394.5 1.0 0.0

review_requested 151 681.0 0.0 0.043

reviewed 194 761.5 0.0 0.34

state_updated 211 185.5 0.0 0.452

subscribed 210 555.0 0.0 0.448

unsubscribed 151 584.0 0.0 0.043
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Table A.7: RQ1 OpenSSL

Variable U p-value Cliff’s Delta

Counted commits 59 158.5 0.0 0.933

Counted events 60 858.0 0.0 0.989

Mean of counted commits 58 651.0 0.0 0.917

Mean of counted events 60 504.5 0.0 0.977

assigned 47 562.5 0.0 0.554

demilestoned 42 494.5 0.0 0.389

labeled 46 322.0 0.0 0.514

marked_as_duplicate 32 300.0 0.0 0.056

milestoned 45 881.5 0.0 0.499

resolution_updated 30 600.0 1.0 0.0

type_updated 30 945.5 0.406 0.011

unassigned 35 692.0 0.0 0.166

unlabeled 47 565.0 0.0 0.554

unmarked_as_duplicate 30 600.0 1.0 0.0

add_link 58 035.5 0.0 0.897

commit_added 58 467.5 0.0 0.911

referenced 31 580.0 0.301 0.032

automatic_base_change_failed 30 600.0 1.0 0.0

automatic_base_change_succeeded 30 600.0 1.0 0.0

base_ref_changed 30 546.0 0.571 −0.002

base_ref_force_pushed 30 600.0 1.0 0.0

comment_deleted 32 300.0 0.0 0.056

commented 57 714.0 0.0 0.886

committed 30 600.0 1.0 0.0

connected 30 600.0 1.0 0.0

convert_to_draft 30 600.0 1.0 0.0

created 57 031.5 0.0 0.864

cross_referenced 30 600.0 1.0 0.0

disconnected 30 600.0 1.0 0.0

head_ref_deleted 50 081.5 0.0 0.637

head_ref_force_pushed 56 871.0 0.0 0.859

head_ref_restored 33 928.0 0.0 0.109

mentioned 59 320.5 0.0 0.939

ready_for_review 30 573.0 0.551 −0.001

referenced_by 56 038.5 0.0 0.831

renamed 54 175.5 0.0 0.77

review_request_removed 32 291.5 0.0 0.055

review_requested 42 357.5 0.0 0.384

reviewed 53 999.0 0.0 0.765

state_updated 56 820.0 0.0 0.857

subscribed 55 540.5 0.0 0.815

unsubscribed 32 233.5 0.0 0.053
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Table A.8: RQ1 VSCode

Variable U p-value Cliff’s Delta

Counted commits 1 789 967.5 0.0 0.703

Counted events 2 091 016.0 0.0 0.989

Mean of counted commits 1 789 095.0 0.0 0.702

Mean of counted events 2 026 100.5 0.0 0.927

assigned 1 491 719.5 0.0 0.419

demilestoned 1 186 879.5 0.0 0.129

labeled 1 423 750.0 0.0 0.354

marked_as_duplicate 1 085 185.0 0.0 0.032

milestoned 1 322 344.0 0.0 0.258

resolution_updated 1 220 770.0 0.0 0.161

type_updated 1 254 631.0 0.0 0.193

unassigned 1 423 327.5 0.0 0.354

unlabeled 1 356 355.0 0.0 0.29

unmarked_as_duplicate 1 051 287.5 1.0 0.0

add_link 1 485 403.0 0.0 0.413

commit_added 1 674 909.0 0.0 0.593

referenced 1 248 681.0 0.0 0.188

automatic_base_change_failed 1 051 287.5 1.0 0.0

automatic_base_change_succeeded 1 051 287.5 1.0 0.0

base_ref_changed 1 051 256.5 0.512 0.0

base_ref_force_pushed 1 051 287.5 1.0 0.0

comment_deleted 1 051 287.5 1.0 0.0

commented 1 867 159.0 0.0 0.776

committed 1 051 287.5 1.0 0.0

connected 1 051 287.5 1.0 0.0

convert_to_draft 1 051 163.5 0.524 0.0

created 1 756 657.5 0.0 0.671

cross_referenced 1 051 287.5 1.0 0.0

disconnected 1 051 287.5 1.0 0.0

head_ref_deleted 1 246 971.5 0.0 0.186

head_ref_force_pushed 1 216 049.5 0.0 0.157

head_ref_restored 1 084 786.5 0.0 0.032

mentioned 1 870 734.5 0.0 0.779

ready_for_review 1 050 636.5 0.555 −0.001

referenced_by 1 692 752.0 0.0 0.61

renamed 1 476 573.5 0.0 0.405

review_request_removed 1 051 256.5 0.512 0.0

review_requested 1 151 993.5 0.0 0.096

reviewed 1 249 392.0 0.0 0.188

state_updated 1 545 889.0 0.0 0.47

subscribed 1 797 178.0 0.0 0.71

unsubscribed 1 417 967.5 0.0 0.349
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Table A.9: RQ1 Vue

Variable U p-value Cliff’s Delta

Counted commits 52 084.5 0.0 0.703

Counted events 60 216.5 0.0 0.969

Mean of counted commits 51 912.0 0.0 0.698

Mean of counted events 59 397.0 0.0 0.942

assigned 48 037.5 0.0 0.571

demilestoned 30 579.5 1.0 0.0

labeled 52 406.0 0.0 0.714

marked_as_duplicate 39 314.0 0.0 0.286

milestoned 30 579.5 1.0 0.0

resolution_updated 34 945.0 0.0 0.143

type_updated 52 401.0 0.0 0.714

unassigned 39 292.0 0.0 0.285

unlabeled 43 668.0 0.0 0.428

unmarked_as_duplicate 30 579.5 1.0 0.0

add_link 51 445.0 0.0 0.682

commit_added 51 512.0 0.0 0.685

referenced 47 679.0 0.0 0.559

automatic_base_change_failed 30 579.5 1.0 0.0

automatic_base_change_succeeded 30 579.5 1.0 0.0

base_ref_changed 30 576.0 0.513 0.0

base_ref_force_pushed 30 579.5 1.0 0.0

comment_deleted 30 579.5 1.0 0.0

commented 58 308.5 0.0 0.907

committed 30 579.5 1.0 0.0

connected 30 579.5 1.0 0.0

convert_to_draft 30 572.5 0.517 0.0

created 55 076.0 0.0 0.801

cross_referenced 30 579.5 1.0 0.0

disconnected 30 579.5 1.0 0.0

head_ref_deleted 43 395.5 0.0 0.419

head_ref_force_pushed 52 251.0 0.0 0.709

head_ref_restored 30 558.5 0.528 −0.001

mentioned 52 950.5 0.0 0.732

ready_for_review 30 565.5 0.523 0.0

referenced_by 51 475.0 0.0 0.683

renamed 50 447.0 0.0 0.65

review_request_removed 30 576.0 0.513 0.0

review_requested 39 254.5 0.0 0.284

reviewed 52 187.5 0.0 0.707

state_updated 51 821.0 0.0 0.695

subscribed 50 673.0 0.0 0.657

unsubscribed 30 471.0 0.563 −0.004
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a.2 results for rq2

Table A.10 to Table A.27 present the results of the one-tailed Wilcoxon signed rank tests for
RQ2, comparing the behavior of privileged developers before and after receiving privileges
with regard to each issue event and the number of commits and issue events. The Wilcoxon
signed rank test evaluates for each variable whether there is a significant difference in
the distributions of the two groups, focusing on whether the distribution of values in
the first group (privileged developers before receiving privileges) tends to be less than
that of the second group (privileged developers after receiving privileges). The W-statistic
represents the test statistic, while the corresponding p-value indicates whether the alternative
hypothesis is accepted (p < 0.05) or not. Additionally, R provides the corresponding effect
size.
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Table A.10: RQ2 Angular (common and extended events)

Variable W p-value R

Counted commits 188.0 0.0 −0.685

Counted events 139.0 0.0 −0.769

Mean of counted commits 555.0 0.004 −0.342

Mean of counted events 768.0 0.003 −0.332

assigned 180.0 0.0 −0.709

demilestoned 98.0 0.0 −0.673

labeled 105.0 0.0 −0.781

marked_as_duplicate 0.0 0.001 −0.883

milestoned 123.5 0.0 −0.694

resolution_updated 0.0 0.5 −1.0

type_updated 4.0 0.104 −0.555

unassigned 160.5 0.0 −0.689

unlabeled 143.5 0.0 −0.746

unmarked_as_duplicate 0.0 1.0 0.0

add_link 186.0 0.0 −0.714

commit_added 127.0 0.0 −0.764

referenced 40.0 0.0 −0.755

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 1.0 0.0

base_ref_changed 16.0 0.001 −0.714

base_ref_force_pushed 0.0 0.011 −0.896

comment_deleted 0.0 0.5 −1.0

commented 169.5 0.0 −0.748

committed 0.0 1.0 0.0

connected 0.0 0.018 −0.898

convert_to_draft 0.0 0.001 −0.882

created 226.0 0.0 −0.696

cross_referenced 0.0 1.0 0.0

disconnected 0.0 0.5 −1.0

head_ref_deleted 196.0 0.0 −0.602

head_ref_force_pushed 162.5 0.0 −0.729

head_ref_restored 41.5 0.009 −0.53

mentioned 192.0 0.0 −0.723

ready_for_review 0.0 0.0 −0.873

referenced_by 233.0 0.0 −0.686

renamed 209.5 0.0 −0.641

review_request_removed 0.0 0.0 −0.871

review_requested 35.0 0.0 −0.823

reviewed 25.0 0.0 −0.837

state_updated 172.5 0.0 −0.738

subscribed 196.0 0.0 −0.72

unsubscribed 5.5 0.0 −0.838
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Table A.11: RQ2 Angular (privileged events)

Variable W p-value R

added_to_project 0.0 0.0 −0.877

converted_note_to_issue 0.0 0.018 −0.898

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 0.5 −1.0

merged 0.0 0.0 −0.873

moved_columns_in_project 0.0 0.0 −0.874

pinned 0.0 0.018 −0.902

removed_from_project 0.0 0.001 −0.883

review_dismissed 0.0 0.0 −0.876

transferred 0.0 0.0 −0.878

unlocked 0.0 0.5 −1.0

unpinned 0.0 0.007 −0.956

user_blocked 0.0 1.0 0.0
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Table A.12: RQ2 Atom (common and extended events)

Variable W p-value R

Counted commits 78.0 0.0 −0.734

Counted events 110.5 0.0 −0.74

Mean of counted commits 282.5 0.007 −0.374

Mean of counted events 770.0 0.595 0.032

assigned 98.0 0.0 −0.6

demilestoned 0.0 1.0 0.0

labeled 61.0 0.0 −0.748

marked_as_duplicate 7.0 0.136 −0.45

milestoned 0.0 0.5 −1.0

resolution_updated 17.0 0.001 −0.736

type_updated 148.0 0.009 −0.413

unassigned 32.5 0.002 −0.631

unlabeled 116.0 0.005 −0.465

unmarked_as_duplicate 0.0 0.5 −1.0

add_link 163.5 0.0 −0.648

commit_added 69.5 0.0 −0.768

referenced 89.5 0.015 −0.428

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 1.0 0.0

base_ref_changed 0.0 0.091 −0.924

base_ref_force_pushed 0.0 0.03 −0.903

comment_deleted 0.0 1.0 0.0

commented 275.0 0.0 −0.548

committed 0.0 1.0 0.0

connected 0.0 1.0 0.0

convert_to_draft 0.0 0.5 −1.0

created 236.0 0.0 −0.573

cross_referenced 0.0 1.0 0.0

disconnected 0.0 1.0 0.0

head_ref_deleted 14.5 0.0 −0.847

head_ref_force_pushed 106.5 0.001 −0.561

head_ref_restored 0.0 0.0 −0.88

mentioned 291.5 0.0 −0.487

ready_for_review 0.0 0.005 −0.89

referenced_by 152.0 0.0 −0.671

renamed 117.5 0.0 −0.645

review_request_removed 0.0 0.018 −0.898

review_requested 5.0 0.0 −0.842

reviewed 35.5 0.0 −0.72

state_updated 75.5 0.0 −0.763

subscribed 223.5 0.0 −0.577

unsubscribed 0.0 0.003 −0.889
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Table A.13: RQ2 Atom (privileged events)

Variable W p-value R

added_to_project 0.0 1.0 0.0

converted_note_to_issue 0.0 1.0 0.0

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 1.0 0.0

merged 0.0 0.0 −0.871

moved_columns_in_project 0.0 1.0 0.0

pinned 0.0 0.5 −1.0

removed_from_project 0.0 1.0 0.0

review_dismissed 0.0 0.091 −0.924

transferred 0.0 0.049 −0.92

unlocked 0.0 1.0 0.0

unpinned 0.0 0.186 −0.948

user_blocked 0.0 1.0 0.0
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Table A.14: RQ2 Bootstrap (common and extended events)

Variable W p-value R

Counted commits 12.5 0.004 −0.697

Counted events 4.0 0.0 −0.837

Mean of counted commits 61.0 0.534 0.015

Mean of counted events 97.0 0.695 0.118

assigned 0.0 0.003 −0.885

demilestoned 0.0 0.003 −0.885

labeled 1.0 0.0 −0.865

marked_as_duplicate 0.0 0.011 −0.896

milestoned 0.0 0.003 −0.885

resolution_updated 0.0 0.05 −0.915

type_updated 0.0 1.0 0.0

unassigned 0.0 0.011 −0.896

unlabeled 0.0 0.001 −0.882

unmarked_as_duplicate 0.0 1.0 0.0

add_link 34.0 0.023 −0.487

commit_added 46.0 0.078 −0.349

referenced 18.0 0.179 −0.306

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 1.0 0.0

base_ref_changed 0.0 0.03 −0.903

base_ref_force_pushed 0.0 0.03 −0.903

comment_deleted 0.0 0.5 −1.0

commented 35.0 0.026 −0.475

committed 0.0 1.0 0.0

connected 0.0 0.091 −0.924

convert_to_draft 0.0 0.03 −0.903

created 50.0 0.109 −0.303

cross_referenced 0.0 1.0 0.0

disconnected 0.0 0.5 −1.0

head_ref_deleted 33.0 0.116 −0.326

head_ref_force_pushed 18.0 0.016 −0.58

head_ref_restored 15.0 0.6 0.064

mentioned 32.0 0.019 −0.512

ready_for_review 1.0 0.01 −0.841

referenced_by 30.0 0.015 −0.534

renamed 22.0 0.03 −0.51

review_request_removed 0.0 0.05 −0.915

review_requested 3.0 0.003 −0.814

reviewed 7.0 0.004 −0.746

state_updated 9.0 0.001 −0.762

subscribed 31.0 0.008 −0.559

unsubscribed 0.0 0.03 −0.903
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Table A.15: RQ2 Bootstrap (privileged events)

Variable W p-value R

added_to_project 0.0 0.005 −0.89

converted_note_to_issue 0.0 0.5 −1.0

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 0.5 −1.0

merged 0.0 0.001 −0.882

moved_columns_in_project 0.0 0.005 −0.89

pinned 0.0 0.091 −0.924

removed_from_project 0.0 0.007 −0.891

review_dismissed 0.0 0.018 −0.898

transferred 0.0 1.0 0.0

unlocked 0.0 0.5 −1.0

unpinned 0.0 0.091 −0.924

user_blocked 0.0 0.5 −1.0
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Table A.16: RQ2 Deno (common and extended events)

Variable W p-value R

Counted commits 6.0 0.102 −0.51

Counted events 6.5 0.062 −0.569

Mean of counted commits 5.0 0.075 −0.575

Mean of counted events 7.0 0.074 −0.544

assigned 0.0 0.05 −0.915

demilestoned 0.0 0.091 −0.924

labeled 0.0 0.05 −0.915

marked_as_duplicate 0.0 0.186 −0.948

milestoned 0.0 0.091 −0.924

resolution_updated 0.0 0.186 −0.948

type_updated 0.0 0.091 −0.924

unassigned 0.0 0.091 −0.924

unlabeled 0.0 0.091 −0.924

unmarked_as_duplicate 0.0 1.0 0.0

add_link 6.0 0.102 −0.51

commit_added 5.0 0.075 −0.575

referenced 0.0 0.186 −0.948

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 1.0 0.0

base_ref_changed 0.0 0.186 −0.948

base_ref_force_pushed 0.0 0.186 −0.948

comment_deleted 0.0 0.5 −1.0

commented 6.0 0.102 −0.51

committed 0.0 1.0 0.0

connected 0.0 1.0 0.0

convert_to_draft 1.0 0.5 −0.316

created 6.0 0.102 −0.51

cross_referenced 0.0 1.0 0.0

disconnected 0.0 1.0 0.0

head_ref_deleted 2.0 0.047 −0.727

head_ref_force_pushed 4.0 0.104 −0.555

head_ref_restored 0.0 0.186 −0.948

mentioned 6.0 0.102 −0.51

ready_for_review 8.0 0.606 0.06

referenced_by 6.0 0.102 −0.51

renamed 3.0 0.071 −0.641

review_request_removed 0.0 0.05 −0.915

review_requested 1.0 0.053 −0.783

reviewed 4.0 0.054 −0.639

state_updated 2.0 0.047 −0.727

subscribed 6.0 0.102 −0.51

unsubscribed 0.0 0.091 −0.924
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Table A.17: RQ2 Deno (privileged events)

Variable W p-value R

added_to_project 0.0 1.0 0.0

converted_note_to_issue 0.0 1.0 0.0

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 0.5 −1.0

merged 0.0 0.05 −0.915

moved_columns_in_project 0.0 1.0 0.0

pinned 0.0 0.186 −0.948

removed_from_project 0.0 1.0 0.0

review_dismissed 0.0 0.091 −0.924

transferred 0.0 0.186 −0.948

unlocked 0.0 0.5 −1.0

unpinned 0.0 0.186 −0.948

user_blocked 0.0 1.0 0.0
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Table A.18: RQ2 Electron (common and extended events)

Variable W p-value R

Counted commits 149.0 0.027 −0.348

Counted events 141.0 0.0 −0.599

Mean of counted commits 268.0 0.656 0.07

Mean of counted events 400.0 0.264 −0.099

assigned 33.5 0.0 −0.694

demilestoned 0.0 1.0 0.0

labeled 90.0 0.0 −0.592

marked_as_duplicate 2.0 0.047 −0.727

milestoned 0.0 1.0 0.0

resolution_updated 30.0 0.147 −0.3

type_updated 75.5 0.491 −0.011

unassigned 27.0 0.003 −0.629

unlabeled 66.0 0.002 −0.57

unmarked_as_duplicate 0.0 0.5 −1.0

add_link 139.5 0.004 −0.463

commit_added 68.0 0.0 −0.661

referenced 40.5 0.026 −0.462

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 0.5 −1.0

base_ref_changed 8.0 0.002 −0.762

base_ref_force_pushed 14.0 0.312 −0.198

comment_deleted 0.0 0.5 −1.0

commented 128.5 0.0 −0.584

committed 0.0 1.0 0.0

connected 0.0 1.0 0.0

convert_to_draft 0.0 0.05 −0.915

created 130.5 0.0 −0.565

cross_referenced 0.0 1.0 0.0

disconnected 0.0 1.0 0.0

head_ref_deleted 49.0 0.0 −0.676

head_ref_force_pushed 33.0 0.0 −0.71

head_ref_restored 3.0 0.004 −0.805

mentioned 215.0 0.012 −0.367

ready_for_review 3.0 0.003 −0.814

referenced_by 127.5 0.001 −0.538

renamed 66.5 0.0 −0.665

review_request_removed 22.0 0.098 −0.384

review_requested 30.0 0.0 −0.745

reviewed 26.0 0.0 −0.781

state_updated 129.0 0.0 −0.568

subscribed 163.0 0.001 −0.508

unsubscribed 0.0 0.005 −0.89
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Table A.19: RQ2 Electron (privileged events)

Variable W p-value R

added_to_project 0.0 0.001 −0.883

converted_note_to_issue 0.0 0.186 −0.948

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 0.5 −1.0

merged 0.0 0.0 −0.875

moved_columns_in_project 0.0 0.001 −0.883

pinned 0.0 0.05 −0.915

removed_from_project 0.0 0.005 −0.89

review_dismissed 0.0 0.003 −0.885

transferred 0.0 0.186 −0.948

unlocked 0.0 0.5 −1.0

unpinned 0.0 0.087 −0.941

user_blocked 0.0 1.0 0.0
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Table A.20: RQ2 Keras (common and extended events)

Variable W p-value R

Counted commits 150.5 0.117 −0.227

Counted events 279.5 0.496 −0.003

Mean of counted commits 216.0 0.371 −0.062

Mean of counted events 302.5 0.656 0.068

assigned 5.0 0.147 −0.469

demilestoned 0.0 1.0 0.0

labeled 0.0 0.05 −0.915

marked_as_duplicate 0.0 1.0 0.0

milestoned 0.0 1.0 0.0

resolution_updated 0.0 0.186 −0.948

type_updated 0.0 0.091 −0.924

unassigned 3.0 0.605 0.0

unlabeled 0.0 0.05 −0.915

unmarked_as_duplicate 0.0 1.0 0.0

add_link 125.0 0.16 −0.202

commit_added 153.5 0.292 −0.11

referenced 1.0 0.211 −0.618

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 1.0 0.0

base_ref_changed 0.0 1.0 0.0

base_ref_force_pushed 0.0 1.0 0.0

comment_deleted 0.0 1.0 0.0

commented 221.5 0.305 −0.093

committed 0.0 1.0 0.0

connected 0.0 1.0 0.0

convert_to_draft 0.0 1.0 0.0

created 230.0 0.611 0.05

cross_referenced 0.0 1.0 0.0

disconnected 0.0 1.0 0.0

head_ref_deleted 79.5 0.273 −0.143

head_ref_force_pushed 25.5 0.661 0.119

head_ref_restored 11.0 0.86 0.422

mentioned 147.0 0.472 −0.018

ready_for_review 0.0 0.5 −1.0

referenced_by 91.0 0.128 −0.245

renamed 83.0 0.974 0.513

review_request_removed 0.0 0.186 −0.948

review_requested 0.0 0.018 −0.898

reviewed 27.5 0.062 −0.42

state_updated 89.5 0.42 −0.051

subscribed 147.0 0.472 −0.018

unsubscribed 4.0 0.428 −0.182
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Table A.21: RQ2 Keras (privileged events)

Variable W p-value R

added_to_project 0.0 1.0 0.0

converted_note_to_issue 0.0 0.5 −1.0

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 1.0 0.0

merged 0.0 0.03 −0.903

moved_columns_in_project 0.0 0.091 −0.924

pinned 0.0 1.0 0.0

removed_from_project 0.0 1.0 0.0

review_dismissed 0.0 0.018 −0.902

transferred 0.0 1.0 0.0

unlocked 0.0 1.0 0.0

unpinned 0.0 1.0 0.0

user_blocked 0.0 1.0 0.0
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Table A.22: RQ2 OpenSSL (common and extended events)

Variable W p-value R

Counted commits 119.0 0.931 0.344

Counted events 58.5 0.074 −0.337

Mean of counted commits 88.0 0.552 0.026

Mean of counted events 25.0 0.002 −0.647

assigned 23.0 0.011 −0.582

demilestoned 12.0 0.063 −0.5

labeled 5.0 0.001 −0.815

marked_as_duplicate 1.0 0.211 −0.618

milestoned 16.0 0.071 −0.455

resolution_updated 0.0 0.091 −0.924

type_updated 1.0 0.002 −0.859

unassigned 3.0 0.012 −0.77

unlabeled 8.0 0.001 −0.775

unmarked_as_duplicate 0.0 1.0 0.0

add_link 12.5 0.001 −0.75

commit_added 27.0 0.006 −0.601

referenced 3.0 0.605 0.0

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 1.0 0.0

base_ref_changed 0.0 0.5 −1.0

base_ref_force_pushed 0.0 0.5 −1.0

comment_deleted 0.0 0.5 −1.0

commented 17.0 0.002 −0.702

committed 0.0 1.0 0.0

connected 0.0 1.0 0.0

convert_to_draft 0.0 1.0 0.0

created 37.0 0.018 −0.497

cross_referenced 0.0 1.0 0.0

disconnected 0.0 1.0 0.0

head_ref_deleted 26.0 0.051 −0.444

head_ref_force_pushed 37.0 0.057 −0.4

head_ref_restored 0.0 0.03 −0.903

mentioned 25.0 0.004 −0.62

ready_for_review 0.0 0.091 −0.924

referenced_by 11.0 0.001 −0.752

renamed 12.0 0.002 −0.725

review_request_removed 2.0 0.026 −0.767

review_requested 9.0 0.002 −0.749

reviewed 11.0 0.002 −0.738

state_updated 21.0 0.003 −0.662

subscribed 16.0 0.002 −0.694

unsubscribed 1.0 0.211 −0.618
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Table A.23: RQ2 OpenSSL (privileged events)

Variable W p-value R

added_to_project 0.0 0.018 −0.898

converted_note_to_issue 0.0 0.5 −1.0

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 1.0 0.0

merged 0.0 0.091 −0.924

moved_columns_in_project 0.0 0.002 −0.883

pinned 0.0 0.5 −1.0

removed_from_project 0.0 0.186 −0.948

review_dismissed 0.0 0.003 −0.885

transferred 0.0 1.0 0.0

unlocked 0.0 1.0 0.0

unpinned 0.0 0.5 −1.0

user_blocked 0.0 0.5 −1.0
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Table A.24: RQ2 VSCode (common and extended events)

Variable W p-value R

Counted commits 30.5 0.0 −0.82

Counted events 61.5 0.0 −0.786

Mean of counted commits 264.0 0.001 −0.445

Mean of counted events 452.0 0.037 −0.253

assigned 31.0 0.0 −0.818

demilestoned 7.0 0.0 −0.854

labeled 47.0 0.0 −0.788

marked_as_duplicate 10.0 0.0 −0.824

milestoned 13.0 0.0 −0.842

resolution_updated 19.0 0.0 −0.81

type_updated 18.0 0.0 −0.829

unassigned 19.0 0.0 −0.838

unlabeled 45.0 0.0 −0.788

unmarked_as_duplicate 0.0 0.186 −0.948

add_link 93.0 0.0 −0.733

commit_added 65.0 0.0 −0.752

referenced 48.0 0.0 −0.694

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 1.0 0.0

base_ref_changed 0.0 0.003 −0.885

base_ref_force_pushed 0.0 1.0 0.0

comment_deleted 0.0 0.5 −1.0

commented 148.0 0.0 −0.66

committed 0.0 1.0 0.0

connected 0.0 0.03 −0.903

convert_to_draft 0.0 0.049 −0.92

created 120.5 0.0 −0.684

cross_referenced 0.0 1.0 0.0

disconnected 0.0 1.0 0.0

head_ref_deleted 6.0 0.0 −0.855

head_ref_force_pushed 9.0 0.0 −0.823

head_ref_restored 13.0 0.007 −0.663

mentioned 142.0 0.0 −0.676

ready_for_review 0.0 0.001 −0.882

referenced_by 74.0 0.0 −0.761

renamed 65.0 0.0 −0.752

review_request_removed 0.0 0.0 −0.874

review_requested 17.0 0.0 −0.834

reviewed 9.5 0.0 −0.845

state_updated 50.0 0.0 −0.787

subscribed 118.0 0.0 −0.696

unsubscribed 71.0 0.0 −0.74
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Table A.25: RQ2 VSCode (privileged events)

Variable W p-value R

added_to_project 0.0 0.186 −0.948

converted_note_to_issue 0.0 1.0 0.0

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 0.5 −1.0

merged 0.0 0.0 −0.871

moved_columns_in_project 0.0 0.186 −0.948

pinned 0.0 0.0 −0.876

removed_from_project 0.0 0.5 −1.0

review_dismissed 0.0 0.011 −0.9

transferred 0.0 0.0 −0.876

unlocked 0.0 0.5 −1.0

unpinned 0.0 0.0 −0.886

user_blocked 0.0 1.0 0.0
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Table A.26: RQ2 Vue (common and extended events)

Variable W p-value R

Counted commits 28.5 0.361 −0.121

Counted events 48.0 0.404 −0.075

Mean of counted commits 39.0 0.718 0.161

Mean of counted events 54.0 0.548 0.025

assigned 28.0 0.761 0.217

demilestoned 0.0 0.5 −1.0

labeled 35.0 0.588 0.054

marked_as_duplicate 3.0 0.292 −0.365

milestoned 0.0 0.5 −1.0

resolution_updated 2.0 0.395 −0.309

type_updated 28.0 0.541 0.016

unassigned 7.0 0.819 0.365

unlabeled 9.0 0.417 −0.128

unmarked_as_duplicate 0.0 1.0 0.0

add_link 40.0 0.547 0.023

commit_added 36.0 0.422 −0.068

referenced 21.0 0.688 0.148

automatic_base_change_failed 0.0 1.0 0.0

automatic_base_change_succeeded 0.0 1.0 0.0

base_ref_changed 0.0 0.186 −0.948

base_ref_force_pushed 0.0 0.5 −1.0

comment_deleted 0.0 0.5 −1.0

commented 48.0 0.583 0.049

committed 0.0 1.0 0.0

connected 0.0 1.0 0.0

convert_to_draft 0.0 1.0 0.0

created 54.0 0.735 0.165

cross_referenced 0.0 1.0 0.0

disconnected 0.0 1.0 0.0

head_ref_deleted 16.0 0.131 −0.37

head_ref_force_pushed 41.0 0.775 0.215

head_ref_restored 0.0 0.087 −0.941

mentioned 39.0 0.337 −0.126

ready_for_review 0.0 1.0 0.0

referenced_by 40.0 0.547 0.023

renamed 26.5 0.48 −0.032

review_request_removed 0.0 0.5 −1.0

review_requested 8.0 0.176 −0.382

reviewed 26.0 0.282 −0.188

state_updated 35.0 0.392 −0.091

subscribed 35.0 0.242 −0.204

unsubscribed 0.0 0.186 −0.948
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Table A.27: RQ2 Vue (privileged events)

Variable W p-value R

added_to_project 0.0 0.5 −1.0

converted_note_to_issue 0.0 1.0 0.0

deployed 0.0 1.0 0.0

deployment_environment_changed 0.0 1.0 0.0

locked 0.0 0.5 −1.0

merged 0.0 0.091 −0.924

moved_columns_in_project 0.0 0.5 −1.0

pinned 0.0 1.0 0.0

removed_from_project 0.0 0.5 −1.0

review_dismissed 0.0 0.5 −1.0

transferred 0.0 0.5 −1.0

unlocked 0.0 0.5 −1.0

unpinned 0.0 1.0 0.0

user_blocked 0.0 1.0 0.0
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a.3 results for rq3

Table A.28 presents the results of the one-tailed Wilcoxon signed rank tests for RQ3, com-
paring the centralities of privileged developers before and after receiving privileges in issue
networks. This test evaluates whether there is a significant difference in the distributions of
the two groups, focusing on whether the distribution of values in the first group (privileged
developers before receiving privileges) tends to be less than that of the second group
(privileged developers after receiving privileges).

Similarly, Table A.29 presents the results of the two-tailed Wilcoxon signed rank tests
for RQ3, comparing the centralities of privileged developers before and after receiving
privileges in cochange networks. This test evaluates whether there is a significant difference
in the distributions of centralities before and after receiving privileges, without specifying a
particular trend of the difference.

Table A.28: RQ3 Issue networks

Project W p-value R

Angular 215.0 0.0 −0.718

Atom 128.0 0.0 −0.72

Bootstrap 30.0 0.007 −0.57

Deno 6.0 0.055 −0.594

Electron 295.0 0.025 −0.302

Keras 176.0 0.125 −0.212

OpenSSL 68.0 0.147 −0.25

VSCode 137.0 0.0 −0.683

Vue 39.0 0.213 −0.226

Table A.29: RQ3 Cochange networks

Project W p-value R

Angular 256.0 0.0 −0.626

Atom 92.0 0.0 −0.709

Bootstrap 36.0 0.188 −0.351

Deno 7.0 0.297 −0.446

Electron 154.0 0.109 −0.294

Keras 113.0 0.303 −0.216

OpenSSL 79.0 0.799 −0.067

VSCode 51.0 0.0 −0.778

Vue 31.0 0.898 −0.054
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