
Saarland University

Faculty of Mathematics and Computer Science

Master’s Thesis

Grammar-Based Sampling

submitted by

Kallistos Weis

submitted on

September 11, 2020

Advisor:

Christian Kaltenecker, M.Sc.

Supervisor

Prof. Dr. Sven Apel

Reviewers

Prof. Dr. Sven Apel

Prof. Dr. Andreas Zeller

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

iv

Abstract

Recent software systems tend to be highly configurable. Configurations of these
systems are combinations of configuration options, e.g., on-off switches for runtime
or compile-time options that might enable or disable certain functionality of the
program. These configurations have not only an impact to the functionality of
the software but also to its performance. Performance in this context has many
different meanings, e.g., execution time or power consumption. Finding the best
performing configuration in a brute-force manner by measuring all configurations is
almost always infeasible. State-of-the-art solutions create a sample set (i.e., a subset
of all valid configurations), measure the sampled configurations, and apply machine-
learning algorithms to predict the performance of configurations in the configuration
space. Creating a valuable sample set for machine-learning algorithms present many
challenges.

In this thesis we present a new sampling strategy that is lightweight in terms of
memory footprint and execution time but selects the configurations uniformly over
the valid configuration space. To evaluate the quality of our sampling strategy, we
compare the prediction results to other state-of-the-art sampling strategies, e.g.,
t-wise sampling, on 10 variability models of real-world software systems. For the
prediction results we use the most promising three different ML algorithms, i.e.,
random forest, multiple linear regression, and support vector machines, to learn on
our sample sets. In a second step we investigate the performance of our approach
regarding execution time. In our results we show also the connection between the
valid configuration space and the grammar configuration space.

vi

Acknowledgements

To begin with, I would like to express my sincere gratitude to Professor Sven Apel
to supervising this research work and providing thoughtful comments and recom-
mendations on this master’s thesis. I would like to thank Professor Andreas Zeller
for reviewing it.

Furthermore I’d like to express my very great appreciation to my advisor Christian
Kaltenecker for his patient guidance, enthusiastic encouragement and useful critiques
of this research work. His willingness to give his time so generously has been very
much appreciated.

I would also like to extend my thanks to the members of the current Chair of Software
Engineering for their helping suggestions and offering me a pleasant and productive
working environment.

It is whole-heartedly appreciated that Niklas Metzger, Ricardo Lang and Valentin
Seimetz always took the time for discussions and assistance regarding this research
work as well as proofreading this thesis.

Finally, I wish to thank everyone else who supported and encouraged me throughout
my study.

viii

Contents

List of Figures xii

1 Introduction 3

2 Background 5

2.1 Context-free grammar . 5

2.2 SPL Conqueror . 6

2.3 Machine-Learning . 7

2.3.1 Multiple Linear Regression . 7

2.3.2 Random Forests . 7

2.3.3 Support Vector Machines . 7

3 Related Work 9

3.1 Random-based approaches . 9

3.2 Solver-based approaches . 10

4 Grammar-based Sampling 13

4.1 Context-free Grammar . 13

4.2 Generating Samples . 16

5 Methodology 21

5.1 Research Questions . 21

5.2 Variability Models . 22

5.3 Experimental Dependencies . 25

5.3.1 Independent Variables . 26

5.3.2 Dependent Variables . 27

5.3.3 Confounding Factors . 28

5.4 Operationalization . 28

x Contents

6 Evaluation 31

6.1 Invalid Drawn Configurations . 31

6.2 Sample Set Uniformness . 33

6.3 Sampling Strategy Performance . 35

6.4 Prediction Error . 36

7 Validity 39

7.1 Internal Validity . 39

7.2 External Validity . 40

8 Conclusion and Future Work 41

A Appendix 43

Bibliography 45

List of Figures

2.1 Example variability model . 6

3.1 Example of variable ordering dependency to the BDD size, c.f. [6].
The left CBDD depicts the function A ·B + C ·D + E · F , the right
CBDD depicts the function A · D + B · E + C · F . Note that the
indices are not part of the variable names but represent the count of
solutions for the CBDD. 10

3.2 Example of Manhattan distance for 3 configuration options A, B and
C with no constraints, c.f. [11] . 11

3.3 Distance distribution of configurations from Figure 3.2, c.f. [11] 12

5.1 Independent and dependent variables and their relation to our re-
search questions . 26

6.1 Overview of all used case studies with the number of configuration
options (CO), the number of valid configurations (V), the number of
grammar-valid configurations (G) and the ratio between number of
valid configurations and grammar-valid configurations (V) vs (G), as
well as the sampling error (SE) . 32

6.2 Probability distribution over configurations to appear in a sample
set from different sampling strategies over 100 random seeds and 3
different sample set sizes of the BerkeleyDB case study 34

6.3 Results of the Kolmogorov Smirnov test if the distribution of the
sample set is similar to a uniform distribution for 100 random seeds
on different sampling strategies . 35

6.4 Execution time of t-wise, solver-based, randomized solver-based, distance-
based, and grammar-based sampling strategies on 10 variability mod-
els of real-world software systems . 36

6.5 Error rates of t-wise, solver-based, randomized solver-based, distance-
based, grammar-based, and random sampling for multiple linear re-
gression on 10 variability models of real-world software systems . . . 37

xii List of Figures

A.1 Error rates of t-wise, solver-based, randomized solver-based, distance-
based, grammar-based, and random sampling for random forests on
10 variability models of real-world software systems 43

A.2 Error rates of t-wise, solver-based, randomized solver-based, distance-
based, grammar-based, and random sampling for support vector ma-
chines on 10 variability models of real-world software systems 43

A.3 One-sided Mann-Whitney U test results whether the sampling strat-
egy of the row has a significantly lower error rate than the sampling
strategy of the column for multiple linear regression 44

A.4 One-sided Mann-Whitney U test results whether the sampling strat-
egy of the row has a significantly lower error rate than the sampling
strategy of the column for random forests 44

A.5 One-sided Mann-Whitney U test results whether the sampling strat-
egy of the row has a significantly lower error rate than the sampling
strategy of the column for support vector machines 44

List of Figures 1

2 List of Figures

1. Introduction

Modern software development evolves to create highly configurable software systems.
The flexibility of the software system is used to adapt the software product to
different hardware and the needs of the user. Moreover, it is easier to deploy bug
fixes to a whole range of products, as the developer needs to fix it only once in
the software system and not in each software product. Accordingly, the software
developer has to introduce configuration options to the software system to enable
and disable parts of the software system to configure the software product.

As the software system evolves, it acquires more and more configuration options that
also share dependencies among themselves. We call the combination of enabled and
disabled configuration options a configuration. Moreover, configurations that meet
all dependencies among the configuration options are called valid configurations.
All other combinations of configuration options are called invalid configurations.
Henceforward, we call the set of all valid configurations of a software system the
configuration space of the software system. Variability models are used to describe
the configuration space of a software system [2].

Since different valid configurations enable and disable functionality of the software
system, they also lead to a different performance of the software system. In particu-
lar, configuration options influence the performance, i.e., execution time [21], of the
software product, by modifying the functionality of the software system. To argue
about the performance of a software product, we need a performance model of the
configuration space, which means we need a performance number for every valid
configuration. However, since the size of the configuration space potentially grows
exponentially in the number of configuration options, it is not feasible to measure
the performance for every configuration. Instead, machine-learning algorithms are
used to learn on a small subset of a configuration space, i.e., a sample set, and
generalize to performance prediction models for the whole configuration space.

In this thesis, we present an approach to create sample sets of configuration spaces.
This approach does not require any kind of insight into the code or structure of
the software system, i.e., it is a black-box sampling approach. Instead it requires

4 1. Introduction

knowledge of the variability model and access to the software system. As a conse-
quence of the black-box approach, we are interested in producing a sample set that
is uniformly spread across the configuration space. In our approach we sample truly
random, without enumerating all valid configurations but by radically reducing the
exponential space of possible configurations. To reduce the exponential space of
possible configurations we abuse the structure of the variability model to build a
context-free grammar. The language of the context-free grammar describes a super-
set of the configuration space. Furthermore, we define a bijective function to convert
an integer to a word in the language of the grammar, i.e., a configuration. However,
we need to verify the produced samples to be valid configurations, as our reduction
is an over approximation of valid configurations.

The unique selling point of our approach is its performance and sample set quality.
On the one hand, our sampling strategy keeps up with the performance of state-of-
the-art approaches, e.g., t-wise [16][10], or even outperforms them, e.g., randomized
solver-based sampling [9]. On the other hand, the quality of sample sets is estimated
by the accuracy of the prediction model that is built with that sampling set. As
a consequence of the structure of our approach, we reach the same quality as the
baseline, i.e., random sampling from the whole population.

2. Background

In this chapter, we explain basic knowledge on context-free grammars, SPL Con-
queror and three machine-learning algorithms that we use throughout this thesis.
In our approach, we make use of the concept of context-free grammars to cast vari-
ability models. To evaluate our approach we make use of SPL Conqueror and three
machine-learning algorithms. Therefore, we explain shortly what SPL Conqueror is
and give an intuition for the used machine-learning algorithms.

2.1 Context-free grammar

Context-free grammars are used to describe context-free languages. We use the
structure of variability models to cast a context-free grammar that describes an
over approximation of the configuration space as its context-free language. We
over approximate the configuration space of a variability model, since not all cross-
tree constraints are representable in context-free grammars without an exponential
growth. Accordingly, the words in our language represent configurations in the
configuration space, if they are valid configurations.

A context-free grammar is a 4-tuple G = (Σn,Σt, S, δ), where Σn is the set of non-
terminal symbols, Σt is the set of terminal symbols, S is the start symbol and δ
is the set of productions. A production is a recursive rule that allows to rewrite a
non-terminal to a string of non-terminal and terminal symbols. In this thesis we use
the terminal symbol ϵ to symbolize the empty string. The root of the variability
model is always the start symbol of our context-free grammar.

To conclude this section, we give the context-free grammar Ge of the variability
model depicted in Figure 2.1:

• Σt = {txt, png, jpeg, encryption, bzip2, LZ77, RLE, ppm}

• Σn = {⟨root⟩, ⟨compression⟩, ⟨fileformat⟩, ⟨encryption⟩}

• S = ⟨root⟩.

6 2. Background

Abstract

Concrete

Alternative

Alternative

Mandatory

Optional Or

Or

Legend:

root

compression

ppm

bzip2

LZ77

RLE

encryption

fileformat

txt

png

jpeg

Figure 2.1: Example variability model

where we enclosed all non-terminal symbols with ⟨⟩, to ensure that each symbol in
the grammar is unique. We built the set of productions δ as follows:

⟨root⟩ |= ⟨compression⟩ ⟨encryption⟩ ⟨fileformat⟩
⟨compression⟩ |= ϵ | ppm | bzip2 | LZ77 | RLE

⟨encryption⟩ |= ϵ | encryption

⟨fileformat⟩ |= txt | png | jpeg

An example word from this grammar, i.e., ⟨root⟩ ⟨compression⟩ ⟨encryption⟩ ⟨fileformat⟩
ppm encryption jpeg, represents the valid configuration root, compression, encryp-
tion, fileformat, ppm, jpeg where we removed all enclosing ⟨⟩ and resulting duplicates
to create the valid configuration.

2.2 SPL Conqueror

SPL Conqueror [22] is a tool-suite to execute performance predictions for config-
urations of software systems. In particular, SPL Conqueror is able to produce
sample sets of valid configurations for a variability model of a software system.
To generate sample sets, SPL Conqueror provides different sampling strategies,
e.g., t-wise [16][10], diversified-distance-based [11], or randomized-solver-based sam-
pling [9]. Additionally, it provides an interface to parse existing sampling sets of
arbitrary sampling strategies.

Also, SPL Conqueror uses sample sets to learn performance prediction models with
different machine-learning algorithms. SPL Conqueror implements the multiple lin-
ear regression algorithm and supports python machine learning algorithms, like sup-
port vector machines, forest regression, or decision trees.

2.3. Machine-Learning 7

2.3 Machine-Learning

In this section, we give a short introduction of the three machine-learning algorithms
that we use to evaluate our approach.

2.3.1 Multiple Linear Regression

Multiple linear regression (MLR), also known as multiple regression, is a statistical
technique to generate a model with several variables that serve to predict the value
of a response variable. The outcome model of MLR can be written in the following
form:

y = Xβ + ϵ (2.1)

where y and X are input to the MLR, whereas y is the vector of response variables
and X is the matrix with all predictor variables. In our evaluation y is the perfor-
mance value of the software system, in particular we have an entry in y for all n
configurations in the sample set. Accordingly, each row of X represents wether a
configuration option was enabled during the performance measurement of the cor-
responding yi. As it is not always possible to produce a fitting β such that ϵ = 0, ϵ
describes the residuals. MLR aims to find the best fitting β to minimize the sum of
residuals

∑n
i=1 ei.

2.3.2 Random Forests

Random Forests [12] make use of multiple classification trees, it constructs them
to get different classifications for one input vector. Each classification tree runs
independently on the input vector, classifies the input vector and votes for its clas-
sification. The forest acts as a supervisor and will select the classification with the
most votes.

2.3.3 Support Vector Machines

Support Vector Machines (SVM) [5] are supervised learning models that classify
input data into different categories. Additionally, SVMs are able to interpret the
input data as a high-dimensional feature space and perform a non-linear classification
on them. As a consequence, SVMs represent the examples in a high-dimensional
space and divide each separate category by a gap that is as wide as possible. The
resulting model maps an input to the same space and predicts the belonging category
based on the position in the space.

8 2. Background

3. Related Work

In this chapter, we discuss different sampling strategies related to this thesis. We
differentiate between two different classes of sampling strategies, i.e., random-based
and solver-based.

3.1 Random-based approaches

One way of producing random samples is by generating a random number between
zero and the number of valid configurations. This number is then used as index of
the configuration. That means we have to enumerate all of the valid configurations,
which is exponential in time.

Another approach is to model the individual configuration option as bits and en-
code the configuration by a bit string. In this bit string, a bit is set to one if the
corresponding configuration option is enabled and set to zero otherwise. Now, we
can produce random samples by getting a random number in the range from one to
N — where N is the number of valid configurations. Lastly, we have to check if the
produced sample is actually valid. This step is important since most of the possible
configuration option combinations are not valid [9].

Counting Binary Decision Diagrams (CBDD) are used to count all valid configura-
tions in a sophisticated manner [18]. Creating a CBDD and mapping a number to a
configuration via traversing the CBDD is straightforward [19]. But the creation of a
BDD may take some time and the memory consumption of it is huge if the formula
of the variability model is large [1, 17].

In Figure 3.1 we see an example for two CBDDs with 6 variables. This example
illustrates that the size of the CBDD depends heavily on the ordering of the variables.
In the worst case, the size of the CBDD is exponential in the size of the variables.
Additionally, the indices of the nodes in Figure 3.1 depict how we calculate the
number of solutions in the CBDD. We can count the solutions in a CBDD by
traversing the CBDD in a bottom-up manner, and add up the number of solutions
of the children.

10 3. Related Work

A5

B4

C3

D2

E1

F1

0 1

A11

B4

C1 C3

B7

C2

D1 D1

C5

D2

E1

D3

E2

F1

0 1

Figure 3.1: Example of variable ordering dependency to the BDD size, c.f. [6]. The
left CBDD depicts the function A ·B + C ·D + E · F , the right CBDD depicts the
function A · D + B · E + C · F . Note that the indices are not part of the variable
names but represent the count of solutions for the CBDD.

Shubham et al. [20] introduced another random-based sampling approach. They
produce uniform sample sets by transforming the variability model, given as CNF-
formula, to a d-DNNF representation. The d-DNNF representation is then used to
generate sample sets with any size by making two passes over it. The first pass
annotates the representation with the set of variables for the sub-formula as well as
the model count of the respective sub-formula. In the second pass, they produce all
samples at once, which means, that they produce for each sample the set of choices
for all sub-formulae. These sets of choices are then converted to the individual
samples.

In contrast to the approach from Shubham et al. [20], where they use the CNF
formula to create a d-DNNF representation by ignoring the hierarchical structure
induced by the variability model, we focus on taking the additional information into
account by creating a grammar out of the variability model.

3.2 Solver-based approaches
In this section we discuss algorithms that make use of SMT- or SAT-solvers to
produce samplings, whereas SAT is a subproblem of SMT [3]. Unlike the random-
based approaches this makes use of highly optimized software, e.g., Z3 [8]. The usage
of that software ensures on one hand that all configurations obtained are valid. On
the other hand, the solver is fast despite the theoretical bounds of the SAT decision
problem.

3.2. Solver-based approaches 11

SMT-solvers, like Z3, provide an interface to get solutions to a given SAT-formula,
e.g., variability model. Each solution then represents a valid configuration of the
variability model. Computing a sample set is relatively fast and uses little memory
but the solver tends to produce solutions that are similar to already found solutions.
That leads to low quality performance models generated by such sample sets [11]. To
scatter the solutions Henard et al. [9] shuffle all clauses in the formula after a solution
was found. Additionally, they change the order of all configuration options within
the clauses. This forces the SAT-solver to rebuild its entire model from scratch after
each found sample, which leads to a huge time increment. In the remainder of this
thesis we call this approach “randomized solver-based”. The quality of the resulting
performance model is better — but still worse than from a random sample set.

To further improve the quality of the performance model Kaltenecker et al. [11]
introduced an approach that encodes additional constraints to the formula. These
additional constraints ensure that a solution has a certain distance to a reference
point. Kaltenecker et al. [11] use the Manhattan distance of a configuration to
the origin of the configuration space, i.e., the configuration where all configuration
options are disabled. Figure 3.2 shows the configuration space of a variability model
with three configuration options (A, B and C) and no constraints between them.
Each corner of that cube describes one valid configuration and is labeled with a bit
string. In the bit string each bit represents a configuration option and is set to 1 if
the feature is activated and 0 otherwise, e.g., 001 means that features A and B are
not selected and feature C is selected.

000 001

011010

100 101

111110

B

C

A

Figure 3.2: Example of Manhattan distance for 3 configuration options A, B and C
with no constraints, c.f. [11]

The aim of the algorithm is that the distance distribution in the sample set is
uniform. Therefore the distances for each individual sample is randomly chosen.
Figure 3.3 shows the distance distribution of the example from Figure 3.2. Here
we depict that if we sample randomly over the distance space we are not sampling
uniformly over the configuration space as there are not equally many configurations
per distance.

12 3. Related Work

0 1 2 3

1

2

3

000

100
010
001

110
101
011

111

Distance

F
re
q
u
en

cy

Figure 3.3: Distance distribution of configurations from Figure 3.2, c.f. [11]

In their evaluation, Kaltenecker et al. [11] show that unfortunately some features do
not appear at all or only rarely in the sample set. They show that the performance
model is worse than the performance model from a coverage-based approach.

A coverage-based approach, e.g., t-wise sampling [16][10], ensures that the sample set
reaches a high coverage on certain criteria. Such criteria are based on configuration
options, e.g. each configuration option has to appear at least in one configuration.
These criteria are added as additional constraints to the SAT-formula, and then the
SAT-solver finds a valid configuration based on the criteria. t-wise uses a parameter,
t, to modify the criterion where t determines the size of the tuples. If t = 1 each
single configuration option has to appear in at least one configuration inside the
sample set. For t = 2 each pair of configuration options, provided that this pair
appears in a valid configuration, has to appear in at least one configuration inside
the sample set. Therefore, some interactions and influences from larger tuples of
configuration options, i.e., tuples larger than t, are neglected. As a consequence of
that, the prediction model is worse than the baseline [11], i.e., true random sampling.

As these last two approaches seem to complement each other, Kaltenecker et al. [11]
adapted their algorithm. They added one additional constraint to each sample
ensuring that the least frequently used configuration option in the sample set has to
be included in the next sample if possible for the selected distance. That leads to a
performance model which is only slightly worse than the baseline [11].

4. Grammar-based Sampling

In this chapter, we explain how grammar-based sampling works. Before we explain
the sampling itself, we present the algorithm that is used to produce a context-free
grammar from the variability model. We use the context-free grammar to narrow
down the set of possible configurations to a small superset of the configuration space.
This algorithm is sketched and explained in Section 4.1. Furthermore, we explain
the limits we set for our context-free grammar. In Section 4.2, we explain how we
generate a grammar-based sample-set and how we deal with the limitations of the
context-free grammar.

4.1 Context-free Grammar

In this section, we sketch the main algorithm to generate a context-free grammar
from a given variability model. We split the algorithm into two parts. The first part
shows the starting point of the algorithm that has to traverse the variability model.
The second part deals with the recursive traversal of the variability model.

Algorithm 1: Algorithm to generate a grammar from a variability model

Input: vm
Output: grammar

1 Function GenerateGrammar(vm):
2 root = getRoot (vm)
3 addStartSymbol (grammar, root)
4 if hasChildren (root) then
5 addNonterminal (grammar, root)
6 GenerateGrammarRecursively(root, grammar)

7 else
8 addTerminal (grammar, root)

9 return g

14 4. Grammar-based Sampling

Algorithm 1 shows the starting point of the conversion of a variability model (vm)
to a context-free grammar (grammar).

First, we set the root of the variability model as our start symbol S of the context-free
grammar, c.f. Chapter 2. In addition, each configuration option in the variability
model is either a non-terminal of the context-free grammar, if it is an inner node,
or a terminal of the context-free grammar, if it is a leave node. After that, we use
Algorithm 2 if the variability model consists of more than just the root configuration
option; otherwise we are done.

Since the variability model has a tree-like structure, we build the context-free gram-
mar recursively. In Algorithm 2, we see two major differentiations.

Algorithm 2: Recursive part of the algorithm to generate a grammar from
a variability model

Input: current, grammar
1 Function GenerateGrammarRecursively(current, grammar):
2 children = getChildren (current)
3 if isOptional (current) then
4 addRule (grammar, current, ϵcurrent)

5 if haveChildren (children) then
6 if areAlternativeGroup (children) then
7 foreach child in children do
8 addNonterminal (grammar, child)
9 addRule (grammar, current, child)
10 GenerateGrammarRecursively(child, grammar)

11 else
12 addRule (grammar, current, children)
13 foreach child in children do
14 addNonterminal (grammar, child)
15 GenerateGrammarRecursively(child, grammar)

16 else
17 if areAlternativeGroup (children) then
18 foreach child in children do
19 addTerminal (grammar, child)
20 addRule (grammar, current, child)

21 else
22 addRule (grammar, current, children)
23 foreach child in children do
24 addNonterminal (grammar, child)
25 addRule (grammar, child, child)
26 addRule (grammar, child, ϵchild)
27 addTerminal (grammar, child)

4.1. Context-free Grammar 15

First, we check if the node is optional, (Line 3), and add an ϵ if this is the case.
Then, we differentiate between leaf and inner nodes, (Line 5 and 16). In the case
that we are at an inner node, we have to call Algorithm 2 for every child, while we
build our grammar, (Line 10 and 15). In the other case we just build the remainder
of the grammar. The second differentiation takes care of alternative groups, (Line
6 and 17). An alternative group means that we can choose one of many options,
whereas an or group gives us the possibility to choose some out of many options.
The main difference in building the context-free grammar for these two kinds of
edges between a node and its children is that in the case of an alternative group we
have an extra rule for each child, (Lines 8 – 10 and 19 – 20). While, in the case
of an or group we only have a single rule, containing all children, (Lines 12 – 15
and 22 – 27). As a consequence, we can not prevent that no option is selected, as
we have to allow each option to be disabled. Thereby, we add a configuration to
the language that is not valid in the variability model. Lastly, the function addRule
ensures that a rule contains either terminals or non-terminals. If we add a Terminal
to a rule that contains, or will contain, a non-terminal, we introduce a placeholder
non-terminal and add a rule for the placeholder with the terminal.

To conclude this section, we explain how we calculate the number of words in the
context-free grammar.

Algorithm 3: Algorithm to calculate the number of configurations in the
language of the grammar

Input: name
Output: number

1 Function CalculateNumberConfigurations(name):
2 rule = getRule (name)
3 if isTerminal (rule) then
4 return numberSymbols (rule)

5 if isOrRule (rule) then
6 number = 0

7 else
8 number = 1

9 foreach symbol in rule do
10 if isOrRule (rule) then
11 number = number + CalculateNumberConfigurations(symbol)

12 else
13 number = number · CalculateNumberConfigurations(symbol)

14 return number

First of all, we have two important invariant characteristics of the generated context-
free grammar. The first characteristic is that a rule either contains terminals or
non-terminals. This characteristic arises during the generation of the context-free
grammar. The second characteristic is induced by the structure of the variability
model. We know that all configuration options, that share the same parent, either
exclude each other, or can be arbitrarily combined.

16 4. Grammar-based Sampling

To calculate the number of words in the grammar, we propose the algorithm Calcu-

lateNumberConfigurations in Algorithm 3. Henceforward, we call rules that allow
the activation of exactly one configuration option OrRules and rules that activate
all configuration options in it AndRules. Configuration options that are optional in
AndRules can be disabled if the ϵ-symbol is chosen as its terminal.

The initial input to call Algorithm 3 is the root configuration option. In particular,
we traverse the grammar in a depth-first search manner and accumulate the number
of configurations bottom-up. In each recursive call we consider two main cases. On
the one hand, we return the number of terminals in the rule if the rule contains
only terminals, (Line 4). On the other hand, we build the sum over the returned
numbers for each rule of the non-terminals in OrRules and the product over the
returned numbers for each rule of the non-terminals in AndRules recursively if the
rule contains only non-terminals, (Line 11 and 13). Therefore, we initialize number
with the neutral element of addition or multiplication respectively, (Line 6 and 8).

4.2 Generating Samples

In the last section, we introduced how we build a context-free grammar from the
variability model. Now, we use this grammar to obtain a sample set of valid con-
figurations. First, we define what grammar-valid configurations are. Second, we
propose a function to convert integers to configurations. After that, we define how
we obtain samples for the sample set and proof that the sample set is uniformly
distributed in the set of all valid configurations.

To begin with, we define the term grammar-valid configurations. It is vital to bear in
mind that we are able to embed all structural constraints from the variability model
in the context-free grammar, c.f. Section 2.1, besides the cross-tree constraints. In
other words, the language L(G), that is described by the generated context-free
grammar G, contains exactly the valid configurations from the variability model, if
there are no cross-tree constraints. Additionally, if the variability model contains
cross-tree constraints, L(G) contains all valid configurations and also some invalid
configurations.

Definition 4.1 (Grammar-valid configurations). Let Co be the set of all configuration
options. Let V be the set of all valid configurations. Then 2Co is the set of all
possible configurations and V ⊆ 2Co. We reduce the set of all possible configurations
to the set of all possible configurations that are part of L(G).

The resulting set G is the set of all grammar-valid configurations and V ⊆ G ⊆ 2Co.

After defining what grammar-valid configurations are, we introduce an algorithm
that implements a function NumberToConfiguration : [0, N [→ G that converts
a number to the corresponding grammar-valid configuration. The input range of
NumberToConfiguration depends on the number of grammar-valid configurations,
thus N = CalculateNumberConfigurations(start), where start is the start sym-
bol of the grammar. In Algorithm 4, we describe algorithm NumberToConfigura-

tion, that implements the function NumberToConfiguration : [0, N [→ G.

4.2. Generating Samples 17

Algorithm 4: Algorithm to convert an integer to a configuration

Input: number, symbol
Output: configuration

1 Function NumberToConfiguration(number, symbol):
2 rule = getRule (symbol)
3 if isTerminal (rule) then
4 return List (getSymbol (rule, number))

5 if isOrRule (rule) then
6 foreach sym in rule do
7 num = CalculateNumberConfigurations(sym)
8 if number ≥ num then
9 number = number − num

10 else
11 return NumberToConfiguration(number, sym).append(sym)

12 else
13 numberSymbols =length (rule)
14 configuration = List ()
15 for i in range (0, numberSymbols) do
16 basis = 1
17 for j in range (i, numberSymbols) do
18 sym = getSymbol (rule, j)
19 basis = basis · CalculateNumberConfigurations(sym)

20 index = number / basis
21 number = number % basis
22 sym = getSymol (rule, i)
23 configuration.append(sym)
24 configuration.concat(NumberToConfiguration(index, sym))

25 return configuration

To convert a number in the range from 0 – N , we traverse the grammar starting
from the start-symbol, in a depth-first manner. The result of Algorithm 4 is a
list of chosen symbols from the grammar where each symbol depicts a selected
configuration option. In the beginning of Algorithm 4, we test if the rule consists
of terminals, and return the matching terminal. In the case that the rule consists
of non-terminals, we differentiate between OrRules and AndRules, as we did in
Algorithm 3. If we consider anOrRule, we have to choose the matching non-terminal.
In particular, the number tells us the index of the matching configuration, and each
non-terminal represents an interval of possible configurations. To choose the correct
configuration we identify the non-terminal with the matching interval. Then, we
fit number to the selected interval and call Algorithm 4 recursively with the new
number and the corresponding non-terminal sym. Afterwards, we return the result
concatenated with sym, (Lines 6 – 11).

18 4. Grammar-based Sampling

On the other hand, if we consider an AndRule, we add all non-terminals to the
configuration. In addition, we identify for every non-terminal the number, that
represents the index of the configuration in the corresponding rule, (Lines 15 –
22). As before, we call Algorithm 4 recursively, with the identified numbers and
corresponding non-terminals, and concatenate the results to our configuration, (Line
24).

As a consequence of Algorithm 4, we can now produce a random number r in
the range from 0 to N and use the function f to convert r to a grammar-valid
configuration st. In Definition 4.2 we define st as a temporary sample.

Definition 4.2 (Temporary Sample). Let N = |G| and r be a random number from
[0, N [. Then st is a temporary random sample with st = NumberToConfigura-

tion(r).

Unfortunately, we can not add a temporary sample to our sample set, as we ignore
cross-tree constraints in our context-free grammar. For this reason, we define the
term sample and how to obtain a sample from a temporary sample.

Definition 4.3 (Sample). Let SAT : C → {⊤,⊥} be a function that returns whether
a configuration c is a valid configuration or not. Then st is considered a sample iff
SAT(st) ≡ ⊤.

Definition 4.3 demands that the temporary sample st is a valid configuration to
become a sample. We show the algorithm to create a grammar-based sample set in
Algorithm 5, where n is the number of samples to generate, and S is the sample set.

Algorithm 5: Algorithm to create a sample set with n configurations

Input: n
Output: S

1 Function GenerateSampleSet(n):
2 S = Set ()
3 while |S| < n do
4 r = random (0, |G|)
5 c = NumberToConfiguration(r)
6 if SAT (c) then
7 S = S ∪ {c}

8 return S

Depending on Algorithm 5, we have to make sure that we will always find valid
configurations. Corollary 4.1 shows that we will eventually get a valid configuration.

Corollary 4.1. Let M = |V | be the number of valid configurations and N = |G| the
number of grammar-valid configurations. Then the following equation describes how
the repetition of Definition 4.3 applies:

PV (g) = lim
n→∞

n∑
k=0

(
N −M

N

)k
M

N
= 1

4.2. Generating Samples 19

To conclude this chapter, we show that our grammar-based sample set is uniformly
distributed inside the set of valid configurations.

Proposition 4.1 (Uniform Grammar-Based Sample Set).
Let A′(v) be the event that a valid configuration v is added to the grammar-based
sample set. For all samples s in the grammar-based sample set holds: P (A′(s)) = 1

|V | .
Therefore, the grammar-based sample set is uniformly distributed within the set of
all valid configurations.

Proof. To proof the uniformity of the produced sampled set, we need to proof that
the probability of adding a valid configuration to the sample set is equal for every
valid configuration.

Let A(v) be the event that configuration v is drawn. Let B(v) be the event that the
drawn configuration v is valid. Then, P (A′(v)) = P (A(v)|B(v)) as we only add a
configuration v to our sample set if it is a valid configuration, (Algorithm 5, Line 5
and 6).

There are two cases to consider:

First, v is an invalid configuration, that gives P (A(v)) = 1
|G|−|V | ,P (B(v)) = 0 and

P (A′(v)) = P (A(v)|B(v)) = 0.

Second, v is a valid configuration. Then, we know P (A(v)) = 1
|V | , P (B(v)) = 1 and

P (A′(v)) = P (A(v)|B(v)) = 1
|V | .

In short, we only add valid configurations to our sample set and we choose a new
sample randomly from the whole grammar-valid configuration space. Accordingly,
we have only the second case to consider. Therefore, our sampling strategy produces
an uniform sample set.

20 4. Grammar-based Sampling

5. Methodology

In this chapter, we give an overview of our research questions, the real-world software
systems that are used to evaluate our approach as well as the operationalization of
our evaluation.

5.1 Research Questions

Our research questions, which build the foundation of our evaluation, will be further
discussed in Chapter 6, but can be summarized as following. During our evaluation
we investigate different characteristics of our sampling strategy and compare the
results with other sampling strategies, i.e., random sampling [11], solver-based sam-
pling [9], randomized solver-based sampling [9], t-wise sampling [16], and diversified
distance-based sampling [11]. For each research question we explain our motivation
behind and also go into details about it.

RQ1: How many invalid configurations are drawn by the grammar-based sampling
strategy?

In Definition 4.1, we define grammar-valid configurations and state how the sets
of valid configurations, and grammar-valid configurations are related. In the first
research question, we explore how often a SAT-solver rejects configurations that are
selected by the grammar-based sampling strategy during the creation of sample sets.

RQ2.1: What is the influence of the sampling strategy on the uniformness of the
sample set?

Variability models describe the way in which software systems are configurable. Un-
fortunately, they do not provide additional information about configuration options,
e.g., if they are performance critical. As a consequence of that, machine-learning
algorithms learn the performance models on sample sets for these software systems
without information about specific configuration options. In particular, we cannot
make assumptions on the level of configuration options, to improve the sample set.

22 5. Methodology

Therefore, we are interested in sample sets consisting of samples that are uniformly
distributed over the set of valid configurations.

To answer this research question, we investigate the uniformness of the sample set
produced by our sampling strategy and compare it with sample sets produced by
different state-of-the-art sampling strategies.

RQ2.2: What is the execution time of the different sampling strategies?

Besides the uniformness of the sample set, we are interested in the execution time of
our sampling strategy. In this research question we want to compare the execution
time to create sample sets with our sampling strategy to the execution time of other
sampling strategies.

RQ3: What influence has the chosen sampling strategy on the accuracy of perfor-
mance prediction?

We use machine-learning algorithms to produce a prediction model for the perfor-
mance of a software system. A sample set represents a subset of all configurations,
which are used as input for the machine-learning algorithm. In our context we do
not have any more information than the variability model of the software system
and as such we are in a black box environment. In this black box environment, we
do not know which feature has the most influence on the performance of the soft-
ware system and therefore we have to uniformly sample over the whole configuration
space.

Our grammar-based sampling strategy produces a sample set using a context-free
grammar, c.f., Chapter 4, to convert random numbers to configurations, that are
added to the sample set. This research question aims to compare the accuracy
of the performance prediction model generated with grammar-based sample sets in
contrast to performance prediction models created with other sample sets from other
sampling strategies.

5.2 Variability Models

In this section, we describe 10 real-world software systems whose variability models
we used in the evaluation of this thesis. Most of these software systems are well
known and range from small to huge software systems whereas the variability models
of these systems range only from small to medium, in terms of configuration options.
The variability models as well as all measurement data can be found on github1.
The hardware and experiment setup used for the measurements are listed at the
respective paragraph below. We also give a short overview of each software system,
including what the software system is about and how up to date it is.

1https://github.com/se-passau/Measurements

https://github.com/se-passau/Measurements

5.2. Variability Models 23

7-zip

7-zip is a file archiver with a high compression ratio written in C++. It is a free
open-source software, first released in 1999, and mainly developed by Igor Pavlov.

In our measurement we used version 9.20. Our variability model of 7-zipconsists
of 44 configuration options and a total of 68 640 valid configurations. The only
performance metric we were interested in was the time 7-zip needs to compress its
workload. As our workload we used 60 times the canterbury corpus and 12 times
the large corpus2.

Our time measurements were done on an Intel Xeon E5–2690 CPU with 64GB of
RAM; the operating system was Ubuntu 16.04.

BerkeleyDB

BerkeleyDB is an embedded database system. We considered the C interface of
BerkeleyDB as our software system. It is a software library to provide a high-
performance embedded database for key-value data. The first release was in 1994
and the latest stable release is from 2018 by the Oracle Corporation.

We used version 4.4.20 of BerkeleyDB for our measurements. Our variability model
of BerkeleyDB consists of 18 configuration options and a total of 2 560 valid configu-
rations. The performance metric we were interested in was the response time of the
database for read and write queries.

Our time measurements were performed on an Intel Core 2 Quad Cpu at 2.66GHz
with 4GB of RAM; the operating system was Windows Vista.

Dune

Dune is a modular C++ library which uses grid-based methods to solve partial
differential equations. Its latest release was in 2020 and the development started in
2002 on the initiative of Prof. Bastian, Dr. Ohlberger, Prof. Rumpf [4].

We used version 2.2 of Dune for our measurements. Our variability model of Dune
consists of 12 configuration options and a total of 2 304 configurations. The per-
formance metric we were interested in was the time to solve partial differential
equations, i.e., Poisson’s equations, a workload that is provided in Dune.

Our time measurements were performed on an Intel i5–4570 CPU with 32GB of
RAM; the operating system was Ubuntu 13.04.

Hipacc

Hipacc is a domain specific language and compiler that allows the user to design
image processing kernels and algorithms in it. It provides a framework to run these
high-level descriptions on low-level hardware. To compile these descriptions to dif-
ferent hardware they make use of LLVM.

2http://corpus.canterbury.ac.nz

http://corpus.canterbury.ac.nz/descriptions/

24 5. Methodology

Our variability model of Hipacc consists of 54 configuration options and a total of
13 485 valid configurations. The performance metric we were interested in was the
time Hipacc needs to solve partial differential equations.

Our time measurements were done on a Nvidia Tesla K20 with 2496 Cores and 5GB
of RAM; the operating system was Ubuntu 14.04.

Java Garbage Collection

The Java Garbage Collection is a program within the Java virtual machine that
manages memory automatically. At runtime it routinely detects and reclaims unused
memory.

We used the Java garbage collection from Java 8. Our variability model consists of 39
configuration options and a total of 193 536 valid configurations. The performance
metric we were interested in was the execution time of the garbage collection on the
benchmark and the workload for the measurements was the xalan benchmark from
the DaCapo benchmark suite3.

Our time measurements were done on an Intel Xeon E5–2690 CPU with 64GB RAM
available; the operating system was Ubuntu 14.04.

LLVM

LLVM4 is a compiler infrastructure that provides the tools to easily setup and extend
compilers. It consists of modular compiler and optimization toolkit technologies that
are developed by a huge and increasing community. The project was started around
the year 2003 by Chris Lattner and Vikram Adve at the University of Illinois[14].

We used version 2.7 of LLVM for our measurements. Our variability model consists of
11 configuration options and a total of 1 024 valid configurations. The performance
metric we were interested in was the compilation time and the workload was the
clang frontend from the opt-tool benchmark.

Our time measurements were performed on an AMD Athlon64 Dual Core CPU with
2GB of RAM; the operating system was a Debian GNU/Linux 6.

lrzip — Long Range ZIP

lrzip is a compression tool optimized to compress large files. It provides the ability
to choose between two advantages, one is extreme compression and the other is an
extremely fast compression.

We used version 0.600 of lrzip for our measurements. Our variability model consists
of 19 configuration options and a total of 432 valid configurations. The performance
metric we were interested in was the compression time of uiq8h generated files with
a size of 632MB.

Our time measurements were done on an AMD Athlon64 Dual Core with 2GB of
RAM; the operating system was Debian GNU/Linux 6.

3http://dacapobench.sourceforge.net
4https://llvm.org

http://dacapobench.sourceforge.net/benchmarks.html
https://llvm.org

5.3. Experimental Dependencies 25

Polly

Polly5 is a LLVM framework for high-level loop and data-locality optimizations.
Its name comes from the mathematical model of integer polyhedra that are used to
analyze and optimize memory accesses. As for today, these optimizations are mostly
classical loop transformations, but there is also work done to automate GPU code
generation6.

We used version 3.9 of Polly alongside LLVM version 4.0.0 and Clang version 4.0.0.
Our variability model of Polly consists of 40 configuration options and a total of
60 000 valid configurations. The performance metric we were interested in was the
run time of Polly to analyze and optimize the workload “gemm” from the polybench,
a benchmark suite.

Our time measurements were done on an Intel Xeon E5–2690 CPU with 64GB of
RAM; the operating system was Ubuntu 14.04.

vpxenc

vpxenc is a video encoding software that encodes to VP8 and VP9 encoding. We
focused on the VP9 encoding part of the software.

Our variability model consists of 42 configuration options and a total of 216 000
valid configurations. The performance metric we were interested in was the time to
encode the first two seconds from the Big Bug Bunny trailer.

Our time measurements were done on an Intel Xeon E5–2690 CPU with 64GB of
RAM; the operating system was Ubuntu 14.04.

x264

x264 is an open-source software library7 to encode video streams.

Our variability model consists of 16 configuration options and a total of 1 152 valid
configurations. The performance metric we were interested in was the encoding time
needed to encode the Sintel trailer, that is 734MB large.

Our time measurements were performed on an Intel Core Q6600 CPU with 4GB of
RAM; the operating system was Ubuntu 14.04.

5.3 Experimental Dependencies

In this section, we define the empirical variables we consider in our experiments.
We start with the independent variables, that arise from the research questions we
already explained. Afterwards, we continue with the resulting dependent variables.
To conclude this section, we explain the confounding variables and our counter
measurements to mitigate them.

5https://polly.llvm.org
6http://polly.llvm.org/documentation/gpgpucodegen.html
7https://www.videolan.org

https://polly.llvm.org
http://polly.llvm.org/documentation/gpgpucodegen.html
https://www.videolan.org

26 5. Methodology

Independent variables RQ1 RQ2.1 RQ2.2 RQ3

Random Seed ✓ ✓ ✓
Variability Model ✓ ✓ ✓ ✓
Number of Grammar-Valid Configurations ✓
Number of Valid Configurations ✓
Machine-Learning Algorithm ✓
Dependent variables RQ1 RQ2.1 RQ2.2 RQ3

Number of Rejected Configurations ✓
Uniformness ✓
Execution Time ✓
Error Rate ✓

Figure 5.1: Independent and dependent variables and their relation to our research
questions

5.3.1 Independent Variables

Random Seed

In Chapter 2, we provide a rough overview of the state-of-the-art sampling strategies
to which we compare our grammar-based strategy. Almost all of them, as well as
our grammar-based strategy rely on randomness. Consequently, the answers to all
of our research questions are influenced by using different random seeds.

To minimize the influence of a single random seed, we used for each experiment in
our evaluation 100 different random seeds from 1 to 100.

Variability Model

Variability models are designed to describe the configuration space of software sys-
tems. Therefore, they vary in the number of configuration options, or-groups,
alternative-groups, and cross-tree constraints. Additionally, they also vary in the
size of children per node, and, as a consequence of this, they also vary in the depth
of the tree that results from the variability model.

All these differences influence the results in the evaluation of our research questions.
To take these influences into account, we use 10 different variability models, which
are described in Section 5.2, to answer RQ1, RQ2.1, RQ2.2, and RQ3.

Number of Grammar-valid Configurations

We show in Section 4.1 how to build a context-free grammar of a variability model,
and propose an algorithm to count the number of configurations in the language
described by this grammar.

Number of Valid Configurations

We have two options to get the number of all valid configurations, the first option
is to calculate the number of solutions for the variability model using #SAT. The
second option is to use SAT-solver to enumerate all valid configurations. Since we
already have enumerated all valid configurations, to calculate the error rate of all
valid configurations, we use the second option to count all valid configurations.

5.3. Experimental Dependencies 27

Machine-Learning Algorithm

In RQ3, we target the prediction error of the performance prediction model created
by machine-learning algorithms using our sampling strategy. Since there are different
machine-learning algorithms that create performance prediction models based on
sample sets, we have to take the influence of the machine-learning algorithm on
the prediction error in our evaluation into account. Therefore, we use 3 different
machine-learning algorithms, which are briefly introduced in Section 2.3.

5.3.2 Dependent Variables

Number of Rejected Configurations

During the sampling, we store all sampled configurations that are rejected by the
SAT-solver. The number of rejected configurations, that where sampled by the
grammar-based strategy, depends on the ratio of grammar-valid configurations on
valid-configurations, which is influenced by cross-tree constraints, as they are not
depicted in the grammar.

Uniformness

For a good and diverse sample set, we aim at creating sample sets that are uni-
formly distributed inside the configuration space. Besides the theoretical proof that
our sampling strategy samples uniform, a statistical test for uniformness, i.e., Chi-
Squared test, helps us to answer RQ2.1.

Execution Time

In our approach, we exploit structural constraints on configuration options in the
variability model to reduce the space of possible configurations drastically. Ac-
cordingly, the execution time of our sampling approach depends on the presence
of structural constraints in the variability model. In the absence of structural con-
straints, our approach performs like an random approach, as we cannot refine the
space of possible configurations with cross-tree constraints.

Therefore, we measure the execution time of our sampling strategy on real-world
variability models to evaluate the performance and answer RQ2.2.

Error Rate

The accuracy of deterministic prediction models correlates with the mean error rate
over all predictions of the model. Thus, we calculate the error rate for the predictions
of all configurations from a software system and take the mean value over all error
rates. We use the mean error rate as a dependent variable as it correlates directly
with the accuracy of the prediction model to answer RQ3.

28 5. Methodology

5.3.3 Confounding Factors

Since we measure execution times of sampling strategies, we encounter hardware
and software-specific confounding factors. These factors are interrupts and context
switches in between program executions. To mitigate them, we used a minimal Linux
OS, i.e., Debian 10, and slurm workload manager8. We used the slurm workload
manager during the execution time measurements to ensures that each core only
executes one program at a time to reduce context switches. Two other confounding
factors for time measurements are scaling CPU frequency as well as timer interrupts.
However, we repeated every time measurement 5 times to get the mean execution
time and refrained from further mitigating these factors since they have only a
negligible effect on our performance measurements.

5.4 Operationalization

In this section, we depict our experimental setup and formalize the methods that
we use in Chapter 6 to answer our research questions. To evaluate our sampling
strategy we use state-of-the-art machine learning algorithms to create performance
prediction models of the software systems.

Experimental Setup

To evaluate our grammar-based sampling approach, we implemented it as a part of
SPL Conqueror. That gives us the possibility to directly compare the prediction
models that are produced by the different sampling strategies that are implemented
inside SPL Conqueror. Additionally, we can compare execution times for the indi-
vidual sampling strategies, as they are implemented in the same tool suite. We use
this time comparison to evaluate if our sampling strategy is able to keep up with
other state-of-the-art sampling strategies.

We used 100 random seeds, i.e., seed ∈ [1, 100], for all 10 variability models. Fur-
thermore, we produced for each seed three sample sets with different sizes. In par-
ticular, we used the sizes for the sample sets that t-wise sampling with t ∈ {1, 2, 3}
produces. Since all other sampling strategies can produce sample sets with arbitrary
many members, we guarantee this way that all sample sets are of equal size.

All time measurements on the sampling strategies are performed on a cluster of
twenty nodes. Each node contains 2 Intel(R) Xeon(R) CPU E5–2630 v4 @2.20GHz
and 256GB of RAM. We ensured that on these nodes our time measurements
had a minimal operating system running, i.e., Debian 10 with a version 4.19 Linux
kernel and only necessary software installed to minimize background noise during
the measurements.

Sampling Error

To discuss RQ1 we define an error metric to measure the number of rejected samples
per sample. We output all samples that were rejected by a SAT-solver. These data

8https://slurm.schedmd.com/documentation.html

https://slurm.schedmd.com/documentation.html

5.4. Operationalization 29

are used to count the number of rejected samples for each case study over 3 sample
set sizes and 100 random seeds each.

We weigh the number of rejected samples, we further denote this number as “re-
jected”, to the number of samples to draw, we further denote this number as “sam-
ples”, as follows:

error =
rejected

samples

where we refer to the error as the sampling error of a case study.

Sampling Uniformity

To answer RQ2.1 we use the Kolmogorov Smirnov and Cramer-von Mises test [7]
for goodness of fit on our sample sets to test whether they are uniform or not.
Both tests check the hypothesis that a sample set, given as input, resembles a given
distribution, i.e., a uniform distribution. The hypothesis is to reject if the returned
p-value is less than a threshold, i.e., p < 0.05.

Sampling Time

To answer RQ2.2 we need to define a time metric that we can use to compare the
execution time of our sampling strategy to the performance of other sampling strate-
gies. To do that we measure the time SPL Conqueror needs to produce a sample set
with a given sampling strategy and a specific size. Moreover, we include the time to
set up the sampling strategy, i.e., to build the context-free grammar in the case of
the grammar-based sampling.

We measure the time, by using the function“time”, a sampling strategy (samples(k))
needs to produce a sample set with size k for a specific random seed (s ∈ S) as
follows:

K-STimes = time(samples(k))

We use K-STime time to compare the performance of the different sampling strategies
on different sizes of variability models and different sizes of sampling sets.

Since our sampling strategy depends on a random seed, as well as most other sam-
pling strategies we used to compare against, we define the mean k-sampling time
over different random seeds (s ∈ S):

K-STime =

∑
s∈S K-STimes

|S|

Prediction Error

To discuss RQ3 we use the performance prediction models that we created with
different sampling sets to predict the performance for each valid configuration of
the corresponding software system. We weigh for each configuration (c ∈ C) the
distance of the predicted performance (predictedc) to the measured performance
(measuredc) as follows:

errorc =
|predictedc − measuredc|

measuredc

30 5. Methodology

where we refer to the errorc as the error rate of the performance prediction model
regarding the configuration c. To rate the quality of the performance prediction
model, we define the mean error rate over the whole population:

error =

∑
c∈C errorc

|C|

To further discuss RQ3 we enlarge our error rate definitions by the variance of error
rates from different performance prediction models, as follows:

ẽrror = Var({errorc|c ∈ C})

It is to note that, a smaller error rate, a smaller mean error rate, as well as a smaller
variance of the error rate is to prefer. To answer RQ3, we use a Kruskal-Wallis
test [13] to test for every sample size on every case study if the error rates of at least
two sampling strategies differ significantly (p < 0.05). We then perform pair-wise
and one-sided Mann-Whitney U tests [15] to identify on every case study and sample
set size, if and which sampling strategy leads to the lowest error rate, that differs
significantly from all others. Additionally, we determine the effect size using the Â12

measure by Vargha and Delaney [23]. The values of Â12 indicate small, medium and
large effect sizes, if the are larger than 0.56, 0.64, and 0.71, respectively.

6. Evaluation

In this chapter, we evaluate our grammar-based sampling strategy by answering the
research questions from Section 5.1. In each section, we present the results for the
respective research question.

6.1 Invalid Drawn Configurations

To start our evaluation, we want to answer our first research question: RQ1: How
many invalid configurations are drawn by the grammar-based sampling strategy?

Observation

In RQ1, we investigate how many invalid configurations are sampled and rejected
by a SAT-solver during the creation of sample sets by the grammar-based strategy.
To better understand the numbers of invalid drawn configurations, we first provide
the ratio between grammar-valid and valid configurations for each case study.

In Figure 6.1, we see in the first column the name of the case study — all of them
are explained in Section 5.2. Additionally, we listed the number of configuration
options (CO) in the second column. The third and fourth columns state the number
of valid configurations (V), and grammar-valid configurations (G) respectively, for
the software system in column 1. The second to last column contains the ratio
between valid (V) and grammar-valid (G) configurations. In the last column we list
the sampling error, c.f., Section 5.4.

Before we talk about the results itself, it is important to note that a ratio below
1 means that there are less valid configurations than grammar-valid configurations.
The closer the ratio to zero the more grammar-valid configurations are invalid con-
figurations. If the ratio equals 1, we know that all grammar-valid configurations are
valid. More importantly, the ratio cannot be greater than 1, as this would mean
there are valid configurations that are not grammar-valid, which is contradicted by
the construction of the grammar. In contrast, the closer the sampling error to zero,
the less false samples were drawn.

32 6. Evaluation

Case Study (CO) (V) (G) (V) vs (G) SE

7-zip 44 68 640 68 640 1 0
BerkeleyDB 18 2 560 2 560 1 0
Dune 32 2 304 2 352 0.98 0.026
Hipacc 54 13 485 28 560 0.47 1.338
Java GC 39 193 536 193 536 1 0
LLVM 11 1 024 1 024 1 0
lrzip 19 432 432 1 0
Polly 40 60 000 60 000 1 0
vpxenc 42 216 000 216 000 1 0
x264 16 1 152 1 152 1 0

Figure 6.1: Overview of all used case studies with the number of configuration
options (CO), the number of valid configurations (V), the number of grammar-
valid configurations (G) and the ratio between number of valid configurations and
grammar-valid configurations (V) vs (G), as well as the sampling error (SE)

There are two main observations: The number of grammar-valid configurations is
equal to the number of valid configurations for all but two case studies, i.e., for the
case studies Dune and Hipacc the set of grammar-valid configurations is a superset of
the set of valid configurations. Since all configuration options in our case studies are
binary options, the number of possible configurations is 2|CO|, which means, that the
number of grammar-valid configurations is much smaller as the number of possible
configurations for all case studies.

We notice, that all case studies where the number of grammar-valid configurations
equals the number of valid configurations have a sampling error of zero.

Discussion

From the 8 case studies, where the number of grammar-valid configurations equals
the number of valid configurations and the sampling error equals zero, we conclude
that our grammar-based approach is able to cast hierarchical structures of the vari-
ability model well into a context-free grammar. It is worth to note, that all 8 case
studies do not contain cross-tree constraints, i.e., constraints between nodes that
do not share their parent. Both other case studies, i.e., Dune and Hipacc, contain
cross-tree constraints. We notice that our approach cannot cast a context-free gram-
mar from the structure of cross-tree constraints. For the case study with the largest
over-approximation of valid configurations, i.e., Hipacc, we see that the space of
grammar-valid configurations is about twice the size of the space of valid configura-
tions. In contrast, the size of the grammar-valid configuration space is way smaller
than the size of all possible configurations in that case, i.e., 28 560 grammar-valid
configurations vs. 254 possible configurations. Over-approximations of the valid
configuration space by the grammar-valid configurations are caused by cross-tree
constraints. For this reason, the over-approximation is worse for more restrictive
cross-tree constraints, e.g., in Dune we have less restrictive cross-tree constraints as
in Hipacc which means the over-approximation in the Dune case study is closer to
the valid configurations as in the Hipacc case study.

6.2. Sample Set Uniformness 33

Both case studies, where we have a sampling error unequal to zero, we encounter a
correlation between the sampling error and the ratio between valid configurations
and grammar-valid configurations. That means, we can decrease the sampling error
by closing the gap between valid configurations and grammar-valid configurations.

We conclude that our approach produces a grammar where the set of grammar-valid
configurations is drastically reduced in contrast to the set of possible configurations.
The sampling error to produce a sample set is strongly correlated to the ratio be-
tween valid configurations and grammar-valid configurations. In the presence of
cross-tree constraints we are not able to cast a context-free grammar that meets all
constraints from the variability model, which increases the sampling error. On the
contrary, without cross-tree constraints we are able to cast a context-free grammar
that represents the same configuration space as the variability model, which means
that the sampling error equals zero.

6.2 Sample Set Uniformness

In this section, we evaluate the uniformness of the created sample sets from t-wise,
solver-based, randomized solver-based, distance-based, grammar-based, and random
sampling. We first depict the probability distribution of configurations for sample
sets of different sizes. Then, we perform statistical tests to evaluate if the sample
sets can be considered uniform, we use these tests to answer RQ2.1: How many
invalid configurations are drawn by the grammar-based sampling strategy?

Observation

In Figure 6.2, we show the probability distribution of all configurations to be drawn
as a sample in a sample set on three different sizes and across 100 random seeds each.
We show the probability distribution of all configurations from the BerkeleyDB case
study to appear in a sample set created by the different sampling strategies. We
split the plot into three subplots, parted by the size of the underlying sample sets.
The sample set sizes are determined by t-wise sampling for t = 1, t = 2, t = 3 and
are pictured in Figure 6.2a, Figure 6.2b, and Figure 6.2c, respectively.

We see in all three plots that in the sample sets from t-wise, solver-based, randomized
solver-based, and distance-based sampling a lot of configurations are not present,
i.e., have a probability of 0. For grammar-based and random sampling, which share
a quite similar distribution, this is only the case for the sample sets of t = 1.How
many invalid configurations are drawn by the grammar-based sampling strategy?
Note that the characteristics of violin plots lead to negative data points in Figure 6.2
although there are no negative probabilities in our results. This behaviour occurs
due to the estimation functions which fit the violin around our data, including many
zeros for all configurations that are not present in any sample set. We added in all
plots a dashed line to indicate where the expected probability to draw a configuration
lies, i.e., 1

|V | where |V | stands for the number of valid configurations.

In Figure 6.3, we provide the results of the Kolmogorov Smirnov test. The columns
represent the different sampling strategies, with 3 different sample set sizes, and the
rows represent the case-studies. Each entry in the table represents the number of

34 6. Evaluation

t-wise

solver-based

randomized solver-based

distance-based

grammar-based
random

sampling strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
[%

]
1e 3

uniform baseline

(a) sample set size t=1

t-wise

solver-based

randomized solver-based

distance-based

grammar-based
random

sampling strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

[%
]

1e 3
uniform baseline

(b) sample set size t=2

t-wise

solver-based

randomized solver-based

distance-based

grammar-based
random

sampling strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

[%
]

1e 3
uniform baseline

(c) sample set size t=3

Figure 6.2: Probability distribution over configurations to appear in a sample set
from different sampling strategies over 100 random seeds and 3 different sample set
sizes of the BerkeleyDB case study

sample sets where the uniformness hypothesis is not rejected by the Kolmogorov
Smirnov test (p >= 0.05). In our case the best result is 100, since we sampled for
each case study, with each sample size, and every sampling strategy on 100 seeds.
Note that the t-wise sampling strategy does not rely on random seeds, thus, they
produce for a sample size always the same sample set, which means that we get
either 100 or 0 in our table for t-wise sampling. Since we set random sampling as
our baseline, we try to reach the same or better results with our sampling strategies
as the random sampling provides. Therefore, we colored all numbers in green that
are higher or equal than the number of positive results from the Kolmogorov Smirnov
test on the random sample sets.

Discussion

In Figure 6.2, we see that grammar-based sampling behaves similar to random sam-
pling. Most of the configurations have the same probability to appear in a sample
set, with rising number of samples, whereas on low number of samples we see that
a large number of configurations is not drawn at all and most of the others share
the same probability. On all other sampling strategies this trend is, at best, much

6.3. Sampling Strategy Performance 35

t-wise solver-based randomized solver-based distance-based grammar-based random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

7-zip 0 0 0 20 1 0 4 100 0 23 0 0 96 96 92 94 96 97

BerkeleyDB 0 0 0 68 0 1 100 0 0 38 86 79 93 95 98 99 98 99

Dune 100 100 100 96 95 99 65 100 100 99 97 100 94 94 99 92 99 100

Hipacc 0 0 0 36 3 1 23 0 0 27 0 0 94 96 98 94 99 97

Java GC 0 0 100 91 23 1 1 0 0 19 0 0 99 95 91 96 98 91

LLVM 0 0 0 0 11 29 0 0 0 44 38 7 95 95 98 91 94 96

lrzip 0 0 0 80 74 94 0 0 0 88 52 14 97 95 100 99 100 100

Polly 100 100 100 92 96 90 97 93 98 92 94 97 94 95 94 97 96 94

vpxenc 0 0 0 1 3 0 0 76 0 17 12 0 98 96 95 96 95 94

x264 100 0 0 1 0 0 99 100 0 88 96 99 95 95 98 98 96 96

Figure 6.3: Results of the Kolmogorov Smirnov test if the distribution of the sample
set is similar to a uniform distribution for 100 random seeds on different sampling
strategies

slower. When we take a look at Figure 6.3, we detect that for all case studies the
results of grammar-based sampling are compatible to the results of random sam-
pling. However, the results of all other strategies are quite inconsistent, on some
case study they produce many sample sets that are considerable uniform, on others
they do not produce any sample set that is considerable uniform.

6.3 Sampling Strategy Performance

In this section, we will discuss RQ2.2: What is the execution time of the different
sampling strategies?

Observation

In Figure 6.4, we listed the mean sampling time of t-wise, solver-based, randomized
solver-based, distance-based, and grammar-based sampling on 10 real-world case-
studies. Each column contains the mean execution time of 3 sample sizes for every
case study. We used the sample sizes of the sample sets generated with t-wise
sampling and t = 1, t = 2, t = 3 and 100 means that all sample sets are uniform.
However t-wise sampling does not rely on randomness and thus it only produces 1
sample set per sample set size and case study, which means it gets only 100 or 0 in
our table.

We highlighted the least mean sampling time in green, iff the Mann-Whitney U test
reported a significant difference (p < 0.05) to the mean sampling time of the other
sampling strategies for that case study and sample size. We do not differentiate
between mean sampling times that are smaller than 1s, because of frequency scaling
and timer interrupts of the CPU. As a consequence, we do not highlight a sampling
time < 1s, if at least one other sampling strategy has also a mean sampling time <
1s.

In Figure 6.4, we see that the solver-based sampling strategy needs less than 1s to
produce a sample set or is significantly faster than all other sampling strategies on
every case study. The randomized solver-based strategy is always slower than all
other strategies. Grammar-based and t-wise sampling perform similar to each other

36 6. Evaluation

t-wise solver-based henard distance-based grammar-based

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

7-zip <1s 3.28s 37.03s <1s <1s 10.20s 5.75s 23m 32s 18h 14m <1s 6.92s 2m 29s <1s 5.22s 40.42s

BerkeleyDB <1s <1s 1.29s <1s <1s <1s <1s 6.35s 93.61s <1s <1s <1s <1s <1s 2.93s

Dune <1s 1.29s 9.71s <1s <1s <1s 1.21s 2m 13s 39m 35s <1s <1s 1.41s <1s 3.03s 13.08s

Hipacc <1s 5.58s 72.77s <1s <1s 13.61s 14.38s 1h 11m 35h 36m <1s 8.87s 93.91s 1.41s 24.74s 2m 57s

Java GC <1s 2.89s 30.32s <1s <1s 8.20s 2.97s 11m 28s 10h 45m <1s 9.23s 3m 53s <1s 4.03s 30.64s

LLVM <1s <1s <1s <1s <1s <1s <1s 1.02s 8.98s <1s <1s <1s <1s <1s 1.27s

lrzip <1s <1s <1s <1s <1s <1s <1s 7.43s 47.56s <1s <1s <1s <1s 1.08s 2.69s

Polly <1s 2.90s 34.70s <1s <1s 3.41s 2.44s 6m 26s 4h 17m <1s 7.74s 2m 14s <1s 4.02s 25.88s

vpxenc <1s 3.80s 45.84s <1s <1s 10.69s 3.28s 14m 18s 15h 23m <1s 61.20s 36m 44s <1s 4.19s 33.94s

x264 <1s <1s <1s <1s <1s <1s <1s 2.41s 24.82s <1s <1s <1s <1s <1s 1.67s

Figure 6.4: Execution time of t-wise, solver-based, randomized solver-based,
distance-based, and grammar-based sampling strategies on 10 variability models
of real-world software systems

in terms of mean sampling time. However, we note that the mean sampling time
of the grammar-based sampling strategy for Hipacc is significantly higher than the
mean sampling time of t-wise sampling for that case study. Distance-based sampling
performs similar to t-wise and grammar-based sampling in most of the case-studies,
but is significantly slower on some case-studies, i.e., the vpxenc case study.

Discussion

In the absence of cross-tree constraints, we detect that the grammar-based sampling
strategy is competitive in terms of execution time with the solver-based sampling
strategy, i.e., the fastest sampling strategy. In the presence of cross-tree constraints,
i.e., the Hipacc case study, the grammar-based sampling strategy needs significantly
more time than the solver-based and t-wise strategy. However, the execution time
of grammar-based sampling lies below 10 minutes for all case studies and sample set
sizes in our evaluation.

6.4 Prediction Error

In this section, we will discuss RQ3: What influence has the chosen sampling strategy
on the accuracy of performance prediction?

Observation

In Figure 6.5, we listed the mean prediction error of t-wise, solver-based, randomized
solver-based, distance-based, and grammar-based sampling on 10 real-world case-
studies. Each column contains the mean prediction error of 3 sample sizes for every
case study. We used the sample sizes of the sample sets generated with t-wise
sampling and t = 1, t = 2, t = 3. In the last row we give the mean over all mean
prediction errors over all 10 case-studies.

We highlighted the least mean prediction error in green, iff the Mann-Whitney U
test reported a significant difference (p < 0.05) to the mean prediction error of the
other sampling strategies for that case study and sample size.

6.4. Prediction Error 37

t-wise solver-based henard distance-based grammar-based random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

7-zip 71.7% 44.7% 24.7% 91.0% 62.7% 20.6% 91.1% 62.9% 19.5% 112.1% 18.0% 15.5% 81.8% 11.7% 9.2% 84.4% 13.3% 10.4%

BerkeleyDB 126.8% 7.1% 1.1% 50.3% 47.2% 42.7% 46.7% 40.4% 11.1% 533.8% 9.2% 4.9% 297.6% 6.5% 3.3% 297.5% 5.1% 3.4%

Dune 20.7% 9.9% 10.4% 43.9% 15.0% 10.2% 65.0% 21.1% 10.7% 32.8% 10.5% 9.5% 3.2% 7.4% 9.0% 20.4% 10.1% 9.3%

Hipacc 61.9% 19.3% 17.2% 61.3% 15.2% 12.1% 33.7% 12.2% 10.4% 39.0% 11.0% 10.6% 5.3% 9.1% 9.6% 26.6% 10.0% 10.0%

Java GC 38.0% 25.6% 14.6% 57.2% 75.8% 40.2% 43.0% 33.3% 26.3% 85.6% 13.5% 10.5% 72.6% 11.1% 9.2% 70.3% 10.9% 9.2%

LLVM 8.3% 4.7% 2.5% 8.8% 3.5% 2.1% 4.7% 4.0% 4.2% 5.4% 2.8% 2.2% 5.2% 2.2% 2.0% 5.8% 2.2% 2.1%

lrzip 21.6% 2.5% 2.7% 46.8% 32.7% 19.5% 141.2% 55.1% 11.3% 89.6% 16.5% 4.2% 15.7% 13.7% 7.5% 224.3% 9.1% 3.1%

Polly 22.9% 4.4% 3.3% 20.3% 14.6% 14.2% 25.1% 13.8% 14.5% 31.2% 6.7% 10.3% 1.8% 6.7% 5.8% 30.3% 6.9% 5.8%

vpxenc 207.3% 148.4% 41.5% 641.4% 347.0% 91.8% 728.3% 501.9% 428.8% 329.8% 68.9% 48.7% 399.9% 47.9% 42.4% 245.4% 50.2% 42.2%

x264 10.2% 6.4% 1.7% 21.0% 20.8% 21.3% 14.9% 8.6% 11.1% 14.5% 6.4% 5.6% 15.1% 4.2% 3.7% 16.4% 4.0% 3.7%

Mean 58.9% 27.3% 12.0% 104.2% 63.5% 27.5% 119.4% 75.3% 54.8% 127.4% 16.4% 12.2% 89.8% 12.1% 10.2% 102.2% 12.2% 9.9%

Figure 6.5: Error rates of t-wise, solver-based, randomized solver-based, distance-
based, grammar-based, and random sampling for multiple linear regression on 10
variability models of real-world software systems

In Figure 6.5, we see that on small sample sets t-wise sampling performs significantly
better than the other sampling strategies on some case-studies. With an increasing
number of samples per sample set the mean prediction error decreases for all sam-
pling strategies. However, the mean prediction error decreases faster for random
and grammar-based sampling.

Discussion

In a black-box environment we cannot make assumptions on the influence of single
configuration options on the performance of the software product. As a consequence,
uniform sampling strategies are used to produce the most accurate performance pre-
diction models. In Figure 6.5, we see that grammar-based sampling has a similar
prediction error as random sampling and with increasing sample set size the predic-
tion error decreases faster than for other, non-uniform, strategies.

We see that the prediction error for sample sets with t = 1 from t-wise is lower than
the prediction error for grammar-based or random sampling. Although random
sampling is the baseline for black-box sampling, we note that if the sample set
consists of only few samples, i.e., about the number of configuration options, t-wise
sampling produces sample sets of higher quality. We suspect that this is due to the
fact that t-wise sampling ensures that every configuration option is present in the
sample set, whereas sample sets that are created with random or grammar-based
sampling might not contain every configuration option at least once in small sample
sets. As a consequence of that, the machine learning algorithm is not able to include
the influence of the missing configuration option, and therefore the prediction error
might increase significantly.

To conclude, we see that for small sample sets, where the sample set size is similar
to the number of configuration options, t-wise sampling is superior to all other state-
of-the-art sampling strategies, including grammar-based sampling. However, if the
sample set size increases the grammar-based sampling strategy performs close to
the baseline, and produces higher quality sample sets as all other state-of-the-art
sampling strategies.

38 6. Evaluation

7. Validity

In this chapter we discuss the validity of our evaluation from Chapter 6. We split
this discussion into two main parts — internal and external validity.

7.1 Internal Validity

In this section, we talk about internal threats to the validity of our evaluation results.
For each threat we also explain what we did to prevent it from impacting our results.

One threat to the validity of our results for the performance measurements are
interrupts from the OS and other external influences on performance. To minimize
such influences we choose a minimal OS for our benchmark cluster. Additionally we
made sure that all time measurements were done isolated on single cluster cores.

An other threat might be a bug in our implementation of the grammar-based sam-
pling strategy. To find and fix all bugs in the implementation we tested our tool
in-depth and checked the produced grammar against the variability model. More-
over, we monitored the conversion from index to configuration and vice-versa to
verify its behaviour against our theory. Furthermore, we call a SAT-solver to check
each sample if it is a valid configuration, to sort out invalid configurations.

To strengthen the internal validity of the used machine-learning, we used for two
of the machine-learning algorithms public available python libraries to reduce the
likelihood of implementation bugs on our side.

The used SAT-solver might also be a threat to validity of the evaluation results, as
different solver use different search heuristics to break ties and identify solutions.
However, this does only apply to sampling strategies that rely on SAT-solver to
identify configurations as samples, and our approach only relies on SAT-solver to
verify that a sample is a valid configuration. To guarantee the correct behaviour of
the implemented Z3 solver we compared all results to a second SAT-solver.

40 7. Validity

7.2 External Validity

In this section, we explain what we did to improve external validity.

To oppose the possibility that our sampling strategy only produces good sampling
sets on specific variability models we have chosen 10 different variability models
of real-world software systems from different domains. The configuration spaces of
these software systems range from 432 to 216 000 valid configurations and 11 to 54
configuration options.

Another threat to validity is the selection of the machine-learning technique. We
used three different kinds of machine-learning techniques to minimize the influence of
intrinsic behaviour of each single machine-learning algorithm to strengthen external
validity.

8. Conclusion and Future Work

Measuring all configurations of a software system is almost always infeasible. There-
fore, small sets of sample configurations are used to measure some configurations and
predict the performance of all other configurations. The quality of the prediction
depends heavily on the chosen samples in the sample set. Existing sampling strate-
gies try to generate pseudo-random sample sets, because true random sampling is
very expensive. In this thesis, we proposed a cheap sampling strategy to produce
random samples.

In our approach we have presented a new theoretical approach to convert variability
models into a context-free grammar, by preserving all hierarchical structures of the
variability model. After this, we proposed an algorithm to convert integers to words
in the context-free language. Each word in the context-free language represents
a configuration in the variability model, iff all cross-tree constraints are fulfilled.
To produce a sample, we check whether the drawn word violates any cross-tree
constraints from the variability model. If it does, we discard the word and draw a
new one until we have drawn a valid sample. We repeat this until we have drawn the
given number of samples. To conclude our approach, we showed that our algorithm
produces uniform samples.

In the evaluation, we visualized the distribution of all produced sample sets for one
variability model to compare all sampling strategies to a random sampling approach,
i.e., sampling randomly from the whole population. We then used statistical tests
on all produced sample sets for all 10 variability models to check to which extend
the different sampling strategies produce considerably uniform sample sets. Also, we
showed the error rate on 10 real-world variability models and compared the perfor-
mance as well as quality of our approach to 4 state-of-the-art sampling algorithms.
We see that our approach is almost competitive with state-of-the-art SMT-solver,
i.e. Z3, regarding the time that is needed to produce a sample set, but for sample
set sizes t = 2 and t = 3 it outperforms all 4 state-of-the-art approaches in terms of
quality of the performance prediction models that are built from the sample sets.

In the future we have to face two main challenges that we have not addressed in
this thesis. First, we have to evaluate the scalability of grammar-based sampling on

42 8. Conclusion and Future Work

larger real-world variability models. Therefore, we need to find variability models
that can be utilized in SPL Conqueror, especially variability models with more cross-
tree constraints. The second challenge is to develop a system to encode all kinds of
cross-tree constraints in our grammar, such that the grammar-based configuration
space is always equal to the valid configuration space.

A. Appendix

We provide all data and the used version of SPL Conqueror in github repositories.
The version of SPL Conqueror is available on https://github.com/Kallistos/SPLConqueror.
All data and evaluation scripts are available on https://github.com/Kallistos/Distance-
Based Data.

t-wise solver-based henard distance-based grammar-based random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

7-zip 62.2% 31.5% 7.6% 92.0% 118.9% 41.4% 98.9% 105.0% 32.6% 239.5% 26.9% 11.8% 148.5% 19.7% 10.2% 150.2% 17.9% 9.3%

BerkeleyDB 70.9% 25.1% 2.5% 57.7% 47.2% 38.9% 47.7% 54.0% 11.1% 307.6% 6.8% 0.7% 327.9% 12.1% 0.7% 326.6% 7.9% 0.6%

Dune 16.1% 11.0% 5.6% 28.9% 14.4% 6.5% 64.9% 16.4% 6.9% 25.2% 9.8% 5.4% 17.4% 9.5% 5.2% 17.5% 9.9% 5.3%

Hipacc 22.9% 14.8% 6.5% 48.3% 12.9% 5.1% 39.9% 8.3% 2.1% 29.3% 8.4% 3.1% 21.0% 7.9% 1.9% 20.2% 8.9% 2.1%

Java GC 40.0% 26.2% 5.0% 57.4% 59.5% 31.8% 40.0% 34.9% 23.0% 69.4% 7.9% 3.4% 78.8% 6.4% 3.6% 77.8% 6.4% 3.5%

LLVM 9.7% 8.6% 6.3% 8.6% 5.2% 4.1% 4.9% 4.1% 4.0% 5.1% 4.3% 3.9% 5.4% 4.3% 3.9% 5.4% 4.2% 3.9%

lrzip 39.0% 10.8% 3.2% 54.1% 26.4% 16.5% 110.0% 55.7% 11.7% 67.6% 21.8% 2.6% 148.8% 17.4% 2.7% 180.0% 16.7% 3.1%

Polly 19.3% 3.5% 3.4% 18.2% 8.6% 4.0% 15.3% 11.3% 6.2% 24.4% 5.8% 4.6% 25.8% 3.8% 2.4% 25.4% 3.3% 2.0%

vpxenc 187.9% 21.9% 6.0% 674.9% 306.5% 39.7% 786.9% 1014.3% 272.4% 312.2% 22.2% 4.8% 275.8% 10.6% 3.2% 251.8% 10.6% 3.6%

x264 21.9% 3.8% 1.4% 29.3% 33.6% 37.0% 16.7% 10.5% 10.2% 23.0% 4.9% 1.4% 21.3% 3.5% 0.6% 20.7% 4.0% 0.5%
Mean 49.0% 15.7% 4.7% 106.9% 63.3% 22.5% 122.5% 131.4% 38.0% 110.3% 11.9% 4.2% 107.1% 9.5% 3.4% 107.6% 9.0% 3.4%

Figure A.1: Error rates of t-wise, solver-based, randomized solver-based, distance-
based, grammar-based, and random sampling for random forests on 10 variability
models of real-world software systems

t-wise solver-based henard distance-based grammar-based random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

7-zip 56.9% 54.1% 81.8% 111.7% 108.8% 82.5% 54.9% 53.6% 53.5% 154.8% 87.1% 92.5% 94.9% 91.1% 88.5% 92.3% 90.1% 88.4%

BerkeleyDB 61.3% 51.1% 43.7% 72.0% 55.3% 60.6% 58.4% 53.8% 52.1% 204.6% 75.7% 50.9% 193.8% 96.0% 75.7% 186.5% 90.9% 74.4%

Dune 17.4% 17.0% 16.8% 19.2% 18.2% 17.2% 32.8% 17.1% 16.8% 18.9% 17.7% 17.3% 17.6% 17.3% 17.1% 17.6% 17.3% 17.1%

Hipacc 24.8% 15.6% 13.5% 56.1% 17.6% 13.6% 26.2% 14.7% 12.9% 31.2% 14.7% 13.6% 24.5% 13.9% 12.7% 25.0% 14.0% 12.8%

Java GC 47.0% 37.3% 32.8% 55.4% 55.1% 45.5% 41.5% 39.1% 33.6% 53.1% 42.5% 40.7% 51.3% 37.2% 37.7% 49.4% 37.2% 37.7%

LLVM 11.7% 9.2% 7.4% 8.8% 6.0% 4.4% 6.7% 5.2% 4.3% 6.5% 5.0% 4.3% 6.4% 5.1% 4.2% 6.4% 5.1% 4.1%

lrzip 59.3% 62.6% 136.6% 86.3% 66.2% 103.2% 135.2% 122.3% 144.2% 61.7% 73.3% 102.3% 120.4% 132.4% 134.9% 125.9% 127.3% 132.4%

Polly 41.2% 21.4% 24.8% 29.5% 26.8% 23.0% 29.4% 27.1% 22.6% 29.7% 26.6% 23.3% 29.3% 26.8% 24.0% 29.4% 26.8% 23.7%

vpxenc 133.9% 68.2% 53.8% 818.0% 346.6% 134.8% 1393.3% 1463.6% 542.3% 304.8% 100.5% 78.6% 239.1% 93.9% 76.5% 246.3% 94.1% 76.7%

x264 33.4% 32.8% 30.6% 45.5% 42.6% 42.4% 35.1% 33.0% 31.8% 36.2% 34.9% 30.0% 35.8% 33.7% 30.4% 35.9% 33.8% 30.7%
Mean 48.7% 36.9% 44.2% 130.3% 74.3% 52.7% 181.4% 182.9% 91.4% 90.1% 47.8% 45.4% 81.3% 54.7% 50.2% 81.5% 53.7% 49.8%

Figure A.2: Error rates of t-wise, solver-based, randomized solver-based, distance-
based, grammar-based, and random sampling for support vector machines on 10
variability models of real-world software systems

https://github.com/Kallistos/SPLConqueror
https://github.com/Kallistos/Distance-Based_Data
https://github.com/Kallistos/Distance-Based_Data

44 A. Appendix

Mann-Whitney U test [p value (Â12)]

t-wise solver-based henard distance-based grammar-based random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

10−21 10−81 10−37 10−80 10−51 10−16
t-wise

(0.62) (0.75) (0.66) (0.74) (0.69) (0.60)

solver-based

10−12 10−03 10−08
henard

(0.59) (0.54) (0.57)

10−48 10−11 10−203 10−92 10−229 10−131
distance-based

(0.69) (0.59) (0.89) (0.76) (0.92) (0.81)

10−40 10−147 10−65 10−74 10−259 10−162 10−41 10−282 10−209 10−69 10−57 10−46 10−39 10−04
grammar-based

(0.67) (0.83) (0.72) (0.73) (0.94) (0.85) (0.67) (0.96) (0.90) (0.73) (0.71) (0.68) (0.67) (0.54)

10−143 10−56 10−12 10−253 10−149 10−285 10−193 10−08 10−47 10−40
random

(0.83) (0.70) (0.59) (0.94) (0.84) (0.97) (0.88) (0.57) (0.69) (0.67)

Figure A.3: One-sided Mann-Whitney U test results whether the sampling strategy
of the row has a significantly lower error rate than the sampling strategy of the
column for multiple linear regression

Mann-Whitney U test [p value (Â12)]

t-wise solver-based henard distance-based grammar-based random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

10−26 10−69 10−55 10−32 10−31 10−58 10−46 10−41
t-wise

(0.64) (0.73) (0.70) (0.65) (0.65) (0.71) (0.68) (0.67)

10−03
solver-based

(0.54)

10−13 10−06 10−07 10−23 10−19 10−17
henard

(0.59) (0.56) (0.56) (0.63) (0.61) (0.61)

10−91 10−69 10−213 10−146 10−133 10−117
distance-based

(0.76) (0.73) (0.90) (0.83) (0.82) (0.80)

10−139 10−94 10−238 10−177 10−160 10−146 0.04 10−13 10−15
grammar-based

(0.82) (0.77) (0.93) (0.87) (0.85) (0.83) (0.52) (0.59) (0.60)

10−130 10−96 10−236 10−177 10−156 10−145 0.03 10−10 10−16
random

(0.81) (0.77) (0.92) (0.87) (0.84) (0.83) (0.52) (0.58) (0.60)

Figure A.4: One-sided Mann-Whitney U test results whether the sampling strategy
of the row has a significantly lower error rate than the sampling strategy of the
column for random forests

Mann-Whitney U test [p value (Â12)]

t-wise solver-based henard distance-based grammar-based random

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

10−27 10−55 10−04 10−41 10−05 10−34 0.01 10−34 10−03 10−37
t-wise

(0.64) (0.70) (0.54) (0.67) (0.55) (0.66) (0.53) (0.66) (0.53) (0.66)

solver-based

10−10 10−05 10−09 10−13 10−09 10−14 10−13
henard

(0.58) (0.55) (0.57) (0.59) (0.58) (0.60) (0.59)

10−16 10−10 0.03 10−03
distance-based

(0.60) (0.58) (0.52) (0.54)

10−21 10−07 10−07
grammar-based

(0.62) (0.57) (0.56)

10−20 10−07 10−06
random

(0.62) (0.57) (0.56)

Figure A.5: One-sided Mann-Whitney U test results whether the sampling strategy
of the row has a significantly lower error rate than the sampling strategy of the
column for support vector machines

45

46 A. Appendix

Bibliography

[1] Akers, S. B. (1978). Binary Decision Diagrams. IEEE Transaction on Computers,
27(6):509516. (cited on Page 9)

[2] Apel, S., Batory, D., Kstner, C., and Saake, G. (2013). Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer Publishing Company.
(cited on Page 3)

[3] Barrett, C. and Tinelli, C. (2018). Satisfiability Modulo Theories, pages 305–343.
Springer International Publishing. (cited on Page 10)

[4] Bastian, P., Blatt, M., Dedner, A., Dreier, N., Engwer, C., Fritze, R., Gräser,
C., Kempf, D., Klöfkorn, R., Ohlberger, M., and Sander, O. (2019). The DUNE
Framework: Basic Concepts and Recent Developments. CoRR, abs/1909.13672.
(cited on Page 23)

[5] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A Training Algorithm for
Optimal Margin Classifiers. In Proceedings of the Workshop on Computational
Learning Theory, COLT 92, pages 144–152. Association for Computing Machin-
ery. (cited on Page 7)

[6] Bryant, R. (1986). Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677–691. (cited on Page xi and 10)

[7] Darling, D. A. (1957). The kolmogorov-smirnov, cramer-von mises tests. The
Annals of Mathematical Statistics, 28(4):823–838. (cited on Page 29)

[8] de Moura, L. M. and Bjørner, N. (2008). Z3: An Efficient SMT Solver. In Ra-
makrishnan, C. R. and Rehof, J., editors, Tools and Algorithms for Construction
and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer. (cited on Page 10)

[9] Henard, C., Papadakis, M., Harman, M., and Le Traon, Y. (2015). Combining
Multi-Objective Search and Constraint Solving for Configuring Large Software
Product Lines. In Proceedings of the International Conference on Software En-
gineering (ICSE), ICSE 15, page 517528. IEEE Press. (cited on Page 4, 6, 9, 11,

and 21)

[10] Johansen, M. F., Haugen, O., and Fleurey, F. (2012). An Algorithm for Gener-
ating T-Wise Covering Arrays from Large Feature Models. In Proceedings of the
International Software Product Line Conference (SPLC), SPLC 12, page 4655.
Association for Computing Machinery. (cited on Page 4, 6, and 12)

48 Bibliography

[11] Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., and Apel, S. (2019).
Distance-Based Sampling of Software Configuration Spaces. In Proceedings of the
International Conference on Software Engineering (ICSE), ICSE 19, pages 1084
– 1094. IEEE Press. (cited on Page xi, 6, 11, 12, and 21)

[12] Kam, H. T. (1995). Random decision forest. In Proceedings of the International
Conference on Document Analysis and Recognition, volume 1416, pages 278–282.
Montreal, Canada, August. (cited on Page 7)

[13] Kruskal, W. H. and Wallis, W. A. (1952). Use of Ranks in One-Criterion
Variance Analysis. Journal of the American Statistical Association, 47(260):583–
621. (cited on Page 30)

[14] Lattner, C. and Adve, V. (2004). LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO). (cited on Page 24)

[15] Mann, H. B. and Whitney, D. R. (1947). On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other. The Annals of Math-
ematical Statistics, 18(1):50–60. (cited on Page 30)

[16] Marijan, D., Gotlieb, A., Sen, S., and Hervieu, A. (2013). Practical Pairwise
Testing for Software Product Lines. In Proceedings of the International Software
Product Line Conference (SPLC), SPLC 13, pages 227–235. Association for Com-
puting Machinery. (cited on Page 4, 6, 12, and 21)

[17] Marten, A. (2018). A Comparison Study of Domain Constraint Solver for Model
Counting. Master’s thesis, University of Passau. (cited on Page 9)

[18] Oh, J., Batory, D., Myers, M., and Siegmund, N. (2017a). Finding Near-
Optimal Configurations in Product Lines by Random Sampling. In Proceedings
of the Joint Meeting on Foundations of Software Engineering (ESEC/FSE), ES-
EC/FSE 2017, pages 61–71. Association for Computing Machinery. (cited on

Page 9)

[19] Oh, J., Batory, D. S., Myers, M., and Siegmund, N. (2017b). Finding Product
Line Configurations with High Performance by Random Sampling. (cited on

Page 9)

[20] Shubham, Sharma and Rahul, Gupta and Subhajit, Roy and Kuldeep, S. Meel
(2018). Knowledge Compilation meets Uniform Sampling. In Barthe, G., Sut-
cliffe, G., and Veanes, M., editors, LPAR. International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, volume 57 of EPiC Series in
Computing, pages 620–636. EasyChair. (cited on Page 10)

[21] Siegmund, N., Grebhahn, A., Apel, S., and Kästner, C. (2015). Performance-
Influence Models for Highly Configurable Systems. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 284–294. Association for Computing Machinery. (cited on Page 3)

Bibliography 49

[22] Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., and
Saake, G. (2012). SPL Conqueror: Toward optimization of non-functional prop-
erties in software product lines. Software Quality Journal, 20(3):487–517. (cited

on Page 6)

[23] Vargha, A. and Delaney, H. D. (2000). A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics, 25(2):101–132. (cited on Page 30)

	Contents
	List of Figures
	1 Introduction
	2 Background
	2.1 Context-free grammar
	2.2 SPL Conqueror
	2.3 Machine-Learning
	2.3.1 Multiple Linear Regression
	2.3.2 Random Forests
	2.3.3 Support Vector Machines

	3 Related Work
	3.1 Random-based approaches
	3.2 Solver-based approaches

	4 Grammar-based Sampling
	4.1 Context-free Grammar
	4.2 Generating Samples

	5 Methodology
	5.1 Research Questions
	5.2 Variability Models
	5.3 Experimental Dependencies
	5.3.1 Independent Variables
	5.3.2 Dependent Variables
	5.3.3 Confounding Factors

	5.4 Operationalization

	6 Evaluation
	6.1 Invalid Drawn Configurations
	6.2 Sample Set Uniformness
	6.3 Sampling Strategy Performance
	6.4 Prediction Error

	7 Validity
	7.1 Internal Validity
	7.2 External Validity

	8 Conclusion and Future Work
	A Appendix
	Bibliography

