
Universität des Saarlandes
MI Fakultät für Mathematik und Informatik

Department of Computer Science

Master’s Thesis

Analyzing Iterative Code
Refinement: Assessing

ChatGPT’s Consistency in
Improving Code Readability

submitted by

Julia Hess (2549454)
on September 30th, 2025

Reviewers

Prof. Dr. Sven Apel (First Examiner)
Prof. Dr. Jilles Vreeken (Second Examiner)

https://www.uni-saarland.de
https://saarland-informatics-campus.de/

iii

Erklärung Statement

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne die Beteili-
gung dritter Personen verfasst habe, und dass ich keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe. Alle Stellen der Arbeit, die wörtlich oder sinnge-
mäß aus Veröffentlichungen oder aus anderweitigen fremden Äußerungen entnommen
wurden, sind als solche kenntlich gemacht. Insbesondere bestätige ich hiermit, dass ich
bei der Erstellung der nachfolgenden Arbeit mittels künstlicher Intelligenz betriebene
Software (z. B. ChatGPT) ausschließlich zur Textüberarbeitung/-korrektur und zur
Code-Vervollständigung und nicht zur Bearbeitung der in der Arbeit aufgeworfenen
Fragestellungen zu Hilfe genommen habe. Alle mittels künstlicher Intelligenz betriebenen
Software (z. B. ChatGPT) generierten und/oder bearbeiteten Teile der Arbeit wurden
kenntlich gemacht und als Hilfsmittel angegeben. Ich erkläre mich damit einverstanden,
dass die Arbeit mittels eines Plagiatsprogrammes auf die Nutzung einer solchen Soft-
ware überprüft wird. Mir ist bewusst, dass der Verstoß gegen diese Versicherung zum
Nichtbestehen der Prüfung bis hin zum Verlust des Prüfungsanspruchs führen kann.

I hereby declare that I have written this thesis independently and without the involvement
of third parties, and that I have used no sources or aids other than those indicated. All
passages taken directly or indirectly from publications or other external sources have
been identified as such. In particular, I confirm that I have used AI-based software (e.g.,
ChatGPT) exclusively for the following permitted sub-tasks: text rewriting/revision
and code completion, and not to address or formulate the main research questions of
the thesis. All parts of the thesis that were generated and/or edited using AI-based
software (e.g., ChatGPT) have been disclosed and documented in accordance with the
documentation requirements. I agree that the thesis may be checked using plagiarism
detection software, including checks for the use of such software. I am aware that any
violation of this declaration may result in failing the examination and lead to losing the
right to be examined.

Saarbrücken,
(Datum Date) (Unterschrift Signature)

Einverständniserklärung (optional)
Declaration of Consent (optional)

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum Date) (Unterschrift Signature)

To my family, friends, and other supporters along the (very long) way

Abstract

Large Language Models (LLMs) such as ChatGPT are increasingly used for automated
code generation and refactoring. While they can produce seemingly well-readable code,
their iterative refinements may exhibit inconsistencies and unpredictable behavior. This
study systematically examines how ChatGPT refines code over multiple iterations,
focusing on evolution patterns, convergence behavior, and the impact of explicit prompt
guidance with a particular focus on code readability.

Our study combines a pilot experiment with a large-scale main experiment based on
221 Java snippets, each systematically varied and refined across five iterations under
three different prompting strategies. We introduce a custom DiffParser that integrates
sequence-based, token-based, and AST-based similarity measures to capture fine-grained
code modifications, enabling the categorization of changes into semantic, syntactic, and
comment-level transformations. The results reveal three main insights: (1) iterative
refinements exhibit an initial phase of substantial restructuring followed by stabilization,
suggesting a convergence tendency; (2) convergence patterns are robust across different
code variants, although the type and distribution of modifications vary; and (3) explicit
prompting toward key readability factors, such as naming or commenting, influences
refinement dynamics but does not fundamentally alter convergence trajectories.

The contribution of this work lies in providing a reusable, LLM-independent framework for
studying code evolution under iterative refinement. This methodological foundation opens
pathways for future research, including comparative analyses across models, systematic
evaluation of additional software quality dimensions such as maintainability or security,
and the exploration of long-term evolutionary dynamics in AI-generated code.

Acknowledgements

I would like to take this opportunity to thank all those who have supported me along the
way: Norman, who accompanied me throughout the many ups and downs of this long
thesis process and during my time as a student assistant at the chair, always offering
encouragement and support. Sven, to whom I owe the confidence and courage to pursue
this degree after a phase of reorientation. My deepest gratitude goes to my family and
friends who have always stood by my side with unwavering support. Finally, I wish to
thank all those who, beyond the lecture halls, have taught me valuable lessons for life.

ix

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1

2 Background 3
2.1 Code Comprehension . 3
2.2 Code Readability Models . 4
2.3 Emergence and Evolution of Large Language Models (LLMs) 5

3 Related Work 7
3.1 LLMs in Software Engineering . 7
3.2 ChatGPT and Programming . 8
3.3 Gap Analysis . 12

4 Methodology 13
4.1 Pilot Experiment . 14

4.1.1 Basic Terminology . 18
4.1.2 Key Factor and Snippet Selection 18
4.1.3 Expectation . 21
4.1.4 Results . 21

4.2 Main Experiment . 25
4.2.1 Research Questions . 25
4.2.2 Snippet Sampling and Data Preprocessing 27
4.2.3 DiffParser: A Tool for Tracking Code Changes 31
4.2.4 Metrics . 35
4.2.5 Analysis Approaches . 38

5 Results 41
5.1 Evolution of Iterative Refinements (RQ1) 41

5.1.1 Absolute Code Metrics Across Iterations (KF0) 41
5.1.2 Overall Change Dynamics Across Refinement Steps (KF0) 43
5.1.3 Pairwise Similarity Analysis Across Refinements (KF0) 45

5.2 Convergence Across Code Variants (RQ2) 47

xi

xii Contents

5.2.1 Baseline: Variant Creation and Differences 47
5.2.2 Absolute Code Metrics Across Iterations (KF1 + KF2) 48
5.2.3 Overall Change Dynamics Across Refinement Steps (KF1 + KF2) 50
5.2.4 Pairwise Similarity Analysis Across Refinements (KF1 + KF2) . . 55

5.3 Impact of Explicitly Emphasizing Key Refinement Factors (RQ3) 59
5.3.1 Absolute Code Metrics Across Iteration under different Prompts . 59
5.3.2 Overall Change Dynamics Across Refinement Steps 61
5.3.3 Pairwise Similarity Analysis Across Refinements (pKF1 / pKF2) . 68
5.3.4 Statistical Analysis . 71
5.3.5 Summary of Findings for RQ3 . 73

5.4 Complete Summary of Key Findings . 74

6 Discussion 75
6.1 Interpretation for RQ1 . 75
6.2 Interpretation for RQ2 . 76
6.3 Interpretation for RQ3 . 77
6.4 Future Work . 78
6.5 Threats to Validity . 80

7 Conclusion 85

List of Figures 85

List of Tables 89

A Appendix 91

Chapter 1

Introduction

The advent of large language models (LLMs) such as ChatGPT has revolutionized the
field of artificial intelligence and natural language processing. These models, powered
by extensive training on diverse datasets, have demonstrated remarkable proficiency in
understanding and generating human language. Among the myriad applications of LLMs,
their potential to enhance software development practices stands out as particularly
impactful.

Code quality and readability are fundamental aspects of software development. Readable
code not only facilitates easier maintenance and debugging but also enhances collaboration
among developers. Code refactoring, the process of restructuring existing code to improve
readability and maintainability without altering its functionality, is a critical aspect
of software engineering. Poorly written code can lead to increased maintenance costs,
reduced developer productivity, and a higher likelihood of bugs and errors. Thus, ensuring
that code meets acceptable standards from its initial generation is crucial.

ChatGPT, with its advanced language understanding capabilities, offers a promising
avenue for both generating and refactoring code. In code generation, ChatGPT can
produce initial versions of code that are clear and maintainable at first sight, hopefully
reducing the need for extensive refactoring. This means that when a programmer
integrates generated code into a project, it should already adhere to acceptable readability
and quality standards.

By leveraging its ability to comprehend and generate natural language, ChatGPT could
assist developers in generating or transforming complex, convoluted code into more
readable and maintainable versions. This would not only enhance code quality but also
contribute to more efficient and effective software development processes.

1

2 Chapter 1 Introduction

Given the rapid growth and adoption of LLMs, exploring ChatGPT’s ability to refactor
code is both timely and relevant. It aligns with the ongoing efforts to integrate AI into
software engineering, ultimately aiming to improve productivity and code quality in the
software development industry.

However, a critical question remains: Does ChatGPT truly have the capability to
refactor code meaningfully? While ChatGPT can generate responses, the practicality
and sensibility of these responses for code refactoring are essential questions for both
research and practice.

The remainder of this thesis is structured as follows: Chapter 2 provides the necessary
background, introducing fundamental concepts and frameworks relevant to this research.
Chapter 3 discusses related work, summarizing existing approaches and highlighting the
gap this study aims to address.Chapter 4 presents the proposed methodology, consisting
of the pilot experiment and the subsequent main experiment. Chapter 5 reports the
findings of these experiments, while Chapter 6 provides a critical discussion, outlines
potential avenues for future work, and addresses threats to validity. Finally, Chapter 7
concludes the thesis by summarizing the key contributions and insights.

Chapter 2

Background

The rapid advancement of artificial intelligence (AI) and large language models (LLMs)
has had a profound impact on software engineering, particularly in the areas of code
comprehension, readability assessment, and automated code generation. This chapter
provides the necessary theoretical and technical foundations for this study by discussing
key concepts related to these topics.

2.1 Code Comprehension

An understanding of source code is crucial in software engineering, as it directly impacts
tasks such as debugging, code review, and refactoring. The term Code Comprehension
refers to the cognitive processes involved in understanding code, a fundamental task in
software engineering. Code comprehension involves cognitive processes such as pattern
recognition, memory retrieval, and abstraction. Research in this area seeks to determine
what factors influence comprehension and how developers interact with code on a cognitive
level [1].

Early studies primarily relied on self-reports and observational methods to assess compre-
hension difficulty [2]. More recent approaches integrate eye-tracking and neuroimaging
techniques (e.g., fMRI and EEG) to gain insights into how programmers process code at a
neural level [3, 4]. These studies suggest that expert programmers rely more on top-down
comprehension, forming hypotheses about a code snippet before verifying details, while
novices adopt a bottom-up approach, building an understanding incrementally [5].

As LLMs continue to improve, their potential to support comprehension extends beyond
textual explanations [6, 7]. This growing role of LLMs in code comprehension underscores

3

4 Chapter 2 Background

the need for a deeper investigation into their effectiveness and limitations, particularly in
the context of automated refactoring.

In the context of this study, it is important to situate this concept within the broader
framework of Understanding Source Code, as it represents a fundamental skill for inter-
preting and working with code, which is directly relevant to the process of refactoring,
and therefore forms the foundation for the refactoring tasks performed by ChatGPT.

2.2 Code Readability Models

A crucial aspect of code comprehension is readability, i.e. the ease with which code can
be understood. Readability is influenced by factors such as variable naming, indentation,
comments, and syntactic simplicity [8, 9]. The development of readability models aims
to quantify and predict how readable a given piece of code is [10, 11].

Traditional readability models were based on heuristic metrics, such as Halstead com-
plexity measures and McCabe’s Cyclomatic Complexity [12]. While these models provide
quantifiable measures of code complexity, they often fail to capture the subjective and
context-dependent nature of readability. Readability is not solely determined by syntactic
complexity but also influenced by individual cognitive factors, programming experience,
and familiarity with coding conventions [13]. As a result, purely heuristic approaches may
misrepresent how developers actually perceive and evaluate code readability. To address
these limitations, machine learning (ML) approaches have been introduced [14, 15].

To predict readability scores, ML-based readability models not only leverage hand-crafted
features, such as line length, identifier complexity, and indentation consistency, but also
leverage large datasets and empirical readability assessments to provide more accurate
and context-aware predictions. More recently, deep learning methods, particularly
transformer-based models such as CodeBERT and GraphCodeBERT, have outperformed
previous approaches by learning semantic representations from large-scale code corpora
[16]. These models integrate syntactic structure with semantic context, improving their
ability to assess code readability.

Beyond static analysis, readability models are now being adapted into integrated devel-
opment environments (IDEs), offering real-time feedback to developers. Additionally,
integrating large language models (LLMs) for readability assessment is an emerging trend,
as these models can refine code suggestions dynamically based on human feedback [17].

Chapter 2 Background 5

2.3 Emergence and Evolution of Large Language Models (LLMs)

The field of natural language processing (NLP) has undergone a rapid transformation
with the advent of LLMs. Early language models relied on n-gram and statistical
methods, gradually evolving into recurrent neural networks (RNNs) and long short-term
memory networks (LSTMs) [18]. The paradigm shift occurred with the introduction of
the Transformer architecture by Vaswani et al. (2017), which laid the foundation for
models such as GPT and BERT [19].

Key milestones in LLM development include:

• GPT-1 (2018): Introduced transformer-based pretraining using large text corpora
[20].

• GPT-2 (2019): Demonstrated coherent long-form text generation with 1.5B
parameters [21].

• GPT-3 (2020): Scaled up to 175B parameters, enabling few-shot learning capa-
bilities [22].

• GPT-4 (2023): Enhanced reasoning, multimodal understanding, and greater
context depth [23].

• GPT-4o (2024) : “Omni” variant with multimodal capabilities (text, image,
audio).

• GPT-5 (2025): Introduced in August 2025 with variants such as GPT-5 Pro,
mini, nano; Goal: more intelligent routing between fast and detailed responses

• Code-Specific Models: Models such as Codex (OpenAI), Code Llama (Meta),
and StarCoder (BigCode) were fine-tuned on code repositories, optimizing their
ability to generate and understand code [24].

The integration of LLMs into software development has led to applications such as code
completion, automatic documentation, and debugging assistance. Current challenges
include mitigating biases, improving efficiency, and developing smaller yet powerful
models that can operate on edge devices. The trajectory of LLM evolution suggests
a future where AI-assisted programming becomes a standard in software engineering,
complementing human expertise rather than replacing it.

Chapter 3

Related Work

3.1 LLMs in Software Engineering

In their paper Towards an Understanding of Large Language Models in Software Engi-
neering Tasks, Zheng et al. [6] provide an extensive investigation into the integration
of Large Language Models (LLMs) in software engineering, categorizing and analyzing
123 relevant research papers. The study emphasizes the growing importance of LLMs in
various software engineering tasks, including code generation, vulnerability detection,
and program repair, highlighting both the potential and current limitations of these
models. Zheng et al. offer a granular breakdown of how LLMs like ChatGPT and Codex
perform across different tasks, noting that while LLMs excel in tasks requiring syntactical
understanding, such as code summarization, they struggle with tasks requiring deep
semantic comprehension, such as complex code generation and vulnerability detection.

In comparison, Hou et al. [7] also conducted a systematic review, focusing on the broader
application of LLMs in software engineering by analyzing 395 research papers published
between January 2017 and January 2024. The review categorizes LLMs based on their
architectures, such as encoder-only, encoder-decoder, and decoder-only models, and
explores their use across a wide range of SE tasks, including code generation, program
repair, and software design. The study highlights the increasing integration of LLMs in
SE, particularly noting the dominance of decoder-only models like GPT and Codex in
tasks requiring code generation and completion. The review also identifies key challenges,
such as the need for better dataset curation and the development of more sophisticated
evaluation metrics, to enhance the effectiveness of LLMs in SE.

Both studies underline the need for further refinement in LLMs, particularly in improving
their understanding of code semantics and reliability in more complex tasks. However,

7

8 Chapter 3 Related Work

Zheng et al. go further by proposing specific categorization schemes and providing
detailed insights into the specific challenges faced by LLMs in software engineering,
offering a more focused perspective on the nuanced performance of LLMs in specific
tasks, which complements Hou et al.’s broader systematic analysis.

These papers provide detailed empirical evidence on the strengths and weaknesses of
LLMs in software engineering, which aligns with the exploration of how effectively
ChatGPT can be employed in code refactoring and improving code quality.

3.2 ChatGPT and Programming

Tian et al. [25] conducted an empirical study to assess ChatGPT’s potential as a
fully automated programming assistant, focusing on three core tasks: code generation,
program repair, and code summarization. The study revealed that while ChatGPT
excels in generating correct code for common programming problems, it struggles with
generalizing to new, unseen challenges. Additionally, the research highlighted that
ChatGPT’s performance in program repair is competitive but limited by its attention
span and the effectiveness of provided problem descriptions. The model demonstrated
an unexpected capability in summarizing code, accurately identifying the intended
functionality of both correct and incorrect code snippets. These findings suggest that
while ChatGPT shows promise as a programming assistant, especially in aiding code
comprehension and fixing, its current limitations in handling novel problems and providing
consistent repair solutions indicate that further refinement is necessary.

Jin et al. [26] conducted an empirical evaluation of ChatGPT’s effectiveness in supporting
developers, focusing on code generation. Their study analyzed interactions from the
DevGPT dataset, comprising real-world developer conversations involving ChatGPT.
The findings reveal that while ChatGPT is frequently used for generating code, its output
is typically more suited for demonstrating concepts or providing documentation examples
rather than being production-ready. The study highlights that generated code often
requires significant modifications before integration into production, and the tool is most
effective in contexts where developers request improvements or additional context rather
than entirely new code generation. This research underscores the current limitations
of ChatGPT in practical software development and emphasizes the need for further
refinement before LLMs like ChatGPT can be fully integrated into modern development
workflows.

Liu et al. [27] present a comprehensive empirical assessment of ChatGPT’s code genera-
tion capabilities, focusing on correctness, complexity, and security. The study evaluates

Chapter 3 Related Work 9

ChatGPT’s performance across 728 algorithm problems in five programming languages
and 18 Common Weakness Enumeration (CWE) scenarios. The findings reveal that while
ChatGPT is more effective at generating functionally correct code for problems dated
before 2021, its performance significantly drops for more recent problems. The study also
highlights the limitations of ChatGPT’s multi-round fixing process, where attempts to
correct erroneous code often result in increased code complexity without fully resolving
functional issues. Moreover, the research uncovers notable security vulnerabilities in
the code generated by ChatGPT, although the model demonstrates some success in
addressing these vulnerabilities through iterative prompts. These findings underscore
the challenges and potential risks associated with relying on ChatGPT for automated
code generation, particularly in producing secure and maintainable code.

Liu et al. [28] also investigated the quality and reliability of code generated by ChatGPT,
with a focus on characterizing and mitigating common code quality issues. Analyzing
over 4,000 code snippets generated for 2,033 programming tasks in Java and Python,
the study highlights significant challenges in the correctness and maintainability of
ChatGPT-generated code. The findings reveal that nearly half of the generated code
suffers from maintainability issues, such as poor code style and unnecessary complexity.
Moreover, while ChatGPT can address some of these issues when provided with specific
feedback, the model frequently introduces new problems during the refinement process.
The study emphasizes the importance of incorporating advanced feedback mechanisms
to enhance ChatGPT’s ability to generate higher-quality, maintainable code.

This research is particularly relevant to the current study as it outlines the limitations
and potential improvements needed for using ChatGPT in tasks like code refactoring,
directly aligning with the investigation of ChatGPT’s effectiveness in improving code
readability and quality.

Yu et al. [29] critically assess the reliability of ChatGPT in source code-related tasks,
focusing on its self-verification capabilities. The study explores how effectively ChatGPT
can self-verify its own generated code, completed code, and program repairs across
various datasets. The findings reveal significant limitations in ChatGPT’s self-verification
process, including a high rate of erroneous self-assessments, where the model often
incorrectly predicts the correctness, security, and success of its code outputs. The
study highlights the issue of "self-contradictory hallucinations", where ChatGPT initially
generates code it believes is correct but later contradicts this during self-verification.
While the use of guiding questions and test report prompts can improve the detection of
vulnerabilities and bugs, they also introduce false positives, complicating the model’s
reliability. These findings underscore the need for human oversight and the development

10 Chapter 3 Related Work

of more sophisticated verification mechanisms before ChatGPT can be trusted fully in
automated software development tasks.

AlOmar et al. [30] conducted an exploratory study examining developer-ChatGPT
interactions during code refactoring tasks. Using the DevGPT dataset, the study analyzed
17,913 conversations to identify how developers articulate refactoring needs and how
ChatGPT responds to these requests. The research highlights that developers frequently
use generic terms when requesting refactoring, while ChatGPT often explicitly states the
refactoring intention, focusing on improving quality attributes such as maintainability,
readability, and code organization. The study also found that while ChatGPT can
suggest useful refactorings, its understanding of the broader codebase context is limited,
sometimes leading to incorrect or incomplete suggestions. The findings suggest that
developers need to craft more specific prompts to maximize the effectiveness of ChatGPT
in refactoring tasks.

DePalma et al.[31] conducted an empirical study to assess ChatGPT’s capabilities in
performing code refactoring, focusing on its effectiveness, consistency, and ability to
preserve code functionality. The study involved refactoring 40 Java code segments
across eight quality attributes, including performance, complexity, and readability. The
results indicated that ChatGPT was successful in refactoring code in 319 out of 320
trials, offering both minor and significant improvements. However, while ChatGPT
demonstrated strengths in generating documentation and preserving code behavior, the
study highlighted its unpredictability and inconsistency, with identical prompts sometimes
yielding different results. Additionally, ChatGPT struggled with complex refactoring
tasks, often making superficial changes that did not address deeper issues. The research
concludes that while ChatGPT can be a valuable tool for simple refactoring tasks, human
oversight remains essential. This study is relevant to the current investigation into
ChatGPT’s role in improving code quality and readability, particularly in the context of
automated refactoring.

Guo et al. [17] present an empirical study examining ChatGPT’s potential for automated
code refinement in the context of code review. Using the CodeReview benchmark
and a newly constructed high-quality dataset, they compare ChatGPT (GPT-3.5/4)
against CodeReviewer, a state-of-the-art tool based on CodeT5. Their findings show that
ChatGPT achieves superior generalization and higher EM and BLEU scores (22.78 and
76.44) than CodeReviewer (15.50 and 62.88) on the new dataset, although performance
remains limited overall. The study also highlights that ChatGPT performs best with low
temperature settings and concise, scenario-based prompts, but struggles when review
comments lack clarity, precise locations, or domain-specific knowledge. The authors
identify mitigation strategies such as improving review quality and leveraging stronger

Chapter 3 Related Work 11

models like GPT-4. This work provides evidence that LLMs can meaningfully support
automated code refinement, while also emphasizing their current limitations and the
need for refined evaluation metrics and datasets.

Hu et al. [32] investigate the robustness of code language models when confronted with
poor-readability code, a dimension largely neglected in existing evaluation benchmarks.
While prior research has primarily tested models such as CodeBERT, CodeT5, and
CodeLlama on well-structured, high-readability code, this study systematically degrades
readability through obfuscation techniques that perturb both semantic (e.g., identifiers,
function names) and syntactic (e.g., operators, branches) features. Their empirical results
demonstrate that current models exhibit a strong dependency on semantic cues and
perform poorly when these cues are eroded, revealing limited robustness to syntactic
variations. To address these shortcomings, the authors introduce PoorCodeSumEval, a
novel benchmark designed to assess code summarization models across multiple read-
ability levels and perturbation types. This contribution highlights a critical gap in
existing evaluation practices and provides a more rigorous framework for understanding
the limitations of LLMs in real-world scenarios, where code readability often varies
significantly.

Liu et al. [33] propose CodeQUEST, a framework that leverages GPT-4o for iterative code
quality evaluation and enhancement across multiple dimensions, including readability,
maintainability, testability, efficiency, and security. The framework integrates an evaluator,
which provides structured quantitative and qualitative assessments, with an optimizer
that applies the feedback to refine code in successive cycles. Evaluated on 42 Python
and JavaScript examples, CodeQUEST achieved improvements in 41 cases, with the
majority of gains occurring in early iterations, and demonstrated stronger alignment
with established metrics such as Pylint, Radon, and Bandit compared to a baseline.
Notably, the framework was able to identify issues overlooked by traditional tools,
particularly in security and scalability, highlighting the potential of LLMs for systematic
and multi-faceted code refinement while acknowledging limitations regarding subjectivity,
stochasticity, and language coverage.

12 Chapter 3 Related Work

3.3 Gap Analysis

Large Language Models (LLMs) such as ChatGPT have shown potential in automating
code refactoring and improvement tasks, yet fundamental questions about their behavior
under iterative self-refinement remain unresolved. While prior work has raised concerns
about “reality distortion” and contradictory self-improvements in AI-generated content
[34], little is known about what actually happens when LLMs are repeatedly prompted
to improve their own code outputs. Specifically, it is unclear whether these models
eventually converge toward stable, higher-quality solutions (potentially guided by implicit
notions of best practices) or whether they continue to introduce superficial, oscillating,
or even regressive modifications across iterations.

Moreover, the degree to which such iterative refinements differ under unguided versus
targeted prompts, or when applied to code of varying initial quality, has not been
systematically investigated. Existing studies acknowledge ChatGPT’s ability to refactor
code [31], but they stop short of analyzing how the nature and depth of changes evolve
over successive refinement cycles.

To address this gap, this research develops a framework for systematically analyzing
code modifications produced by LLMs across multiple iterations. The approach begins
with a broad characterization of how changes emerge at different refinement stages,
and then progressively decomposes these transformations by type - insertions, deletions,
and modifications of syntactic and semantic elements. This layered analysis enables a
deeper understanding of the patterns underlying iterative refinement, providing insights
into whether and how LLMs move toward convergence, and under which prompting or
code-quality conditions such processes are more or less effective.

Chapter 4

Methodology

This study aims to analyze how ChatGPT modifies source code across multiple iterations,
focusing on measurable patterns of change. Before investigating the dynamics of these
iterative refinements, it is essential to clarify what ChatGPT itself considers to be readable
or understandable code. Understanding the model’s conceptualization of code readability
provides the foundation for evaluating whether its refinements are consistent with
established principles of software engineering or merely reflect superficial transformations.
Therefore, the methodology consists of two main phases:

1. Pilot Experiment: A preliminary study designed to identify methodological
challenges, refine our approach, and explore ChatGPT’s behavior in code transfor-
mations.

2. Main Experiment: A systematic, large-scale analysis of ChatGPT’s modifications
using a structured dataset and quantitative metrics.

To build a structured foundation for our study, we first identified two preliminary research
questions that explore ChatGPT’s approach to code understandability and its consistency
in iterative improvements:

• RQ1Pilot: What is ChatGPTs’ perspective on factors of code understandability
(= key factors)?

• RQ2Pilot: How consistent is ChatGPT with improving code snippets iteratively
according to these key factors?

These questions emerged from the hypothesis that if a language model possesses an
inherent understanding of a concept, its output should reflect a certain level of internal

13

14 Chapter 4 Methodology

consistency and integrity. In the context of code readability, this implies that if ChatGPT
has ’learned’ what constitutes readable and well-structured code, it should not only be
able to articulate these principles in natural language but also apply them consistently
in its generated code. Conversely, if no such understanding exists, we would not expect
the model to reliably produce well-structured improvements.

Based on this reasoning, our first research question (RQ1Pilot) investigates ChatGPT’s
perspective on code understandability: What factors does it consider important for
readable code? If its conceptualization aligns with established research on software
readability, we can then examine whether these principles are reflected in the way
ChatGPT modifies code (RQ2Pilot). This approach allows us to assess both the alignment
of ChatGPT’s internal representations with best practices and its ability to apply them
consistently across multiple iterations of code refinement.

Section 4.1 presents the setup and findings of the pilot experiment, while Section 4.2
outlines the methodology for the main experiment.

4.1 Pilot Experiment

Key Factors of Code Understandability (RQ1Pilot)

To answer our first preliminary research question (RQ1Pilot), we employed a modified
approach of Thematic Analysis to extract the Key Factors of Code Understandability
from ChatGPT’s responses to answer our first research question (RQ1Pilot). Thematic
Analysis (TA) as described by Braun and Clarke (2006) is a widely used qualitative
research method for identifying, analyzing, and reporting patterns (themes) within
data. This approach is flexible and can be applied across various theoretical frameworks,
making it suitable for diverse research contexts. Thematic Analysis follows a structured,
yet iterative process consisting of six key phases: (1) familiarization with the data, (2)
generating initial codes, (3) searching for themes, (4) reviewing themes, (5) defining and
naming themes, and (6) producing the final report.

Instead of generating open codes inductively, a set of responses was iteratively collected
based on variations of the question: “What makes code well understandable?” These
responses were then systematically mapped onto existing terminology from prior research
on code understandability and readability. This deductive mapping process continued
until a point of saturation was reached, ensuring that no significant new insights emerged.
By adapting the thematic analysis process in this way, the study leveraged both the

Chapter 4 Methodology 15

depth of AI-generated qualitative data and the structured foundation of established
research in software engineering.

Results

The analysis resulted in 14 key factors of code understandability, which compre-
hensively cover the current state of research in this area. We categorized these factors
into three levels: (1) the Code Level, including naming conventions, commenting, and
consistent formatting; (2) the Architecture Level, covering modularity, reusability, and
adherence to design patterns; (3) the Maintenance Level, involving practices such as
testing, refactoring, and code reviews. Table 4.1 summarizes the results of the Thematic
Analysis.

This categorization of key factors is based on a structured grouping process. We
determined the most appropriate overarching category for each key factor and grouped
them together. The categorization was guided by the primary impact of each factor, for
example:

• "Comments" directly enhance the readability of a specific code block or line, making
them part of the Code Level.

• "Patterns" contribute to the overall design clarity and structure of the code, placing
them under the Architectural Level.

• "Regular Refactoring" is not an inherent property of the code itself but rather an
activity that ensures readability over time, classifying it under the Maintenance
Level.

Since these factors align with established research on code readability and understand-
ability, ChatGPT’s responses appear to be consistent with widely accepted software
engineering principles. However, it remains an open question whether this consistency
stems from a deeper conceptual understanding of readable code or merely reflects patterns
learned from training data. To explore this further, we proceed to RQ2Pilot, examining in
our pilot experiment how consistently these factors are applied when ChatGPT iteratively
refines code.

16 Chapter 4 Methodology

Key Factor Description Explanation
Category 1 - Code Level
KF1 - Clear Names Meaningful and consistent

names for variables, functions,
and classes

More readable, self-
explanatory, and reduces
ambiguity

KF2 - Comments Comments should clarify com-
plex logic, document assump-
tions, and explain non-trivial
decisions

Helps others understand the
reasoning behind the code,
making maintenance easier

KF3 - Formatting Consistent formatting includ-
ing indentation, spacing, and
line breaks

Improves visual clarity and
uniformity, making the code
easier to read

KF4 - Simplicity Breaking down complex prob-
lems into smaller, manageable
units

Easier to understand and
maintain, reduces cognitive
load

KF5 - Abstraction Managing cognitive load by ab-
stracting complex logic into
reusable components

Prevents overwhelming the
reader and improves modular-
ity

KF6 - Error Handling Clearly handling errors and ex-
ceptions in a predictable man-
ner

Makes failures easier to debug
and understand

Category 2 - Architectural Level
KF7 - Structure Organizing code logically into

meaningful components
Enhances code maintainability
and readability

KF8 - Domain Concepts Aligning code structure with
real-world concepts from the
problem domain

Increases consistency and im-
proves understanding

KF9 - Modularity Designing modular code where
functions and classes serve a
single purpose

Allows better separation of
concerns and easier reuse

KF10 - Patterns Using established design pat-
terns for common program-
ming problems

Makes code more predictable
and easier to follow

KF11 - Global State Minimizing the use of global
variables

Reduces unintended side ef-
fects and improves testability

Category 3 - Maintenance Level
KF12 - Testing Writing tests and examples for

critical code components
Provides confidence in correct-
ness and assists in future mod-
ifications

KF13 - Regular Refac-
toring

Continuously improving the
structure and readability of
code

Prevents technical debt and
keeps the codebase clean

KF14 - Code Reviews Peer reviewing code for feed-
back and improvements

Improves code quality through
collective expertise

Table 4.1: Results of the Thematic Analysis on ChatGPT’s “Understanding"
of Key Factors of Code Understandability

Chapter 4 Methodology 17

Qualitative Analysis (RQ2Pilot)

To anwer our second preliminary research question on how ChatGPT refactors code for
better readability, we conducted an iterative, multi-round experiment1, incorporating
a qualitative data collection and analysis approach. Each of the four rounds involved
providing ChatGPT with code snippets and evaluating its suggestions based on the
prompt: "How can I improve this code for better readability?". The refactored snippets
from round n-1 were then used as input for the round n, each in a separate new chat to
prevent biases based on the chat history. Figure 4.1 visualizes this process.

Figure 4.1: Schematic Pilot Experiment Setup

1The pilot experiment was conducted with OpenAI’s GPT-4 model between January and April 2024.

18 Chapter 4 Methodology

4.1.1 Basic Terminology

To ensure clarity and consistency in the following analysis, we adopt the following
terminology:

Original Snippet: an implementation of an algorithm, which is used as a starting point
for the analysis.

Variant (of a snippet): corresponds to a modification made in relation to a specific
Key Factor (KF), which drives the changes in the code. These variants are created to
examine how ChatGPT refines code snippets based on different baselines.

Version (of a variant): refers to the iteration in which a particular variant was created
during the process of code improvement. These versions are tracked to examine how
ChatGPT refines the code across multiple iterations.

4.1.2 Key Factor and Snippet Selection

To ensure precise evaluation, we chose small, well-defined code snippets rather than large
codebases. The primary reasons for this choice are:

• Small snippets are easier to construct and analyze systematically.

• Evaluation is simplified since we can focus solely on changes within the snippet.

• Architectural and maintenance factors (category 2 & 3, see Table 4.1) are inherently
difficult to assess in isolated code snippets.

• While direct studies on ChatGPT’s use for quick fixes or local improvements are
limited, we assume that in real-world scenarios, ChatGPT is often used for quick
fixes or local improvements rather than full project-level readability enhancements.

Given these considerations, we selected three key factors from Category 1 - Code Level
that are most suitable for evaluation:

• KF1 (Clear Names): The clarity and descriptiveness of variable, method, and
class names. Good naming should reflect the purpose of a variable or function,
making the code self-explanatory and reducing the need for additional comments.

• KF2 (Comments): The presence of meaningful, concise comments that aid in
understanding the code’s logic and purpose. Well-structured comments, including
inline explanations and documentation comments (e.g. JavaDocs), should provide
necessary context without redundancy.

Chapter 4 Methodology 19

• KF3 (Formatting): The adherence to uniform spacing, indentation, and structur-
ing conventions that improve code readability. Proper formatting follows established
coding style guidelines and ensures the visual clarity of code blocks, aiding compre-
hension and maintainability.

The other factors from Category 1 (Simplicity, Abstraction, and Error Handling) were
excluded as they are more applicable to larger code segments or algorithmic challenges.

The chosen key factors are not only essential for readability but also well-suited for
evaluation within the constrained scope of isolated code snippets—aligning with practical
use cases where developers rely on ChatGPT for quick function generation or localized
code refinement rather than full-scale project development.

To ensure a diverse selection of code structures and problem-solving approaches, we
selected four simple, widely known algorithms implemented in Java2, each representing
different computational paradigms:

1. Binary Search: A classic divide-and-conquer algorithm that efficiently finds an
element in a sorted array by repeatedly halving the search space.

2. Bubble Sort: A simple yet inefficient sorting algorithm that repeatedly swaps
adjacent elements until the array is sorted, illustrating iterative refinement and
nested loops.

3. Check Prime: A basic mathematical function that determines whether a number
is prime by checking divisibility, representing conditional logic and loops.

4. Fibonacci: A recursive function that generates the Fibonacci sequence, showcasing
recursion and function calls in algorithmic design.

For each algorithm, we introduced specific alterations based on the three key factors, to
create different variants of the snippet (Example in Figure 4.2):

• KF1-Variant: Replaced all class, variable, and method names with meaningless
identifiers (e.g. x, method1, class1).

• KF2-Variant: Removed all comments and JavaDocs.

• KF3-Variant: Stripped the code of proper formatting (e.g. inconsistent indenta-
tion, missing line breaks, etc.).

2The full code snippets are listed in the Appendix in Figure A.1.

20 Chapter 4 Methodology

(a) Original Variable and Class Names (b) KF1-Variant of CheckPrime Snippet

(c) Original Comment(s) (d) KF2-Variant of CheckPrime Snippet

(e) Original Formatting (f) KF3-Variant of CheckPrime Snippet

Figure 4.2: Example of Variant Creation for CheckPrime Snippet.
Code adaptations introduced by us are highlighted with red boxes.

They were not part of the input to ChatGPT.

Chapter 4 Methodology 21

4.1.3 Expectation

In round 1, which served primarily as a baseline, we sought to observe the kinds
of improvements ChatGPT would generally apply to the snippets. We eliminated
modifications unrelated to the designated key factor of a given variant subsequently by
adjusting the snippets, thereby creating a cleaner version in which, ideally, only the code
elements deliberately varied with respect to the corresponding key factor would attract
ChatGPT’s attention in round 2. By round 3, we hypothesized that the refinements
would become more balanced, no longer centered around a single KF, and that we might
observe a gradual convergence toward an optimized version of the code through iterative
feedback loops.

4.1.4 Results

General Findings

While ChatGPT did not strictly adhere to a single key factor per round, its feedback
was initially more concentrated on the specific KFs that had been deliberately altered in
the respective snippets, as we had expected (see Table 4.2).

As the iterations progressed and many of these targeted improvements were incorporated,
the model’s suggestions became increasingly diverse (as expected), addressing multiple
KFs simultaneously rather than focusing on a single one. This shift suggests that
ChatGPT distributes its refinement efforts more broadly as fewer explicit weaknesses
remain.

While this behavior aligns with our intuitive expectations, it is noteworthy that the
iterative refinement process did not lead to a clear convergence toward a single "best"
version within these four rounds. Despite the model’s increasingly broad distribution of
refinement efforts, no definitive consensus emerged regarding an optimal formulation,
suggesting that ChatGPT’s feedback remains adaptable rather than gravitating toward
a singular ideal outcome.

Even worse, the iterative feedback process also showed diminishing returns, partially
with back-and-forth modification. It sometimes introduces unnecessary or even counter-
productive changes.

22 Chapter 4 Methodology

Observations per Key Factor

Over multiple iterations, formatting-related suggestions (KF3) disappeared, while naming
improvements (KF1), comment adjustments (KF2), and structural simplifications (KF4)
remained dominant.

• KF1 - Clear Names: ChatGPT frequently suggested renaming variables and
methods for clarity. However, naming improvements sometimes caused unnecessary
back-and-forth refinements.

• KF2 - Comments: ChatGPT often gave generic suggestions like “Add comments
for clarification” but was inconsistent in applying them across rounds. Notably,
when variable names were clear, ChatGPT suggested fewer comments, implying it
may recognize code clarity through naming.

• KF3 - Formatting: Formatting is often fixed implicitly, without explicit recogni-
tion in ChatGPT’s textual explanations. Specifically, the model neither points out
the obvious instances of poor formatting nor produces poorly formatted code.

This suggests that, within the scope of the current study, KF3 as the initial variant
does not provide meaningful insights for further investigation and can be excluded
from the analysis moving forward.

Table 4.2 shows ChatGPT’s textual output from each round of the pilot experiment for
the BinarySearch-Snippet in the KF1-Variant. The "Label" columns shows the category
of Key Factor, to which the feedback was assigned.

Summary

In the pilot experiment, the snippets under investigation were BinarySearch, BubbleSort,
CheckPrime, and Fibonacci. Each snippet had three distinct variants, labeled KF1,
KF2, and KF3, each representing a different aspect of the modification process. ChatGPT
was asked to refactor the snippets with respect to readability in a four-round iterative
experiment.

This pilot experiment served as an initial exploration to identify potential methodological
pitfalls and refine the experimental setup. A key finding was that ChatGPT’s textual
explanations often diverged from the changes of its generated code output.

While quantifying this discrepancy is theoretically possible, its practical relevance is
limited since we cannot influence the underlying model’s evolution. Instead, we can focus

Chapter 4 Methodology 23

Round Output Label Text → Code
1 Rename method a to binarySearch. KF1 yes
1 Rename variables for clarity (x to searchValue, y

to end, z to mid).
KF1 yes

1 Use meaningful variable names in main. KF1 yes
1 Add inline comments for clarity. KF2 no
1 Replace (y - x) / 2 with (end - start) / 2 to avoid

integer overflow.
noKF yes

2 Rename method a to binarySearch. KF1 yes
2 Rename variable n to target for clarity. KF1 yes
2 Rename variable x to start and y to end. KF1 yes
2 Add more descriptive comments. KF2 yes
2 Ensure consistent formatting and indentation. KF3 yes
3 Use JavaDoc Comments: Document the binary-

Search method using JavaDoc style to help other
developers understand its purpose, parameters,
and return type.

KF2 yes

3 Enhance Readability of the Main Method: Con-
sider extracting the process of printing the result
into a separate method or making the logic in
the main method simpler and more direct.

KF4 yes

3 Variable Naming and Scoping: Keep variable
naming clear and consistent. Also, define vari-
ables close to their usage if it doesn’t hinder
readability.

KF1 yes

4 Separate utility methods from main method: Iso-
late business logic from execution.

KF4 yes

4 Use descriptive method names: Rename methods
for clarity.

KF1 yes

4 Refine comments: Ensure comments are helpful
and concise.

KF2 no

Table 4.2: ChatGPT’s Code Refinement Suggestions for the BinarySearch-Snippet
(KF1-Variant).

Label = to which of the three key factors we assigned the suggestions, where ’noKF’
means the suggestions are not related to code readability, like code optimization itself.

Text → Code = the textual suggestions also appear in the refactored code.

on raising awareness of these inconsistencies, emphasizing that programmers should not
blindly trust ChatGPT’s textual descriptions when copying generated code.

Another challenge identified in the pilot study was the complexity of automating a
semantic comparison between textual explanations and code snippets. A fully automated
approach would require sophisticated natural language understanding to determine
whether the described improvements were correctly applied in the generated code,
making it infeasible within the scope of this thesis.

The pilot experiment was conducted on a small dataset consisting of four algorithms, each

24 Chapter 4 Methodology

in three variations, iterated over four rounds. While this provided valuable qualitative
insights, our primary goal for the main experiment is to conduct a more extensive
quantitative analysis of how code evolves over multiple iterations to see whether a stable
and optimized version can ultimately be achieved.

Threats to Validity

We identified several potential threats to the validity of this pilot experiment and addressed
them to ensure the reliability and generalizability of the results, and minimization of
their effect in the main experiment.

• Standard Algorithms Bias: The selected snippets are well-known algorithms
likely included in ChatGPT’s training data. This may influence how well ChatGPT
can recognize and refactor them. However, since the focus of the study is on
ChatGPT’s multi-round self-improvement behavior, the original code itself becomes
less relevant. After the initial rounds of modification, the code evolves into a version
that is essentially the product of ChatGPT’s iterative improvements, regardless
of whether the algorithm is a well-known one or a newly created, fictional one.
Therefore, the primary concern is not the nature of the starting code but rather the
number of iteration cycles, after which each input snippet should reach a similar
stage of refinement.

• Snippet Size Limitation: Given the simplicity of the snippets, the necessity for
comments (KF2) may not be as pronounced as in larger, more complex functions.
In the main experiment, we will use slightly more complex code snippets, that
originally contain comments.

• Non-Determinism of ChatGPT’s Responses: One potential threat to validity
is the non-deterministic nature of ChatGPT’s responses. Given that the model’s
outputs can vary each time the same input is provided, this introduces an element
of unpredictability that could affect the consistency of the results. To address this
issue in the main experiment, we utilize the OpenAI API, which allows for control
over the temperature parameter. By adjusting the temperature, we can minimize
non-determinism as much as possible [35], ensuring more stable and reproducible
outputs across different iterations of the experiment.

Chapter 4 Methodology 25

4.2 Main Experiment

The pilot experiment provided valuable insights into potential methodological challenges
and informed the refinement of our experimental design. Building on these preliminary
findings, the main experiment represents the core of this thesis and aims to systematically
address the refined research questions. This section outlines the complete methodology
employed for the main study, ranging from the selection of code snippets to the final
analysis procedures.

We begin by presenting the research questions that guide the study (4.2.1). Next, we
describe the process of snippet sampling and the construction of the final dataset (4.2.2).
The subsequent sections detail the implementation of our DiffParser pipeline (4.2.3), the
definition of evaluation metrics (4.2.4), and the analytical approaches applied to examine
convergence and contradiction in code refinements (4.2.5). Together, these components
form a coherent methodological framework that underpins the main experimental study.

4.2.1 Research Questions

With this thesis, we aim to answer the following research questions. Each of them
addresses a different dimension of ChatGPT’s role in iterative code refinement and is
motivated by gaps in prior research and the objectives of this study:

RQ1: How do iterative refinements by ChatGPT evolve when provided with a code
snippet that already adheres to best practices? This question examines whether
the model is able to preserve high-quality code without introducing unnecessary or
contradictory modifications. It is crucial because a refactoring assistant should ideally
recognize when no further improvement is required and avoid degrading code quality.

RQ2: When multiple variations of the same code snippet - each modified with
respect to a single key factor of code understandability - are iteratively refined, do the
refinements converge after a certain number of iterations? This question investigates
whether ChatGPT normalizes different starting points into similar final solutions, which
would indicate an implicit understanding of coding conventions. Convergence is of
particular interest, as it reflects the stability and reliability of the refinement process
across diverse inputs.

RQ3: Do targeted refinements become more effective when the prompt explicitly
emphasizes the key factor in question? This question addresses the influence of

26 Chapter 4 Methodology

prompting on refinement quality. Since prior research has shown that LLMs are highly
sensitive to input phrasing, we assess whether explicitly guiding ChatGPT toward a
specific readability factor (e.g., naming or comments) leads to more consistent and
meaningful improvements compared to unguided prompts.

Based on our research questions, we formulate the following hypotheses. For RQ1 and
RQ2, the hypotheses are content-oriented and operationalized using the metrics described
in Section 4.2.4. For RQ3, the hypothesis is directly testable, with a corresponding
statistical null hypothesis.

RQ1: Evolution of Iterative Refinements

• H1 (Content Hypothesis): When refining code that already adheres to best
practices, ChatGPT will introduce only necessary modifications while preserving
the original structure and avoiding contradictory changes.

Operationalization: We measure this by tracking the number and types of modifications
(semantic changes including access, call, control, literal, operator, and other structural
changes; syntax-only changes; renames; comment changes; mixed changes), and structural
stability (total lines, code lines, comment lines, inline comments, empty lines, number of
methods).

RQ2: Convergence Across Code Variants

• H2 (Content Hypothesis): Iteratively refined variants of the same code snippet
will converge toward a shared structure, reflecting an implicit preference of ChatGPT
for certain coding patterns or solutions.

Operationalization: Convergence is assessed using the proportion of unchanged code
lines, average similarity scores of modified lines, and structural correspondence from
the absolute values metrics. Total insertions and deletions per iteration are tracked to
examine stabilization trends, and cross-variant comparisons reveal whether final code
reflects convergence or retains traces of the original variant.

RQ3: Impact of Explicitly Emphasizing Key Refinement Factors

• H3 (Testable Hypothesis): Explicitly emphasizing a key factor in the prompt
(e.g., variable naming or commenting) leads to more effective refinements than
unguided prompts.

Chapter 4 Methodology 27

Operationalization: Effectiveness is measured by increased alignment with the emphasized
factor, and faster stabilization of the code across iterations.

Statistical Testing:

• H0 (Null Hypothesis): There is no significant difference in refinement effective-
ness between targeted prompts and unguided prompts.

• H1 (Alternative Hypothesis): Targeted prompts produce significantly more
effective refinements than unguided prompts, as measured by the defined metrics.

4.2.2 Snippet Sampling and Data Preprocessing

To ensure the suitability and comparability of code snippets, we decided on four criteria:

1. LOC Interval: The file has between 50–200 lines (i.e. overall size of the file).

2. Methods Ratio The chosen files must have a comparable structural complexity.
This is measured by number of methods given the file size (i.e. 1–3 methods per 50
lines).

3. Code/Comments Ratio: A file must contain a significant amount of code versus
comments (≥ 50% code lines).

4. Best Practices: All snippets should follow a comparable standard of code quality.

For the main experiment, we decided on Java code files from the GitHub repository The

Algorithms – Java 3. The reasons behind this choice are: (1) This repository provides a
structured and diverse collection of Java implementations of various algorithms, covering
a wide range of problem domains such as searching, sorting, mathematics, and data
structures; (2) it is designed for educational and comparative purposes, ensuring that
the code follows consistent formatting and best practices, which facilitates systematic
analysis; (3) as an open-source repository with active contributions, it ensures accessibility
and reproducibility, both of which are essential for a rigorous research study. Figure 4.3
shows the relevant excerpt of the repositories’ structure.

Table 4.3 summarizes the counts of files in the repository that fulfill our conditions
(excluding test files). There are 221 of originally 658 files that fulfill all of our criteria.

3https://github.com/TheAlgorithms/Java/tree/master

https://github.com/TheAlgorithms/Java/tree/master

28 Chapter 4 Methodology

1 src
2 |-- main
3 | ‘-- java
4 | ‘-- com
5 | ‘-- thealgorithms
6 | |-- ciphers
7 | | |-- CaesarCipher.java
8 | | ‘-- VigenereCipher.java
9 | |-- sorts

10 | | |-- QuickSort.java
11 | | ‘-- MergeSort.java
12 | ‘-- datastructures
13 | |-- BinaryTree.java
14 | ‘-- LinkedList.java
15 |-- test
16 | ‘-- java
17 | |-- CaesarCipherTest.java
18 | ‘-- QuickSortTest.java
19

Figure 4.3: Structure of TheAlgorithms/Java Repository (Excerpt)

LOC Interval # Files # Methods Ratio # Code/Comments Ratio # Valid Files
0–49 209 202 150 143
50–99 287 227 187 148
100–149 75 56 60 45
150–199 45 32 38 28
200–249 18 9 17 9
250–299 9 4 8 3
300–349 8 8 8 8
350–399 1 0 1 0
400–449 1 1 1 1
450–499 2 0 2 0
500–549 1 0 1 0
1200–1249 1 0 1 0
2750–2799 1 0 1 0

Table 4.3: Distribution of .java files across LOC intervals. # Files lists all files per
interval, # Method Ratio and # Code/Comments Ratio indicate those meeting the

respective conditions, and # Total Valid Files shows files satisfying both.

For each of these 221 files, we created three variants:

• KF0 - Variant: The unchanged original implementation.

• KF1 - Variant (no explicit naming): Variable, method, and class names are
intentionally obfuscated.

• KF2 - Variant (no comments): All JavaDocs as well as inline and block
comments are removed.

Chapter 4 Methodology 29

To answer RQ1 and RQ2, we used the same prompt (pKF0) for iterative refinements (i.e.
version creation), while we used two adapted prompts (pKF1, pKF2) to answer RQ3
(effect of explicit prompting). Table 4.4 shows an overview of the used prompt strategies.

Prompt Type Prompt ID Prompt Content
Unguided pKF0 Refactor this code for improved readability.
Targeted pKF1 Refactor this code for improved readability with

respect to class/method/variable naming.
Targeted pKF2 Refactor this code for improved readability with

respect to comments.

Table 4.4: Prompts used in the experiment

To scale the experiment, we transitioned to the ChatGPT API to generate outputs in an
automated and controlled manner. The API call was configured with temperature = 0
to minimize non-deterministic output variations, as recommended in prior research [35].

Instead of the full gpt-4o model, we deliberately used the more lightweight gpt-4o-mini
variant. This choice was motivated by several considerations: (i) the primary task in our
setting was code generation, which does not require the advanced multimodal capabilities
of the larger model, ii) the smaller model significantly reduces computational costs as
well as financial expenses, thereby enabling large-scale experimentation within reasonable
resource constraints, and (iii) the model’s faster response times improved the efficiency
of data collection.

Figure 4.4 illustrates the configuration of API calls. The API itself is stateless, i.e., each
request is independent of previous ones4.

1 response = self.client.chat.completions.create(
2 model="gpt-4o-mini",
3 messages=[
4 {"role": "system",
5 "content": "Return only the refactored code. No additional text or

explanation."},
6 {"role": "user",
7 "content": f"{prompt}\n{code}"}
8],
9 temperature=0.0 # higher values yield more creative responses

10)
11

Figure 4.4: Config for ChatGPT API Usage

4https://platform.openai.com/docs/guides/conversation-state?api-mode=responses

https://platform.openai.com/docs/guides/conversation-state?api-mode=responses

30 Chapter 4 Methodology

Summary of Dataset Creation

In total, we considered 221 files from the GitHub repository The Algorithms – Java

for our main experiment. Each file was extended into two additional variants, resulting
in three variants per original snippet. Every variant was then iteratively modified across
n = 5 refinement rounds using three distinct prompt strategies. The total number of
generated snippet instances N can therefore be expressed as:

N = 221× 3× 5× 3 = 9,945

snippet instances in total, where the factors correspond to the number of files, the
number of variants per file, the number of refinement rounds, and the number of prompt
strategies, respectively.

Chapter 4 Methodology 31

4.2.3 DiffParser: A Tool for Tracking Code Changes

To conduct our experiment and evaluate the code comparisons based on the metrics
(described in 4.2.4), we have developed a set of Python scripts tailored to our study,
including a custom DiffParser designed to meet our specific requirements. We used the
following key libraries:

• javalang (v0.13.0)5 - to leverage the parsers capability to work with Java code

• difflib (3.13)6 - to produce the unified diffs and analyze the code changes with
difflib.SequenceMatcher

• code_diff (0.1.3)7 - for AST-based code differencing

• NetworkX (3.4.2)8 - to build a graph that captures code changes over multiple
iterations

• openai9 - to access the ChatGPT API and streamline the generation of responses
(i.e. the refactored code)

The Underlying Unified Diff Format

To compare code sequences between versions, we utilized the unified diff format. In this
format, lines prefixed with ––- and +++ indicate the compared files (the original and the
modified version, respectively). Each subsequent @@ -l,n +l,m @@ header specifies the
location of the change: it marks the affected line ranges in the old (-l) and new (+l)
file, together with the number of lines involved (n, m). Within a diff block (i.e. scope
between two headers), removed lines from the original file are prefixed with a minus sign
(-), while added lines in the modified version are prefixed with a plus sign (+).

For example, in the excerpt below, the method name was changed from approach1

to areAnagramsBySorting, and variable names were updated accordingly, while the
underlying logic of the algorithm remained identical.

5https://github.com/c2nes/javalang
6https://docs.python.org/3/library/difflib.html
7https://github.com/cedricrupb/code_diff
8https://networkx.org
9https://openai.com/index/openai-api/

https://github.com/c2nes/javalang
https://docs.python.org/3/library/difflib.html
https://github.com/cedricrupb/code_diff
https://networkx.org
https://openai.com/index/openai-api/

32 Chapter 4 Methodology

1 --- Anagrams_KF0_v0_nop.java

2 +++ Anagrams_KF0_v1_pKF0.java

3 @@ -8 +8 @@

4 - * typically using all the original letters exactly once.[1]

5 + * typically using all the original letters exactly once.

6 @@ -26 +26 @@

7 - public static boolean approach1(String s, String t) {

8 + public static boolean areAnagramsBySorting(String s, String t) {

9 @@ -30,5 +30,5 @@

10 - char[] c = s.toCharArray();

11 - char[] d = t.toCharArray();

12 - Arrays.sort(c);

13 - Arrays.sort(d);

14 - return Arrays.equals(c, d);

15 + char[] sortedS = s.toCharArray();

16 + char[] sortedT = t.toCharArray();

17 + Arrays.sort(sortedS);

18 + Arrays.sort(sortedT);

19 + return Arrays.equals(sortedS, sortedT);

20 (...)

21

Listing 4.1: Example Output of difflib’s unified_diff function

Parsing Procedure Overview

To classify line-level changes between two code versions, we implemented a two-stage
parsing procedure. In the first stage, the algorithm iterates over all diff headers (lines
beginning with @@) and processes each diff block separately. Within each block, removed
and added lines are compared in order to identify modifications, while unmatched lines
are provisionally labeled as insertions or deletions. These provisional results are stored
in a candidate set for later refinement.

In the second stage, all remaining unmatched lines are collected across diff blocks and
subjected to a dedicated crossmatching procedure. This step allows the parser to correctly
align lines that were moved between different locations or otherwise shifted in ways
that prevent them from being matched within a single diff block. The results of the
crossmatching stage are then integrated with the initial block-level classifications to
produce the final set of modifications, insertions, and deletions.

By design, the algorithm ensures consistency through internal validation checks: the total
number of lines before and after crossmatching must remain constant. This guarantees

Chapter 4 Methodology 33

that each line in the diff is accounted for exactly once, preventing both undercounting
and duplication.

The final output of the method consists of three components:

• (1) a mapping of modifications (removed-added line pairs),

• (2) a list of deletions (removed lines without a match), and

• (3) a list of insertions (added lines without a match).

Together, these results provide a complete classification of all line-level changes between
the two code versions.

Line Matching and Similarity Score Calculation

To quantify modifications between code snippets, we process each diff block by comparing
removed lines r ∈ R (lines prefixed with “-”) against added lines a ∈ A (lines prefixed
with “+”). Each line is first normalized by removing diff prefixes, isolating comments, and
tokenizing code and comment segments separately. This results in four representations
per line: raw code (rcode, acode), tokenized code (tok(rcode), tok(acode)), raw comments
(rcomm, acomm), and tokenized comments (tok(rcomm), tok(acomm))).

The use of both sequence-based and token-based similarity measures is motivated by their
complementary strengths. From our observations, sequence similarity tends to be rather
strict: even minor structural or positional changes in a line (e.g., reordering of terms)
can cause a disproportionately low similarity score, although the semantic meaning of
the line remains almost unchanged. Token-based similarity, in contrast, is more tolerant
to such reordering or formatting changes, as it abstracts away from the exact sequence
of characters and instead focuses on the multiset of tokens. However, this tolerance may
lead to overly high similarity scores in cases where semantically important structural
differences are introduced. By employing both measures in parallel, we balance these
two perspectives: the sequence ratio ensures sensitivity to structural order, while the
token ratio provides robustness against superficial reordering. This combination yields a
more reliable overall similarity estimation for code line comparisons.

For each candidate pair (r, a), we compute multiple similarity scores:

sseq,code = SeqSim(rcode, acode), stok,code = TokSim(tok(rcode), tok(acode)),

sseq,comm = SeqSim(rcomm, acomm), stok,comm = TokSim(tok(rcomm), tok(acomm)),

34 Chapter 4 Methodology

where SeqSim denotes character-level sequence similarity, and TokSim denotes token-level
similarity (both using difflib.SequenceMatcher).

In addition, an abstract-syntax-tree (AST) similarity sAST ∈ [0, 1] is computed when both
lines can be successfully parsed. Since the input consists only of code fragments extracted
from the diff, preprocessing is required to make the fragments parsable by javalang.
This preprocessing includes basic syntax completion, such as closing unmatched brackets,
and wrapping fragments in a minimal Java context (e.g., embedding method or field
declarations inside a dummy class, enclosing incomplete control structures in a dummy
method and block, or wrapping isolated statements). From the resulting full parse tree,
a simplified AST representation was derived by extracting only structurally dominant
node types (e.g., declarations, control flow constructs, expressions). The purpose of this
reduction was to obtain a compact node-type sequence, which can be stored as a list
and compared across versions using a greedy, string-based matching process, again via
difflib.SequenceMatcher. If parsing fails, sAST is set to −1, and only sequence and
token-based scores are used.

The weighted similarity score s(r, a) for each candidate pair is computed as follows:

s(r, a) =


0.5 · sseq,comm + 0.5 · stok,comm, if rcode = ∅,

0.2 · sseq,code + 0.25 · stok,code + 0.5 · sAST + 0.05 · sseq,comm, if sAST 6= −1,

0.4 · sseq,code + 0.5 · stok,code + 0.1 · sseq,comm, otherwise.

A pair (r, a) is accepted as a modification if s(r, a) ≥ τ , where τ is a predefined similarity
threshold of 0.6. To resolve multiple candidates, the best match is chosen by maximizing
s(r, a) and, in case of ties, minimizing the index distance |r − a|. Each line participates
in at most one match, ensuring a one-to-one mapping between removed and added lines.

The weights in the similarity function as well as the similarity threshold were determined
empirically through a systematic evaluation on a custom validation set. This validation
set consisted of code snippet variants for which the ground truth of line correspondences
was fully known (since we create variants "manually"), enabling us to assess the accuracy
of different weighting schemes. To this end, we conducted an iterative optimization
procedure: starting from equal weights for all components, we gradually adjusted the
relative contributions of sequence-based, token-based, and AST-based similarities. At
each step, the alignment results were compared against the known correspondences. The
final weights were selected as those that maximized the proportion of correctly identified
matches across the diverse cases in the validation set.

Conceptually, the chosen distribution reflects the intended role of each component:

Chapter 4 Methodology 35

• For purely comment lines (rcode = ∅), only comment-level similarities are considered,
with equal weights assigned to sequence and token similarity. This ensures that
both structural and lexical similarity in comments are taken into account without
bias.

• When AST information is available, it is given the largest weight (0.5), as it provides
the most reliable signal of syntactic and semantic correspondence between code
fragments. Sequence and token similarities of the code part remain important (0.2
and 0.25, respectively), but serve as complementary signals. A small weight (0.05)
is reserved for comment similarity to account for aligned inline comments.

• In cases where no AST could be obtained, the sequence and token similarities
of the code dominate (0.4 and 0.5, respectively), while a smaller weight (0.1) is
attributed to comments. This balances strict structural sensitivity with robustness
to reordering, while avoiding overreliance on comment similarity.

In sum, the weighting scheme combines theoretical considerations about the relative
reliability of each signal with empirical fine-tuning against a controlled test set, ensuring
that the resulting similarity score s(r, a) is both principled and effective in practice.

All accepted matches form the modifications set, while unmatched removed lines are clas-
sified as deletions and unmatched added lines as insertions. The Average Similarity Score
is then computed as the mean of s(r, a) over all modifications, providing a quantitative
measure of how similar the changed lines are to their previous versions.

4.2.4 Metrics

To systematically evaluate the iterative refinements produced by ChatGPT, we employ a
set of structured metrics that capture both the nature and progression of code modifica-
tions. The analysis is designed to answer the research questions by assessing different
aspects of code evolution, stability, and convergence. We define the following metrics:

Absolute Values

For each snippet - identified as a unique combination of Snippet, Variant, Version, and
Prompt - we compute a set of absolute metrics to characterize its structural properties.
These metrics include the total number of lines, lines of code, comment lines, inline
comments, empty lines, and number of methods.

36 Chapter 4 Methodology

An example for the resulting data is shown in Table 4.5. We note that the prompt labeled
nop (i.e. "no prompt") corresponds to the base versions of the snippets ("v0"), which
were manually created rather than generated through the ChatGPT API.

Version Prompt Total Lines Code Lines Comment Lines Inline Comments Empty Lines Methods
0 nop 142 81 54 0 7 5
1 pKF0 114 63 44 0 7 5
1 pKF1 115 65 44 0 6 4
1 pKF2 147 81 59 28 7 5
2 pKF0 122 69 44 0 9 7
2 pKF1 115 65 44 0 6 4
2 pKF2 147 81 59 28 7 5

Table 4.5: Exemplatory absolute values metrics for the Anagrams Snippet (KF0-Variant)

Comparison Values

For each comparison of snippets - identified as a unique combination of Snippet, Variant
1, Variant 2, Version 1, Version 2, and Prompt - is analyzed with respect to the following
set of comparison values:

• Unchanged Code Part: represents the number of lines that remain identical
across two code versions. Conceptually, each version of the code can be decomposed
into three disjoint categories: unchanged lines, modified lines, and either insertions
(for the new version) or deletions (for the old version). Given m modified lines,
d deletions, and i insertions, the number of unchanged lines in the old version is
computed as

Uold = |Cold| −m− d,

where |Cold| denotes the total number of lines in the old version. Similarly, the
number of unchanged lines in the new version is calculated as

Unew = |Cnew| −m− i,

with |Cnew| being the total number of lines in the new version. By construction,
both quantities are equal (Uold = Unew), yielding the Unchanged Code Part as a
consistent measure of preserved code between the two versions.

• Modifications: The analyzed code modifications are categorized into distinct
change types to systematically capture different aspects of code evolution.

– Rename: Modifications involving consistent renaming of identifiers, such as
variables, methods, or constants, without affecting program behavior.

Chapter 4 Methodology 37

Figure 4.5: Categorization of Java source lines in file diffs

– SyntaxOnly: Purely syntactic adjustments, including formatting changes,
reordering of code segments, or other non-semantic edits that do not alter
program execution.

– CommentChange: Changes restricted to comments or documentation, cap-
turing updates in explanatory or descriptive content without modifying code
logic.

– MixedChange: Instances where multiple types of modifications occur simul-
taneously within a code line, reflecting combinations of semantic, syntactic,
or identifier-level changes.

– SemanticChange: Aggregates subcategories of behavioral or functional
modifications:

∗ AccessChange: Modifications to data structure or collection accesses.

∗ CallChange: Changes to function or method calls.

∗ ControlChange: Adjustments to control-flow statements such as condi-
tionals or loops.

∗ LiteralChange: Modifications to constant values.

∗ OperatorChange: Changes in operators affecting computation.

∗ OtherStructuralChange: Alterations in structural constructs, e.g.,
method signatures or data structures.

Table A.1 shows one representative source-target pair per classification to illustrate
the types of modification (excluding SyntaxOnly, as its example would be trivial).

• Average Similarity Score: quantifies the degree of resemblance between modified
lines across two code versions. It is defined by first measuring the similarity sim(li, l′i)

38 Chapter 4 Methodology

of each modified line li with its corresponding line l′i in the preceding version, and
then computing the arithmetic mean across all n modified lines:

AvgSimScore = 1
n

n∑
i=1

sim(li, l′i).

This aggregated metric provides an overall measure of how similar the modified
code segments remain between two snippets.

• Total Insertions: Measures the total number of lines added in each snippet,
further distinguished by type: code lines, comment lines, and empty lines.

• Total Deletions: Measures the total number of lines removed in each snippet,
similarly categorized into code lines, comment lines, and empty lines.

Using these comparison metrics, we further quantify the relative changes in absolute
values - such as total lines, code lines, comment lines, inline comments, empty lines, and
number of methods - across snippet comparisons.

It is important to note that comparisons are obviously only conducted between snippets
sharing the same name. Depending on the analysis, we either compare snippets of the
same variant across different versions (horizontal comparison) or snippets of the same
version across different variants (vertical comparison), which we will explain in more
detail next.

4.2.5 Analysis Approaches

Understanding how code evolves over multiple iterations is essential for assessing the
consistency and effectiveness of iterative refinements. In the context of our study, we
investigate whether refinements introduced by ChatGPT follow a coherent progression,
whether they exhibit signs of inconsistency (e.g. back-and-forth modifications), and
whether different refinement paths converge toward a common structure. To systemati-
cally analyze these aspects, we consider three complementary approaches (see Figure
4.7):

Horizontal Approach: This approach compares different versions of the same variant
over time. Instead of only considering directly consecutive versions, we compare each
version with all preceding ones. This allows us to track how a particular variant evolves
through iterative refinements, highlighting the nature and consistency of modifications
applied by ChatGPT across different versions. If versions that are further apart show
higher similarity than those that are closer together, this may indicate back-and-forth
modifications.

Chapter 4 Methodology 39

Figure 4.6 schematically illustrates the importance of comparing non-consecutive versions.
Let v0, v1, and v2 denote three consecutive versions of a snippet. The LLM introduces
changes from v0 to v1, which are subsequently reversed from v1 to v2. As a result, the
similarity between consecutive versions is sim(v0, v1) = sim(v1, v2) = s < 1, while the
non-consecutive versions are identical, sim(v0, v2) = 1. Comparing only consecutive
versions would therefore fail to detect the equivalence between v0 and v2.

Figure 4.6: Schematic Visualization of SimScore Evolution in Back-and-Forth
Modifications with v0 == v2 != v1

Vertical Approach: In this approach, code variants are compared within the same
version number. This enables an analysis of how different refinements for the same base
code differ at a given stage, revealing potential diversity in the refinement strategies
generated by ChatGPT.

Combined Approach: This approach investigates whether different code variants
gradually converge toward an ’optimal variant’ as the refinement process progresses (i.e.
across increasing version numbers). By analyzing both horizontal and vertical dimensions,
this approach provides insights into whether the refinement process leads to a consensus
on best practices or if structural differences persist over multiple iterations.

Figure 4.7: Overview of the three comparison approaches
(non-consecutive comparisons omitted for readability)

Chapter 5

Results

This section presents the results of the main experiment, following the methodology
outlined in Chapter 4. We begin by reporting absolute structural metrics to provide
a descriptive baseline of the code snippets across refinement iterations. Subsequently,
we analyze various aspects of code evolution, including the nature and distribution of
modifications, as well as trends in structural convergence and stability. The results are
organized according to the research questions defined earlier.

5.1 Evolution of Iterative Refinements (RQ1)

To address RQ1: "How do iterative refinements by ChatGPT evolve when provided with
a code snippet that already adheres to best practices?", we investigate how the model
behaves when applied to code that requires little to no improvement. This setting allows
us to examine whether ChatGPT merely preserves well-structured input, introduces
unnecessary modifications, or converges toward a stable representation over multiple
refinement steps. To this end, we focus on the original code snippets (variant KF0), which
already follow established best practices in naming, commenting, and formatting. Each
snippet is iteratively refined across five rounds using the base prompt pKF0 ("Refactor
this code for improved readability."). Analyzing this process enables us to characterize
the dynamics of ChatGPT’s refinements when no substantial restructuring is required
and to determine whether stability or persistent micro-modifications dominate over time.

5.1.1 Absolute Code Metrics Across Iterations (KF0)

Figure 5.1 provides an overview of the average structural properties of all code
snippets for variant KF0 based on prompt pKF0 and version v0.

41

42 Chapter 5 Results

0 1 2 3 4 5
Version

88

90

92

94

#T
ot

al
 L

in
es

Average #Total Lines Across All Snippets (KF0)

0 1 2 3 4 5
Version

55

56

57

58

59

60

#C
od

e
Lin

es

Average #Code Lines Across All Snippets (KF0)

0 1 2 3 4 5
Version

16
18
20
22
24
26
28

#C
om

m
en

t L
in

es

Average #Comment Lines Across All Snippets (KF0)

0 1 2 3 4 5
Version

0.4

0.6

0.8

1.0

1.2

1.4

#I
nl

in
e

Co
m

m
en

ts

Average #Inline Comments Across All Snippets (KF0)

0 1 2 3 4 5
Version

11.6
11.8
12.0
12.2
12.4
12.6
12.8

#E
m

pt
y

Lin
es

Average #Empty Lines Across All Snippets (KF0)

0 1 2 3 4 5
Version

3

4

5

6

#M
et

ho
ds

Average #Methods Across All Snippets (KF0)

Figure 5.1: Average Absolute Metrics Across Refinement Versions (KF0, Prompt pKF0))

Chapter 5 Results 43

In the first iteration step (v0→ v1), a substantial reduction in total lines can be observed,
driven primarily by a sharp decline in comment lines. The average number of comment
lines decreases from approximately 28.5 to 17, while inline comments drop from 1.4 to
below 0.5 per snippet. Meanwhile, the number of code lines increases steadily from
version v0 to v5, rising from 55 to slightly above 60. A similar upward trend is evident in
the number of empty lines and method declarations, both of which stabilize from version
v3 onward.

5.1.2 Overall Change Dynamics Across Refinement Steps (KF0)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

54% 16% 12% 18%

86% 6% 5% 3%

96% 2%1%1%

98%

98% 1%

Average Change Distribution for Variant KF0 (pKF0)

Change Type
Unchanged Modifications Total Insertions Total Deletions

Figure 5.2: Proportional Distribution of Code Changes Across Iterations between two
successive versions (KF0, Prompt pKF0)

Figure 5.2 shows the average distribution of change types across consecutive refinement
steps for variant KF0. In the initial step (v0 → v1), 54% of the lines remain unchanged,
while 16% are classified as modifications, 12% as insertions, and 18% as deletions. In
the following iteration (v1 → v2), the proportion of unchanged lines increases to 86%,
and all types of changes decrease accordingly. From v2 → v3 onward, the proportion
of unchanged lines further increases, reaching 96%, 98%, and 98% in the final steps,
respectively. All remaining changes are marginal, each accounting for less than 2% of
the total lines. Overall, the data indicate a consistent decrease in the extent of changes
across refinement rounds for the unaltered base variant.

Detailed Breakdown of Modification Types (KF0)

To further examine the nature of the observed changes, Figure 5.3 provides a more
fine-grained breakdown of the change types for variant KF0. While the overall proportion

44 Chapter 5 Results

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

54% 7% 2%2% 4% 9% 3% 6% 10% 2%

86% 3%1%2% 4%1%2%

96% 1%

98%

98%

Average Change Distribution for Variant KF0 (pKF0)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.3: Detailed Proportional Distribution of Code Changes Across Iterations (KF0,
Prompt pKF0)

of unchanged lines follows the same trend as in Figure 5.2, the extended visualization
differentiates between specific modification categories as well as line-level insertions and
deletions. In the first refinement step (v0 → v1), the largest individual change types
include renaming (7%), code insertions (9%), and deletions of comment (10%) and code
lines (6%). Semantic changes (4%) and comment changes (2%) are also present, alongside
minor proportions of syntax-only modifications (2%) and mixed changes (≤1%).

From v1 → v2, the changes become more targeted and balanced: renaming (3%), syntax-
only changes (1%), and semantic changes (2%) are still observed, while insertions and
deletions - especially of code lines - occur at lower frequencies. In later iterations (v2→ v3
through v4 → v5), most categories fall below the 1% threshold. The vast majority of
lines remain unchanged, and no single change type dominates, suggesting a stabilization
of the refinement process.

Modification Flow Across Iterations (KF0)

To better illustrate the progression and persistence of individual change types over the
course of the refinement process, Figure 5.4 presents a Sankey diagram for variant KF0
under prompt pKF0. While the stacked bar plots (Figures 5.2 and 5.3) show only
aggregated proportions per version pair, the Sankey plot enables a more granular view of
how specific modification types evolve across all five iterations.

Rename operations and semantic changes dominate the early refinement stages and
persist across multiple rounds, while comment changes, syntax-only changes, and mixed

Chapter 5 Results 45

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

CommentChangeCommentChangeCommentChangeCommentChangeCommentChange

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1

v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF0, Prompt: pKF0

Figure 5.4: Modification Flow Across Iterations (KF0, Prompt pKF0). Each flow
represents a particular type of code modification (e.g. Rename, SemanticChange,

SyntaxOnly), connecting to the corresponding target version

changes occur less frequently and are more evenly distributed. Overall, the visualization
highlights that even though the proportion of modifications becomes marginal in later
iterations, a diverse set of change types remains active throughout the refinement process.

5.1.3 Pairwise Similarity Analysis Across Refinements (KF0)

While the Sankey plots provide a detailed view of how specific modification types
propagate across refinement steps, they do not reveal whether these modifications lead
to consistent structural convergence or occasional reversals. To address this aspect, we
complement the change-type analysis with pairwise similarity scores between all versions.
Visualizing these scores in a heatmap allows us to assess convergence trends across the
refinement process and to identify potential back-and-forth modifications.

Figure 5.5 shows a heatmap of average similarity scores between all pairwise combinations
of versions for variant KF0, based on prompt pKF0. The results show a steady increase
in similarity as the refinement process progresses. The similarity between adjacent
versions increases from 0.89 (v0 → v1) to 0.98 (v4 → v5). Non-consecutive comparisons
(e.g., v0 → v5 = 0.87) also show high similarity, indicating that changes accumulate
incrementally and consistently over iterations.

Notably, the similarity between early and late versions (e.g., v1 → v4 = 0.95, v2 → v5
= 0.94) suggests that structural convergence begins early in the refinement process and

46 Chapter 5 Results

0 1 2 3 4 5
Version 1

5
4

3
2

1
0

Ve
rs

io
n

2

0.87 0.90 0.94 0.96 0.98

0.87 0.91 0.95 0.98

0.87 0.91 0.95

0.88 0.92

0.89

Avg Similarity Score Heatmap for Variant KF0 (pKF0)

0.88

0.90

0.92

0.94

0.96

av
g_

Av
g

Si
m

ila
rit

y
Sc

or
e

Figure 5.5: Pairwise Similarity Heatmap Across Refinement Versions (KF0, Prompt
pKF0).

Each cell indicates the average similarity of modified lines between the respective version
pair, using the metric described in Section 4.2.4. Only the upper triangle is populated,

as the comparison is directional (from earlier to later versions).

stabilizes in later rounds. However, none of the pairwise comparisons ever reach a perfect
similarity score of 1.00.

Summary of Findings for RQ1

The results provide partial support for the content hypothesis (H1). While the iterative
refinements of already well-structured code (KF0) largely preserved the original structure
and displayed a clear convergence trajectory, the model did not strictly limit itself
to only necessary modifications. Instead, the initial iteration introduced a noticeable
restructuring phase characterized by reductions in comments, renaming operations, and
additional semantic and syntactic adjustments. Subsequent refinements stabilized quickly,
with steadily increasing similarity scores and only marginal changes. However, the
absence of perfect similarity values (1.00) indicates that the model continues to apply
small modifications even when the input already conforms to best practices, suggesting a
tendency toward over-refinement.

Chapter 5 Results 47

5.2 Convergence Across Code Variants (RQ2)

To address RQ2: "When multiple variations of the same code snippet - each modified with
respect to a single key factor of code understandability - are iteratively refined, do the
refinements converge after a certain number of iterations?", we extend the analysis beyond
the well-structured baseline (KF0) and investigate how ChatGPT handles systematically
altered input. This setup allows us to test whether the refinement process is sensitive
to different starting conditions or whether it ultimately normalizes distinct variants
toward a common structural representation. For this purpose, we generate two additional
variants from each original snippet: one with obfuscated identifiers (KF1) and one without
comments (KF2). All three variants (KF0-KF2) are then subjected to five refinement
rounds using the same base prompt pKF0 ("Refactor this code for improved readability.").
This design enables us to disentangle the effect of initial structural differences from the
general convergence dynamics of iterative refinements.

5.2.1 Baseline: Variant Creation and Differences

Before investigating the convergence of iteratively refined code variants, we first examine
how distinct the variants in their initial version v0 are. As described in the methodology,
we derived two variants from the same base snippet but modified with respect to a specific
key factor of code readability: naming conventions (KF1), and presence of comments
(KF2).

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

KF0 KF1

KF0 KF2

KF1 KF2

Va
ria

nt
 P

ai
r

52% 36% 11%

67% 1%3% 28%

33% 35% 3% 28%

Average Change Distribution for Version 0 (nop)

Change Type:
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.6: Detailed Change Composition Between KF0, KF1, and KF2 at Version 0
(nop = “no prompt")

48 Chapter 5 Results

Figure 5.6 shows the detailed change distribution between the three code variants KF0,
KF1, and KF2 at version v0. The plot illustrates the proportion of changed lines across
categories, averaged over all snippets. The transformation from KF0 to KF1 consists of
systematically obfuscating all class, method, and variable names. As expected, this results
in a dominant proportion of Rename operations (36%), alongside CommentChange (11%),
which arise from identifier substitutions within code comments. The distinction between
these two categories is due to the matching algorithm: when a comment line (block or
inline) is changed solely due to renamed identifiers, the corresponding modification is
classified as a comment change.

In the case of KF0→KF2, all code comments were removed, while keeping the functional
code intact. On average, comments made up approximately 28% of each snippet, which
now appear as Deletions (Comment Lines) in the comparison. An additional 1% are
classified as CommentChange, primarily due to inline comment removals that did not
match corresponding lines in KF0. Furthermore, about 3% of all lines were replaced with
empty lines to preserve code structure and maintain visual alignment. This choice was
made deliberately, as we consider the insertion of empty lines to be a more appropriate
structural substitute for removed comments, especially in terms of readability and
comparability.

The third row in the plot (KF1 → KF2) reflects the cumulative structural impact of
both key factors - renaming and comment removal. On average, 77% of all lines are
affected: 35% by renaming, 28% by comment deletions, and 3% are empty line insertions.
Only 33% of the lines remain unchanged. Note that no additional CommentChange
entries could be recorded in this comparison, as the KF2 variant contains no comments,
thereby eliminating the possibility of a matched modification in this category. Across all
comparisons, only negligible residuals of other change types (≤1%) appear, which reflect
inherent limitations of the parsing process.

5.2.2 Absolute Code Metrics Across Iterations (KF1 + KF2)

Figure 5.7 shows the evolution of absolute structural metrics across all refinement
iterations (v0 to v5) for the three code variants KF0, KF1, and KF2, each refined using
prompt pKF0. The plots report average values per snippet for six key metrics: total lines,
code lines, comment lines, inline comments, empty lines, and number of methods.

At version v0, KF0 and KF1 contain 95.2 total lines on average, respectively, while
KF2, due to the removal of all comments, begins with only 70 lines. After the first
refinement round (v1), all three variants converge toward a reduced total line count: KF0
drops to 88.0, KF1 to 88.2, and KF2 remains constant at 70. From version v2 onward,

Chapter 5 Results 49

0 1 2 3 4 5
Version

70

75

80

85

90

95

#T
ot

al
 L

in
es

Average #Total Lines Across All Snippets (all)

Variant
KF0
KF1
KF2

0 1 2 3 4 5
Version

54

56

58

60

#C
od

e
Lin

es
Average #Code Lines Across All Snippets (all)

Variant
KF0
KF1
KF2

0 1 2 3 4 5
Version

0

5

10

15

20

25

30

#C
om

m
en

t L
in

es

Average #Comment Lines Across All Snippets (all)

Variant
KF0
KF1
KF2

0 1 2 3 4 5
Version

0.00

0.25

0.50

0.75

1.00

1.25

#I
nl

in
e

Co
m

m
en

ts

Average #Inline Comments Across All Snippets (all)

Variant
KF0
KF1
KF2

0 1 2 3 4 5
Version

12

13

14

15

#E
m

pt
y

Lin
es

Average #Empty Lines Across All Snippets (all)

Variant
KF0
KF1
KF2

0 1 2 3 4 5
Version

3

4

5

6

#M
et

ho
ds

Average #Methods Across All Snippets (all)

Variant
KF0
KF1
KF2

Figure 5.7: Average Absolute Metrics Across Refinement Steps
for KF0–KF2 (Prompt pKF0)

50 Chapter 5 Results

total line counts increase slightly and stabilize, with KF0- and KF1-variants reaching
approximately 89 lines by v5, while the KF2-variant reaches approximately 74.

The number of code lines increases steadily across all variants. All variants begin with
55.0 code lines and reach approximately 60.5 in v5. As expected, comment lines vary
significantly by condition. KF0 and KF1 start with 29.0 comment lines. Both decrease
over time to converge at around 17.2 lines by v5. KF2 contains no comments throughout
all iterations. Inline comments follow a similar pattern: KF0 and KF1 start at 1.3,
and drop to 0.45 by v5. KF2 contains virtually no inline comments at any iteration,
remaining close to 0.1 throughout. Empty lines increase slightly across all conditions
(after the initial drop in v1 for KF2 to the level of KF0 and KF1). KF0 and KF1 start
at 11.7, KF2 from 14.9, but from there the variants don’t diverge anymore, reaching a
final count of approximately 13 empty lines in v5.

Lastly, the average number of methods increases for all three variants in the early
iterations. All variants naturally start with the same number of methods (3.0). KF0
grows to 6.2 at v5. KF1 reaches 6.1, while KF2 increases to 6.3. All three variants
show near-identical method counts by the final iteration, further indicating structural
convergence.

5.2.3 Overall Change Dynamics Across Refinement Steps (KF1 + KF2)

Having established the structural development of each variant in terms of absolute
metrics, we now turn to a more granular view of how the underlying changes unfold
across iterations. While the previous plots captured overall trends in code size and
composition, the following analysis focuses on the proportion and nature of line-level
changes, i.e. how much of the code is modified, inserted, or deleted at each refinement
step. This perspective allows us to assess the degree and timing of stabilization during
the iterative process.

Figure 5.8 illustrates the average proportional distribution of changes across all refinement
iterations for the code variants KF1 and KF2, both processed using prompt pKF0. The
stacked bar plots differentiate between unchanged lines, modifications, insertions, and
deletions, providing a high-level view of how each version evolves over time.

In the case of KF1, the first refinement iteration (v0 → v1) introduces substantial
changes, with only 40% of lines remaining unchanged. Modifications account for 41% of
changes, while insertions and deletions contribute 6% and 13%, respectively. The following
iterations show a marked trend toward stabilization: the proportion of unchanged lines
increases to 71% in v1 → v2, 92% in v2 → v3, and 98% in the final step (v4 → v5).

Chapter 5 Results 51

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n
40% 41% 6% 13%

71% 9% 11% 9%

92% 3% 3% 3%

97% 1%1%

98%

Average Change Distribution for Variant KF1 (pKF0)

Change Type
Unchanged Modifications Total Insertions Total Deletions

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

51% 19% 15% 14%

83% 8% 6% 3%

94% 3%2%

97% 1%

98% 1%

Average Change Distribution for Variant KF2 (pKF0)

Change Type
Unchanged Modifications Total Insertions Total Deletions

Figure 5.8: Comparison of average proportional change distributions across refinement
iterations for variants KF1 (top) and KF2 (bottom) under prompt pKF0

Correspondingly, modifications and structural operations (insertions/deletions) diminish
steadily.

The trend is similar for KF2, although the first iteration (v0 → v1) shows a slightly
higher preservation rate, with 51% of lines unchanged. Modifications (19%), insertions
(15%), and deletions (14%) are relatively balanced in this early step. In subsequent
iterations, the proportion of unchanged lines increases to 83% (v1 → v2), 94%, 97%, and
eventually 98% at v5, closely matching the trajectory observed for KF1.

Overall, both variants exhibit a convergence pattern similar to that of KF0 (see Figure 5.2),
with the majority of structural adjustments occurring in the first two refinement rounds.

52 Chapter 5 Results

The final iterations involve minimal change activity, suggesting that the model reaches a
stable representation of the code regardless of the starting condition.

5.2.3.1 Detailed Breakdown of Modification Types (KF1 + KF2)

While the aggregated stacked bar plots provide an overview of the general change
dynamics, a more fine-grained breakdown is required to understand the nature of the
underlying modifications.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

40% 29% 8% 2% 4%1%2% 5% 7% 1%

71% 1%3% 3% 9% 2% 4% 4%1%

92% 1%2%1%1%

97%

98%

Average Change Distribution for Variant KF1 (pKF0)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

51% 9% 3% 6% 12% 3% 8% 6%

83% 3%2%2% 5% 1%2%

94% 2%2%

97%

98% 1%

Average Change Distribution for Variant KF2 (pKF0)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.9: Comparison of detailed average proportional change distributions across
refinement iterations for variants KF1 (top) and KF2 (bottom) under prompt pKF0

Figure 5.9 disaggregates the “modifications” category into the previoulsy introduced
concrete change types - such as renaming, semantic restructuring, syntax-only edits,

Chapter 5 Results 53

or changes to comments - alongside different forms of insertions and deletions. This
allows for a more nuanced assessment of how each refinement step contributes to the
convergence behavior observed earlier.

As hypothesized, for the KF1-variant the largest modification type in the first refinement
step (v0 → v1) consists of Rename operations (29%), followed by comment changes
(8%) and semantic changes (2%). This is consistent with the intended purpose of KF1,
which targets identifier renaming. Importantly, comment changes accounts for changes
to lines where variable names were also present in comments - either inline or block-level
- which were obfuscated to avoid biasing the model during future renaming. Insertions
and deletions of comment lines (1% and 7%, respectively), empty lines (2% and 1%,
respectively) as well as contributions from code insertions (4%) and deletions (5%), round
out the change spectrum.

In the second step (v1 → v2), the Rename portion drops to 1%, comment change
to 3%, and Insertions (Code + Comment) and Deletions (mostly Comments) each to
under 5%, while the Unchanged portion rises to 71%. From the third iteration onward,
structural edits become increasingly rare: v2 → v3 contains only minor contributions
(≤2%) across all categories, and v3 → v5 stabilizes at 97–98% unchanged code, similar
to the convergence trend observed in KF0.

A similar pattern is visible for the KF2-variant, albeit with a different emphasis. The
initial refinement (v0→ v1) shows 14% of lines deleted, consisting of code lines (8%), and
empty lines (6%), as well as insertions of empty lines (3%), and code lines (12%). The
remaining change types include renames (9%), semantic changes (6%), and syntax-only
changes (3%). The absence of comment changes and comment deletions reflect the
absence of comments in the initial version v0 of the KF2-variant. In subsequent steps,
the proportion of unchanged lines increases to 83% in v1 → v2 and eventually converges
to 98% by v5. From v2 onward, changes are minimal and mostly limited to isolated
insertions or minor renaming modifications (1–2%).

5.2.3.2 Modification Flow Across Iterations (KF1 + KF2)

To complement the proportional change distribution plots presented above, we again
include Sankey diagrams to better visualize the flow and persistence of modification types
across iterative refinement steps. While stacked bar plots offer aggregated proportions
per version pair, the Sankey view reveals how individual types of changes propagate
over time - and to what extent they persist or fade. This is particularly relevant in the
context of RQ2, where multiple code variants are initialized with targeted structural
differences and may exhibit distinct convergence trajectories.

54 Chapter 5 Results

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

CommentChangeCommentChangeCommentChangeCommentChangeCommentChange

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1

v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF1, Prompt: pKF0

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

CommentChangeCommentChangeCommentChangeCommentChangeCommentChange

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1

v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF2, Prompt: pKF0

Figure 5.10: Comparison of modification flow across iterative
refinements for the two variants

Figure 5.10 compares the modification trajectories for variants KF1 and KF2. In
both cases, the initial iteration (v0 → v1) is dominated by the systematic renaming
of identifiers. KF2 further exhibits an initial concentration of semantic changes and
syntax-only changes.

Beyond the second iteration (v2 → v3 and onward), the distributions in both variants
increasingly converge toward a narrow set of change types, with most activity limited
to small-scale semantic changes, minor rename adjustments, and occasional syntax-
only corrections. Overall, the Sankey diagrams reinforce the convergence trend already

Chapter 5 Results 55

observed in the stacked bar plots and illustrate how different initial manipulations affect
the temporal dynamics of refinement.

5.2.4 Pairwise Similarity Analysis Across Refinements (KF1 + KF2)

Following the structural and semantic analysis of code changes, we now examine how
similar the generated code versions are to one another throughout the iterative refinement
process. For this purpose, we analyze the average pairwise similarity scores between
all versions from v0 to v5 for each variant. This measure complements the change-
based visualizations by capturing a more holistic view of transformation stability across
iterations.

0 1 2 3 4 5
Version 1

5
4

3
2

1
0

Ve
rs

io
n

2

0.83 0.87 0.91 0.96 0.98

0.83 0.87 0.91 0.96

0.83 0.87 0.92

0.83 0.88

0.84

Avg Similarity Score Heatmap for Variant KF1 (pKF0)

0.84

0.86

0.88

0.90

0.92

0.94

0.96

av
g_

Av
g

Si
m

ila
rit

y
Sc

or
e

Figure 5.11: Modification Flow Across Iterations (KF1, Prompt pKF0)

Figures 5.11 and 5.12 presents the average similarity score heatmaps for the variants
KF1 and KF2, both processed under prompt pKF0. Each heatmap cell indicates the
average similarity score between two versions of the same snippet, computed across the
entire set of evaluated snippets.

For both KF1 and KF2, we observe a consistent pattern of increasing similarity as
versions progress. However, the dynamics differ slightly between the two: KF1 shows a
steady increase in similarity scores, beginning at 0.84 (v0 → v1) and reaching up to 0.98

56 Chapter 5 Results

0 1 2 3 4 5
Version 1

5
4

3
2

1
0

Ve
rs

io
n

2

0.87 0.89 0.94 0.97 0.98

0.87 0.90 0.95 0.97

0.87 0.90 0.95

0.87 0.90

0.89

Avg Similarity Score Heatmap for Variant KF2 (pKF0)

0.88

0.90

0.92

0.94

0.96

av
g_

Av
g

Si
m

ila
rit

y
Sc

or
e

Figure 5.12: Modification Flow Across Iterations (KF2, Prompt pKF0)

(v4 → v5). The scores from v2 onwards exhibit particularly high similarity, e.g., 0.91
(v2 → v3) and 0.96 (v3 → v4), suggesting that refinements stabilize significantly after
the second iteration. This observation aligns with the earlier findings from the stacked
bar plots, which already indicated that most structural changes occur early, followed
by incremental refinements. KF2, on the other hand, starts from a higher similarity
baseline, with a v0 → v1 similarity of 0.89. This may reflect the more limited nature
of the initial transformation (comment removal) relative to KF1 (rename refactoring).
From v2 onwards, the similarity scores climb even faster and converge slightly earlier
than in KF1. For example, v2 → 3 already reaches 0.95, and v3 → v4 scores at 0.97.

Overall, both variants exhibit convergence behavior, with increasing similarity scores
indicating that the iterative refinement process becomes more stable over time. Notably,
KF2 converges slightly faster than KF1, which aligns with the observation that its version
transitions involve fewer structural alterations.

Chapter 5 Results 57

Similarity Score Evolution Across Variants

0 1 2 3 4 5
Version

0.86

0.88

0.90

0.92

0.94

0.96

0.98
av

g_
Av

g
Si

m
ila

rit
y

Sc
or

e

Average Similarity Score across Versions (pKF0)
Variant Pair

KF0-KF1
KF0-KF2
KF1-KF2

Figure 5.13: Development of average similarity scores across
iterations for each variant pair (pKF0)

To complement the pairwise similarity heatmaps introduced earlier, Figure 5.13 illustrates
how the average similarity score between each variant pair evolves over the five refinement
iterations. This allows us to track whether and how the differences between variants
persist or diminish throughout the refinement process.

At iteration 0 (i.e. the starting point), the three variant pairs exhibit expected differences:

• KF0 and KF2 start out with the highest similarity score (0.98), due to both
variants sharing identical code except for comment removal.

• KF0 and KF1, and KF1 and KF2, begin at lower values (0.86 and 0.85,
respectively), reflecting the impact of identifier renaming.

However, across iterations, all variant pairs gradually converge towards similar
similarity scores, ranging from approximately 0.88 to 0.9 by iteration 5. Most
notably:

• The similarity between KF0 and KF2 decreases significantly from 0.98 to around
0.9, reflecting the increasing structural changes introduced by the model that go
beyond simple formatting or syntax-only edits.

• The KF1–KF2 pair exhibits a slight upward trend from 0.85 to 0.88, closing in
on the KF0–KF1 scores.

58 Chapter 5 Results

Ultimately, all three curves converge within a narrow range of less than 3% differ-
ence, indicating that despite their divergent starting points, the iterative refinements
lead all variants to similar structural representations of the code. This provides
further support for the convergence hypothesis formulated in RQ2: independently of
initial transformations, the model tends to normalize and align the structure of code
snippets over repeated prompts.

Summary of Findings for RQ2

The results consistently demonstrate convergence across all three code variants. Despite
structural differences in their initial versions - particularly between KF1 (renamed
identifiers) and KF2 (removed comments) - the iterative refinements rapidly reduce these
differences. Structural metrics (code/comment/empty lines, number of methods) stabilize
after the second iteration, and line-level analyses reveal that the majority of modifications
occur early, followed by minimal adjustments in later rounds. Pairwise similarity scores
confirm this trajectory: both within-variant comparisons (v0–v5) and cross-variant
comparisons converge toward high similarity values, typically around 0.88–0.90 by the
final iteration. Notably, KF2 reaches convergence slightly faster than KF1, but in the
end all variants align to highly similar structural representations. Taken together, these
findings suggest that the refinement process might be relatively robust to initial variations
and tends to normalize code snippets toward a shared representation, thereby supporting
the convergence hypothesis formulated in RQ2.

Chapter 5 Results 59

5.3 Impact of Explicitly Emphasizing Key Refinement Factors
(RQ3)

To address RQ3: "Do targeted refinements become more effective when the prompt
explicitly emphasizes the key factor in question?", we conducted a comparative analysis
of two prompt strategies designed to highlight distinct refinement objectives. Specifically,
pKF1 explicitly directs the model towards renaming identifiers, while pKF2 emphasizes
the improvement of comments. By analyzing pairwise similarity scores across successive
refinements of the three code variants (KF0, KF1, KF2), we aim to determine whether
the explicit emphasis on a refinement factor leads to more stable convergence, or whether
it introduces recurring back-and-forth modifications. This section presents the observed
refinement dynamics under both strategies, followed by a comparative assessment of their
respective impacts on convergence behavior.

5.3.1 Absolute Code Metrics Across Iteration under different Prompts

To investigate the effect of explicitly prompting for a particular refinement factor, we
compared the absolute structural metrics of the snippets across all three variants (KF0-
KF2) under different prompt strategies. Specifically, we contrast the general readability
prompt pKF0 with two targeted alternatives: pKF1, which emphasizes identifier naming,
and pKF2, which emphasizes code comments.

Comparison pKF0 vs. pKF1: Figure 5.14 shows that explicitly instructing ChatGPT
to focus on naming (pKF1) leads to noticeably different structural dynamics compared
to the general prompt (pKF0). Across all snippet variants (KF0-KF2), we observe that
metrics such as total lines, number of methods, and code lines remain relatively stable
over the refinement iterations under pKF1. This contrasts with the behavior under
pKF0, where structural changes (e.g. increases in method count and code lines) are more
pronounced, particularly in the first two refinement steps.

Regarding comments, a notable trend is that comment lines are more preserved under
pKF1 than under pKF0 in the variants that originally contain comments (KF0 and
KF1). Comment Lines as well as inline comments decrease moderately from v0 to v2
and then plateau. For the KF2-variant (which lacks comments), the structure remains
particularly stable under pKF1. There is minimal growth in lines of code or number
of methods, and comment lines remain consistently at zero - demonstrating that the
naming-focused prompt does not implicitly trigger the addition of documentation or
structural embellishment.

60 Chapter 5 Results

1.25

1.00

0.75

0.50

0.25

0.00

6

5

4

3

95

90

85

80

75

70

65

60

58

56

54

30

25

20

15

10

5

0

15

14

13

12

0

0

0

0 1 2 3 4

5

5

5

5

Variant-Prompt

KF0-pKF0

KF0-pKF1

KF1-pKF0

KF1-pKF1

KF2-pKF0

KF2-pKF1

Variant-Prompt

KF0-pKF0

KF0-pKF1

KF1-pKF0

KF1-pKF1

KF2-pKF0

KF2-pKF1

Variant-Prompt

KF0-pKF0

KF0-pKF1

KF1-pKF0

KF1-pKF1

KF2-pKF0

KF2-pKF1

Variant-Prompt

KF0-pKF0

KF0-pKF1

KF1-pKF0

KF1-pKF1

KF2-pKF0

KF2-pKF1

Variant-Prompt

KF0-pKF0

KF0-pKF1

KF1-pKF0

KF1-pKF1

KF2-pKF0

KF2-pKF1

Variant-Prompt

KF0-pKF0

KF0-pKF1

KF1-pKF0

KF1-pKF1

KF2-pKF0

KF2-pKF1

Version

1 2 3 4

Version

Average Methods Across All Snippets (pKF0 vs pKF1)

Average Total Lines Across All Snippets (pKF0 vs pKF1)

1 2 3 4

Version

Average Code Lines Across All Snippets (pKF0 vs pKF1)

1 2 3 4

Version

Average Empty Lines Across All Snippets (pKF0 vs pKF1)

0 1 2 3 4 5

Version

Average Comment Lines Across All Snippets (pKF0 vs pKF1)

0 1 2 3 4 5

Version

Average Inline Comments Across All Snippets (pKF0 vs pKF1)

In
li
n
e
 C

o
m

m
e
n
t
s

T
o
t
a
l
L
in

e
s

C
o
d
e
 L

in
e
s

C
o
m

m
e
n
t
 L

in
e
s

E
m

p
t
y
 L

in
e
s

M
e
t
h
o
d
s

6

5

4

3

60

58

56

54

30

20

10

0

10

8

6

4

2

0

15

14

13

12

100

90

80

70

0

0

0

0 1 2 3 4

5

5

5

5

Variant-Prompt

KF0-pKF0

KF0-pKF2

KF1-pKF0

KF1-pKF2

KF2-pKF0

KF2-pKF2

Variant-Prompt

KF0-pKF0

KF0-pKF2

KF1-pKF0

KF1-pKF2

KF2-pKF0

KF2-pKF2

Variant-Prompt

KF0-pKF0

KF0-pKF2

KF1-pKF0

KF1-pKF2

KF2-pKF0

KF2-pKF2

Variant-Prompt

KF0-pKF0

KF0-pKF2

KF1-pKF0

KF1-pKF2

KF2-pKF0

KF2-pKF2

Variant-Prompt

KF0-pKF0

KF0-pKF2

KF1-pKF0

KF1-pKF2

KF2-pKF0

KF2-pKF2

Variant-Prompt

KF0-pKF0

KF0-pKF2

KF1-pKF0

KF1-pKF2

KF2-pKF0

KF2-pKF2

Version

1 2 3 4

Version

Average Methods Across All Snippets (pKF0 vs pKF2)

Average Total Lines Across All Snippets (pKF0 vs pKF2)

1 2 3 4

Version

Average Code Lines Across All Snippets (pKF0 vs pKF2)

1 2 3 4

Version

Average Empty Lines Across All Snippets (pKF0 vs pKF2)

0 1 2 3 4 5

Version

Average Comment Lines Across All Snippets (pKF0 vs pKF2)

0 1 2 3 4 5

Version

Average Inline Comments Across All Snippets (pKF0 vs pKF2)

T
o
t
a
l
L
in

e
s

C
o
d
e
 L

in
e
s

C
o
m

m
e
n
t
 L

in
e
s

In
li
n
e
 C

o
m

m
e
n
t
s

E
m

p
t
y
 L

in
e
s

M
e
t
h
o
d
s

Figure 5.14: Comparison of Average Absolute Metrics Across Refinement Steps for
KF0–KF2 for two different prompts (pKF1 and pKF2)

Comparison pKF0 vs. pKF2: On the other hand, we can see a markedly different
dynamic when the prompt explicitly emphasizes comments (pKF2). While the number of
code lines and methods remains relatively stable - mirroring the restrained restructuring
seen under pKF1 - the behavior regarding comments changes substantially.

For the KF2-variant, which originally lacks comments, the number of comment lines

Chapter 5 Results 61

increases sharply from 0 to approximately 11 in the first refinement iteration (v0 → v1),
and then remains stable. This pattern is reflected in the number of inline comments as
well: it jumps from 0 to over 8 in v1, and further increases to nearly 10 in subsequent
versions, stabilizing thereafter. Notably, these values represent the highest average inline
comment counts across all variants and prompt combinations. The KF0 variant follows a
similar trend, although the increase is slightly less pronounced. The KF1 variant exhibits
a delayed and weaker increase.

These trends indicate that ChatGPT responds directly to the prompt by inserting
(hopefullly meaningful) comments where appropriate, primarily during the first iteration.
However, the lack of further increases in comment lines or inline comments in later
versions suggests that the model refrains from artificially inflating documentation density,
despite an explicit prompt emphasizing comments.

Another observation concerns the drop in empty lines in the KF2-variant from v0 to v1
under pKF2. This may be due to previously empty lines being filled with inline or block
comments during the refinement. From v2 onward, the average number of empty lines
slightly increases and then stabilizes, aligning with the levels observed in other variants.

5.3.2 Overall Change Dynamics Across Refinement Steps

To assess how a targeted prompts affect the nature and stability of iterative code
changes, we analyze both the proportional distribution of change types across refinement
steps and the longitudinal flow of modification categories over time. By analyzing the
overall change dynamics between successive refinement iterations, we can assess whether
prompts that emphasize specific key factors (i.e. naming or commenting) lead to more
targeted and stable improvements, or whether they merely shift the types of changes
being applied. Additionally, this perspective allows us to investigate whether such
prompts accelerate convergence by reducing unnecessary structural modifications and
promoting more consistent refinement behavior. The following subsections therefore
analyze how the distribution of code changes evolves across versions when using prompt
pKF1 (naming-focused) and prompt pKF2 (comment-focused), respectively.

KF0 - pKF1/pKF2: Figures 5.15 and 5.16 present the detailed distribution of change
types across successive refinement steps for variant KF0 (the original code) under prompt
pKF1 and pKF2, respectively. When we compare the two prompting strategies, we
observe strikingly different trajectories of modification types. Under pKF1, which
explicitly encourages identifier renaming, rename operations dominate across all iteration

62 Chapter 5 Results

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

CommentChangeCommentChangeCommentChangeCommentChangeCommentChange

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1

v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF0, Prompt: pKF1

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

56% 28% 5% 1% 2% 4%

78% 18% 2%

81% 17% 1%

83% 15% 1%

83% 15% 1%

Average Change Distribution for Variant KF0 (pKF1)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.15: Distribution of Change Types for KF0 (pKF1)

steps. From the initial transition (v0 → v1) through to the later versions, renaming
remains the primary form of change, while other modification types occur only marginally.

In contrast, pKF2, which emphasizes comment changes, produces a very different pattern:
the vast majority of changes concentrate in the first transition, where comment modifica-
tions account for the bulk of activity. After this initial step, subsequent iterations show
only minimal modifications, and by the final transition (v4→ v5), the process essentially
stabilizes with no observable changes.

KF1 - pKF1/pKF2: Figures 5.17 and 5.18 present the detailed distribution of change
types across successive refinement steps for variant KF1 (the original code with obfuscated

Chapter 5 Results 63

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

CommentChangeCommentChangeCommentChangeCommentChangeCommentChange

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1

v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF0, Prompt: pKF2

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

68% 1% 11% 1%1% 9% 1%2%4%

94% 3% 1%

98% 1%

99%

100%

Average Change Distribution for Variant KF0 (pKF2)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.16: Distribution of Change Types for KF0 (pKF2)

identifiers) under prompt pKF1 and pKF2, respectively. Again, we find distinct effects of
the two prompting strategies. Under pKF1, rename operations dominate from the very
first iteration and persist across subsequent transitions, mirroring the pattern observed in
KF0. It is noteworthy that, unlike with the unguided prompt pKF0, the modifications in
KF1 do not converge rapidly but instead show a persistent share of changes that decreases
only slowly across iterations. Renaming remains the dominant type of modification
throughout, while smaller proportions of comment changes and other categories continue
to appear in later steps.

In contrast, pKF2 produces a more heterogeneous distribution of changes: although
the prompt emphasizes comments, the first transition (v0 → v1) still contains a large

64 Chapter 5 Results

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

CommentChangeCommentChangeCommentChangeCommentChangeCommentChange

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1

v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF1, Prompt: pKF1

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

47% 34% 10% 2%3%

73% 19% 3% 2%

80% 17% 2%

83% 16% 1%

83% 15% 1%

Average Change Distribution for Variant KF1 (pKF1)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.17: Distribution of Change Types for KF1 (pKF1)

proportion of renames, likely reflecting the necessity of re-establishing meaningful iden-
tifiers in the obfuscated code. In this initial step, comment modifications account for
around 11% of all changes, likely reflecting identifier replacements within comments. We
also observe approximately 6% insertions and 4% deletions, which may partially result
from alignment and the inherent limitations of the parser’s matching process rather than
genuine removals of comments.

KF2 - pKF1/pKF2: Figures 5.19 and 5.20 present the detailed distribution of change
types across successive refinement steps for variant KF1 (the original code with obfuscated
identifiers) under prompt pKF1 and pKF2, respectively. Here also, we find that the two

Chapter 5 Results 65

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

CommentChangeCommentChangeCommentChangeCommentChangeCommentChange

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1

v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF1, Prompt: pKF2

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

42% 29% 11% 1%1% 6% 1%2% 4%

85% 7% 1%4%

97% 2%

99%

100%

Average Change Distribution for Variant KF1 (pKF2)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.18: Distribution of Change Types for KF1 (pKF2)

prompting strategies drive markedly different change dynamics. Under pKF1, rename
modifications dominate across all iterations, starting with a large proportion of renames
in the initial transition (v0 rightarrow v1) and persisting through later steps. Although
the proportion of unchanged lines increases with each iteration, renaming remains the
most prominent activity throughout the refinement process.

In contrast, pKF2 produces a pattern centered on comment modifications: the first
iteration shows a substantial share of comment changes, accompanied by insertions and
deletions that likely reflect alignment issues. After this initial step, activity rapidly
diminishes, with subsequent transitions approaching near-stability and almost no further
modifications by the final versions.

66 Chapter 5 Results

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1
v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF2, Prompt: pKF1

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

49% 37% 2%2%2% 6%

72% 26%

75% 23%

77% 22%

78% 22%

Average Change Distribution for Variant KF2 (pKF1)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.19: Distribution of Change Types for KF2 (pKF1)

To avoid confusion, we note that the large proportion of “CommentChange” observed
in v1 arises from the way modifications are classified. Whenever a line of code receives
an inline comment, this modification is labeled as a “CommentChange.” This does not
necessarily imply that a comment was already present and subsequently altered; rather,
it indicates that some aspect of the comment component of the line - its presence or its
content - has changed.

Chapter 5 Results 67

RenameRenameRenameRenameRename

SyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnlySyntaxOnly

CommentChangeCommentChangeCommentChangeCommentChangeCommentChange

SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)SemanticChange(Sum)

MixedChangeMixedChangeMixedChangeMixedChangeMixedChange

OtherOtherOtherOtherOther

v1v1v1v1v1

v2v2v2v2v2

v3v3v3v3v3

v4v4v4v4v4

v5v5v5v5v5

Variant: KF2, Prompt: pKF2

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Types

v0 v1

v1 v2

v2 v3

v3 v4

v4 v5

Ve
rs

io
n

Tr
an

sit
io

n

64% 1% 10% 1% 14% 2%1% 5%

90% 1% 5%

97% 2%

98%

99%

Average Change Distribution for Variant KF2 (pKF2)

Change Type
Unchanged
Rename
SyntaxOnly
CommentChange

SemanticChange(Sum)
MixedChange
Other

Insertions (Code Lines)
Insertions (Comment Lines)
Insertions (Empty Lines)

Deletions (Code Lines)
Deletions (Comment Lines)
Deletions (Empty Lines)

Figure 5.20: Distribution of Change Types for KF2 (pKF2)

68 Chapter 5 Results

5.3.3 Pairwise Similarity Analysis Across Refinements (pKF1 / pKF2)

This section presents the results of the pairwise similarity analysis across successive
refinements under the two prompt strategies, pKF1 (identifier renaming) and pKF2
(comment improvement). The goal of this analysis is to examine how similarity scores
evolve across versions, and to identify whether different refinement strategies lead to
distinct convergence patterns or to recurring modification behaviors. To illustrate these
dynamics, heatmaps of the average similarity scores are provided again, complemented
by line plots that compare the convergence tendencies of the variant pairs (Figure 5.21).

In the case of pKF1, we can clearly observe seemingly back-and-forth modifications
across all variants, which exhibit a very similar pattern and highly comparable similarity
scores. Starting from version v1, alternating similarity scores become apparent: pairs of
versions separated by two steps consistently share the same score, whereas the direct
successor in between always shows a lower score. For example, the similarity between
v2 and v3 is 0.93, yet v2 is more similar to v4 with a score of 0.94. This alternation
continues, as v2 to v5 returns to 0.93. Notably, the comparison of v3 to v5 yields the
highest similarity score of 0.96, while v4 to v5 only reaches 0.94.

An interesting observation in pKF2 is that relatively little change occurs, and the
similarity scores resemble those obtained from the base prompt. Already from the
transition between v2 and v3, only very few modifications remain. Under pKF2, both
KF0 and KF1 even reach absolute convergence, with a similarity score of 1.0. This finding
is particularly noteworthy, as pKF1 exhibited back-and-forth modifications involving
renaming operations, whereas in the case of requesting improved comments, the model
appears to eventually reach an optimum at which no further changes are introduced.

Chapter 5 Results 69

Figure 5.21: Average similarity score heatmaps across all code variants
under pKF1 (left) and pKF2 (right)

70 Chapter 5 Results

Similarity Score Evolution Across Variants (pK1 / pKF2)

To directly compare the convergence tendencies across prompt strategies, we analyze
the evolution of similarity scores across variant pairs. As we can see in Figure 5.22, the
two pairs involving the renaming variant (KF1) consistently maintain either increased
or stable similarity scores (approximately 0.915 for pKF1 and 0.875 for pKF2 from v1
to v2). In contrast, the pair combining the original code (KF0) with the original code
without comments (KF2) exhibits a more pronounced initial decrease, attributable to
the introduction of inline comments (as seen in Figure 5.20, an average of 10% of the
code is augmented with inline comments.) For both prompt strategies, the similarity
scores across the three variant pairs converge rapidly, with the most substantial change
occurring during the transition from v0 to v1. Overall, pKF1 achieves a higher average
similarity score across the variant pairs compared to pKF2.

0 1 2 3 4 5
Version

0.86

0.88

0.90

0.92

0.94

0.96

0.98

av
g_

Av
g

Si
m

ila
rit

y
Sc

or
e

Average Similarity Score across Versions (pKF1)
Variant Pair

KF0-KF1
KF0-KF2
KF1-KF2

0 1 2 3 4 5
Version

0.86

0.88

0.90

0.92

0.94

0.96

0.98

av
g_

Av
g

Si
m

ila
rit

y
Sc

or
e

Average Similarity Score across Versions (pKF2)
Variant Pair

KF0-KF1
KF0-KF2
KF1-KF2

Figure 5.22: Convergence of Average Similarity Score across
all code variants under pKF1 (left) and pKF2 (right)

Chapter 5 Results 71

5.3.4 Statistical Analysis

Descriptive Statistics

Table 5.1 reports the mean percentages and standard deviations of Rename and Com-
mentChange operations across all prompt variants and code versions. These descriptive
statistics provide an intuitive understanding of the magnitude and variability of changes
induced by different prompts. For instance, the Rename changes under pKF1 consis-
tently show higher means compared to pKF0 and pKF2, such as in KF2 (26.0% ±
15.0%), suggesting a strong prompt-induced tendency toward Rename modifications.
Similarly, CommentChange activity under pKF2 peaks in several configurations, indi-
cating differential prompt sensitivity across transformation types. The high standard
deviations also highlight the heterogeneity in model responses, further motivating the
use of non-parametric statistical testing.

Prompt Rename CommentChange

KF0
pKF0 2.3% ± 5.3% 0.6% ± 2.0%
pKF1 18.7% ± 11.9% 2.2% ± 3.4%
pKF2 0.3% ± 2.1% 3.2% ± 6.0%

KF1
pKF0 6.5% ± 11.9% 1.9% ± 4.4%
pKF1 20.1% ± 12.4% 3.5% ± 5.2%
pKF2 6.0% ± 12.3% 3.9% ± 5.8%

KF2
pKF0 3.3% ± 6.5% 0.0% ± 0.4%
pKF1 26.0% ± 15.0% 0.0% ± 0.0%
pKF2 0.5% ± 3.2% 3.7% ± 6.7%

Table 5.1: Descriptive Statistics (Mean ± SD) for Rename and CommentChange

Inferential Statistics

Building on the descriptive patterns observed above, we applied statistical tests to
determine whether the observed differences between prompts are statistically significant.
To evaluate the influence of different prompt variants on code transformations, we applied
a combination of non-parametric and mixed-effects statistical methods. Below, we briefly
explain the rationale behind each method and its application to our dataset.

While exploratory analyses were also conducted for all other modification types with
false discovery rate correction, here we concentrate on the directed analyses of Rename

72 Chapter 5 Results

and Comment Changes. We report the full set of exploratory analyses, including other
change types, in the appendix in Table A.2.

Kruskal-Wallis Test The Kruskal-Wallis H test is a non-parametric alternative to one-
way ANOVA. It tests whether samples originate from the same distribution, focusing on
differences in median ranks between multiple independent groups. This test is particularly
suited for our data, as the distributions of code change metrics are proportional (i.e.
normalized between 0 and 1) and therefore not guaranteed to follow a normal distribution.
We used the Kruskal-Wallis test to determine whether different prompts had a statistically
significant effect on code changes within each code variant (KF0, KF1, KF2).

The tests revealed significant effects of prompt variants on both Rename and Com-
mentChange modifications across all code variants:

• Rename: Significant effects in KF0 (H = 2199.42, p < 0.001), KF1 (H = 1123.63,
p < 0.001), and KF2 (H = 2208.56, p < 0.001).

• CommentChange: Significant effects in KF0 (H = 294.96, p < 0.001), KF1
(H = 182.26, p < 0.001), and KF2 (H = 936.77, p < 0.001).

Post-hoc Pairwise Comparisons While the Kruskal-Wallis test indicates whether a
difference exists among groups, it does not specify which groups differ from each other.
To resolve this, we conducted post-hoc pairwise comparisons using the Mann-Whitney U
test (also known as the Wilcoxon rank-sum test), which compares the distributions of
two independent groups. This allowed us to identify which specific prompt pairs (e.g.
pKF0 vs. pKF1) contributed to the overall significant differences.

The post-hoc tests confirmed that these effects of prompt variants on the change types
were driven by significant differences between individual prompt conditions. For instance:

• Rename (KF0): pKF0 vs. pKF1 (U = 99398.5, p ≈ 4.87 × 10−268); pKF0 vs.
pKF2 (U = 763607.0, p ≈ 7.88× 10−53).

• CommentChange (KF1): pKF0 vs. pKF1 (U = 448546.0, p ≈ 1.40 × 10−35);
pKF0 vs. pKF2 (U = 460593.5, p ≈ 1.56× 10−31).

Mixed Linear Models (MixedLM) To assess the global effect of prompt stratgies across
all code variants we employed mixed-effects linear models. These models allow for both
fixed effects (prompt) and random effects (variant), enabling us to control for repeated

Chapter 5 Results 73

measures and nested variability. The test statistic from the model comparison (via
likelihood ratio tests) follows a chi-square distribution. The mixed-effects models further
confirmed the prompt effects across all code variants:

• Rename (ALL): χ2 = 8575.25, p < 0.001

• CommentChange (ALL): χ2 = 16769.06, p < 0.001

These findings provide robust statistical evidence that the choice of prompt has a signifi-
cant and consistent impact on how models perform both Rename and CommentChange
operations, across all code variants examined.

5.3.5 Summary of Findings for RQ3

The analysis of RQ3 investigated whether explicitly emphasizing specific refinement
factors in prompts affects the effectiveness and stability of iterative code refinements.
Results demonstrate that prompt design substantially shapes refinement trajectories.
When the prompt targeted identifier renaming (pKF1), refinements were dominated by
recurring rename operations, producing back-and-forth modifications across iterations
without reaching stable convergence. In contrast, prompts emphasizing comments (pKF2)
induced a sharp increase in comment density during the first refinement step, followed by
rapid stabilization and minimal subsequent changes, reflecting clear convergence behavior.
Pairwise similarity analyses confirmed this contrast: pKF1 exhibited oscillating similarity
scores indicative of instability, whereas pKF2 often achieved high, sometimes absolute,
convergence.

The statistical tests provide sufficient evidence to reject the null hypothesis (H0), which
assumed no significant difference in refinement effectiveness between targeted and un-
guided prompts. Both the Kruskal–Wallis tests and the mixed-effects models identified
significant prompt-related effects for the two central modification types (Rename and
Comment Changes). In line with the alternative hypothesis (H1), targeted prompts
systematically produced distinct refinement outcomes: pKF1 consistently elicited a higher
frequency of rename modifications, while pKF2 exerted stronger effects on comment-
related changes. These findings indicate that explicitly emphasizing a refinement factor in
the prompt significantly shapes the trajectory of code modifications, thereby supporting
H1. Building on our findings, the discussion turns to a broader interpretation of what the
observed refinement dynamics reveal about ChatGPT’s behavior as a code-refactoring
agent.

74 Chapter 5 Results

5.4 Complete Summary of Key Findings

Overall, the results demonstrate that ChatGPT’s iterative refinements follow a consistent
trajectory across different experimental conditions. For well-structured code (RQ1), the
model largely preserved the original organization but nonetheless introduced unnecessary
adjustments in early iterations before stabilizing toward a near-converged state. When
applied to systematically varied code snippets (RQ2), the refinements converged across
all variants, indicating that the model normalizes divergent inputs into structurally
similar representations over time. Finally, explicit prompt design (RQ3) was shown
to exert a strong influence on refinement trajectories: while prompts emphasizing
identifier renaming induced recurring back-and-forth modifications, prompts highlighting
comments facilitated rapid stabilization and, in some cases, absolute convergence. Taken
together, these findings provide robust evidence that iterative refinements by ChatGPT
are characterized by early restructuring followed by convergence, with prompt design
serving as a decisive factor in determining whether this process stabilizes or remains
oscillatory.

Chapter 6

Discussion

The open question identified in the gap analysis was how LLMs iteratively self-improve
code, whether this happens in a stable and reliable manner, and which effect different
starting conditions and prompt strategies have. Our study partially fills this gap by the
developed framework to measure these code changes substantially.

This chapter discusses the findings of the study in relation to the research questions.
It interprets the observed refinement patterns, compares them to existing work, and
highlights overarching themes that emerge across the analyses. In doing so, it outlines
how the results contribute to a deeper understanding of iterative code modifications by
LLMs and sets the stage for identifying future research directions.

6.1 Interpretation for RQ1

The analysis of RQ1 reveals that ChatGPT tends to modify code even when it already
adheres to established best practices. However, these modifications stabilize after a few
refinement iterations. The most prominent structural refactoring involves encapsulating
functionality into smaller, more modular functions, which on the one hand partially
supports earlier findings that (iteratively) generated code often suffers from unnecessary or
increasing complexity ([28], [36]). On the other hand, the pattern we found suggests that
the model initially identifies a substantial number of aspects to “improve", particularly
when dealing with code that has not been previously refined by an LLM, but then
structural refactorings stabilize quickly after only a few iterations.

One possible interpretation is that what is conventionally perceived as “best practice”
code may not fully align with ChatGPT’s internalized representation of best practices.
Another interpretation is that the model employs an alternative, model-specific notion

75

76 Chapter 6 Discussion

of code quality that extends beyond established human conventions. Importantly, the
diminishing number of modifications in subsequent iterations indicates that the model
converges toward stability unless explicitly prompted to continue applying targeted
changes (e.g. systematic renamings). This raises the question of whether defining a
convergence criterion is necessary at all, or whether such a criterion could effectively
minimize or even eliminate the large-scale alterations observed in the initial iterations.

Another striking observation is that, in the absence of explicit prompting, ChatGPT
consistently removes comments from the code. While this behavior might streamline
the code’s appearance, it risks impairing readability for human developers and erases
potentially valuable contextual information. Such comments may serve to document
design rationales, highlight critical sections of the code, or record bug fixes and other
implementation-specific considerations that would otherwise be lost. For example,
comments that extend beyond mere functional descriptions (e.g., those addressing error
resolution) exhibit a particularly strong correlation with successful bug fixing ([37]).

On the other hand, poorly written comments are more harmful than having no comments
at all, as they provide software developers and maintainers with distorted and misleading
information ([38]). Consequently, removing comments that do not align with the code
context may in fact improve readability rather than harm it. However, substantiating
such an effect would require either a dedicated qualitative study or the application of
advanced natural language processing techniques capable of assessing the contextual
appropriateness of code comments.

6.2 Interpretation for RQ2

The analysis of RQ2 reveals a striking pattern: despite starting from variants with
degraded readability features such as inconsistent naming or missing comments most
versions ultimately converge toward highly similar code after several refinement iterations.
Variants initialized with obfuscated identifiers indeed underwent a larger number of
renaming operations, particularly in the early stages of refinement. This aligns with prior
findings demonstrating that ChatGPT is capable of deriving clearer and more meaningful
variable names even when the code is difficult to read or intentionally obfuscated ([31]).

This behavior points to a broader implication: ChatGPT tends to systematically reduce
structural and stylistic differences between code variants, producing what could be
described as a homogenization effect. The high frequency of renamings in poorly chosen
identifier sets suggests that the model possesses a relatively fine-grained understanding
of what constitutes “good” variable naming in the given context. While the present

Chapter 6 Discussion 77

analysis cannot fully determine whether the chosen names optimally enhance readability or
semantic clarity, our spot checks indicated that the replacements were context-appropriate
and consistently expressed the intended function of the variables. A qualitative follow-up
study would be necessary to more rigorously assess whether the new identifiers improve
readability for human developers.

Interestingly, the overall convergence stands in contrast to initial expectations. One
might have hypothesized that, given the vast space of possible code formulations, variants
would diverge into increasingly distinct versions over multiple iterations. Instead, the
opposite occurred: across different starting conditions, the end versions gravitated toward
a common form. This outcome may in fact be considered a best-case scenario, as it
demonstrates that ChatGPT does not simply generate arbitrary transformations, but
rather follows a discernible direction in refining code toward internally consistent and
arguably more standardized solutions.

6.3 Interpretation for RQ3

Our findings highlight that explicitly emphasizing particular refinement factors substan-
tially shaped the trajectory of modifications. Naming-focused prompts (pKF1) consis-
tently induced persistent back-and-forth renaming, whereas comment-focused prompts
(pKF2) produced rapid stabilization and, in several cases, near-perfect convergence. This
pattern resonates with prior work on refactoring interactions, which similarly observed
that developers’ more specific prompts yield more targeted and effective model responses
([17, 30]).

A closer comparison underscores two complementary insights. First, when guided by
naming-focused prompts, the model engaged less in structural reorganization or code
expansion. Auxiliary methods were seldom introduced, and control flow restructuring was
minimized. This constrained focus suggests that explicit task framing channels ChatGPT
away from its otherwise more creative or exploratory refinements, a tendency that is
consistent with recent findings showing that prompts and role-play settings significantly
influence the model’s creativity ([39]). However, the same condition also produced
a recurring pattern of back-and-forth renaming. The absence of a strict convergence
criterion under pKF1 appears to allow continuous oscillation around variable names
rather than stabilization once an arguably optimal naming scheme is reached.

By contrast, comment-focused prompts (pKF2) exhibited a markedly different dynamic.
Here, convergence occurred even in the absence of an explicit convergence criterion.

78 Chapter 6 Discussion

ChatGPT appeared to “recognize” that additional comment insertions would not fur-
ther improve readability, thereby stabilizing after only minor adjustments. While it
remains unclear whether this reflects genuine semantic reasoning or merely a reduction
in modification tendencies under comment-emphasis, the effect is notable: targeted
prompting does not inherently prevent convergence, but its outcome depends on the
nature of the targeted factor. Interestingly, despite pKF2’s explicit focus on comments, a
substantial number of renaming operations still occurred particularly in the KF1 variant
with obfuscated identifiers, indicating that the model might recognize the quality of
identifier names and prioritizes it even under a prompt targeted at another key factor.

6.4 Future Work

Convergence vs. Oscillation. Our results demonstrate that iterative refinements exhibit
a clear pattern of early restructuring followed by stabilization. This supports the findings
by Liu et al. [33] who found that the majority of code improvements occur in early
iterations. In line with the open question of whether LLMs converge toward higher-
quality solutions, we find that ChatGPT consistently normalizes structurally divergent
inputs, even when identifiers are obfuscated or comments removed. However, convergence
remains partial: similarity scores often plateau below 1.0, and micro-modifications persist
across iterations, indicating that the model occasionally engages in over-refinement and
might benefit from a principled stopping criterion.

An additional dimension that may influence convergence is the availability of context.
Given that API requests are stateless, the back-and-forth modifications cannot be
explained by the model retaining information about previous snippet versions. Rather,
the observed oscillation appears to arise from the model’s internal distribution over
plausible identifier names, which leads it to revert to familiar candidates in the absence
of persistent contextual anchoring.

Future research could therefore examine whether maintaining context across refinement
steps would alter convergence dynamics, potentially reducing oscillatory behavior. Never-
theless, our findings already indicate that even in a stateless setup, ChatGPT sometimes
oscillates within a narrow set of highly similar identifier names when repeatedly prompted
to improve naming. This suggests that without contextual anchoring, the model may con-
verge only locally and remain vulnerable to back-and-forth modifications in semantically
equivalent but stylistically similar solutions.

Decomposition of Refinement Types. By analyzing insertions, deletions, and different
change types of modifications over time, this study provides the layered characterization

Chapter 6 Discussion 79

of iterative refinement that was previously missing. The results reveal that early iterations
are dominated by structural transformations (comment deletions, renaming, or semantic
changes), while later iterations narrow down to minor surface-level edits.

Naturally, this raises further questions regarding the nature of these structural trans-
formations. Which code locations are particularly frequent or rare targets of change?
Which AST node types are most commonly affected? Which change types are especially
associated with specific AST node categories? Moreover, which change types tend to
co-occur, and which are largely mutually exclusive? Another important aspect is whether
code size plays a role. For instance, are certain change types applied more frequently in
larger snippets compared to smaller ones?

pK
F0

pKF2

pKF1

OtherStructuralChange

CallChange

ControlChange

Ac
ce
ss
Ch

an
ge

Li
te
ra
lC
ha

ng
e

O
pe
ra
to
rC
ha
ng

e

OtherStru
cturalCha

nge

ControlChange
CallChange
AccessChange

LiteralChange
OperatorChange

O
th
er
St
ru
ct
ur
al
Ch
an
ge

CallChange

ControlChange

AccessChange
LiteralChange

OperatorChange

DeclarationNode

ExpressionNode
A
rg
um

en
tL
is
t

Ex
pr

es
si

on
N

od
e
→

 E
xp

re
ss

io
nN

od
e

ExpressionN
ode →

 D
eclarationN

ode

ProgramForm
alParam

eters

ExpressionN
ode →

 Identifier

D
eclarationN

ode →
 ExpressionN

ode

Identifier →
 ExpressionNode

AssertStatem
ent →

 ExpressionNode

DeclarationNode →
 SingleStatem

ent

Declaration →
 DeclarationNode

ControlNode

EnhancedForStatem
ent

TypeArgum
ents

ExpressionNode →
 SingleStatem

ent

Public →
 Private

DeclarationNode →
 ProbablyStringFragm

ent

DeclarationNode →
 DeclarationNode

ProbablyStringFragm
ent →

 ExpressionNode

DeclarationNode →
 TryW

ithResourcesStatem
ent

ProbablyStringFragm
ent →

 DeclarationNode

TypeIdentifier →
 GenericType

SingleStatem
ent →

 ExpressionNode

ArrayInitializer

Block →
 ExpressionNode

DeclarationNode →
 Declaration

ExpressionNode →
 AssertStatement

LabeledStatement → ExpressionNode

DeclarationNode → EnhancedForStatement

GenericType → TypeIdentifier

Char → Int

EnhancedForStatement → DeclarationNode

ExpressionNode → ProbablyStringFragment

SingleStatement → DeclarationNode

ExpressionNode → ArrayInitializer

; → ExpressionNode

Private → Public

ExpressionNode → MethodReference

TryWithResourcesStatement → DeclarationNode

Protected → Private

ArrayType

TypeIdentifier → FloatingPointType

FloatingPointType → TypeIdentifier

IntegralType → TypeIdentifier

VoidType → IntegralType

TypeIdentifier → IntegralType

ProbablyStringFragment → SingleStatement

SingleStatement → ProbablyStringFragment

VoidType → BooleanType

TypeIdentifier → ArrayType

SingleStatement → Program

Static → Final

EnhancedForStatement → ExpressionNode

SingleStatement → Declaration

VoidType → GenericType

Program → SingleStatement

SingleStatement

ExpressionNode

Ex
pr

es
si

on
N

od
e
→

 E
xp

re
ss

io
nN

od
e

Identifier → ExpressionNode

ExpressionNode → Identifier

Acce
ssNo

de

ArgumentList

ControlNode → ControlNode

Ex
pre

ssi
on

Nod
e →

 Con
tro

lNod
e

Co
nt
ro
lN
od
e

Co
nt

ro
lN

od
e
→

 E
xp

re
ss

ion
Nod

e

De
cla

ra
tio

nN
od

e
→

 C
on

tro
lN

od
e

Bl
oc

k
→

 C
on

tro
lN

od
e

Co
nt

ro
lN

od
e
→

 E
nh

an
ce

dF
or

St
at

em
en

t

Co
nt

ro
lN

od
e
→

 D
ec

la
ra

tio
nN

od
e

Co
nt

ro
lN

od
e
→

 S
in

gl
eS

ta
te

m
en

t

Pr
og
ra
m

Co
nt

ro
lN

od
e
→

 P
ro

ba
bl

yS
tr
in

gF
ra

gm
en

t

En
ha

nc
ed

Fo
rS

ta
te

m
en

t →
 C

on
tr
ol

No
de

Si
ng

le
St

at
em

en
t →

 C
on

tr
ol

No
de

Pr
ob

ab
ly

St
rin

gF
ra

gm
en

t →
 C

on
tr
ol

No
de

Pr
og

ra
m

 →
 C

on
tr
ol

No
de

Co
nt

ro
lN

od
e
→

 L
ab

el
ed

St
at

em
en

t

Con
tinu

e →
 Re

turn

Con
trol

Nod
e →

 Blo
ck

Dec
lara

tion
 → C

ontr
olNo

de

ControlN
ode → D

eclaratio
n

Return → Continue

Id
en

tif
ie

r
→

 A
cc

es
sN

od
e

Ac
ce

ss
N
od

e
→

 I
de

nt
ifi

er

D
ec

la
ra
tio

nN
od

e
M
od

ifi
er
s

A
cc
es
sN
od
e

A
cc

es
sN

od
e
→

 E
xp

re
ss

io
nN

od
e

Fo
rm

al
Pa

ra
m
et
er
s

Ex
pr

es
si

on
N

od
e
→

 A
cc

es
sN

od
e

Pr
og
ra
m Li
te

ra
lN

od
e
→

 I
de

nt
ifi

er

Id
en

ti
fie

r
→

 L
it
er

al
N

od
e

Li
te

ra
lN

od
e
→

 L
it
er

al
N

od
e

Li
te

ra
lN

od
e
→

 E
xp

re
ss

io
nN

od
e

Ex
pr

es
si

on
N

od
e
→

 L
it
er

al
N

od
e

O
pe

ra
to

rN
od

e
→

 O
pe

ra
to

rN
od

e

O
pe

ra
to

rN
od

e
→

 ;
; → Op

eratorN
ode

Program

ExpressionN
ode

D
eclarationN

ode
ExpressionN

ode →
 ExpressionN

ode
C
ontrolN

ode
A
rgum

entList

ExpressionN
ode →

 D
eclarationN

ode
TypeArgum

ents

ExpressionN
ode →

 Identifier

D
eclarationN

ode →
 ExpressionN

ode
Form

alParam
eters

ProbablyStringFragm
ent →

 D
eclarationN

ode

Identifier →
 ExpressionN

ode

D
eclarationN

ode →
 ProbablyStringFragm

ent

D
eclarationN

ode →
 SingleStatem

ent

ProbablyStringFragm
ent →

 ExpressionN
ode

D
eclarationN

ode →
 EnhancedForStatem

ent
; →

 Block

EnhancedForStatem
ent

D
eclarationN

ode →
 D

eclarationN
ode

Block →
 ExpressionN

ode

SingleStatem
ent →

 ExpressionNode

TypeIdentifier →
 G

enericType

Declaration → DeclarationNode
ArrayType

ExpressionNode → SingleStatement

SingleStatement → DeclarationNode

DeclarationNode → Declaration

ExpressionNode → MethodReference

ExpressionNode → ProbablyStringFragment
TypeParameter

ExpressionNode → Block

Program → ProbablyStringFragment

ControlN
ode →

 ControlN
ode

ControlN
ode

ControlN
ode →

 ExpressionN
ode

ControlNode →
 D

eclarationNode

ExpressionNode →
 ControlNode

D
eclarationNode →

 ControlNode

ControlNode →
 SingleStatem

ent

ControlNode →
 ProbablyStringFragm

ent

SingleStatem
ent →

 ControlNode

ControlNode →
 EnhancedForStatem

ent

ControlNode →
 LabeledStatem

ent

EnhancedForStatem
ent →

 ControlNode
W

hile →
 If

Program

ProbablyStringFragment → ControlNode

ControlNode → Declaration

ExpressionNode

ExpressionNode →
 ExpressionNode

ExpressionNode →
 Identifier

Identifier →
 ExpressionNode

Program

Identifier →
 AccessNode

AccessNode →
 Identifier

DeclarationNode
AccessNode

Program

AccessNode → ExpressionNode

ExpressionNode → AccessNode

LiteralNode →
 Identifier

Identifier →
 LiteralNode

LiteralNode → ExpressionNode

LiteralNode → LiteralNode

ExpressionNode → LiteralNode

OperatorNode →
 OperatorNode

ExpressionNode

DeclarationNode

ExpressionNode → ExpressionNode

ExpressionNode → DeclarationNode

Program

DeclarationNode → ExpressionNode

ArgumentList

Identifier → ExpressionNode

EnhancedForStatement

ExpressionNode → Identifier

ControlNode

DeclarationNode → SingleStatement

ProbablyStringFragment → DeclarationNode

DeclarationNode → ProbablyStringFragment

Declaration → DeclarationNode

Public → Private

ExpressionNode → SingleStatement

TypeIdentifier → GenericType

ProbablyStringFragment → ExpressionNode

Block → ExpressionNode

TypeArguments

TypeIdentifier → IntegralType

Private → Public

Protected → Private

Int → Double

DeclarationNode → EnhancedForStatement

SingleStatement → ExpressionNode

TypeParameter

FormalParameters

ArrayType

GenericType → TypeIdentifierArrayType → TypeIdentifier

ExpressionNode

ExpressionNode → ExpressionNode

ExpressionNode → Identifier

Identifier → ExpressionNode

ControlNode

ExpressionNode → ControlNode

ControlNode → ControlNode

DeclarationNode → ControlNode

ControlNode → EnhancedForStatement

ControlNode → SingleStatement

ControlNode → ExpressionNode

EnhancedForStatement → ControlNode

ControlNode → DeclarationNode

ControlNode → ProbablyStringFragment

SingleStatement → ControlNode

ProbablyStringFragment → ControlNodeControlNode → Declaration

Identifier → AccessNode
DeclarationNode
AccessNode → Identifier

AccessNode → ExpressionNode
ExpressionNode → AccessNode

Modifiers
AccessNode

LiteralNode → LiteralNode
Identifier → LiteralNode

LiteralNode → Identifier
LiteralNode → ExpressionNodeOperatorNode → OperatorNode

Sunburst: Prompt → Change Type → AST Node Type

Figure 6.1: Sunburst diagram showing the distribution of AST node types affected by
semantic changes, grouped by prompt (center), change type (middle layer), and node

category (outer layer)

These questions unfortunately go beyond the scope of this thesis. However, the framework
has been designed in such a way that the necessary data (i.e. information on which AST
node types are affected by a given modification at the line level) are already partially

80 Chapter 6 Discussion

collected during the DiffParsing process. An exemplatory overview of affected AST node
types per semantic change type is provided in Figure 6.1. The figure presents a hierarchical
distribution of changes across prompts, semantic change types, and affected AST node
categories. It shows that a substantial portion of current detections are still grouped under
OtherStructuralChange, reflecting the early stage of implementation for semantic change
classification. Nonetheless, clear patterns already emerge for implemented categories
such as CallChange or ControlChange, which frequently affect specific node types like
ExpressionNode or ControlNode. This structure lays the groundwork for more fine-
grained analyses, including the co-occurrence of change types and the identification of
structural hotspots within code. Understanding which AST node types are affected by
specific change types can shed light on common refinement strategies, developer behavior,
and code evolution over time. This knowledge could inform the development of smarter
tooling for code review, automated refactoring, and the evaluation of code-generating
models. Moreover, it provides a foundation for more nuanced comparisons between
different kinds of prompts or user strategies.

6.5 Threats to Validity

Although the study was carefully designed, certain limitations remain that may affect
the interpretation and generalizability of the results. Following established guidelines
in empirical software engineering, we discuss threats to validity along four dimensions:
internal validity (factors that may have influenced the correctness of our measurements),
external validity (the extent to which our findings can be generalized), conclusion validity
(the robustness of the inferences drawn from the data), and construct validity (the
adequacy of our operationalization of the studied concepts).

Internal Validity. The accuracy of our results depends directly on the performance
of the matching process implemented in our parser. Correctly classifying actual code
modifications is a non-trivial task, and while the parser was iteratively refined, the
development dataset naturally could not cover all possible cases of code line pairs
that may occur in a diff. It is therefore likely that some lines were mismatched, left
unmatched, or otherwise incorrectly processed. Such errors may have introduced noise
into the analysis, potentially affecting the precision of our measurements.

Beyond the matching process itself, further limitations arise from the design of our change-
type classification. One notable example concerns the handling of rename operations.
Rename operations were not normalized in our analysis: if a variable occurred multiple
times in the code, each instance was counted as a separate renaming operation. While

Chapter 6 Discussion 81

the parser could in principle be extended to consolidate such cases into a single renaming
event, this is not a trivial enhancement. At the same time, reporting absolute counts is
informative, as renaming a variable with many occurrences can have greater practical
impact than changing a variable used only once. Thus, although this design choice should
be kept in mind, it does not fundamentally distort the overall results. A more critical
question, however, would be whether the model consistently renames all instances of a
given variable. Inconsistent renaming would not only produce misleading counts but
could also render the code dysfunctional or subtly alter its behavior - an aspect that
remains untested in our study. This limitation should therefore be kept in mind when
interpreting the relative weight of renaming operations in the overall results.

Another limitation arises from the fact that we did not evaluate the executability or
functional correctness of the generated code, as such an assessment would have exceeded
the scope of this study. Nevertheless, this omission implies a potential threat: the
likelihood of introducing hidden errors may increase with the number of modifications
applied to a snippet. Without systematic testing, we cannot rule out the possibility
that some refinements reduced correctness while still appearing to improve readability or
structure.

External Validity. The generalizability of our findings is limited by the fact that we
relied on a single model throughout the study. Moreover, we did not employ the most
recent version (GPT-5o), as it became available only after the data collection had been
completed. Consequently, our results cannot be assumed to fully extend to other large
language models (LLMs). At the same time, the methodological pipeline itself is not
bound to any specific model: as long as an API key is available, only minimal adjustments
to the request format are required. Thus, while our conclusions remain tied to the model
under study, the approach itself can be readily transferred to different LLMs.

Another limitation concerns the dataset itself. Since we relied on code from a publicly
available repository, it is highly likely that at least parts of this material were included
in the model’s training data. While this may have influenced the specific refinements
proposed by ChatGPT, it does not diminish the value of our framework, which systemat-
ically captures and analyzes modifications regardless of the source. In principle, the same
pipeline could also be applied to proprietary code that is unlikely to have been part of the
training data, thereby enabling direct comparisons. Nevertheless, our current findings
should not be generalized to all types of source code. For instance, code containing poor
practices might yield entirely different refinement patterns, a question that lies outside
the scope of our present study but could be explored in future work.

82 Chapter 6 Discussion

Conclusion Validity. By averaging results across a large number of snippets and variants,
important details may be obscured. For example, back-and-forth modifications can occur
in individual refinement sequences, yet their impact may be diluted in the aggregate
analysis. As a consequence, such phenomena might not strongly affect overall similarity
scores, even though they represent meaningful dynamics at the micro level. Capturing
these nuances would require complementary qualitative analyses, which were beyond the
scope of this study.

A further aspect concerns the design of our similarity measure. Our average similarity
score does not account for the change categories of insertions and deletions, and therefore
does not theoretically capture the overall similarity between entire snippets. Instead, it
reflects only the similarity of the code segments modified between two successive versions.
This design choice could, in principle, distort the measurement of convergence. However,
when considering the distribution of change types across iterations, it becomes evident
that the proportion of insertions and deletions decreases sharply with higher version
numbers and is negligible in later stages. As a result, the average similarity score remains
a representative proxy for overall similarity in the context of this study.

Insertions and deletions were also not explicitly represented as distinct change types in
our classification scheme. Similar to the design of the average similarity score, this choice
could in principle limit the completeness of the analysis. However, the distribution of
change types across iterations shows that insertions and deletions occur only rarely in
later versions and therefore do not substantially affect the main findings. For the sake of
completeness, though, future work could extend the classification to also capture code
growth or reduction explicitly—for example, by reflecting the expansion or contraction
of comment sections in the Sankey plots rather than focusing solely on modifications to
existing comments.

A further concern relates to the inherent non-determinism of LLM outputs. Ideally, the
experiment should be repeated multiple times to examine whether the overall outcomes
remain stable across different runs. Such replication would provide stronger evidence
regarding the reliability of the observed patterns. In our study, however, we followed
current best practices by fixing the generation parameter to temperature=0, which is
commonly used to minimize randomness. While this increases reproducibility to some
extent, it does not fully eliminate the possibility that repeated runs could yield slightly
different results.

Construct Validity. A major limitation of our study lies in the fact that we did not di-
rectly measure whether the resulting code was indeed more readable. While we frequently
observed indications of improved readability during development, these impressions

Chapter 6 Discussion 83

remain anecdotal rather than systematically validated. An alternative approach could
have involved the use of static analysis tools to assess code quality issues, as demon-
strated in related work ([33]). Such tools might have been employed to first evaluate
the “best practice” snippets and identify the improvements they suggest, thereby en-
abling a comparison with ChatGPT’s refinements. Nevertheless, even without tool-based
measurement, we qualitatively observed clear improvements during the pilot experiment:
ChatGPT consistently produced more uniform and well-formatted code outputs and,
in cases of variable renaming, was able to correctly infer and assign meaningful names
based on context. Prior research has likewise demonstrated the model’s strong capability
to summarize code and capture contextual information ([25]). In the main experiment,
given the size of the dataset, we relied on sample-based qualitative checks rather than
systematic validation. This decision also reflected our primary focus on building a frame-
work to measure code modifications across arbitrary iterations of LLM-optimized code.
Ultimately, however, determining whether one snippet is more readable than another
remains inherently subjective, underscoring the need for a larger-scale qualitative study
to rigorously assess improvements or regressions in code readability.

Chapter 7

Conclusion

This thesis investigated ChatGPT’s capacity to iteratively refine source code and its
consistency in improving code readability. Building on a pilot experiment and a large-
scale main study, we developed a systematic framework to capture, classify, and quantify
changes across refinement rounds, with a particular focus on convergence and the role
of prompting strategies. The results show that ChatGPT exhibits both strengths and
limitations as a refactoring tool. When applied to code that already follows best practices,
the model typically preserved structure but introduced minor, sometimes unnecessary,
modifications before stabilizing. Across structurally varied variants, iterative refinements
often converged toward highly similar final versions, suggesting a normalization effect
in which ChatGPT aligns diverse inputs with implicit coding conventions. Prompt
design proved critical: emphasizing variable naming frequently led to oscillatory changes,
whereas prompts stressing comments supported faster stabilization and, in some cases,
full convergence. These findings make three key contributions: (1) a methodological
pipeline for analyzing iterative code modifications at scale, (2) empirical evidence that
LLM-based refinements tend toward convergence while remaining vulnerable to back-
and-forth modifications, and (3) insights into how prompt strategies influence refinement
trajectories. Collectively, the work provides an empirical foundation for assessing the
reliability of LLM-assisted code improvement.

Future research should extend this work along several dimensions: assessing functional
correctness in addition to structural similarity, exploring larger and more diverse code-
bases, and systematically varying prompt strategies and contextual anchoring. By
addressing these aspects, subsequent studies can further clarify the conditions under
which LLM-driven refinements contribute meaningfully to code quality. In doing so, they
will bring us closer to harnessing the full potential of large language models as partners
in software development.

85

List of Figures

4.1 Schematic Pilot Experiment Setup . 17
4.2 Example of Variant Creation for CheckPrime Snippet. Code adaptations

introduced by us are highlighted with red boxes. They were not part of
the input to ChatGPT. 20

4.3 Structure of TheAlgorithms/Java Repository (Excerpt) 28
4.4 Config for ChatGPT API Usage . 29
4.5 Categorization of Java source lines in file diffs 37
4.6 Schematic Visualization of SimScore Evolution in Back-and-Forth Modifi-

cations with v0 == v2 != v1 . 39
4.7 Overview of the three comparison approaches (non-consecutive compar-

isons omitted for readability) . 39

5.1 Average Absolute Metrics Across Refinement Versions (KF0, Prompt pKF0)) 42
5.2 Proportional Distribution of Code Changes Across Iterations between two

successive versions (KF0, Prompt pKF0) 43
5.3 Detailed Proportional Distribution of Code Changes Across Iterations

(KF0, Prompt pKF0) . 44
5.4 Modification Flow Across Iterations (KF0, Prompt pKF0). Each flow

represents a particular type of code modification (e.g. Rename, Semantic-
Change, SyntaxOnly), connecting to the corresponding target version . . . 45

5.5 Pairwise Similarity Heatmap Across Refinement Versions (KF0, Prompt
pKF0). Each cell indicates the average similarity of modified lines between
the respective version pair, using the metric described in Section 4.2.4.
Only the upper triangle is populated, as the comparison is directional
(from earlier to later versions). 46

5.6 Detailed Change Composition Between KF0, KF1, and KF2 at Version 0
(nop = “no prompt") . 47

5.7 Average Absolute Metrics Across Refinement Steps for KF0–KF2 (Prompt
pKF0) . 49

5.8 Comparison of average proportional change distributions across refinement
iterations for variants KF1 (top) and KF2 (bottom) under prompt pKF0 51

5.9 Comparison of detailed average proportional change distributions across
refinement iterations for variants KF1 (top) and KF2 (bottom) under
prompt pKF0 . 52

5.10 Comparison of modification flow across iterative refinements for the two
variants . 54

5.11 Modification Flow Across Iterations (KF1, Prompt pKF0) 55
5.12 Modification Flow Across Iterations (KF2, Prompt pKF0) 56

87

88 List of Figures

5.13 Development of average similarity scores across iterations for each variant
pair (pKF0) . 57

5.14 Comparison of Average Absolute Metrics Across Refinement Steps for
KF0–KF2 for two different prompts (pKF1 and pKF2) 60

5.15 Distribution of Change Types for KF0 (pKF1) 62
5.16 Distribution of Change Types for KF0 (pKF2) 63
5.17 Distribution of Change Types for KF1 (pKF1) 64
5.18 Distribution of Change Types for KF1 (pKF2) 65
5.19 Distribution of Change Types for KF2 (pKF1) 66
5.20 Distribution of Change Types for KF2 (pKF2) 67
5.21 Average similarity score heatmaps across all code variants under pKF1

(left) and pKF2 (right) . 69
5.22 Convergence of Average Similarity Score across all code variants under

pKF1 (left) and pKF2 (right) . 70

6.1 Sunburst diagram showing the distribution of AST node types affected
by semantic changes, grouped by prompt (center), change type (middle
layer), and node category (outer layer) . 79

A.1 The four algorithms as starting point for the pilot experiment 93

List of Tables

4.1 Results of the Thematic Analysis on ChatGPT’s “Understanding" of Key
Factors of Code Understandability . 16

4.2 ChatGPT’s Code Refinement Suggestions for the BinarySearch-Snippet
(KF1-Variant). Label = to which of the three key factors we assigned
the suggestions, where ’noKF’ means the suggestions are not related to
code readability, like code optimization itself. Text → Code = the textual
suggestions also appear in the refactored code. 23

4.3 Distribution of .java files across LOC intervals. # Files lists all files per
interval, # Method Ratio and # Code/Comments Ratio indicate those
meeting the respective conditions, and # Total Valid Files shows files
satisfying both. 28

4.4 Prompts used in the experiment . 29
4.5 Exemplatory absolute values metrics for the Anagrams Snippet (KF0-Variant) 36

5.1 Descriptive Statistics (Mean ± SD) for Rename and CommentChange . . 71

A.1 One representative example per classification of code modifications 91
A.2 Full set of exploratory analyses with Mixed Linear Models to assess the

global effect of prompt strategies across all code variants 94

89

Appendix A

Appendix

Table A.1: One representative example per classification of code modifications

AccessChange

Source: for (int row = 0; row < numRows; row++) {

Target: for (int row = 0; row < table.length; row++) {

CallChange

Source: return columnarTransposition(fractionatedText.toString(), key);

Target: return fractionatedText.toString();

CommentChange

Source: * Class for converting from "any" base to "any" other base

Target: * Class for converting numbers between any two bases

ControlChange

Source: if (i + word.length() <= target.length() && target.substring(i, i

+ word.length()).equals(word)) {

Target: return index + word.length() <= target.length() &&

target.substring(index, index + word.length()).equals(word);}

LiteralChange

Source: charCountMap.put(c, charCountMap.getOrDefault(c, 0) + 1);

Target: charCountMap.put(c, charCountMap.getOrDefault(c, 0) + increment);

MixedChange

Source: private void storeAllPathsUtil(Integer u, Integer d, boolean[]

isVisited, List<Integer> localPathList) {

91

92 Appendix A Appendix

Target: private void findAllPathsUtil(int current, int destination,

boolean[] visited, List<Integer> path) {}

OperatorChange

Source: if ((currentMask & (1 « personIndex)) != 0) {

Target: if ((currentMask & (1 « personIndex)) == 0) {}

OtherStructuralChange

Source: return sumOfDividers(a, a) == b && sumOfDividers(b, b) == a;

Target: return sumOfDivisors(a) == b && sumOfDivisors(b) == a;

Rename

Source: for (char c : plaintext.toCharArray()) {

Target: for (char c : text.toCharArray()) {}

Appendix A Appendix 93

Binary Search Bubble Sort

Check Prime Fibonacci Sequence

Figure A.1: The four algorithms as starting point for the pilot experiment

94 Appendix A Appendix

Ta
bl
e
A
.2
:
Fu

ll
se
t
of

ex
pl
or
at
or
y
an

al
ys
es

w
ith

M
ix
ed

Li
ne
ar

M
od

el
s
to

as
se
ss

th
e
gl
ob

al
eff

ec
t
of

pr
om

pt
st
ra
te
gi
es

ac
ro
ss

al
lc

od
e
va
ria

nt
s

C
ha

ng
e
T
yp

e
C
od

e
Va

ria
nt

St
at
ist

ic
al

Te
st

Te
st

St
at
ist

ic
p-
va
lu
e

C
or
re
ct
ed

p-
va
lu
e
(F

D
R
)

R
en

am
e

K
F0

K
ru
sk
al
-W

al
lis

21
99

.4
22

57
09

64
39

83
0.
0

0.
0

R
en

am
e

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F1
99

39
8.
5

4.
86

64
52

59
22

91
74

3e
-2
68

5.
42

26
18

60
28

39
37

1e
-2
67

R
en

am
e

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F2
76

36
07

.0
7.
87

87
49

23
66

26
15

e-
53

2.
04

84
74

80
15

22
79

9e
-5
2

R
en

am
e

K
F0

Po
st
-h
oc

pK
F1

vs
pK

F2
11

83
46

4.
5

0.
0

0.
0

R
en

am
e

K
F1

K
ru
sk
al
-W

al
lis

11
23

.6
25

73
93

39
03

2
1.
01

80
54

06
01

90
45

48
e-
24

4
9.
92

60
27

08
68

56
93

5e
-2
44

R
en

am
e

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F1
20

94
23

.5
5.
02

28
44

74
10

38
83

6e
-1
63

3.
56

16
53

54
36

45
72

e-
16

2
R
en

am
e

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F2
69

09
00

.5
3.
62

07
82

35
38

32
33

33
e-
11

6.
41

86
59

62
72

48
22

8e
-1
1

R
en

am
e

K
F1

Po
st
-h
oc

pK
F1

vs
pK

F2
10

25
22

9.
5

2.
59

40
74

67
57

54
45

8e
-1
80

2.
02

33
78

24
70

88
47

77
e-
17

9
R
en

am
e

K
F2

K
ru
sk
al
-W

al
lis

22
08

.5
64

00
20

95
43

8
0.
0

0.
0

R
en

am
e

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F1
91

28
4.
5

1.
14

13
45

43
91

98
87

33
e-
27

3
1.
48

37
49

07
09

58
53

53
e-
27

2
R
en

am
e

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F2
79

12
21

.5
5.
57

62
30

82
69

12
63

2e
-6
5

1.
89

10
69

58
47

79
06

65
e-
64

R
en

am
e

K
F2

Po
st
-h
oc

pK
F1

vs
pK

F2
11

84
22

7.
0

0.
0

0.
0

R
en

am
e

A
LL

M
ix
ed

LM
85

75
.2
50

49
68

02
52

4
0.
0

0.
0

Sy
nt
ax

O
nl
y

K
F0

K
ru
sk
al
-W

al
lis

32
8.
26

30
81

12
51

94
05

5.
23

09
14

57
10

69
79

1e
-7
2

2.
26

67
29

64
74

63
57

6e
-7
1

Sy
nt
ax

O
nl
y

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F1
73

49
41

.5
3.
55

29
13

64
63

04
45

9e
-4
8

8.
66

02
27

01
28

67
12

e-
48

Sy
nt
ax

O
nl
y

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F2
72

37
29

.5
7.
12

21
49

18
86

28
98

1e
-3
8

1.
50

14
26

04
51

70
43

38
e-
37

Sy
nt
ax

O
nl
y

K
F0

Po
st
-h
oc

pK
F1

vs
pK

F2
59

94
89

.0
0.
01

14
10

50
89

37
90

39
68

0.
01

30
88

52
49

58
18

39
63

Sy
nt
ax

O
nl
y

K
F1

K
ru
sk
al
-W

al
lis

28
2.
48

45
30

90
40

46
7

4.
56

31
36

94
52

69
62

2e
-6
2

1.
42

36
98

72
69

24
12

2e
-6
1

Sy
nt
ax

O
nl
y

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F1
72

29
50

.5
6.
21

03
36

30
24

57
01

3e
-4
1

1.
38

40
17

80
45

47
56

3e
-4
0

Sy
nt
ax

O
nl
y

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F2
71

56
19

.0
1.
88

88
94

28
92

24
04

64
e-
34

3.
77

77
88

57
84

48
09

3e
-3
4

Appendix A Appendix 95

C
ha

ng
e
T
yp

e
C
od

e
Va

ria
nt

St
at
ist

ic
al

Te
st

Te
st

St
at
ist

ic
p-
va
lu
e

C
or
re
ct
ed

p-
va
lu
e
(F

D
R
)

Sy
nt
ax

O
nl
y

K
F1

Po
st
-h
oc

pK
F1

vs
pK

F2
60

28
53

.5
0.
09

23
79

35
73

45
38

54
0.
10

29
36

99
81

84
85

8
Sy

nt
ax

O
nl
y

K
F2

K
ru
sk
al
-W

al
lis

25
5.
10

21
52

14
79

22
08

4.
02

96
88

72
57

42
05

04
e-
56

1.
12

25
56

14
50

28
14

26
e-
55

Sy
nt
ax

O
nl
y

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F1
73

27
72

.5
5.
39

18
59

55
21

33
95

6e
-4
1

1.
23

69
56

01
49

01
31

93
e-
40

Sy
nt
ax

O
nl
y

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F2
71

89
85

.5
1.
73

01
42

40
21

17
49

1e
-3
0

3.
29

14
90

42
35

40
59

2e
-3
0

Sy
nt
ax

O
nl
y

K
F2

Po
st
-h
oc

pK
F1

vs
pK

F2
59

52
81

.0
0.
01

02
95

09
09

11
50

62
09

0.
01

20
91

98
54

89
72

21
34

Sy
nt
ax

O
nl
y

A
LL

M
ix
ed

LM
25

35
3.
53

04
49

31
33

88
1.
63

50
19

87
64

70
69

86
e-
61

4.
90

50
59

62
94

12
09

6e
-6
1

C
om

m
en
tC

ha
ng

e
K
F0

K
ru
sk
al
-W

al
lis

29
4.
95

77
97

54
75

69
9

8.
92

74
63

13
25

50
36

5e
-6
5

2.
90

14
25

51
80

78
86

86
e-
64

C
om

m
en
tC

ha
ng

e
K
F0

Po
st
-h
oc

pK
F0

vs
pK

F1
40

20
52

.0
2.
17

18
24

84
22

28
83

94
e-
65

8.
06

67
77

98
54

21
40

4e
-6
5

C
om

m
en
tC

ha
ng

e
K
F0

Po
st
-h
oc

pK
F0

vs
pK

F2
45

02
01

.0
8.
22

97
93

48
69

24
83

9e
-4
4

1.
94

52
23

91
50

91
32

6e
-4
3

C
om

m
en
tC

ha
ng

e
K
F0

Po
st
-h
oc

pK
F1

vs
pK

F2
63

27
97

.5
0.
09

85
45

81
77

37
49

08
3

0.
10

82
61

60
25

84
84

90
8

C
om

m
en
tC

ha
ng

e
K
F1

K
ru
sk
al
-W

al
lis

18
2.
26

01
16

62
78

27
4

2.
64

67
84

23
22

45
11

9e
-4
0

5.
73

46
99

16
98

64
42

45
e-
40

C
om

m
en
tC

ha
ng

e
K
F1

Po
st
-h
oc

pK
F0

vs
pK

F1
44

85
46

.0
1.
39

64
18

89
13

04
02

34
e-
35

2.
86

63
33

51
37

29
31

15
e-
35

C
om

m
en
tC

ha
ng

e
K
F1

Po
st
-h
oc

pK
F0

vs
pK

F2
46

05
93

.5
1.
55

51
87

18
48

98
40

86
e-
31

3.
03

26
15

01
05

51
89

7e
-3
1

C
om

m
en
tC

ha
ng

e
K
F1

Po
st
-h
oc

pK
F1

vs
pK

F2
61

33
11

.5
0.
84

15
34

70
24

25
77

79
0.
84

15
34

70
24

25
77

79
C
om

m
en
tC

ha
ng

e
K
F2

K
ru
sk
al
-W

al
lis

93
6.
76

81
07

55
92

07
3.
83

16
87

05
74

51
59

15
e-
20

4
3.
32

07
95

44
97

91
37

93
e-
20

3
C
om

m
en
tC

ha
ng

e
K
F2

Po
st
-h
oc

pK
F0

vs
pK

F1
61

49
32

.5
0.
00

46
17

21
81

55
39

80
55

0.
00

58
08

75
83

24
53

30
37

C
om

m
en
tC

ha
ng

e
K
F2

Po
st
-h
oc

pK
F0

vs
pK

F2
37

97
12

.0
1.
87

87
00

74
72

69
19

39
e-
10

9
1.
04

67
04

70
20

49
97

94
e-
10

8
C
om

m
en
tC

ha
ng

e
K
F2

Po
st
-h
oc

pK
F1

vs
pK

F2
37

62
52

.5
2.
35

19
68

06
64

11
31

93
e-
11

4
1.
41

11
80

83
98

46
79

16
e-
11

3
C
om

m
en
tC

ha
ng

e
A
LL

M
ix
ed

LM
16

76
9.
06

13
62

67
25

4
4.
37

57
92

83
47

03
93

9e
-2
3

8.
12

64
72

40
73

07
31

5e
-2
3

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F0

K
ru
sk
al
-W

al
lis

36
0.
52

63
94

50
12

05
6

5.
16

04
56

76
50

11
39

5e
-7
9

2.
36

77
38

98
62

99
34

6e
-7
8

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F1
77

70
87

.0
9.
96

39
56

05
04

77
59

3e
-5
1

2.
50

70
59

90
94

75
00

73
e-
50

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F2
78

02
80

.5
6.
40

58
38

87
32

10
10

4e
-5
3

1.
72

29
49

76
58

97
89

e-
52

96 Appendix A Appendix

C
ha

ng
e
T
yp

e
C
od

e
Va

ria
nt

St
at
ist

ic
al

Te
st

Te
st

St
at
ist

ic
p-
va
lu
e

C
or
re
ct
ed

p-
va
lu
e
(F

D
R
)

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F0

Po
st
-h
oc

pK
F1

vs
pK

F2
61

30
38

.0
0.
74

59
10

34
31

66
11

9
0.
75

55
97

49
04

79
96

47
Se

m
an

tic
C
ha

ng
e_

Su
m

K
F1

K
ru
sk
al
-W

al
lis

47
0.
77

44
39

77
50

35
43

5.
92

41
94

27
75

87
00

1e
-1
03

3.
08

05
81

02
43

45
24

06
e-
10

2
Se

m
an

tic
C
ha

ng
e_

Su
m

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F1
81

57
73

.5
9.
20

19
84

49
00

23
57

9e
-6
9

3.
77

76
56

79
06

41
25

9e
-6
8

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F2
81

15
38

.5
1.
67

50
60

18
83

17
41

45
e-
65

6.
53

27
34

73
44

37
91

7e
-6
5

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F1

Po
st
-h
oc

pK
F1

vs
pK

F2
60

64
78

.0
0.
61

91
48

85
93

25
74

53
0.
64

39
14

81
36

98
77

5
Se

m
an

tic
C
ha

ng
e_

Su
m

K
F2

K
ru
sk
al
-W

al
lis

42
6.
92

96
46

65
17

54
64

1.
96

51
92

73
12

42
88

8e
-9
3

9.
58

03
14

56
48

09
08

e-
93

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F1
79

18
45

.0
2.
57

30
61

72
64

62
94

66
e-
56

7.
43

32
89

43
20

04
06

8e
-5
6

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F2
80

38
87

.5
3.
35

18
15

79
34

13
64

94
e-
65

1.
18

83
71

05
40

28
47

57
e-
64

Se
m
an

tic
C
ha

ng
e_

Su
m

K
F2

Po
st
-h
oc

pK
F1

vs
pK

F2
62

07
87

.5
0.
19

00
06

53
25

97
33

52
4

0.
20

58
40

41
03

13
77

98
4

Se
m
an

tic
C
ha

ng
e_

Su
m

A
LL

M
ix
ed

LM
25

35
9.
68

40
91

45
80

75
2.
30

35
26

45
59

29
64

4e
-1
57

1.
49

72
92

19
63

54
26

84
e-
15

6
M
ix
ed

C
ha

ng
e

K
F0

K
ru
sk
al
-W

al
lis

37
.7
86

60
20

07
42

39
6

6.
23

36
67

43
67

48
70

7e
-0
9

9.
72

45
21

20
13

27
98

1e
-0
9

M
ix
ed

C
ha

ng
e

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F1
62

78
33

.0
0.
00

08
47

59
23

75
49

67
41

9
0.
00

10
83

80
66

44
07

78
01

2
M
ix
ed

C
ha

ng
e

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F2
63

81
28

.0
3.
47

15
19

67
80

45
43

04
e-
09

5.
52

60
92

54
87

25
37

9e
-0
9

M
ix
ed

C
ha

ng
e

K
F0

Po
st
-h
oc

pK
F1

vs
pK

F2
62

05
18

.5
0.
00

47
95

14
21

08
72

64
02

0.
00

59
36

84
26

10
80

41
16

M
ix
ed

C
ha

ng
e

K
F1

K
ru
sk
al
-W

al
lis

32
.4
73

46
70

44
18

14
9

8.
88

12
93

59
81

48
57

6e
-0
8

1.
33

21
94

03
97

22
28

65
e-
07

M
ix
ed

C
ha

ng
e

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F1
63

59
96

.5
1.
19

45
63

01
92

11
17

5e
-0
5

1.
57

92
52

80
50

58
84

14
e-
05

M
ix
ed

C
ha

ng
e

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F2
63

80
69

.5
1.
64

02
37

37
85

65
55

65
e-
06

2.
32

61
54

82
77

83
88

e-
06

M
ix
ed

C
ha

ng
e

K
F1

Po
st
-h
oc

pK
F1

vs
pK

F2
61

23
10

.5
0.
68

65
98

28
05

48
12

33
0.
70

46
66

65
63

52
02

13
M
ix
ed

C
ha

ng
e

K
F2

K
ru
sk
al
-W

al
lis

45
.6
93

53
66

25
95

35
6

1.
19

61
19

55
98

52
13

04
e-
10

2.
07

32
73

90
37

43
69

28
e-
10

M
ix
ed

C
ha

ng
e

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F1
62

49
35

.5
0.
01

03
86

70
54

84
76

13
2

0.
01

20
91

98
54

89
72

21
34

M
ix
ed

C
ha

ng
e

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F2
64

31
46

.0
7.
46

66
67

25
26

98
85

3e
-1
2

1.
35

44
18

71
09

54
67

54
e-
11

M
ix
ed

C
ha

ng
e

K
F2

Po
st
-h
oc

pK
F1

vs
pK

F2
62

82
77

.0
4.
26

83
44

63
95

22
09

6e
-0
6

5.
84

08
92

66
46

09
18

4e
-0
6

Appendix A Appendix 97

C
ha

ng
e
T
yp

e
C
od

e
Va

ria
nt

St
at
ist

ic
al

Te
st

Te
st

St
at
ist

ic
p-
va
lu
e

C
or
re
ct
ed

p-
va
lu
e
(F

D
R
)

M
ix
ed

C
ha

ng
e

A
LL

M
ix
ed

LM
37

08
5.
53

20
30

31
49

1
0.
33

20
08

13
43

41
53

66
4

0.
35

47
48

41
75

15
61

45
O
th
er

K
F0

K
ru
sk
al
-W

al
lis

43
.3
08

83
09

63
06

20
2

3.
94

10
03

74
47

26
50

16
e-
10

6.
68

25
71

56
71

44
93

7e
-1
0

O
th
er

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F1
58

77
74

.5
9.
98

04
49

49
20

97
16

e-
05

0.
00

01
29

74
58

43
39

72
63

1
O
th
er

K
F0

Po
st
-h
oc

pK
F0

vs
pK

F2
62

14
72

.0
0.
00

83
28

39
80

12
68

90
22

0.
00

99
94

07
76

15
22

68
27

O
th
er

K
F0

Po
st
-h
oc

pK
F1

vs
pK

F2
64

36
91

.5
5.
58

42
22

62
07

97
36

6e
-1
0

9.
26

74
33

28
55

78
60

8e
-1
0

O
th
er

K
F1

K
ru
sk
al
-W

al
lis

26
.0
33

93
02

47
01

42
33

2.
22

23
06

08
65

58
85

13
e-
06

3.
09

53
54

90
62

78
4e
-0
6

O
th
er

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F1
59

49
25

.5
0.
01

38
45

49
71

79
58

84
67

0.
01

56
51

43
15

94
31

73
98

O
th
er

K
F1

Po
st
-h
oc

pK
F0

vs
pK

F2
62

47
48

.5
0.
00

50
85

12
10

19
51

57
71

0.
00

61
97

49
12

42
53

48
46

O
th
er

K
F1

Po
st
-h
oc

pK
F1

vs
pK

F2
63

95
81

.5
4.
27

35
34

32
87

15
17

74
e-
07

6.
17

28
82

91
92

55
25

7e
-0
7

O
th
er

K
F2

K
ru
sk
al
-W

al
lis

35
.6
77

17
82

46
79

58
3

1.
78

97
78

05
50

16
99

1e
-0
8

2.
73

73
07

61
35

55
39

82
e-
08

O
th
er

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F1
58

50
19

.5
8.
47

28
66

11
81

91
14

9e
-0
6

1.
13

94
54

40
89

98
12

e-
05

O
th
er

K
F2

Po
st
-h
oc

pK
F0

vs
pK

F2
61

37
69

.0
0.
44

79
18

80
10

52
75

74
0.
47

21
30

62
81

36
69

02
O
th
er

K
F2

Po
st
-h
oc

pK
F1

vs
pK

F2
63

89
93

.5
3.
30

22
31

17
15

12
73

55
e-
07

4.
85

98
87

38
44

90
44

e-
07

O
th
er

A
LL

M
ix
ed

LM
29

23
3.
49

88
90

33
40

85
2.
96

78
84

33
86

59
64

4e
-0
9

4.
82

28
12

05
03

21
92

1e
-0
9

Statement on the Usage of
Generative Digital Assistants

For this thesis, the following generative digital assistants have been used:

We have used ChatGTP for code completion and text rewriting. We employed Chat-
GPT primarily to paraphrase paragraphs, with a particular focus on refining transitions.
In addition, we used the tool to convert text passages and CSV tables into LaTeX format,
including LaTeX-compatible tables. Beyond these tasks, ChatGPT also supported us in
writing parts of functions as well as entire smaller functions, in a manner comparable to
the assistance provided by an AI assistant integrated within a code editor.

We are aware of the potential dangers of using these tools and have used them sensibly
with caution and with critical thinking.

99

Bibliography

[1] M. Wyrich, J. Bogner, and S. Wagner, “40 years of designing code comprehension
experiments: A systematic mapping study,” vol. 56, no. 4, pp. 1–42. [Online].
Available: http://arxiv.org/abs/2206.11102

[2] R. Tiarks, “What maintenance programmers really do: An observational study.”

[3] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding understanding source code with
functional magnetic resonance imaging,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, pp. 378–389. [Online]. Available:
https://dl.acm.org/doi/10.1145/2568225.2568252

[4] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. C. Hofmeister, and A. Brechmann,
“Simultaneous measurement of program comprehension with fMRI and eye tracking:
a case study,” in Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. ACM, pp. 1–10. [Online].
Available: https://dl.acm.org/doi/10.1145/3239235.3240495

[5] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner,
A. Begel, A. Bethmann, and A. Brechmann, “Measuring neural efficiency of
program comprehension,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, pp. 140–150. [Online]. Available:
https://dl.acm.org/doi/10.1145/3106237.3106268

[6] Z. Zheng, K. Ning, J. Chen, Y. Wang, W. Chen, L. Guo, and W. Wang, “Towards
an understanding of large language models in software engineering tasks.” [Online].
Available: http://arxiv.org/abs/2308.11396

[7] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. Grundy, and
H. Wang, “Large language models for software engineering: A systematic literature
review.” [Online]. Available: http://arxiv.org/abs/2308.10620

[8] R. Martin, Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall.

101

http://arxiv.org/abs/2206.11102
https://dl.acm.org/doi/10.1145/2568225.2568252
https://dl.acm.org/doi/10.1145/3239235.3240495
https://dl.acm.org/doi/10.1145/3106237.3106268
http://arxiv.org/abs/2308.11396
http://arxiv.org/abs/2308.10620

102 Bibliography

[9] R. P. Buse and W. R. Weimer, “A metric for software readability,” in Proceedings
of the 2008 international symposium on Software testing and analysis. ACM, pp.
121–130. [Online]. Available: https://dl.acm.org/doi/10.1145/1390630.1390647

[10] R. P. L. Buse and W. R. Weimer, “Learning a metric for code readability,”
vol. 36, no. 4, pp. 546–558. [Online]. Available: http://ieeexplore.ieee.org/document/
5332232/

[11] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk, “A
comprehensive model for code readability,” vol. 30, no. 6, p. e1958. [Online].
Available: https://onlinelibrary.wiley.com/doi/10.1002/smr.1958

[12] M. Halstead, Elements of Software Science. Elsevier.

[13] S. Wagner and M. Wyrich, “Code comprehension confounders: A study of
intelligence and personality,” pp. 1–1. [Online]. Available: https://ieeexplore.ieee.
org/document/9611030/

[14] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and
R. Oliveto, “Automatically assessing code understandability,” vol. 47, no. 3, pp.
595–613. [Online]. Available: https://ieeexplore.ieee.org/document/8651396/

[15] A. Vitale, V. Piantadosi, S. Scalabrino, and R. Oliveto, “Using deep learning to
automatically improve code readability,” in 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, pp. 573–584.
[Online]. Available: https://ieeexplore.ieee.org/document/10298369/

[16] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for programming and
natural languages.” [Online]. Available: http://arxiv.org/abs/2002.08155

[17] Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen, and X. Peng, “Exploring the potential
of ChatGPT in automated code refinement: An empirical study,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering. ACM, pp.
1–13. [Online]. Available: https://dl.acm.org/doi/10.1145/3597503.3623306

[18] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic language
model.”

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need.”

[20] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training.”

https://dl.acm.org/doi/10.1145/1390630.1390647
http://ieeexplore.ieee.org/document/5332232/
http://ieeexplore.ieee.org/document/5332232/
https://onlinelibrary.wiley.com/doi/10.1002/smr.1958
https://ieeexplore.ieee.org/document/9611030/
https://ieeexplore.ieee.org/document/9611030/
https://ieeexplore.ieee.org/document/8651396/
https://ieeexplore.ieee.org/document/10298369/
http://arxiv.org/abs/2002.08155
https://dl.acm.org/doi/10.1145/3597503.3623306

Bibliography 103

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners.”

[22] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, and
T. Henighan, “Language models are few-shot learners.”

[23] OpenAI, J. Achiam, S. Adler, and A. et al., “GPT-4 technical report.” [Online].
Available: http://arxiv.org/abs/2303.08774

[24] M. Chen, J. Tworek, and J. et al., “Evaluating large language models trained on
code.” [Online]. Available: http://arxiv.org/abs/2107.03374

[25] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein, and T. F. Bissyandé, “Is
ChatGPT the ultimate programming assistant – how far is it?” [Online]. Available:
http://arxiv.org/abs/2304.11938

[26] K. Jin, C.-Y. Wang, H. V. Pham, and H. Hemmati, “Can ChatGPT support
developers? an empirical evaluation of large language models for code generation.”
[Online]. Available: http://arxiv.org/abs/2402.11702

[27] Z. Liu, Y. Tang, X. Luo, Y. Zhou, and L. F. Zhang, “No need to lift a finger
anymore? assessing the quality of code generation by ChatGPT.” [Online]. Available:
http://arxiv.org/abs/2308.04838

[28] Y. Liu, T. Le-Cong, R. Widyasari, C. Tantithamthavorn, L. Li, X.-B. D. Le, and
D. Lo, “Refining ChatGPT-generated code: Characterizing and mitigating code
quality issues.” [Online]. Available: http://arxiv.org/abs/2307.12596

[29] X. Yu, L. Liu, X. Hu, J. W. Keung, J. Liu, and X. Xia, “Fight fire with
fire: How much can we trust ChatGPT on source code-related tasks?” number:
arXiv:2405.12641. [Online]. Available: http://arxiv.org/abs/2405.12641

[30] E. A. AlOmar, A. Venkatakrishnan, M. W. Mkaouer, C. D. Newman, and A. Ouni,
“How to refactor this code? an exploratory study on developer-ChatGPT refactoring
conversations.” [Online]. Available: http://arxiv.org/abs/2402.06013

[31] K. DePalma, I. Miminoshvili, C. Henselder, K. Moss, and E. A. AlOmar, “Exploring
ChatGPT’s code refactoring capabilities: An empirical study,” vol. 249, p. 123602.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0957417424004676

[32] C. Hu, Y. Chai, H. Zhou, F. Meng, J. Zhou, and X. Gu, “How effectively do code
language models understand poor-readability code?” in Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering. ACM,
pp. 795–806. [Online]. Available: https://dl.acm.org/doi/10.1145/3691620.3695072

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2304.11938
http://arxiv.org/abs/2402.11702
http://arxiv.org/abs/2308.04838
http://arxiv.org/abs/2307.12596
http://arxiv.org/abs/2405.12641
http://arxiv.org/abs/2402.06013
https://linkinghub.elsevier.com/retrieve/pii/S0957417424004676
https://dl.acm.org/doi/10.1145/3691620.3695072

104 Bibliography

[33] R. Liu, A. Frade, A. Vaidya, M. Labonne, M. Kaiser, B. Chakrabarti, J. Budd, and
S. Moran, “On iterative evaluation and enhancement of code quality using GPT-4o.”
[Online]. Available: http://arxiv.org/abs/2502.07399

[34] I. Shumailov, Z. Shumaylov, Y. Zhao, N. Papernot, R. Anderson, and Y. Gal, “AI
models collapse when trained on recursively generated data,” vol. 631, no. 8022, pp.
755–759. [Online]. Available: https://www.nature.com/articles/s41586-024-07566-y

[35] S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, “An empirical study of the
non-determinism of ChatGPT in code generation,” vol. 34, no. 2, pp. 1–28. [Online].
Available: http://arxiv.org/abs/2308.02828

[36] N. v. Stein, A. V. Kononova, L. Kotthoff, and T. Bäck, “Code evolution
graphs: Understanding large language model driven design of algorithms.” [Online].
Available: http://arxiv.org/abs/2503.16668

[37] Q. Song, X. Kong, L. Wang, and B. Li, “An empirical investigation into the effects
of code comments on issue resolution,” in 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC). IEEE, pp. 921–930. [Online].
Available: https://ieeexplore.ieee.org/document/9202422/

[38] F. Zhao, J. Zhao, and Y. Bai, “A survey of automatic generation of code
comments,” in Proceedings of the 2020 4th International Conference on Management
Engineering, Software Engineering and Service Sciences. ACM, pp. 21–25. [Online].
Available: https://dl.acm.org/doi/10.1145/3380625.3380649

[39] Y. Zhao, R. Zhang, W. Li, D. Huang, J. Guo, S. Peng, Y. Hao, Y. Wen,
X. Hu, Z. Du, Q. Guo, L. Li, and Y. Chen, “Assessing and understanding
creativity in large language models,” vol. 22, no. 3, pp. 417–436. [Online]. Available:
http://arxiv.org/abs/2401.12491

http://arxiv.org/abs/2502.07399
https://www.nature.com/articles/s41586-024-07566-y
http://arxiv.org/abs/2308.02828
http://arxiv.org/abs/2503.16668
https://ieeexplore.ieee.org/document/9202422/
https://dl.acm.org/doi/10.1145/3380625.3380649
http://arxiv.org/abs/2401.12491

	Abstract
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Code Comprehension
	2.2 Code Readability Models
	2.3 Emergence and Evolution of Large Language Models (LLMs)

	3 Related Work
	3.1 LLMs in Software Engineering
	3.2 ChatGPT and Programming
	3.3 Gap Analysis

	4 Methodology
	4.1 Pilot Experiment
	4.1.1 Basic Terminology
	4.1.2 Key Factor and Snippet Selection
	4.1.3 Expectation
	4.1.4 Results

	4.2 Main Experiment
	4.2.1 Research Questions
	4.2.2 Snippet Sampling and Data Preprocessing
	4.2.3 DiffParser: A Tool for Tracking Code Changes
	4.2.4 Metrics
	4.2.5 Analysis Approaches

	5 Results
	5.1 Evolution of Iterative Refinements (RQ1)
	5.1.1 Absolute Code Metrics Across Iterations (KF0)
	5.1.2 Overall Change Dynamics Across Refinement Steps (KF0)
	5.1.3 Pairwise Similarity Analysis Across Refinements (KF0)

	5.2 Convergence Across Code Variants (RQ2)
	5.2.1 Baseline: Variant Creation and Differences
	5.2.2 Absolute Code Metrics Across Iterations (KF1 + KF2)
	5.2.3 Overall Change Dynamics Across Refinement Steps (KF1 + KF2)
	5.2.4 Pairwise Similarity Analysis Across Refinements (KF1 + KF2)

	5.3 Impact of Explicitly Emphasizing Key Refinement Factors (RQ3)
	5.3.1 Absolute Code Metrics Across Iteration under different Prompts
	5.3.2 Overall Change Dynamics Across Refinement Steps
	5.3.3 Pairwise Similarity Analysis Across Refinements (pKF1 / pKF2)
	5.3.4 Statistical Analysis
	5.3.5 Summary of Findings for RQ3

	5.4 Complete Summary of Key Findings

	6 Discussion
	6.1 Interpretation for RQ1
	6.2 Interpretation for RQ2
	6.3 Interpretation for RQ3
	6.4 Future Work
	6.5 Threats to Validity

	7 Conclusion
	List of Figures
	List of Tables
	A Appendix

