
Bachelor’s Thesis

Comparing Architectural Models Based
on Co-Changes and Data-Flow

Interactions
Johannes Victor Weissmann

June 30, 2025

Advisor:
Sebastian Böhm Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering
Prof. Dr. Jan Reineke Real-Time and Embedded Systems

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Johannes VictorWeissmann: Comparing Architectural Models Based on Co-Changes and Data-Flow
Interactions, © June 2025

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

Abstract

Technical debt poses a grave threat to the continued development of a software project, with
flawed software architecture causing unnecessary maintenance effort. Numerous techniques
have been developed to gain a more profound understanding of the architecture of a software
system, with several of them utilizing graph clustering. Graph clustering refers to the process
of grouping objects represented by vertices into partitions based on user-defined criteria and
has been used with various sources such as file names, documentation and data flow in the
past in order to decompose a software system into its logical components.

Frequently occurring common changes of files (”co-changes”) are an indicator of logical
coupling. Silva et al. define a set of patterns which capture different co-change behaviors.
In order to identify which components in the software system are responsible for causing
superfluous maintenance effort, they cluster a graph representation of the revision history of
a software system and apply their patterns to the cluster graph.

In our work, we explore what the data flow of a program can reveal about its architecture
by applying the patterns designed by Silva et al. to a model based on data-flow interactions.
For five test projects, we compute the data-flow interactions between source files and use
graph clustering in order to detect the set of patterns proposed by Silva et al. We compare the
co-change based model and the data-flow based model and find substantial differences both
in terms of overall similarity and detected patterns.

v

Contents
1 Introduction 1

1.1 Goal of this Thesis . 1
1.2 Overview . 2

2 Background 3
2.1 Software Architecture . 3
2.2 Co-Change Based Architecture Metric . 3
2.3 Architectural Smells . 5
2.4 Graph Clustering . 6
2.5 LLVM Compiler Infrastructure . 7
2.6 VaRA . 8

3 Data-Flow Based Architecture Analysis 11
3.1 Architecture Regions . 11
3.2 Architecture Interactions . 11
3.3 Implementation . 12

3.3.1 Architecture Annotation . 12
3.3.2 Data Collection . 13
3.3.3 Data Analysis . 13

4 Methodology 15
4.1 Research Questions . 15
4.2 Project Selection . 15
4.3 Operationalization . 16

5 Evaluation 19
5.1 Results . 19

5.1.1 RQ1 . 19
5.1.2 RQ2 . 21

5.2 Discussion . 25
5.2.1 RQ1 . 26
5.2.2 RQ2 . 26

5.3 Threats to Validity . 28
5.3.1 Internal Validity . 28
5.3.2 External Validity . 28

6 Related Work 31
6.1 Architecture Models . 31
6.2 Architecture Recovery . 31
6.3 Architectural Smells . 32

7 Concluding Remarks 33
7.1 Conclusion . 33

vii

viii contents

7.2 Future Work . 33

Bibliography 35

List of Figures

Figure 2.1 Co-change patterns proposed by Silva et al. [23] 5
Figure 2.2 Classical compiler design (adapted from [13]) 8
Figure 2.3 Conceptual design of LLVM (adapted from [13]) 8
Figure 2.4 Simple addition in C . 8
Figure 2.5 Simple addition in LLVM IR . 8
Figure 3.1 Overview of steps for performing a data-flow interaction analysis . . 12
Figure 4.1 Our experiment procedure . 17
Figure 5.1 Co-change clustering results for htop 22
Figure 5.2 Data-flow interaction clustering results for htop 22
Figure 5.3 Co-change clustering results for libvpx 23
Figure 5.4 Data-flow interaction clustering results for libvpx 23
Figure 5.5 Co-change clustering results for opus 24
Figure 5.6 Data-flow interaction results for opus 24
Figure 5.7 Co-change clustering results for toxcore 25
Figure 5.8 Data-flow interaction clustering results for toxcore 25
Figure 5.9 Co-change clustering results for xz . 26
Figure 5.10 Data-flow interaction clustering results for xz 26

List of Tables

Table 4.1 List of projects selected for our experiments. 16
Table 5.1 Total number of files and directories per project and architectural model 20
Table 5.2 Optimal number of clusters per project and architectural model . . . 20
Table 5.3 MoJoFM values per project . 21
Table 5.4 Sum of co-change pattern instances per architectural model 26

ix

1
Introduction

Software maintenance accounts for a substantial amount of cost associated with a software
project. Researchers have estimated that more than a third of development time is spent on
dealing with technical debt [2] which potentially brings about ripple effects when making
changes to a component in the software system [16]. To manage technical debt, numerous
metrics for its measurement and quantification have been developed and integrated into
automated tools which suggest when and what to refactor . However, such tools typically
focus on code-level quality metrics and do not take technical debt arising from architectural
design decisions into account. In order to characterize software issues which span multiple
functions, files, or classes, Garcia et al. [8] introduce the concept of architectural smells.
Architectural smells describe common design solutions applied by software engineers which
are functionally correct but negatively affect maintainability. Since then, the concept has been
refined and extended by other researchers to include revision history and other information to
precisely identify the components responsible for degrading the maintainability of a software
system [18]. In particular, the occurrence and the impact of co-changing files have been studied
extensively. Sas et al. [20] have been able to correlate co-changing files and architectural smells.
Similarly, Le et al. [14, 15] have shown that files which are part of architectural smells are
more likely to suffer from frequent changes than files not involved in architectural smells. In
addition to the co-change behavior of a software system, several other architectural views have
been proposed [1]. Data flow describes the usage and propagation of values within the source
files of a software system and has been used to decompose software systems into substructures
in the past [11]. Sattler [21] created VaRA, the Variability-aware Region Analyzer, which
facilitates data-flow interaction analysis of software programs. As the information which it
yields is closer to the operational semantics of a software project than its history of co-changes,
it provides an interesting point of view on program decomposition.

1.1 Goal of this Thesis

Our goal is to explore the relationship between architectural smells present in a software
system and its data-flow behavior. We rely on an established approach for identifying archi-
tectural smells, namely co-change patterns among files in the revision history of a software
project. We investigate how similar both architectural models are in terms of software system
decomposition. Additionally, we examine what differences the two models exhibit in terms of
architecture smell detection.We are particularly interested in investigatingwhich architectural
smells can only be identified by using data-flow information.

1

2 Introduction

1.2 Overview

The remaining portion of this thesis is structured as follows. First, we introduce the relevant
background information in Chapter 2. In Chapter 3, we go over the changes which we
implement in VaRA in order to conduct our experiment. Then, we explain our experiment
procedure and our project selection in Chapter 4. We present and discuss our findings and
answer our research questions in Chapter 5. We briefly go over related work in the realm of
software architecture in Chapter 6. Finally, in Chapter 7, we summarize our results and give
an outlook on potential future work.

2
Background

In this section, we briefly introduce software architecture, co-change graphs, and architectural
smells. Additionally, we explain graph clustering, the LLVM compiler infrastructure and
VaRA, a tool for computing data-flow interactions.

2.1 Software Architecture

Over the course of more than three decades, several definitions of what constitutes software
architecture emerged. Taylor et al. define software architecture as ”the set of principal design
decisions governing a system” [25]. While decisions continue being made throughout the
entire development process, there is a time in the software life-cycle when the focus lies
on making such principal design decisions. Bass et al. [1] put forward several structures of
software architecture. In their work, they describe structures as the set of all elements making
up the software in question and define three architectural structures, each of which allows
the architect to approach the software system from a different point of view. Module structures
consider the software system in question as units of implementation, i.e., pieces of code,
whereas component-and-connector structures consider the runtime components of the system
and the communication pieces among them. Allocation structures consider the relationship
between software elements and external environments where the software is created or
executed. They note that, while the structures are not independent from one another, ”often,
but not always, the dominant structure is module decomposition” [1] because it usually
represents the project structure.

2.2 Co-Change Based Architecture Metric

In this work, we focus on an architecture model based on co-changes [23]. Silva et al. [23]
extract the architecture of a software system based on co-changes among source files. A
co-change between two files occurs when they both change between the same two revisions.
In order to identify logically coupled components in a software system, Silva et al. [23] first
construct a graph with files connected by co-changes extracted from its revision history. Next,
they divide this co-change graph into clusters using a clustering algorithm. Finally, they map
the resulting clusters to the actual project structure.

Originally introduced by Beyer andNoack [3], co-change graphs are an abstract representation
of a version control system, where its vertices represent software artifacts such as files, classes,

3

4 Background

functions, lines of code or documentation. Theweight of an edge connecting two vertices in the
graph represents how often both artifacts change together. Consequently, the more often two
files change in tandem, the greater the weight of the edge becomes. Mathematically speaking,
a co-change graph 𝐺 = (𝑉, 𝐸) corresponding to a version control system is an undirected
graph with the set of nodes 𝑉 representing software artifacts and the set 𝐸 containing all
edges between two nodes. An edge between two nodes 𝑎 and 𝑏 (where 𝑎 ≠ 𝑏) exists if there is
a transaction 𝑡 which modifies both artifacts 𝑎 and 𝑏.

Silva et al. [23] propose six co-change patterns in order to capture the clusters of co-changing
files in a software system. To formally define them, Silva et al. [23] make use of the following
functions. Here, 𝐶 is the set of all clusters in the clustering solution, with 𝑐 ∈ 𝐶, and 𝐷 is the
set of directories. A directory 𝑑 ∈ 𝐷 and clusters 𝑐 contain files.

𝑓 𝑜𝑐𝑢𝑠(𝑐, 𝐷) = ∑
𝑑𝑖∈𝐷

𝑡𝑜𝑢𝑐ℎ(𝑐, 𝑑𝑖) ∗ 𝑡𝑜𝑢𝑐ℎ(𝑑𝑖, 𝑐)

where
𝑡𝑜𝑢𝑐ℎ(𝑑, 𝑐) =

|𝑑 ∩ 𝑐|
|𝑐|

Additionally, they use a function called spread which returns across how many directories a
cluster is spread.

𝑠𝑝𝑟𝑒𝑎𝑑(𝑐) = # directories containing a file from cluster 𝑐

Using the above functions, Silva et al. [23] define the following co-change patterns. In Fig-
ure 2.1, we provide visualizations for each of the patterns. Colored squares represent the files
belonging to the respective co-change pattern, and the labels below the boxes represent the
package structure.

• Encapsulated clusters only affect one directory, with changes touching all files within
it. Therefore, Encapsulated clusters represent the best possible pattern of co-changes.
Formally, a cluster 𝑞 is categorized as Encapsulated if 𝑓 𝑜𝑐𝑢𝑠(𝑞) == 1.0.

• Well-Confined clusters are conceptually similar to encapsulated clusters. While they only
affect files in one directory, they share their directory with another cluster which means
that there is at least one file within said directory which does not belong to it. Formally,
a cluster 𝑞 is categorized as Well-Confined if 𝑓 𝑜𝑐𝑢𝑠(𝑞) < 1.0 ∧ 𝑠𝑝𝑟𝑒𝑎𝑑(𝑞) == 1.

• Crosscutting clusters represent the worst possible pattern of co-changes. They affect a
large number of directories (four or more) but only few code files within each directory.
Formally, a cluster 𝑞 is Crosscutting if 𝑠𝑝𝑟𝑒𝑎𝑑(𝑞) >= 4 ∧ 𝑓 𝑜𝑐𝑢𝑠(𝑞) <= 0.30.

• Black Sheep clusters are conceptually similar to crosscutting clusters. They affect two or
three directories but only touch few code files in them. A cluster 𝑞 is categorized as a
Black Sheep cluster if 𝑠𝑝𝑟𝑒𝑎𝑑(𝑞) > 1 ∧ 𝑠𝑝𝑟𝑒𝑎𝑑(𝑞) < 4 ∧ 𝑓 𝑜𝑐𝑢𝑠(𝑞) <= 0.10.

• Octopus clusters consist of a body 𝐵 and a set of tentacles 𝑇. While most files are confined
within the body in one directory, a small number of files belonging to the cluster resides
in other directories (the tentacles). A cluster 𝑞 with a body 𝐵 and tentacles 𝑇 is classified
as a Octopus cluster if 𝑡𝑜𝑢𝑐ℎ(𝐵, 𝑞) > 0.60 ∧ 𝑓 𝑜𝑐𝑢𝑠(𝑇) <= 0.25 ∧ 𝑓 𝑜𝑐𝑢𝑠(𝑞) > 0.30.

2.3 Architectural Smells 5

• Similar to Octopus clusters, Squid consist of a body 𝐵 and one or more tentacles 𝑇. How-
ever, Squid clusters are smaller than Octopus clusters. Formally, a cluster 𝑞 consisting
of a body 𝐵 and tentacles 𝑇 is a Squid cluster if 𝑡𝑜𝑢𝑐ℎ(𝐵, 𝑞) > 0.30 ∧ 𝑡𝑜𝑢𝑐ℎ(𝐵, 𝑞) <=
0.50 ∧ 𝑓 𝑜𝑐𝑢𝑠(𝑇) <= 0.25 ∧ 𝑓 𝑜𝑐𝑢𝑠(𝑞) > 0.3.

It is worth noting that said co-change patterns vary in desirability, the spread across different
directories and the number of files affected. Silva et al. [23] postulate that Encapsulated
clusters andWell-Confined clusters in their co-change basedmodel are indicative of a properly
modularized system, whereas Octopus and Squid clusters are associated with ripple effects
and bug-fixing activities. Notably, the patterns proposed are not exhaustive. Together, they
cover approximately 95.4% of the co-change clusters extracted from the software projects
analyzed by Silva et al. [23]. Silva et al. [23] state that their design of the patterns aims to be
precise, meaningful and to cover a large percentage of found clusters.

drivers.net.ethernet.sfc

drivers.net.ethernet.intel.ixgbe

Encapsulated clusters

com.intellij.util.containers

Well-confined cluster

telephony.java.
android.telefony

telephony.java.com.android.
internal.telephony

Squid cluster

features.index

lib.active_admin.view_helpers

lib.active_admin

spec.unit

features.step_definitions

Crosscutting cluster

Ipython.core

Ipython.html.widgets

Ipython.lib

Ipython.utils

Octopus cluster

./

include.ruby

tool

Black Sheep cluster

Figure 2.1: Co-change patterns proposed by Silva et al. [23]

2.3 Architectural Smells

Architectural technical debt is a form of technical debt and describes suboptimal design
choices regarding the architecture of a software system, leading to negative consequences
such as superfluous maintenance effort [16]. In contrast to code smells (also referred to as
”code anomalies” or ”bad smells” in literature) which manifest themselves on a granular
layer such as the class or method level, architectural smells describe problems identified
on the architecture level [9]. It is important to note that there are several definitions of the
term ”architecture smell” used by researchers, some of which overlap with the definition of
code smells. However, architectural smells have been shown to be independent from code
smells [7]. In this work, we use the definition by Garcia et al. and define an architectural

6 Background

smell as a ”[...] commonly (although not always intentionally) used architectural decision
that negatively impacts system quality” [8]. Except the ”Encapsulated” and ”Well-Confined”
co-change pattern, we consider all of the co-change patterns proposed by Silva et al. [23] to
be architectural smells.

2.4 Graph Clustering

Graph clustering refers to the act of assigning nodes in a graph to groups in such a way that
nodes in one group are more similar to one another than to nodes outside of it. As explained
above, Silva et al. use graph clustering based on co-changes to group files into modules and
to identify architectural issues in a software system. In our work, we adapt their approach
and use graph clustering to find modules based on data-flow dependencies between files. To
this end, we use the 𝐶ℎ𝑎𝑚𝑒𝑙𝑒𝑜𝑛 clustering algorithm.

Chameleon [12] is an agglomerative hierarchical clustering algorithm designed to overcome
limitations of previously developed clustering algorithms. Its distinguishing feature is the
fact that it takes both, the interconnectivity and the closeness of the clusters, into account
when determining the most similar pair of clusters to be merged during the merging process,
whereas previously developed clustering algorithms only considered interconnectivity or
closeness of clusters. Being designed to operate on a sparse graph, Chameleon scales well
even to large data sets. The clustering process of Chameleon consists of two phases. As
input, it requires an adjacency matrix whose entries represent the similarity between data
items. In the first phase, Chameleon clusters the data from the input matrix using the graph
partitioning algorithm ℎ𝑀𝑒𝑡𝑖𝑠, which is based on the 𝑘-nearest-neighbor graph clustering
approach. This results in a sparse graphwhere each node represents a data item andweighted
edges represent similarities among two nodes. An edge between two nodes 𝑢 and 𝑣 exists if
and only if 𝑢 is among the 𝑘 most similar data items of 𝑣 or vice versa. This, in turn, results in
unrelated data items being disconnected from each other in the graph. In the second phase,
Chameleon repeatedly combines the subclusters created during the first phase into the final
clusters. It does so by merging pairs of clusters with the highest relative connectivity and
relative closeness until a user-specified threshold is reached.

The authors of Chameleon provide a software package called CLUTO 1 for clustering datasets.
After computing a clustering solution for a given dataset, CLUTO presents several statistics
on it. Among them are two values 𝐼𝑆𝑖𝑚 and 𝐸𝑆𝑖𝑚 which CLUTO computes for every cluster
in the clustering. 𝐼𝑆𝑖𝑚 refers to the average similarity between objects themselves within each
cluster. 𝐸𝑆𝑖𝑚, on the other hand, refers to the average similarity between the objects within
each cluster and the remaining clusters. In their work, Silva et al. [24] cluster the co-change
graph multiple times in an effort to find the best clustering. In order to compare the quality

1 https://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview (retrieved from the Wayback Machine on 2025-
04-15)

https://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
http://web.archive.org/web/20240624014633/https://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

2.5 LLVM Compiler Infrastructure 7

of two clustering solutions, they introduce the 𝑐𝑜𝑒𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 clustering quality function using
the 𝐸𝑆𝑖𝑚 and 𝐼𝑆𝑖𝑚 metrics.

𝑐𝑜𝑒𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡(𝑀) =
1
𝑘 ∗

𝑘
∑
𝑖=1

𝐼𝑆𝑖𝑚𝐶𝑖
− 𝐸𝑆𝑖𝑚𝐶𝑖

𝑚𝑎𝑥(𝐼𝑆𝑖𝑚𝐶𝑖
, 𝐸𝑆𝑖𝑚𝐶𝑖

)

In the function, 𝑘 refers to number of clusters which remain after removing clusters containing
fewer objects than a minimum threshold. The parameter 𝑀 refers to the number of partitions
to create during the first phase of the Chameleon algorithm. Using this function, Silva et
al. [24] execute Chameleon several times in order to find the best clustering for a software
project, where a higher 𝑐𝑜𝑒𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 value indicates a better clustering solution.

MoJoFM [27] is an effectiveness measure which allows one to compare howmuch a clustering
solution differs from a reference decomposition. It is defined as follows.

𝑀𝑜𝐽𝑜𝐹𝑀(𝐴, 𝐵) = (1 −
𝑚𝑛𝑜(𝐴, 𝐵)

𝑚𝑎𝑥(𝑚𝑛𝑜(∀𝐴, 𝐵))) ∗ 100%

Here, 𝑚𝑛𝑜(𝐴, 𝐵) denotes the minimum number of Move or Join operations necessary to
transform a clustering 𝐴 of a graph into a clustering 𝐵.𝑀𝑜𝐽𝑜𝐹𝑀(𝐴, 𝐵), where 𝐴 is the clustering
solution to be evaluated and 𝐵 is the reference decomposition, yields a score of 100% if 𝐴
and 𝐵 are identical and a value of 0% if they are completely different. It is important to note
that MoJoFM is not a symmetric function, meaning that the minimum number ofMove or Join
operations required in order to transform a partition A into a partition B is not necessarily the
same as the other way around. As part of our experiment, we make use of the implementation
provided by theMoJoFM authors 2 in order to compare the co-change based and the data-flow
based model to one another.

2.5 LLVM Compiler Infrastructure

The LLVM project hosts various components for compiling, debugging and optimizing source
code 3. Originally, compilerswere designed to only handle a particular programming language
as input, making reusing parts of compilers and sharing code between projects very difficult.
For this reason, LLVM was designed to work as a set of reusable libraries for optimizing
and compiling code whose functionality can easily be extended and integrated into other
projects [13]. Figure 2.2 and Figure 2.3 depict the conceptual design of classical compilers
and LLVM, respectively. As part of the compilation process of LLVM, a frontend transforms
human-readable source code into the LLVM Intermediate Representation, or LLVM IR for
short. LLVM IR is a code representation based on Static Single Assignment which features
type safety, allows low-level operations and is capable of cleanly representing high-level
programming languages. It bears visual similarity to assembly language and is used as a
common representation throughout all phases of the compilation process of LLVM. Figure 2.4
depicts a short C programperforming a basic arithmetic operation and subsequently returning
its result. Figure 2.5 shows the same program translated into LLVM IR.

2 http://www.cs.yorku.ca/~bil/downloads/mojo.tar (retrieved on 2025-01-14)
3 https://llvm.org/ (retrieved on 2025-03-05)

http://www.cs.yorku.ca/~bil/downloads/mojo.tar
https://llvm.org/

8 Background

OptimizerFrontendSource
Code Backend Machine

Code

Figure 2.2: Classical compiler design
(adapted from [13])

C C Frontend

Fortran Frontend

Ada Frontend

Fortran

Ada

LLVM IR
Optimizer PowerPC Backend

X86 Backend

ARM Backend

X86

PowerPC

ARM

Figure 2.3: Conceptual design of LLVM
(adapted from [13])

#include <stdio.h>

void main() {

int term1 = 34;

int term2 = 8;

int sum = term1 + term2;

printf("%d\n", sum);

}

Figure 2.4: Simple addition in C

; An externally declared function with at least one argument

declare i32 @printf(ptr noundef, ...)

; A string constant which is four characters long.

@.str = private unnamed_addr constant [4 x i8] c"%d\0A\00"

define dso_local void @main() {

; Allocate memory for three 32-bit integers on the stack frame

%1 = alloca i32

%2 = alloca i32

%3 = alloca i32

; Store the integers 34 and 8 in memory

store i32 34, ptr %1

store i32 8, ptr %2

; Read read a 32-bit integer from memory (twice)

%4 = load i32, ptr %1

%5 = load i32, ptr %2

; Add two 32-bit integers together

%6 = add nsw i32 %4, %5

; Store the result in memory

store i32 %6, ptr %3

%7 = load i32, ptr %3

; Call the printf function with two arguments

call i32 (ptr, ...) @printf(ptr noundef @.str, i32 noundef %7)

ret void

}

Figure 2.5: Simple addition in LLVM IR

LLVM IR allows annotating instructionswithmetadata in order to store additional information
related to given source code, such as debugging information for use during code generation
and code optimization. During the compilation process, it may be attached to instructions,
functions and global variables. Additionally, LLVM features an optimizer which performs
optimization passes on the IR. In our work, we annotate LLVM IR instructions with metadata
in order to encode from which file an instruction originated.

2.6 VaRA

VaRA is a framework which allows researchers to perform static and dynamic analyses of
interactions between user-defined regions of code, such as interactions between software

2.6 VaRA 9

features or code from different commits [21, 22]. Static analyses generate analysis results
during compilation time or in a subsequent post-processing step.

At the heart of VaRA is the concept of code regions [21]. A code region is a consecutive
set of instructions, each of which is mapped to the same user-defined tag representing some
higher-level concept such as which feature an instruction belongs to. To formally define code
regions, we assume that every program 𝑝 consists of a number of functions 𝑓1, …, 𝑓𝑛 ∈ 𝑝 which,
in turn, consist of instructions, denoted by 𝑖𝑛𝑠𝑡(𝑓𝑖). For each program 𝑝, we define a set 𝜏 in
order to model variability information and a mapping function 𝑡𝑎𝑔𝑠(𝑖). The set 𝜏 contains
domain-specific tags where each tag 𝑡 ∈ 𝜏 carries variability-specific information.

The function 𝑡𝑎𝑔𝑠(𝑖) maps each instruction 𝑖 to the set of tags which relate to said instruction,
denoted by the @ symbol. Sattler points out that ”the issues of determining how a specific tag
is related to (@) an instruction 𝑖 is defined by the concrete instance” [21]. Formally, Sattler [21]
defines the function 𝑡𝑎𝑔𝑠(𝑖) as follows.

Definition 1 𝑡𝑎𝑔𝑠(𝑖) = { 𝑡 | 𝑡 ∈ 𝜏 ∧ 𝑡 @ 𝑖 }

A code region then groups consecutive instructions with the same tags. This framework
approach allows researchers to define code regions of their own and, as a result, to run custom
program analyses with ease. In order to compute the data-flow interactions between code
regions, VaRA computes the data-flow interactions between individual instruction first. To
this end, Sattler [21] introduces an interaction relation ⇝.

Definition 2 𝑟1 ⇝ 𝑟2 = ∃ 𝑖 ∈ 𝑟1 ∃ 𝑖′ ∈ 𝑟2 𝐷𝐹(𝑖, 𝑖′)

Intuitively speaking, the relation 𝑟1 ⇝ 𝑟2 holds if data created by at least one instruction 𝑖
from code region 𝑟1 is used as input by an instruction 𝑖′ from code region 𝑟2. In other words,
a data-flow interaction between two code regions 𝑟1 and 𝑟2 exists if there is at least one
instruction 𝑖 in code region 𝑟1 whose data used in an instruction 𝑖′ from code region 𝑟2.

VaRA supports several static analyses. In our work, we introduce a new kind of code region,
namely architecture regions, by defining an architecture tag (see Section 3.1). This enables us to
map each LLVM IR instruction to the source file from which it originated before subsequently
performing a data-flow analysis which, due to our architecture tag, yields the data-flow
interactions between architecture regions.

3
Data-Flow Based Architecture Analysis

In this chapter, we define architecture code regions and explain how we implement them in
VaRA. Additionally, we give an overview over the implementation of our data collection and
preparation pipeline.

3.1 Architecture Regions

In our work, we evaluate projects written in C. As we lack manually created architecture
models at our disposal, we consider the architecture of a project to be a nested structure of
directories, each of which represents a module containing one or more source files. In order
to compute the data-flow behavior of a project, we compile the project in question and use the
data-flow interaction analysis of VaRA. Since the data-flow interaction analysis in itself does
not allow us to tell in which file an instruction is defined, we adapt the compilation process
to suit our needs. This allows us to read out in which file an instruction is defined after the
data-flow interaction analysis and, in turn, allows us to construct a data-flow interaction
graph for our experiment. As part of the changes which wemake to VaRA, we introduce a new
code region, namely an architecture region which we use in order remember from which file an
instruction originated. Mathematically speaking, we extend the set of tags 𝜏 (see Definition 1)
by a tag which carries architecture information. This, in turn, allows us to annotate code
regions and their instructions so that the architecture information carried by the LLVM IR
metadata node can be processed by VaRA. Conceptually, we add a new element 𝑡𝑎𝑟𝑐ℎ to the
set of tags 𝜏.

Definition 3 𝜏𝑎𝑟𝑐ℎ = {𝑡𝑎𝑟𝑐ℎ} ∪ 𝜏

Said tag 𝑡𝑎𝑟𝑐ℎ carries a string corresponding to the path of the file in which an instruction is
defined. Additionally, we implement a new tagging function 𝑡𝑎𝑔𝑠𝑎𝑟𝑐ℎ(𝑖).

Definition 4 𝑡𝑎𝑔𝑠𝑎𝑟𝑐ℎ(𝑖) = { 𝑡 | 𝑡 ∈ 𝜏𝑎𝑟𝑐ℎ ∧ 𝑡 @ 𝑖 }

This allows us to use the analysis framework of VaRA to analyze the architecture of a project.

3.2 Architecture Interactions

When data from one variable defined in architecture region 𝑟𝑎1
is used in an instruction

from architecture region 𝑟𝑎2
, there is a data-flow relation between the architecture regions 𝑟𝑎1

11

12 Data-Flow Based Architecture Analysis

and 𝑟𝑎2
. That is, the relation ⇝ (see Definition 2) holds for regions 𝑟𝑎1

and 𝑟𝑎2
. After annotating

the instructions with our architecture tag and grouping them into code regions, we perform a
data-flow interaction analysis in order to compute interactions between architecture regions.
Put differently, we check for which architecture regions relation ⇝ holds. We obtain the
interactions for every instruction and, using the string carried by our architecture tag 𝑡𝑎𝑟𝑐ℎ,
map the instruction back to the source file where it is defined.

3.3 Implementation

In this section, we explain the process for preparing and analyzing data for our experiment.
First, we explain the process of annotating instructions and grouping them into architecture
regions in Section 3.3.1. Then, we go over how we collect data-flow interaction information
in Section 3.3.2. Finally, we explain how we prepare the resulting data for our experiment
procedure in Section 3.3.3. Figure 3.1 depicts an overview of the steps for data preparation
and data analysis in our experiment.

my_file.c my_file.ll

𝑟 1
…

𝑟 𝑛

YA
M

L
YA

M
L

Clang adds a
metadata node.

The ArchitectureDetection pass
processes the metadata and

constructs architecture regions.
The ArchitectureReport pass
writes into a YAML file to
which architecture region
each instruction belongs.

The ArchitectureTaintReport
pass performs the data-flow

analysis with architecture taints.

Figure 3.1: After Clang transforms source code into IR and annotates it with metadata, VaRA
performs several steps in order to generate results files for further processing.

3.3.1 Architecture Annotation

VaRA builds on the LLVM Compiler Infrastructure and heavily utilizes its framework based
on IR for source code and binary analysis. For this reason, in order to implement a new kind
of code region in VaRA and use it as part of our experiment, we to have to extend Clang, the
C frontend of LLVM, first.

3.3.1.1 Adding a New Metadata Node

Every kind of code region implements its own 𝑡𝑎𝑔𝑠() function. Consequently, to implement
architecture regions, we first have to implement the 𝑡𝑎𝑔𝑠𝑎𝑟𝑐ℎ() function. We do so by adding a

3.3 Implementation 13

new metadata node to Clang. Because we consider files to be the fundamental unit in our
architecture model, we use our newly created metadata node in order to encode from which
file an instruction originates. More precisely, the information carried by the metadata node
says in which file the source code is defined from which the instruction was generated. To this
end, we extend the code generation step of Clang which transforms source code written in C
into LLVM IR. We introduce a step to the code generation process which annotates each IR
instruction with our metadata node. This metadata node represents our tag 𝑡𝑎𝑟𝑐ℎ and allows
us to remember in which file an instruction is defined. It is important to note that, in theory,
an instruction may potentially be defined in several files. We take this into account and allow
Clang to annotate an instruction with several pieces of metadata. To make the metadata
usable by the data-flow analysis, we define a new code region in VaRA.

3.3.1.2 Constructing Architecture Regions

We introduce a new region to VaRA, namely an architecture region. Every architecture region
has a unique identifier. This identifier corresponds to the path of the source file in which the
instructions in the architecture region are defined. During the ArchitectureDetection pass,
VaRA parses the IR metadata and groups consecutive instructions into code regions based
on their architecture tag. This allows us to process architecture regions and to collect data to
conduct our experiment.

3.3.2 Data Collection

In the compilation step, we instruct Clang to compile the project under investigation without
optimizations and to enable architecture metadata generation. We deliberately disable opti-
mizations in order to improve the accuracy of metadata annotations. In the analysis step, we
instruct VaRA to construct architecture regions and to generate an architecture report using
our ArchitectureDetection and ArchitectureReport passes. We would like to stress that a
third party added the ArchitectureTaintReport pass to VaRAwhile this thesis was in prepa-
ration. The ArchitectureReport pass yields raw architecture information, that is, a mapping
between each instruction and its source file of origin, and merely serves debugging purposes.
On the other hand, the ArchitectureTaintReport pass performs a data-flow interaction anal-
ysis between architecture regions. The result file, which the ArchitectureTaintReport pass
generates, contains, for every function in each source file, between how many architecture
regions from other source files the data-flow relation holds.

3.3.3 Data Analysis

Using the result file of the ArchitectureTaintReport, we transform the machine-readable
format into a data-flow interaction graph for further processing. In the data-flow interaction
graph 𝐺𝑑𝑓 = (𝑉𝑑𝑓, 𝐸𝑑𝑓), nodes constitute source files and weighted undirected edges between
nodes 𝑢 and 𝑣, with 𝑢 ≠ 𝑣, represent the number of data-flow interactions between architecture
regions from the files 𝑢 and 𝑣.

14 Data-Flow Based Architecture Analysis

We rely on the CLUTO package in order to cluster the data-flow interaction graph using
the Chameleon clustering algorithm and adapt the procedure employed by Silva et al. [24] in
order to find the optimal clustering solution. For each 𝑛 ∈ 2..|𝑉𝑑𝑓|, we compute a clustering
solution with 𝑛 partitions. Next, we calculate the 𝑐𝑜𝑒𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 value in order to determine the
quality of the clustering solution. We repeat this process for all |𝑉𝑑𝑓| − 1 clusterings and pick
the clustering solution with the highest 𝑐𝑜𝑒𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 value. If the 𝑐𝑜𝑒𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 value is the same
for two or more 𝑛, we opt for the clustering solution with the highest mean 𝐼𝑆𝑖𝑚 value. We
obtain a data-flow interaction cluster graph for conducting our experiment.

4
Methodology

In this chapter, we describe the methodology of our thesis. First, we present our research
questions with which we aim to investigate the relationship between co-change patterns and
data-flow interactions. Next, we discuss the criteria for our project selection and detail our
operationalization.

4.1 Research Questions

In our evaluation, we investigate the differences between architectural models extracted
from co-changes and data-flow interactions. Specifically, we formulate the following research
questions.
RQ1 How well do architecture models extracted from co-changes and data-flow interactions

agree with one another?
In our first research question, we explore the relationship between architecture models
extracted from the co-changing files of a project and its data-flow interactions. Specifically,
we investigate the commonalities and differences of these two kinds of models.
RQ2 Which architectural smells can we detect using our data-flow based architecture model?
In our second research question, we consider the architectural smells which we can find
using our architecture model. Specifically, we apply the co-change patterns introduced by
Silva et al. to our setting and compare the patterns found between co-changes and data-flow
interactions.

4.2 Project Selection

We choose the projects to be part of our experiment based on their size and longevity. We
ensure that each project is both sufficiently large and sufficiently old so that the data-flow
analysis and the co-change analysis respectively yield meaningful results. At the same time,
we limit our selection to medium-sized projects due to the fact that the data-flow interaction
analysis is a computationally expensive procedure. Importantly, the directory structure of
the files used in the compilation process of the software project must not be flat in order to
answer RQ2. Table 4.1 depicts our project selection.

15

16 Methodology

Project Language Category Commit SLOC Longevity

htop C UNIX utility 4102862 35.6 k Mar 2006 - Oct 2024
libvpx C Codec 027bbee 315.6 k May 2010 - Mar 2025
opus C Codec b5aad6a 89.1 k Nov 2007 - Mar 2025
toxcore C Cryptographic library 1d4cc78 82.5 k Jun 2013 - Mar 2025
xz C Compression utility 74c3449 48.9 k Dec 2007 - Aug 2023

Table 4.1: List of projects selected for our experiments.

4.3 Operationalization

In the following section, we describe our experiment design in more detail and explain our
data collection and evaluation process.

Figure 4.1 depicts our experiment structure. For every project under investigation, we perform
the following steps. First, we obtain its source code along with its revision history. We start
by building a data-flow interaction graph as part of our experiment. On the project under
investigation, we perform the data-flow interaction analysis of VaRA in order to obtain data-
flow interactions between architecture regions. Next, we follow the steps in Section 3.3.3 and
construct a data-flow interaction cluster graph. Subsequently, we use the revision history
of the project to build a co-change graph. We consider the entire revision history up until
the commit listed the column labeled ”Commit” in Table 4.1. It is important to note that,
unlike Silva et al. [23], we do not preprocess the revision history of the project as part of our
experiment procedure. This means that we do not merge commits, neither based on reports in
issue tracking systems nor using sliding windows of time. The nodes of the co-change graph
represent the source files of the project and each edge between two nodes is assigned a weight.
The weight represents how often which the corresponding files change in the same revision.
Consequently, the more often a pair of files changes in tandem, the greater the weight of the
edge connecting them is. Next, we remove all files from the co-change graph which are not
present in the data-flow interaction graph in order to remove noise from our dataset. In the
ideal outcome, both the co-change graph and the data-flow interaction graph contain the
same set of nodes, only differing in their edge weights. However, files which are present in the
data-flow interaction graph do not necessarily exhibit co-change behavior. As a consequence,
the resulting co-change graph may contain fewer nodes than its corresponding data-flow
interaction graph. After successfully obtaining both graphs, we use CLUTO and repeat the
clustering procedure in Section 3.3.3 in order to find the optimal clustering solution for the
co-change graph. As part of this process, every node in the graph is assigned a cluster to
which it belongs and we obtain a co-change cluster graph. Using the data-flow interaction
cluster graph and the co-change cluster graph, we perform the following steps in order to
answer our research questions.

4.3 Operationalization 17

RQ1. In order to answer our first research question, we assess the similarity between the
co-change cluster graph and the data-flow interaction cluster graph. We do so by computing
the MoJoFM score of the two cluster graphs. We opt for using the data-flow interaction cluster
graph as the reference as the co-change cluster graph constitutes the greater bottleneck in
terms of number of nodes. This yields a straightforward measure which allows us to compare
the graphs to one another and, in turn, to quantify the difference between the architecture
models under study.

RQ2. To answer our second research question, we map the nodes in the data-flow interaction
cluster graph to their respective files in each directory of the project. Next, we use the co-
change patterns by Silva et al. [23] in order to identify architectural smells. We repeat the
procedure with the co-change cluster graph and compare the results to each other.

Source
Code VaRA

Data-flow
Interactions

Co-change
Graph

Interaction
Clusters

Co-change
Clusters

Similarity
Score

Architectural
Smells

Data-flow
Analysis

Clustering

Clustering

MoJoFM

Co-change
Analysis

Figure 4.1: Our experiment procedure

5
Evaluation

In this chapter, we evaluate our experiment results and answer our research questions. In
Section 5.1, we present and describe the results of our experiment. Then, we discuss our
experiment results and use them to answer our research questions in Section 5.2. Finally, we
go over threats to the internal and external validity of our experiment in Section 5.3.

5.1 Results

In this section, we present the results of our experiment and point out noteworthy details in
our data.

5.1.1 RQ1

In order to answer our research questions, we prepare a co-change graph and a data-flow
interaction graph for every project under investigation. It is important to keep in mind that we
construct the data-flow interaction graph first, meaning that only files present in the data-flow
interaction graph can be present in the co-change graph as we filter out other files. A node
representing a file can exist in both the data-flow interaction graph and the co-change or in
the data-flow interaction graph only. Due to our experiment set-up, it is not possible for a
node to be present only in co-change graph. As a result, the co-change graph of each project
has at most as many nodes as the data-flow interaction graph. Table 5.1 shows the number
of files used when constructing the respective graph of each project. Additionally, it shows
across how many directories the files are spread. We denote the columns concerning the
co-change graph using ”CC”, and columns relating to the data-flow interaction graph are
marked with ”DF”. The abbreviations #files and #directories refer to the number of files
and directories, respectively. First, it is easy to notice that the co-change graphs belonging to
three of the five projects under investigation are substantially smaller than the corresponding
data-flow interaction graphs. Out of the three projects, toxcore saw the greatest decrease
in terms of the number of nodes, going from 86 nodes in the data-flow interaction graph
to merely 49 nodes in the co-change graph, totaling a decrease of 43%. The other projects,
namely htop and opus, saw a decrease of 22.6% and 24.5%, respectively. Finally, xz saw a
modest decrease, with its number of nodes lowering from 13 to 11, or by 15.4%. Strikingly,
libvpx remained the same. Both the data-flow interaction graph and the co-change graph
corresponding to libvpx contain 13 nodes. In terms of the number of directories across which
files are spread, htop, libvpx and opus share their source files across 2, 3 and 6 directories,

19

20 Evaluation

respectively, both in the co-change graph and in the data-flow interaction graph. In the case
of toxcore and xz, the number of unique directories in the the graph decreases from 4 to 3
and from 2 to 1, respectively.

Project #files (DF) #directories (DF) #files (CC) #directories (CC)

htop 31 2 24 2
libvpx 12 3 12 3
opus 49 6 37 6
toxcore 86 4 49 3
xz 13 2 11 1

Table 5.1: Total number of files and directories per project and architectural model

Next, we go over the optimal clustering solutions found by using the graph quality metrics
provided by CLUTO ESim and ISim as well as the coefficient metric by Silva et al. Table 5.2
depicts the optimal clustering solutions which we build upon in order to answer our research
questions. Notably, for 3 out of 5 co-change graphs, the optimal clustering solution was found
to contain the same number of partitions. For libvpx, toxcore and xz, the respective co-
change cluster graphs contain merely two clusters. On the other hand, the co-change cluster
graph of htop contains six clusters. For opus, optimal clustering for the co-change graph
consists of fifteen clusters. On the other hand, its data-flow interaction cluster graph with the
highest coefficient value contains only 2 clusters. The data-flow interaction cluster graphs for
htop, libvpx, toxcore and xz consist of 9, 3, 10 and 3 partitions, respectively. It is easy to see
that the optimal clustering solutions for the co-change graphs in question are concentrated
at the lower end of the spectrum, with the solutions of the opus and htop co-change cluster
graphs being outliers. In the case of the data-flow interaction graphs, the number of clusters
for the optimal clustering solutions tend both towards the lower and the higher end.

Project Opt. Clustering (DF) Opt. Clustering (CC)

htop 9 6
libvpx 3 2
opus 2 15
toxcore 10 2
xz 3 2

Table 5.2: Optimal number of clusters per project and architectural model

In our first research question, we examine the overall similarity between both architectural
models using the MoJoFM score. Table 5.3 depicts the computed MoJoFM scores. The column
labeled 𝑀𝑜𝐽𝑜𝐹𝑀(𝐶𝐶, 𝐷𝐹) contains the MoJoFM score where the data-flow interaction cluster

5.1 Results 21

graph is considered the reference decomposition. For htop and toxcore, we find the lowest
MoJoFM scores among our project selection, namely 27.78% and 31.71%, respectively. Out of
libvpx, xz and opus, the MoJoFM score of opus of 51.43% is the highest. xz has a MoJoFM
score of 50.0% and the MoJoFM score of libvpx is 44.44%.

Project MoJoFM(CC, DF)

htop 27.78
libvpx 44.44
opus 51.43
toxcore 31.71
xz 50.0

Table 5.3: MoJoFM values per project

5.1.2 RQ2

With RQ2, we gain insight into which architectural model better aids in uncovering archi-
tectural smells. In particular, we compare which architectural smells are found using the
co-change based or data-flow based architecture model. In order to do so, we examine the
qualitative differences exhibited by our results for each architecture model. Overall, we find
that 57 out of 133 (42.9%) files in the co-change graphs of the respective projects are part of
an architectural smell. 67 files (50.4%) belong to an Encapsulated or Well-Confined cluster
and 9 files (6.8%) belong to clusters which fail to match any pattern.

In the case of the data-flow interaction graph, 56 out of 191 nodes (29.3%) of the nodes
belong to an instance of an architectural smell. 65 files (34.0%) belong to an Encapsulated or
Well-Confined cluster and a total of 70 files (36.6%) belong to clusters which do not match
any pattern. Additionally, among the projects in which source files from four or more unique
directories were involved, we find no instances of the Crosscutting architectural smell. Lastly,
it is worth noting that, there is only one instance of the Black Sheep architectural smell, and
one instance of the Encapsulated cluster, both of which appear in the same project.

In the remainder of this subsection, we go over the individual projects, present our findings
and highlight notable observations. Throughout the individual subsubsections, we employ
the same color coding as in Figure 2.1, meaning that green squares represent files belonging to
an Encapsulated cluster, pink squares depict files formingWell-Confined clusters, red squares
represent Black Sheep clusters, and dark blue and light blue squares belong to Octopus and
Squid clusters, respectively. It is important to note that, when we refer to files and directories,
we only consider files and directories represented by nodes in the respective cluster graphs.

22 Evaluation

0 1 1 4 5

3 4 0 4 0

4 4 3 0 4

0 1 5 3 4

1

./

2 2 1

linux

Figure 5.1: Co-change clustering
results for htop

7 1 0 6 3

0 2 6 3 1

7 5 0 3 2

3 0 4 0 8

0 7 1 4 1

0 1 8

./

5 4 8

linux

Figure 5.2: Data-flow interaction clustering
results for htop

5.1.2.1 htop

Out of the 6 clusters in the co-change cluster graph, 5 of them are classified as Well-Confined
clusters, with four of them being confined to the ./ directory. The remaining cluster, cluster 1,
is spread across both the ./ and linux directory, and does not match any of the architectural
smells which we investigate. Notably, cluster 2, which only contains the LinuxMachine.c and
LinuxProcessTable.c files, is confined to the linux directory. However, because it shares
the linux directory with the Platform.c file, which is part of cluster 1, cluster 2 is not an
Encapsulated, but aWell-Confined cluster. Figure 5.1 provides a visualization of the co-change
cluster graph mapped onto the directory structure of htop.

In the data-flow based architecture model, we again see the majority of files being catego-
rized as Well-Confined. Out of the 9 clusters, only 3 clusters fail to match an architectural
smell. Notably, the linux directory only contains uncategorized files whose respective clusters
extend into the ./ directory. Figure 5.2 depicts a visual representation of the clustering results
for the data-flow based model.

For htop, we find similar results overall in terms of architectural smells for bothmodels. The
co-change based and the data-flow based clustering belonging to htop exhibit similar behavior
in terms of architectural smells. Both models exclusively detect Well-Confined clusters in the
source files of htop, with several files remaining uncategorized.

5.1.2.2 libvpx

For libvpx, we obtain a clustering with 2 clusters in the co-change based architecture model.
In the vpx/src directory, the files vpx_codec.c, vpx_decoder.c, vpx_encoder.c make up a
Well-Confined cluster. The remaining file in the vpx/src directory, namely vpx_image.c, is
part of an Octopus cluster spread across all 3 directories. The entirety of the ./ belongs to
the said cluster and constitutes its body. The tentacles of the Octopus cluster reside in the
vpx_image.c file in the vpx/src directory and in the vpx_mem.c file, the latter being the only
file in the vpx_mem directory.

On the other hand, the data-flow based cluster graph contains three clusters. We observe a
similar clustering of the vpx/src and vpx_mem directories. Again, the files vpx_image.c and
vpx_mem.c belong to the same cluster. However, in the case of the data-flow based model,

5.1 Results 23

1 1 1 1 1

1 1

./

0 0 0 1

vpx/src

1

vpx_mem

Figure 5.3: Co-change clustering
results for libvpx

0 0 0 1 0

0 1

./

0 0 0 2

vpx/src

2

vpx_mem

Figure 5.4: Data-flow interaction clustering
results for libvpx

they make up a Squid cluster on their own. The remaining files in the vpx/src and all files but
two in the ./ directory belong to a cluster of their own and are categorized as an architectural
smell. In the ./directory, the tools_common.c and y4minput.cfiles constitute aWell-Confined
cluster.

In contrast to the data-flow based architecture model, the co-change based model classifies
all files in the directories of libvpx. On the other hand, most of the files in the ./ and vpx/src

directories remain uncategorized in the case of the data-flow based model. Figure 5.3 and
Figure 5.4 visualize the clustering results of libxpv for the co-change based model and the
data-flow based model, respectively.

5.1.2.3 opus

For opus, we see drastically different clustering behavior between the co-change graph and
data-flow interaction graph. The majority of the clusters in the co-change cluster graph are
considerably small in size. Out of the 15 clusters found, a total of 11 clusters merely contain
two files. Furthermore, 2 clusters contain three files, and the remaining 2 clusters contain
four and five files, respectively. Strikingly, a number of clusters of size two contain files
whose names suggest that said files are related to one another or serve the same purpose. For
example, cluster 0 encompasses the files opus_decode.c and opus_encoder.c from the src
directory. In the same directory, cluster 1 contains the files opus_multistream_decoder.c and
opus_multistream_encoder.c. In cluster 6, we find the files dec_API.c and enc_API.c from
the silk directory. Similarly, cluster 10 consists of the files NLSF_encode.c and NLSF_VQ.c from
the silk directory. In the silk/x86 directory, the files NSQ_sse4_1.c and VAD_sse4_1.cmake
up cluster 8. The files NSQ.c and NSQ_del_dec.c from the silk directory belong to cluster 5. The
files vq.c from the celt directory and vq_sse2.c from the celt/x86 directory constitute clus-
ter 14. With the exception of cluster 14, which is a Squid cluster, all of the clusters mentioned
above are categorized as Well-Confined clusters. Further Well-Confined clusters include clus-
ter 12, which consists of the files cwrs.c and modes.c, and cluster 9, which encompasses the
files entdec.c and laplace.c, all of which reside in the celt directory. Additionally, the clus-
ters 3 and 7, both ofwhich are of size three, areWell-Confined too. The files mapping_matrix.c,
opus_projection_decoder.c and opus_projection_encoder.c from the src directory make
up the former, whereas the latter consists of the files code_signs.c, decode_pulses.c and
shell_coder.c from the silk directory. The remaining clusters of size two deserve particular
attention, as they are the only two instances of a Black Sheep cluster and an Encapsulated
cluster. Cluster 2, which comprises celt.c from the directory celt and analysis.c from
the directory src, is the only Black Sheep cluster we find in all of our experiment results.
Cluster 13, consisting of the files pitch_analysis_core_FLP.c and wrappers_FLP.c from the

24 Evaluation

4 10 10 5 5

7 6 7 6 7

silk

13 13

silk/float

11 8 8

silk/x86

2 11 3 11 0

0 11 1 1 3

3 11

src

2 4 4 12 9

9 12 4 14

celt

14

celt/x86

Figure 5.5: Co-change clustering
results for opus

1 1 1 0 0

0 1 1 1 1

1 1 1 1 1

1 1 1 1

silk

1 1 1 1

silk/float

1 1 1

silk/x86

0 0 0 0 0

0 0 0 0 0

0 0

src

0 1 0 0 1

1 1 0 1

celt

1 0

celt/x86

Figure 5.6: Data-flow interaction results for opus

silk/float directory, is the only Encapsulated cluster which we encounter. We do not find
further Encapsulated clusters in other projects which we investigate. The last two clusters in
the co-change cluster graph of opus are of size four and five, respectively. Cluster 4 spans three
files from the celt directory, namely celt_decoder.c, celt_encoder.c and quant_bands.c,
and LPC_analysis_filter.c from the silk directory. It does not match any co-change pat-
terns. Cluster 11 consists of the file NSQ_del_dec_avx2.c from the silk/x86 directory, and
extensions.c, opus.c, opus_multistream.c and repacketizer.c from the src directory. To-
gether, they form an Octopus cluster. Figure 5.5 contains a visualization of the clustering
results for the co-change based model.

In the case of the data-flow interaction graph, we observe a vastly different clustering
results compared to the co-change cluster graph. While the latter contains fifteen clusters,
which is the highest number of clusters in our experiment results, its corresponding data-flow
interaction cluster graphmerely contains two. The co-change cluster graph has several smaller
clusters, with the majority of clusters containing two files. On the other hand, cluster 0 in the
data-flow interaction cluster graph encompasses 20 files and cluster 1 has 29 files. Notably,
the entirety of the files in the src directory belongs to cluster 0, whereas all of the files in
the silk/float and silk/x86 directories are part of cluster 1. The directories celt, celt/x86
and silk are touched by both clusters. Furthermore, several files which appear in the data-
flow interaction graph are absent from the co-change graph due to not exhibiting co-change
behavior. However, the celt, silk/x86 and src directories contain the same files in both the
co-change graph and the data-flow interaction graph. Figure 5.6 depicts the clustering results
of opus for the data-flow based model.

5.1.2.4 toxcore

For the project toxcore, we find two clusters in the co-change basedmodel. The entirety of the
toxcore directory belongs to the body of an Octopus cluster whose tentacles touch one file
out of eleven files in the toxcore/events directory and toxencryptsave.c, the only file in the
toxencryptsave directory. The remaining files in the toxcore/events form a Well-Confined
cluster. In the co-change based model, several files are absent from the toxcore/events

directory, the majority of which are related to conferencing, friend and group functionality.

5.2 Discussion 25

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

toxcore

0 1 1 1 1

1 1 1 1 1

1

toxcore/events

0

toxencryptsave

Figure 5.7: Co-change clustering
results for toxcore

8 2 4 4 4

0 8 4 3 9

5 4 2 2 1

6 2 2 2 6

5 7 7 8 2

4 0 0 9 8

8 9 8 1 9

2 2 3 2 2

0 3 2

toxcore

8 8 8 8 8

8 8 8 8 8

8 8 8 8 8

8 8 8 8 8

8 8 8 8 8

8 8 8 8 8

8 8 8 8 8

8 8 8 8 8

8

toxcore/events

9

toxencryptsave

5

third_party/cmp

Figure 5.8: Data-flow interaction clustering
results for toxcore

The file cmp.c from the third_party/cmp is also missing. Figure 5.7 visualizes the clustering
results of toxcore for the co-change based model.

In the data-flow based model, we also find an Octopus cluster. However, unlike in the
co-change based model, its body resides in the toxcore/events directory, with its tentacle
extending into the toxcore directory and touching six files. Furthermore, we find seven Well-
Confined clusters and a Squid cluster in the toxcore directory, with the body of the latter being
the cmp.c file in the third_party/cmp directory. One cluster, consisting of four files in the
toxcore and toxencryptsave.c from the toxencryptsave directory remains uncategorized.

Figure 5.8 contains a visualization of the clustering results of toxcore for the data-flow
based model.

5.1.2.5 xz

For xz, we find only two clusters in the co-change based model. Both clusters are Well-
Confined and reside in the src/xz directory, which is the only directory in the co-change
based model.

In the data-flow based model, we again find twoWell-Confined clusters in the src/xz direc-
tory. Additionally, it contains the tentacles of a Squid cluster, namely mytime.c and message.c,
whose body resides in the src/common directory and consists of the tuklib_progname.c and
tuklib_exit.c files.

Figure 5.9 and Figure 5.10 visualize our results for the co-change based and the data-flow
based model, respectively.

5.2 Discussion

In this section, we discuss our experiment results and relate them to our research questions.

26 Evaluation

1 0 0 1 0

1 1 0 1 1

0

src/xz

Figure 5.9: Co-change clustering
results for xz

1 1

src/common

2 2 0 2 0

2 1 1 2 2

2

src/xz

Figure 5.10: Data-flow interaction clustering
results for xz

5.2.1 RQ1

In RQ1, we explore how well architecture models extracted from co-changes and data-flow
interactions agree with one another. To this end, we compute the MoJoFM score for each
project.

We observe that themaximumMoJoFM score computed for the projects under investigation
falls into the middle range, namely opus with 51.43%. At the lower end, we find the MoJoFM
score of htop which is roughly 28%. The respective scores of three out of five projects tend
towards the middle range. The remaining two projects fall into the lower end of the spectrum.
Based on our results, we conclude that both architecture models differ rather significantly
from each other. In the best case, they bear slight similarity to one another.

5.2.2 RQ2

In RQ2, we investigate which architectural smells our data-flow based model aids in identify-
ing. To this end, we compare our data-flow based model with the co-change based model in
terms of the number of detected architectural smells. For each co-change pattern, Table 5.4
depicts the total number of detected instances per architectural model.

Co-Change Pattern DF CC

Encapsulated 0 1

Well-Confined 16 19
Crosscutting 0 0

Black Sheep 0 1

Octopus 1 3

Squid 3 1

Uncategorized 7 2

Total 27 27

Table 5.4: Sum of co-change pattern instances per architectural model

5.2 Discussion 27

We find a total of 54 clusters across all projects and both architectural models, where both
the data-flow based model and the co-change based model contain 27 clusters each. In the
data-flow based model, 16 out of 27 clusters are classified as Well-Confined. A total of 4
clusters are categorized as architectural smells, as there is 1 instance of an Octopus cluster and
3 instances of Squid clusters. 7 clusters remain uncategorized in the data-flow based model.

In the co-change based model, only 2 clusters do not match any co-change pattern. 1 cluster
is categorized as Encapsulated and 19 clusters areWell-Confined. The remaining 5 clusters are
classified as architectural smells, with one being a Black Sheep cluster and 3 being categorized
as Octopus clusters, and 1 Squid cluster.

Out of the nine uncategorized clusters, five of them slightly miss the criteria for Black
Sheep, Octopus and Squid clusters. In the data-flow interaction clustering, for cluster 4 and 8
of htop and for cluster 9 of toxcore, we find 𝑓 𝑜𝑐𝑢𝑠 values between 0.16 and 0.27, which are
slightly above the threshold of Black Sheep and slightly below the threshold of Octopus and
Squid clusters. Similarly, cluster 1 of htop and cluster 4 of opus in the co-change clustering
have 𝑓 𝑜𝑐𝑢𝑠 values of 0.21 and 0.28, respectively.

Using their six co-change patterns, Silva et al. were able to classify approximately 95.4%
of co-change clusters in their experiment. In our experiment, we find a slightly smaller
percentage of clusters, as only 92.6% of co-change clusters and 74.1% of data-flow interaction
clusters are covered by their patterns. Excluding the Encapsulated andWell-Confined clusters,
we see that 18.5% of clusters are detected as architectural smells in the co-change cluster graph.
Moreover, 14.8% of clusters in the data-flow interaction cluster graph belong to architectural
smells.

We observe that there are more Squid clusters in the data-flow interaction cluster graph
than in the co-change cluster graph. Furthermore, there are more Octopus clusters in the
co-change cluster graph than in the data-flow interaction cluster graph. However, we note that
the sum of Squid and Octopus clusters is equal across both models. While the overall number
of architectural smells detected by both models varies only slightly, the files themselves and
to what architectural smells they belong exhibit significant differences between the co-change
based and the data-flow based model.

In summary, we find that the co-change patterns fit better to the co-change based model
than to the data-flow based model. We do not encounter architectural smells which are
only detected using the data-flow based model. Instead, we see that the absolute number of
architectural smells detected by the the co-change based model is greater, as it detects an
instance of a Black Sheep cluster whereas the data-flow based model does not. Additionally,
the number of uncategorized clusters is higher in the case of the data-flow based model.

We select the six co-change patterns designed by Silva et al. [23] to serve as indicators of
architectural smells in our experiment. Considering the fact that the patterns are specifically
designed to capture the co-change behavior of a software system, it seems logical that using
them in conjunction with data-flow interactions instead of co-changes yields fewer matches.
Designing new shapes specifically tailored to data-flow interactions may potentially overcome
this issue. Silva et al. [23] note that there can be other sets of patterns and that their set of
patterns can be extended, as they did in their previous work. Consequently, it may prove
beneficial to design an initial set of patterns for data-flow interactions and to expand upon it
subsequent experiments.

28 Evaluation

5.3 Threats to Validity

In this section, we discuss the threats to the internal and external validity of our experiment,
its results and our conclusions.

5.3.1 Internal Validity

In our experiment, we use the MoJoFM effectiveness measure in order to compare clustering
results. MoJoFM is intended for use with an authoritative decomposition as a reference. As
it is not a symmetric function and we lack a reference decomposition for the projects under
investigation, our results for RQ1 highly depend on our choice to use the data-flow interaction
cluster graph instead of an authoritative decomposition. While this approach allows us to
compare our data-flow based model to the co-change based model using a straightforward
measure, comparing both to an authoritative decomposition would arguably yield better
insight into the similarity between both models.

Additionally, the MoJoFM implementation of which we make use as part of our experiment
only considers nodes present in both clustering solutions when calculating the MoJoFM
score. This means that, for all projects but libvpx, the MoJoFM values in Table 5.3 concern
the intersection between the co-change cluster graph and the data-flow interaction cluster
graph. Consequently, this reduces the meaningfulness of the MoJoFM score for the purpose
of comparing both architectural models. libvpx is unaffected by this behavior due to the fact
that its co-change graph and data-flow interaction graph contain the same set of nodes.

When constructing the co-change graph, we do not preprocess the revision history of the
project under investigation. Specifically, we do not to merge commits using sliding windows
of time. This, in turn, potentially leads to files concerning the same development task to being
split across separate commits, preventing their connection from appearing in the co-change
graph.

5.3.2 External Validity

During the compilation process of the projects under investigation, we ran into issues related
to the data-flow interaction analysis of VaRA. Due to memory constraints, we were unable to
successfully compile a number of projects which imposed strict limits in terms of the size
of the projects in our selection. As a consequence, when conducting our experiment with
the projects listed in Table 4.1, we found that, despite the nested nature of their directory
structure, only files from few unique directories were used during the compilation process
for most projects. Three out of five projects compiled with files from three directories or
less. In the case of toxcore, only the data-flow interaction graph contains files belonging to
four directories. Only the co-change graph and the data-flow interaction graph of opus both
contain files from more than four directories. This effectively prevents us from identifying
Crosscutting clusters in three of our five projects under investigation, thereby reducing the
generalizability of our findings. Additionally, our project selection mainly focuses on UNIX
utilities and media codecs, which does not properly reflect the broader software ecosystem.

5.3 Threats to Validity 29

The data-flow interaction analysis of VaRA is a computationally expensive process. During
the preparation of our experiment, VaRA failed to complete a data-flow interaction analysis
for multiple projects even after several days. On the other hand, a revision history of a project
is relatively simple to obtain and analyze, making the co-change based approach arguably
cheaper and faster in real-world scenarios than our data-flow based approach.

6
Related Work

In this chapter, we briefly present related work in the field of software architecture.

6.1 Architecture Models

Bass et al.[1] present several architectural views which go beyond units of code and their
semantics. In their work, they state that the dominant structure which other structures follow
often is the modules of which the software system is composed.

Xiao et al. [26] propose a model referred to as design rule spaces which splits a system
into independent modules based on one or several rules which include evolutionary history,
among others. They argue that a software system has to be considered as a number of
overlapping design rule spaces, each one of which captures one aspect of the software system.
Additionally, they find that not all structural problems which a software system exhibits
necessarily lead to quality issues or degrade maintainability.

6.2 Architecture Recovery

Manually recovering the architecture of a software system is a highly laborious task and
requires substantial human intervention. Godfrey et al. [10] recovered the architecture of
early versions of the Vim text editor and the Firefox web browser by using a combination of
several tools and consulting the documentation of the respective system. Similarly, Bowman
et al. examined the Linux kernel in a multi-step process to recover its architecture. In their
work [4], they present the intricacies of their findings regarding the File System subsystem of
the Linux kernel.

Several automated approaches have been developed, simplifying the process of recovering
the architecture of a software system. Hutchens and Basili [11] used clustering based on
data bindings between Fortran procedures to decompose a software system into subsystems.
Similarly, Mitchell and Mancoridis [17] developed Bunch, which utilizes clustering in order
to decompose software projects into subsystems using a language-independent approach
based on the structure and relations of the modules in the source code a software system.

31

32 Related Work

6.3 Architectural Smells

Oizumi et al. [19] investigated the relation ship between groups of related code-level anomalies
(referred to as code-anomaly agglomerations) and architectural issues. They found that using
code-anomaly agglomerations indeed served as a better indicator of architectural issues than
individual code smells and that some types of code-anomaly agglomerations are better suited
to detect architectural issues than others. Fontana et al. [6] created a tool called Arcan in
order to identify flawed structural dependencies among packages and classes of software
projects written in Java. Cai and Kazman [5] developed DV8, which supports identifying
several architectural smells as well as quantifying the maintenance cost associated with them.

7
Concluding Remarks

In this chapter, we briefly summarize our thesis and give an outlook on potential future work.

7.1 Conclusion

Architectural technical debt poses a grave threat to the longevity of a software system, greatly
impacting its maintainability and, by extension, its developers. Among best practices during
the software development life cycle, various measurement methods to detect architectural
decay have been developed in order to curb the negative consequences of amassing technical
debt and to allow developers to take appropriate action. In this thesis, we investigated what
data-flow can reveal about the architecture in a software project using graph clustering.
To this end, we performed a comparison between architectural models based on frequent
common changes (”co-changes”) and data-flow interactions between files. We conducted an
experiment on five projects of medium size and compared both models in terms of similarity
(RQ1) and architectural smell detection (RQ2). We relied on the MoJoFM effectiveness
measure in order to assess the similarity of the models and found values ranging from 28-51%
across all five projects, indicating a rather strong difference. For architectural smell detection,
we made use of an established set of architectural smells and observed a similar performance
of both models in terms of the absolute number of smells detected. However, we found
noticeably different results with regard to which files participate in which architectural smells
for three out of five projects. Based on our results, we conclude that the co-change based
model and the model based on data-flow interactions differ rather significantly.

7.2 Future Work

Going forward, future work may repeat our experiment with a variety of projects of con-
siderably greater size in order to further investigate the external validity of our approach.
Additionally, it appears to be a worthwhile endeavor to verify that the patterns designed by
Silva et al. are indeed indicative of increased maintenance effort when used in conjunction
with our data-flow based model. Finally, future research may explore designing patterns
specifically tailored to data-flow interactions in order to uncover detrimental architectural
designs decisions using data-flow interactions.

33

Bibliography

[1] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. 2nd ed. SEI
series in software engineering. Addison-Wesley, 2003. 528 pp.

[2] Terese Besker, Antonio Martini, and Jan Bosch. “The Pricey Bill of Technical Debt:
When and by Whom will it be Paid?” In: 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2017.

[3] Dirk Beyer and Andreas Noack. “Clustering Software Artifacts Based on Frequent
CommonChanges.” In: 13th InternationalWorkshop on ProgramComprehension (IWPC’05).
IEEE, 2005, pp. 259–268.

[4] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. “Linux as a case study: its
extracted software architecture.” In: Proceedings of the 21st international conference on
Software engineering. ACM, 1999.

[5] Yuanfang Cai and Rick Kazman. “DV8: Automated Architecture Analysis Tool Suites.”
In: 2019 IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE / ACM,
2019, pp. 53–54.

[6] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, Damian A. Tamburri,
Marco Zanoni, and Elisabetta Di Nitto. “Arcan: A Tool for Architectural Smells Detec-
tion.” In: 2017 IEEE International Conference on Software Architecture Workshops (ICSA
Workshops). IEEE Computer Society, 2017, pp. 282–285.

[7] Francesca Arcelli Fontanaa, Valentina Lenarduzzi, Riccardo Roveda, and Davide Taibi.
“Are architectural smells independent from code smells? An empirical study.” In: J.
Syst. Softw. 154 (2019), pp. 139–156.

[8] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. “Identifying
Architectural Bad Smells.” In: 2009 13th European Conference on Software Maintenance
and Reengineering. IEEE, 2009.

[9] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. “Toward a
Catalogue of Architectural Bad Smells.” In: Architectures for Adaptive Software Systems.
Vol. 5581. Springer Berlin Heidelberg, 2009, pp. 146–162.

[10] Michael W Godfrey and Eric H S Lee. “Secrets from the Monster: Extracting Mozilla’s
Software Architecture.” In: (2000).

[11] David H. Hutchens and Victor R. Basili. “System Structure Analysis: Clustering with
Data Bindings.” In: IEEE Transactions on Software Engineering SE-11.8 (1985), pp. 749–
757.

[12] George Karypis, Eui-Hong Han, and Vipin Kumar. “Chameleon: Hierarchical Cluster-
ing Using Dynamic Modeling.” In: Computer 32.8 (1999), pp. 68–75.

35

36 Bibliography

[13] Chris Lattner. “LLVM.” In: The Architecture of Open Source Applications: Elegance, Evolu-
tion, and a Few Fearless Hacks. Brown, Amy and Wilson, Greg, 2011.

[14] Duc Minh Le, Carlos Carrillo, Rafael Capilla, and Nenad Medvidovic. “Relating Archi-
tectural Decay and Sustainability of Software Systems.” In: 2016 13thWorking IEEE/IFIP
Conference on Software Architecture (WICSA). IEEE, 2016.

[15] DucMinh Le, Daniel Link, Arman Shahbazian, and NenadMedvidovic. “An Empirical
Study of Architectural Decay in Open-Source Software.” In: 2018 IEEE International
Conference on Software Architecture (ICSA). IEEE, 2018.

[16] Antonio Martini, Francesca Arcelli Fontana, Andrea Biaggi, and Riccardo Roveda.
“Identifying and Prioritizing Architectural Debt Through Architectural Smells: A
Case Study in a Large Software Company.” In: 12th European Conference on Software
Architecture, ECSA. Springer International Publishing, 2018, pp. 320–335.

[17] Brian S. Mitchell and Spiros Mancoridis. “On the Automatic Modularization of Soft-
ware Systems Using the Bunch Tool.” In: IEEE Transactions on Software Engineering 32.3
(2006), pp. 193–208.

[18] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. “Architecture Anti-
Patterns: Automatically Detectable Violations of Design Principles.” In: IEEE Transac-
tions on Software Engineering 47.5 (2021), pp. 1008–1028.

[19] Willian Nalepa Oizumi, Alessandro F. Garcia, Thelma Elita Colanzi, Manuele Ferreira,
and Arndt von Staa. “On the relationship of code-anomaly agglomerations and ar-
chitectural problems.” In: Journal of Software Engineering Research and Development 3
(2015), pp. 1–22.

[20] Darius Sas, Paris Avgeriou, Ronald Kruizinga, and Ruben Scheedler. “Exploring the
Relation Between Co-changes and Architectural Smells.” In: SN Computer Science 2.1
(2021), p. 13.

[21] Florian Sattler. “Understanding Variability in Space and Time.” PhD thesis. Saarland
University, 2024.

[22] Florian Sattler, Sebastian Böhm, Philipp Dominik Schubert, Norbert Siegmund, and
Sven Apel. “SEAL: Integrating Program Analysis and Repository Mining.” In: ACM
Transactions on Software Engineering and Methodology 32.5 (2023), pp. 1–34.

[23] Luciana L. Silva, Marco Tulio Valente, and Marcelo A. Maia. “Co-change patterns: A
large scale empirical study.” In: Journal of Systems and Software 152 (2019), pp. 196–214.

[24] Luciana Lourdes Silva, Marco Tulio Valente, and Marcelo De A. Maia. “Co-change
Clusters: Extraction and Application on Assessing Software Modularity.” In: 12 (2015),
pp. 96–131.

[25] Richard N. Taylor, Nenad Medvidovič, and Eric M. Dashofy. Software architecture:
foundations, theory, and practice. Wiley, 2010. 712 pp.

[26] Lu Xiao, Yuanfang Cai, and Rick Kazman. “Design rule spaces: a new form of architec-
ture insight.” In: Proceedings of the 36th International Conference on Software Engineering.
ACM, 2014.

Bibliography 37

[27] Zhihua Wen and Vassilios Tzerpos. “An effectiveness measure for software clustering
algorithms.” In: Proceedings. 12th IEEE International Workshop on Program Comprehension,
2004. IEEE, 2004.

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Overview

	2 Background
	2.1 Software Architecture
	2.2 Co-Change Based Architecture Metric
	2.3 Architectural Smells
	2.4 Graph Clustering
	2.5 LLVM Compiler Infrastructure
	2.6 VaRA

	3 Data-Flow Based Architecture Analysis
	3.1 Architecture Regions
	3.2 Architecture Interactions
	3.3 Implementation
	3.3.1 Architecture Annotation
	3.3.2 Data Collection
	3.3.3 Data Analysis

	4 Methodology
	4.1 Research Questions
	4.2 Project Selection
	4.3 Operationalization

	5 Evaluation
	5.1 Results
	5.1.1 RQ1
	5.1.2 RQ2

	5.2 Discussion
	5.2.1 RQ1
	5.2.2 RQ2

	5.3 Threats to Validity
	5.3.1 Internal Validity
	5.3.2 External Validity

	6 Related Work
	6.1 Architecture Models
	6.2 Architecture Recovery
	6.3 Architectural Smells

	7 Concluding Remarks
	7.1 Conclusion
	7.2 Future Work

	 Bibliography

