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Abstract
Static analysis tools and transformation engines for source code belong to the standard equip-
ment of a software developer. Their use simplifies a developer’s everyday work of maintaining
and evolving software systems significantly and, hence, accounts for much of a developer’s
programming efficiency and programming productivity. This is also beneficial from a financial
point of view, as programming errors are early detected and avoided in the the development
process, thus the use of static analysis tools reduces the overall software-development costs
considerably.

In practice, software systems are often developed as configurable systems to account for
different requirements of application scenarios and use cases. To implement configurable
systems, developers often use compile-time implementation techniques, such as preprocessors,
by using #ifdef directives. Configuration options control the inclusion and exclusion of
#ifdef-annotated source code and their selection/deselection serve as an input for generating
tailor-made system variants on demand. Existing configurable systems, such as the LINUX
kernel, often provide thousands of configuration options, forming a huge configuration space
with billions of system variants.

Unfortunately, existing tool support cannot handle the myriads of system variants that can
typically be derived from a configurable system. Analysis and transformation tools are not
prepared for variability in source code, and, hence, they may process it incorrectly with the
result of an incomplete and often broken tool support.

We challenge the way configurable systems are analyzed and transformed by introducing
variability-aware static analysis tools and a variability-aware transformation engine for config-
urable systems’ development. The main idea of such tool support is to exploit commonalities
between system variants, reducing the effort of analyzing and transforming a configurable
system. In particular, we develop novel analysis approaches for analyzing the myriads of
system variants and compare them to state-of-the-art analysis approaches (namely sampling).
The comparison shows that variability-aware analysis is complete (with respect to covering
the whole configuration space), efficient (it outperforms some of the sampling heuristics), and
scales even to large software systems. We demonstrate that variability-aware analysis is even
practical when using it with non-trivial case studies, such as the LINUX kernel.

On top of variability-aware analysis, we develop a transformation engine for C, which
respects variability induced by the preprocessor. The engine provides three common refac-
torings (rename identifier, extract function, and inline function) and overcomes shortcomings
(completeness, use of heuristics, and scalability issues) of existing engines, while still being
semantics-preserving with respect to all variants and being fast, providing an instantaneous
user experience. To validate semantics preservation, we extend a standard testing approach for
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refactoring engines with variability and show in real-world case studies the effectiveness and
scalability of our engine.

In the end, our analysis and transformation techniques show that configurable systems can
efficiently be analyzed and transformed (even for large-scale systems), providing the same
guarantees for configurable systems as for standard systems in terms of detecting and avoiding
programming errors.
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1 Introduction
Today’s software systems have grown to a level of complexity that make them difficult to
understand and maintain for developers. It is not only their size, but also their variability that
contributes to their complexity. Most software systems are not developed only to be applied
in a single scenario or use case, but in a multitude of them. Therefore, software systems are
typically developed as configurable systems, of which specific variants can be generated to
match the requirements of different application scenarios and use cases.

Practitioners and researchers have proposed many different techniques for developing config-
urable systems. Among these are preprocessors [Kernighan and Ritchie, 1988; Boucher et al.,
2010], plugins [Johnson and Foote, 1988], components [Szyperski, 2002], aspects [Kiczales
et al., 1997], and feature modules [Prehofer, 1997; Batory et al., 2004]. Although all these
approaches differ in technical details, they share two common characteristics: a configurable
code base and a representation of configuration knowledge. Based on configuration options, the
configurable code base implements variable code artifacts that can be used in different variants.
Configuration knowledge describes valid combinations of configuration options and states the
configuration space of a system. Given a valid configuration, a generator generates a single
variant by combining the reusable code artifacts in a predefined fashion. The generation step
typically involves source-code transformations performed during the compilation of a program.

We use the C preprocessor (CPP) as a representative implementation technique for config-
urable systems and review several aspects of analyzing and transforming configurable systems.
The preprocessor is a frequently applied tool for the implementation of configurable systems,
and it has been used in many industrial projects such as HP’s printer-driver implementation
OWEN [Pearse and Oman, 1997; Refstrup, 2009], Wilkon’s remote control systems [Pech et al.,
2009], Danfoss’ software system for frequency converters named VLT R© [Jepsen and Beuche,
2009; Zhang et al., 2013], and NASA’s core flight software (CFS) [Ganesan et al., 2009], as well
as in open-source projects such as the LINUX kernel,1 the BUSYBOX tool suite,2 and the Apache
web server.3 By means of preprocessor directives, developers define explicit source-to-source
transformations to make the code base configurable. Using directives such as #ifdef X and
#endif, developers annotate code fragments with configuration options (here X) that allow
for the generation of different configurations, given the end-users’ selection of configuration
options. Based on a configuration, different variants of a configurable system can be generated
by applying the generator (CPP), which evaluates preprocessor directives (which are basically

1http://kernel.org
2http://busybox.net
3http://httpd.apache.org
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1 Introduction

boolean or arithmetic expressions) and generates a specific variant by including and excluding
code fragments.

Although configurable systems and corresponding development techniques have been
adopted widely in practice, they often lack a tool infrastructure to support their development.
This means that dedicated tools for program analysis and program transformation are missing;
existing tools usually aim at the development of software systems that are not configurable.
At the same time, the use of powerful tool support is often indispensable for the production
of complex software systems. Nowadays, it is not possible to imagine the development of
current software systems without them. Despite CPP has been used and adopted widely in
practice, it has been often criticized by the research community, and anecdotal evidence from
industrial practice illustrates the developers’ struggle with it. Criticism concerns maintenance
(lack of existing refactoring and transformation tools) [Garrido and Johnson, 2003; Lohmann
et al., 2009; McCloskey and Brewer, 2005], diagnostics (lack of analysis tools for error and
bug detection) [Favre, 1997, 1996], and readability (code obfuscation) [Spencer and Collyer,
1992; Favre, 1995]. Although the criticism partially dates back more than 20 years, there is no
evidence of major improvements.

The main advantage of powerful tool support is the adjoint ability to find or avoid program-
ming errors early in the development process. A variety of studies (e.g., [Ko and Myers, 2003])
of software-development costs illustrate that most programming errors are introduced during
coding of a system and remain there until found in subsequent phases of the development
process (e.g., testing or quality assurance) or even only after a system’s release. Unfortunately,
the costs of error repair increase significantly from coding phase to release [Madachy, 1994].4

Even higher costs occur, because configurable systems are often shipped to end users in the
form of source code instead of a ready-to-use product, and so existing errors are often found by
end users first,5 who are typically overwhelmed by cryptic error messages or program crashes.
The main reason is that configuration, variant generation, and deployment usually happen
on the user side, and this may lead to various ways of usage and integration of a system in
a way unforeseen by its developers. This poses a huge risk, because configurable systems
such as OPENSSL, a cryptographic library that implements different algorithms for secure
communication protocols, can reveal security flaws after deployment.

At the same time, evolving and maintaining configurable systems is a burden not to be
underestimated. Software changes are inevitable and, thus, after primal deployment, changes
such as error corrections, enhancements, and improvements, are usually applied to a system
for which automated transformation tools are usually employed. Since software maintenance
takes place over a long time period, the resources required for maintenance usually exceed

4It is hard to predict or give representative numbers, because programming errors depend on a multitude of aspects
such as project type, project size, used programming languages, number of developers, and so forth. However, it is
commonly acknowledged that repairing an error after release is many times more expensive than its repair during
coding.

5Different forms of programming errors are frequently reported by end users as bug reports in dedicated forums or
bug-tracking systems. For OpenSSL the corresponding bug tracker is available at http://rt.openssl.org/
NoAuth/Buglist.html.
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1.1 Contributions

the ones of the initial development of a system and sum up to 75–80 % of the total costs of
a system [Lientz et al., 1978]. However, trustworthy tools for automated transformations of
configurable systems are still missing, forcing developers to apply error-prone transformations
manually. In the case of the C preprocessor, transformation engines of current development
tools such as ECLIPSE or VISUAL STUDIO, still struggle with preprocessor directives as they do
not incorporate configuration knowledge in the transformation process or apply some sort of
heuristics to reason about them. Thus, even simple changes are likely to introduce errors (e.g.,
type errors).

The main advantage of configurable systems—the possibility for adaption to different appli-
cation scenarios and use cases—is also their main drawback. Even small configurable systems
can have billions of possible variants, since the number of valid configurations of a system can
exponentially grow with the number of configuration options available. Analyzing or trans-
forming all these variants brute-force (i.e., by handling each variant separately) usually does
not scale, since the computational effort of applying a brute-force analysis or transformation
typically exceeds available hardware resources in terms of time and space by several orders
of magnitude. Additionally, the configuration space of a configurable system tends to grow
fast. For example, the number of configuration options of the LINUX kernel more than doubled
between 2005 and 2010 (from 5338 in version 2.6.12 to 11 223 in version 2.6.35) [Tartler et al.,
2011].

1.1 Contributions
We converge to all problems just stated using the following two research questions: first, how
can we efficiently analyze all variants of a configurable system? Second, how do we ensure
that a transformation preserves the behavior of all variants? By answering both questions we
make significant contributions to the development practice of configurable systems. During our
discussions we focus on systems developed with compile-time variability. This way we cover
much of a system’s configuration space and provide hands-on improvements for developers of
configurable systems.

We analyze the variability of configurable systems in a large-scale empirical study, because a
system’s variability affects its analysis and transformation significantly. We define a set of met-
rics based on different implementation aspects of variability, such as scattering (distribution of
variability implementation), tangling (mixture of configuration options), and nesting (hierarchy
of preprocessor directives). We apply the metrics to 42 different, well-known software systems
to infer consequences on the analysis and transformation challenge of configurable systems.

To avoid redundant computations in the analysis of a configurable system, differences and
similarities of the system have to be represented in a common, compact form. Analysis and
transformation techniques that can handle such a representation are able to reason about it
efficiently. For example, a type checker that incorporates variability is able to check all variants
for type errors by traversing the input representation only once. Unfortunately, such a compact
representation is not always easy to create. In the case of the C preprocessor, it is actually

3



1 Introduction

quite difficult to create a representation, which includes both common and variable code (using
#ifdefs). The main reason is that CPP is a token-based text processor that supports the
manipulation of arbitrary text fragments, which can lead, if misused, to violations of the code
structure and of naming conventions. For example, it is possible to annotate single tokens of
the source code, such as an opening or closing brace. On the one hand, developers benefit
from using such undisciplined use of the preprocessor to develop configurable source code
at a fine grain, by avoiding code duplication. On the other hand, undisciplined annotations
impair the development of efficient analysis and transformation tools, since these tools require
well-structured inputs and cannot reason about arbitrary changes to source code.

There are two competing approaches for analyzing configurable systems efficiently: sam-
pling-based analysis and variability-aware analysis. Each of them stands for a different perspec-
tive regarding the problem of scaling an analysis to possibly billions of variants. Sampling-based
analysis employs strategies of reducing the number of variants for analysis to a reasonable
subset of all variants of the configurable system in question. Variability-aware analysis rests
on compact representations of configurable systems and, thus, exploits similarities between
variants by incorporating configuration knowledge during the analysis process. We analyze
both approaches with respect to three criteria (analysis time, effort, and configuration coverage
of analysis results) revealing individual strengths and weaknesses. The outcome serves as a
guideline for preferring one approach to the other when analyzing large-scale, configurable
systems.

Myriads of system variants pose an important challenge when transforming configurable
systems as important properties of program transformations, such as semantic equivalence,
have to be ensured. Based on compact representations and scalable analysis techniques for
configurable systems, we develop a scalable refactoring engine for C incorporating #ifdefs.
To this end, we enrich existing specifications for C refactorings with configuration knowledge
and test the feasibility of our engine in real-world scenarios.

Specifically, we make the following four contributions:

1. Driven by practical program analysis and transformation scenarios, we introduce a set
of metrics that capture code-quality properties, such as scattering, tangling, and nesting,
of configurable software systems developed with the C preprocessor. The results of
an empirical case study based on these metrics guide our discussions throughout this
thesis and allow us to infer general recommendations on preprocessor use in software
development. Three major insights are: (1) on average 21 % of a system’s code base
can be configured with #ifdefs, (2) developers use #ifdefs to annotate code at a
coarse grain (i.e., annotating entire function definitions) as well as at a fine grain (i.e.,
annotating subexpressions or function parameters), and (3) configurable code is often
scattered across the entire code base.

2. We define the concept of disciplined preprocessor annotations, which can serve as a basis
for the generation of compact representations for configurable systems. We show that
enforcing preprocessor discipline does not overly restrict preprocessor use in practice,
and we provide a solution for handling undisciplined use of the preprocessor.
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3. We implement and compare variability-aware analysis with three state-of-the-art sam-
pling strategies, revealing principles and obstacles when applying both analysis ap-
proaches in practice. We identify three general patterns of variability-aware analysis
and propose a specific implementation of a variability-aware analysis framework using
these patterns. The patterns as well as the framework simplify the development of further
analysis techniques for configurable systems at the scale of the LINUX kernel.

4. Refactoring in the presence of preprocessor directives is challenging, since the behavior
of all variants that can be derived from a system has to be preserved. We demonstrate the
feasibility of variability-aware refactoring by implementing three common refactorings
RENAME IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION, as part of a C
refactoring engine. By means of experiments using real-world, configurable systems,
we show the practicability of variability-aware transformations for such systems for the
first time. Finally, we provide a means for verification and validation of our refactoring
engine to demonstrate behavior preservation.

In summary, this dissertation closes a gap in the development of configurable systems by
providing scalable techniques and specific tool implementations for analyzing and transforming
large-scale, configurable software systems. Our techniques may serve as starting point for fur-
ther research on analysis and transformation techniques for configurable systems. Furthermore,
our tool implementations pave the way for a variety of research directions that can be applied for
the first time in practical application scenarios. Besides research, our results may stimulate the
development of reliable analysis and transformation tools for productive software development
environments, such as ECLIPSE or VISUAL STUDIO, gaining confidence for both developers
and users that all variants of a configurable systems are analyzed for errors. Overall, we align
the current development practice of configurable systems with the development practice of
single software systems, in general, and for systems developed with CPP in particular.

1.2 Outline
In Chapter 2 (Background), we lay the foundation for this thesis by introducing configurable
software systems and their development with the C preprocessor CPP. For readers familiar with
product-line engineering, we highlight differences and similarities with the development of
configurable systems. Furthermore, we introduce central ideas of static analysis and refactoring
of source code that are both central in discussions in the remaining chapters of this thesis.

In Chapter 3 (Understanding Preprocessor Annotations), we investigate how developers
use the preprocessor for implementing configurable systems. To this end, we introduce a set
of metrics to capture software-engineering questions with respect to program analysis and
program transformation. We compute the metrics for a set of 42 open-source software systems
in a first case study to get a comprehensive overview of #ifdef usage in practice. We reuse
the 42 software systems in a second case study and discuss the effect of disciplined preprocessor
annotations on the development of tool support. To this end, we analyze all systems regarding

5



1 Introduction

preprocessor discipline and give recommendations for handling undisciplined preprocessor
annotations.

In Chapter 4 (Analyzing C Code with Preprocessor Annotations), we review the common
practice of analyzing configurable systems. We compare variability-aware and sampling-
based type checking and liveness analysis for three medium- to large-scale software systems
(BUSYBOX, LINUX, and OPENSSL). We demonstrate the extension of an existing data-flow
framework for intra-procedural analysis to make it variability-aware. Based on this framework,
we implement a set of static analyses, such as double free and uninitialized variables, and report
our findings regarding error detection.

In Chapter 5 (Refactoring C Code with Preprocessor Annotations), we pick up on the analysis
strategies developed in Chapter 4 for the implementation of an variability-aware refactoring
engine that supports three common refactorings: RENAME IDENTIFIER, EXTRACT FUNCTION,
and INLINE FUNCTION. We verify our refactoring engine rigorously using system tests.

In Chapter 6 (Conclusion and Future Work), we summarize our contributions and highlight
further research directions.
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2 Background
In this thesis, we propose improvements of the analysis and transformation of configurable
systems. In this chapter, we introduce the motivation and main concepts for configurable
systems as well as their development. In particular, we outline the development of configurable
systems with the C preprocessor (CPP). In the remaining chapters, we frequently refer to existing
work from the software-product-line community and draw conclusions for implementation
techniques used in there. To ease understanding, we briefly outline similarities and differences
of configurable systems and product lines in the following. Furthermore, we give a brief
introduction into static analyses and refactoring, which we use as an example application of the
analysis (cf. Chapter 4) and the transformation (cf. Chapter 5) of configurable systems.

2.1 Software Product Lines and Configurable Software
Systems

The term software product line was coined in the mid-1990s to summarize a beneficial busi-
ness strategy for companies developing software systems [Bass et al., 1997]. The Software
Engineering Institute at Carnegie Mellon University defines a software product line as follows:1

A Software Product Line (SPL) is a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way.

The main idea of SPLs is to center the development of related software systems around
features, which represent optional or incremental units of functionality [Batory et al., 2004;
Czarnecki and Eisenecker, 2000; Kang et al., 1990]. Based on features, single variants can be
created that are tailored to the requirements of different application scenarios and use cases
with which potential end users work. Using an SPL approach as a business strategy has three
main advantages [Biggerstaff, 1998; Bass et al., 2003; Pohl et al., 2005]. First, reusing existing,
well-tested feature implementations results in a higher quality of the system variants. Second,
modifying an SPL to satisfy new requirements of a market is easier to realize and results in a
decreased time to market. Third, since reimplementations from scratch are avoided, the overall
costs of single variants are lower than those of individual implementations.

1http://www.sei.cmu.edu/productlines/
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Driven solely by economic aspects of a company, the original definition of a software prod-
uct line does not include a clear process of its technical realization. In software engineering,
two different approaches have been proposed and discussed in the context of SPL develop-
ment [Apel, 2007]: stepwise refinement [Wirth, 1971] and program families [Parnas, 1976].
Both approaches suggest to use an incremental development strategy as their central design
methodology for the development of software systems. Based on these approaches, various
implementation techniques have been invented, such as component software [Szyperski, 2002],
frameworks [Johnson and Foote, 1988], feature-oriented programming [Prehofer, 1997; Batory
et al., 2004], aspect-oriented programming [Kiczales et al., 1997], and others. Rather than
focusing on a single implementation technique, we take a step back and put the variability
aspect of a software system into the center of our discussions. That is, we use the term config-
urable system as an abstraction of any software system that exhibits variability and discuss how
variability affects the design and implementation of analysis and transformation techniques for
these systems.

Nowadays, research on software product lines often adopts a technical perspective, e.g.,
by defining formalism, proposing implementation approaches, or comparing techniques and
tools. This research often comes with its own terminology. To ease comparison, we contrast
the terminology of configurable systems and software product lines in Table 2.1 and use the
product-line terms as synonyms for configurable systems.

A configurable software system is a software system that provides a set of configuration
options to adapt the system to end users’ requirements. Given a set of configuration options, end
users create, with the help of configuration knowledge that describes relationships of options
to encode valid combinations of configuration options, a configuration. The functionality of
configuration options is implemented in the form of a variable code base, which consists of a
set of reusable implementation artifacts. Based on a valid configuration, a dedicated generator
creates a system variant by applying the configuration to the variable code base. System
configuration and the generator application involve several technical steps, including different
formalism for configuration knowledge and different implementation approaches for variable
code, which we introduce next.

Configurable system Software product line

configuration option feature
configuration feature selection
configuration model feature model or variability model
dependency constraint
variant product

Table 2.1: Terminology configurable systems vs software product lines.
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2.1.1 Configuration Knowledge
A central ingredient of a configurable system is configuration knowledge. Configuration
knowledge specifies which configuration options are available in a system and what their
relationships to each other are. Together both span a system’s configuration space, i.e., the set
of all valid configurations that can possibly be derived. The analysis and transformation of a
configurable system is governed by reasoning about configuration knowledge. For example, a
programming error in a configurable system is determined by its position (file and line of code)
in the variable code base and the specific system configuration that triggers the error. In the
following, we describe different kinds and representations of configuration knowledge. Our
description focuses on knowledge that is relevant for our subsequent case studies.

Configuration Options

Configurable systems usually provide a rich set of configuration options. Based on the selec-
tion/deselection of configuration options, the associated functionality of the option is activated
or not, thus changing the behavior of a system variant. At the technical level, there are three
points in time when configuration can take place:

Compile Time Configuration at compilation time influences which portions of source code
(and functionality) of a configurable system are translated into an executable system
variant. To this end, a compiler translates source code into object files containing machine
code and subsequently assembles different object files into a program executable. This
compilation process can be preceded by a preprocessing step, in which source code
is transformed based on the values of configuration options. The developers of the
LINUX kernel employ such a transformation using CPP. Configuration options of LINUX
influence, for example, processor type, power management, and networking support.

Load time Load-time configuration is the preparation of a program at program start-up.
This preparation can influence the availability of program functionalities by selecting
or deselecting configuration options at program start. Command-line arguments are
typical examples of load-time configuration options. For example, the GNU compiler
collection (GCC) provides a set of configuration options that enable different optimization
techniques during a program’s compilation to improve the performance and the binary
size of the resulting program.

Run time Configuration at run time is the most flexible way to influence a program’s function-
ality. By selecting or deselecting configuration options during the program’s execution, a
configurable system can be adapted to a dynamically changing environment or to new
user preferences. One example is NASA’s Deep Space 1 software, which allows dynamic
reconfiguration of a system by activating or deactivating system modules based on the
spacecraft or mission status [Dvorak et al., 2000].
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We concentrate on compile-time variability for two reasons. First, many programming errors
(syntax or type errors, as well as semantic errors) are introduced during the coding phase of a
system. Many of them can already be found using static analysis tools before the system is
being compiled and executed. Detecting and repairing programming errors during coding is
beneficial, since it catches errors of all variants, which can possibly be derived from a variable
code base. Catching errors at load or run time of a program is limited to the analysis of
functionality of configuration options that have been selected at compile time and, thus, have
been included in the executable. The result of this analysis provides only a limited view of
programming errors that may hide in a system’s implementation, as only a single variant is
analyzed for errors.

Second, configurable systems are often deployed to end users in the form of source code
instead of an executable program. A typical example is the embedded database system SQLITE:
SQLITE is a library-based implementation of a relational database management system, often
deployed as an integral part of many programs, such as web browsers and operating systems.
Given such a configurable system, variant configuration and variant generation typically happen
on the user side, and it is not unlikely that an end user reveals a programming error in a single
variant not previously tested by the developers of the configurable system. It is known that
fixing an error reported by end users can be several orders of magnitude more costly than fixing
it during the development of the system [Ko and Myers, 2003].

Configuration Options and Dependencies

Not all combinations of options of a configurable system necessarily make sense. Configuration
options often depend on each other, e.g., one option implies another one, two options exclude
each other, or three options have to be used together. By means of configuration knowledge,
developers encode such dependencies and state which combinations of configuration options
are valid.

The implementation of configuration options is often scattered across the variable code base
of the system, involving different implementation artifacts such as models, source code, and
build scripts. As a result, configuration knowledge is usually scattered, too. Similar to the
previous discussion on compile-time, load-time, and run-time configuration, scattered configu-
ration knowledge affects the configuration and derivation of system variants. A comprehensive
overview of scattered configuration knowledge was recently given by Tartler [2013]. After
studying several configurable systems, including the LINUX kernel, the author identified and
classified six different levels (ranging from compile-time to run-time configuration) in the
implementation of configurable systems that exhibit configuration knowledge. Figure 2.1
shows the three compile-time configuration levels, with excerpts of configuration knowledge
for CPU hot-plugging in the LINUX kernel. The configuration of an option can span across
different levels, where the configuration at one level affects the configuration of another. That
is, selection/deselection of configuration options at the upper level l0 dominates configuration
options at lower levels (e.g., l1 and so forth). Next, we describe the three levels (l0 to l2) in
more detail by introducing languages and tools for configuration representation.
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l0: Configuration System
    (Configuration Script, Kconfig) config HOTPLUG_CPU

bool ...

l1: Build System
    (Shell Scripts, make) obj-$(CONFIG_HOTPLUG_CPU) \

+= hotplug-cpu.o

#ifdef CONFIG_HOTPLUG_CPU
    unsigned int cpu; ...
#endif

l2: Preprocessor
    (Generators, cpp)

Figure 2.1: Compile-time configuration in LINUX; adapted from Tartler [2013].

Configuration System At the configuration-system level l0, developers use configuration
options and their dependencies to specify a formal variability model of the configurable
system. The resulting model is often employed during the configuration of a system
variant, and its application during the configuration process ensures that only valid
configurations are created. For the purpose of system configuration, the LINUX kernel
developers invented the domain-specific language KCONFIG,2 which enables developers
to model variability. The following listing illustrates a typical definition of a configuration
option in LINUX using KCONFIG:

1 config HOTPLUG_CPU
2 bool "Support for hot-pluggable CPUs"
3 depends on SMP && HOTPLUG && SYS_SUPPORTS_HOTPLUG_CPU
4 ---help---
5 Say Y here to allow turning CPUs off and on. CPUs can
6 be controlled through /sys/devices/system/cpu.
7 ( Note: power management support will enable this
8 option automatically on SMP systems. )

Figure 2.2: Definition of HOTPLUG_CPU with KCONFIG in LINUX [Tartler, 2013].

The definition includes a name (HOTPLUG_CPU), one of several predefined types
(here boolean),3 the option’s dependency (HOTPLUG_CPU is only selectable if SMP,
HOTPLUG, and SYS_SUPPORTS_HOTPLUG_CPU are selected), and a help message.
A configurator tool, such as the identically named configurator KCONFIG, reuses the

2https://www.kernel.org/doc/Documentation/kbuild/
3The KCONFIG language provides several types for configuration options. Beside boolean, tristate, string, hexadecimal,
and integer are possible.
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variability model to guide end users during the configuration of a kernel variant. To
this end, the configurator checks the satisfiability of all dependencies and automatically
infers selection/deselection of configuration options when an end user selects/deselects
an option.

Build System At the build-system level (l1), developers write a specification to automatically
build executable programs and libraries from source files. The specification, most often
written in MAKEFILEs using the language of the MAKE utility, contains a set of rules
describing build targets, their dependencies (including source files), and a sequence
of commands (typically including a call to a compiler). Via configuration knowledge,
developers explicitly state deviations within the regular build process by adding or
removing build targets, or by changing their dependencies. To this end, developers
integrate configuration options of the configuration system (Level l0) within MAKEFILEs.
One example is illustrated in Figure 2.3, showing an excerpt of the BUSYBOX build
system KBUILD. KBUILD is a framework centered around the MAKE utility and was
invented by the LINUX developers.

1 lib-y:=
2 lib-$(CONFIG_fdisk} += fdisk.o

Figure 2.3: Examples of configuration-knowledge use in MAKEFILEs in BUSYBOX.

BUSYBOX is a collection of standard UNIX tools combined in a single executable program,
most often used in embedded systems. The main build target of BUSYBOX is specified
with lib-y. The determination of configuration options during the configuration process
(Level l0) of BUSYBOX (y for inclusion and n for exclusion) advises KBUILD to include
or exclude the functionality of a single tool in BUSYBOX’s main build target. According
to the configuration of CONFIG_fdisk, the object file fdisk.o is assembled into the
BUSYBOX program executable.

Preprocessor While at the previous level l1 developers specify configuration knowledge
at a coarse grain (i.e., they specify which files to include in a build process), they
employ CPP’s configuration language to express knowledge within source files. By
means of #ifdef directives and #define macros provided by CPP, developers can
state complex configuration settings to encode a system’s configuration knowledge.
#ifdef directives, a static form of conditional statements that are evaluated before the
compilation process, control the inclusion or exclusion of subsequent lines of source
code. We take a closer look at CPP in Section 2.1.2. In Figure 2.4, we show an excerpt of
SQLITE’s configuration knowledge for supported operating systems.
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1 #if defined(SQLITE_OS_OTHER)
2 # if SQLITE_OS_OTHER==1
3 # undef SQLITE_OS_UNIX
4 # define SQLITE_OS_UNIX 0
5 # undef SQLITE_OS_WIN
6 # define SQLITE_OS_WIN 0
7 # else
8 # undef SQLITE_OS_OTHER
9 # endif

10 #endif

Figure 2.4: Excerpt of the operating-system configuration with CPP in SQLITE.

The preprocessor macros ensure that the configuration options SQLITE_OS_OTHER,
SQLITE_OS_UNIX, and SQLITE_OS_WIN form an alternative group; that is, exactly
one of the three options can be selected at a time. The definition (#define) and recall
(#undef) set values for configuration options and so influence SQLITE’s operating-
system support.

Scattered configuration knowledge and its representation using different formalism pose a
huge problem [Berger, 2013; Tartler, 2013; Pearse and Oman, 1997; Dietrich et al., 2012b;
Elsner et al., 2011; Nadi, 2013]. The major challenge is that configuration knowledge repre-
sented in specialized languages, such as KCONFIG, MAKE, and CPP, is often only accessible
by dedicated tools. As a result, represented knowledge cannot be used in tasks different from
their original design and specification such as consistency checks or variability-aware analysis
and transformation. Accessing of and reasoning about configuration knowledge in a uniform
and systematic way requires a transformation of the different formalism into a canonical rep-
resentation. For the three formalism mentioned a canonical representation is propositional
logic [Berger, 2013; Tartler, 2013; Batory, 2005]. Using propositional logic, configuration
knowledge is represented with propositional formulae: variables represent configuration options
and logical operators encode dependencies between different options. A propositional formula
(also known as presence condition) represents a set of valid configurations. Although the con-
figuration languages often lack a clear semantics, several researchers proposed transformation
tools to extract presence conditions from KCONFIG [Berger, 2013; Tartler, 2013; Zengler and
Küchlin, 2010; Nadi, 2013], MAKE and KBUILD [Dietrich et al., 2012a], and CPP [Sincero
et al., 2010]. Figure 2.5 shows the corresponding propositional formulae for the just mentioned
examples of KCONFIG, KBUILD, and CPP.

We can reason about propositional formulae by means of automated reasoning tools [Men-
donça et al., 2009; Benavides et al., 2005, 2010] such as Boolean Satisfiability Problem (SAT)
solvers, Constraint Satisfaction Problem (CSP) solvers, or Binary Decision Diagrams (BDDs).
This way, different questions related to the analysis and transformation of configurable systems
can be answered (adapted from [Benavides, 2007; Mendonça, 2009]):

• Is a given configuration option dead, i.e., is it never selectable?

13



2 Background

HOTPLUG_CPU =⇒
SMP ∧ HOTPLUG ∧ SYS_SUPPORTS_HOTPLUG_CPU

(a) KCONFIG; cf. Figure 2.2

CONFIG_fdisk

(b) MAKE; cf. Figure 2.3

(SQLITE_OS_OTHER ∧ ¬SQLITE_OS_UNIX ∧ ¬SQLITE_OS_WIN)
∨ (¬SQLITE_OS_OTHER ∧ SQLITE_OS_UNIX ∧ ¬SQLITE_OS_WIN)
∨ (¬SQLITE_OS_OTHER ∧ ¬SQLITE_OS_UNIX ∧ SQLITE_OS_WIN)

(c) CPP; cf. Figure 2.4

Figure 2.5: Propositional formulae for the configuration knowledge presented in Figures 2.2, 2.3, and 2.4.

• Is a given presence condition, representing a set of configurations, satisfiable? Is it a
tautology? Is it a contradiction?

• How many valid solutions does a given presence condition have?
• Are two given presence conditions equivalent?

The interpretation of these questions, encoded as propositional formulae, requires a boolean-
satisfiability check, which is known to be in NP-complete [Mendonça, 2009]. However, existing
solvers can reason about questions that arise in the context of configurable systems efficiently,
even for systems with thousands of configuration options [Thüm et al., 2009; Mendonça, 2009;
Mendonça et al., 2008; Apel et al., 2010b].

In practical systems, propositional logic is often not sufficient to encode a system’s configura-
tion knowledge [Czarnecki et al., 2012; Berger et al., 2010b; She et al., 2010]. For example, the
developers of LINUX make regular use of configuration options with non-boolean types, such
as integer, hexadecimal, and string; around 3.7% of LINUX’ configuration options use these
types [Berger et al., 2010b]. Together with arithmetic, relational, and string operators, these
options form configuration knowledge in first-order logic. Figure 2.6 shows one example of a
non-boolean constraint taken from the C standard library GLIBC. Beside propositional logic, the
constraint contains two configuration options (DBL_MANT_DIG and LDBL_MANT_DIG) that
take values from the integer domain and that are combined using arithmetic (+) and relational
(>= and !=) operators. Satisfiability of first-order logic is in general undecidable (i.e., there
is no algorithm to determine satisfiability). However, for practical examples of configuration
knowledge with non-boolean constraints, algorithms exist that translate such representations
into propositional logic [Thüm, 2008; Tartler, 2013]. For our purposes of analyzing and trans-
forming configurable systems we use propositional logic that has been extracted and translated
from the original representations [Berger et al., 2010b; Tartler et al., 2011; Berger et al., 2010a].

The different sources of configuration knowledge that we reviewed in this section are only
a subset of available representations. Alternative representations such as grammars [Batory,
2005] or graphical representations such as feature diagrams [Czarnecki and Wąsowski, 2007]
could be used for our purposes, too, as long as they can be transformed into an equivalent
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1 #if !defined(NO_LONG_DOUBLE)
2 && (LDBL_MANT_DIG >= DBL_MANT_DIG + 4)
3 && (LDBL_MANT_DIG != 106)

Figure 2.6: Example of configuration knowledge in GLIBC using non-boolean constraints.

representation using propositional logic.

2.1.2 Implementing Configurable Systems
There is a variety of tools for the implementation of configurable software systems. Among
all approaches, two different techniques have emerged that represent two contrary paradigms:
annotative approaches and compositional approaches. While in annotative approaches common
and variable code is combined in a single code base, compositional approaches separate
common and variable code into code units. We give only a brief overview of the two approaches
here. For more information, especially regarding the individual strengths and weaknesses, we
refer the interested reader to elsewhere (e.g., [Kästner and Apel, 2009; Apel and Kästner, 2009;
Apel, 2010, 2007]). To illustrate the use of both approaches for the implementation we use the
example of a simplified list data structure in C. The list consists of a mandatory implementation
of a singly-linked list; it can be configured by means of several configuration options to support
doubly-linked functionality (DLINKED) and different sorting algorithms (BUBBLESORT and
INSERTIONSORT).

Annotative Approaches

The key idea of annotative approaches is to annotate source-code fragments with presence
conditions in order to make code configurable. A presence condition is a propositional formula
about configuration options, representing a slice of configuration knowledge, in the implemen-
tation artifacts of a system. Annotated code fragments reside next to non-annotated code in a
single code base. Individual variants of the configurable system can be generated by applying
a generator (also known as preprocessor) to the code base that evaluates presence conditions
of annotated code fragments and, based on the evaluation result, includes or excludes the
corresponding fragments. A widely used preprocessor is CPP.

The preprocessor CPP is a stand-alone tool for text processing, which enhances C by
lightweight meta-programming capabilities [Kernighan and Ritchie, 1988]. Originally con-
sidered solely as an optional adjunct for C [Ritchie, 1993], the preprocessor language lacks a
complete integration into the syntax of C; a fact that has persisted until now. Over the years,
developers have adopted CPP, and it has been commonly used for quite a while [Spencer
and Collyer, 1992; Favre, 1996, 1997]. The lack of integration into C is the reason why the
preprocessor is not limited to a specific language. Rather, it can be used for arbitrary text and
source-code transformations also in other languages [Ritchie, 1993].
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CPP works on the basis of preprocessor directives (indicated by # at the start of line)
that are used by developers to define explicit source-to-source transformations. Using these
directives, developers can overcome limitations of the programming language C in terms of
abstraction [Favre, 1995], modularity [Badros and Notkin, 2000], and portability [Spencer and
Collyer, 1992]. For example, arbitrary sequences of tokens can be named and referenced in the
source code (abstraction), code can be outsourced into different files (modularity), and different
hardware requirements can be met by use of conditional inclusion (portability).

1 struct node {
2 int item;
3 struct node *next;
4 #if DLINKED
5 struct node *prev;
6 #endif
7 };
8
9 struct node *init(int newitem) {

10 struct node *n = (struct node *)
11 malloc(sizeof(struct node));
12 n->item = newitem;
13 n->next = NULL;
14 #if DLINKED
15 n->prev = NULL;
16 #endif
17 }
18
19 struct node *first = NULL;
20 #if DLINKED
21 struct node *last = NULL;
22 #endif
23
24 void insert(struct node *elem) {
25 #if BUBBLESORT
26 /* sorting algorithm 1 */
27 #elif INSERTIONSORT
28 /* sorting algorithm 2 */
29 #else
30 /* unsorted insertion */
31 #endif
32 }

Figure 2.7: A variable list implementation
with CPP; taken from Liebig et al. [2010].

In Figure 2.7, we show the implementation of
our variable list in C using the C preprocessor.
Source code that is common to all variants of the
list implementation is expressed using the capabil-
ities of C in terms of data abstraction (data types;
e.g., struct node in Lines 1 to 7) and proce-
dural abstraction (functions; e.g., init in Lines 9
to 17). The implementation of configurable source
code rests on conditional inclusion provided by
CPP. An optional code fragment (variable code) is
enclosed in #ifdef X and #endif directives,
and can be configured according to the selection
of X.

Configuration options can be defined using
CPP’s #define macro (for textual substitutions)
in the source code directly, or externally in MAKE-
FILEs, configuration files, configuration tools, or
in the form of compiler parameters. Develop-
ers can express complex configuration settings
by combining configuration options using differ-
ent operators of the CPP language. The language
provides operators for logical reasoning (e.g., &&),
bit manipulations (e.g., &), common mathematical
operators such as plus for addition, or operators
for comparisons such as less than. Single config-
uration options as well as combined expressions
represent presence conditions that control the in-
clusion or exclusion of subsequent lines of source
code up to the next conditional inclusion directive, i.e., one of #if, #ifdef, #ifndef,
#else, or #endif. For example, Line 5 (the pointer to the previous list node) is included
if configuration option DLINKED is selected. We call the use of #ifdef also source-code
annotation.

Technically, every source-code fragment that is enclosed by an #ifdef is configurable.
Annotated code fragments can belong to an alternative, which represents complementary
implementations in the configurable system. To this end, developers either use a conditional-
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inclusion cascade #if-#elif-#else (Lines 25 to 31) or they separate the implementation
into multiple #ifdef directives with mutually exclusive presence conditions. Alternative
implementations are, with respect to code analysis, particularly challenging, as complementary
implementations cannot be part of a single system variant and, hence, cannot be analyzed
together. Thus, they increase the effort of analyzing configurable systems. We deal with this
problem in Chapter 4 (Analyzing C Code with Preprocessor Annotations) in detail.

The implementation of a single presence condition is often scattered across the variable code
base of a configurable system. For example, the implementation of DLINKED in Figure 2.7
has three code fragments in Lines 5, 15, and 21. The scattered implementation tangles with the
mandatory base implementation of the list and with the implementation of other configuration
options. The implementations of BUBBLESORT and INSERTIONSORT tangle in the list
implementation. Another form of tangling occurs when #ifdef directives are nested. The
directive inside tangles with the enclosing one and only gets evaluated if the presence condition
of the enclosed directive is satisfiable. This special form is worth noting as it is a major source
of complexity when implementing variability with #ifdef directives.

Compositional Approaches

In contrast to annotative approaches, compositional approaches separate variable code into
code units. Instead of scattered implementations of configuration options, as with #ifdefs,
implementations of configuration options are „modularized“ in single code artifacts such as
aspects [Kiczales et al., 1997], feature modules [Batory et al., 2004], and plugins [Johnson
and Foote, 1988]. Each approach provides a set of abstractions for extending an existing code
base. For example, frameworks provide a common platform in which configurable code is
modularized in the form of plugins. Plugin implementations make use of predefined extension
points of the platform for the realization of their functionality. When executing the framework,
plugins, which can statically be loaded at compilation time, are executed when the control flow
hits an extension point. While frameworks are implemented in a language itself, often using
specific design patterns [Gamma et al., 1995], other approaches often define a new language
or extend an existing one to implement configurable systems. Two approaches, which are
frequently discussed in the context of configurable systems, are aspects [Kiczales et al., 1997]
and feature modules [Batory et al., 2004; Apel et al., 2009].

Figure 2.8 shows an excerpt of the implementation of our variable list using aspects and
feature modules. The common base implementation of a singly-linked list is extensible by
a separated implementation of the configuration option DLINKED. In Figure 2.8a, we use
ASPECT-ORIENTED C (ACC) [Gong and Jacobsen, 2008], an implementation of aspect-oriented
programming for C. ACC provides a central abstraction, called aspect, for the extension of a
program at well-defined points of the program execution context (join point) with additional
program functionality (advice) and the static introduction of new program elements (intertype
declaration). In our example, the new member-variable prev, holding a reference to the
previous list node element, is introduced via an intertype declaration (Lines 9 to 11). The
initialization code for the new member is implemented by the advice code in Lines 16 to 18.
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singly-linked list implementation

1 struct node {
2 int item;
3 struct node *next;
4 };
5
6 struct node *init(int newitem) {
7 /* initialization of item and next */
8 }

aspect DLINKED

9 introduce(): intype(struct node) {
10 struct node *prev;
11 }
12
13 pointcut cinit(struct node *s):
14 call($ init(...)) && result(s);
15
16 after(struct node *s): cinit(s) {
17 s->prev = NULL;
18 }

(a) Implementation with ACC [Gong and Jacob-
sen, 2008]

singly-linked list implementation

1 struct node {
2 int item;
3 struct node *next;
4 };
5
6 struct node *init(int newitem) {
7 /* initialization of item and next */
8 }

feature module DLINKED

9 struct node {
10 struct node *prev;
11 };
12
13 struct node *init(int newitem) {
14 struct node *s = original(newitem);
15 s->prev = NULL;
16 return s;
17 }

(b) Implementation with FEATUREHOUSE [Apel
et al., 2009]

Figure 2.8: Implementation of the configuration option DLINKED using aspect-oriented and feature-
oriented programming.

The code is placed into the base implementation using the pointcut cinit that captures each
call to the list-node initialization function init (Lines 13 to 14).

Similarly, Figure 2.8b shows the basic list implementation and the configurable code for
DLINKED with feature modules using FEATUREHOUSE [Apel et al., 2009]. A feature module
encapsulates type and function introductions as well as type and function refinements for an
existing base implementation. To derive a specific system variant, a selected set of feature
modules is composed using superimposition [Apel and Lengauer, 2008]. Superimposition
merges different software artifacts by combining corresponding substructures of the input
feature modules. In our example, superimposition adds the new member prev to the existing
structure definition of the list node in each variant including the DLINKED option. Furthermore,
superimposition controls the refinement of functions using function wrappers. The function
definition (Lines 13 to 17) wraps the original function definition from Lines 6 to 8 by storing
its result and executing additional initialization code.

2.2 Static Analysis
Static analysis is the computation of properties of source code for the purpose of automatic
code analysis [Nielson et al., 1999; Khedker et al., 2009]. The analysis is performed without
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program execution, usually at code-development time with dedicated tools, often integrated
within modern development environments, such as ECLIPSE or VISUAL STUDIO. Alternatively,
some static analyses are performed by the compiler as part of the compilation process. A main
goal of static analysis is to find programming errors early in the development process of a
software system. Even though an executable program is often not available at the early stages
of the development process, static analysis can still help to find errors in preliminary versions
of a program. Examples of such analyses are syntax and type checks or more sophisticated
checks. The latter deal with questions whether dynamically allocated memory is freed only
once or whether each variable is initialized with a proper value before its first use. In contrast to
dynamic program analysis, program parameters are not set and static analysis can only reveal
static aspects of a program behavior, i.e., properties that all program executions share. As a
result, analysis findings can be regarded as errors, although they are not. Nevertheless, static
analysis is frequently applied in practice [Zheng et al., 2006].

Static analysis usually does not operate on the source code of a program directly, but uses its
abstract representations that capture essential information of a program to compute a desired
program property. A typical representation of source code is the Abstract Syntax Tree (AST).
This representation is a result of a syntax analysis of the input program and abstracts from
specific information such as code layout, punctuation, and comments. Figure 2.9b shows
the AST representation of the code example in Figure 2.9a. ASTs serve as an input for the
creation of additional representations such as Control-flow Graphs (CFGs). A CFG is a graph
representation of all potential execution paths during program execution (successor relation).
As run-time information is not available, the graph is only a (conservative) approximation of
the actual program behavior, i.e., some paths may never be executed. Figure 2.9c shows the
CFG for our example. The nodes refer to line numbers in the input program and the edges
encode the successor relation of program statements that are possibly executed.

1 int diff(int a,
2 int b) {
3 int c = 0;
4 if (a > b) {
5 c = a-b;
6 }
7 return c;
8 }

(a)

TranslationUnit

FunctionDef

int diff int a int b Stmt-Block

Declaration

int c = 0

. . .

(b)

3

4

5

7

(c)

Figure 2.9: Code example with its corresponding AST (excerpt) and its CFG representation.

Abstract representations form the basis of an automatic analysis employed by a static
analysis tool. State-of-the-art static analysis tools compute a large set of program properties

19



2 Background

that play an important role in different parts of software development. The properties computed
are used, for example, in debugging [Ball and Rajamani, 2002], maintenance [Cole et al.,
2006], verification [Lev-Ami et al., 2000], testing [Nagappan and Ball, 2005], and program
transformation [Morgenthaler, 1997]. Next, we illustrate two cases of static analysis: type-
checking and data-flow analysis, which we use to discuss scalable analysis techniques for
configurable systems in Chapter 4.

Type-Checking

1 int foo(char* s) {
2 int i = (int)s;
3 return i*bar();
4 }
5 int foo(int x) { ... }

Figure 2.10: Examples of type
errors in C.

Type-checking is the process of checking well-typedness of
a program’s source code [Pierce, 2002]. A type is a classi-
fication of possible values that can safely be handled by a
program element such as variables, expressions, or functions.
Using a program’s AST representation and based on a set of
typing rules, a type checker assigns types to program elements
(AST nodes) and automatically checks that types of different
program elements are compatible. In this way, a type checker
proves that an input program is either type correct (the pro-
gram is well-typed) or that the program contains type errors (the program is ill-typed). Similar
to all static analyses type-checking is only a conservative approximation of the actual program
behavior. Thus, a type checker may reveal a type error at a program element that can never
occur during the execution of the program. Existing type checkers for C are able to detect a
variety of type errors including incompatible type casts (e.g., a variable holding a sequence
of characters is converted to type integer; cf. Figure 2.10, Line 2), dangling references (e.g.,
a function call cannot be resolved to its corresponding function definition; cf. Figure 2.10,
Line 3), and duplicate variable or function declaration (e.g., the function definition in Line 5 is
in conflict with the definition in Line 1 as function overloading is not allowed in C).

Data-flow Analysis
Data-flow analysis is a lightweight technique for gathering program properties of the dynamic
behavior of a program by analyzing its source code. Without actually executing a program’s
source code, the properties statically gathered can be used to detect programming errors, beyond
type errors. A common example is the detection of uninitialized variables, i.e., variables
that are declared but not assigned a proper value before they are used, which is a frequent
programming error in practice. Data-flow analysis works on a program’s CFG representation,
which represents all potential execution paths of a program. For each single element of the CFG,
the analysis computes the desired property using a set of data-flow equations. The equations
include functions to simulate actual program behavior (transfer functions) and a function for
joining intermediate results from different execution paths. Due to dependencies between
data-flow properties of CFG elements, i.e., the result of one computation is part of the input of
another, the computation of data-flow analysis typically employs an iterative algorithm. The
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algorithm repeatedly computes data-flow properties for all elements of the input CFG and
passes computed properties to depending computations. After completing several steps of the
iterative computation, the computed properties of all CFG elements eventually stabilize by
reaching a fix-point and, thus, terminating the computation.

Another example of data-flow analysis, which we discuss in more detail later (cf. Sec-
tion 4.1.2), is the computation of live variables, which is called liveness analysis. Liveness
analysis is a classical data-flow analysis that computes a set of variables whose values may be
needed during the subsequent program execution, i.e., variables that are read before their next
update. The resulting set can be used to detect dead code conservatively. A variable assignment
that is not used, i.e., whose value is not read in the future, is probably dead. The iterative
computation of live variables of condition in Line 4 (cf. Figure 2.9a) results in the following
set: {a,b,c}.

2.3 Refactoring
Refactoring is the process of changing the source code of a program while preserving the
semantics and, therefore, the overall behavior of the program [Fowler, 1999]. There are various
reasons for refactoring source code. For example, refactoring can be used to fix poorly designed
or gradually impaired code, to clean up code hackings, or to prepare the introduction of new
features [Fowler, 1999; Mens and Tourwé, 2004]. Furthermore, refactorings may be used
to restructure code to support a different programming language or language paradigm [Liu
et al., 2006]. Overall, refactoring accompanies software evolution to optimize non-functional
properties of a software system such as extensibility, modularity, reusability, complexity,
maintainability, and efficiency [Mens and Tourwé, 2004].

To apply a refactoring, developers indicate code transformations often in the form of informal
descriptions. Typical examples of such informal descriptions are: change the identifier of a
function, type, or variable from old to new (RENAMING IDENTIFIER refactoring), extract the
selection of statements into a new function named foo (EXTRACT FUNCTION refactoring), or
inline the function definition of foo for all function calls in a program (INLINE FUNCTION
refactoring). Based on such descriptions, refactoring engines implement refactorings as (semi-)-
automatic code transformations. To do so, refactoring algorithms typically use results of static
analysis. By unburdening developers from manual code transformations that are tedious and
error-prone, the application of refactoring engines result in a significant increase in developer
productivity. Nowadays, refactoring engines are available for most mainstream languages,
and they are usually integrated in modern development environments such as ECLIPSE,4

VISUAL STUDIO,5 and XCODE.6 Existing refactoring engines usually provide a small but well-
documented set of refactorings [Fowler, 1999]. Table 2.2 lists a set of common refactorings for
C and CPP.
4http://eclipse.org
5http://microsoft.com/visualstudio/
6http://developer.apple.com/xcode/
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Refactoring Description

C DELETE UNREFERENCED VARIABLE Determine and remove unused or unneces-
sary variables

RENAMING IDENTIFIER Rename identifiers of variables, function
names, and user-defined type names con-
sistently

EXTRACT FUNCTION Extract a selected code fragment of a func-
tion, put it into an new function definition,
and insert a function call at the place of
extraction

INLINE FUNCTION Substitute function calls with the code of
their corresponding function definition

CPP RENAMING MACRO Rename #define macro definition and
all its usages

REMOVE CONDITION Remove #ifdef annotated code, based
on a given configuration

Table 2.2: Common refactorings in C and CPP code.

To ensure that typically informally specified refactorings do not change the behavior of a
program, one has to verify that they are semantics-preserving. A manual verification is usually
infeasible as existing mainstream languages and software systems are often too complex.
Consequently, (semi-)automatic approaches for checking the correctness of a refactoring
are needed. Using formal verification, the informal descriptions of refactorings are refined to
formal specifications, enabling (semi-)automatic verification using rewriting logic (e.g., MAUDE
SYSTEM)7 or proof assistants such as COQ8 or ISABELLE.9 However, formal verification
is a difficult task, because it requires a formal description of a programming language’s
semantics [Schäfer and de Moor, 2010]. Creating such a description is usually a very difficult
task on its own, and, therefore, formal descriptions are typically not available for mainstream
programming languages [Schäfer, 2010]. As a result, formal verification is only used for
simplified languages [Sultana and Thompson, 2008].

Developers of refactoring engines usually apply precondition satisfaction to ensure behavior
preservation [Obdyke, 1992]. A precondition encodes portions of a language’s semantics and
represents a global condition that must be satisfied before an engine applies a refactoring.
For example, the renaming refactoring in C has two preconditions for new identifiers: first, a
new identifier must start with an underscore or a letter followed by the same ones or a digit.
Second, the new identifier must be unique, i.e., it must not clash with existing identifiers in

7http://maude.cs.uiuc.edu/
8http://coq.inria.fr/
9http://www.cl.cam.ac.uk/research/hvg/Isabelle/
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the same scope. If a refactoring’s preconditions are satisfied, a number of predefined code
transformations are applied. However, the use of preconditions is often problematic as a
refactoring’s preconditions are often incomplete, resulting in erroneous transformations in
corner cases of the refactoring. Two approaches that have been applied successfully to deal
with the precondition problem are constrained-based refactoring and testing [Mens and Tourwé,
2004].

Constraint-based refactoring uses a weaker notion of behavior preservation that does not
require complete formal descriptions [Mens and Tourwé, 2004]. A formalism based on con-
straints helps to capture solely required properties of a programming language for checking the
satisfiability of a refactoring’s preconditions [Tip, 2007]. The precondition check is transformed
into a constraint-solution problem that can be tracked with existing solvers. Proposed engines
usually target only specific refactorings such as refactoring of types and class hierarchies with
the help of type constraints [Tip, 2007], or refactorings for moving classes and pulling-up
methods with the help of access-modifier constraints [Steimann and Thies, 2009]. Although
a full formal specification of a refactoring is not necessary for this approach, the definition
of constraint rules is not trivial and usually requires a deep understanding of a programming
language’s semantics.

The most common approach to prove the correctness of a refactoring engine—if at all—is
testing [Mens and Tourwé, 2004]. In contrast to formal verification, testing directly validates a
refactoring-engine’s implementation. Testing is a simple but effective approach, which can fully
be automated. The standard procedure of testing refactoring engines is to check the refactoring
input against a set of trustworthy tests, before and after a refactoring is applied. Differences in
the outcomes indicate, for example, a missing precondition check or an erroneous refactoring
of the input. Existing approaches for testing refactoring engines use either existing software
systems [Gligoric et al., 2013] or randomly generated programs [Soares et al., 2013] as input.
While existing software systems usually come with a dedicated test suite that can be employed
during testing, randomly generated programs often compute values that could be checked
in a test. A refactoring-engine test does not cover the entire language definition or the full
behavior of a program. So it typically captures only some aspects of program behavior, e.g.,
name binding, accessibility, types, control flow, and data flow [Soares et al., 2013]. Although
testing allows only to check the existence but not the absence of errors, researchers found a
large number of errors in existing, even commercially used refactoring engines of modern
development environments [Gligoric et al., 2013].
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3 Understanding Preprocessor
Annotations

This chapter shares material with the ICSE’10 paper „An Analysis of the Variabil-
ity in Forty Preprocessor-Based Software Product Lines“ [Liebig et al., 2010] and
the AOSD’11 paper „Analyzing the Discipline of Preprocessor Annotations in 30
Million Lines of C Code“ [Liebig et al., 2011].

Before we get to the analysis and transformation of configurable systems, we need to
understand how developers use variability mechanisms to implement configurable systems.
This is because the implementation of a system’s variable code base directly influences the
development of proper tool support. Although CPP is a simple tool, invented more than 40
years ago, its use in large-scale configurable systems has been largely unexplored, and so even
basic information, such as the number of available configuration options in a system, is often
not available.

Based on prior work on the preprocessor by other researchers, we analyze the use of prepro-
cessor annotations in software systems with respect to three criteria. First, we investigate the
implementation of configuration knowledge with #ifdef directives in the source code. As a
result, we can estimate the effort of an analysis or transformation and are able to give recom-
mendations for reasoning about configuration knowledge in configurable systems. Second, we
investigate the use of #ifdef directives for the implementation of a configurable system’s
variable code base. The developers’ use of #ifdef directives determines the design and
implementation of tool support, as variability has to be represented and processed in analysis
and transformation approaches. Understanding the current practice of variability implemen-
tation helps to derive requirements for analysis and transformation approaches. Third, tool
support requires a uniform representation of #ifdef directives and source code for analysis
or transformation (variability representation). Since preprocessors can be used for arbitrary
annotations of source code, we investigate to what extent #ifdef directives already conform
to structured variability representations.

To obtain a comprehensive overview of #ifdef-directive usage in practice, we analyze a
set of 42 open-source software projects from different domains and of different sizes, which are
all written in C. The analyzed systems cover a wide range of application domains, including
web servers, operating systems, application software, and systems with several thousands up to
millions of lines of source code.
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3.1 Methodology
For our study, we use the Goal-Question-Metric (GQM) approach [Basili et al., 1994], which
helps to systematically identify and measure relevant factors for a qualitative analysis of a
predefined objective. To this end, GQM defines three levels: conceptual, operational, and
quantitative. At the conceptual level, the purpose of measurement is defined in terms of goals.
A goal represents a specific measurement object, often related to a product, process, or resource.
At the operational level, each goal is refined using a set of questions that characterize models
and qualitative assessments. For the quantitative analysis (quantitative level), a set of metrics
is defined and associated with the previously stated questions. The GQM approach does not
enforce a strict one-to-one mapping between questions and metrics, so a question can be
associated with multiple metrics and vice versa.

Next, we describe the GQM model for our study, which is summarized in Figure 3.1. To
this end, we state a set of goals, questions, and corresponding metrics, which are inspired by
previous case studies on CPP, and we discuss why they are important.

3.1.1 Goals
In our context, the measurement object is the source code of the configurable systems in
question, and our main goal is the determination of the influence of #ifdef usage on program
analysis and program transformation (G1). We divide this goal into three sub-goals, which
reflect three different aspects of CPP usage.

Configuration knowledge (G1.1)

The implementation of configuration knowledge with #ifdef directives is likely to affect
analysis and transformation approaches for configurable systems. For example, the number of
configuration options affects the number of valid configurations that can possibly be derived
from a system. The higher the number, the lower the chances to successfully apply an analysis
or transformation approach without built-in support for variability. Analyzing and testing all
variants for errors is known to be time-consuming, and experience shows that even though
some code may work in one variant, it may fail to compile and run in another [Pearse and
Oman, 1997; Spencer and Collyer, 1992].

According to practitioners and researchers, developers already benefit from simple quantita-
tive and qualitative access to configuration knowledge [Pearse and Oman, 1997; Favre, 1996,
1997; Spencer and Collyer, 1992]. Simple information, such as the number and distribution
of configuration options, helps developers to understand conditional compilation [Pearse and
Oman, 1997]. In the past, different researchers developed basic tools for preprocessor analysis
to answer specific questions regarding two lines of research: maintenance effort and implemen-
tation complexity [Sutton and Maletic, 2007; Ernst et al., 2002; Pearse and Oman, 1997; Krone
and Snelting, 1994]. With G1.1, we pick up on both lines and examine the use of #ifdef
directives for the implementation of configuration knowledge in a system. The goal represents
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3 Understanding Preprocessor Annotations

analysis effort and implementation complexity that #ifdef directives cause in the source
code.

Variable code base (G1.2)

The use of #ifdef directives dictates to what extent variability-aware tools should be able to
handle variability. In particular, developers can use directives at different levels of granularity
(ranging from single tokens to annotating the entire content of a file). These different levels
have to be respected by tool writers. For example, the variability-aware refactoring engine
CREFACTORY supports annotations on statements, declarations, structure members, enumer-
ation values, and array-initializer values [Garrido and Johnson, 2005]. Annotations on other
elements have to be transformed into these five supported annotations (in a preprocessing step)
before refactorings can be applied.

comprehension replication

expressiveness

Figure 3.2: Trade-off between expres-
siveness, comprehension, and replica-
tion [Schulze et al., 2013a].

CPP usage is at the center of a larger discus-
sion on variability implementation regarding expres-
siveness, comprehension, and replication (cf. Fig-
ure 3.2) [Schulze et al., 2011, 2013a; Liebig et al.,
2010]. Expressiveness denotes the ability and flexi-
bility to make changes to the source code. CPP’s ca-
pability to express variability at a fine grain enables
developers to annotate arbitrary sequences of tokens.
As a result, the preprocessor has a high expressiveness
with respect to variability implementation and, thus,
can help to avoid code replication. By factoring out
common source code, developers may annotate only
differences in the implementation of different variants
by annotating specific code fragments. Consequently,
developers can reduce the amount of replicated code in a system significantly. However, an
expressive preprocessor comes at a cost: fine-granular extensions often disrupt the source-code
layout, making the code difficult to understand for developers [Favre, 1996, 1997; Pearse and
Oman, 1997; Baxter and Mehlich, 2001]. Limiting the expressiveness of the preprocessor to a
subset of all annotations (disciplined annotations) requires a certain amount of code replication.
Although some researchers consider code replication harmful (e.g., [Jürgens et al., 2009; Roy
and Cordy, 2007]), we and others [Kapser and Godfrey, 2008] argue that limited amounts of
replicated code are manageable. This is because the alternatives containing the replicated code
are side-by-side and, therefore, easy to track for the programmer.

With respect to analysis and maintenance tasks, researchers frequently report from the
struggle developers have with scattered preprocessor implementations [Spencer and Collyer,
1992; Pearse and Oman, 1997]. Even simple tasks, such as following the control flow in a
specific code fragment, become tedious in the presence of preprocessor directives, as developers
have to go over the source code multiple times to understand it [Pearse and Oman, 1997]. Some
researchers have summarized their frustration and struggle with verdicts such as “#ifdef
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considered harmful” [Spencer and Collyer, 1992] or “#ifdef hell” [Lohmann et al., 2006].
With G1.2, we investigate important facets of variability implementation that influence the

design and development of variability-aware tool support.

Variability representation (G1.3)

The development of analysis and transformation tools relies on an integrated analysis of the
source-code structure and the effect of preprocessor directives on variable source code. Since
the preprocessor is oblivious to the underlying source-code structure, developers can use it
to annotate arbitrary tokens of the source code, such as a single closing brace, thus ignoring
existing naming conventions and destroying the code structure. As a result, parsing and
analyzing the unprocessed representation of the source code (pre-CPP) is difficult. Although
this is not a problem for tools that analyze a single preprocessed variant of the source code (post-
CPP), such as a compiler or many static analysis tools, pre-CPP tools have difficulties handling
arbitrary text-based preprocessor annotations. The major problem is that arbitrary annotations
do not represent structured input, on which these tools usually operate. A typical approach that
has been used to analyze pre-CPP code (sometimes explicitly, but mostly implicitly) is to handle
not all, but only a subset of annotations, which we call disciplined annotations. Disciplined
annotations are annotations on certain syntactic code structures, such as entire functions and
statements (we give a definition later in this section). Analogously, we call annotations of
individual tokens or braces that do not align with underlying code structure undisciplined
annotations. Restricting developers to disciplined annotations makes it much easier to build
proper tools and to ensure correctness and completeness of the mechanisms involved, as we
will explain.

Many tools work on a parse tree or an AST that also contains variability information from
the annotations, often enriched with information on types for analysis and transformation.
It must be possible to identify variable code as compared to the base code. Hence, it is
desirable to map #ifdef annotations to complete subtrees in the AST, so that reasoning
about the source-code structure and its annotations is facilitated on the basis of a uniform
code representation. Many approaches that advocate the uniform representation of #ifdef
variability for the implementation of proper tool support. There are two common scenarios
in the area of software product lines: #ifdef transformation [Adams et al., 2009; Lohmann
et al., 2006] and #ifdef management [Atkins et al., 2002; Heidenreich et al., 2008; Janzen
and De Volder, 2004; Kästner and Apel, 2008, 2009].

A clean mapping from annotations to AST elements has the following advantages:

• The AST representation contains all information of a program including its variability.
This simplifies tools for #ifdef transformation and #ifdef management, and pro-
grammers can safely analyze and transform the AST. We do not need to preprocess the
code upfront, transform it, and then revert the preprocessing step. Instead, we can reason
about code and presence conditions as part of the uniform representation directly. For
example, when we transform code by extracting an annotated sequence of statements
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into an aspect, we can make sure that we move the statements correctly without loss of
variability information.

• The mapping of #ifdef annotations to AST nodes ensures the absence of syntax errors
in conditionally compiled code. When we allow annotations only on structural elements
but not on arbitrary tokens, such as single braces, the removal of #ifdefs cannot create
invalid parse trees or ASTs [Kästner et al., 2009b].

• Based on an AST, we can reason about types and control flow, or perform other static
analyses and model checking [Classen et al., 2010], always including information on
variability. Analyses become more complex due to preprocessor annotations. For
example, a variable can have different types depending on the selection of preprocessor
constants. Nevertheless, such analyses can still be performed on the entire variable code
base in a single step (instead of generating all variants upfront). For example, Kästner
et al. [2012a] have built a type system that compares annotations between function
declarations and function calls, which depend on variability annotations in a single AST.

To summarize G1.3, we investigate whether developers have already been using #ifdef
directives in a structured way.

3.1.2 Questions
How does program size influence variability? (Q1)

A large software system usually provides more configuration options than a small software
system. The reason is that in a large code base, the potential for variability is likely to be higher
than in a small one. This is due to a possibly higher number of implemented functionalities. We
are interested in how many configuration options are present in the source code, because they
mark all possible parameters for system configuration and form the basis of the configuration
space of a configurable system. Furthermore, we are interested in the amount of variable code,
because it represents variability at the source-code level at which the programmer operates.
Both, the number of configuration options as well as the amount of variable code have an
influence on the analysis and transformation of configurable systems, as more variants and,
consequently, more variable code has to be considered.

How complex are extensions using #ifdefs? (Q2)

This question addresses the presence of scattered and tangled implementations of configuration
options. CPP’s language definition allows programmers to nest preprocessor directives (e.g.,
an #ifdef can be nested inside another #ifdef, which gets evaluated only if the presence
condition of the outer #ifdef is satisfiable). The use of #ifdef nesting as well as the use
of logical operators, such as && or ||, results in complex presence conditions for variable
code fragments. Analysis and transformation tools should be able to handle complex presence
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conditions to avoid a potentially exponential number of redundant computations that are
necessary to obtain analysis and transformation results. For example, redundant computations
are avoidable if a tool handles the presence condition #if defined(A) || defined(B)
directly instead of handling all combinations of A and B in isolation.

We are interested in whether a higher number of configuration options increases the oc-
currences of scattering and tangling. Furthermore, we are interested in the nesting depth of
#ifdefs, a special form of code tangling.

At which level of granularity are extensions applied? (Q3)

Question Q3 is directly motivated by prior discussions on the granularity of extensions in soft-
ware product lines [Kästner et al., 2008, 2009a]. The discussions revolve around the necessity
of fine-grained modularization techniques, such as statement and expression extensions or
function-signature changes. In particular, the granularity issue raises the question at which
level variability-aware tools should support variability. So it directly affects design decisions of
tool writers. If we limit #ifdef usage to a coarse grain, i.e., by annotating only function or
type definitions, we can simplify the development of tool support. For example, keeping this
condition, it is sufficient to implement a renaming refactoring for local function variables that
is not variability-aware. The reason is that, since #ifdefs cannot occur inside the function
body, the refactoring engine implementing the renaming does not need to incorporate presence
conditions.

Although CPP allows a programmer to annotate code even at the finest level of granular-
ity [Kästner et al., 2008], little is known about the necessity of making such fine-grained
extensions. Further discussions on the modularization of configuration options also motivate
this question [Kästner et al., 2007; Murphy et al., 2001; Sullivan et al., 2005], because most
modular implementation techniques for configurable systems either lack the ability to make fine-
grained extensions [Kästner et al., 2008; Murphy et al., 2001] or require workarounds [Kästner
et al., 2007; Rosenmüller et al., 2007; Apel et al., 2008]. To this end, we are interested in
identifying the levels at which #ifdefs are used to make fine-grained extensions. We also
want to know how often developers use #ifdefs at these levels.

Which types of extension occur? (Q4)

While the previous three questions target the analysis and transformation process of config-
urable systems, question Q4 addresses the possibility of transforming #ifdef-annotated code
fragments into alternative code representations using different implementation techniques.
To this end, we discuss aspects and feature modules as transformation targets, which have
both been used in literature [Kästner et al., 2009a; Adams et al., 2009; Lohmann et al., 2009,
2006; Reynolds et al., 2008]. The underlying concepts of aspect-oriented programming and
feature-oriented programming have different strengths and weaknesses for the implementation
of configurable software, which have thoroughly been discussed [Apel et al., 2008, 2013a]. For
example, homogeneous extensions can be implemented easily with aspect-oriented language
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extensions of C, because they provide a quantification and weaving mechanism (pointcut and
advice) for extending multiple places in the source code at the same time. Heterogeneous
extensions can be specified by simpler mechanisms, such as mixins or feature modules [Apel
et al., 2008; Batory et al., 2004]. Furthermore, question Q4 is motivated by a prior case study
by Apel [2010] on the development of configurable systems with aspect-oriented programming.
In this study of eleven programs written in AspectJ, Apel observed that most extensions in
AspectJ code are heterogeneous. We want to explore whether this observation also applies to
configurable systems implemented with CPP.

How often do disciplined and undisciplined annotations occur? (Q5)

Based on the idea of mapping annotations to elements of the underlying source-code structure,
we propose a definition of disciplined annotations. Actually, it is quite difficult to find a
common definition, because different tools may have different requirements (e.g., some can
handle annotated function parameters, others cannot). Here, we put forward a conservative
definition:

Definition. Disciplined Annotations: In C, annotations on one or a sequence of entire func-
tions and type definitions (e.g., struct) are disciplined. Furthermore, annotations on one or
a sequence of entire statements and annotations on members of type definitions are disciplined.
All other annotations are undisciplined.

We believe that writing disciplined annotations (as defined here) is sufficient for the repre-
sentation of variability, and we expect that the majority of #ifdef directives in C programs is
already disciplined for three reasons:

1. Developers prefer disciplined annotations, because they consider undisciplined anno-
tations hard to read. For example, Baxter and Mehlich [2001] report of a project that
contained some undisciplined annotations: “The reaction of most staff to this kind of
trick is first, horror, and then second, to insist on removing the trick from the source.”

2. Some software projects have coding guidelines that state how to use the preprocessor.
They typically favor disciplined over undisciplined annotations. For example, in LINUX
kernel development, guidelines state that programmers shall annotate entire functions
instead of arbitrary source-code fragments: “Code cluttered with ifdefs is difficult to read
and maintain. Don’t do it. Instead, put your ifdefs in a header, and conditionally define
static inline functions, or macros, which are used in the code.” 1

3. The developers of previous tool support for configurable systems used a similar definition
for disciplined annotations [Baxter and Mehlich, 2001; Garrido and Johnson, 2003,
2005]. It seems that disciplined annotations are sufficient for most problems in every-
day software development. Arbitrary undisciplined annotations are simply unnecessary

1/Documentation/SubmittingPatches in the LINUX source
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in most cases. Even though variability involves changes at the subfunction level, it
is questionable whether the usefulness of annotations at the level of expressions or
parameters outweighs their problems (e.g., control-flow analysis and readability).

Using our definition, we can map functions, type definitions, and statements in a straight-
forward way to subtrees in the AST. This can be exploited when enriching an existing C
grammar with annotations (cf. Figure 3.3). Within the grammar, preprocessor directives simply
wrap production rules of the host language to represent annotated subtrees in an AST. The
extended grammar in Figure 3.3 supports optional or alternative function definitions with CPP
directives (additional productions for annotating functions are highlighted). The resulting
parser is capable of parsing the entire unprocessed source code (pre-CPP) in a single step. Note
that, due to CPP’s unlimited annotation capabilities, it is difficult to write a preprocessor-aware
grammar that covers all possibly undisciplined annotations. Some researchers even consider
it impossible [Padioleau, 2009]. But when we enforce disciplined annotations, this approach
becomes practical. When preprocessor directives are already part of the grammar and, hence,
recognized by the parser, we can assign parsed annotations directly to code fragments of the
AST.

1 translation_unit
2 : external_declaration
3 | translation_unit external_declaration
4 ;
5 external_declaration
6 : function_definition
7 | ’\#’ ’if’ cppexp nl function_definition nl cppthenfunc
8 | declaration
9 ;

10 cppthenfunc
11 : ’\#’ ’endif’ nl
12 | ’\#’ ’else’ nl function_definition nl ’\#’ ’endif’ nl
13 | ’\#’ ’elseif’ cppexp nl function_definition nl cppthenfunc
14 ;
15 function_definition ...

Figure 3.3: Excerpt of a CPP-extended ISO/IEC 9899 lexical C grammar; rules for preprocessor directives
are highlighted (Line 7 and Line 10 to 14); cppexp is the condition; nl is a newline; cppthenfunc
represents the #endif or alternative function definitions.

Figure 3.4 contains some examples of disciplined annotations taken from the text editor
VIM: an annotation on an entire function (cf. Figure 3.4a), an annotation on an entire statement
including a nested substatement (cf. Figure 3.4b), and an annotation on a field inside a struct
(cf. Figure 3.4c).

One may argue that our definition disciplined annotations is too strict, because we could also
allow disciplined annotations on expressions (cf. Figure 3.5d), on parameters (cf. Figure 3.5g),
on case blocks in a switch statement (cf. Figure 3.5h), on a jump target of a goto statement
(cf. Figure 3.5f), or on the else branch of an if statement (cf. Figure 3.5b). In all these
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1 #if defined(__MORPHOS__) \
2 && defined(__libnix__)
3 extern unsigned long *
4 __stdfiledes;
5
6 static unsigned long
7 fdtofh(int filedescriptor) {
8 return __stdfiledes[
9 filedescriptor];

10 }
11 #endif

(a) compilation unit

1 void tcl_end() {
2 #ifdef DYNAMIC_TCL
3 if (hTclLib) {
4 FreeLibrary(hTclLib);
5 hTclLib = NULL;
6 }
7 #endif
8 }

(b) subfunction level

1 typedef struct {
2 typebuf_T save_typebuf;
3 int typebuf_valid;
4 struct buffheader
5 save_stuffbuff;
6 #if USE_INPUT_BUF
7 char_u *save_inputbuf;
8 #endif
9 } tasave_T;

(c) subtype level

Figure 3.4: Examples of disciplined annotations in VIM.

cases we can map the annotation to an entire subtree of the AST. Actually, we can even
map partial annotations on if, for, or while statements that do not include the nested
body as in Figure 3.5a. We would map the annotation to an individual AST element and
not to an entire subtree. This strategy, known as wrapping, is discussed by Kästner et al.
[2009b]. A typical wrapper is an annotation of some control structure, e.g., an if statement
(cf. Figure 3.5a) or a for loop (cf. Figure 3.5c). All these fine-grained annotations (and
several more) could be viewed as disciplined, but then the tools that work on the resulting AST
would be more complex. Some tools benefit from disallowing annotations on expressions or
parameters, because this way they need to consider fewer annotated code fragments and fewer
transformation patterns [Kästner et al., 2009a]. One goal of our analysis is to find out whether
our conservative definition of disciplined annotations is sufficient in practice or some or all
fine-grained annotations should also be considered disciplined, because software engineers use
them frequently.

We can classify some annotations as undisciplined without any doubt: ill-formed, in which
already the number of #ifdef and #endif statements does not match. Furthermore, annota-
tions that can produce syntax errors when removed, such as an annotation of an opening brace
without an annotation on the corresponding closing brace. Figure 3.6 shows an example of ill-
formed annotations in XTERM. At first sight, this code exhibits a syntax error if __GLIBC__
and USE_ISPTS_FLAG are selected together but, according to the XTERM developers, this
selection is not possible [Medeiros et al., 2013].

To summarize, with question Q5, we are interested in the annotation discipline that developers
of current configurable systems have been using.

3.1.3 Metrics

To measure the different aspects of #ifdef usage with respect to the previously stated
questions, we introduce a set of corresponding metrics. Next, we explain each metric, its
measurement, and its utility for our study and for subsequent discussions.
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1 #ifdef RISCOS
2 if ((s = vim_strrchr(result, ’/’))
3 != NULL && s >= gettail(result))
4 #else
5 if ((s = vim_strrchr(result, ’.’))
6 != NULL && s >= gettail(result))
7 #endif

(a) if wrapper

1 #ifdef FEAT_FIND_ID
2 else if (*e_cpt == ’i’)
3 type = CTRL_X_PATH_PATTERNS;
4 else if (*e_cpt == ’d’)
5 type = CTRL_X_PATH_DEFINES;
6 #endif

(b) else-if block

1 int n = NUM2INT(num);
2 #ifndef FEAT_WINDOWS
3 w = curwin;
4 #else
5 for (w = firstwin; w != NULL;
6 w = w->w_next, --n)
7 #endif
8 if (n == 0)
9 return window_new(w);

(c) for wrapper

1 if (char2cells(c) == 1
2 #if defined(FEAT_CRYPT) || \
3 defined(FEAT_EVAL)
4 && cmdline == 0
5 #endif
6 )

(d) expression

1 if (!ruby_initialized) {
2 #ifdef DYNAMIC_RUBY
3 if (ruby_enabled(TRUE)) {
4 #endif
5 ruby_init();

(e) ill-formed

1 #if defined(FEAT_SEARCHPATH) || \
2 defined(FEAT_BROWSE)
3 theend:
4 vim_free(fname);
5 #endif

(f) goto

1 need_redraw =
2 check_timestamps(
3 #ifdef FEAT_GUI
4 gui.in_use
5 #else
6 FALSE
7 #endif
8 );

(g) parameter

1 #ifdef FEAT_CLIENTSERVER
2 case SPEC_CLIENT:
3 sprintf((char *)strbuf,
4 PRINTF_HEX_LONG_U,
5 (long_u)clientWindow);
6 result = strbuf;
7 break;
8 #endif

(h) case block

1 for ( ; mp != NULL;
2 #ifdef FEAT_LOCALMAP
3 mp->m_next == NULL ?
4 (mp = mp2, mp2 = NULL) :
5 #endif
6 (mp = mp->m_next)) {

(i) expression

1 int put_eol(FILE *fd) {
2 if (
3 #ifdef USE_CRNL
4 (
5 #ifdef MKSESSION_NL
6 !mksession_nl &&
7 #endif
8 (putc(’\r’, fc) < 0)) ||
9 #endif

10 (putc(’\n’, fd) < 0))
11 return FAIL;
12 return OK;
13 }

(j) nested #ifdefs

1 #ifdef FEAT_MBYTE
2 int props;
3 p_encoding = enc_skip(p_enc);
4 props = enc_canon_props(p_encoding);
5 if (!(props & ENC_8BIT)
6 || !prt_find_resource(
7 (char *)p_encoding,
8 &res_encoding))
9 #endif

10 {

(k) combination of subfunction and if

Figure 3.5: Examples of undisciplined annotations in VIM.
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1 #if defined(__GLIBC__)
2 // additional lines of code
3 #elif defined(__MVS__)
4 result = pty_search(pty);
5 #else
6 #ifdef USE_ISPTS_FLAG
7 if (result) {
8 #endif
9 result = ((*pty = open("/dev/ptmx", O_RDWR)) < 0);

10 #endif
11 #if defined(SVR4) || defined(__SCO__) || defined(USE_ISPTS_FLAG)
12 if (!result)
13 strcpy(ttydev, ptsname(*pty));
14 #ifdef USE_ISPTS_FLAG
15 IsPts = !result;
16 }
17 #endif
18 #endif

Figure 3.6: Example of undisciplined annotations in XTERM.

Lines of Code (LOC)

The LOC metric quantifies the size of a software system. We measure it by counting the number
of newlines of each normalized source code file and taking their sum. We use it later to discuss
the influence of program size on other metrics.

Number of Configuration Options (CO)

The CO metric characterizes the configuration space of a configurable system. We measure this
metric by extracting names of configuration options from presence conditions in the source code
and summing them per project. For example, the CO value of #if defined(BUBBLESORT)
|| defined(INSERTIONSORT) is two. Note that we do not extract configuration options
from #define directives, because these directives do not directly contribute to the configura-
tion space of a system.

Lines of Variable Code (LVC)

The LVC metric quantifies the number of source-code lines enclosed in #ifdef directives.
The metric tells us whether a small or a large fraction of the code base is variable. We extract
this metric by counting the number of lines between two #ifdefs in source-code files and
adding them up per project. Favre [1997] and Muthig and Patzke [2002] claim that, despite the
problems #ifdefs cause, they are still useful, and developers can use them in small software
systems with moderate effort. In our discussions, we use the CO and the LVC metrics as rough
indicators of the analysis and transformation effort.
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Scattering Degree (SD)

The SD metric quantifies the number of configuration options in different presence conditions.
We measure this metric by extracting configuration options from #ifdefs and by calculating
its average and standard deviation per project of all occurring configuration options. This
metric provides insights into the complexity of configuration-option implementations. For
example, a widely scattered option that extends a software system in several files and at multiple
places requires a complex analysis and transformation than an option that applies only a few
extensions within a single file.

Tangling Degree (TD)

The TD metric quantifies the number of different configuration options that occur in a presence
condition. The term tangling has a non-standard meaning here. Usually, tangling refers to the
mixture of code fragments with each other (side by side) or with the non-variable base code
(cf. Section 2.1.2). Here, tangling refers to the mixture of configuration options in a presence
condition, neglecting C code. The TD degree is an important metric that indicates to what
degree variability-aware analysis and transformation tools can benefit from taking configuration
knowledge into account. A static analysis that directly analyzes code annotated with #if
defined(A) || defined(B) is faster than an analysis that analyzes both variants (one
selecting A and one B) separately.

Nesting Depth of #ifdefs (ND)

The ND metric quantifies the average nesting depth of #ifdefs. We calculate the average
and the standard deviation of all #ifdefs in a file and compute, based on these values, the
average and standard deviation per project. Nesting is one source of exponential explosion in
configurable systems implemented with CPP, because each additional nesting level doubles the
preceding sub-configuration space, eventually leading to up to 2n configurations for n levels.
The higher the ND metric, the higher the analysis effort.

Granularity (GRAN)

Since CPP is independent of the host language, developers can use it to apply arbitrary extensions
to the base code. These extensions are commonly divided into coarse-grained extensions and
fine-grained extensions [Kästner et al., 2008]. Coarse-grained extensions add new functions or
data structures, whereas fine-grained extensions add code fragments, such as statement and
expression extensions or function-signature changes [Kästner et al., 2008]. To this end, we
introduce several GRAN metrics (i.e., a family of granularity metrics) that represent the number
of #ifdefs that occur at particular levels of granularity in the source code.
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1 struct node *first = NULL;
2 #if DLINKED
3 struct node *last = NULL;
4 #endif
5
6 void insert(struct node *elem) {
7 #if BUBBLESORT
8 struct node *a,*b,*c,*e,*tmp = NULL;
9 #endif

10 #if INSERTIONSORT
11 struct node *a,*b = NULL;
12 #endif
13 if (NULL == first) first = elem;
14 else {
15 #if INSERTIONSORT
16 a = first;
17 b = first->next;
18 if (first->item
19 #if SORTASCENDING
20 >
21 #else
22 <
23 #endif
24 ...
25 }

Figure 3.7: Example of coarse-grained and
fine-grained extensions.

Based on prior work of Kästner et al. [2008]
and on the capabilities of alternative product-
line implementation techniques, we measure the
GRAN metric at six granularity levels of inter-
est: global level (GL; e.g., adding a structure or
function; cf. Figure 3.7, Lines 2 to 4), function
or type level (FL; e.g., adding an if-block or
statement inside a function or a field to a struc-
ture; Lines 7 to 9), block level (BL; e.g., adding a
code block; Line 15ff.), statement level (SL; e.g.,
varying the type of a local variable), expression
level (EL; e.g., changing an expression; Line 19
to 21), or parameter level (PL; e.g., adding a
parameter to a function declaration). We use
the GRAN metric to discuss the development
of tool support with respect to variability aware-
ness. We measure it by counting the number of
occurrences of annotations at each GRAN level
and summing them up for each project. In our
example, there are four GRAN metrics: one for
global and block level, and two for function/type
and expression level.

Type (TYPE)

Developers extend a configurable system either with distinct extensions (heterogeneous) or
with the same extensions, thus leading to code duplicates (homogeneous). The TYPE metric
quantifies the number of occurrences of particular extensions in the source code. We measure
this metric by comparing subsequent lines of source code that belong to the same presence
condition, using string comparison (we will discuss this threat to validity later). Using this
measurement, we distinguish three types: homogeneous extension (HOM), heterogeneous
extension (HET), and their combination (HEHO). We use this metric to discuss possible
transformations of #ifdefs into aspects or feature modules.

Disciplined (DIS) and Undisciplined (UNDIS) Annotations

To measure annotation discipline, we distinguish between disciplined (DIS) and undisciplined
(UNDIS) annotations. According to our definition (cf. Section 3.1.2), disciplined annotations
annotate entire functions and structures as well as members and statements. To measure the
annotation discipline, we match each #ifdef annotation to certain patterns of disciplined
(DIS) and undisciplined (UNDIS) annotations.

For patterns of disciplined annotations, we count the number of completely annotated
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function and type definitions (FT; cf. Figure 3.4a). Furthermore, we count annotations on
one or multiple statements inside a function or on members inside a type definition (SF; cf.
Figures 3.4b and 3.4c) as disciplined. The identification of patterns that may be considered
disciplined was an iterative process. We started with patterns with which we were familiar with
and iteratively added additional patterns that we encountered during the manual inspection
of undisciplined annotations in the analysis results. As a result, we distinguish five patterns
of undisciplined annotations: (1) partial annotations of an if statement (e.g., an annotation
of the if condition or the if-then branch without the corresponding else branch (IF; cf.
Figure 3.5a)), (2) annotations on a single branch inside a case block (CA; cf. Figure 3.5h),
(3) annotations on an else-if branch inside an if-else cascade (EI; cf. Figure 3.5b), (4)
annotations on a parameter of a function declaration or a function call (PA; cf. Figure 3.5g),
and (5) annotations on well-formed parts of expressions (EX; cf. Figure 3.5d, 3.5i, and 3.5j).

There are certain similarities between measuring the granularity and measuring the discipline
of preprocessor annotations. For example, the GRAN metric GL (global level) includes
annotations of functions and type definitions and is similar to the discipline metric FT (function
or type level). While both metrics refer to the same elements in the AST representation,
all discipline metrics additionally determine whether an annotation can be represented in a
variable AST. The GRAN metrics target the development of novel language mechanisms for
the representation of variability. In contrast, the discipline metrics (DIS and UNDIS) aim at the
representation of variability in a uniform representation, such as variable ASTs.

Figure 3.1 summarizes our GQM model of measuring the influence of #ifdef usage on
program analysis and program transformation. Based on this model, we describe our analysis
to obtain answers to the research questions stated in our model.

3.2 Analysis
To answer our questions, we selected 42 different configurable systems (cf. Table 3.1). We
selected these systems for two reasons. First, they cover different domains, such as operating
systems, web servers, and database-management systems. They vary in size (from a few
thousand lines of code to several million lines of source code). Using this criterion, we account
for different CPP usages in practice. Second, all systems are primarily written in C. We
limit our analysis to C, because it is widely used in software development with an enormous
number of open-source software systems available. Although CPP is being used with other
programming languages as well (e.g., C++), the limitation to a single language enables us
to compare preprocessor use of different systems without the influence of the programming
language itself. We discuss this threat to validity further in Section 3.3.2.

We consider the selected systems configurable, because they provide possibilities for configu-
ration including support for different hardware platforms and application-specific configuration
options. Additionally, some subject systems of our selection have already been discussed in the
context of configurable systems. For example, many researchers used the LINUX kernel in their
case studies and published numerous results [Tartler, 2013; Sincero, 2013; Berger, 2013] that
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enter into our discussions.
To rule out deviations due to different coding practices and to make the results of different

systems comparable, we normalize the source code of each software system before we obtain
the metrics. The normalization includes:

• the formatting of source code, unifying different coding conventions such as the position
of braces,

• rewriting #ifdef directives to normalize different usages of conditional-inclusion
macros (e.g., #ifdef A vs #if defined(A)),

• deleting include guards, a common preprocessor pattern that is solely used to avoid
multiple inclusions of files and that does not add variability to a system,

• removing comments and empty lines to avoid misinterpretations of obtained results that
include the counting of source-code lines.

We used the tool SRC2SRCML2 to generate an Extensible Markup Language (XML) represen-
tation of the source code [Maletic et al., 2004; Collard et al., 2013] to measure the granularity
of extensions made with CPP. The XML representation contains all information of the basic
language C in AST form, including CPP directives. The two levels of programming (the meta
level of CPP and the source-code level of C) have separate namespaces in the XML representa-
tion, which gave us the opportunity to conduct a combined and a separate analysis of the source
code. For our analysis, we split alternative annotations, such as #ifdef-#else-#endif,
into two annotations, one from #ifdef to #else and one from #else to #endif, because
they enclose different code fragments and have to be analyzed separately.

We measured the metrics introduced in the Section 3.1 on the XML representation using our
tool CPPSTATS. CPPSTATS gathers the desired information by traversing the XML representation
and processing the raw data. The tool and the comprehensive data of each system are available
on our project’s website.3 Table 3.2 on page 44 depicts the condensed data of all 42 software
systems.

We omitted 46 of 105 466 files during the analysis (0.44 % of all files analyzed), because ei-
ther SRC2SRCML could not correctly parse these files or they contained incomplete annotations,
such as an #ifdef without the corresponding #endif. Without a proper AST representation,
we were not able to determine the metrics. Furthermore, we excluded all files from GCC’s
test suite, because it contains many regression tests for the compiler implementation with
potentially erroneous C and CPP code.

2http://www.srcml.org/
3http://fosd.net/cppstats/

40



3.2 Analysis

Software system Version or date of download Domain

APACHE1 2.2.11 Web server
BERKELEY DB1 4.7.25 Database system
BUSYBOX1 1.18.5 System utility
CHEROKEE1 0.99.11 Web server
CLAMAV1 0.94.2 Anti-virus software
DIA1 0.96.1 Diagramming software
EMACS1 22.3 Text editor
FREEBSD1 7.1 Operating system
GCC1 4.3.3 Compiler framework
GHOSTSCRIPT1 8.62.0 Postscript interpreter
GIMP1 2.6.4 Graphics editor
GLIBC1 2.9 Programming library
GNUMERIC1 1.9.5 Spreadsheet application
GNUPLOT1 4.2.5 Plotting tool
IRSSI1 0.8.13 IRC client
LIBXML 21 2.7.3 XML library
LIGHTTPD1 1.4.22 Web server
LINUX1 2.6.28.7 Operating system
LYNX1 2.8.6 Web browser
MINIX1 3.1.1 Operating system
MPLAYER1 1.0rc2 Media player
MPSOLVE2 2.2 Mathematical software
OPENLDAP1 2.4.16 LDAP directory service
OPENSOLARIS3 (2009-05-08) Operating system
OPENSSL1 1.0.1c Cryptographic library
OPENVPN1 2.0.9 Security application
PARROT1 0.9.1 Virtual machine
PHP1 5.2.8 Program interpreter
PIDGIN1 2.4.0 Instant messenger
POSTGRESQL1 (2009-05-08) Database system
PRIVOXY1 3.0.12 Proxy server
PYTHON1 2.6.1 Program interpreter
SENDMAIL1 8.14.2 Mail transfer agent
SQLITE1 3.6.10 Database system
SUBVERSION1 1.5.1 Revision control system
SYLPHEED1 2.6.0 E-mail client
TCL1 8.5.7 Program interpreter
VIM1 7.2 Text editor
XFIG1 3.2.5 Vector graphics editor
XINE-LIB1 1.1.16.2 Media library
XORG-SERVER4 1.5.1 X server
XTERM1 2.4.3 Terminal emulator

1http://freecode.com; 2http://www.dm.unipi.it/cluster-pages/mpsolve/;
3project discontinued 4http://x.org;

Table 3.1: Analyzed software systems.

41



3 Understanding Preprocessor Annotations

3.3 Interpretation and Discussion
We use the collected data to provide answers to our five research questions (cf. Figure 3.1).
The percentages given in this section are the mean and the standard deviation per project
(µ ± σ). All plots show the relationship between LOC/CO and some other that metric we
introduced in Section 3.1.3. Additionally, we calculate the correlation coefficient, including its
significance level (i.e., p value), between related metrics using the method of Kendall [Kendall
and Babington Smith, 1939], because the input data regarding the metrics are not normally
distributed.

3.3.1 Answering the Research Questions
Our answers to the questions stated in Section 3.1.2 are solely based on the metrics (cf.
Section 3.1.3). We do not use additional sources, such as developer interviews or code
inspections, because they would have been elusive to obtain for the large number of software
systems we analyzed.

How does program size influence variability? (Q1)

The data reveal that the variability of a software system increases with its size (cf. Figure 3.8a).
The metrics LOC and CO as well as LOC and LVC correlate strongly. An explanation for this
correlation is the observation that larger software systems usually exhibit more configuration
options and, consequently, are more variable. The amount of variable source code (LVC metric)
in each project correlates with its size and is 21± 15 %, on average (cf. Figure 3.8b).

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

10
50

50
0

50
00

LOC

C
O

10K 100K 1M 10M

(a) plot LOC/CO; corre-
lation coefficient: 0.55; p
value: 6.7 × 10−8

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

LOC

LV
C

 in
 %

10K 100K 1M 10M

10
30

50

(b) plot LOC/LVC with the av-
erage of variable source code
in all software systems; cor-
relation coefficient: 0.58; p
value: 9.1 × 10−8

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

10 50 500 5000

CO

LV
C

50
0

10
K

50
0K

(c) plot CO/LVC; correlation co-
efficient: 0.75; p value: 0

Figure 3.8: Variability plots: lines of code vs configuration options (LOC/CO), lines of code vs lines of
variable code (LOC/LVC), and configuration options vs lines of variable code (CO/LVC).
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3.3 Interpretation and Discussion

The LVC metric reveals two interesting issues. First, we found that in some mid-sized
software systems such as LIBXML2, OPENVPN, SQLITE, and VIM the amount of variable code
exceeds 50 % of the code base. Second, the four largest software systems (FREEBSD, GCC,
LINUX, and OPENSOLARIS) contain smaller percentages of variable source code than the
average. One reason is that the variable code base of a system is not solely implemented with
#ifdef directives. Dietrich et al. [2012b] observed that only one third (approximately 33.5 %)
of all configuration options in LINUX occur in CPP code. The remaining two thirds of configura-
tion options are referenced in LINUX build system (cf. Section 2.1.1). The build system controls
the selection/deselection of source files containing the driver implementations of configurable
hardware resources. Another explanation may be that, due to the size of these systems, the
specification of configuration options is more complex than that of smaller systems. The higher
complexity aligns with possibly more scattered and tangled configuration options, a correlation
which we address next.

How complex are extensions using #ifdefs? (Q2)

The complexity of CPP-based implementations increases with the size of a system. That is,
larger systems exhibit higher values of complexity metrics (SD, TD, and ND). Nevertheless,
we cannot observe a relationship between the number of configuration options in a system
and the complexity. For the SD metric, the p value of the computed correlation coefficient is
larger than 0.05, which means that the result is not significantly different from 0. Initially, we
expected the complexity of presence conditions in configurable systems with a high number of
configuration options to be higher than in smaller software systems, but the complexity remains
the same. The reason for this expectation was the assumption that the higher the number of
configurations options in a system the higher the number of potential configuration-option
dependencies (in particular the number of options involved in dependencies). As a consequence,
a higher number of configuration options results in higher values of complexity metrics.

Notably, the average and the standard deviation of the scattering degree is quite high in some
systems (e.g., 21.11± 46.87 for SUBVERSION, 19.30± 82.13 for VIM, and 10.73± 96.67 for
OPENSOLARIS). That is, a significant number of configuration options cause a high scattering
degree and the respective implementation scatters possibly across the entire system. However,
we cannot infer from the scattering degree the places where configuration options occur in the
source code. The scattered option may only appear in a subsystem (e.g., a group of files).

The average and the standard deviation of the tangling degree are quite small in most systems
(one to three, on average) and, consequently, the complexity of presence conditions is low. A
lower complexity is preferable, because presence conditions of low complexity decrease the
effort during analysis and transformation of a system.

Our third complexity metric (ND) shows that developers use #ifdef nesting moderately,
i.e., in all software systems, the average ND is approximately 1. That is, the number of nested
#ifdefs does not grow with the number of configuration options—CO metric. A lower ND
is preferable, because it reduces the complexity of analyzing and transforming configurable
software. Nesting increases the configuration space significantly. Each additional, nested
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3 Understanding Preprocessor Annotations

Software system LOC CO LVC ND SD TD

APACHE 223 061 1 113 44 425 1.17± 0.17 5.57±15.22 1.74± 1.37
BERKELEY DB 186 893 915 28 400 1.09± 0.12 4.66±13.80 1.39± 0.82
BUSYBOX 180 206 1 264 38 989 1.11± 0.14 3.65± 5.79 1.53± 1.41
CHEROKEE 54 259 328 7 676 1.07± 0.08 3.70± 7.28 1.59± 1.12
CLAMAV 77 031 269 10 793 1.11± 0.16 6.22±12.44 1.47± 0.81
DIA 134 274 91 5 450 1.03± 0.04 5.40±16.69 1.03± 0.55
EMACS 254 236 1 364 75 897 1.27± 0.30 7.33±23.60 2.09± 1.47
FREEBSD 6 163 964 16 134 841 282 1.14± 0.17 6.84±39.43 1.64± 1.41
GCC 1 794 892 4 957 343 602 1.19± 0.22 7.16±20.89 2.36± 3.64
GHOSTSCRIPT 455 879 818 21 883 1.06± 0.08 3.96± 9.39 1.25± 1.12
GIMP 640 041 392 19 112 1.07± 0.08 6.53±15.48 1.65± 1.64
GLIBC 784 157 3 040 87 833 1.15± 0.16 7.28±31.44 1.70± 1.21
GNUMERIC 262 835 344 12 399 1.04± 0.06 3.71± 5.62 1.46± 1.46
GNUPLOT 77 497 435 20 555 1.16± 0.21 7.69±20.09 2.09± 2.11
IRSSI 52 500 55 1 259 1.05± 0.07 2.51± 2.43 1.20± 0.64
LIBXML2 212 996 2 046 139 055 1.58± 0.39 8.36±90.11 5.02± 3.02
LIGHTTPD 38 793 167 8 571 1.15± 0.19 4.68± 6.12 1.36± 0.97
LINUX 6 172 434 9 093 642 284 1.09± 0.11 6.07±47.99 1.44± 1.37
LYNX 114 787 722 43 567 1.24± 0.25 7.63±24.59 1.92± 1.19
MINIX 66 569 195 10 671 1.10± 0.10 5.03± 8.05 1.39± 0.83
MPLAYER 613 608 1 232 113 991 1.11± 0.14 5.83±14.44 1.50± 1.35
MPSOLVE 10 313 13 263 1.15± 0.04 2.54± 2.30 1.27± 0.45
OPENLDAP 252 497 704 66 820 1.20± 0.19 4.64± 7.81 1.62± 1.13
OPENSOLARIS 8 417 082 10 289 1 630 430 1.12± 0.13 10.73±96.67 1.81± 1.46
OPENSSL 268 984 946 90 991 1.25± 0.21 9.99±22.27 2.06± 1.93
OPENVPN 39 447 217 21 145 1.25± 0.26 6.00±16.23 1.69± 1.24
PARROT 106 584 393 15 567 1.19± 0.24 8.10±17.95 1.95± 1.81
PHP 584 470 2 002 149 522 1.19± 0.19 5.84±21.13 1.75± 1.33
PIDGIN 284 299 260 22 318 1.06± 0.10 4.83±16.45 0.99± 0.86
POSTGRESQL 491 511 688 21 296 1.10± 0.12 4.90±18.45 1.56± 1.23
PRIVOXY 27 371 125 7 965 1.16± 0.18 7.44±14.86 1.73± 1.01
PYTHON 387 313 5 130 105 648 1.18± 0.21 2.62±34.95 1.72± 1.05
SENDMAIL 90 854 831 29 303 1.24± 0.24 5.23±10.35 1.75± 1.11
SQLITE 93 278 273 48 842 1.29± 0.25 7.59±12.92 1.67± 1.10
SUBVERSION 523 641 255 13 612 1.08± 0.12 21.11±46.87 1.79± 1.23
SYLPHEED 104 603 150 13 607 1.06± 0.07 6.31±13.51 1.38± 1.43
TCL 136 662 2 459 22 518 1.15± 0.16 2.89±26.42 2.04± 1.29
VIM 245 587 779 133 203 1.57± 0.51 19.30±82.13 2.40± 1.47
XFIG 74 232 107 5 216 1.08± 0.12 4.67± 6.66 1.87± 1.99
XINE-LIB 502 270 1 291 112 202 1.12± 0.14 5.38±16.19 1.52± 1.27
XORG-SERVER 557 084 1 353 95 374 1.09± 0.11 9.10±28.38 1.85± 2.02
XTERM 50 731 433 17 003 1.21± 0.32 7.26±15.24 2.03± 1.62

LOC: lines of code; CO: number of configuration options; LVC: lines of variable code; ND: average nesting
depth of #ifdefs; SD: average scattering degree; TD: average tangling degree

Table 3.2: Results configuration knowledge (G1.1) and variable code base (G1.2); part 1.
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Software system TYPE GRAN
HOM HET HOHE GL FL BL SL EL PL

APACHE 120 1 972 94 1 858 2 163 827 44 35 13
BERKELEY DB 189 1 507 108 1 248 1 142 1 581 2 19 12
BUSYBOX 78 2 086 61 1 966 1 744 1 032 131 22 19
CHEROKEE 42 460 10 533 273 218 0 7 0
CLAMAV 41 463 41 848 385 402 1 0 2
DIA 3 144 16 439 222 76 7 0 5
EMACS 113 3 205 119 3 428 2 309 1 501 17 114 30
FREEBSD 2 771 29 819 2 293 48 520 32 485 19 032 615 688 589
GCC 480 9 261 320 11 554 5 828 2 731 258 369 54
GHOSTSCRIPT 145 1 144 67 2 162 1 214 687 15 12 23
GIMP 163 462 32 1 224 622 341 2 0 1
GLIBC 425 5 886 392 10 045 4 250 2 226 119 98 55
GNUMERIC 11 616 35 491 833 644 8 15 17
GNUPLOT 35 948 48 1 102 609 694 50 19 4
IRSSI 4 73 3 76 96 24 1 0 0
LIBXML2 161 2 689 76 6 913 1 967 935 0 29 0
LIGHTTPD 22 222 35 296 252 289 51 1 16
LINUX 435 17 330 877 30 651 19 974 7 048 499 77 120
LYNX 22 1 800 62 1 373 1 733 1 234 9 69 8
MINIX 30 367 18 625 309 253 4 3 0
MPLAYER 82 2 415 154 2 957 3 191 1 669 145 19 27
MPSOLVE 0 18 0 20 10 4 0 0 0
OPENLDAP 33 1 232 67 1 199 1 334 756 18 26 15
OPENSOLARIS 2 593 21 281 1 307 37 824 43 973 16 351 297 308 386
OPENSSL 106 2 353 143 2 590 2 794 1 530 25 73 10
OPENVPN 5 391 11 543 417 186 2 5 13
PARROT 129 599 52 1 290 640 253 1 2 0
PHP 336 3 614 175 4 690 3 052 1 990 145 53 30
PIDGIN 38 396 66 750 1 064 360 0 9 39
POSTGRESQL 64 1 025 72 1 585 1 394 757 0 23 12
PRIVOXY 7 281 15 299 313 187 6 9 0
PYTHON 233 6 227 107 2 218 6 771 883 26 31 75
SENDMAIL 49 1 683 59 1 246 1 053 1 021 70 65 27
SQLITE 7 782 12 806 667 323 13 6 3
SUBVERSION 186 194 41 2 668 1 532 415 4 4 4
SYLPHEED 4 276 19 609 398 156 13 5 11
TCL 79 2 978 38 2 947 682 629 3 18 4
VIM 108 4 085 205 2 852 4 356 3 854 107 713 174
XFIG 1 152 10 197 156 101 2 6 1
XINE-LIB 77 2 544 107 2 963 2 877 1 208 65 11 18
XORG-SERVER 264 2 786 224 5 109 2 962 2 329 45 84 18
XTERM 29 963 43 975 859 500 1 21 4

TYPE: # extensions measuring the type (HOM: homogeneous; HET: heterogeneous; HEHO: heterogeneous and
homogeneous); GRAN: # extensions measuring the granularity (GL: global level; FL: function or type;

BL: block; SL: statement; EL: expression; PL: function parameter)

Table 3.2: Results of configuration knowledge (G1.1) and variable code base (G1.2); part 2.
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Figure 3.9: Complexity plots: configuration options vs scattering degree (CO/SD), configuration options
vs tangling degree (CO/TD), and configuration options vs nesting depth (CO/ND).

#ifdef doubles the number of configurations and, hence, increases the effort of conducting
an analysis or transformation approach. Potentially, 2n different configurations with n nested
#ifdef directives have to be explored. We also determined the maximum number of nested
#ifdefs in a file. Two projects (FREEBSD and GCC) reached a maximum number of 24. The
rest of the systems remained at a level of 2 to 9. We argue that high numbers of nested #ifdefs
are hard to manage manually (with respect to program analysis and program transformation)
and automatic solutions are necessary. Furthermore, a high nesting depth may reduce the
potential for transformations. Since a nested #ifdef depends on the enclosing one, the
dependence between both #ifdef directives has to be taken into consideration to decide
whether a transformation should be applied.

At which level of granularity are extensions applied? (Q3)

Our data reveal that programmers use fine-grained extensions (e.g., statement or expression
extensions) infrequently. Most extensions occur at the global level (GL metric; 45± 11 %): an-
notating functions, type declarations/definitions, or (re-)definitions of macros using #define
directives. Below the global level, the second largest set are extensions that occur at the function
and block level (FL and BL metric; 34± 9 % and 19± 7 %): annotations (e.g., an if-block or
a statement) inside a function. The overall occurrence of fine-grained extensions is 1.8± 2.4 %,
on average. Two projects use them slightly more frequently: LIGHTTPD with 6 % statement
extensions and VIM with 6 % expression extensions. The results draw a rather diverse picture
of #ifdef usage in practice, but it seems that automatic tool support should be able to handle
fine-grained extensions also.

From the perspective of transforming configurable systems, the results are promising. Since
most extensions occur at a high level of granularity, chances are good that they can be trans-
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formed into alternative code representation, such as aspects or feature modules. In particular,
aspects are favorable, because they enable extensions below the function or type level by ad-
dressing particular extension points in the source code. By contrast, the application of specific
modularization techniques for implementing fine-grained extensions seem to be limited [Rosen-
müller et al., 2007; Fowler, 1999; Murphy et al., 2001].

However, the data do not reveal whether an implementation technique is applicable and
whether workarounds for refactorings using either feature modules or aspects may be neces-
sary [Kästner et al., 2007; Rosenmüller et al., 2009].

Which types of extension occur? (Q4)

Our data show that 89± 9 % of the extensions are heterogeneous (HET metric). Homogeneous
extensions (HOM metric) add up to 6± 8 %, and the combination of both extension types
(HEHO metric) sums up to 5± 3 %. Aspects are well known for their ability to implement
homogeneous extensions [Apel et al., 2008]. We observe that 6 % of the extensions would
benefit from aspects; 89 % would suffice with simpler mechanisms, such as mixins or feature
modules; for the rest of the extensions, a combination of aspects and feature modules would be
profitable [Apel et al., 2008]. The data coincide with an analysis conducted by Apel [2010],
which revealed that most extensions are heterogeneous. Apel analyzed the use of AspectJ rather
than CPP, though.

How often do disciplined and undisciplined annotations occur? (Q5)

In Table 3.3, we list the results of our analysis: we present the number of occurrences of
disciplined and undisciplined preprocessor uses for all 42 projects. The key result is that
85.1± 6.3 % of all annotations are disciplined. Disciplined preprocessor use in the software
projects ranges from 69.1 % in SUBVERSION to 100.0 % in MPSOLVE. All systems except
MPSOLVE contain some undisciplined annotations.

Looking more closely at the disciplined annotations, we found that 27.0± 11.7 % of all
annotations wrap entire functions and type definitions and 58.1± 10.7 % wrap statements or
type members.

The most frequent undisciplined annotations are annotations on case blocks in switch
statements (CA; 4.1± 3.2 %). Except for IRSSI and MPSOLVE, they occur in every project.
Partial annotations on if statements (IF; 2.5± 2.0 %) are less frequent, but still occur sev-
eral times in every project except for LIGHTTPD and MPSOLVE. Annotations on else-if
(EI; 0.4± 0.4 %), parameters (PA; 0.3± 0.4 %), and expressions (EX; 0.8± 1.0 %) occur in-
frequently and only in some projects. There are only few projects with an exceptionally high
number of occurrences of such patterns (up to 5.6 %), for example, GCC, SENDMAIL, or VIM.

We were not able to classify the remaining annotations automatically (6.9± 5.0 %; range
from 0.0 to 28.7 %). Among these are ill-formed annotations and infrequent patterns (or
combinations of identified patterns), such as in Figure 3.5c, 3.5e, 3.5f, and 3.5k. The reason
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Disciplined Undisciplined
Software system # AA % FT % SF % IF % CA % EI % PA % EX % NC
APACHE 3494 17.1 64.1 2.2 5.1 0.7 0.2 0.7 9.9
BERKELEY DB 3129 13.2 75.7 0.8 4.1 0.0 0.3 0.6 5.3
BUSYBOX 3616 24.0 63.9 2.3 4.3 1.1 0.4 0.5 3.6
CHEROKEE 640 25.8 51.7 6.6 11.4 0.3 0.0 0.2 4.1
CLAMAV 998 20.8 61.4 3.3 2.5 0.1 0.0 0.0 11.8
DIA 385 17.9 68.6 0.5 1.3 0.0 1.3 0.0 10.4
EMACS 5185 28.1 61.1 2.5 2.2 0.5 0.3 1.8 3.4
FREEBSD 72306 29.6 55.4 2.2 6.4 0.3 0.4 0.8 4.9
GCC 14357 34.5 48.5 1.7 2.2 0.3 0.2 2.4 10.1
GHOSTSCRIPT 2793 37.6 52.1 1.0 2.9 0.2 0.3 0.4 5.5
GIMP 1406 34.1 58.0 0.7 2.7 0.2 0.1 0.0 4.2
GLIBC 11651 39.8 43.1 2.7 5.0 0.2 0.2 0.6 8.2
GNUMERIC 1394 13.4 71.8 2.4 0.9 0.4 0.9 0.6 9.7
GNUPLOT 1826 31.4 48.1 4.2 7.3 0.4 0.1 0.9 7.6
IRSSI 149 14.8 71.1 6.7 0.0 0.0 0.0 0.0 7.4
LIBXML2 9161 69.0 24.6 0.9 2.2 0.7 0.0 0.3 2.2
LIGHTTPD 590 16.6 74.1 0.0 5.3 0.0 0.0 0.2 3.9
LINUX 41403 36.9 55.8 1.1 3.5 0.2 0.2 0.1 2.3
LYNX 3590 17.9 62.0 5.4 3.8 0.3 0.2 1.8 8.7
MINIX 778 36.6 58.2 0.8 1.4 0.1 0.0 0.1 2.7
MPLAYER 5696 21.5 62.0 2.8 5.1 0.1 0.4 0.3 7.8
MPSOLVE 30 53.3 46.7 0.0 0.0 0.0 0.0 0.0 0.0
OPENLDAP 2581 22.9 65.3 2.0 5.0 0.0 0.2 0.9 3.6
OPENSOLARIS 76438 19.1 57.9 1.6 3.4 0.2 0.3 0.3 17.1
OPENSSL 5376 24.4 58.7 3.1 3.4 1.8 0.0 1.3 7.3
OPENVPN 877 30.2 63.1 1.7 0.6 0.7 1.5 0.6 1.7
PARROT 1473 40.1 54.4 0.5 3.0 0.1 0.0 0.1 1.8
PHP 7167 28.1 55.6 1.9 7.6 0.1 0.3 0.5 5.8
PIDGIN 1559 17.0 68.1 0.8 0.7 0.0 1.8 0.6 11.0
POSTGRESQL 2862 22.5 58.5 1.6 5.5 0.3 0.3 0.6 10.6
PRIVOXY 652 19.6 54.8 4.6 8.7 0.0 0.0 1.1 11.2
PYTHON 8584 11.8 78.0 0.8 2.8 0.6 0.8 0.3 4.9
SENDMAIL 2662 17.5 58.6 3.1 12.7 1.4 0.5 2.2 4.1
SQLITE 1431 31.7 56.5 2.9 3.2 0.1 0.1 0.4 5.2
SUBVERSION 2642 25.6 43.5 1.8 0.1 0.0 0.2 0.2 28.7
SYLPHEED 813 25.6 58.4 1.4 1.0 0.5 1.0 0.5 11.7
TCL 2683 52.3 28.8 1.0 14.5 0.0 0.1 0.6 2.7
VIM 11450 15.9 58.5 7.9 2.8 1.4 0.8 5.6 7.1
XFIG 360 26.4 55.0 7.5 2.8 1.1 0.3 1.4 5.6
XINE-LIB 4382 22.6 63.0 1.2 3.1 0.0 0.3 0.2 9.6
XORG-SERVER 6999 25.3 59.8 3.0 5.0 0.4 0.2 1.1 5.2
XTERM 1761 22.5 64.5 4.4 4.9 0.2 0.2 1.1 2.3

AA: all annotations; FT: function and type definitions; SF: statement or field; IF: if wrapper;
CA: variable case; EI: variable else if; PA: parameter; EX: expression; NC: not classified;

Table 3.3: Results of variability representation (G1.3).
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for SRC2SRCML’s inability to identify these few patterns is that it is based on heuristics. We
discuss this limitation as a threat to validity in Section 3.3.2.

The results raise a number of questions. If 85 % of all annotations are disciplined, how do
we handle the remaining 15 %? Should we define further annotation patterns as disciplined?
Should we transform undisciplined into disciplined annotations?

Toward a Common Definition of Disciplined Annotations

Transforming undisciplined annotations into disciplined annotations requires a certain effort.
Disciplined annotations are most useful when the community can agree on a common definition
to establish a solid foundation for the development of inter-operable tools.

In Section 3.1.2 we proposed a conservative definition of disciplined annotations, which tools
can handle easily. We already noted that several other annotation patterns could be regarded
as disciplined at the expense of more complex tool implementations (for all tools), but at the
benefit of less effort being necessary to transform legacy code into disciplined annotations.
Here, we come back to this issue and initiate a discussion about the suitability of our definition.

First, our results show that, following our conservative definition, 85 % of all annotations
are disciplined. Making the definition stricter is not feasible, because this way we cover fewer
annotations without any further benefit. For example, when considering only annotations
on function and type definitions disciplined, only 27 % of all annotations would count as
disciplined; annotations on statements and members would be considered undisciplined, even
though they are similarly easy to handle by tools.

Second, the most common pattern of undisciplined annotations that we recognized are
annotations on case blocks inside switch statements as in Figure 3.5h (4.1± 3.2 %). Such
annotations occur in every sample project except MPSOLVE and IRSSI. They can easily
be mapped to AST subtrees, but (similar to or even worse than if-else chains) they are
surprisingly difficult to handle by tools due to the complicated control flow (in particular, in the
presence of break statements).

Third, the next common pattern of undisciplined annotations (2.5± 2.0 %) is a partial
annotation of if statements (e.g., only the condition or the if branch without the alternative
else) as in Figure 3.5a. Although this pattern occurs quite frequently in some projects (and,
at least, once in every project, except for MPSOLVE and LIGHTTPD), handling such annotations
is difficult, since we cannot map them to an entire AST subtree, but only to an individual AST
element without its children.4 Aiming at an inter-operable infrastructure for many tools, we
suggest not to regard such annotations as disciplined, but to transform the source code as we
will discuss later in this section.

Fourth, the remaining identified patterns of annotated if-else chains (0.4± 0.4 %), param-
eters (0.3± 0.4 %), and expressions (0.8± 1.0 %) occur infrequently (and not in all projects).

4Partial annotations complicate tool support, because, depending on the evaluation of the #ifdef
directive, the child element belongs to two different AST elements. For example, the if statement
(Line 8) in Figure 3.5c belongs either to the for loop (Line 5) or the function (not printed there) directly.
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Due to the rarity of these patterns, we consider transforming the source code as the better and
more inter-operable solution.

Finally, there are several annotations that do not fit into any of our patterns (6.9± 5.0 %). The
individual patterns (or combination of patterns) behind these annotations occur so infrequently
that we can safely discard them as undisciplined. Overall, we interpret the results of our
analysis as a confirmation of our initial conservative definition of disciplined annotations.

Handling the Remaining 15% of Undisciplined Annotations

Tools aiming at disciplined annotations are able to handle most #ifdefs (85 %). This may
be sufficient for simple analyses, such as the measurement of source-code complexity metrics
or a rough estimation of the potential for refactorings as done by Adams et al. [2009]. Their
tool simply ignored all annotations it did not understand. However, for some tools, a single
undisciplined annotation may render the tool unsafe or the results useless. For example, concern
refactoring tools may fail or even produce incorrect results, or concern management tools may
show inconsistent views when they are unable to parse certain files or code fragments. Taking
into account that, except for one project, all projects contain at least a few undisciplined
annotations, this is a serious issue that deserves attention.

For handling the remaining 15 %, we see two possibilities. First, we can introduce more
sophisticated tools that use heuristics to accept more annotations that we currently classify as
undisciplined. Still, since arbitrary undisciplined annotations may occur in a software system,
the effort to write such tools is extraordinary. Two examples are Garrido’s refactoring tool
CREFACTORY [Garrido, 2005] or Padioleau’s preprocessor-aware parser YACFE [Padioleau,
2009]. But as both tools use heuristics, their results may not be 100 % correct.

Second, we can enforce disciplined annotations and require the developer to transform
all remaining undisciplined annotations upfront into disciplined annotations. To make this
approach practical, tool support is necessary for the automation of the transformation task.
Enforcing disciplined annotations simplifies the development of tools significantly and, hence,
can foster a community of tool developers for pre-CPP code.

To transform undisciplined annotations into disciplined annotations, #ifdefs must be
expanded until they wrap entire functions, type definitions, statements, and members. Except
for ill-formed annotations, undisciplined annotations can always be expanded to disciplined
annotations. A brute-force algorithm that works in every case is to replicate the source code
for every possible combination of #ifdefs and annotate the entire replicated code fragment.5

For example, Figure 3.10a shows an example of an undisciplined parameter annotation with
two possible variants. We can replicate the code fragment (one version in which FEAT_GUI
is defined and one version in which it is not defined) and annotate the entire statement in a
disciplined form, as shown in Figure 3.10c. In the worst-case scenario, we would have to
replicate the entire file multiple times and annotate the file’s content accordingly. However, in

5Note that the use of #include, #define, and #undefmacros does not hinder the expansion, because
we can replicate these macros as well.
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most cases, more sophisticated expansions at the level of statements or functions are appropriate.

An automatic expansion is not always that easy to make because of nested #ifdefs and
scattered annotations. First, we found some annotations that were ill-formed and that did not
map to nodes or subtrees in the AST or even a parse tree (cf. Figure 3.6). We argue that a
programmer may expand these annotations manually after a tool has automatically identified
them as undisciplined. Second, consider the nested #ifdef example in Figure 3.5j. #ifdef
Mksession_nl is embedded in #ifdef Use_crnl, and the preprocessor evaluates it
only in case the enclosing option Use_crnl evaluates to true. The expansion of this nesting
leads to three alternatives: without Use_crnl and Mksession_nl, with Use_crnl and
without Mksession_nl, and with both. This example may be simple, but it suggests that
nesting occurs frequently, and a nesting depth beyond two is quite common (cf. Section 3.3.1).
Expanding nested #ifdefs may lead to an exponential number of code clones as a result of
the combinatorial explosion of all annotations involved. It is questionable whether it is feasible
to expand deeply nested #ifdefs in favor of source-code refactoring. Since we limit the
expansion to statements and functions, we believe that the expansion approach does not lead
to a severe combinatorial explosion and that the expanded output is manageable by concern
management tools.

There are two projects with parsing approaches (TYPECHEF [Kästner et al., 2011] and
SUPERC [Gazillo and Grimm, 2012]) that are able to parse any C code with presence conditions
into an AST representation including variablity of the input. For example, TYPECHEF uses
an #ifdef-enriched grammar specification. Rules for parsing #ifdef directives wrap rules
for parsing C code. When parsing variable code, TYPECHEF’s parser creates variable AST
nodes using the presence condition of annotated source code. The resulting variability-aware
AST is a one-to-one mapping of the annotated source code to variable AST nodes and can be
processed further by variability-aware tools. TYPECHEF’s grammar specification supports a set
of disciplined annotations and automatically expands annotations that do not align with the
specification. The expansion follows an approach similar to the one we just discussed.

Although a brute-force expansion is possible, developers can often write more elegant
annotations manually. For example, for annotations on parameters or fragments of expressions,
such as in Figure 3.5d, 3.5i, 3.5j, and 3.10a, we would rather introduce a variable and one or
more annotated assignment statements, as illustrated in Figure 3.10b. Hence, we recommend a
semi-automatic process instead of a fully automatic transformation. A tool locates undisciplined
annotations and proposes expansions, but a developer can provide better implementations.
More examples of automated and manual expansions of undisciplined #ifdef annotations
(cf. Figure 3.5) are available on the project’s website (http://fosd.de/cppstats/).
Recently, Medeiros et al. [2014] proposed a set of five refactorings to replace the most common
undisciplined annotations with disciplined annotations . The authors showed in a case study
with 12 software systems that most undisciplined annotations could be replaced using small
refactorings with a local effect on source code only. Most proposed refactoring patterns involve
a combination of local code expansions, minor code transformations, such as extract local
variable, and code manipulations using #define directives (cf. Section 3.1.3).
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1 need_redraw =
2 check_timestamps(
3 #ifdef FEAT_GUI
4 gui.in_use
5 #else
6 FALSE
7 #endif
8 );

(a) Parameter annotation

1 int visible = FALSE;
2 #ifdef FEAT_GUI
3 visible = gui.in_use;
4 #endif
5 need_redraw = check_timestamps(visible);

(b) Possible variant provided by a programmer

1 #ifdef FEAT_GUI
2 need_redraw = check_timestamps(gui.in_use);
3 #else
4 need_redraw = check_timestamps(FALSE);
5 #endif

(c) Automatic transformation using expansion

Figure 3.10: Undisciplined parameter annotation (a) and two disciplined variants of it (b and c).

3.3.2 Threats to Validity
Next, we describe two classes of threats to validity that are relevant for our empirical analysis:
threats to internal validity (relation of the observed output to the input) and threats to external
validity (generalizability of findings).

Threats to Internal Validity

• An automated analysis of the source code cannot distinguish well between high- and
low-level configuration options. High-level options represent requirements of end users,
whereas low-level options reflect design decisions made by developers (e.g., tracing or
portability issues such as different types of signed integers for different compilers or
platforms). These low-level options are typically of no interest to most end users [Tartler,
2013]. Making this distinction is not possible without additional expertise regarding the
software systems and the domains. There are minor exceptions such as the LINUX kernel.
The kernel developers distinguish between low-level and high-level options by prefixing
configuration options relevant for end users with CONFIG_. We do not distinguish
between high- and low-level options, because we are only looking at the usage of CPP’s
variability mechanisms at the implementation level.

• Not all annotation patterns have a functional aspect. In this thesis, we omit the include-
guard pattern. An include guard prevents the multiple inclusion of a header file during
the compilation process and is per se disciplined, as it annotates the entire content of a
header file including function definitions and so forth. Considering include guards in our
statistics would have biased our results towards disciplined annotations, so we excluded
them.

• The tool SRC2SRCML, which we use for our analysis, is partially based on heuristics
that are used to infer an AST from unpreprocessed source code. In our experience,
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SRC2SRCML’s heuristic approach fails from time to time, especially when it comes to
ill-formed annotations, with the result of producing an erroneous mapping of #ifdef
directives to AST elements. Especially, the GRAN, TYPE, and DIS/UNDIS metrics
heavily rely on the correctness of this mapping. The authors of SRC2SRCML use an
extensive test suite to verify the relation of #ifdefs and source code in the XML
representation. We believe that the enormous size of the data set amortizes this threat,
and that the impact of a few false negatives (e.g., identifying a disciplined annotation not
as such) can be neglected.

• We use string comparison to check the equality of different presence conditions to deter-
mine which code fragments belong to the same conditions. Our analysis cannot handle
the semantic equivalence of presence conditions like A && B and B && A. Using
CPP, developers sometimes state configuration knowledge in the form of predicates, e.g.,
#if X > 10. In contrast to presence conditions, which solely encode propositional
formulae, reasoning about predicates requires a CSP solver [Benavides et al., 2005].
However, we found that these rarely occur in the analyzed configurable systems. We used
the tool MAPLE6 to check the equivalence of predicates in some of our smaller systems.
In a random inspection of 12 smaller systems, we found the error of not considering the
equivalence to be below 2.5 %. Due to time constraints caused by NP-completeness of
CSP for larger software systems, such as the LINUX kernel, we omited the equivalence
check in our study.

• The distinction of extensions into heterogeneous and homogeneous is common in the
software-engineering literature [Apel et al., 2008; Colyer and Clement, 2004]. Our
tool distinguishes between heterogeneous and homogeneous source-code fragments by
string comparison. Thus, character-based, syntactic changes in the source code are
not classified correctly. The additional information we gather from the AST does not
help here, because semantically equivalent code fragments can differ in syntax and,
thus, are not recognized by a comparison of subtrees of the AST. The problem is even
more serious, because developers use undisciplined annotations that destroy the source-
code structure so that a correct AST representation is not available. Generally, the
problem is related to the detection of code clones in configurable systems [Schulze,
2013]. Code clones are replicated code fragments across a system’s implementation.
In this context, homogeneous extensions represent code clones of equally annotated
code fragments. Schulze [2013] analyzed #ifdef clones, i.e., code clones that are
enclosed by #ifdef directives, in a subset of 15 configurable systems that were included
in our study. The results of his study show that #ifdef clones are rare in practice.
Nevertheless, classifying #ifdefs as heterogeneous and homogeneous extensions with
code-clone analysis may lead to more precise results. Our conservative approximation
using string comparison marks a lower bound of homogeneous extensions.

6http://maplesoft.com
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Threats to External Validity

• The selection of sample software projects is crucial for an empirical analysis, because
a biased selection leads to biased results. To control this confounding variable, we
analyzed a large number of configurable systems of different domains and different sizes.

• Different coding conventions used in software systems may lead to wrong conclusions.
For this reason, we preprocessed the analyzed source code by eliminating comments,
empty lines, and include guards, and applied source code pretty printing.

• Using a large sample size, we have good reasons to believe that our results are represen-
tative for CPP usage in configurable systems written in C. However, we cannot generalize
our results to other programming languages that also make use of the preprocessor, such
as C++. This is because C++, for instance, provides additional capabilities for expressing
variable source code (e.g., template metaprogramming), and, consequently, programmers
may use CPP differently [Czarnecki and Eisenecker, 2000; Smaragdakis and Batory,
1998].

• Our analysis is limited to the source code and to #ifdef directives. A system’s
variable code base does not solely depend on configuration knowledge implemented
with #ifdef directives. Additional configuration levels, such as build systems, are
also used for configuration purposes in practice (cf. Section 2.1.1). A comprehensive
analysis of such configuration levels is out of scope, because build-system use highly
depends on the project and the involved technologies. In general, we expect the amount
of configurable source code to increase when we include additional configuration levels—
something other researchers have already observed for single systems, such as the LINUX
kernel [Dietrich et al., 2012b]. Our focus on the source code coincides with developers’
point of view on the implementation of configuration options.

3.4 Related Work
The preprocessor has been the subject of many studies. Next, we discuss these studies in light
of our three sub-goals: configuration space, variable code base, and variability representation
(cf. Section 3.1).

Configuration Knowledge
It has been commonly acknowledged that #ifdef directives in source code are an additional
source of complexity, and that automated tools are necessary to analyze and extract config-
uration knowledge for further processing. Pearse and Oman [1997] suggested to measure
conditional-compilation complexity similar to measuring traditional source-code complexity.
In their experience, measuring the number of configuration options and #ifdef nesting is
crucial for understanding conditional logic during analysis and maintenance tasks. Similarly,
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measuring the number as well as the span and distribution (i.e., similar to our scattering and
tangling degree) of configuration options helps developers to understand the build process,
because developers often define and use configuration options in multiple files.

Krone and Snelting [1994] proposed the creation of a configuration model based on configu-
ration knowledge extracted from #ifdef directives. The extracted model, which is a graph
representation of configuration options and their dependencies, helps to detect configuration-
related bugs, such as ensuring that some configuration options do not depend on each other or
limiting the entropy of configuration options when a system evolves. According to the authors,
such bugs can be detected with quality guidelines. Our empirical study sheds light onto the
configuration complexity that developers face when implementing software. Our proposed met-
rics are easily accessible and have proven useful in practice. For example, Zhang et al. [2013]
experimented with different visualizations of our complexity metrics and presented them to the
developers of a configurable system in industry (Danfoss SPL). According to the developers,
the metrics and visualizations helped to point out complex parts in the system’s implementation.
Although the developers were aware of some of these implementation problems, the evaluation
of the system using our metrics triggered corresponding code refactorings.

In addition to #ifdef directives, alternative sources of configuration knowledge, such as
configuration systems and build systems, are important for the development of configurable
systems (cf. Section 2.1.1). While variability with #ifdef directives is limited to a single
file—with the exception of importing variability from header files—configuration systems and
build systems span across the entire setup of configurable systems. Unfortunately, configuration
knowledge at the level of configuration and build systems is usually not very easy to access.
Developers of existing systems often rely on home-grown solutions, which makes it difficult to
study them in depth. Nevertheless, there is some work on analyzing and measuring configuration
knowledge in such systems [Berger, 2013; Tartler, 2013]. However, the main focus is usually
to make knowledge of these systems accessible for other purposes, e.g., the detection of
configuration errors across different representations of configuration knowledge [Tartler, 2013].

Variable Code Base
There are several case studies about the preprocessor regarding variability implementation.
The most comprehensive case study of CPP was conducted by Ernst et al. [2002]. The authors
analyzed the preprocessor usage mainly by covering macro definitions using #define direc-
tives. The analysis comes with a classification of #define usage in a set of 26 open-source
software systems and a detailed analysis of the pitfalls that arise from #define usage. While
#define directives are also important for tool support, conclusions based on their usage
render an incomplete image of CPP, as #ifdef usage also affects tool support. Our findings
complement the understanding of preprocessor usage for tool support.

In several studies, Favre [1997, 1996, 1995] outlines the importance and general usage of
CPP in software development. The author classifies CPP’s directives as important abstractions
for expressing data structures, for defining software architecture, and for variant management
in developing large-scale software systems. Spencer and Collyer [1992] report on experience
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when using #ifdefs in one software system to implement portable code: despite CPP’s
simple development model (use of annotations), developers overuse #ifdef directives, which
may result in code that is hard to understand and to maintain. In contrast to our work, the
classification comes without an empirical evaluation that could help to design and implement
tool support for configurable systems.

Inspired by language mechanisms and tool approaches for expressing variability in product
lines, Kästner et al. [2008, 2009a] discussed variability implementations at a theoretical level.
The authors’ distinction between coarse-grained and fine-grained extensions provided the
inspiration for our granularity metrics. Our empirical analysis contributes to discussions on
variability implementations.

Variability Representation
There is a large body of work regarding variability representation, in particular stemming from
the development of variability-aware analysis and variability-aware transformation. First of
all, the idea of integrating configuration knowledge into a grammar specification to derive
variability-aware code representations has been proposed before. Among the first proposers
were Platoff et al. [1991], who used variability-aware abstract syntax graphs to represent
#ifdef variability in C source code. The authors made one restriction about the use of
#define and #include directives: they are only allowed in places at which regular C
declarations can occur.

Vittek [2003] and Garrido and Johnson [2003, 2005] developed CPP-aware refactoring tools
for C (XREFACTORY and CREFACTORY respectively), which do not have the restriction about
#define and #include usage. To handle both directives, these tools automatically expand
macros using textual substitutions. Furthermore, to create variability-aware ASTs, both tools
automatically expand undisciplined annotations to disciplined annotations. XREFACTORY uses
a brute-force expansion at the level of files (which leads to massive code replication), whereas
CREFACTORY uses a very sophisticated expansion mechanism at finer granularity. However,
CREFACTORY is tailored to refactoring and based on heuristics.

Baxter and Mehlich [2001] proposed DMS, a source-code transformation system for C
and C++. The authors use CPP-aware grammars that are able to capture a subset of possible
#ifdef annotations for both languages. To resolve interactions of macro substitution and file
inclusion with conditional compilation, the authors use specialized heuristics in DMS. Baxter
and Mehlich provide anecdotal evidence that their tool can parse 85 % of industrial pre-CPP
code and that rewriting undisciplined annotations in 50 000 lines of code can be done in “an
afternoon”. Similarly, Platoff et al. [1991] reported that undisciplined annotations do not pose
a problem when handling C code. Our findings do not support these statements. Using our
definition of disciplined annotations, which aligns with the authors’ specification of CPP-aware
grammars, some systems have thousands of undisciplined annotations. Thus, it is unlikely that,
in practice, developers adopt an approach that includes discipling annotations manually.

The problems with arbitrary preprocessor transformation inspired other researchers to create
their own disciplined macro language [Erwig and Walkingshaw, 2011; Leavenworth, 1966;
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McCloskey and Brewer, 2005; Weise and Crew, 1993]. Erwig and Walkingshaw [2011]
proposed choice calculus, a formal language for software variation management. The theoretical
foundation of the choice calculus is similar to our definition of disciplined annotations; both
approaches allow only the variation of sub-elements in AST-like structures. Considering macro
expansion, there has been significant effort to introduce Lisp-style syntax macros that operate on
ASTs instead of relying on token substitution. Syntax macros are a disciplined form of macros
and are complementary to disciplined annotations for conditional inclusion [Weise and Crew,
1993]. In this context, especially ASTEC [McCloskey and Brewer, 2005] is interesting, because
it also covers both syntax macros and conditional inclusion in a disciplined form (it allows
annotations only on declarations, statements, and expressions). The use of ASTEC requires a
one-time transformation of all CPP directives into the ASTEC macro language. The authors
evaluated their approach using four different programs with the result that most #ifdef
annotations could be transformed automatically. Our work differs from ASTEC and other
syntax-macro systems in that we stick with the lexical preprocessor CPP (we only restrict its
use) to avoid changing or adapting existing tool support. Additionally, our analysis gives a
more comprehensive overview of #ifdef annotations, because we analyzed a substantial code
base. Unclassified, undisciplined annotations account for 5.8 %, at the maximum, during the
evaluation of ASTEC. We found that some software projects contain up to 28.2 % unclassified,
undisciplined annotations (for example, the LINUX kernel used for the ASTEC evaluation seems
to be a favorable case compared to the other systems in our analysis, presumably due to its
coding guidelines mentioned in Section 3.1.2).7 Overall, our work confirms the findings in
ASTEC, and we strongly agree that disciplined annotations are practical for implementing
variable source code.

Similarly, Boucher et al. [2010] proposed a pragmatic tag-and-prune approach for developing
configurable systems using a syntactic preprocessor. Developers annotate syntactically complete
code blocks with configuration knowledge (feature tags) to explicitly state variability in the
source code. The restriction to annotating solely complete code blocks enforces disciplined
annotations, which are not prone to syntax errors. The tag-and-prune approach was successfully
applied in the development of a library of a file-transmission protocol [Boucher et al., 2010].
However, we believe that abandoning CPP in favor of a different preprocessor will most likely
not work in practice, as the huge amount of legacy code has to be transformed prior to the
application of the new preprocessor. Additionally, existing tool support (e.g., editor support)
has to be adapted in order to support a new approach. Instead of introducing a new preprocessor,
we stick with CPP and improve the tool support for it.

Using disciplined annotations, there are two projects that are able to create variability-
aware ASTs of any C code with #ifdef directives (TYPECHEF [Kästner et al., 2011] and
SUPERC [Gazillo and Grimm, 2012]). Both projects use #ifdef-enriched grammars that
impose constraints on the placement of #ifdef directives in the source code, of which a

7We assume that the authors classification of imperfect #ifdef annotation is comparable to our classifi-
cation of unclassified annotations, because the authors use an expansion approach in order to align them
with variability supported in ASTEC.
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variability-aware parser creates variable AST nodes. If annotations in the source code do not
adhere to supported annotations, they are automatically expanded until they can be represented
as AST nodes, too. We use variability-aware ASTs in Chapter 4 and 5 as a basis for the analysis
and transformation of configurable systems.

There are some approaches of refactoring #ifdef-based code into alternative represen-
tations, such as aspects. However, existing approaches are mostly conceptual or use manual
refactorings due to the complexity of parsing pre-CPP code. For example, Adams et al. [2009]
analyzed the feasibility of refactoring, but did not actually execute refactorings. Lohmann et al.
[2006] refactored #ifdef annotations in an operating system’s kernel, but did not automate
the refactoring. Kästner et al. [2009a] automated and formalized refactorings from annotated
Java code to mixin-style feature modules (which can be adapted to AspectJ as a target language
as well), but strictly relied on disciplined annotations.

In general, representing variability with aspects or feature modules does not entail the same
problems (in particular, annotation discipline) as preprocessors. Aspects and feature modules
represent syntactically complete code artifacts. A dedicated generator/composer composes
code artifacts in a predefined manner in order to generate a desired variant [Apel et al., 2013b].
A generated variant is per se again syntactically correct, as no transformation step (during the
generation process) introduces any errors. Instead of analyzing the entire code base as with
preprocessors, it is sufficient to analyze all code artifacts in isolation to find all syntax errors.

At the same time, since aspects and feature modules are complete code artifacts—their
language does not come with concepts for manipulating tokens based on directives—they
can be represented with ASTs incorporating variability information as well. To do so, one
has to establish a link from the variable implementation, using aspects or feature modules,
to the non-variable base implementation. In the case of aspect-oriented programming, the
non-variable base implementation provides implicit extension points (joinpoints) at which
aspects hook in their implementation. Variability arises from activating aspects or by leaving
the base implementation as it is. In a similar way, feature modules introduce new functionality
or refine existing ones. The use of a single feature module during the variant-generation process
is optional, unless it is not enforced by the system’s configuration knowledge. Hence, code that
introduces new functionalities or refines existing ones can be represented in a variable AST
representation, too.

We discuss the use of variable code representations for program analysis and program
transformation in the following chapters.

3.5 Summary
Developers of configurable systems use CPP to a large extent to implement variability in a
system. At the same time, CPP-based implementations have a huge impact on analyzing and
transforming configurable systems. To infer valuable information for the development of proper
tool support, we stated a set of research questions regarding the realization of configuration
knowledge, the implementation of the variable code base, and the variability representation
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for analyzing and transforming configurable systems. Based on the research questions, we
introduced a set of metrics for measuring the required properties. We used the metrics for an
empirical analysis of CPP-preprocessor use in 42 software systems, comprising more than 30
million lines of C code.

First, we found that CPP’s mechanisms are frequently used for implementing a system’s
code base. On average, 21 % of a system’s code base is variable, and existing systems provide
up to thousands of options for configuration. Nevertheless, the complexity of configuration
knowledge (scattering, tangling, and nesting) does not necessarily increase with the size of a
configurable systems. For example, in most systems, the average number of nested #ifdef di-
rectives is close to one (i.e., developers hardly use #ifdef nesting). This is promising, because
#ifdef nesting is one major cause of exponential growth when analyzing or transforming
configurable systems. At the same time, scattering and tangling of configuration knowledge
suggest that there is a huge potential for sharing (in particular sharing of analysis results).

Second, when looking at #ifdef directives in more detail, we observed that most extensions
occur at a high level of granularity: developers use #ifdef directives mostly to enclose
functions or entire blocks, such as if statements or for loops. Coarse-grained extensions are
easier to transform into alternative representations, such as aspects or feature modules. Both
representations provide capabilities to introduce or extend function definitions. Nevertheless,
applying such transformations depends on a multitude of additional information such as type,
control-flow, and data-flow dependencies. Therefore, our granularity measurements can serve
only as a rough indicator. Furthermore, we discussed the benefits of transforming #ifdef
directives into alternative representations. As a basis for discussion, we determined the number
of distinct (heterogeneous) and similar (homogeneous) extensions in the code. Homogeneous
extensions can benefit from quantification mechanisms that aspect-oriented languages provide.
According to our measurements, most extensions are heterogeneous and only 5 % of the
extensions would benefit from aspects.

Third, we discussed the creation of a variability representation for CPP-based implemen-
tations. For our purposes, we used an extended AST, in which AST elements incorporate
configuration knowledge. To create such ASTs, arbitrary, undisciplined annotations need to
be transformed into disciplined annotations. When measuring the annotation discipline for
our case studies, we observed that 85 % of all #ifdef annotations were already disciplined.
They respect the underlying source-code structure and enable a one-to-one mapping between
source code and the AST. It seems that software engineers are aware of the problems of
undisciplined annotations and deliberately limit their use. With our study, we demonstrated
that disciplined annotations bear the potential to improve the situation for tool developers who
aim at unprocessed source code significantly. This way, tools for analyzing and transforming
configurable systems become feasible for a vast amount of legacy C code. Since undisciplined
annotations occur in nearly all analyzed programs, we propose to make them disciplined by
means of a semi-automatic transformation. We argue that, to take advantage of disciplined
annotations, it is feasible to accept certain kinds and a certain amount of code replication in
favor of better tool support and better readability of code.
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4 Analyzing C Code with Preprocessor
Annotations
This chapter shares material with the ESEC/FSE’13 paper „Scalable Analysis of
Variable Software“ [Liebig et al., 2013].

In Chapter 3, we found out that many software systems provide a rich set of configuration
options that allow users to tailor a software system to a specific application scenario. For
example, the LINUX kernel can be configured by means of more than 7000 compile-time
configuration options [Sincero et al., 2007], giving rise to possibly billions of variants that
can be derived and compiled on demand. While advances in configuration management and
generator technology facilitate the development of configurable software systems with myriads
of variants, this high degree of configurability is not without cost. How can we analyze these
many variants for errors? Unfortunately, traditional analyses look only at individual variants
and do not scale in the presence of an exponential number of variants that can typically be
derived from a configurable system. For systems such as the LINUX kernel, it is not even
possible to derive all variants to analyze them separately, because there are so many—more than
the estimated number of atoms in the universe [Tartler et al., 2011].1 There are two competing
approaches for the analysis of configurable systems with a huge number of valid variants:
sampling-based analysis and variability-aware analysis [Thüm et al., 2014]. Both address the
fact that an exhaustive analysis of all system variants (brute-force) is usually impossible.

The idea of sampling is to select a representative set of variants (also known as sample set)
to be analyzed. The sample set contains valid configurations of the configurable system, and
it is determined by means of a sampling heuristics that exploits configuration knowledge to
compute a possibly small set for analysis. After a generation step, individual variants that
do not contain variability any longer can be analyzed using a traditional, variability-unaware
analysis. Sampling-based analysis is still a standard de facto [Thüm et al., 2014]. Many
different sampling heuristics were proposed (e.g., [Johansen et al., 2011; Tartler et al., 2012])
and were successfully applied in various scenarios [Oster et al., 2010; Siegmund et al., 2012].
Although analysis time can be reduced significantly, the information obtained is necessarily
incomplete, since only a subset of all variants is checked.
1There were some attempts of determining all valid configurations (also known as model counting [Biere et al., 2009])
of systems of the size of the LINUX kernel using either SAT solvers [Thüm et al., 2009] or BDDs [Mendonça, 2009;
Mendonça et al., 2008]. None of them has succeeded so far, since the computational effort exceeded available
hardware resources. While SAT solvers perform well when solving individual satisfiability problems, they become
intractable for an exponential number of problems (e.g., counting all valid configurations). The critical operation with
BDDs is their initialization, for which attempts scale up to 2000 configuration options [Acher et al., 2012].
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Recently, researchers have begun to develop a new type of analysis that is variability-
aware [Thüm et al., 2014]. The key idea is to not generate and analyze individual variants
separately, but to analyze the code base directly before variant generation, incorporating
variability and configuration knowledge. In the case of the LINUX kernel, source code is
analyzed directly including #ifdefs, which is contrary to applying the generator (CPP) to
generate the plain C code of individual kernel variants and analyze them in isolation. Variability-
aware analysis requires more effort (upfront investment) compared to traditional analysis of a
single system, because all local variations need to be considered. However, and this is the key
success factor, variability-aware analysis takes advantage of the similarities between variants
and avoids analyzing common code over and over again.

Although both analysis approaches have been around for some time, there is no in-depth
comparison that reveals a realistic picture of their application in practice. To close this gap,
we survey both analysis approaches with respect to three important criteria for analysis tools:
(1) analysis time, (2) upfront investment, and (3) error coverage. First, with analysis time we
determine the overall performance of an analysis approach for the computation of analysis
results. This is a crucial criterion, because an analysis approach is often accepted by developers
only when it does not disrupt his/her workflow [Johnson et al., 2013]. Second, with upfront
investment we discuss facets of setting up an analysis approach in practice. In particular,
we take a look at technical requirements for sampling-based analysis and variability-aware
analysis. With this criterion we investigate pros and cons of both analysis approaches and
their feasibility in the long run. Third, since sampling-based analysis is per se incomplete, it is
interesting to determine the number of errors that sampling heuristics still finds when analyzing
configurable systems. If a sampling-based analysis is fast and the sampling heuristics covers
most (if not all) errors, it may still be practical to use it in a given application scenario. With
these criteria in mind we study the pros and cons of both analysis approaches and are able to
make recommendations on choosing one approach over the other in practice.

Before we compare sampling-based analysis and variability-aware analysis with respect
to the three criteria in Section 4.2, 4.3, and 4.4, we give a brief introduction to both analysis
approaches next.

4.1 Sampling-based Analysis and Variability-aware
Analysis

4.1.1 Sampling-based Analysis
Sampling-based analysis of configurable systems stems from the early approaches of testing
software [Nie and Leung, 2011]. Due to the sheer size and complexity of real-world systems, a
brute-force approach of analyzing all inputs in isolation is usually infeasible. Hence, developers
typically analyze only a subset of variants, called the sample set, using off-the-shelf analysis
tools. The idea is that, even though we cannot analyze all inputs individually, we can still strive
for analyzing a representative sample set in order to be able to draw informed conclusions about
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the entire set of inputs (e.g., concerning defect probability). Contrary to the original definition
of sampling-based analysis, we look at a special case of sampling-based analysis, in which the
inputs are configuration options and not arbitrary input values (e.g., program parameters) of
a software system. So the output of a sampling approach is a sample set containing system
variants.

The sample set is selected by a sampling heuristics, applied either by a domain expert or by
an algorithm. Researchers and practitioners proposed different sampling heuristics, some of
which require a sophisticated upfront analysis. We selected four heuristics that are common
in practice (single configuration, random, code coverage, and pair-wise) and describe them
in this section. Although the outcome of sampling-based analysis is inherently incomplete,
the coverage criterion of a sampling heuristics allows developers to make reliable statements
to some extent, e.g., that all combinations of two configuration options in a system are free
of errors. For an overview of other sampling strategies, we refer to a recent survey [Nie and
Leung, 2011].

header.h

1 #ifdef A
2 int foo(int a) {...}
3 #else
4 int foo2(int a) {...}
5 #endif
6 #ifdef B
7 int bar(int i, int j) {
8 ...
9 }

10 #endif

main.c

11 #include "header.h"
12 int main() {
13 #ifdef A
14 bar(2,3);
15 foo2(3);
16 #endif
17 #ifdef C
18 print("done");
19 #endif
20 }

Figure 4.1: C code with preprocessor directives; the header file (left) contains one alternative and one
optional definition; the C file (right) uses the definitions of the header file.

Single-configuration Heuristics

The simplest sampling heuristics, called single configuration, is to analyze only a single
representative variant that enables most, if not all, configuration options of a configurable
system. Typically, the variant is manually selected by a domain expert. The strength of this
heuristics is that there is only a single variant that needs to be analyzed. Hence, it is fast.
By selecting many configuration options, the heuristics covers a large part of the system’s
code base. However, it cannot cover mutually exclusive code fragments at the same time or
intricate interactions specific to individual combinations of configuration options [Garvin and
Cohen, 2011]. For the code snippet in Figure 4.1, we can create a configuration that enables all
configuration options: {A,B,C}. Since code fragments in Line 2 and 4 are mutually exclusive,
a single configuration will cover only one of them, leaving Line 4 uncovered.

According to Dietrich et al. [2012b], in the LINUX development community it is common
to analyze only one predefined variant, called allyesconfig, with most configuration options
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selected. Similarly, many software systems come with a default configuration which satisfies
most users and which usually activates many configuration options.

Random Heuristics

A simple approach to select samples is to generate them randomly. For example, in a project
with n configuration options, we could make n random, independent decisions (one for each
option) of whether to enable them. In projects with dependencies between options, we would
discard variants with invalid configurations and keep the remaining variants as our sample.
Random sampling is simple and scales up to an arbitrary sample size. The developers of
BUSYBOX and LINUX use random sampling during their development process. In both projects,
decisions on configuration options are dependent, as random decisions are only applied to
remaining, undecided options after constraints in the configuration system have been evaluated.
While this procedure avoids creating invalid configurations, it renders the sampling approach
uneven and, hence, contrary to the original definition of this sampling heuristics. Random
sampling does not adhere to any specific coverage criterion, and analysis approaches based on
it can continue until time or money runs out.

Code-coverage Heuristics

The code-coverage heuristics is inspired by the statement-coverage criterion used in software
testing [Zhu et al., 1997]. In contrast to software testing, the code-coverage heuristics aims at
variant generation, not code execution [Tartler et al., 2012]. The goal of this heuristics is to
select a minimal sample set of variants, such that every lexical fragment of the system’s code
base is included in, at least, one variant. In contrast to the single-configuration heuristics, code-
coverage heuristics covers mutually exclusive code fragments. However, note that including
each code fragment at least once does not guarantee that all possible combinations of individual
code fragments are considered. For the code snippet in Figure 4.1, the two configurations
{A,B,C} and {} (the first selecting all options and the second deselecting them all) would be
sufficient to include every code fragment in, at least, one variant. However, it would not help to
detect the compilation error when calling bar when A is selected but B is not.

There is an algorithm to compute an optimal solution (a minimal set of variants) by reducing
the problem to calculating the chromatic number of a graph, but it is NP-complete and does not
scale up to our case studies.2 Instead, we resort to the conservatively approximated solution by
Tartler et al. [2012], which speeds up the computation of the sample set significantly at the cost
of producing a sample set that is possibly larger than necessary.

A subtle problem of this heuristics arises from the issue of how to treat header files. When
computing the sample set of two variants in our example, we implicitly assumed that we analyze
coverage in the main file and the included header file together. Due to the common practice of
including files that include other files themselves, a single #include directive in the source

2For more details on the optimal algorithm, confer to https://github.com/ckaestne/
OptimalCoverage/.
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code can bloat the code base of a single file easily by an order of magnitude. According
to Kästner et al. [2011], file inclusion is frequently used in the LINUX kernel, in which, on
average, 353 header files are included in each C file. In addition, header files often exhibit
their own variability which is invisible in the C file without expanding macros. Furthermore,
the #include directive for a header file may be annotated with an #ifdef, so that, for a
complete analysis of all header code, sophisticated analysis mechanisms become necessary
(e.g., symbolic execution of preprocessor code) [Hu et al., 2000; Latendresse, 2003; Kästner
et al., 2011]. The resulting variant explosion can make complete analyses that include header
files unpractical or infeasible, even with the approximate solution by Tartler et al. [2012].
Therefore, we distinguish two strategies for code coverage: (1) covering variability only in C
files and (2) covering variability in C files and included header files. When analyzing the main
file in Figure 4.1, the single configuration {A,C} is sufficient to cover all code fragments of the
main file. We use both strategies later in our evaluations.

Pair-wise Heuristics

The pair-wise heuristics is motivated by the hypothesis that many faults in software systems
are caused by interactions of, at most, two configuration options [Kuhn et al., 2004; Calder
and Miller, 2006; Perrouin et al., 2012; Siegmund et al., 2012]. Using pair-wise heuristics,
the sample set contains a minimal number of samples that cover all pairs of configuration
options, whereby each sample is likely to cover multiple pairs. For the code in Figure 4.1, with
three optional and independent configuration options, a pair-wise sample set consists of four
configurations: {A,B}, {A,C}, {B,C}, and {}.

The computation of pair-wise sample sets is not trivial if dependencies (such as A implies
B or C) exist in the configuration model; in fact it is NP-complete (similar to the minimum
set cover problem) [Johansen et al., 2011]. Hence, existing tools apply different conservative
approximations to make the computation possible for large systems with many configuration
options. In our experiments, we used SPLCATOOL3 by Johansen et al. [2011]. The computed
sample set covers all pair-wise interactions that occur in a given system, but the set is not
guaranteed to be minimal.

Summary

The single-configuration heuristics is simple and easy to apply, but covers only a fragment of
a system’s code base. Code-coverage heuristics and pair-wise heuristics outperform single
configuration in covering a system’s code base, but the algorithm for the computation of
minimal sample sets is NP-complete. To make sample-set computation feasible for large
systems, existing tools apply different heuristics to make the computation tractable at the
expense of increased sample-set sizes.

3http://heim.ifi.uio.no/martifag/splcatool/
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4.1.2 Variability-aware Analysis
Traditional analysis techniques do not incorporate configuration-knowledge in the form of
#ifdef directives, so they are only suitable for the analysis of single system variants. Ana-
lyzing system variants separately, the analysis techniques do not exploit similarities between
system variants, and in a worst-case scenario, parts of a configurable system (with n configura-
tion options) have to be analyzed 2n times. In contrast, variability-aware analysis (also known
as family-based analysis [Thüm et al., 2014]) takes advantage of the similarities between the
variants of a system in order to speed up the analysis process. Although individual variability-
aware analyses differ in many details [Thüm et al., 2014], an idea all have in common is to
analyze code that is shared by multiple variants only once. To this end, variability-aware
analyses do not operate on generated variants, but on the raw code artifacts that still contain
configuration knowledge.

There are many proposals for variability-aware analysis in literature, including data-flow
analysis [Brabrand et al., 2013; Bodden et al., 2013], deductive verification [Thüm et al., 2012],
model checking [Apel et al., 2013d; Classen et al., 2010, 2011; Apel et al., 2011; Lauenroth
et al., 2009], parsing [Kästner et al., 2011], and type checking [Apel et al., 2010a; Kästner and
Apel, 2008; Kästner et al., 2012b; Thaker et al., 2007]. However, while this work is promising,
variability-aware analyses (beyond parsing) have not been applied to large-scale, real-world
systems so far. Previous work either concentrated mostly on formal foundations or is of limited
practicality (evaluated with academic case studies only). Despite the foundational previous
work, it is unclear whether variability-aware analysis scales to large systems, as it considers all
variations of a system simultaneously.

It is important to note that the development of a variability-aware analysis requires an upfront
investment. Existing analysis techniques and tools have to be made variability-aware. That
is, underlying data structures and algorithms need to be modified to incorporate configuration
knowledge. Next we describe the data structures for type checking and liveness analysis that
we use throughout our comparison of sampling-based analysis and variability-aware analysis.
Specifically, we describe their generation and how they are processed by variability-aware
algorithms.

All data structures and algorithms described in this section come with corresponding im-
plementations as part of the TYPECHEF project (variability-aware parsing and analysis infras-
tructure).4 While variability-aware ASTs and variability-aware type checking were developed
by others (Kästner et al. [2011] and Kästner et al. [2012b]), variability-aware CFGs and
variability-aware liveness analysis are contributions of our own.

Variability-aware Abstract Syntax Tree

Many static analyses are performed on ASTs (cf. Section 2.2). As we want to analyze an entire
configurable software system, we have to construct an AST that covers all variants of a system,

4https://ckaestne.github.io/TypeChef/
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1 #ifdef A #define EXPR (a<0)
2 #else #define EXPR 0
3 #endif
4
5 int r;
6 int foo(int a #ifdef B, int b #endif) {
7 if (EXPR) {
8 return -b;
9 }

10 int c = a;
11 if (c) {
12 c += a;
13 #ifdef B c += b; #endif
14 }
15 return c;
16 }

(a) Source code with two configuration options
that configure several code fragments (Line 1
to 3, 6, and 13); for compactness, we integrated
#ifdef directives inside single code lines

TranslationUnit

int r FunctionDef

int foo

int a

Choice B

int b ε

Stmt-Block

if

Condition

Choice A

a<0 0

Then-Block

return -b

. . .

(b) Excerpt of the corresponding variable AST

Figure 4.2: Running example for variability-aware analysis in C.

including the corresponding configuration knowledge from #ifdef annotations in the source
code (cf. Section 2.1.1).

Previously, we discussed that the limitation of #ifdef variability to disciplined annotations
enables a one-to-one mapping between #ifdef code fragments in source code and a variable
representation in an AST (cf. Section 3.3). The resulting AST representation is similar to a
standard AST, but configuration knowledge is attached to express compile-time variability.
To do so, we extend our standard AST with variable nodes (or Choice nodes) that represent
#ifdef variability of the source code in our AST representation. Similar to ambiguity nodes
in Generalized LR parse forests [Tomita, 1984], choice nodes express the choice between two
or more (using nested choice nodes) alternative subtrees. Explored formally in the choice
calculus [Erwig and Walkingshaw, 2011], choice nodes are a general vehicle for expressing
variability in data structures [Walkingshaw, 2013]. For example, Choice(A,a<0,0) (cf.
Figure 4.2b) expresses the alternative of two expressions a<0 and 0, controlled by configuration
option A. The Choice node directly represents the configurable expression (including the
#ifdef annotation A) in our running example (cf. Figure 4.2a; #ifdefs in Lines 1 to 3 and
their use in Line 7). One alternative of a choice may be empty (cf. Figure 4.2b; ε), which makes
the other, in fact, optional. In principle, we could use a single Choice node on top of the AST
with one large branch per variant; but a configurable AST is more compact, because it shares
parts that are common to multiple variants (e.g., in Figure 4.2b, we store only a single node
for the declaration of r and a single node for the function name foo, which are shared by all
variants).

To create variable ASTs for further processing, we use a variability-aware parsing framework
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called TYPECHEF. TYPECHEF’s parser incorporates #ifdefs during the parsing process and
is able to handle undisciplined annotations automatically. To this end, the parser expands
undisciplined annotations until they become disciplined and can be represented in the AST. In
contrast to our definition of disciplined annotations mentioned previously (cf. Section 3.1.2),
TYPECHEF’s parser allows variability at a lower level of granularity. That is, besides declarations
and statements, annotations at the level of function parameters, function specifiers, or even
subexpressions and substatements are possible and find themselves represented as Choice
nodes in the variable AST.

For more information about the parsing process, we refer to Kästner et al. [2011].

Variability-aware Type Checking

A classic type-checking algorithm for C traverses the AST, collects declarations in a symbol ta-
ble, and attempts to assign proper types to all expressions (getType:Map[Name,Type]→
Expr → Type). In principle, a variability-aware type checker works similarly, but covers
all variants. For our comparison, we rely on the implementation of a variability-aware type
checker on top of the TYPECHEF parsing infrastructure by Kästner et al. [2012b]. The type
checker incorporates configuration knowledge in each of the three following steps.

First, a symbol (variable, function, etc.) may only be declared in some variants or may
even have alternative types in different variants. To capture differently annotated variables,
the symbol table is extended such that a symbol is no longer mapped to a single type (similar
to the proposal of Aversano et al. [2002]), but to a conditional type (a choice of types or
ε; CST = Map[Name,Choice[Type]]). Table 4.1 illustrates a possible encoding of a
conditional symbol table for our example, including the symbols’ valid name binding in the
program (scope). A symbol which is declared in all variants does not need Choice nodes
(e.g., r). However, if a symbol is declared in a subtree of the AST that is only reachable given
a certain presence condition, a presence condition is included in its type. Similarly, a symbol
with different types can be declared in different variants. In our running example, the function
foo has two alternative types (int→int→int vs int→int), depending on whether B is
selected. Similar to variables and functions, type information for structures and enumerations
in C has to be extended, too.

Second, during expression typing, the type checker assigns a variable type (choice of
types) to each expression (getType:CST→Expr→ Choice[Type]), by retrieving type
information for symbols from the lookup table. In the context of configurable systems, the
lookup may return a variable type. For example, when verifying that the condition of an
if statement has a scalar type, the type checker checks whether all alternative choices of
the variable type are scalar. If the check fails only for some alternative results, a type error
is reported that points to a subset of variants, as characterized by a corresponding presence
condition. Similarly, an assignment is only valid if the expected (variable) type is compatible
with the provided (variable) type in all variants. Therein, an operation on two variable types
can, in the worst case, result in the Cartesian product of the types in either case of the
choice, resulting in a variable type with many alternatives. All other type rules are basically
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Symbol (Conditional) Type Scope

r int 0
foo Choice(B, int→int→int, int→int) 0
a int 1
b Choice(B, int, ε) 1

Table 4.1: Conditional symbol table (CST) at Line 6 of our running example in Figure 4.2.

implemented along the same lines. In our running example, the type checker would report a
type error in Line 8, because the symbol b cannot be resolved in variants without configuration
option B activated (cf. Table 4.1).

Third, the type checker uses the configuration model of a system (if available) to filter
all type errors that occur only in invalid variants. To this end, it simply checks whether the
presence condition of each type error is satisfiable when conjoined with the configuration
model (checked with a standard SAT solver). If so the type checker issues an error including
the presence condition, otherwise it does not.

For more information about type checking in the presences of variability, we refer to Kästner
et al. [2012b].

Variability-aware Control-flow Graphs

Most data-flow analyses require a CFG (cf. Section 2.2) that represents all possible execu-
tion paths of a program. Nodes of the CFG correspond to instructions in the AST, such as
assignments and function calls; edges correspond to possible successor instructions according
to the execution semantics of the programming language. A CFG is a conservative static
approximation of the program’s actual behavior.

As with type checking, we need to make CFGs variable to cover all system variants.
To create a CFG for a single program, we need to compute the successors of each node
(succ:Node→List[Node]). In the presence of variability, the successors of a node
may diverge in different variants, so we need a variability-aware successor function that
returns different successor lists for different variants. To encode such a function we use
Choice nodes to represent varying successor elements. So for the successor function, we
encode the result as succ:Node→Choice[List[Node]], or equivalently but with more
sharing succ:Node→List[Choice[Node]]. The higher sharing of analysis results in
List[Choice[Node]] arises from the fact that successor elements common to all variants
are stored only once, instead of storing them multiple times in differently annotated successor
lists (Choice[List[Node]]). Using the result of this successor function, we can determine
presence conditions for all possible successors and add them as annotations to edges in the
variability-aware CFG.
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Figure 4.3: Excerpt of the variability-aware
CFG of the running example in Figure 4.2.

We illustrate variability-aware CFGs by means
of the optional statement in Line 12 of our run-
ning example in Figure 4.2. In Figure 4.3, we
show an excerpt of the corresponding variability-
aware CFG (node numbers refer to line numbers
in Figure 4.2a). The successor of the instruction
c += a in Line 12 depends on the configura-
tion option B: if B is selected, statement c += b
in Line 13 is the direct successor; if B is not se-
lected, return c in Line 15 is the (only) succes-
sor. Technically, we add further nodes to the result
list of the successor function, until the conditions
of the outgoing edges cover all possible variants,
in which the source node is present (checked with
a SAT solver or BDDs).

Alternatively, we could drop presence conditions on edges and express variants of the control
flow with if statements of C. Figure 4.4 illustrates the difference between these alternatives.
The variable a is initialized with zero and incremented/decremented afterwards depending on
the configuration options A and B, respectively. When both configuration options are mutually
exclusive, the control-flow is limited to the increment and the decrement of a, because there
is no control-flow path in between. By contrast, if we use if statements, we lose precision,
because a normal CFG does not evaluate the if condition, but conservatively approximates
the control flow by reporting both alternative branches as possible successor statements. For
our example in Figure 4.4b there is a possible control-flow path from the increment in Line 3
to the decrement in Line 6. Such sound but incomplete approximation is standard practice to
make static analysis tractable or decidable. However, using if statements, we lose precision
for compile-time configurability, since the evaluation of configuration options is pushed to
run time. Furthermore, we have only propositional formulae to decide between execution
branches, which makes computations decidable and comparatively cheap. So we decided in
favor of presence conditions on edges, which is in line with prior work on CFG in variable Java
programs [Brabrand et al., 2012; Bodden et al., 2013].

We implemented the first variant of variability-aware CFGs (using presence conditions on
control-flow edges) on top of TYPECHEF’s parsing infrastructure (cf. Section 4.1.2).

Variability-aware Liveness Analysis

Liveness analysis (or live-variable analysis) is a classic data-flow analysis for the computation
of variables that are live (that may be read before being written again) for a given statement.
A variable is live if there is a path from a definition to a use without any re-definition of the
variable in between. The result of the analysis can be used, for example, to conservatively detect
dead code. That is, if a variable is not live after its definition (with respect to the control flow), it
can be eliminated. In real-world systems, warnings about dead code that occurs only in specific
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1 int a = 0;
2 #ifdef A
3 a = a+1;
4 #endif
5 #ifdef B
6 a = a-1;
7 #endif

(a) Compile-time vari-
ability with #ifdefs

1 int a = 0;
2 if (A) {
3 a = a+1;
4 }
5 if (B) {
6 a = a-1;
7 }

(b) Run-time variability
with if statements

Figure 4.4: CFG representation with compile-time and run-time variability.

variants are important for maintainers; corresponding problems are regularly reported as bugs.5

Therefore, we want to incorporate variability in the results of the liveness analysis, too.
Liveness analysis is a fix-point computation of sets of variables that are live at (livein) and

live after (liveout) a given control-flow statement s of a function (cf. Equations 4.1 and 4.2).
Both functions are repeatedly recomputed for all control-flow statements of a function until
their outcomes stabilize at a fixed point, i.e., the result sets for all control-flow statements do not
change anymore. Live variables are determined using the two functions gen (cf. Equation 4.3)
and kill (cf. Equation 4.4), which compute all variables read and all variables written to,
respectively. Liveness is a backward analysis, because analysis results are passed on successor
elements (using succ in Equation 4.2) to its predecessors. While in traditional liveness analysis
all functions return sets of variables, in variability-aware liveness analysis both return sets that
may vary (a choice of sets or a set with optional entries), depending on the variability in the
input representation.6 The results of livein and liveout are variable as well, and the signatures of
both functions change from Node→Set[Id] to Node→Set[Choice[Id]], where Id
represents the identifier of a live variable.

livein(s) = gen(s) ∪ (liveout(s) \ kill(s)) (4.1)

liveout(s) =
⋃

p∈succ(s)

livein(p) (4.2)

gen(y ← f(x1, ..., xn)) = {x1, ..., xn} (4.3)
kill(y ← f(x1, ..., xn)) = {y} (4.4)

5e.g., https://bugzilla.kernel.org/show_bug.cgi?id=1664.
6Internally, we use formula maps (Map[Id,PresenceCondition]) that associate each value with a presence
condition [Walkingshaw et al., 2014]. Formula maps generalize sets (Set[Id]), in which they annotate each set
element with a condition, which controls the presence or absence of the element. In our case, the condition is a
propositional formula constructed from configuration options. The diff and union operations of formula maps (cf.
Equations 4.1) are straightforward extensions including BDD and SAT operations. In the standard case (no variability),
PresenceCondition is equal to type Boolean.
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Line Uses Defines In Out

10 {a} {c} {a,bB} {a,bB,c}
11 {c} {} {a,bB,c} {a,bB,c}
12 {a,c} {c} {a,bB,c} {bB,c}
13 {bB,cB} {cB} {bB,cB} {cB}
15 {c} {} {c} {}

Table 4.2: Liveness-computation result of our running example in Figure 4.2.

In Table 4.2, we show the results of variability-aware liveness analysis for our running
example. We show the result of each equation as a set of variables including their presence
condition as subscript. For example, only variable c is live in the return statement in Line 15.
Considering the control flow from Line 10 to 13 (10→ 11→ 12→B 13), in the declaration
statement in Line 10 the variable a is live, whereas b is only live if B is selected.

Our discussions on variability-aware liveness analysis are an important contribution to the
development of variability-aware static analysis, and we implemented variability-aware liveness
analysis as an extension of TYPECHEF’s analysis infrastructure on top of variability-aware
CFGs (cf. Section 4.1.2).

4.2 Analysis Time

To evaluate the performance of sampling-based analysis and variability-aware analysis, we
compare their analysis times in two full-fledged scenarios: type checking and liveness analysis.
Both types of analysis are frequently used and are seamlessly integrated in modern Integrated
Development Environments (IDEs) for on-the-fly error detection and coding assistance (e.g.,
auto-completion). Analysis times play an important role here, because results should be
obtained quickly to give developers fast feedback and not to disrupt their workflow. So far it
has been unknown whether sampling-based analysis and variability-aware analysis are feasible
for the analysis of configurable systems and whether they scale in practice. To this end, we
analyzed three real-world, large-scale systems, which increases external validity substantially
compared to previous work that mostly concentrated on formal foundations, made limiting
assumptions, or relied on comparatively small and academic case studies (cf. Section 4.6). We
used state-of-the-art sampling heuristics (single conf, code coverage with and without headers,
and pair-wise), as introduced in Section 4.1.1.
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4.2.1 Empirical Study
Hypotheses and Research Questions

Based on the goals and properties of variability-aware and sampling-based analysis, we state
two hypotheses and two research questions:

1. Variability-aware vs single conf: Analyzing all variants simultaneously using variability-
aware analysis is most likely slower than analyzing a single variant that covers most
configuration options. This is because the variable program representation covering all
variants is larger than the program representation of any single variant, including the
largest possible variant:

H1 The execution times of variability-aware type checking and liveness analysis are
larger than the corresponding times of analyzing the variants derived by single-
configuration sampling.

2. Variability-aware vs pair-wise: While previous work showed that pair-wise sampling is
a reasonable approximation for the analysis of all variants [Lochau et al., 2012], it can
still generate quite large sample sets, as it considers the configuration space of the entire
system in question [Johansen et al., 2012]. Hence, we expect variability-aware analysis
to outperform pair-wise sampling:

H2 The execution times of variability-aware type checking and liveness analysis are
smaller than the corresponding times of analyzing the variants derived by pair-wise
sampling.

3. Variability-aware vs code coverage: With respect to the comparison of variability-aware
analysis and code-coverage sampling, we cannot make any informed guesses. Code-
coverage sampling generates sample sets depending on the use of configuration options
in the analyzed C files. As we do not know details of the code, we cannot predict how
many variants will be generated and how large they will be. Hence, we pose a research
question instead. Specifically, the influence of configuration options that occur in header
files is unknown and, therefore, we look at two different variants of code coverage: one
with header files and one without.

RQ1 How do the execution times of variability-aware type checking and liveness anal-
ysis compare to the times for analyzing the variants derived by code-coverage
sampling (with and without header files)?

4. Scalability: Finally, we pose the general question of the scalability regarding variability-
aware analysis.

RQ2 Does variability-aware analysis scale to systems with thousands of configuration
options?
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The motivation for questioning scalability is that variability-aware analysis reasons about
variability by solving SAT problems or using BDDs during analysis. Generally, SAT
is NP-complete, but previous work suggests that the problems that arise in variability-
aware analyses are typically tractable by state-of-the-art SAT solvers [Mendonça et al.,
2009] and BDDs [Czarnecki and Wąsowski, 2007], and that caching can be an effective
optimization [Apel et al., 2010a].

Subject Systems

To evaluate our hypotheses and to answer our research questions, we selected three subject
systems. We chose publicly available systems (for replicability) of substantial size, which
are actively maintained by a community of developers and used in real-world scenarios. The
systems consist of a substantial, variable code base, in which variability is implemented using
CPP, and provide at least an informal configuration model that describes configuration options
and their valid combinations [Liebig et al., 2010]. To facilitate the use of configuration models
in these systems, we employed several tools for configuration-model extraction [Berger et al.,
2010b; Tartler et al., 2011] and build-system analysis [Berger et al., 2010a].

• The BUSYBOX tool suite reimplements a subset of standard Unix tools for resource-
constrained systems. With 792 configuration options, it is highly configurable, resulting
in 1.26× 10159 valid system variants. Most of the options refer to independent and
optional subsystems and the configuration model in conjunctive normal form has 993
clauses. We used BUSYBOX version 1.18.5 (522 C files and 191 615 lines of source
code).

• The LINUX kernel (x86 architecture, version 2.6.33.3) is an operating-system kernel with
billions of installations worldwide, from high-end servers to mobile phones. With 6918
configuration options, it is highly configurable. In Chapter 3, we identified the LINUX
kernel as one of the largest and (with respect to configuration options) most complex
publicly available configurable software systems [Liebig et al., 2010]. It has 7691 source-
code files with 6.5 million lines of code. Note that already the configuration model of
LINUX is of substantial size: the corresponding extracted formula in conjunctive normal
form has over 60 000 variables and nearly 300 000 clauses; a typical satisfiability check
requires half a second on a standard computer. The sheer size of LINUX’ configuration
model rendered a computation of all valid system variants impossible. When trying to
determine the number of variants, we ran out of memory on our well-equipped evaluation
machine with 64 GB of RAM.

• The cryptographic library OPENSSL implements different protocols for secure Internet
communication. OPENSSL can be tailored to many different platforms, and it provides a
set of 589 configuration options, with which 6.5× 10175 valid system variants can be
generated. We analyzed OPENSSL version 1.0.1c with 733 files and 233 450 lines of code.
Since OPENSSL does not come with a formal configuration model like BUSYBOX or
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LINUX, we inferred a configuration model based on a manual analysis. Specifically, we
analyzed syntax and type errors and used their corresponding erroneous configurations
to build a configuration model. The resulting model has 15 clauses.

Experimental Setup

We used TYPECHEF as the underlying parsing framework. As explained in Section 4.1.2,
TYPECHEF generates a variable AST per file, in which Choice nodes represent optional and
alternative code. We reused the variability-aware type checking implementation of Kästner
et al. [2012b] and implemented a variability-aware liveness analysis on top of variable ASTs.
Both implementations are part of the TYPECHEF project.

To avoid bias due to different analysis implementations, we used our infrastructure for
variability-aware analysis also for the sampling-based analysis. To this end, we generated
individual variants (ASTs without configuration options) based on the sampling heuristics. We
created an AST for a given configuration by pruning all irrelevant branches of the variable AST,
so that no Choice nodes remained. As there were no configuration options in the remaining
AST, the analyses never split, and there was no additional effort due to SAT solving, because
the only possible presence condition was true.

As our liveness analysis is intra-procedural, it would be possible and more efficient to apply
sampling to individual functions and not to files, as done by Brabrand et al. for Java product
lines [2012; 2013]. Unfortunately, preprocessor macros in C rule out this strategy, as we cannot
even parse functions individually without running the preprocessor first or without performing
full variability-aware parsing. In our running example in Figure 4.2, we would not even notice
that the function foo is affected by A, because variability arises from configurable macros
defined outside the function. Configurable macros defined in header files are very common in
C code [Kästner et al., 2011].

During liveness analysis, we did not take the configuration model of the analyzed systems
into account. This is because we performed the data-flow analysis without posing an analysis
question (e.g., “Which code is dead?”). In particular, during liveness analysis, our algorithms
performed SAT checks without taking the configuration model into account, similar to the inter-
procedural analysis for Java product lines by Bodden et al. [2013]. This way, the computation
is faster and still complete, though false positives may occur. False positives can be eliminated
easily after a subsequent refinement step (i.e., using the configuration model in SAT checks),
so that only valid execution paths are taken into account. This strategy is commonly used in
model checking [Clarke et al., 2003] to make the analysis of a complex system feasible in the
first place.

In Figure 4.5, we illustrate our experimental setup. Depending on the sampling heuristics,
one or multiple configurations are checked. For each file of the three subject systems, we
measured the time spent in type checking and liveness analysis, each using the variability-aware
approach and the three sampling heuristics (the latter consisting of multiple internal runs). In
total, four to five analyses were conducted per subject system: a variability-aware one + three
to four sampling-based (with and without header files for code coverage) ones.
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Figure 4.5: Experimental setup.

We ran all measurements on LINUX machines (Ubuntu 14.04) with Intel(R) Xeon(R) CPU
E5-2690 v2 (with 3.0 GHz) and 64 GB RAM. We configured the Java JVM with up to 4 GB
RAM for memory allocation.

Results

Table 4.3 shows the measurement results for each analysis and subject system together with
the speedups, showing the relative performance improvement of variability-aware analysis
compared to sampling-based analyses. We report performance measurements as total times for
the entire analysis. Execution was sequential, though parallelization would be possible in all
cases, as each file was analyzed in isolation. Furthermore, we illustrate the distribution of anal-
ysis times for individual files using notched box-plots on a logarithmic scale. Figures 4.6, 4.7,
and 4.8 show the plots for BUSYBOX, LINUX, and OPENSSL, respectively. In the plots, we
highlight the median (over all files) of the variability-aware analysis with a vertical line, to
simplify comparison with the medians of the sampling-based analysis. Apart from that, we
provide the number of analyzed configurations for each of the sampling-based analyses (below
the name of the analysis, ‘configurations per file’ or in short ‘c.p.f.’). Single-configuration
heuristics requires the same number of variants for each file (because it is based on global
knowledge of the configuration model only), whereas code coverage and pair-wise heuris-
tics7 require different numbers of variants in different files, which we provide in terms of
mean± standard deviation. We evaluated all research hypotheses using paired, one-sided t-tests
at a confidence level of 95 % (including the Bonferonni correction to oppose the problem of
multiple hypothesis testing [Salkind, 2007]).

7In addition to the given configuration model, the build system of LINUX defines presence conditions for individual
files (cf. Section 2.1.1). So, as for LINUX, each file has a configuration model of its own. Computing pair-wise sample
sets for each file was infeasible, as a single pair-wise sample-set computation took more than 20 h on our machine.
Therefore, we use the global configuration model for the computation of pair-wise sample sets. As the generated
sample may contain configurations that do not satisfy a file’s presence condition, the overall number of analyzed
configurations for a file decreases.
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System Analysis approach Type checking Liveness analysis

time in s speedup time in s speedup

BUSYBOX Single configuration 673 0.92 274 0.88
Code coverage NH 979 1.34 430 1.39
Code coverage 3 850 5.25 2 760 8.90
Pair-wise 1 540 2.10 661 2.13
Variability-aware 733 310

LINUX Single configuration 25 300 0.39 14 000 0.53
Code coverage NH 72 100 1.10 48 300 1.84
Pair-wise 891 000 13.60 817 000 31.22
Variability-aware 65 500 26 200

OPENSSL Single configuration 513 0.61 246 0.64
Code coverage NH 952 1.13 448 1.18
Code coverage 2 380 2.81 1 610 4.24
Pair-wise 2 160 2.55 1 360 3.58
Variability-aware 846 380

Table 4.3: Total times for analyzing the subject systems with each approach (time in seconds, with three
significant digits) and speedups, showing the relative performance improvement of variability-aware
analysis compared to sampling-based analyses; a speedup lower than 1.0 reflects a slowdown.

In all subject systems and for both type checking and liveness analysis, variability-aware
analysis is slower than single-configuration sampling (H1; statistically significant) and faster
than pair-wise sampling (H2; statistically significant). The results regarding code-coverage
sampling (RQ1) are along the same lines. Type checking and liveness analysis with variability-
aware analysis are faster than code-coverage sampling in BUSYBOX, LINUX, and OPENSSL
(statistically significant). We observe that code coverage without header files (NH) is often
faster than with header files, and sometimes it even outperforms single-configuration sampling.
This is because many #ifdefs occur in header files, something that is neglected in code-
coverage sampling NH. Single-configuration sampling considers variability in header files;
consequently, it may result in a system variant that is more expensive to analyze than analyzing
the sampling configurations determined with code-coverage NH.

To put our results into perspective, let us illustrate in Figure 4.9 the trade-off between
variability-aware analysis and sampling-based analysis by means of the example of liveness
analysis for BUSYBOX. The x-axis shows the average number of variants sampled for the
respective sampling heuristics. The y-axis shows the average analysis times for the variants
analyzed. Clearly, the more variants are analyzed, the longer the analysis takes, which illustrates
the trade-off between analysis coverage and analysis time. The interesting spot is the break-
even point, at which variability-aware analysis becomes faster than sampling (dashed line).
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Figure 4.6: Distribution of analysis times for BUSYBOX (times in milliseconds; logarithmic scale).

But recall that, even though sampling is faster below this line, it comes at the price of losing
information due to a limited analysis coverage.

Discussion and Lessons learned

Our experiments support hypotheses H1 and H2: in all three subject systems, variability-aware
analysis is faster than sampling-based analysis when using the pair-wise heuristics, but slower
than using the single-configuration heuristics. With respect to research question RQ1, there
is no clear picture. The performance of code-coverage sampling depends on the variability
implementations in the respective files; the number of sampled variants and the performance
results considerably differ between files inside each subject system (cf. Figures 4.6, 4.7, and 4.8).
So, performance of the code-coverage heuristics is hard to predict and strongly depends on
certain implementation patterns. Nevertheless, in our experiments variability-aware analysis is
faster than code-coverage sampling.

A further observation is that variability-aware analysis results in higher speedups in liveness
analysis than in type checking. This can be explained by the fact that liveness analysis
is intra-procedural, whereas type checking considers entire compilation units. Exploring
the performance of variability-aware inter-procedural analysis of large scale systems is an
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Figure 4.7: Distribution of analysis times for LINUX (times in milliseconds; logarithmic scale).

interesting avenue for further work. Additionally, for liveness analysis, we did not employ
a system’s configuration model in SAT checks. This, most likely, decreases the time for
computing analysis results.

The experimental results for BUSYBOX, LINUX, and OPENSSL demonstrate that variability-
aware analysis is in the range of the execution times of sampling with multiple samples (code
coverage and pair-wise). Thus, with regard to question RQ2, we conclude that variability-aware
analysis is practical for large-scale systems. An important finding is that the additional effort
induced by solving SAT problems during the analysis is not a bottleneck, not even for large
systems such as the LINUX kernel. Overall, variability-aware type checking (compared to single
configuration) in BUSYBOX takes as much time as checking 2 variants (3 variants in LINUX
and 2 variants in OPENSSL). For liveness analysis, the break-even point is at 2 variants for all
three subject systems. That is, if a sampling heuristics (including random sampling) produces
a sampling set larger than that, variability-aware analysis is faster and, in addition, complete.
All values are very low compared to the number of possible variants of the respective system.
We can conclude that a complete analysis is possible at the cost of an incomplete sampling
heuristics.

Threats to Validity

• A threat to internal validity is that our implementations of variability-aware type checking
and liveness analysis support ISO/IEC C, but not all GNU C extensions used in the subject
systems (especially LINUX). Our analyses simply ignore corresponding code constructs.
Also, due to the textual and verbose nature of the C standard, the implementation does
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Figure 4.8: Distribution of analysis times for OPENSSL (times in milliseconds; logarithmic scale).

not entirely align with the behavior of the GNU C compiler. Due to these technical
problems, we excluded 1 file of BUSYBOX and 1 file of OPENSSL from our study. All
numbers presented in this work have been obtained after excluding the problematic files.
Still, the comparatively large numbers of 521 files for BUSYBOX, 7691 files for LINUX,
and 732 files for OPENSSL let us conclude that the approach is practical and that our
evaluation is representative.

• The variants generated by the sampling heuristics represent only a small subset of
possible variants (which is the idea of sampling). But for pair-wise sampling, it may
happen that some variants of a file are very similar, as the difference in the respective
variant configurations affect the content of a file to a minor or no extent. However, we
argue that our conclusions are still valid, as this is in the nature of the sampling heuristics,
and all heuristics we used are common in practice.

• A (common) threat to external validity is that we considered only three subject systems.
We argue that this threat is largely compensated by their size, the fact that many different
developers and companies contributed to the development of these systems, and that all
these systems are widely used in practice.
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Figure 4.9: Number of variants vs analysis time for liveness analysis of BUSYBOX.

Summary
In our experiments, we found that the performance of variability-aware analysis scales to large
software systems, such as the LINUX kernel, and even outperforms some of the sampling
heuristics, while still being complete.

Next, we take a look at the technical setup of sampling-based analysis and variability-aware
analysis in more detail.

4.3 Upfront Investment
Both analysis approaches require a certain upfront investment before they can be pursued in
a real setting. For sampling, we need to compute the sample set of valid configurations of a
system before the analysis takes place. Using a configuration and the configurable system’s
generator, we can quickly generate individual variants of a system on demand, which can
be processed afterwards using off-the-shelf analysis tools. Optimal solutions for sampling
heuristics such as pair-wise sampling are known, and lookup tables containing optimal sample
sets are available [Kuhn et al., 2013]. Employing such sample sets is easy, because there is no
computational effort, and analysis approaches simply search lookup tables for their respective
solution. However, such sets can only be applied when no configuration constraints exist. When
constraints exist, they pose a huge challenge on the development of scalable techniques for the
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generation of sample sets. In fact, sample-set generation is far from trivial and still subject
to active research [Johansen et al., 2012; Tartler et al., 2012; Henard et al., 2014; Perrouin
et al., 2010]. This is mainly because some sampling strategies rely on algorithms that are
NP-complete, and sophisticated heuristics are necessary to speed up the sampling process.
Nevertheless, sampling-based analysis benefits from the fact that it facilitates reuse of existing
analysis techniques.

In contrast to sampling-based analysis, we cannot reuse existing analysis techniques with
variability-aware analysis. Its application usually requires a reimplementation. This includes
adaptations of data structures and algorithms to empower analysis techniques to work with a
variable code base. This approach has been pursued to adapt existing type-checking, model-
checking, and testing techniques to configurable systems [Lauenroth et al., 2009; Classen et al.,
2010; Apel et al., 2010a; Kästner et al., 2012a,c,b]. However, so far, there is no standard
procedure for developing variability-aware analysis, and most variability-aware analysis tools
have been developed from scratch. Unfortunately, redeveloping variability-aware analysis
takes a considerable amount of time. The development of the infrastructure necessary for
variability-aware control-flow and liveness analysis took us several months, and others reported
similar times for developing variability-aware analysis techniques [Kästner et al., 2011, 2012b].
At the same time, variability-aware analyses usually lack the maturity of existing analyses and
tools, some of which are developed for ages.

In this section, we summarize our experience with the generation of sample sets using
different sampling heuristics, and we provide insights into the development of variability-aware
analysis. In particular, we outline the essence of variability-aware analysis and develop a
variability-aware data-flow framework, which simplifies the development of static analyses
significantly.

4.3.1 Experience with Sampling
We expected that contemporary sampling tools can quickly compute representative sample
sets. However, for pair-wise sampling, the time for the sample-set computation takes up to
several hours (e.g., >20 h for LINUX; cf. Table 4.4). This high computation time was the
reason why we did not generate sample sets for each file of LINUX individually. As most
LINUX files exhibit build-system variability (cf. Section 2.1.1), each file may have a different
configuration model. Computing individual sampling sets for LINUX files is impossible, as the
high sample-set computation times rule out this form of treatment. Furthermore, due to the
size of the input problem, sampling heuristics often generate a considerably high number of
configurations, which we could not analyze in reasonable time (e.g., code coverage for LINUX).

The single-configuration heuristics worked well. LINUX has a commonly used configuration,
called allyesconfig, which is maintained by the community and frequently used for analysis
purposes.8 For BUSYBOX and OPENSSL, we created single configurations by selecting as many
configuration options as possible.

8http://kernel.org/doc/Documentation/kbuild/kconfig.txt

82



4.3 Upfront Investment

Random sampling has proved problematic. Both BUSYBOX and LINUX have configuration
models with many constraints. In 1 000 000 random configurations, there was not a single one
that satisfied all constraints of the input configuration model. Random sampling was only a
possibility for OPENSSL, which has a comparatively sparse configuration model (∼ 3 % of
randomly generated configurations were valid). BUSYBOX and LINUX developers actually use a
skewed form of random sampling (RANDCONFIG), in which random values are selected one by
one for every configuration option whose activation/deactivation is not enforced by constraints
of other options. This approach strongly depends on the ordering of configuration options and
violates a developer’s intuition about random selection.

In contrast to all other heuristics, heuristics based on code coverage need to investigate every
file individually (and optionally all included header files). We reimplemented the conservative
algorithm of Tartler et al. [2012] for this task in two variants: one including header files and
one excluding them. When headers are included and macros are considered, an analysis must
process several megabytes of source code per C file [Kästner et al., 2011]. Code-coverage
heuristics often generates a huge number of valid configurations for a given input. We tried to
improve the situation by filtering configurations that are covered by others and, thus, overall
reduce the size of the number of configurations in question. However, this reduction requires
many SAT checks, is computationally very expensive, and cannot be conducted for LINUX in
a reasonable amount of time. Hence, we left the code-coverage sample sets untouched and
omitted the analysis of LINUX.

Although the sampling algorithms contain many sophisticated heuristics for speeding up the
sample-set computation, we observe that the computation still takes a considerable amount
of time (cf. Table 4.4). This is because of the large number of SAT problems, which need to
be solved. Solving these problems is a necessity for the sample-set generation. By contrast,
in variability-aware analysis, SAT problems are only solved on demand (by determining the
satisfiability of computed analysis results in a particular configuration space). For practical
applications, this can lead to a higher number of SAT problems for sampling-based analysis
than for variability-aware analysis and consequently to higher analysis times. For example, the
times for generating sample sets with code-coverage sampling heuristics exceeded the times
for performing variability-aware liveness analysis in BUSYBOX. In LINUX the generation even
exceeded the analysis times for type checking and liveness analysis.

Although pair-wise sampling is frequently used and there are several proposals for efficient
sample-set computation [Johansen et al., 2012; Henard et al., 2014; Perrouin et al., 2010],
we found only one research tool (SPLCATOOL)9 that was able to compute complete sample
sets of pair-wise configurations for a given configuration model at the scale of the LINUX
kernel. SPLCATOOL performed reasonably well for BUSYBOX and OPENSSL, but LINUX’ larger
configuration space made the sample-set computation very expensive. In BUSYBOX and LINUX
the computation time exceeded the times for performing variability-aware type checking and
liveness analysis. We could have relaxed the pair-wise heuristics by not covering all pair-
wise configurations of a system. A corresponding approach (including a tool implementation;

9http://heim.ifi.uio.no/martifag/splcatool/

83



4 Analyzing C Code with Preprocessor Annotations

PLEDGE)10 was proposed by Henard et al. [2014]. This sampling approach provides a parameter
for limiting the sample set to a predefined size. Internally, the tool uses a search-based approach,
which stops when the limit is reached. Although the application of PLEDGE would speed up
the generation time of the sample set significantly, we did not use this approach. PLEDGE’s
sample set is incomplete with respect to all possible pair-wise configurations and, hence, an
erroneous configuration may not be part of the computed sample set. Similarly, Kowal et al.
[2013] proposed a filtering algorithm to reduce the number of variants of pair-wise sample sets
generated with the ICPL algorithm (SPLCATOOL uses ICPL). The algorithm precomputes a set
of ‘interesting’ configuration options that serves as an input for pair-wise sampling heuristics.
The sampling algorithm takes the lower number of configuration options into account and
possibly generates a smaller sample set in less time. Both approaches [Henard et al., 2014;
Kowal et al., 2013] reduce the number of system variants that need to be analyzed significantly.
However, general conclusions, such as the analyzed system being free of errors that may occur
in any pair-wise combination of configuration options, are impossible.

System Single configuration Code coverage NH Code coverage Pair-wise

BUSYBOX 92 180 440 322
LINUX 9 360 81 200 n/a 1 280 000
OPENSSL 63 127 203 127

Table 4.4: Times for sample-set computation (time in seconds, with three significant digits).

Of course, we could increase a sample set’s size to cover more system variants by applying a
different sampling heuristics. For instance, we could apply t-wise sampling, the generalization
of pair-wise sampling (where t = 2). The parameter t represents the number of configura-
tion options that are considered together. So, in the case of t = 1 (or feature-wise), each
configuration option is considered in, at least, one configuration of the sample set; for t = 3
(or triple-wise), all combinations of three options are considered, and so forth. Including a
system’s configuration knowledge, the size of the sample set usually increases with a higher
value of t. So, for BUSYBOX, the respective sizes of the sample sets for 1-wise and 2-wise are 4
and 31.11 For BUSYBOX, the times (in seconds) for creating 1-wise and 2-wise sample sets
are 1 and 16. At the same time, the computational effort increases for computing sample sets
with a higher t-value and was impossible to master for most systems we used (BUSYBOX and
LINUX). So covering more configurations by computing 3-wise sample sets was impossible for
larger configurable systems in a reasonable amount of time. For example, for BUSYBOX, we
terminated the generation after two hours due to the lack of progress. Furthermore, the elapsed
time exceeded analysis times for variability-aware type checking (733 s) and liveness analysis
(310 s) considerably.

10http://research.henard.net/SPL/
11Computed with SPLCATOOL.
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4.3.2 Patterns of Variability-aware Analyses
The main success factor of variability-aware analysis over variant-based analysis techniques,
such as brute-force or sampling, is the sharing of analysis results between similar variants of
the configurable system. Researchers proposed different strategies to maximize sharing of
(intermediate) analysis results and to reason about configuration knowledge efficiently [Thüm
et al., 2014]. For example, TYPECHEF’s variability-aware parser preserves sharing by cre-
ating annotated AST nodes that multiple system variants have in common. Code without
#ifdef directives is represented only once, because it is shared by all variants. The parser
creates Choice nodes to represent local variations in the input source code only if necessary.
Throughout our analyses, we preserve sharing of results as far as possible, by using compact
variability-aware data structures and by adapting analysis algorithms accordingly. Specifically,
three patterns emerged that maximize sharing: late splitting, early joining, and local variability
representation as illustrated in Figure 4.10. The key observation is: keep variability local.

1. Late splitting

B ¬B

2. Early joining

{bB,cB} {c¬ B}

{bB,c}

3. Local variability
representation

{bB,c}

vs
{b,c}B, {c}¬ B

10 int c = a;
11 if (c) {
12 c += a;
13 #ifdef B c += b; #endif
14 }
15 return c;

10

11

12

{bB,c}

1315

¬B B

B

Figure 4.10: Patterns of variability-aware analysis illustrated using liveness analysis for an excerpt of our
running example in Figure 4.2, including the variability-aware CFG.

First, late splitting means that we perform the analysis without variability until we encounter
it. For example, in liveness computation, the analysis splits at differently annotated control-
flow statements. Thus, liveness computation for c += a in our example splits because of
configuration option B, resulting in two intermediate results: (1) following path 12→ B13 and
returning {bB,cB} and (2) following path 12→ ¬ B15 and returning {c¬ B}.
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Second, early joining attempts to join intermediate results early, often as early as possible.
For example, if we have two result sets from different control-flow paths, we join them using
the set union operation ∪. If we have a variable with different annotations (cB and c¬ B), we
can simply join them to c (presence condition true) for further processing. Hence, even if the
control flow ‘explodes’ due to different annotations, we can often join the results to a compact
representation. This way, variability passes from parts of the AST into other parts, if and only
if variability actually makes a difference in the internal representations of variables or other
forms of analysis results. Additionally, we need to consider only combinations of configuration
options that occur in different parts of the AST if they actually generate different (intermediate)
results when combined; otherwise the results remain orthogonal.

Third, local variability representation aims at keeping variability local in intermediate results.
For example, instead of distinguishing between different result sets in our liveness analysis,
we have only one set with annotated variables that are live at the point given. Technically,
we use the type Set[Choice[Id]] instead of the type Choice[Set[Id]] to achieve
this locality. Liveness computation of c += a in our example returns a set {bB,c}, in which
the identifiers are variable, instead of the entire set. This preserves sharing between variants.
Even after conditional control-flow, we store each identifier only once. Alternatively, we could
store the results in two sets {b,c}B and {c}¬ B (Choice[Set[Id]]). This, however, is
inefficient, because the variable c occurs twice. Although this is not a problem in our simple
example, in practice, variables may occur in many different variants, causing redundant storage
of variables. This is a serious problem, because an analysis tool may run out of main memory.
Furthermore, maintaining all variants is computationally more expensive than maintaining our
compact representation. For a detailed discussion about variability-aware data structures and
their trade-offs, we refer the interested reader to Walkingshaw et al. [2014].

The three patterns of late splitting, early joining, and local variability representation are
applicable to any kind of variability-aware analysis. Although not always made explicit,
these patterns can also be observed in other variability-aware analyses [Apel et al., 2013d;
Kästner et al., 2012c, 2011; Brabrand et al., 2012]. Next, we use these patterns to simplify the
development of static analyses.

4.3.3 Variability-aware Intra-procedural Data-flow Framework
To ease the development of static analyses in general, we revisit the three patterns of late
splitting, early joining, and local variability representation and develop a variability-aware
framework for intra-procedural data-flow analysis. The framework considerably simplifies the
development of different static analyses, which we use for detecting programming errors later
(cf. Section 4.4).

In Section 4.1.2, we introduced variability-aware liveness analysis. Liveness analysis is
an instance of general intra-procedural frameworks for solving data-flow equations, called
MONOTONE FRAMEWORKS [Nielson et al., 1999]. MONOTONE FRAMEWORKS provide general
abstractions for exploiting similarities between different data-flow analyses. Apart from live-
ness, other instances of the frameworks are reaching definitions, available expressions, and very
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busy expressions, all of which can be used to solve many practical analysis problems, including
program optimization (e.g., [Aho et al., 2006]) and programming-error detection (e.g., [Cherem
et al., 2007]). For example, double free ensures that dynamically allocated memory is freed only
once. A pointer variable passed to the function free to deallocate previously allocated memory
should not be passed to another free call without having assigned other dynamically allocated
memory to the pointer variable. We can define double free as a reaching-definition problem.
Reaching definition determines all definitions (assignments of variables) that reach a given
point in the CFG without being overridden. Using reaching definitions, we track all pointers of
freed variables until they get a reassignment with different dynamically allocated memory. If
there is an attempt to free an already freed pointer variable, we issue an error. Similar properties
can also be stated for other static analyses, such as uninitialized variables, freeing of statically
allocated memory, and checking of return values of standard library functions for errors.

Before we outline our extensions of the framework to make it variability-aware, we describe
the framework’s central concepts and explain differences between our formal description and
the original one proposed by Nielson et al. [1999].

General Definition

A central element of MONOTONE FRAMEWORKS is the lattice L, which represents data-flow
properties/information and the combination operator

⊔
: P(L)→ L (with t : L× L→ L)

which joins intermediate results from different paths (F ) in the control-flow representation.
An analysis computed by MONOTONE can be either forward or backward with respect to
the CFG. In forward analysis, analysis results are forwarded to successor elements, and, in
backward analysis, to predecessor elements (flow and flowR, respectively). For both kinds of
analyses we use the standard operations pred and succ for traversing the CFG. The data-flow
computation relies on the two functions Analysis◦ and Analysis• that use each other and
represent a fix-point computation to determine the analysis results of a given control-flow
statement l. During the fix-point computation, the framework computes for each CFG element
a transfer function fl, which simulates actual program behavior with respect to a given analysis
question, i.e., a given instance of MONOTONE.

For reasons of simplification, MONOTONE FRAMEWORKS are formulated for a simple imper-
ative language called WHILE [Nielson et al., 1999]. WHILE was designed to illustrate different
aspects of program analysis. It shares common characteristics of imperative languages such
as statement sequences, control structures (if-then-else), and repetitive computations
(while-loop). However, it neglects many abstractions and programming constructs present
in C, e.g., pointers, user-defined types, and functions. The motivation behind using WHILE
was to teach students common patterns of data-flow analysis at textbook level. The basic
principles of the analysis patterns remain the same (general framework for data-flow equations
and forwarding of data-flow properties) for a fully-fledged language such as C, but have to
be adapted to some extent. Specifically, the computation of single data-flow properties has to
be adapted, since C provides more programming constructs. Furthermore, since C is a more
expressive programming language compared to WHILE (e.g., pointer, arrays, and user-defined
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types), our analysis framework faces several limitations (cf. Section 4.5).
Equations 4.5-4.7 summarize the definitions of MONOTONE FRAMEWORKS. Using them,

we can define liveness analysis with:
⊔

=
⋃

, t = ∪, ⊥= ∅, ι = ∅, F = flowR, and gen / kill
as defined in Section 4.1.2.

Analysis◦(l) =
⊔
{Analysis•(l

′
) | l

′
∈ F (l)} t ιlE (4.5)

where ιlE =
{
ι if l ∈ E
⊥ if l /∈ E

Analysis•(l) = fl(Analysis◦(l)) (4.6)
fl(l) = (l \ kill(l)) ∪ gen(l) (4.7)

⊔
is

⋂
or

⋃
(and t is ∪ or ∩)

F is either flow or flowR

E denotes the entry or the exit, respectively, of the intra-procedural CFG

ιlE represents the initial (ι) and final (⊥) value of the lattice
fl is the transfer function associated with l

Differences

The original definition of MONOTONE FRAMEWORKS operates on WHILE programs, which
are labeled representations of program code. Each control-flow element in a WHILE program
has a unique label, which is used for identification during program analysis.12 Operations in
MONOTONE FRAMEWORKS make frequent use of several auxiliary functions (blocks, labels,
init, and final) that provide means to determine control-flow for program elements. In our
definition of MONOTONE, we omit labels and work on control-flow elements of the CFG
directly, because we can distinguish AST elements in our infrastructure internally.

Toward a Variability-aware Data-flow Framework

To enrich the variability-unaware MONOTONE FRAMEWORKS with variability, we need to
adapt the lattice L at first. The lattice stores analysis elements in a generic set (Set[T]),
which represents the type of elements we want to track in a specific instance of MONOTONE.
For liveness analysis, the generic type T is Id (cf. Section 4.1.2); for available expressions,
T is Expr. To represent analysis results with local variations, we change the variability
representation from Set[T] to Set[Choice[T]] to incorporate variability. Similar to the
definition of liveness analysis, this representation ensures a redundancy-free storage of analysis
12Although WHILE labels are part of the syntax, they are only used for identification and do not represent any

control-flow-like execution semantics. Therefore, they should not to be confused with labels in C, which provide
jump targets for control-transfer statements (goto).
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results, because each element of T is stored only once, including the result’s presence condition
that controls its presence in different system variants [Walkingshaw et al., 2014]. Traversing
the CFG with flow and flowR ensures late splitting. The analysis splits if and only if variability
makes a difference in the input representation. We merge intermediate results directly using
the early joining pattern in Equations 4.5 and 4.7. As the respective joining operations in the
framework (

⊔
, t, ∪, and \) also need to handle presence conditions, we apply BDD and SAT

operations (¬, ∧, and ∨) accordingly.

Summary
The upfront investment for both analysis approaches is different. For sampling, the generation
of sample sets is expensive, because the underlying algorithms are NP-complete, and, as a
result, sample-set computation takes a considerable amount of time of the entire analysis.

A variability-aware analysis is often developed from scratch. Fortunately, developing a
variability-aware analysis is straightforward, because the support for variability in analysis
algorithms is orthogonal to the analysis algorithm in question, and variability-aware data
structures and algorithms to handle variability seamlessly integrate into analysis approaches.

After having discussed the performance and the upfront investment of sampling-based and
variability-aware analysis, we continue with the comparison of sampling-based analysis with
variability-aware analysis when detecting programming errors in a real setting.

4.4 Error Detection
With our third criterion (error detection), we investigate the performance of sampling-based
analysis to detect programming errors in the presence of variability. In particular, we employ
different, variability-aware static analyses to detect serious programming errors in all system
variants and investigate whether sampling-based analysis would find these errors, too. As
described in Section 4.1.1, sampling-based analysis uses heuristics to reduce the number of
variants that are going to be analyzed with a traditional analysis or of-the-shelf analysis tools.
Although this analysis approach is necessarily incomplete, sampling-based analysis may still
be sufficient to analyze configurable systems for two reasons.

First, for some systems, the number of configurations, although very high, is not required
by end users. Consequently it is sufficient to concentrate on desired system variants. For
example, HP’s printer firmware Owen has more than 2000 configuration options implemented
with the C preprocessor [Refstrup, 2009; Pearse and Oman, 1997]. Nevertheless, only 100
variants are generated and compiled frequently, including a static analysis which the compiler
incorporates to detect programming errors [Refstrup, 2009]. The desired configuration space is
so small that sampling-based analysis still scales in practice, although many, possibly redundant
computations have to be made.

Second, there are studies that indicate that sampling heuristics are sufficient to cover most
errors that occur in a configurable system [Kuhn et al., 2004; Steffens et al., 2012]. Kuhn et al.

89



4 Analyzing C Code with Preprocessor Annotations

[2004] showed in an empirical study with different t-wise sampling heuristics that using sample
sets of 1-wise, 2-wise, and 3-wise sampling are sufficient to find an average of 50, 70, and 95 %
of all programming errors, respectively. Steffens et al. [2012] applied pair-wise testing in
an industrial case study (Danfoss Automation Drive) with 432 valid system configurations.
Using pair-wise sampling, the authors created a sample set with 57 configurations, with which
they could find 97.5 % of the system’s errors. Both studies show that, depending on the
sampling approach, a large number of programming errors can still be detected with sampling.
Nevertheless, the studies also show that the sampling approaches used never reached an error
coverage of 100 %. A serious threat to both studies is that they are very specific regarding
their given application scenario. Thus, it is impossible to draw conclusions for real-world,
large-scale configurable systems.

Variability-aware analysis to detect programming errors is beneficial, because for each
error, the analysis exhibits only one message that precisely describes the problem including
a configuration constraint. The constraint represents the valid configuration space, in which
the programming error occurs, and it can be used to derive a valid system variant. By contrast,
a sample set may contain (if at all) multiple configurations, in which a programming error is
triggered, and clustering techniques may be necessary to infer distinct programming errors, and
to narrow down an error to the minimal configuration that causes it.

To evaluate the effectiveness of sampling approaches for the detection of programming
errors in #ifdef-based, configurable systems, we develop a set of static analyses based on
our variability-aware CFG (cf. Section 4.1.2) and on our variability-aware implementation
of MONOTONE FRAMEWORKS (cf. Section 4.3.3). Based on them, we determine the error
coverage for all sampling heuristics that we used previously (cf. Section 4.1.1).

4.4.1 Evaluation
For the error-coverage evaluation, we developed a set of eight analyses, capturing certain
properties that help to detect programming errors in configurable systems. These analyses
enable the detection of (serious) programming errors that can be exploited by attackers or that
lead to undefined/unexpected program behavior as specified by the C standard.

We do not aim at implementing state-of-the-art program-analysis techniques that are both
efficient with respect to analysis time and precise with respect to analysis results. This is
because existing analysis tools for error detection have been developed for years to be fast and
to report as few incorrect error warnings as possible. We did not have the resources to improve
our analyses to the level of common analysis tools, so the outcome of our analysis is likely to
contain many false positives and false negatives, some of which we confirmed manually. False
positives and false negatives occur for two reasons.

First, all of our analyses are only intra-procedural. That is, analysis properties are only
computed on a per-function basis. This limitation means that programming errors that cut
across multiple functions, e.g., freeing the same memory location in different functions, cannot
be detected (double-free detection), or using variables without initialization code, which are
assigned a proper value in a different function (uninitialized-variables detection).
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Second, we did not integrate a pointer-alias analysis in our algorithms. Pointer-alias analysis
attempts to determine run-time values of pointers (memory locations), an information which is
central to many static analyses [Hind, 2001]. Statically determining a pointer alias is undecid-
able in general [Landi, 1992; Ramalingam, 1994], so existing approaches make conservative
assumptions about pointer accesses for modifications and references [Hind, 2001]. In our
analysis implementations, we did not include any of the proposed algorithms, which leads to
decreased analysis precision and is likely to produce a lot of false positives (i.e., assuming two
pointer alias, which they do not), and false negatives (i.e., neglecting references of different
pointers to the same memory location). We discuss the benefit of integrating a pointer-alias
analysis in our algorithms in Section 4.5. Nevertheless, our analyses respect the basics of
control-flow and data-flow computations for C and, consequently, provide a conservative
approximation of programming errors in configurable systems.

Next, we describe the eight different variability-aware analyses that we use for comparing
the error coverage of different sampling heuristics (cf. Section 4.1.1):

1 void foo() {
2 int a = 2; // dead store
3 int b = 2;
4 a = 3;
5 }

Figure 4.11: Example of a dead
store.

Dead Store. Assignments to local variables that are not
used in subsequent program code are called dead stores.
Although dead stores do not particularly threaten program
security, they are usually the result of a logical programming
error and should be removed. A dead store is a particular
instance of dead code, the existence of unnecessary code
that leads to an increase in program size and an increase in
program run-time. Our example in Figure 4.11 contains a
dead store in Line 2. The assignment to the variable a with a value of 2 is overridden in Line 4
without being used in the meantime. To detect dead stores, we use our variability-aware liveness
analysis (cf. Section 4.1.2) and determine whether assignments to variables „live out“, i.e.,
whether variables are read in subsequent program code. If a variable is not used in subsequent
code, we issue an error.

1 void foo() {
2 int* p = malloc(
3 15*sizeof(int));
4
5 #ifdef DEBUG
6 *p = 1;
7 #endif
8 if (p != NULL) { ... }
9 }

Figure 4.12: Example of a miss-
ing error handling.

Error Handling. High-level constructs for exception or
error handling are not available in C. As a result, a common
approach is to encode the corresponding information (e.g.,
error code) in the form of a return value. For example,
for dynamically allocating memory, programmers use the
standard library function malloc in Figure 4.12. Given
the size of the desired memory chunk, the function returns
either the reserved memory as a pointer or zero (NULL or
(void*)0) as return code to indicate that the memory
allocation failed. To avoid undefined program behavior, the
return value of a call to malloc should be checked for this
error code before it is used. In our example (cf. Figure 4.12), if the configuration option DEBUG
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is selected, the pointer p is dereferenced before having been checked for the error-return code
of malloc properly. The C standard defines this error-encoding approach for many standard
library functions, including functions for opening and closing files, for formatting input strings,
and many more. To determine missing error-code checks, our analysis tracks the results of 31
standard-library calls with a variant of reaching-definition analysis. In particular, the analysis
computes whether variables assigned with the result of standard-library calls reach in control
structures, checking them for predefined error codes.

1 int foo() {
2 int* a = malloc(2);
3 if (a) {
4 #ifdef A
5 int* a = malloc(3);
6 #endif
7 free(a);
8 }
9 free(a); // double free

10 return 0;
11 }

Figure 4.13: Example of a double
free.

Double Free. In C, the programmer is responsible
for the management of dynamically allocated memory.
To this end, the C standard defines a group of standard-
library functions for memory allocation (e.g., malloc)
and memory deallocation (e.g., free). To avoid memory
leaks, unneeded memory should be freed. Dynamically
allocated memory should be freed only once, since free-
ing memory multiple times leads to undefined behavior,
which can be exploited by attackers. Our example in Fig-
ure 4.13 contains a double-free error. If the configuration
option A is not selected, the allocated memory in Line 2
is freed twice (in Lines 7 and 9), because the variable a in
Line 5, which changes the binding of variables with the
name a, is not available. To identify double-free errors, we use a variant of reaching definitions.
More concretely, our analysis determines whether a pointer variable passed as an argument to
the function free is passed to another free call without any reassignments of memory.

1 int foo(int l) {
2 char *s;
3 if (l == 2) {
4 s = (char *)malloc(12);
5 } else {
6 s = "usage: ... ";
7 }
8 free(s); // freeing st. mem.
9 return 0;

10 }

Figure 4.14: Example of freeing a vari-
able, which was allocated statically.

Freeing of Static Memory. Freeing memory
that was not allocated dynamically using memory-
management functions can result in serious errors, e.g.,
heap corruption or abnormal program termination. For
this reason, only pointer variables that contain memory
previously allocated with memory-management func-
tions, such as malloc or realloc, should be freed
with free. Our example in Figure 4.14 contains such
a freeing static-memory error. The variable s in Line 2
is assigned only to dynamically allocated memory in
Line 4 in the context of an if-branch. As the initializa-
tion of s with static memory in Line 6 is part of a valid
CFG path, passing the variable to free in Line 8 is a freeing-of-static-memory error. Our
analysis tracks pointer variables that are not initialized with dynamic memory, and it determines
whether they are passed to memory-management functions.
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1 void foo() {
2 int a;
3 ...
4 bar(a); // uninit. var.
5 }

Figure 4.15: Example of an unini-
tialized variable being used.

Uninitialized Variables. Variables that are not initialized
hold arbitrary values. The use of these variables can lead to
serious issues, such as unexpected or undefined program be-
havior. Therefore, programmers have to guarantee a correct
initialization of variables before their first use. In our exam-
ple in Figure 4.15, the variable a in Line 2 is not initialized
but passed as an argument to the function bar in Line 4.
Once again, we use a variant of reaching definitions for the
computation of uninitialized variables. In particular, we de-
termine whether uninitialized variables are used before being initialized. We neglect pointer
variables in this analysis, because just like the other seven analyses, it is only intra-procedural,
and pointer variables are often passed to other functions for initialization.

In addition to the five data-flow analyses discussed so far, we also implemented three analyses
that solely work on variability-aware CFGs (cf. Section 4.1.2):

1 void foo(int a) {
2 switch (a) {
3 case 1:
4 #ifdef A
5 a = 2;
6 #endif
7 case 0: a = 1;
8 break;
9 }

10 }

Figure 4.16: Example of a
case block without a terminat-
ing break statement.

Terminate case Blocks with break Statements. The
conditional statement switch consists of an expression, sev-
eral case labels, and an optional default label. Each label
is followed by a series of statements and should be ended
using a break statement (by convention), so that control
flow jumps beyond the switch. The break statement is
optional. Hence, control flow can fall through the next case
in a switch statement executing further statements of the
switch body. Omitting the break statement may lead to
unintended control flows and should be avoided. Figure 4.16
shows a switch statement with two case blocks. If the con-
figuration option A is selected, case 1 contains code without
a corresponding break, for which our analysis issues an error.

1 int foo(int x) {
2 if (x > 0)
3 return 1;
4 }
5
6 void bar(int y) {
7 if (foo(y+2)) ...
8 }

Figure 4.17: Example of a non-
void function with a missing
return statement.

Control Flow in Non-void Functions. According to the
C standard, the control flow of all functions with a non-void
return type should execute a return statement. Using the
return value of a function without executing a return leads
to undefined behavior. Figure 4.17 shows an example of such
an error. The function foo with return type int contains a
control-flow path without executing the return statement in
Line 3. If the condition in Line 2 is not satisfied, the function
returns to its call site with an incorrect return value. The result
of foo is used in bar, which may lead to undefined behavior.
Our analysis checks whether there is a path in the CFG of a
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function with a non-void return type that does not end in a return statement.

1 void f(int a) {
2 switch (a) {
3 #ifdef A
4 case 0:
5 #endif
6 int b;
7 b++;
8 case 1:
9 default: a+3;

10 }
11 }

Figure 4.18: Example of dan-
gling switch code.

Dangling switch Code. Depending on the condition’s
value, control flow in switch statements jumps to the body
of the switch, to one of several case labels, to the optional
default label, or it jumps beyond the switch statement.
A switch body may contain any sequence of statements in-
cluding declarations of variables. If a programmer places code
before the first case label, the code is never executed, i.e., it
dangles in the switch statement. Depending on the kind of
code (e.g., initialization of variables), dangling switch code
may result in unexpected or undefined behavior. Figure 4.18
shows an example of dangling switch code. If the configura-
tion option A is not selected, the initialization and the increment
of variable b (Lines 6 and 7) dangle from the switch state-
ment. Our analysis computes CFGs for switch bodies and checks whether, apart from
declarations without initialization code, any control-flow statements occur that are not guarded
in any configuration by case or default labels.

All eight static analyses are variability-aware and, as such, determine programming errors in all
system variants that can possibly be derived from a configurable system. So we can use their
outcome to determine the effectiveness of sampling heuristics with respect to error coverage.
We describe the process of error-coverage determination and our setup for this experiment in
the following.

4.4.2 Experiment Setup

A sampling set, determined by a sampling heuristics, covers only a subset of the entire
configuration space of a configurable system. To determine the error coverage of sampling
approaches, we run all eight variability-aware static analyses on the variable code base. If a
programming error occurs, our analyses issue a warning, including the position of the error in
the source code and a constraint. The constraint represents the configuration space, in which
the programming error occurs. For all errors and for each sampling heuristics, we determine
whether, at least, one configuration in a sample set satisfies the error constraint. If so, the
sampling approach covers the error; otherwise, it does not. For this experiment, we reused the
sampling heuristics introduced previously (cf. Section 4.1.1) and measured their error coverage
for the same subject systems (BUSYBOX, LINUX, and OPENSSL). We used the same setup as
before for all measurements (cf. Section 4.2.1).
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4.4.3 Results and Discussion
Table 4.5 shows the number of programming errors for each of the eight static analyses with
respect to the three subject systems. Along with the total number of errors found by each
analysis, we also show the percentage of covered errors for each sampling heuristics and for
each programming error.

For the evaluation, we use all issued errors including false positives as well false negatives of
our analyses without any (manual) filtering. As static analysis problems are often undecidable,
our analyses are unsound and usually require manual inspections to confirm or reject identified
programming errors. So the total number of errors serves as a representative of the effort
for developers to review identified errors. Furthermore, even though the actual number of
programming errors is most likely to be lower, it still correlates with the number of issued
errors by our analyses. Hence, our analysis results are still valuable for the discussion on error
detection.

System Errors EH DS DF UV NF TC CF DC Σ

BUSYBOX Total 1 312 416 194 4 158 440 405 158 0 7 083
Single configuration 85.21 79.57 84.02 66.11 91.14 80.00 89.87 100.00 73.81
Code coverage (NH) 99.92 100.00 100.00 99.49 100.00 100.00 99.37 100.00 99.68
Code coverage 99.92 100.00 100.00 99.52 100.00 100.00 100.00 100.00 99.70
Pair-wise 88.87 96.15 88.14 84.27 90.91 90.12 88.61 100.00 86.77

LINUX Total 1 247 428 550 3 387 970 037 7 233 957 252 9 015 45 2 376 766
Single configuration 85.49 54.81 88.40 53.91 89.27 34.34 31.92 0.00 46.28
Code coverage (NH) 100.00 47.60 63.51 81.16 99.99 69.89 67.21 84.44 70.56
Pair-wise 100.00 95.87 100.00 98.24 99.99 99.58 95.90 100.00 98.35

OPENSSL Total 154 1 153 145 15 433 439 1 015 23 0 18 364
Single configuration 67.53 49.52 13.79 8.60 64.92 32.41 52.00 100.00 14.43
Code coverage (NH) 100.00 100.00 100.00 86.46 100.00 99.90 100.00 100.00 88.62
Code coverage 100.00 100.00 100.00 99.67 100.00 100.00 100.00 100.00 99.72
Pair-wise 100.00 99.74 100.00 74.46 100.00 100.00 100.00 100.00 78.52

EH: error handling; DS: dead store; DF: double free; UV: uninitialized variables; NF: freeing of static memory;
TC: terminate case blocks with break statements; CF: control-flow in non-void function; DC: dangling switch code

Table 4.5: Error coverage of selected sampling approaches.

The results show that none of the sampling heuristics covers all detected programming
errors. Single-configuration sampling has the lowest error-coverage percentage (between 14.43
and 73.81 %, on average). Single-configuration sampling never reaches full coverage in
the eight error analyses. This is because this sampling heuristics analyzes only a single
configuration and, hence, covers only a small subset of the system’s configuration space.
Although in our setup most configuration options have been selected, single-configuration
sampling lacks the ability to analyze source code with mutual exclusive configuration options.
The reason for high coverage rates of single-configuration sampling in some programming
errors (e.g., freeing of static memory in BUSYBOX) is that the detected errors often occur in
every system variant (they are independent from variability). Since our static analyses operate
on variability-aware CFGs, a sampling heuristics should include combinations of presence
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conditions that arise from the presence of optional and alternative code fragments.
Code-coverage sampling with and without header files worked surprisingly well and covered

most errors in the three subject systems (between 70.56 and 99.72 %, on average). The small
difference (0.02 %) between both code-coverage sampling heuristics in BUSYBOX is again the
result of the high number of programming errors that are configuration-independent. It is not
surprising that code-coverage sampling outperforms code-coverage sampling without header
files, because the latter only covers a smaller configuration space. Both sampling heuristics
cover all programming errors for some of the eight analyses, and when code-coverage sampling
covers all errors, so does code-coverage without headers (except for uninitialized variables and
control-flow in non-void functions in BUSYBOX).

The results of pair-wise sampling are in the range of previous studies [Kuhn et al., 2004;
Steffens et al., 2012] (between 78.52 and 98.35 %, on average). Interestingly, while pair-
wise sampling reached full error coverage for some programming errors (e.g., error handling
in the LINUX kernel and in OPENSSL), it does not for BUSYBOX, in which the heuristics
reaches 88.87 %, at most. This may be because that we computed a pair-wise sample set for the
entire BUSYBOX case study using the configuration knowledge gained from the configuration
model (cf. Section 2.1.1). The generated sample set contained configurations that were invalid
for some files (additional dependencies in the build system rendered them unsatisfiable). The
remaining configurations only covered a subset of the configuration space in a single file and,
therefore, detected only a smaller number of programming errors. Using pair-wise sampling at
the level of files will most likely improve the coverage rate. However, this approach is more
expensive (cf. Section 4.3.1).

Next, we put our results into perspective and discuss possible improvements for both analysis
approaches.

4.5 Perspectives
Even though variability-aware analysis scales well to large-scale configurable systems, there is
still much room for improvement. Although we reported sequential times for analyzing the
case studies, we can easily parallelize the analysis for both approaches, as all files are analyzed
in isolation.

During variability-aware analysis, we can avoid many redundant computations by analyzing
source code from header files only once. C’s reuse mechanism for source code is based on
the header-file inclusion. Developers usually outsource common source code into header files
and include it in C source files if necessary. According to Kästner et al. [2011], each C file
in LINUX includes 353 header files, on average, and, therefore, source code of header files is
analyzed (parsing, type checking, and data-flow analysis) again and again. A reuse mechanism
for analysis results (AST, typing information, data-flow information) for common, reoccurring
source code, as proposed by Garrido [2005], is likely to reduce analysis times significantly.

The most expensive operations during variability-aware analysis arise from SAT solving.
SAT is NP-complete, but problems that arise in the context of analyzing configurable systems
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are tractable with current SAT-solvers [Thüm et al., 2009]. Furthermore, caching can be an
effective means to speed up analysis [Apel et al., 2010b; Kolesnikov et al., 2013]. Still, solving
a single SAT problem in our LINUX case study takes half a second, on average, on standard
hardware. While progress in the development of SAT solvers reduced the time for solving
SAT problems in the context of configurable systems considerably (e.g., [Johansen, 2013]), we
observed that it still takes a significant amount of time to solve a high number of SAT problems.
To speed up our variability-aware analyses, we already made extensive use of SAT caching.
Before passing a SAT problem to the SAT solver, we consulted a cache that stores the results of
previous SAT calls. So far, we have not used a persistent storage for SAT results. Subsequent
or reoccurring analyses would greatly benefit from such a storage, as the number of distinct
SAT calls decreases over time.

We have already highlighted that our data-flow analyses suffer from two limitations: re-
striction to intra-procedural analysis and lack of pointer-alias information. Integrating a
variability-aware pointer analysis will reduce the number of false positives substantially and
exhibit errors that our analyses currently miss (false negatives). This integration will increase
the number of SAT checks on the one hand, because two pointers may be in an alias relation in
a certain configuration only, which needs to be checked. On the other hand, ruling out many
impossible errors due to pointer-alias information will reduce the number of SAT calls for
checking error conditions of potential programming errors. With respect to inter-procedural
analysis, we can extend our intra-procedural CFGs by resolving function calls to their (po-
tentially varying) function definitions. By adapting the tracking of data-flow properties, i.e.,
mapping parameters of the function call to formal arguments of the function definition, we are
able to track data-flow properties across function boundaries.

Variability-aware analysis is applicable also to alternative implementation techniques, such
as aspects or feature modules. Apel et al. [2010a] and Kolesnikov et al. [2013] developed
variability-aware type checkers for feature-oriented extensions of Featherweight Java and Java,
respectively. Technically, the authors also used variability-aware data structures and algorithms
for handling variability. Although the representations and algorithms are different, a represen-
tation with variability-aware ASTs and CFGs to support variability-aware type checking and
data-flow analysis is possible. In experiments with both type checkers, the authors observed
that variability-aware analysis is superior in comparison to traditional analysis approaches.
Although the authors’ experiments do not reach the size of our experiments in terms of variable
code base, of available configuration options, and of the existing configuration knowledge, the
results are promising, and variability-aware analysis for alternative implementation techniques
will most likely scale to large-scale configurable systems, too.

4.6 Related Work
There is a large body of work on the analysis of configurable systems, including the detection
of programming errors. We focus on sampling-based and variability-aware analysis approaches
and review them with respect to analysis time, upfront investment, and error detection.

97



4 Analyzing C Code with Preprocessor Annotations

Analysis Time
Variability-aware type systems have been studied for some time, including systems for feature-
oriented programming [Thaker et al., 2007; Kim et al., 2008; Apel et al., 2010a; Kolesnikov
et al., 2013] and configurable systems developed with preprocessors [Aversano et al., 2002;
Post and Sinz, 2008; Kenner et al., 2010; Kästner et al., 2012b; Chen et al., 2014]. While type
systems for both development approaches are different, researchers experienced enormous
speedups in analysis times when applying variability-aware type checking compared to brute-
force analysis. For example, Kolesnikov et al. [2013] compared variability-aware type checking
with a variability-unaware type-checking approach for 12 feature-oriented systems. For systems
with a comparatively large configuration space, the speedup of variability-aware analysis over
the brute-force approach reaches two orders of magnitude, and the break-even point, at which
variability-aware analysis supersedes a traditional analysis, is quickly reached (two to eight
system variants). We showed that the break-even-point for annotation-based systems is similar,
even though all three systems that we analyzed contain billions of valid system variants. Hence,
obtainable speedups are even higher.

There are several proposals for variability-aware data-flow analyses [Bodden et al., 2013;
Brabrand et al., 2013] that implement data-flow analysis for Java programs, in which variability
is expressed with annotations in Java comments using a preprocessor similar to CPP. Brabrand
et al. [2013] systematically explored different variants of variability-aware analysis. The
variants differ in handling variability internally (CFG, a lattice storing intermediate results, and
the transfer functions). A comparison of the analysis variants with brute-force analysis shows
that variability-aware analysis, in general, outperforms brute-force analysis, if a system has a
large configuration space. The authors omit the variant that is similar to our data-flow analyses
(A4: analysis with sharing and merging) during their comparative evaluation. This analysis
variant is particularly advantageous, because it ensures fast analysis computation, including
redundancy-free storage of analysis results.

Bodden et al. [2013] extended a framework for inter-procedural data-flow analysis, with
support for variability. Using an inter-procedural CFG, analysis problems are formulated as
graph-reachability problems; data-flow properties are forwarded along the CFG using flow
functions. To account for variability in the input representation, the authors solely enriched
the CFG to make the data-flow analysis variability-aware. In a set of experiments with three
data-flow analyses, the authors could show that their variability-aware analysis outperforms
traditional analysis by several orders of magnitude.

Both approaches [Brabrand et al., 2013; Bodden et al., 2013] make limiting assumptions
about the form of annotations, in particular, the limitation regarding type uniformity [Kästner
et al., 2012a] and annotation discipline [Kästner et al., 2008; Liebig et al., 2011]. We have al-
ready stressed that variables in C may have different types in different configurations, which has
to be accounted for in the analysis. Technically, both approaches do not support variables with
different types, which limits their application for real-world systems substantially. Furthermore,
the authors used comparatively small and academic case studies in their experiments, so the
generalizability of the results for large systems is questionable. In contrast, we demonstrated
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the feasibility and scalability of data-flow analysis regarding software systems at the size of the
LINUX kernel.

Apart from annotation-based systems developed with preprocessors, such as CPP, researchers
proposed and implemented product-line type systems for feature-oriented programming (e.g.,
[Apel et al., 2010a; Kolesnikov et al., 2013]). For example, Kolesnikov et al. [2013] imple-
mented a type checker for a feature-oriented extension of Java, called FUJI [Apel et al., 2012].
From a technical point of view, FUJI works similar to TYPECHEF; source code of the config-
urable system is parsed and represented with variability-aware ASTs. FUJI’s variability-aware
type checker traverses these ASTs and incorporates configuration knowledge during type check-
ing. In a case study of 12 (academic) product lines, the authors observed that variability-aware
type checking outperforms a naïve brute-force approach, i.e., type checking all system variants
in isolation. Interestingly, the authors determined that the break-even point of variability-aware
analysis lies between two to eight configurations. Our results show a similar picture. In a
similar way, Apel et al. [2010a] proposed Feature Featherweight Java, an extension of Feather-
weight Java [Igarashi et al., 2001] with support for feature-oriented programming. The authors
extended the formal syntax definitions of Featherweight Java and developed a variability-aware
type checker on top of it, including a soundness proof. The variability-aware type checker has
never been intended to give a realistic picture of checking type correctness in the presence
of variability, but to discuss possible strategies for the development of variability-aware type
checkers. The authors’ work influenced the development of our variability-aware analyse, and
our results show that variability-aware analysis scales to real-world, large-scale configurable
systems.

Upfront Investment
Sampling-based analysis and variability-aware analysis are both in the center of active research.

With respect to the development of variability-aware analysis, researchers proposed different
procedures to enrich a traditional analysis approach or reported from experiences in variability-
aware analyses’ development [Kästner et al., 2012a; Apel et al., 2010a; Chen et al., 2014;
Brabrand et al., 2013; Bodden et al., 2013; Midtgaard et al., 2014].

For example, Bodden et al. [2013] enriched a framework for inter-procedural data-flow
analysis with variability by solely adding presence conditions to the CFG representation, on
which the framework operates. Existing data-flow analyses for non-variable programs can
be reused without changing analysis algorithms, because the framework instantiates and runs
data-flow analyses with variability.

Brabrand et al. [2013] developed five different variants of variability-aware data-flow analyses
by systematically adding configuration knowledge to the involved data structures and algorithms.
In a way, the variants represent the progress of creating variability-aware analysis, from an
initial variability-unaware analysis to an analysis variant incorporating our three analysis
patterns late splitting, early joining, and local variability representation (cf. Section 4.3.2).

We can observe the three patterns of late splitting, early joining, and local variability
representation in different analysis approaches. For example, when parsing #ifdef code with
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TYPECHEF’s variability-aware parser [Kästner et al., 2011], configuration knowledge occurs in
the form of #ifdef annotated tokens in the input stream (i.e., the output of lexical analysis) of
the parsing process. The parser maintains a context, storing the configuration knowledge of the
currently processed input. During parsing, TYPECHEF performs late splitting when the parser
context changes after configuration knowledge from the input has been added to it (parsing
an alternative, such as #ifdef A-#else-#endif). In this case, TYPECHEF parses both
branches separately with different parsers, each maintaining a separate context. TYPECHEF
performs early joining when different parser instances reach the same input, i.e., the same
position in the input token stream. To represent variability in the parsing output, TYPECHEF
uses variable AST nodes (cf. Section 4.1.2), which represent local variations in the input source
code.

In a similar way, variability-aware model checking and abstract interpretation make also use
of the three patterns of variability-aware analysis [Apel et al., 2013d; Kästner et al., 2012c].
During program analysis, configuration knowledge is added as context to the program state,
which contains elements, such as the program counter and values of variables. Configuration
knowledge is stored as a context to program states in the form of presence conditions (local
variability representation). Program instructions manipulate the program state and create
new ones when the program analysis proceeds. The analysis approaches create program
states in different contexts if and only if they actually differ (late splitting). Equal program
states (same values for variables and the same program counter) can early be joined by an
or-conjunction of the program-states presence conditions, similar to the union operation in our
liveness implementation (cf. Section 4.1.2).

The three patterns are a good starting point when enriching analysis approaches with variabil-
ity. From a theoretical point of view, there are many different applications for variability-aware
analysis, including type inference for configurable systems [Chen et al., 2014] and the definition
and use of variability-aware data structures [Walkingshaw et al., 2014], such as variability-aware
graphs [Erwig et al., 2013].

Research on sampling approaches mainly focuses on the improvement of sampling heuristics
with respect to the sample-set generation time and the number of generated configurations.
The algorithms of sampling heuristics are often NP-complete (cf. Section 4.3), and their
computation requires powerful hardware, heavy tuning, and sophisticated heuristics [Johansen
et al., 2011; Henard et al., 2014]. Nevertheless, sample-set generation takes a considerable
amount of time and is sometimes not even possible in a given scenario. Johansen [2013]
proposed a new algorithm for pair-wise sample-set computation as part of the tool SPLCATOOL,
which we also used in Section 4.3.1, and he compared it to other pair-wise sampling algorithms.
Although SPLCATOOL performs best in the comparison, its application to configurable systems
with a large number of configuration options requires a system with a lot of memory (up
to 128 GB). In contrast, when solving propositional formulae as part of variability-aware
analysis, a standard computer with 2 to 8 GB of memory is sufficient.
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Error Coverage
Sampling-based analysis is de facto the standard in detecting programming errors in config-
urable systems. There are several studies discussing the application of sampling heuristics for
error detection [Kuhn et al., 2004; Steffens et al., 2012; Garvin and Cohen, 2011; Tartler et al.,
2012, 2014].

Kuhn et al. [2004] analyzed bug reports for several large software systems. Each bug was
triggered by a combination of different program parameters. The authors determined that an
exhaustive test of all combinations of up to six program parameters is sufficient to find all errors.
Analyzing all combinations of six parameters is equivalent to 6-wise sampling (cf. Section 4.4).
Although we consider configuration options at compile time, setting program parameters for
program execution is a similar problem. Generating sample sets is often very expensive from a
computational perspective, and it remains unclear whether 6-wise sample sets can efficiently be
generated for large configurable systems with current sampling algorithms [Johansen, 2013].

Steffens et al. [2012] investigated the effectiveness of pair-wise sampling in a configurable
system from industry (Danfoss Automation Drive). To this end, they determined the error
coverage of pair-wise sampling after an exhaustive test of all 432 system variants, which could
be derived from the system. For comparison, the authors mutated parts of the source code,
which was tested using the system’s testsuite for errors afterwards. The generated pair-wise
sample-set (with 57 system configurations) covers around 97 % of all errors.

In contrast to both studies, in which the application of pair-wise sampling was crucial
to detect errors, Garvin and Cohen [2011] analyzed configuration-dependent errors in two
software systems (GCC and FIREFOX). The authors observed that only 3 of 28 identified errors
are dependent upon system configuration, and, as such, the usefulness of sampling heuristics
is rather limited. Besides the issue of sample-set generation, there is no guarantee that the
number of configuration options, which are involved in a programming error, is fixed (e.g.,
six). Kuhn et al. [2013] report from application scenarios, in which nine system options are
involved. Apel et al. [2013c] even report from software systems, in which up to 33 options are
involved. So in the worst case, all configuration options of a system may be involved in an
error’s configuration constraint, and, therefore, more system variants need to be analyzed to
guarantee system correctness.

In our context, the application of code-coverage sampling proved most successful. This
sampling approach was proposed in the context of configurable systems (in particular for
LINUX) [Tartler et al., 2012, 2014]. Using this sampling heuristics, the authors could increase
the code coverage from an initial 70 % (using the allyesconfig) to 84 %. The authors integrated
code-coverage sampling in their tool VAMPYR,13 which automatically derives code-coverage
sampling sets and applies static analysis tools, such as GCC, to derived system variants in
order to find bugs. This approach, although incomplete, proved very successful, because it
revealed many warnings and errors previously unknown [Tartler et al., 2014]. In contrast
to single-configuration sampling and pair-wise sampling, code-coverage sampling operates
on the input source code directly, and it generates system configurations with an improved
13http://vamos.informatik.uni-erlangen.de/trac/undertaker/
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error coverage. However, none of the sampling heuristics takes the source code into account.
Sampling heuristics may perform differently, depending on the static analysis in question. For
example, both control-flow and data-flow analyses are different with respect to variability.
When computing CFGs, the successor/predecessor computation interrelates one AST node,
possibly annotated, with another. A sampling heuristics that takes such characteristics into
account generates a sample set, which is closer to system variants required by end users. It is
an interesting endeavor to investigate alternative sampling approaches that operate on static
analysis information and to measure their performance in a similar setup as ours.

Only recently, Abal et al. [2014] presented a qualitative study of 42 variability bugs in
the LINUX kernel. The authors collected bug-fixing commits from the kernel repository
and classified confirmed bugs (by kernel developers) with respect to common programming
errors in C. They observed that variability bugs occur in any location, are not bound by
particular, “error-prone” configuration options, and are not limited to any kind of programming
error. This result emphasizes the necessity of comprehensive analysis approaches for error
detection. Although most errors require different static analyses than the ones we developed
(e.g., assertion violation or memory leakage) or are inter-procedural, our variability-aware static
analyses (cf. Section 4.4.1) would find three errors.14 Additionally, the authors investigated
the error condition of each identified bug and observed that 12 bugs involve a condition of
three or more configuration options. This is an interesting observation, because the commonly
applied pair-wise sampling heuristics would find these bugs only by accident. With respect
to error detection, the authors’ bug collection is an ideal test bed for ground research on
variability-aware analysis and can improve static analysis (including ours) significantly.

In the same line of research, Coker et al. [2014] analyzed integer issues in C source code
of large-scale, configurable systems. Integer issues pose a threat to system security, as integer
vulnerabilities can be exploited by attackers. In particular, they investigated signedness issues
(mixing signed and unsigned variables) as well as overflow and underflow issues. The authors
used variability-aware analysis to detect both issues in versions of BUSYBOX and LINUX that
we also used. They observed that integer issues occur in configuration-option dependencies, in
which up to 11 options are involved. This confirms the necessity of comprehensive analysis
approaches, as, once again, sampling-based analysis would find these issues more by accident
than by design.

4.7 Summary
Analyzing large-scale, configurable systems is challenging, as contemporary systems often have
billions of valid system variants. Sampling-based analysis as well as variability-aware analysis
reduce the effort of analyzing configurable systems in different ways, either by lowering

14As each error’s presence condition is comparatively simple, sampling-based analysis would most likely have found
the errors, too. The corresponding bug fixes are available on https://github.com/torvalds/linux/
commit/36855dc, https://github.com/torvalds/linux/commit/7acf6cd, and https://
github.com/torvalds/linux/commit/e39363a.
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the number of variants to be analyzed or by avoiding redundant computations of analysis
results for similar variants by incorporating configuration knowledge in the analysis process.
In an extensive comparison of both analysis approaches using three criteria (analysis time,
upfront investment, and error coverage), we determined the strengths and weaknesses of both
approaches.

Based on heuristics, sampling-based analysis determines a sample set of valid configurations
for analysis and analyzes them using a traditional, variability-unaware analysis. While analyz-
ing a single variant with this approach is not expensive, analysis results are incomplete, because
only a subset is analyzed. In contrast, variability-aware analysis incorporates configuration
knowledge in the analysis process and analyzes common source code only once. Even though
this analysis approach is more expensive than sampling-based analysis, variability-aware analy-
sis can outperform some sampling heuristics with respect to analysis time. In our experience,
the break-even point for analyzing configurable systems is between two and four. That is,
when analyzing more than four variants, one should use variability-aware analysis rather than
sampling-based analysis.

Considering the upfront investment of both analysis approaches, the application of sampling
heuristics is dominated by the effort made for the sample-set computation, for which some sam-
pling heuristics employ algorithms that are NP-complete. In our experience, the computation of
sample sets is sometimes very expensive and may even take longer than the subsequent analysis
of system variants. Existing variability-aware analyses are often from-scratch implementations
of existing analysis techniques/tools and usually lack the maturity of traditional analyses. To
improve the situation, we derived three patterns of variability-aware analyses that capture the
essential ingredients of efficient analysis computation. An analysis splits when it encounters
changes of configuration knowledge in the input representation and joins intermediate analysis
results as soon as it reaches a common state in the input again. Local variations in analysis
results are efficiently stored in compact representations that only store differences between
variants. We transferred the insights of these patterns to the development of a variability-aware
data-flow framework. The framework simplifies the development of static analyses and makes
error detection available to a large number of configurable systems at one stroke.

With variability-aware analysis, we analyzed three large-scale, real-world configurable sys-
tems for eight different programming errors (control-flow and data-flow errors) to determine the
error coverage of sampling heuristics. Our analysis included the detection of serious program-
ming errors, such as the use of uninitialized variables, which may lead to unexpected/undefined
system behavior. In a nutshell, we determined that each sampling heuristics fails to detect all
programming errors that we detected using variability-aware analysis. The common practice
of analyzing only a single, yet common system variant results in the detection of between 14
and 74 % of all errors, on average, and never reached full error coverage for the analyzed errors.
Alternative sampling approaches (code-coverage sampling and pair-wise sampling) that are not
limited to the analysis of a single variant were able to detect a higher number of programming
errors. Only for a subset of analyses, both sampling approaches detected all errors. That is, to
be certain about detecting programming errors, one should strive for a complete analysis by
using variability-aware analysis techniques.
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There are many interesting opportunities for future work. First of all, extending intra-
procedural analysis to make it inter-procedural enables developers to detect more programming
errors. Our implementation of variability-aware CFGs already allows such an extension and
gives rise to the creation of further analysis frameworks, incorporating variability, which brings
variability-aware analysis to many real-world systems at a single stroke. Furthermore, with the
idea of evolving systems in mind, an interesting endeavor is to explore possibilities to reuse
analysis results in subsequent analyses, including analyses after source-code changes. To this
end, the main challenge is to determine code changes and their impact on analysis results.
Integrating reuse of analysis results into variability-aware analysis will greatly improve the
analysis performance.
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This chapter shares material with the ICSE’15 paper „Morpheus: Variability-
Aware Refactoring in the Wild“ [Liebig et al., 2015].

As most software systems, configurable systems evolve. Refactoring is an important approach
to deal with software evolution [Mens and Tourwé, 2004]. Although refactoring has been
studied thoroughly in academia and proved successful in practice [Mens and Tourwé, 2004], its
applicability to configurable systems is a problematic case. This is because the variability of
configurable systems adds a new dimension of complexity that has not been tamed so far, as we
will illustrate. A key challenge is to ensure behavior preservation not only of a single system,
but of all system variants that can possibly be derived from a configurable system. This turns
out to be problematic because of the possibly huge configuration space (cf. Chapters 3 and 4).

Existing refactoring approaches and tools use heuristics to reason about variability (which
does not guarantee behavior preservation) [Garrido, 2005; Padioleau et al., 2008], employ
a brute-force strategy to process all variants individually (which does not scale to realistic
systems) [Vittek, 2003; Waddington and Yao, 2007; Spinellis, 2010], or limit the use of
variability (which makes many systems unrefactorable) [McCloskey and Brewer, 2005; Baxter
et al., 2004; Hafiz and Overbey, 2012; Platoff et al., 1991]. To make matters worse, state-of-
the-art refactoring engines of widely used IDEs, such as ECLIPSE and XCODE, even produce
erroneous code for standard refactorings in the presence of preprocessor directives (e.g.,
RENAME IDENTIFIER or EXTRACT FUNCTION).

To improve refactoring of configurable systems beyond the state of the art, we strive for a
variability-aware refactoring solution that preserves the behavior of all variants, that is general
(does not rule out large sets of configurable systems), and that scales to systems of substantial
size (hundred thousands of lines of code). Similar to our discussions on analyzing C code
with preprocessor annotations (cf. Chapter 4), we rely on variability-aware data structures and
variability-aware analyses to make variability-aware refactoring possible in the first place.

While there were some proposals for variability-aware refactoring, based on academic
languages and tools [Schulze et al., 2013b,c,d], we go beyond that by supporting the full
power of C and CPP as well as applications in real settings. To this end, we developed the
refactoring engine MORPHEUS, which implements the three standard refactorings RENAME
IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION as a proof of concept. We applied
MORPHEUS to the three substantial, real-world systems BUSYBOX, OPENSSL, and SQLITE to
assess its correctness and scalability. Although the engine internally relies on solving many
SAT problems, it scales far beyond state-of-the-art tools (that guarantee behavior preservation):
the response time of a standard refactoring is, on average, less than a second and so in the range
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of standard refactoring tools such as ECLIPSE [Gligoric et al., 2013].
For each subject system, we used a substantial test suite to provide evidence for the cor-

rectness of our refactoring engine. To this end, we extended a standard approach of testing
refactoring engines [Gligoric et al., 2013] with support for variability.

5.1 State of the Art
Before we introduce our approach of variability-aware refactoring, we review the refactoring
capabilities of state-of-the-art IDEs for C. We outline their operation principles and discuss
shortcomings in the presence of preprocessor directives. First, we establish the terminology
that we use throughout this chapter. Refactoring is “the process of changing a software system
in such a way that it does not alter the external behavior of the code yet improves its internal
structure” [Fowler, 1999]. Code transformations employed by developers usually follow a set of
refactoring patterns, such as RENAME IDENTIFIER or EXTRACT FUNCTION, which have been
documented by practitioners and researchers [Fowler, 1999]. A refactoring engine implements
these patterns as (semi-)automatic code transformations. We call the application (including
preparation and execution) of a particular pattern within a refactoring engine a refactoring
task. If it is clear from the context, we simply use the term refactoring. Next, we review a
number of publicly available IDEs for C and their refactoring engines, including commercial
tools, open-source tools, and research prototypes. Most IDEs lack a refactoring engine and
provide only a simple textual search-and-replacement functionality. Since such functionality is
barely a compensation for a missing refactoring engine and only of limited usability, even for
simple refactoring patterns, such as RENAME IDENTIFIER, we omit them in our discussion and
focus on IDEs with dedicated refactoring engines. Such engines follow one of four operation
principles: no variability support, variant-based, disciplined subset, and heuristics.

No Variability Support
Common refactoring tools, such as ECLIPSE and XCODE, provide a set of basic refactorings,
including RENAME IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION that are usu-
ally not variability-aware. To handle variability induced by preprocessor directives, these tools
employ engines that evaluate CPP directives implicitly using default values of a configurable
system’s project setup. Both ECLIPSE and XCODE basically operate on only a default variant,
which represents a single system variant of possibly billions. In practice, this can easily lead
to errors. For example, in Figure 5.1 we depict the application of two refactorings: RENAME
IDENTIFIER in XCODE and EXTRACT FUNCTION in ECLIPSE. We were able to apply both
refactorings without any negative feedback from the refactoring engines. Unfortunately, af-
ter the application, the transformed code contained errors for some system variants. As for
RENAME IDENTIFIER, not all depending identifiers had been renamed, causing a type error
if a particular variant was compiled (the variant A in Figure 5.1c). As for EXTRACT FUNC-
TION, after selecting and extracting of a list of statements had been over, the resulting code
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compiled, but had an altered behavior due to a change in the statement order (cf. Figure 5.1d vs
Figure 5.1e).

1 #ifdef A
2 int global = 1;
3 #else
4 int global = 0;
5 #endif
6
7 int foo() {
8 int local = global;
9 return local;

10 }

(a) Before Rename identifier global

1 #ifdef A
2 int global = 1;
3 #else
4 int activated = 0;
5 #endif
6
7 int foo() {
8 int local = activated;
9 return local;

10 }

(b) After Rename identifier global

1 [A] file xcode.c:8:16--file xcode.c:8:25
2 activated undeclared (only under condition !A)

(c) Type error: identifier activated not defined in variant A

1 #include <stdio.h>
2 #define DEBUG 1
3
4 int main() {
5 if (DEBUG) {
6 printf("Debug mode entered.\n");
7 #ifdef A
8 printf("Option A enabled.\n");
9 #endif

10 printf("Debug mode left.\n");
11 }
12 return 0;
13 }

Output of variant A:

1 Debug mode entered.
2 Option A enabled.
3 Debug mode left.

(d) Before extracting function foo

1 #include <stdio.h>
2 #define DEBUG 1
3
4 void foo() {
5 printf("Debug mode entered.\n");
6 printf("Debug mode left.\n");
7 }
8
9 int main() {

10 if (DEBUG) {
11 foo();
12 #ifdef A
13 printf("Option A enabled.\n");
14 #endif
15 }
16 return 0;
17 }

Output of variant A:

1 Debug mode entered.
2 Debug mode left.
3 Option A enabled.

(e) After extracting function foo

Figure 5.1: Before (cf. Figure 5.1a) and after (cf. Figure 5.1b) applying RENAME IDENTIFIER in XCODE;
type error after renaming (cf. Figure 5.1c); before (cf. Figure 5.1d) and after (cf. Figure 5.1e) applying
EXTRACT FUNCTION in ECLIPSE with the corresponding program outputs.

107



5 Refactoring C Code with #ifdefs

Variant-based
Some refactoring engines cannot handle variability induced by #ifdef directives directly [Vit-
tek, 2003; Spinellis, 2003, 2010; Waddington and Yao, 2007]. Instead, they employ a variant-
based approach. That is, they generate all system variants that are affected by a refactoring,
apply a particular refactoring task to each variant independently, and lead the result back to the
variable code base. To this end, a developer has to specify one or more configurations, which
serve as an input for the generation of system variants. During configuration specification,
developers assign each configuration option of the configurable system a true/false value for
the option’s selection or deselection, respectively. Even though the specification process is
sometimes supported by the aid of a tool, a major drawback is that specifying system configu-
rations remains a tedious and error prone task (in particular if done manually). Furthermore,
errors in the specification process may easily lead to incorrect code.

The variant-based approach rests on two assumptions. First, a system’s number of valid
configurations is often low, so, configuration specification can be handled manually. Second,
the complexity induced by #ifdef directives cannot be handled by refactoring algorithms
in practice. In particular, checking the satisfiability of configurations, which is a frequent
task when refactoring C code, is difficult. Both assumptions do not hold in practice. First, as
identified in Chapter 3 and Chapter 4, configurable systems usually have a huge number of
configuration options leading to billions of valid configurations. Second, we as well as others
observed that reasoning about configuration knowledge is tractable even for large software
systems using BDDs or SAT solvers [Chen et al., 2009; Thüm et al., 2009; Liebig et al., 2013].
Additionally, variant-based approaches face a severe limitation. Since refactoring tasks are
solely applied to individual variants of a system, all transformed variants have to be merged—a
problem that is challenging in its own right [Mens, 2002]. To make the merging process
tractable, existing engines often only support RENAME IDENTIFIER, for which merging is easy
to apply in comparison to merging, for example, different variants of a function after applying
EXTRACT FUNCTION.

Disciplined Subset
In Section 3.3, we discussed the benefit of disciplined #ifdef annotations for the development
of tool support. Since refactoring engines require structured input, usually in the form of an AST,
a common idea is not to allow arbitrary annotations of code [Baxter and Mehlich, 2001; Platoff
et al., 1991], but to limit the developer to a subset of disciplined annotations (cf. Section 3.1.3):
annotations on entire functions, type definitions, and statements. If developers solely use
disciplined annotations, #ifdef-annotated source code can be parsed based on preprocessor-
enriched grammars [Baxter and Mehlich, 2001; Liebig et al., 2011; Kästner et al., 2011;
Gazillo and Grimm, 2012], and an AST with variability information can be used for further
processing. To apply such a disciplined-subset approach, arbitrary, undisciplined annotations
have to be transformed (manually) to disciplined annotations. Although researchers experienced
that such manual labor is feasible and scales up to medium-sized software systems [Baxter
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and Mehlich, 2001; Platoff et al., 1991], we observed that undisciplined annotations occur
frequently in practice (cf. Section 3.3.1). Consequently, manually disciplining annotations
for such systems is a tedious and error-prone task that will hardly be adopted in practice.
Similarly, the substitution of CPP by a new language for source-code preprocessing also
involves manual code disciplining [Boucher et al., 2010; McCloskey and Brewer, 2005]. Even
after undisciplined annotations have been disciplined, the creation of a variability-aware AST
is particularly challenging, because complex interconnections between #ifdef directives
and #define macros have to be considered [Kästner et al., 2011]. Existing approaches fail
to handle interconnections properly, as they do not employ a sound and complete parsing
approach.

Heuristics
Several approaches use heuristics to avoid the manual labor of transforming undisciplined
annotations to disciplined annotations [Garrido and Johnson, 2005; Padioleau, 2009]. Similar
to the disciplined-subset approach, an engine uses an #ifdef-enriched grammar for the
creation of ASTs with variability information. Heuristics either automatically rewrite #ifdef
annotations that do not align with the grammar specification, or report problematic code,
which cannot be parsed, to the developer for manual rewrites [Garrido and Johnson, 2005;
Padioleau, 2009]. But an AST created with unsound heuristics introduces an additional source
of error on top of the refactoring challenge. There are some approaches using heuristics, which
were successfully applied for code transformations. For example, Padioleau et al. [2008]
developed COCCINELLE, a program-matching and transformation engine based on semantic
patches. A semantic patch is a declarative specification of a generic program transformation,
similar to a refactoring pattern, which can be exploited for the application of refactoring tasks,
too. The developers of COCCINELLE successfully applied a set of semantic patches to the
LINUX kernel [Padioleau et al., 2008]. An alternative tool, solely aiming at refactorings is
CREFACTORY [Garrido and Johnson, 2003; Garrido, 2005]. CREFACTORY provides a set
of simple refactoring patterns (e.g., DELETE UNUSED VARIABLE, MOVE VARIABLE TO
STRUCTURE DEFINITION, and RENAME IDENTIFIER), neglecting complex patterns (e.g.,
EXTRACT FUNCTION). In addition to the unsound heuristics during parsing, CREFACTORY
employs heuristics for reasoning about configuration options: the engine comes without a
SAT solver or BDDs for answering configuration-related questions (e.g., whether a code
fragment is still selectable after applying FUNCTION INLINE). To the best of our knowledge,
CREFACTORY was only applied in refactoring tasks of small, manageable software systems.
Thus, its scalability is unclear [Garrido, 2005].

Summary
Existing engines fail to refactor C code properly for different reasons: they provide only
facilities for simple textual search and replacement, do not support variability, are incomplete
and use heuristics, or do not scale. A textual search-and-replacement approach supports only
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RENAME IDENTIFIER and is an inadequate substitute for a proper refactoring engine that
employs consistency checks. There are two reasons for incompleteness. First, an engine
handles only a single (often standard) configuration neglecting multiple configurations due to
its inability for handling #ifdef directives. Second, as configuration knowledge is not fully
handled by an engine (it neglects a system’s configuration model or uses heuristics), the engine
may introduce programming errors in some system variants. In the end, most approaches
have scalability issues, since they internally apply a variant-based approach, either partially on
selected parts of the source code or on entire files. Table 5.1 summarizes the findings of our
investigation of IDEs and their refactoring capabilities.

5.2 Variability-aware Refactorings with Morpheus
To overcome the limitations of state-of-the-art refactoring engines, we built MORPHEUS on top
of variability-aware ASTs (cf. Section 4.1.2) and derived data structures such as variability-
aware CFGs (cf. Section 4.1.2). These data structures serve as an input for variability-aware
algorithms to compute static analysis information that is required during the refactoring pro-
cess. For example, most refactoring engines exploit type and reference information. We
exploit TYPECHEF’s variability-aware type checker (cf. Section 4.1.2) to get reference in-
formation, e.g., references between variable declarations and variable usages and vice versa
(RefInf=Map[Id,List[Choice[Id]]]). For example, Figure 5.2 shows reference in-
formation for the variable global of our RENAME-IDENTIFIER example (cf. Figure 5.1a).
All references of the variable global in Line 8 are linked to their original declarations
including presence conditions (List[Choice[Id]]). In a similar fashion, we created
and used variability-aware CFGs (cf. Section 4.1.2). For example, the successor of state-
ment printf("Debug mode entered.\n") in Line 6 in our EXTRACT FUNCTION
example (cf. Figure 5.1d) is either printf("Option A enabled.\n") (Line 8) or
printf("Debug mode left.\n") (Line 10), depending on the selection of the config-
uration option A. Such information is crucial for the definition of variability-aware refactoring
patterns, such as EXTRACT FUNCTION or INLINE FUNCTION [Schäfer et al., 2009].

Closest to our work is the project OPENREFACTORY/C [Hafiz and Overbey, 2012; Hafiz
et al., 2013], which, similar to our proposal, employs variability-aware data structures and
algorithms to cope with multiple system configurations. Up to now, the available prototype is
not ready for production use and suffers from several limitations, e.g., support for only one
configuration [Hafiz et al., 2013] and missing support for preprocessor directives #define
and #include in the source code.

5.2.1 Specification of Refactorings
As representative and widely used refactoring patterns [Murphy-Hill et al., 2012], we selected
RENAME IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION. For the definition and
implementation of the refactorings, we abstract from the underlying variability-aware analysis
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COCCINELLE [Padioleau et al., 2008] X
CODE::BLOCKS 10.051 X
CODELITE 2.8.01 X
CREFACTORY [Garrido, 2005] X
CSCOUT [Spinellis, 2010, 2003] X
DMS [Baxter et al., 2004] X
ECLIPSE CDT 8.2.12 X
GEANY 0.211 X
GNAT GPS 5.0-61 X
KDEVELOP 4.3.11 X
MONODEVELOP 2.8.6.31 X
NETBEANS IDE 7.41 X
PROTEUS [Waddington and Yao, 2007] X
PTT [Platoff et al., 1991] X
VISUAL STUDIO 2013 Prof.4 X5

XCODE 53 X
XREFACTORY [Vittek, 2003] X

1http://freecode.com; 2http://eclipse.org/cdt/;
3http://developer.apple.com/xcode/; 4http://microsoft.com/visualstudio/;

5by default support only via one of several, proprietary extensions

Table 5.1: Classification of refactoring support in integrated development environments.

framework and rely on an interface, as illustrated in Figure 5.3. Note that the signature of the
interface incorporates variability (use of the Choice type constructor; cf. Section 4.1.2).

Rename Identifier
The challenge of specifying RENAME IDENTIFIER correctly is that all identifiers in a con-
figurable program (e.g., function names, function parameters, local or global variables, and
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TranslationUnit

Choice A

int global = 1

int global = 0

FunctionDef

... Stmt-Block

int local = global

...

A
¬ A

Figure 5.2: AST representation enriched with reference information of the RENAME-IDENTIFIER example
in Figure 5.1a; Choice A represents a variable AST node providing a selection of two different
definitions of variable global.

user-defined data types) may vary depending on some configuration options. In our RENAME-
IDENTIFIER example (cf. Figure 5.1a), the variable global is defined twice (annotated with
A and ¬A, respectively). For consistent renaming of such identifiers, which can possibly be
scattered across multiple source files, we employ reference information (for the same file using
RefInf and across files using CProgram). If we select one identifier for renaming, we
rename also all dependent references, even across multiple files.

The refactoring expects the following input: a selected identifier (oid), a variable AST
(tunit), a global linking interface (li), and a name for the new identifier (nid). MORPHEUS
applies the refactoring as follows: after checking that nid conforms to the C standard of
identifiers (isValidId), the engine applies variability-aware type checking on the variable in-
put AST (typeCheck). As a result, we get a type environment (te) including all identifiers
and their (possibly variable) types (Map[Id,List[Choice[Type]]]) and reference in-
formation (ri) of declarations/usages of variables to their corresponding usages/declarations
(Map[Id,List[Choice[Id]]]). While the former map is not needed for this refactoring
pattern, the latter map helps to preserve name binding—the crucial property of this refactor-
ing pattern. For example, when renaming the variable global in Line 8 in our RENAME-
IDENTIFIER example (cf. Figure 5.1a), the engine determines the transitive closure of identifier
usages and their declarations (getModuleReferences). The resulting list contains all variable
identifiers including their presence condition: rid = List (Choice(A, global, global)) (cf.
Figure 5.2). MORPHEUS checks the list for three conditions.

First, MORPHEUS rules out impossible renamings of identifiers in system-header files (e.g.,
renaming of the function printf in stdio.h)—files affected by the refactoring must be
writable (isWritable). Although simple, this missing condition was not checked by ECLIPSE’s
refactoring engine for C.1 Second, to preserve binding and visibility of identifiers, the engine

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=396361
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addFDef : Choice[AST]× Choice[FDef]→ Choice[AST]

compatibleCFG : Choice[AST]× Choice[FDef]→ Boolean

genFCall : Choice[AST]× List[Choice[Stmt]]× Id→ Choice[Stmt]

genFDef : Choice[AST]× List[Choice[Stmt]]× Id→ Choice[FDef]

genFPro : Choice[FDef]→ Choice[Stmt]

getDefs : RefInf× List[Choice[Id]]→ List[Choice[Id]]

getPC : List[Choice[Stmt]]→ PC

getUses : RefInf× List[Choice[Id]]→ List[Choice[Id]]

getModuleReferences : RefInf× Id→ List[Choice[Id]]

getProgramReferences : CProgram× Id→ List[(Choice[AST],List[Choice[Id]])]

insertBefore : Choice[AST]× Choice[FDef]× Choice[Stmt]→ Choice[AST]

isFunctionCall : Choice[AST]× Id→ Boolean

isRecursive : Choice[AST]× Choice[FDef]→ Boolean

isValidId : Id→ Boolean

isValidInModule : TypeEnv × List[Choice[Id]× Id→ Boolean

isValidInProgram : CProgram× Choice[Id]× Id→ Boolean

isValidSelection : Choice[AST]× List[Choice[Stmt]]→ Boolean

isWritable : Choice[Id]→ Boolean

replaceFCalls : Choice[AST]× List[Id]× List[Choice[FDef]]→ Choice[AST]

replaceIds : Choice[AST]× List[Choice[Id]]× Id→ Choice[AST]

replaceStmts : Choice[AST]× List[Choice[Stmt]]× Choice[Stmt]→ Choice[AST]

typeCheck : Choice[AST]→ (TypeEnv,RefInf)

Figure 5.3: Auxiliary functions of MORPHEUS that provide the interface to underlying variability-aware
analyses and transformations.

checks possible violations of C’s scoping rules for each identifier (isValidInModule) that is
going to be replaced with nid . Third, RENAME IDENTIFIER may affect not only the source
file (module), on which the developer currently operates, but it may also affect depending
identifiers. Renaming a function declaration or function call may require renamings of cor-
responding calls or declarations in other modules. To support refactorings with a ‘global’
effect, we rely on a data structure for module interfaces (CProgram), that is, a map of all
modules and their imported/exported symbols (function declarations),2 including presence
conditions [Kästner et al., 2012b]. Using li (CProgram), MORPHEUS determines defined sym-
bols (limited to declarations determined with getDefs) in conflict to nid (isValidInProgram),
and terminates if there are any. If all premises (isValidId, isWritable, isValidInModule, and
isValidInProgram) hold, we replace all references of oid (using rid) in the variable AST tunit
with nid (using replaceIds). The RENAME-IDENTIFIER specification in Figure 5.4 does not

2Global variables that are externally visible are currently not supported.
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include renamings of files with linked identifiers. To support their renamings, MORPHEUS uses
getProgramReferences to fetch depending variable ASTs and linked identifiers of variables.
The engine uses both information to apply renamings in depending files in the same manner as
rename (cf. Figure 5.4).

rename: CProgram× Choice[AST]× Id× Id→ Choice[AST]

isValidId(nid) (te, ri) = typeCheck(tunit) rid = getModuleReferences(ri, oid)
∀r : r ∈ rid : isWritable(r) ∀r : r ∈ rid : isValidInModule(te, r , nid)
∀d : d ∈ getDefs(ri, rid) : isValidInProgram(li, d, nid) tunit′ = replaceIds(tunit, rid, nid)

rename(li, tunit, oid, nid)→ tunit′

Figure 5.4: Specification of RENAME IDENTIFIER.

Extract Function

We have already seen in example Figure 5.1a that EXTRACT FUNCTION can be problematic. A
program’s control flow has to be preserved while different code transformations are performed
(e.g., generating a function with required parameters). To face this challenge, we employ
variability-aware CFGs and reference information. Given is a variability-aware AST (tunit), a
selection of statements (lstmt), a global linking interface (li), and a function name (fname), we
apply EXTRACT FUNCTION as defined in Figure 5.5. First, MORPHEUS validates the accordance
of the given function name with the C standard of identifiers (isValidId). Second, the engine
determines whether lstmt is a valid statement selection for extraction (isValidSelection). In
particular, MORPHEUS computes a variability-aware CFG and determines whether the selection
contains elements that will disrupt the control flow after extraction. To check this property,
MORPHEUS traverses the CFG (using the variability-aware successor relation) and ensures that
jump targets of problematic code constructs (e.g., break, continue, and goto) belong to
the input selection in any variant. Third, as function identifiers can be variable too, MORPHEUS
checks fname for violations of C’s typing rules within the same module (isValidInModule)
and across all modules of the program (isValidInProgram) for all system variants using the
auxiliary function getPC to get the common annotation of the selected statements. This check
enables turning down the extraction of the selected statements in Figure 5.1d into a function
named main, as the same symbol is already applied in Line 4. Both checks require SAT checks
to determine conflicting declarations. If both checks pass, MORPHEUS replaces lstmt with
the appropriate function call (fcall generated with genFCall), and introduces the new function
declaration (fdef generated with genFDef) and its prototype (fpro generated with genFPro)
with the auxiliary functions addFDef and insertBefore, respectively.
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extract: CProgram× Choice[AST]× List[Choice[Stmt]]× Id→ Choice[AST]

isValidId(fname) isValidSelection(tunit, lstmt) (te, ri) = typeCheck(tunit) pc = getPC(lstmt)
isValidInModule(te, tunit, fname) isValidInProgram(li, Choice(pc, fname, empty), fname)

fcall = genFCall(tunit, lstmt, fname) fdef = genFDef(tunit, lstmt, fname)
tunit′ = replaceStmt(tunit, lstmt, fcall) tunit′′ = addFDef(tunit′

, fdef )
fpro = genFPro(fdef ) tunit′′′ = insertBefore(tunit′′, fdef , fpro)

extract(li, tunit, lstmt, fname)→ tunit′′′

Figure 5.5: Specification of EXTRACT FUNCTION.

Inline Function

Similar to EXTRACT FUNCTION, we need to check control-flow properties and reference
information for this refactoring pattern. INLINE FUNCTION requires merging the control flow
of the caller function and the callee function, which may result in a disrupted control flow. This
merge operation is particularly challenging, because each function call selected to be inlined
may have a different context (e.g., available identifiers) and may occur in a different presence
condition. To apply INLINE FUNCTION properly, MORPHEUS has to check a set of premises
that involve solving SAT problems (cf. Figure 5.6).

At first, the engine uses auxiliary function isFunctionCall to validate that the selected
identifier (fcall) is a function call. After that, MORPHEUS type checks the variability-aware
input AST to infer the type environment (te) and the reference information (ri). The former
information is necessary to determine conflicting identifiers of variables that need to be renamed
before the function can be inlined. The latter information is necessary to determine all function
declarations available for this refactoring. Again, since source code is annotated with presence
conditions, a single function call may reference different function declarations that need to
be inlined (if possible), including their context. Using the reference information, MORPHEUS
determines all depending identifiers (getModuleReferences) and separates them afterwards
into function calls (getUses) and function declarations (getDefs).

For each function definition in fdefs, the engine makes sure that the function is not recursive
(recursive functions cannot be inlined), and that it has a compatible, non-disruptive control
flow. If both checks pass, MORPHEUS inlines each function call incrementally (replaceFCalls).
During each inline operation, the engine repeatedly determines reference information for
variables and renames them on demand if they violate C’s scoping rules. This occurs especially
when multiple function calls that are located next to each other are being inlined. When
accessing variability-aware data structures, such as reference information (ri), type environment
(te), and variability-aware CFGs, MORPHEUS solves many SAT problems on demand.
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inline: Choice[AST]× Id→ Choice[AST]

isFunctionCall(tunit, fcall) (te, ri) = typeCheck(tunit) rid = getModuleReferences(ri, fcall)
fcalls = getUses(ri, rid) fdefs = getDefs(ri, rid) @fd : fd ∈ fdefs : isRecursive(tunit, fd)

∀fd : fd ∈ fdefs : compatibleCFG(tunit, fd) tunit′ = replaceFCalls(tunit, fcalls, fdefs)
inline(tunit, fcall)→ tunit′

Figure 5.6: Specification of INLINE FUNCTION.

5.3 Experiments

To show that variability-aware refactoring is feasible in practice, we applied MORPHEUS to the
three, real-world subject systems BUSYBOX, OPENSSL, and SQLITE. All three refactorings rely
on variability-aware data structures to represent control flow and reference information. To
determine whether elements of these data structures are valid in a given context, we employ
BDDs and SAT-solving technology. In particular, MORPHEUS validates variant configurations
to be satisfiable, contradictory, or tautological. As SAT is NP-complete, a crucial question is
whether applying variability-aware refactoring scales in practice. A refactoring engine should
be able to process large amounts of source code quickly.

Next, we introduce the three subject systems and our experiment setup. Then, we present our
measurement results and reflect on our experience with applying variability-aware refactoring
in practice.

5.3.1 Subject Systems

For our experiments, we selected three software systems of substantial size, of which billions
of variants can be generated. Besides variability, it was important that each subject system
is shipped with a test suite. We reused BUSYBOX and OPENSSL of our previous experiments
regarding variability-aware type checking and static analysis in Section 4.2.1. Our third subject
system was SQLITE.

SQLITE3 is a library implementing a relational database-management system. The library
gained much attention in software development due to a number of desirable properties (e.g.,
zero-configuration, cross-platform, transactions, and small footprint) and is considered the most
widespread database-management system worldwide, with installations as part of ANDROID,
MOZILLA FIREFOX, and PHP. To ease embedding SQLITE in other software systems, SQLITE’s
code base consists of two source-code files (amalgamation version; one header file and one
code file). We use a recent version of SQLITE (3.8.1) with 143 614 lines of C code, which can
be configured using 93 configuration options (1.02× 1039 variants).

3http://sqlite.org
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5.3.2 Experiment Setup
To create a variability-aware AST of C code containing #ifdef directives, we used TYPE-
CHEF’s variability-aware parsing infrastructure (cf. Section 4.1.2) [Kästner et al., 2011]. Based
on the AST representation, we employed TYPECHEF’s analysis facilities for type checking
and control-flow analysis (cf. Section 4.1.2) [Kästner et al., 2012b; Liebig et al., 2013]. After
parsing and analyzing the C code, we applied the three refactorings (RENAME IDENTIFIER,
EXTRACT FUNCTION, and INLINE FUNCTION) to each file of all systems. As refactoring tasks
we selected code fragments (an identifier, a list of statements, and a function call) randomly
and applied the appropriate refactoring. Since we wanted to measure the effect of variability,
we preferably selected code fragments that contain variability. That is, MORPHEUS analyzed
the variable input AST (Choice[AST]) and automatically scanned its nodes for elements
that have a non-trivial presence condition (different from true/false). Our refactorings do still
work when the selected code fragments do not contain any variability. In this case, the created
variability-aware data structures remain invariable (the presence conditions of Choice[A]
elements are all true) and no satisfiability problems arise. As a result, MORPHEUS behaves
like a standard refactoring engine. Finally, for rigid performance tests, we parametrize each
refactoring pattern based on a previous test setup for refactoring engines as follows [Gligoric
et al., 2013]:

Rename Identifier

For each file, we randomly selected up to 50 identifiers with presence conditions (e.g., function
names, local or global identifiers, user-defined data types), and renamed them using a predefined
name. When the renaming had a global effect, we employed a global module interface for
consistent renamings of depending identifiers in other files (cf. Section 5.2.1). Overall, we
renamed 5832 identifiers of BUSYBOX, 5186 of OPENSSL, and 50 of SQLITE.

Extract Function

For each file, we attempted to extract one list of statements and put them into a function with
a predefined name. To this end, we randomly selected sequences of statements (up to 100
selections similar to the case study of Gligoric et al. [2013]) from a function’s implementation
that preferably contained, at least, one statement with a non-trivial presence condition. Many
files contain only a small number of functions with a small function body, for which we were
not able to apply EXTRACT FUNCTION. Overall, we extracted 61 functions of BUSYBOX, 172
of OPENSSL, and 1 of SQLITE.

Inline Function

Much like EXTRACT FUNCTION, INLINE FUNCTION is not always applicable, and, therefore,
for each file MORPHEUS scanned the source code for possible function definitions that can be
inlined and that preferably contained variability. Overall, we inlined 50 functions of BUSYBOX,
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126 of OPENSSL, and 1 of SQLITE.

While checking all premises and applying all transformation operations (cf. Equations 5.4
to 5.6), MORPHEUS solves many SAT problems. In particular, accesses to the global module
interface, reference information, and control-flow require many satisfiability checks. To avoid
expensive satisfiability checks, we cache the outcome of satisfiability problems that are already
solved. This strategy was successfully applied in variability-aware analyses in the past [Apel
et al., 2010a,b]. MORPHEUS and the underlying parsing and analysis infrastructure do also
make use of caching, and we are interested in knowing whether variability-aware refactorings
can benefit from caching, too.

5.3.3 Performance Results
We ran the experiments for OPENSSL on a LINUX machine with AMD Opteron 8356 CPUs,
2.3 GHz, and 64 GB RAM. For BUSYBOX and SQLITE, we used a LINUX machine with a Intel
Core2 Quad Q6600 CPU, 2.4 GHz, and 8 GB RAM. We configured the Java JVM with 2 GB
RAM for memory allocation.

In Table 5.2, we show the measurement results for each refactoring and subject system. We
report refactoring times and affected configurations with the mean± standard deviation as well
as the maximum for a single refactoring task. Additionally, we use box-plots to visualize the
distribution of time measurements and the number of affected configurations of the refactoring
results per subject system. The numbers do not include times for parsing and type checking the
input C code, because both tasks are usually done in background processing in IDEs, and their
results (AST and reference information) are used for other tasks beside refactoring (e.g., syntax
highlighting and static analysis for error checking).

Overall, the results show that variability-aware refactoring is feasible in practice. For
BUSYBOX and OPENSSL, the refactoring times are less than one second (RENAME IDENTIFIER
and EXTRACT FUNCTION), on average. Applying INLINE FUNCTION is a little more expensive,
since we need to update reference information each time we inline a function call.

For SQLITE, the results are different. Due to the nature of the subject system (in particular,
the fact that the source code was merged in a single file), a refactoring on the resulting AST
takes a comparatively large amount of time. But, this is not caused by variability, nor by
shortcomings of our approach. A single INLINE FUNCTION may take up to 85 seconds, on
maximum, because functions selected for an inlining task are called up to a hundred times in
the source code and for each inlined function call, the variability-aware data structures, e.g.
reference information, need to be traversed and updated; two operations that have not been
optimized by us.

5.3.4 Testing the Refactoring Engine
To validate that our refactorings are behavior-preserving, we employed a standard testing
approach for refactoring engines [Daniel et al., 2007; Gligoric et al., 2013]. To this end, we
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5 Refactoring C Code with #ifdefs

used two test oracles that automatically checked whether a refactoring’s code transformation
was correct. Our oracles were: (1) the source code of our subject systems still compiles and
(2) the results of all system tests (post-refactoring vs pre-refactoring) do not vary. In contrast
to existing test suites, which do not incorporate variability, we determined which system
configurations are affected and tested them against both oracles automatically. This way we
ensured that MORPHEUS did not introduce any variability-related errors to a system’s code
base.

For our three subject systems, we used the following system tests:
• BUSYBOX comes with a test suite of 410 single test cases in 74 files, of which 46 tests

fail (which we ignored during our evaluation). Each test checks the correctness of a
single component of BUSYBOX’ tool collection.

• OPENSSL’s test suite is delivered with its source and checks individual components of
OPENSSL’s implementation, including the correct implementation of hashing algorithms
(e.g., MD5 and SHA-256), key-generation algorithms (e.g., NIST prime-curve P-192), as
well as message encryption and message decryption with cryptographic algorithms. The
test suite runs as a whole, and test success is indicated with ‘ALL TESTS SUCCESSFUL’
output.

• For testing SQLITE, we used the proprietary test suite TH3.4 TH3 is a test program
generator and provides a full coverage test of the compiled object code.

The test setup was as follows. During the application of a refactoring task, MORPHEUS deter-
mined all affected presence conditions, based on accesses to variability-aware data structures.
For example, renaming the variable global in Line 8 in Figure 5.1a has an impact on the
presence conditions A and ¬A. After collecting affected presence conditions for all refactoring
tasks (e.g., applying up to 50 times RENAMING REFACTORING), MORPHEUS computes valid
system configurations for the configurable system. For each configuration, the engine compiles
and applies all system tests before and after the refactoring and compares their results.

During our experiments, our selected test oracles did not show a difference before and after
a refactoring’s application. That is, MORPHEUS did not introduce any variability-related bugs
when applying a refactoring’s transformations.

5.3.5 Perspectives of Variability-aware Refactoring
Despite the encouraging results, there are two engineering issues that need to be solved before
MORPHEUS can be applied in an industrial setting. First, the parsing infrastructure TYPECHEF
applies partial preprocessing of source code before the parser creates the variability-aware
AST [Kästner et al., 2011; Kenner et al., 2010]. That is, the preprocessor directives #define
and #include are resolved using automatic macro expansion and file inclusion. Both
resolutions are necessary to be able to parse C code at all, as both directives manipulate the
token stream—even conditionally if annotated with #ifdef directives—that serves as the
input to the parser. As a result, the recreation (i.e., pretty printing) of source code of the variable-

4http://sqlite.org/th3.html
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aware ASTs requires the additional effort of reversing macro expansion and file inclusion.
Existing refactoring engines, such as CREFACTORY, preserve partial-preprocessing information
in AST nodes so that the pretty printer can use them when recreating source code. This approach
can also be used in MORPHEUS to support the entire process (parsing→refactoring→pretty-
printing).

Second, setting up TYPECHEF and MORPHEUS for a new software system is a non-trivial
task. The main burden is the creation of a proper setup for the parsing, type-checking, and
linking infrastructure. As TYPECHEF solely works on the basis of C files, the possibly complex
setup of a software system (e.g., configuration scripts, library dependencies, and build-system
setup) has to be made explicit to enable successful work on a system’s source code. In principle,
it is possible to use TYPECHEF as a compiler replacement, with the downside that a user has
to specify additional information for variability (e.g., which configuration options should be
considered variable and which dependencies exist between configuration options). So far,
we make use of additional tools for the extraction of configuration knowledge from build
systems [Tartler et al., 2011; Berger et al., 2010a] and configuration models [Berger et al.,
2010b]. Further approaches, such as the automatic interference of a configurable system’s
configuration knowledge [Nadi et al., 2014], will simplify the project setup further.

We have not exploited every option to speed up the transformation process yet. In particular,
there is one optimization possibility that is likely to improve the refactoring times substantially.
With the idea of continuous development of a software system in mind, there is some potential
for the improvement of transformation times by reusing analysis results in subsequent trans-
formations. We can facilitate reuse by using a persistent storage for analysis results, such as
type-checking, linking, and control-flow information. Using such a cache, it is sufficient to
recompute information that changed between consecutive transformation runs by inferring the
delta between the versions in question. Along the same line, we can reuse the results of solving
SAT problems in subsequent transformation runs. At the moment, we only cache SAT-solver
results within a single refactoring experiment.

5.3.6 Threats to Validity
First of all, our selection of only three subject systems threatens external validity, because
refactoring tasks in these systems may be particularly easy, and a significant performance loss
may only occur when using MORPHEUS with different software systems. We do not consider
this to be a problem, since we selected systems with a significant code base (containing several
thousand lines of source code), which have been developed over decades by many different
developers, and which are well-received in practice. Furthermore, from our experience, the key
performance factor of variability-aware refactoring is the time for solving satisfiability problems.
In general, the time to resolve a single SAT call depends on the number of configuration options
and the number of dependencies between them. While existing systems usually have many
configuration options [Liebig et al., 2010], the number of option dependencies is usually
small so that satisfiability problems can be solved efficiently. Additionally, recent advances in
SAT-solver technology enable the solution of large problems with thousands of configuration
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5 Refactoring C Code with #ifdefs

options efficiently [Thüm et al., 2009].

Second, for our experiments, we could not rely on existing refactoring tasks, which one
could extract from the system’s version history (construct validity). Hence, our tasks may not
be representative of practical refactoring tasks applied by developers in the wild. However,
we believe that our large random selection of code fragments for refactoring tasks largely
compensates this threat, and that the results provide a reasonable overview of the refactoring
performance in practice.

Third, the application of the selected refactoring patterns may be particularly easy to apply,
even for configurable systems, and as such, they may not be representative for refactoring
in general. We focussed on the three refactoring patterns RENAME IDENTIFIER, EXTRACT
FUNCTION, and INLINE FUNCTION, because they are among the most important refactorings
that developers use in practice [Murphy-Hill et al., 2012]. Furthermore, other refactorings,
such as DELETE UNREFERENCED VARIABLE or REORDER FUNCTION PARAMETERS, have a
similar complexity, so, we expect a similar performance. For example, for DELETE UNREF-
ERENCED VARIABLE, we only need to traverse reference information and determine for each
definition of a variable if it has corresponding uses. In the same vein, REORDER FUNCTION
PARAMETERS requires reference information of a function definition to its corresponding
function calls. Based on this information, we can easily reorder parameters and arguments
accordingly, and we only need to incorporate the SAT solver if presence conditions of function
arguments and function parameters differ in the function definitions and the function calls.

Last, one technical problem is that the variability-aware parsing and analysis infrastructure
TYPECHEF does not fully support the ISO/IEC standard for C (external validity). In particular,
the infrastructure implements only a subset of the C standard and extensions of GNU C that are
used in the subject systems. During analysis, TYPECHEF ignores unsupported constructs, so
we had to exclude 6 files for BUSYBOX and 11 for OPENSSL in our experiments. Furthermore,
we changed the source code of 9 files that was not in line with the C standard. In particular,
we transformed incorrect representations of hexadecimal numbers to corrects ones (e.g., \x8
to \x08). For OPENSSL, we had to exclude 127 identifiers (e.g., references to unsupported
function-pointer constructs). SQLITE’s source code remained untouched. All numbers and plots
in this thesis were generated after excluding problematic files. However, we believe that our
experiments are representative for variability-aware refactoring and show that our approach is
feasible in practice.

5.4 Related Work

Beside refactoring, which we already discussed in Section 5.1, there are three areas of re-
lated work: variability-aware code transformations, testing refactoring engines, and testing
configurable systems.
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Variability-aware Code Transformations

As researchers often discourage the use of preprocessors for the development of configurable
systems [Kästner, 2010], they have proposed alternative implementation mechanisms, such
as aspects [Kiczales et al., 1997] and feature modules [Batory et al., 2004], for variability
implementation. There has been some effort to transform preprocessor-based implementations
into aspects [Reynolds et al., 2008; Bruntink et al., 2007; Adams et al., 2009] and feature
modules [Kästner et al., 2009a]. This transformation usually rests on the identification of
typical patterns of preprocessor use [Adams et al., 2009; Liebig et al., 2010] and the definition
of appropriate transformation rules for code extraction [Kästner et al., 2009a]. Prior to code
extractions, developers often have to prepare the source code manually [Reynolds et al.,
2008], which however can partially be automated by using MORPHEUS. While the objectives
of variability-aware transformations (e.g., separation of concerns) are different, the variant-
preservation challenge is the same. To ensure behavior preservation, developers sometimes use
run-time tests [Lohmann et al., 2006; Kästner et al., 2009a], but in general, they do not employ
a systematic testing approach as we do.

Testing Refactoring Engines

Testing is a common approach to detect errors in a refactoring engine’s implementation [Daniel
et al., 2007; Soares et al., 2013; Gligoric et al., 2013]. Existing approaches usually generate
input programs [Soares et al., 2013; Daniel et al., 2007] or use real software projects as test
input [Gligoric et al., 2013]. Testing procedures usually involve an automatic check of one or
more test oracles. Our testing approach incorporates variability: we check test oracles not only
for a single configuration, but for all configurations that have been affected by a refactoring.

Testing Configurable Systems

Since the number of valid configurations of a system can exponentially grow with the number
of configuration options, testing all variants individually is elusive [Thüm et al., 2014]. We and
others have employed sampling (i.e., reducing the number of configurations to an interesting
subset by means of a given sampling heuristic) to take variability into account [Liebig et al.,
2013]. Sampling has been applied successfully in different contexts, enabling the detection of
errors in a reasonable amount of time. Fortunately, variability-aware refactoring has mostly a
local effect on source code. That is, in our subject systems, RENAME IDENTIFIER, EXTRACT
FUNCTION, and INLINE FUNCTION usually affected only a couple of configuration options,
which enabled exhaustive testing of all variants. Nevertheless, dynamic testing approaches,
which employ an analysis of execution traces to infer affected configurations (e.g., SPLAT [Kim
et al., 2013]), could reduce the number of configurations to be tested further.
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5.5 Summary
Refactoring C code with preprocessor directives is challenging, because a single refactoring
may affect not only a single but a multitude of system variants that can be derived from
a configurable system. We proposed an approach for scalable refactoring of C code with
preprocessor directives, accompanied by a specific refactoring-engine implementation named
MORPHEUS. A comparative analysis of state-of-the-art refactoring engines for C revealed
that most refactoring engines suffer from one of several shortcomings. They cannot handle
variability at all, provide only limited support for variability-aware refactoring, or make
use of unsound heuristics. Based on variability-aware data structures and static analysis, we
specified and implemented sound variability-aware instances of common refactorings (RENAME
IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION). We demonstrated the feasibility
of variability-aware refactoring with our variability-aware refactoring engine MORPHEUS and
applied it to the three real-world systems BUSYBOX, OPENSSL, and SQLITE with a total number
of 11 479 refactorings. Our empirical results show that MORPHEUS performs well, especially
compared to the state of the art. The average transformation time is in the order of milliseconds,
performing sound refactorings on real, variable C code.

To verify that our refactorings are indeed semantics-preserving, we extended a standard
testing approach with support for variability. We were able to show that all variants of our
subject systems still compiled and conformed to the systems’ test suites after applying the
refactorings.

On top of our interface specification of variability-aware analysis and transformation, further
refactorings, such as DELETE UNREFERENCED VARIABLE or REORDER FUNCTION PARAME-
TERS, are possible, making our refactoring engine MORPHEUS an ideal test bed for experiments
of variability-aware refactoring for other researchers. Overall, we demonstrated that sound
refactoring engines for C including the C preprocessor are in reach, and that variability-aware
refactorings, including analysis and transformation, scale to substantial, real-world software
systems. MORPHEUS closes a gap in tool support for the development of software systems
written in C with CPP. Such tool support, which has been available for other mainstream lan-
guages, such as Java or C#, for some time, simplifies the development of C code significantly
and increases the confidence in a software system’s development process.
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Tool support for efficient analysis and transformation of source code is an important asset
for developers when implementing software systems. To facilitate reuse, in practice, many
software systems are developed as configurable systems to support different requirements of
application scenarios and use cases. Developers of configurable systems often encode the
corresponding variability with compile-time configuration options, enabling end users to create
a specific variant of the configurable system tailored to their requirements. That is, given a
set of configuration options, an end user can activate/deactivate configuration options and so
enable/disable optional and alternative functionalities in the source code. Using this approach,
software developers often create configurable systems that enable the generation of billions of
system variants.

While configurable systems are beneficial from the point of view of software customization,
existing tool support is insufficient for the wealth-of-variants challenge in configurable systems’
development. This is because existing analysis and transformation approaches target the
development of single system variants, including only rudimentary (and often broken) tool
support for configurable systems. As a consequence, developing configurable systems becomes
prone to programming errors.

To improve the current situation, we developed analysis and transformation techniques with
direct support for variability. With such tool support variability in the source code is no longer
neglected, thus, enabling efficient reasoning about source code even in the presence of possibly
billions of variants.

Specifically, we made the following contributions:

1. In chapter Understanding Preprocessor Annotations, we investigated basic information
required to develop efficient program-analysis and program-transformation tools in
order to support the development of configurable systems with CPP. By means of a
set of metrics, we captured invaluable information about configuration knowledge in a
system’s code base. With a study of 42 open-source software systems, we identified the
current practice of CPP usage in practice and, given the requirements of tool support,
inferred guidelines for preprocessor usage. Existing systems often provide hundreds
of configuration options, which are scattered across the entire variable code base to
implement system variability.

Although the annotation concept is easy to understand, developers sometimes write
complex #ifdef code. One particular form of complexity is the nesting of #ifdef
directives, which developers use moderately in most cases and which reaches a hard-to-
manage maximum of 24 nested #ifdefs only in rare cases.

125



6 Conclusion and Future Work

Functions, structure definitions, and statements are the most frequently annotated ele-
ments in the source code, and expression annotations or function-parameter annotations
occur only infrequently. This is particularly interesting, because it bears the potential of
#ifdef-based variability being transformed to alternative variability representations.
In this context, we observed that developers often annotate reasonable elements of the
programming language C (disciplined annotations) and usually avoid undisciplined an-
notations (annotations of single tokens, such as an opening brace). The main benefit
of disciplined annotations is that they enable the development of sound tool support
(variability-aware program analyses and program transformations). Based on a study
of 30 million lines of C code, we were able to show that enforcing preprocessor discipline
is justifiable and does not place a significant burden on software developers.

2. By comparing state-of-the-art analysis techniques for configurable systems (sampling-
based analysis vs variability-aware analysis) with respect to three criteria (analysis time,
upfront investment, and error coverage), we were able to show that variability-aware
analysis is competitive to (and sometimes even outperforms) sampling heuristics (which
represent the state of the art in practice) when Analyzing C Code with Preprocessor
Annotations. While being more expensive to apply, the additional effort of variability-
aware analysis due to solving SAT problems plays a minor role compared to repetitive
computations of analysis results for similar variants when using sampling-based analysis.
The break-even point at which variability-aware analysis is faster than sampling is
between two and three variants in our experience.

In our studies, we identified three patterns that can serve as a guideline for developers
and researchers when designing and implementing scalable analyses for configurable
systems. The late-splitting pattern entails that an analysis remains variability-unaware
until variability is encountered in the input representation. If that is the case, an analysis
splits up into several analysis processes, each handling one of the varying inputs indi-
vidually. When a common point in the input representation is reached, the early-joining
pattern joins individual analyses’ results that stem from a previous split. For efficient
handling of analysis results, the local variability-representation pattern defines compact
and redundancy-free representations of analysis results. Based on the three patterns,
we enriched the intra-procedural data-flow analysis framework (MONOTONE FRAME-
WORKS) with variability. The enriched frameworks enable the rapid development of
static analyses for program optimization and error detection in configurable systems.

On top of the variability-aware CFGs and MONOTONE FRAMEWORKS, we implemented
eight variability-aware static analyses for error detection. Not only were we able to
demonstrate their usefulness of detecting real bugs in LINUX, we also evaluated that in
terms of error coverage sampling-based analysis cannot measure up to the standard of
variability-aware analysis.

3. Based on our results on variability-aware data structures and variability-aware static
analysis, we developed the variability-aware refactoring engine MORPHEUS (Chapter
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Refactoring C Code with #ifdefs). The engine provides three common refactorings for
C (RENAME IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION). In contrast to
previous refactoring engines, MORPHEUS incorporates configuration knowledge during
the transformation process. So our engine respects all system variants that can possibly
be derived from a configurable system. Despite the increased transformation effort,
MORPHEUS is still very fast and provides an instantaneous user experience. To validate
system correctness, we enriched a standard testing approach for refactoring engines with
variability and proved that MORPHEUS is behavior-preserving.

With variability-aware analysis and transformation we can detect and avoid programming
errors early in the development process. The major benefit is that developers can guarantee
system correctness of all variants to customers before the system is being delivered.

Future Work
So far, our assessment of configuration options regarding variability and complexity as well as
the analysis and transformation of #ifdef-based source code have worked on a single version
of a configurable system only. That is, our results represent only a snapshot of the current state
of the system’s implementation. Naturally, configurable systems evolve; so using our techniques
and specific tool implementations is beneficial for continuous development, too. Regarding
the assessment of configuration options, developing system variants in a configurable system
is more complex than developing an unconfigurable system. In this vein, Zhang et al. [2013]
evaluated our complexity metrics to determine the degeneration of a configurable system’s
implementation. In particular, they measured successive versions of a configurable system
from industry and predicted future values for the metrics. According to the authors, the metrics
were helpful to detect problematic spots in the source code, and analysis results triggered
corresponding refactorings in the past. Future work should investigate this direction in more
depth in order to validate the effectiveness of our proposed metrics in real software systems
with experienced developers.

Although we were able to demonstrate that variability-aware tool support scales to large-scale
systems, there is still room for improvement. So far, we have recomputed variability-aware data
structures and static-analysis results again and again. With the idea of continuous integration
and software evolution in mind, we should adapt variability-aware analysis and transformation
to changes of the evolving system. An interesting avenue for future work is to determine
efficient recomputation strategies for analysis and transformation results based on code-artifact
changes. The resulting incremental variability-aware analysis and transformation techniques
will most likely improve the performance further, and tame even fast growing configurable
systems, such as the LINUX kernel [Tartler et al., 2011].

Our implementation of variability-aware static analysis and refactoring paves the way for a
variety of applications, which can be applied to many large-scale, real-world systems for the
first time. In particular, variability-aware control-flow graphs and variability-aware MONOTONE
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6 Conclusion and Future Work

FRAMEWORKS are valuable assets for the development of further static analyses. Extending
intra-procedural to inter-procedural data-flow analysis can help to detect more programming
errors in existing configurable systems. Our implementation of variability-aware control-flow
graphs enables such extensions, but the main question is whether inter-procedural analysis
scales to realistic systems, too. There is some experience with inter-procedural analysis in the
context of configurable systems written in Java (using a different preprocessor) [Bodden et al.,
2013]. The authors enriched an inter-procedural data-flow analysis framework with variability,
enabling the seamless analysis of variant-rich systems. A similar framework for C source code
with #ifdefs would help to detect programming errors across functions and, hence, improve
programming-error detection even further.

We provided evidence that variability-aware data structures are beneficial for analyzing and
transforming configurable systems developed with compile-time variability (with preproces-
sors, aspects, or feature modules). However, sometimes a transformation between different
variability representations is beneficial, if developers change the programming paradigm in a
system [Adams et al., 2009; Lohmann et al., 2009] or if tool support is not yet available. There
were some attempts to transform #ifdef-annotated source code into alternative representa-
tions [Adams et al., 2009; Lohmann et al., 2009; Post and Sinz, 2008]. However, being limited
to general proof-of-concept studies [Adams et al., 2009; Lohmann et al., 2009] or by being
limited to the use of tedious and error-prone manual transformations [Post and Sinz, 2008],
a (semi-)automatic solution can supersede the necessity to stick to a particular development
approach. We have already started to pursue an automatic transformation of compile-time
variability with #ifdefs to run-time variability with if statements, as proposed by Post
and Sinz [2008]. The idea of this process, called variability encoding [Apel et al., 2011],
is to create a single variant (also known as product simulator), which is able to simulate all
system variants. The resulting product simulator can be analyzed with existing tool support
directly. Hence, it does not place a burden on developers adapting an existing analysis approach
to make it variability-aware. The major challenge of variability encoding is to preserve as
much sharing between system variants as possible, so that an analysis tool can still analyze the
simulator efficiently. While early results are promising, there are still a few engineering issues
left regarding the transformation.

Our contributions have the potential to change the way configurable systems are going to be
developed in the future. Variability-aware tool support brings configurable-system development
in line with the development of unconfigurable systems. Scalable, variability-aware analysis
techniques and transformation techniques not only enable efficient development, but also
enable changing variability representations automatically, thus, making different development
approaches for variability interchangeable at will.
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S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki. The Variability Model of The
Linux Kernel. In Proceedings of the International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), pages 45–51. Universität Duisburg-Essen, 2010.

N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, and G. Saake.
Predicting Performance via Automated Feature-Interaction Detection. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 167–177. IEEE, 2012.

143



Bibliography

J. Sincero. Variability Bugs in System Software. PhD thesis, University of Erlangen-Nuremberg,
2013.

J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk. Is the Linux Kernel a
Software Product Line? In Proceedings of the International Workshop on Opens Source
Software and Product Lines (OSSPL), 2007.

J. Sincero, R. Tartler, D. Lohmann, and W. Schröder-Preikschat. Efficient Extraction and
Analysis of Preprocessor-based Variability. In Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE), pages 33–42. ACM,
2010.

Y. Smaragdakis and D. Batory. Implementing Layered Designs with Mixin Layers. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP), pages
550–570. Springer, 1998.

G. Soares, R. Gheyi, and T. Massoni. Automated Behavioral Testing of Refactoring Engines.
IEEE Transactions on Software Engineering, 39(2):147–162, 2013.

H. Spencer and G. Collyer. #ifdef Considered Harmful, or Portability Experience with C News.
In Proceedings of the USENIX Technical Conference, pages 185–197. USENIX Association,
1992.

D. Spinellis. Global Analysis and Transformations in Preprocessed Languages. IEEE Transac-
tions on Software Engineering, 29(11):1019–1030, 2003.

D. Spinellis. CScout: A Refactoring Browser for C. Science of Computer Programming (SCP),
75(4):216–231, 2010.

M. Steffens, S. Oster, M. Lochau, and T. Fogdal. Industrial Evaluation of Pairwise SPL Testing
with MoSo-PoLiTe. In Proceedings of the International Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages 55–62. ACM, 2012.

F. Steimann and A. Thies. From Publich to Privat to Absent: Refactoring Java Programs under
Constrained Accessibility. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 419–443. Springer, 2009.

K. Sullivan, W. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and H. Rajan. Information
Hiding Interfaces for Aspect-Oriented Design. In Proceedings of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 166–175. ACM, 2005.

N. Sultana and S. Thompson. Mechanical Verification of Refactorings. In Proceedings of the
International Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM), pages 51–60. ACM, 2008.

144



Bibliography

A. Sutton and J. Maletic. How We Manage Portability and Configuration with the C Prepro-
cessor. In Proceedings of the International Conference on Software Maintenance (ICSM),
pages 275–284. IEEE, 2007.

C. Szyperski. Component Software - Beyond Object-Oriented Programming. Addison-Wesley,
2002.

R. Tartler. Mastering Variability Challenges in Linux and Related Highly-Configurable System
Software. PhD thesis, University of Erlangen-Nuremberg, 2013.

R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. Feature Consistency in Compile-
Time Configurable System Software. In Proceedings of the EuroSys Conference, pages
47–60. ACM, 2011.

R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. Configuration Coverage in the
Analysis of Large-scale System Software. SIGOPS Operating Systems Review, 45(3):10–14,
2012.

R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and D. Lohmann. Static Analysis of
Variability in System Software: The 90,000 #ifdefs Issue. In Proceedings of the USENIX
Technical Conference, pages 421–432. USENIX Association, 2014.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product Lines. In
Proceedings of the International Conference on Generative Programming and Component
Engineering (GPCE), pages 95–104. ACM, 2007.

T. Thüm. Reasoning about Feature Model Edits. Bachelor’s thesis, University of Magdeburg,
2008.

T. Thüm, D. Batory, and C. Kästner. Reasoning about Edits to Feature Models. In Proceedings
of the International Conference on Software Engineering (ICSE), pages 254–264. IEEE,
2009.

T. Thüm, I. Schaefer, S. Apel, and M. Hentschel. Family-Based Theorem Proving for Deductive
Verification of Software Product Lines. In Proceedings of the International Conference on
Generative Programming and Component Engineering (GPCE), pages 11–20. ACM, 2012.

T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A Classification and Survey of
Analysis Strategies for Software Product Lines. ACM Computing Surveys, 47(1):6:1–6:45,
2014.

F. Tip. Refactoring Using Type Constraints. In Proceedings of the International Symposium on
Static Analysis (SAS), pages 1–17. Springer, 2007.

M. Tomita. LR Parsers for Natural Languages. In Proceedings of the International Conference
on Computational Linguistics (ACL), pages 354–357. ACL, 1984.

145



Bibliography

M. Vittek. Refactoring Browser with Preprocessor. In Proceedings of European Conference on
Software Maintenance and Reengineering (CSMR), pages 101–110. IEEE, 2003.

D. Waddington and B. Yao. High-Fidelity C/C++ Code Transformation. Science of Computer
Programming (SCP), 68(2):64–78, 2007.

E. Walkingshaw. The Choice Calculus: A Formal Language of Variation. PhD thesis, Oregon
State University, 2013.

E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden. Variational Data Structures:
Exploring Tradeoffs in Computing with Variability. In Proceedings of the International
Symposium on New Ideas in Programming and Reflections on Software (Onward!), pages
213–226. ACM, 2014.

D. Weise and R. Crew. Programmable Syntax Macros. In Proceedings of the International
Conference on Programming Language Design and Implementation (PLDI), pages 156–165.
ACM, 1993.

N. Wirth. Program Development by Stepwise Refinement. Communications of ACM, 14(4):
221–227, 1971.

C. Zengler and W. Küchlin. Encoding the Linux Kernel Configuration in Propositional
Logic. In Proceedings of Workshop on Configuration, pages 51–56, 2010. http:
//www.hitec-hh.de/confws10/.

B. Zhang, M. Becker, T. Patzke, K. Sierszecki, and J. Savolainen. Variability Evolution and
Erosion in Industrial Product Lines: A Case Study. In Proceedings of the International
Software Product Line Conference (SPLC), pages 168–177. ACM, 2013.

J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and M. Vouk. On the Value of
Static Analysis for Fault Detection in Software. IEEE Transactions on Software Engineering,
32(4):240–253, 2006.

H. Zhu, P. Hall, and J. May. Software Unit Test Coverage and Adequacy. ACM Computing
Surveys, 29(4):366–427, 1997.

146


