University of Passau

Department of Informatics and Mathematics

I\u/' 5
UNIVERSITAT
““Z4(| PASSAU

Bachelor Thesis

Indentations - A Simple Matter of
Style or Support for Code
Comprehension?

Author:

Jennifer Bauer
October 12th, 2017

Advisors:

Dr.-Ing. Janet Siegmund

University of Passau

Johannes Hofmeister

University of Passau

Bauer, Jennifer:
Indentations - A Simple Matter of Style or Support for Code Comprehension?
Bachelor Thesis, University of Passau, 2017.

Abstract

Based on the positive results of a study by Shneiderman, this thesis reexamines the
effect of indentation on program comprehension. We also included the subjective
assessment of difficulty, and extended the original design to gain additional insights
about the influence of indentation on visual effort. The aim was to give an empirical
justification for recommendations of indentation made by style guides. In the course
of our study, we asked 22 participants to calculate the output of Java code snippets
with different levels of indentation, while their gaze was logged by an eye tracker.
Although we found no significant evidence for the examined effects, this thesis could
be a starting point for future studies in this field.

In this thesis, I refer to myself by saying "we”, as this makes reading my paper more
comfortable in my opinion.

Vi

Contents

List of Figures

List of Tables

List of Code Listings

1

2

Introduction

Background

2.1 Program Comprehension and Indentation
2.2 Subjective Assessment of Difficulty and Indentation
2.3 Visual Effort and Indentation
2.4 Research Questions oo

Original Study

Study
4.1 Participants
4.2 Design Lo
4.2.1 Independent Variable
4.2.2 Dependent Variables
4.2.2.1 Program comprehension
4.2.2.2 Subjective Assessment
4223 Visual Efforto
4.2.3 Differences to original Study
4.3 Material
4.4 Procedure
Results
5.1 Summary of data
5.1.1 Correctness and Time
5.1.2 Rating
5.1.3 Fixation Duration
5.1.4 Fixation Rate
5.1.5 Saccadic Amplitudeo
5.2 Statistical analysis
5.2.1 Test description

5.2.2 Testresults

ix

xi

xiii

viii Contents

6 Discussion 27
6.1 Program Comprehension and Times 27
6.2 Subjective Assessment 28
6.3 Visual Effort o 28
6.4 Differences to original study 28

7 Threats to Validity 31
7.1 Internal Validity 31
7.2 Construct Validity 32
7.3 External Validity oo 32

8 Conclusion 33

A Appendix 35
A1l Codes 35
A2 Questionnaire 38

Bibliography 41

List of Figures

1.1

4.1
4.2
4.3
4.4

5.1
5.2
9.3
0.4
2.9

Comparison of Code with and without Indentations 1
The Four Snippets 13
The Four Levels of Indentation 14
Warm Up Code 14
Flow Diagram of the Study 16
Distributions of Response Times 20
Distribution of Rating Position 21
Distribution of Median Fixation Duration 22
Distribution of Fixation Rate 23
Distribution of Saccadic Amplitude 24

List of Figures

List of Tables

4.1
4.2
4.3

5.1
5.2
5.3
5.4
2.5
5.6

Al
A2
A3
A4
A5

Summary Participants o 0oL 10
Summary Java Knowledge 0L 10
Summary Job 10
Summary of Response Times and Correctness 20
Summary of Rating Position with Equal Indentations 21
Summary of Rating Position with Real Indentations 21
Summary of Median Fixation Duration per Trial 22
Summary of Fixation Rate 23
Summary of Saccadic Amplitude 24
General Questions. 38
Student Questionso 38
Programming Questionso 39
Final Questions about Study 39
Contact questionso 39

XIi

List of Tables

List of Code Listings

Al
A2
A3
A4
A5

Warmup code 35
Code 'Do’ 36
Code 'Main’ 36
Code 'Program’ 37

Code "Test’ 37

Xiv

List of Code Listings

1 Introduction

Unlike text in a book, a program’s code is not linear, but it uses spaces, line breaks,
and empty lines to organize code and convey, which structures belong together.
These and other attributes are summarized under the term code style. A carefully
chosen code style cannot only help the coder himself, but also reviewer of his code,
people who need to maintain or test it. In order to have a common ground, coding
conventions were established, either for a whole language or individually established
by a company. A suggested level of indentation is often part of those recommen-
dations for programming languages. Those proposals, however, are not explicitly
justified and might only be an educated guess about the optimal or most suitable
level of indentation by the authors of those guidelines.

This surprising, because although indentation is to a large degree a subtle component
of style, it is omnipresent and can hardly be escaped when working with code. Code
is indented when each line of code is shifted a certain number of spaces to the right
in relation to the surrounding code parts, with cascading depth. Figure 1.1 shows an
example of a code with and without indentations. Some languages, such as Python
[Foua], explicitly require indentations for indicating the beginning and end of block
structures. In those cases, programmers have to commit to the specific requirements
of those languages, and are limited in the usage of indentations as stylistic device.
However, in languages such as Java, indentations are purely optional. Here they do

for (int i=@;i<6;i++){ for (int 1=0;i<6;i++){

if(i%2 == a) { if(i%2 == @) {
System.out.print("o"); System.out.print("o");
} else { } else {
System.out.print("e"); System.out.print(“e");
} ¥

¥ ¥

(a) Non-indented Code (b) Indented Code

Figure 1.1: Comparison of Code with and without Indentations

1. Introduction

not bear any syntactic meaning. They can therefore be set arbitrarily and are left
to personal preferences. For Java there are several suggestions for Code Conven-
tions, but the most known might be style guides of Oracle [SM] and Google [Goob]
who propose an indentation of four spaces. In order to motivate this choice as a
recommendation for Java coders, more research is needed. For Pascal a study by
Shneiderman et al. showed that an indentation of 2-4 spaces is most helpful for
comprehending code [MMNS83]. This thesis aims to find out, whether the same
holds true for Java. Like Shneiderman, we also look at the subjective assessment
of difficulty and whether it changes depending on indentation. Additionally, since
indentation is likely to supplementary affect gaze behavior by influencing the layout
of the code, the effects of indentation on visual effort are examined. In summary,
the goals of this thesis are:

e Comparing the comprehensibility of Java code with different levels of inden-
tation

e Determining the effect of indentation on subjective assessment of difficulty

e Examining, whether indentation affects visual effort.

The study we conducted to answer this questions, was a loose replication of Shnei-
derman’s study, extended with eye tracking (see [KUMAT84] for the advantages of
non-exact replications).

Structure of the Thesis

This thesis is organized as follows: In Chapter 2 we motivate, how and why in-
dentations could have an impact on program comprehension, subjective assessment
of difficulty and visual effort. The resulting research questions this thesis wants
to answer are stated there as well. Chapter 3 describes the details of the original
study by Shneiderman. Thereafter, we describe the study conducted for this thesis
in Chapter 4. Chapter 5 lists the results found, as well as their statistical analysis.
The findings of this thesis are discussed in Chapter 6. Potential threats to validity
are mentioned in Chapter 7. Finally, Chapter 8 gives an outlook on future work.

2 Background

Before describing the original study by Shneiderman and our study, we present why
indentation could affect program comprehension, subjective assessment of difficulty
and visual effort. At the end of this section, the resulting research questions are
listed.

2.1 Program Comprehension and Indentation

In Java or Pascal, indentation is viewed as a stylistic device, since it does not affect
the execution of a code in those languages. But, as Shneiderman showed, indenta-
tion can have an influence on the comprehension of the execution of a program. In
the following section, we want to discuss why/how indentations could help readers
in understanding programs. One possible explanation might be the "Law of Proxim-
ity”, an aspect of the Gestalt psychology: People tend to group objects that are close
to each other and think of them as belonging to the same category [Wer23]. Inden-
tation supports this process: it aligns statements that belong to the same structure
(e.g. aloop or an if-else-statement). When the level of indentation corresponds with
the nesting depth, block structures can be easier recognized without concentrating
on other indicators, such as brackets. Thus, indentations help to convey the code’s
semantic. The reader might use the time benefit gained this way to focus on other
aspects of the code, for instance variable assignment. When the time for compre-
hension tasks is limited, this could make the difference in completing the problem
i time. To figure out whether that is indeed the case, it is important to measure
response times along with comprehension.

We expect that comprehension behaves like a parabola in dependence of indentation:
None to little indentation results in bad comprehensibility, medium levels of inden-
tation do support the process of understanding code and with deep indentation, the
comprehensibility decreases again. This assumption is based on the following: We
think that a moderate level of indentation (two to four spaces) supports the group-
ing of code into coherent chunks, as code indented this way stands out enough to be
easily recognized as belonging to the same structure. A greater depth of indentation,
however, separates the single parts of the code too much, so that the embedding of

2. Background

those parts into the whole picture might become more difficult. Non-indented code
completely misses the visual clues provided by indentation. Here, the readers needs
to examine other features of block structures more carefully in order to relate code
lines to the respective code entities.

In accordance with Shneiderman’s findings and due to the reasons above, we there-
fore expected codes with an indentation of two to four spaces to perform better in
terms of program comprehension and response time than zero or eight space.

2.2 Subjective Assessment of Difficulty and In-
dentation

Besides objective difficulty of the different levels of indentation, the subjective per-
ception is also worth looking at. Finding that one level of indentation is indeed
the best in terms of measured comprehensibility does not necessarily mean that a
programmer’s attitude concurs with this result. It might be that, for reasons of
habit, aesthetics or others, a different level of indentation makes people believe to
perform better. Those discrepancies (if they do occur) should be kept in mind, when
recommending a level of indentation. Trading off the objective best result for the
experienced best one then depends on how much the subjective well being is em-
phasized.

Two spaces and four spaces are the standard level of indentation in most coding
conventions. For example, two spaces are recommended for JavaScript [Gooc| and
C++ [Gooa], and four spaces for Java [SM], Python [Foub] and C-Sharp [Mic|. Since
those guidelines are often the basis for the auto-formatters of Integrated Develop-
ment Environment (IDE)s, we expected codes with this indentation to be rated as
easier, compared to the rather unusually zero- or eight-space indented code.

2.3 Visual Effort and Indentation

Aside from habit and the discussion about potential effects on comprehensibility, one
possible explanation, for why indentions are used at all, might be that unindented
code is not very convenient to read. In contrast, very deep indentation could make
code harder to scan, as it increases the horizontal dimension of jumps between
differentially indented code. To figure out, whether this is just a vague intuition, or
indentation indeed affects visual effort, we included eye tracking in our study. An
example for how eye tracking can actually give new insights into existing findings is
the following: D. Binkley et al. investigated in 2009 the effect of the style of identifier
names (camelCase vs. under_score) on how fast and accurate people were able
to alter code [BDLMO09]. They found that under_score resulted in faster response
times. This study was then replicated by B. Sharif and J.Maletic in 2010 [SM10]
extended by eye tracking. This time, they additionally focused on visual effort using
measurements such as fixation duration. By doing so, they additionally found that
underscore style also improves visual effort, next to response times.

2.3. Visual Effort and Indentation

There exists a large number of variables measuring gaze behavior and visual effort.
Therefore, one has to decide in advance, on which aspects to look at in order to
prevent fishing for effects. Before delving into the measurements of gaze behavior
that were chosen for this study, a short explanation of important terms is given.
The two key terms in eye tracking are fization and saccade. A fixation takes place,
when the eye is resting on a point. It "lasts anywhere from some tens of milliseconds
up to several seconds” [HNAT11]. There are numerous measures regarding fixations,
among others the fixation positions, duration, count, and rate.

The counterpart of fixation is the saccade. A saccade is the transition between two
fixations. It does not need to follow a straight line, but can be curved [HNAT11]
before ending in a fixation. Measured regarding saccades include saccadic velocity,
saccadic amplitude and the directions of saccades.

There are many more measurements regarding gaze, such as for example pupil di-
ameter, blink rate, dwell time in areas of interest. The list below explains the ones
we choose to investigate in this study.

Fixation Duration The duration of a fixation is "likely to be the most used mea-
sure in eye-tracking research” [HNA*11]. In 1980, Just and Carpenter pro-
posed, "that there is no appreciable lag between what is being fixated and
what is being processed.” [JC80]. This implies that the longer a fixation is,
the longer the fixated part is processed. This statement has to be handled
with some caution, because "some processing trace of a fixated item may con-
tinue for a very long time after the eye has left the fixated position” [HNA*11].
Nevertheless, fixation duration is a good indicator for processing text or code,
because only visually perceived items can be handled by the reader.

Fixation Rate The number of fixations per second is known as the fization rate.
It is related to fixation duration, but "includes saccade and blink duration”
[HNAT11]. Nakayama et al. found that fixation rate (or "gazing time” as they
call it) decreases when task difficulty increases [NTS02]. A high fixation rate
implies that the reader jumps more from fixation to fixation, so from item to
item. In contrast, a low fixation rate may either occur, when people have a
harder time to process some parts of the task, or when they feel no need for
looking back for understanding single items.

Saccadic Amplitude The spatial length of a saccade is also known as the saccadic
amplitude. It relates to the jumps made by the reader in the text/code, and
plays an important role in search tasks. The more difficult the search task,
the shorter the saccadic amplitude [PEO0S]. Higher difficulty in tasks related to
counting was also shown to result in decreased saccadic amplitudes [MKW*90].
Naturally, the saccadic amplitude can also be influenced by the layout of the
stimulus. If visual clues lie farther apart from each other, the saccades between
them cover a larger distance.

2. Background

2.4 Research Questions

The above discussed topics lead to the following research questions:

RQcorrectness Does indentation affect correctness?
RQrime Does indentation affect response time?
RQRating Does indentation affect the subjective rating of difficulty?

RQrFix:Duration Does indentation affect fixation duration?
RQrix:Rate Does indentation affect fixation rate?

RQsacc:Amplitude Does indentation affect saccadic amplitude?

3 Original Study

This thesis is of course not the first to examine the effects of indentation on program
comprehension. Shneiderman et al. [MMNS83| conducted a study in 1983 targeting
the correlation of indentation and program comprehensibility. Programming novices
and experts were asked to answer questions about code snippets with varying in-
dentation and to estimate their difficulty. Since Shneiderman’s study is the base of
this study, the following gives a short description about it.

Variables

The one code used in the study was treated with zero, two, four, and six spaces
of indentation. Additionally, the code within Pascal’s begin-end blocks was either
aligned with the begin and end statements, or also indented. Those alternations to
the code and the level of programming experience were investigated to have an effect
on the score in the comprehension quiz and the subjective assessment of difficulty.

Participants

The authors divided the participants into novices and experts by the years of pro-
gramming experience they declared to have. Participants were seen as novices, when
they "had less than three years of programming experience in school and /or less than
two years of professional programming experience” [MMNS83]. All remaining sub-
jects were counted as experts. Novices were mostly participants in an "intermediate-
level programming class in Pascal” [MMNS83] and had already worked with more
complex code than the one used in the study. The experts were recruited from
an advanced programming course and "were graduating computer-science majors”
[MMNSS83]. Overall, 86 participants were included in the statistical analysis.

3. Original Study

Material

The Pascal code used in the study "calculated the number of occurrences of a word
for a given string of input” [MMNS83]. It included several syntactic structures such
as 7 sets, records, packed-arrays,while-loops, and if-then-elses.” [MMNS83]. To mea-
sure comprehension, the authors asked nine multiple choice questions about the
program. In addition, the participants had to give a short explanation regarding its
function, and an assessment of the difficulty in a rating of 1-7. Another two ques-
tions at the end were dedicated to programming experience. All tasks were listed
on one sheet.

Procedure

In the study, the subjects had 20 minutes to fill out the questionnaire. Each subject
got one of eight code versions. The supposed novices were assessed simultaneously
in the same room. The experts were also tested together.

Results

Shneiderman found that two to four spaced indentation supported comprehension
the most, with two space having the best results. Experts performed generally
better than novices. Zero-indented code had the worst quiz results, and was also
rated as most difficult. Their explanation for the better performance of moderate
levels of indentation is that ”[wlith 2-4-space indentation levels [...], the program is
more compact and the control blocks do not become obscured by increased nesting
levels.” [MMNS83]

4 Study

We conducted an empirical study with a within-subject design to answer the pro-
posed research questions. The participants were asked to calculate the output of
Java codes. During these tasks, we measured their response time as well as their
gaze positions. Afterwards they had to rate the difficulty of the codes. The inde-
pendent variable was the level of indentation.

4.1 Participants

We recruited 39 participants for study. Due to a bug in an auxiliary code script,
only 22 could be considered in the later evaluation. Hence, all following statements
refer to those 22 participants.

The participants were recruited via personal invitation, word-of-mouth recommen-
dation, and an invitation mass mail addressing all students of the Computer Science
and Mathematics Faculty of Passau. To motivate potential candidates to partic-
ipate, we advertised the use of an eye tracker, and underscored the value of the
scientific contribution. Additionally, we incited participation with sweets and a lot-
tery for an amazon gift card.

The participants were mainly Computer Science students or students of Computer
Science related subjects such as Internet Computing (see Table 4.3) and therefore
rather young (see Table 4.1). Most of the students were undergraduates in the fourth
or fifth semester (M'=4.7, SD? =2.1), who spent on average seven hours per week
on programming (M=7.4, SD=7.3). In addition to their studies, half of the students
were also working as student assistants.

1Mean
2Standard Deviation

10

4. Study
Knowledge Number
Attribute M SD Project Experience 10
Age 24.7 6.2 Regular 9
Years of Java Exp. 5.5 3.7 Basis Knowledge 2
Year of overall Exp. 7.8 6.9 No Experience 1
Table 4.1: Summary Participants Table 4.2: Summary Java Knowledge

Another group of participants was working at the department of Computer Science
(Ph.D. students, post docs, university staff). Three other participants were employ-
ees in a software company located in Passau.

The participants’ level of education and self-assessed level of Java knowledge are
summarized in 7?7 and Table 4.2. The participants further answered questions about
they sizes of projects they have read or worked on. Due to the homogeneity of the
participants in terms of job, we did not take experience into account in the evaluation
of our study.

Job Number
Student 15
Employed in a private enterprise 3
Employed in university 3
Other

Table 4.3: Summary Job

4.2 Design

This study has a within-subject design (every participant sees every code and every
indentation). This is supposed to even out individual attributes such as reading
speed. To balance the impact of confounding factors, such as personal skill, we
randomized the code-piece order. Sorting four codes into chunks of four without
repetition results 4 x 3 x 2 x 1 = 24 possible combinations. Additionally, the four
levels of indentation were randomly assigned. Here, the number of possible sequences
of the four levels without repetition is again 24. This results in a total of 24x24 = 576
possible trial sequences, where no code and no indentation is repeated This should
counter interactions between code and indentation, as it might be that, for example,
one code is the easiest to understand with an indentation of eight spaces and using
only this version might lead to the false conclusion that eight space indentation
is preferable independently of the code. These steps should also prevent learning
effects.

4.2. Design

4.2.1 Independent Variable

Indentation is the separation of a code block by shifting its lines to the right. We
manipulated this factor in order to measure its effects on code comprehension and
the other dependent variables.

It had four different levels: zero, two, four and eight spaces. Code blocks that belong
to the following constructs were indented:

e (Class header
e Method header
e Loop header

o [f else if or else

In doing so, lines of the same depth of embedding were equally indented.

4.2.2 Dependent Variables

This section presents the dependent variables and how they were measured during
the study. It also gives an explanation, why the according ways of measurement
were used.

4.2.2.1 Program comprehension

A top-down approach to measure comprehension would ask the participants about
the function of the program. In contrast, making them perform mental execution
is asking for a bottom-up strategy. To find the correct answer, one is not required
to (but still can) understand the code’s overall purpose. If the code or rather its
function is not known to the reader he is forced to go through every line and compute
the values of attributes and the output in his/her mind. We therefore chose this way
of measuring program comprehension. Other questions were discarded in order to
keep the study easy to survey, but also due to the limited complexity of the codes.
An answer was only counted as correct, when it matched exactly with the actual
output.

Response time was measured for each task, from the time the stimulus (the code)
was presented, until the participants completed the task.

4.2.2.2 Subjective Assessment

In order to get the participants subjective assessment of the difficulty of the codes
used in the tasks, they were asked to order the snippets from easy to hard in com-
parison with each other. This method was chosen, because it forces the rater to
compare the codes directly with each other and not with other codes they have
seen or worked with. If, for example, a programming expert is used to much more
complex code, he/she still has to decide which code is the easiest one, even though
all presented codes are rather ’easy’ for him/her. The resulting rankings are thus
not absolute, but more comparable than by an individual assessment of difficulty,

4. Study

for example via a Likert-scale. There comparing difficulties may be problematic, if
all codes have approximately the same difficulty for the rater and he is not taking
subtle differences into account.

To help the participants remember the codes, they were asked to rate, the snippets
were displayed next to each other along with the respective answers given in the
preceding trials. The participants had to perform the sequencing twice: First, the
codes are displayed with four-spaces of indentation. This was supposed to get the
subjective assessment of difficulty without giving hints about the role of indentation
in the study. As the codes are the same as in the task part of the study, the con-
scious or unconscious memory of the level of indentation could influence the decision.
Additionally, the codes are displayed with the actual indentation as used earlier in
the tasks. Here, participants had the chance to take the depth of indentation into
account for the rating.

4.2.2.3 Visual Effort

For measuring fixation duration, fixation rate and saccadic amplitude the partici-
pants’ gaze points were logged during the trials. We used a remote eye tracker that
was attached to the screen for collecting the gaze position in an unobtrusively way.

4.2.3 Differences to original Study

Although this study aimed to replicate the findings of [MMNSS83], their original
design was changed to a great extend. Eye tracking was not part of the original
study, hence all questions and measurements regarding the participants’ gaze were
newly introduced. Another modification was the transition from the between-subject
design to the within-subject design. The latter allows a smaller group of participants
be used (although the number of participants should of course always be as high as
possible). The examined programming language was also altered: Java was preferred
over Pascal, as Java is a more modern language and has been one of the most
widely deployed languages since 2001 [TIO] . The within-subject design, the desired
shortness of the codes and the different language resulted in four new code snippets
not related to the original Pascal code. The examined levels of indentation were also
different: Originally, the focus lied on indentations of zero, two, four, and six spaces.
We decided to replace the six-space indentation by one with eight spaces, in order to
amplify the effects that a high level of indentation could have. Also, the evaluation of
program comprehension differs: While Shneiderman asked the participants multiple
questions about the code’s function, here, we asked one question about the output
of the code. In contrast to the original study, where the processing time was fixed,
this study recorded additionally the response time. Last but not least, a distinction
of novices and experts was omitted here, because a) the group of participants was
substantially smaller, and b), it was expected to be rather homogeneous.

4.3. Material

13

4.3 Material

The snippets shown in the study were selected under the aspects of being equal
enough to be comparable, but at the same time being different enough for not sup-
port learning effects. Each of them treats a problem involving an input string and
its splitting into subparts. The codes do not solve standard text book problems and
are inspired by the codes used in [HSH17]. They all contained two block structures
(i.e., if-else-block or loops). A small pilot study was conducted to get an estimate
for the average trial time and for the difficulty of the snippets. As a result, one code
was replaced.

public class Do {
public static void main(String[] args) { public class Main {
int[] array {5, 6, 11, 0, 2 }; public static void main(String[] args) {
int[] values = { 3, 0, 1, 0, 2 };

int integer = 0;
int numbgr‘l _ ef StringBuilder result = new StringBuilder();
. b s int variable = 3;
1"? num_er‘A =0; for (int value : values) {
while (integer < array.length) { if (value == variable) {
if (array[integer] % 2 == 0) { result.append("x");
numberl += array[integer]; } else if (value < variable) {
} else { result.append("m");
numberA += array[integer]; iesult append("o");
. 5
} variable--;
integer++; }
} System.out.print(result);
System.out.print(numberA - numberl); }
} ¥
¥
(b) Main
(a) Do

public class Program { . public class Test {
public §tat:!.c void Taln(Stf‘ln%[] args) { public static void main(String[] args) {
String input = "1-3,10-11"; int variable = @;

int output = 0; String string = "3 21 4 2 55 0 13";
for (String part : input.split(",")) { int start = 2;
String[] numbers = part.split("-"); int end = 18;
int left = Integer.parseInt(numbers[0]); string[] keys = string.split(" ");
int right = Integer.parseInt(numbers[1]); for (int 1 = 0; i < keys.length; i++) {
int number = left; int key = Integer.parselnt(keys[i]);
while (number <= right) { boolean check = (key >= start & key <= end);
output += number; if (check) {
number++; variable += 1;
} ¥
} ! . .
System.out.println(output);) System.out.print(variable);
} ¥
(c) Program (d) Test

Figure 4.1: The Four Snippets

All snippets have 17 lines of code. This was supposed to ensure that the codes
are non-trivial and that the eye-tracker was able to differentiate the points of gaze.
The classes are named deliberately vague ("Do’, "Test’,’Program’,’Main’) and have
a single method, main. This method contains at least one print-statement, which
had to be considered in determining the output. Identifier names are chosen so that
they would not particularly give any hints about their function in the code (e.g.
‘numberl’; 'variable’). In order to normalize the snippets, there were no blank lines
in the code. Each snippet was recorded from the standard Eclipse environment with
the syntax highlighting of the default theme and the auto-formatter of Eclipse was
used (except for indentation). Figure 4.1 shows the snippets with an indentation of
four spaces and syntax highlighting. The processing time for one code was restricted
to 5 minutes, due to experiences made in the pilot study.

14

4. Study

while (integer < array.length) {
if (array[integer] % 2 == 0) {
numberl += array[integer];

} else {

numberA += array[integer];

¥

integer++;

}

(a) 0-space Indentation

while (integer < array.length) {
if (array[integer] % 2 == 0) {
numberl += array[integer];
} else {
numberA += array[integer];
}

integer++;

(c) 4-space Indentation

while (integer < array.length) {
if (array[integer] % 2 == 0) {
numberl += array[integer];
} else {
numberA += array[integer];
}
integer++;

}
(b) 2-space Indentation

while (integer < array.length) {
if (array[integer] % 2 == 0) {
numberl += array[integer];
} else {
numberA += array[integer];
¥

integer++;

(d) 8-space Indentation

Figure 4.2: The Four Levels of Indentation

The codes are treated with four different levels of indentation. To get a sense for

the differences, an example of the four levels is shown in Figure 4.2.

A warm up code was shown before the actual beginning of the study to get the par-
ticipants accustomed to the task and the interface. This code had all the attributes
of the task snippets (non-helpful identifiers, class with main method) expect for
having only one block construct (if-else-block). Its simple structure was also meant
as a test to check for those, who did not participate seriously. This snippet had an
indentation of 4 spaces as this is the recommended level of indentation in the Oracle
Java coding conventions [SM]. It is shown in Figure 4.3.

public class WarmUp {

public static void main(String[] args) {

int test = 3;
if (test > 3) {

}
¥

System.out.print("k");
else {
System.out.print("r");

Figure 4.3: Warm Up Code

4.4. Procedure

15

4.4 Procedure

Before the actual study started, the participants took place in front of the screen
and were asked to sit down as if they would do when they had to use the keyboard
and mouse. In order to obtain good gaze data, they were then asked to change their
position until they felt both comfortable and the Tobii Tracking Software showed
that their eye movements were detectable in such a way that a recording seemed
possible. Since the experimenter stayed in the room, they were told to ignore her
as far as possible. Then, the study software was executed. It was a self-written
NET- program, which uses the WPF-Framework and handles the logging of the
gaze data and the participants’ input. The language used in the instructions was
German. In the following, the flow of the actual study will be explained with the
help of Figure 4.4:

The study started with a welcome screen, which was also where the participants
gave their informed consent [Welcome screens]. They were then asked general per-
sonal questions [Personal questions] and about their programming experience [Prog.
questions|. When they declared to be students in the personal questions, they were
directed to answer questions about their studies [Student questions|, before getting to
the questions regarding programming experience that all participants answered. Af-
terwards, the eye-tracker was calibrated [Calibration]. The participants were asked
to remain in their current position as far as possible to keep the calibration valid.
Subsequently, they were given the instructions for the tasks [Instructions|, including
the warm-up snippet [Warm Up], before which an fixation cross already appeared
[Fization Cross|. Then the actual tasks [Task] started. The snippets were preceded
by a fixation cross [Fization Cross] of 1.5 seconds. The following task screen showed
the stimulus code in the main part of the window. Separated by a thin line, the input
field for the output answer was at the bottom part of the screen. The question to be
answered ("What output does this code produce?’) was written to the left side of this
field. With a click on 'Done’, the participants got to the next screen. The time limit
was enforced in a way that after four minutes, a message dialog appeared, warning
the readers that only one minute is left. If the time ran out eventually, another mes-
sage box popped up, stating that the time was over and the window switched to the
next screen. In this case, the non-existing answer was set to a default wrong value.
After each snippet, they had the chance to decide for themselves when to continue
[Relaxation]. After the trial phase, the participants had to assess the difficulty of
the code snippets twice. The snippets were presented to them together with the
answers the particular participant had given. Via drag-and-drop, participants could
order the snippets after increasing difficulty. First, the snippets were displayed with
a four-space indentation [Rating Fqual]. The second time, the snippets had the
same indentation as they were shown to the participant earlier [Rating Real]. After
the main part, the participants were asked, whether they participated seriously and
whether they got distracted during the trials [Final Questions]. Finally, they were
asked, whether they wanted to take part in the lottery and be informed about the
results [Contact data]. This was the end of the study [End)].

Each trial took maximally 30 minutes (up to 20 minutes for the code tasks plus ~10
minutes to answer the questionnaire, read the instructions and do the warm-up.)

16 4. Study

‘ Student questions ’

Student

‘ Welcome Screens }—»‘ Personal questions }—»{ Prog. questions }—»‘ Calibration ’

‘ Instructions }—*‘ Fixation Cross }—>{ WarmUp }<—

Wrong answer
tasks left
.. answer i
‘ Fixation Cross }—" Task }—’{ Relaxation ’
time out
l all tasks done
‘ Rating Equal ’ { Rating Real ’

‘Final questions }—*‘ Contact data }—){ End ’

Figure 4.4: Flow Diagram of the Study

4.4. Procedure

17

Execution

This study used the Tobii EyeX tracker with the "Tobii Eye Tracking Core Software”
in the version 2.9.0. The tracker has a sampling rate of 60 Hz or more and an
operating range of 50-90 cm. It is suitable for a display size up to 27” [Tob]. The
used monitor’s screen had a diagonal of 24” and a resolution of 1920x1080 pixels
with a refresh rate of 60 Hz. It was placed ~50 cm away from the desk’s edge and ~
19 cm above the desk’s level. The participants had to use a standard keyboard with
the German QWERTZ layout and a wireless mouse.

The study was conducted in an office with two desks facing each other. On one the
monitor and keyboard for the participants was assembled, the other one was empty.
The experimenter took place on this desk. The curtains and roller shutters were
closed as far as possible and the light in the room was turned on. This was done in
order to get better results from the eye tracker. During the conduct of the study,
a construction site outside the building repeatedly caused a higher noise level. The
participants stated in the questionnaire that they have not been disturbed during
the tasks.

18

4. Study

5 Results

In this section, the results gathered from the execution of the study are presented,
followed by the analysis of the influence of indentation on the depending variables.

5.1 Summary of data

This section gives an overview about the values of the measured dependent variables
and their distributions. The data preparation is briefly described. The summary of
values in the tables show the mean and standard deviation of the values, if the data
is normally distributed. Otherwise, the median and the interquartile range (IQR)
are listed.

5.1.1 Correctness and Time

The distribution and the summary of the response times can be taken from Figure 5.1
and Table 5.1. Table 5.1 also contains the percentage of right answers given. The
time values are not normally distributed, but skewed to the left. In order to minimize
the effect of outliers, data can be transformed via a function, for example by inversion
or applying the log-function [Rat93]. Here, the response times were log-transformed,
because this "tends to normalize the distributions” [Rat93]. This is indeed the case,
shown by a p-value of 0.1 for the Shapiro-Wilk normality test [SW65]. Insignificance
of this test implies that the tested distribution is most likely not to be normally
distributed. The normality of distribution is a prerequisite for the ANOVA later in
this chapter.

20

5. Results

(=]
=2 4
Lol
o (=]
=
&7 8 o
F = -
= (']
[I
(=] I
(=] hn |
. 1 1
R, i 1 1
@ 'llz — 1 I |
E | i I
= - 1
1
=
=
1 T T
: 1 1 j
R — I
% — 1 .
R
o -
T T T T
0 spaces 2 spaces 4 spaces 8 spaces

Level of Indentation

Figure 5.1: Distributions of Response Times

Time (mm:ss)

Indentation Median IQR % right answers
0 01:35.001 00:34.773 73 %
2 01:37.547 00:41.071 68 %
4 01:33.422 00:47.791 77 %
8 01:25.078 00:59.024 55 %
Total 01:33.983 00:47.171 68 %

Table 5.1: Summary of Response Times and Correctness

5.1. Summary of data

21

5.1.2 Rating

Table 5.2 shows a summary of the rating positions for the respective level of in-
dentation the rated code had, when the rating took place with equal indentations.
Table 5.3 contains the values for the codes rated with the actual indentation of the
trials. The medians of the two conditions are equal, only the distributions differ for
the four levels of indentation.

Rating Position Rating Position
Indentation Median IQR Indentation Median IQR
0 2 1 0 2 2
2 2 1.75 2 2 1
4 1 0.75 4 1 2
8 1 2 8 1 2
Table 5.2: Summary of Rating Posi- Table 5.3: Summary of Rating Posi-
tion with Equal Indentations tion with Real Indentations
Dsplaces 25p;ces 4splaces Ssp;ces Usplaces 2splaces 4-splaces Ssplaces
Level of Indentation Level of Indentation
(a) Equal Indentations shown (b) Real Indentations shown

Figure 5.2: Distribution of Rating Position

5.1.3 Fixation Duration

The median fixation duration of each trial is approximately normally distributed,
as the p-value of the Shapiro-Wilk normality test is about 0.18. It is summarized
in Table 5.4 and Figure 5.3. Instead of the mean of fixation durations, the median
is chosen, because the fixation durations are log-normally distributed [Lug07] and
therefore more skewed to the left.

22

5. Results

(=)
]
(']
_
[] |
(= |
(o] b |
—_ I - |
1 1 | |
_ 1 1 | |
= = 1 1 1 1
= o — 1 1 1 1
[=] -— 1 | |
o 1 | |
s 1 1 1
= i . I
E 8-
= -
=l
= .
=3 = |
] =+ — 1
= - !
= ' . ! !
m : 1 | |
2= H ! I !
- E — 1 : R — _
-— 1 1
i —
1
= i
= 4
— 1
1
S — o
T T 1 1
0 spaces 2 spaces 4 spaces 8 spaces

Level of Indentation

Figure 5.3: Distribution of Median Fixation Duration

Median Fixation Duration per Trial (ms)

Indentation Mean Standard Deviation
0 146.09 25.94
2 153.75 24.45
4 157.41 25.83
8 153.50 22.04
Total 152.69 24.54

Table 5.4: Summary of Median Fixation Duration per Trial

5.1. Summary of data

5.1.4 Fixation Rate

The fixation rate again is not normally distributed, but this time skewed to the right
with a long tail on the left side. It is summarized in Figure 5.4 and Table 5.5

g i
= T T T T
0 spaces 2 spaces 4 spaces 8 spaces
Level of Indentation
Figure 5.4: Distribution of Fixation Rate
Fixation Rate (fixations/second)

Indentation Median IQR

0 3.45 0.81

2 3.38 0.39

4 3.23 0.67

8 3.42 0.38

Total 3.35 0.69

Table 5.5: Summary of Fixation Rate

5.1.5 Saccadic Amplitude

The average saccadic amplitudes per trial are not normally distributed. They are
skewed to the left and thus were log-transformed for later analysis (similar to re-
sponse times). The transformed values are now normally distributed according to
the Shapiro-Wilk test (p = 0.11). The original values are summarized in Figure 5.5
and in Table 5.6

24

5. Results

=
=
(']
(=)
o |
—_ 1
I 1
g 1
s o | -
— (== I
s © | T . |
o ! 1 |
e ! 1 |
(=] 1 I I
= @ — 1 | 1
5 =
1 I
2 | — i
@ ! [
w = 1 !
@ b "
=
=
2]
: 24
1 1
[: ! : 1
o — 1 —_ | 1
— 1 i
-
T T T T
0 spaces 2 spaces 4 spaces 8 spaces

Level of Indentation

Figure 5.5: Distribution of Saccadic Amplitude

Average Saccadic Amplitude (pixels)

Indentation Median IQR
0 155.53 41.36

2 144.11 33.23

4 139.48 22.58

8 149.09 40.42
Total 145.24 32.91

Table 5.6: Summary of Saccadic Amplitude

5.2. Statistical analysis

25

5.2 Statistical analysis

In the following, the influence of indentation on the dependent variables is statisti-
cally analyzed, divided into the respective research questions. Before, the statistical
tests used in the analysis are briefly explained.

5.2.1 Test description

We used the two tests below for statistical significance. In which cases they were
applied, is described in Section 5.2.2.

One-way ANOVA with repeated measures This test is used for comparing
means of groups that are differentiated by one factor (here: level of inden-
tation), but were collected from the same source [Zii]. It requires that the de-
pended variable is interval-scaled and normally distributed, and that sphericity
can be assumed (for example by the significance of the Mauchly test [Mau40]).

Friedman test This test is used, when the data is not normally distributed or not
interval-scaled, and hence a One-Way ANOVA is not applicable [Fri37]. By
ranking the values, it analyzes the variance of repeated measures derived from
one independent variable. It requires that the values between samples are
paired and independent within a sample.

5.2.2 Test results

This section lists the results of the test of significance for each research question
together with a justification for the choice of test.

RQCorrectness
The Friedman test showed that the number of correct answers was not signif-

icantly affected by the levels of indentations x?(3) = 3.32,p = 0.36.
This test was used, because the dependent variable ("Number of correct an-
swers’) was not interval-scaled.

RQTime
A One-way ANOVA with repeated measures showed that the effect of level of

indentation on the log-transformed response times was not significant, F'(3,63) =

0.44,p = 0.72, nf) = 0.028.

This test was selected since the dependent variable ("Time’) is interval-scaled
and is also normally distributed after the log-transformation. Sphericity was
assumed, Mauchly — W (3) = 0.85,p = 0.65

RQRating
For determining whether the rating positions of the codes differed depending
on the level of indentation the Friedman-Test was applied, once for the rating
with equal indentations, and once for the one with the actual indentations. For
both, the differences are not significant, x?(3) = 4.64,p = 0.20 and x*(3) =
5.35,p = 0.15. Since the dependent variable ('Rating Position’) is ordinal-
scaled, the Friedman test was chosen.

5. Results

RQFix:Duration
A One-way ANOVA with repeated measures showed that the effect of level of

indentation on median fixation duration per trial was significant, F'(3,63) =
2.85,p = 0.045,71% = 0.006. This test was chosen, because the dependent
variable ("Median Fixation Duration Per Trial’) is interval-scaled and normally
distributed. Sphericity was assumed, Mauchly — W (3) = 0.77,p = 0.39

RQFix:Rate
There was no significant difference among the distributions of the fixation

rates for the four levels of indentation according to the Friedman test, x?(3) =
7.36,p = 0.06.

As the dependent variable ('Fixation Rate’) is not normally distributed, the
Friedman test was chosen instead of an ANOVA.

RQSacc: Amplitude
A One-way ANOVA with repeated measures showed that the effect of level

of indentation on the log-transformed average saccadic amplitude was not
significant, F'(3,63) = 1.69,p = 0.18,n12) = 0.029 Sphericity was assumed,
Mauchly — W (3) = 0.87,p = 0.74.

6 Discussion

In summary, code indented with four spaces resulted in the highest number of right
answers given, followed by zero, two and eight spaces. In contrast, codes with an
indentation of eight spaces were processed the fastest and two-spaced indented codes
the slowest. Codes that were originally indented with eight spaces, were also rated
as the most easiest, when presented with equal indentations for all codes, and second
easiest, when shown with the original indentation. The order from easiest to hardest
code changed from indentation of eight, four, zero and two spaces, when presented
with equal levels of indentation, to four, eight, two and zero spaces, when presented
with the original indentation. The codes with the highest fixation duration were
the ones of four-space indentation, while the ones of two- and eight-space indenta-
tion were both approximately the second highest. This order was reversed, when
focusing on fixation rate, but with codes with two-space indentation leading to a
slightly higher fixation rate than codes with eight-space indentation. The saccadic
amplitude was ordered similarly to the fixation rate.

These differences of the individual measurements were not significant, except for
fixation duration. We can therefore neither support nor disagree with the level of
indentation recommended in coding conventions based on our study.

The following section discusses the possible reasons for the insignificance, divided
into the topics of the research questions.

6.1 Program Comprehension and Times

The level of indentation showed no significant effect on correctness, nor on response
times. This was surprising, as non-indented code in particular was expected to
influence at least response times. One reason for the insignificance might be that
the effect size of the influence of indentation is probably very small, because there
are other factors that presumably have a greater impact on program comprehension
(i.e. the calculation performed by the code). The influence of indentation could
have been increased by carefully balancing those side effects. Finding significant

6. Discussion

differences for small effects also demands a high number of participants, which was
not given in this study. Finally, it is also possible that the advantage of indentation
comes more into effect, when the code is longer and more complex. Then, dividing
the code into coherent parts can become more important, in order to understand
the code’s function as a whole. A larger depth of embedding (such as 4 or 5 nested
loops have) may also increase the need for sensible indentation.

6.2 Subjective Assessment

The subjective assessment was not significantly affected by the level of indentation
the rated codes had in the previous trials. This was found when the codes were
presented with an equal level of indentation, as well as with their actual indentation
from the tasks. Although it was expected that the participants were especially
sceptical about the unusual non-indented code, their classification of difficulty was
not significantly influenced by indentation. It is possible that they were mainly
focused on the calculation performed by the codes instead of style. In contrast, the
codes could not have been complex or long enough in order for the participants to
feel that indentation supports the understanding of the code’s function.

6.3 Visual Effort

Although the differences in median fixation duration between the different levels of
indentation were significant, this result has to be handled with caution: The effect
size is extremely small, and due to the numerous threats to validity the findings
for this effect are negligible. Additionally, the tests for fixation and saccadic rate
showed no significant effect of indentation on those measures. The absence of ev-
idence of a correlation between indentation and visual effort could originate from
the high subjective factor of eye-tracking data, "meaning that one person’s parame-
ters are different from another person’s, irrespective of task” [HNAT11]. The small
number of participants might (next to other aspects) thus hinder the finding of sig-
nificant results for differences in visual effort. Furthermore, the data obtained by the
eye-tracker may be too inaccurate to find significant effects in gaze behavior with
the materials and setting of this study. As there are no other studies specifically
examining the effect of indentation on visual effort that we are aware of, it could
be possible that this effect is non-existent. However, we assume this to be unlikely,
because the level of indentation changes the spatial arrangement of the code. Hence,
it probably affects the process of reading code. Similar to program comprehension,
this effect could even be increased, when the code is longer and alone the number
of indentations is greater.

6.4 Differences to original study

In contrast to the study by Shneiderman, this study found no significant effect of
indentation on program comprehension. This may be due to the various changes
to the original design. We suspect that the length and complexity of code have a
huge impact on the support that indentation possibly offers for comprehension. We
used much shorter codes with decreased complexity in comparison to the program

6.4. Differences to original study

29

used by Shneiderman, possibly resulting in smaller effects. They also measured
comprehension with a wider range of questions, whereas we solely focused on mental
execution. It may be that other questions capture the effects of indentation on
comprehension better. Aside of design and material, one of the greatest differences
is the number of participants: While Shneiderman evaluated 86 participants, we
statistically tested only 22 and had therefore a reduced chance of finding significant
effects.

30

6. Discussion

7 Threats to Validity

There are numerous threats to the validity of the results of this study. Section 7.1
explains, which error sources could have compromised the influence of indentation
on the dependent variables. Section 7.2 accounts for problems with the measure-
ments chosen for answering the research questions, and Section 7.3 discusses the
generalizability of the findings in this study to the real world.

7.1 Internal Validity

While all participants declared that they were not distracted during the tasks, the
construction noise as a prime example for a confounding factor and other sounds
from the corridor and the surrounding offices might have had an influence on the con-
centration of the participants. Of course, the sheer presence of the tracker may have
impacted the participants’ behavior. Although a small pilot study was conducted
to discard snippets, for which participants needed more time for comprehension,
it could be that differences between the finally selected snippets had a significant
effect on the response time. They are also not completely normalized: the number
of variables, the number of statements, identifier names, and many more attributes
differ.

This also has an impact on the eye tracking data, as the different layouts of the
codes even with the same levels of indentation automatically result in different gaze
patterns and attributes.

7. Threats to Validity

7.2 Construct Validity

Measuring code comprehension only by mental execution tasks does not take all
aspects of comprehension into account. It is not suitable to measure the participants’
overall understanding of the code. The problem handled by a program does not
have to be extracted in order to calculate the right output. However, if a participant
understood the code’s semantics, he/she is likely to give the correct answer regarding
its output. The tasks in this study therefore only measured one aspect of program
comprehension.

Rating the codes’ difficulty by sequencing them does not depict absolute values.
Participants were not able to adequately express their subjective assessment, when
they thought all codes to be equally easy or difficult. Nevertheless, the relative
differences can be measured this way.

The gaze attributes examined in this study are only a subset of possible aspects for
measuring visual effort. It may be that fixation duration, fixation rate and saccadic
amplitude are less informative about visual effort, than ,for example, blink rate or
pupil diameter.

7.3 External Validity

The number of participants was very small and they were also very homogeneous
group (over half of them were students). Thus, the lack of evidence for effects in
this study cannot be transferred to the generality of programmers.

The snippets used in the tasks were rather short (17 lines of code) as they had to be
of appropriate size for the eye tracker. Thus, and due the unnatural naming used,
the codes do not represent everyday code.

8 Conclusion

Encouraged by the findings of Shneiderman, and the visual influence of indentation
on the layout of code, we estimated that indentation affects program comprehension,
subjective assessment and visual effort. We conducted an empirical study, in which
participants had to calculate the output of Java code and rate its difficulties while
their gaze was tracked. Contrary to our expectations, we found no significant effects
The question of this thesis, “Are indentations a simple matter of style or do they
support code comprehension?”, can therefore not be answered by our study and we
are not able recommend a specific level of indentation.

With the following ideas, the methods and materials we used could be further refined
to address the issues raised in the discussion.

Future Work

In accordance with the findings of Shneiderman, we expect that a replication of this
study with a higher number of participants could show a tendency towards moderate
levels of indentation as recommendable for program comprehension. The usage of
larger code snippets could amplify the effect of indentation, as the differentiation
between the logical units of code becomes more important. In addition, a more
precise eye tracker would be needed, if measuring visual effort is desired. Dividing
the stimulus in areas of interest and calculating the number of fixations for them,
could shed more light on how gaze behavior is affected by the level of indentation.
Further research of this aspect could for example investigate, whether participants
switch more between nesting levels, when faced with different indentations. In con-
trast, completely omitting the eye tracker open up new ways to use longer and more
complex codes. Without an eye tracker, a laboratory set up becomes less important,
which would make it possible to conduct a replication online.

An additional factor worth looking at might be experience. It presumably plays an
elementary role when it comes to structuring processes, problem-solving, and de-
bugging. Experience could also help, when encountering unstructured or unusually
formatted code.

34

8. Conclusion

A Appendix

A.1 Codes

public class WarmUp {
public static void main(String [] args) {
int test = 3;
if (test > 3) {
System.out . print ("k”);

} else {

System.out . print ("r”);
¥

Listing A.1: Warm up code

A. Appendix

public class Do {
public static void main(String[] args) {
int [] array = { 5, 6, 11, 0, 2 };
int integer = 0;
int numberl = 0;
int numberA = 0
while (integer < array.length) {
if (array[integer] % 2 = 0) {
numberl += array[integer];

} else {

numberA += array [integer |;
}

integer—++;

)

}

System.out . print (numberA — numberl);

Listing A.2: Code 'Do’

public class Main {
public static void main(String|[] args) {
int [|] values = { 3, 0, 1, 0, 2 };
StringBuilder result = new StringBuilder ();

int variable = 3;
for (int value : values) {
if (value = variable) {

result .append ("x”);

} else if (value < variable) {
result .append ("m”);

}

result .append (”0”);
variable ——;

}

System.out.print (result);

Listing A.3: Code 'Main’

A.1. Codes

37

public class Program {
public static void main(String[] args) {
String input = "1-3,10—11";
int output = 0;
for (String part : input.split (”,”)) {
String [] numbers = part.split (”—=");

int left = Integer.parselnt(numbers[0]);
int right = Integer.parselnt (numbers[1]);
int number = left ;

while (number <= right) {
output += number;
number+-+;
}
}

System.out . println (output);

Listing A.4: Code "Program’

public class Test {
public static void main(String [] args) {

int variable = 0;

String string = 73 21 4 2 55 0 137;

int start = 2;

int end = 18;

String [] keys = string.split (7 7);

for (int i = 0; i < keys.length; i++) {
int key = Integer.parselnt (keys[i]);
boolean check = (key >= start && key <= end);
if (check) {

variable += 1;

}

}

System.out . print (variable);

Listing A.5: Code "Test’

38

A. Appendix

A.2 Questionnaire

Question

Answer Options

In which year were you born?

Integer

What is your gender?

Man, Woman, Prefer not to say

What is your main job?

Student, Employed in a private enter-
prise, Employed in university (no stu-
dent assistant), Entrepreneur, No job,
Other

What is your highest degree?

Abitur / vocational baccalaureate, Ap-
prenticeship / technical training, Bach-
elor, Master / Diploma, Lateral entrant
/ no degree, Other degree

Are you wearing glasses?

Yes, No

Do you have a visual disorder or mis-
aligned eyes?

Yes, No

Table A.1: General Questions

Question

Answer Options

What is your semester in your field of
study?

Integer

Do you work besides studying the field
of informatics?

No, Student assistant, Working student,
Intern, Entrepreneur, Employee, Other

How many hours per week do you spend
on own projects?

Integer

Table A.2: Student Questions

A.2. Questionnaire

39

Question Answer Options

How many years of experience with Integer

Java do you have?

How many years of overall program- Integer

ming experience do you have?

How familiar are you with Java? No Experience, Basic Knowledge,

Project Experience, Regular, Expert

Optional: Which other programming
languages do you know (Basic Knowl-
edge or more)?

Free Text

How many lines of code does the biggest Free Text
project you ever worked on have?

How many lines of code does the biggest Free Text
project you created in a team have?

How many lines of code does the biggest Free Text

project you created on your own have?

When did you last program something
in Java?

This week, Last Month, Last Year,
Longer than 1 year ago, Longer than 5
years ago

Table A.3: Programming Questions

Question Answer Options
Did you take the study seriously? Yes, No
Were you distracted during the study? Yes, No
Did you have fun doing the study? Yes, No

Table A.4: Final Questions about Study

Question Answer Options
Do want the collective results to be send Yes, No

to you?

Do you want to take part in the lottery Yes, No

of the Amazon gift card?

Do you want to get informed about Yes, No

other studies?

Table A.5: Contact questions

40

A. Appendix

Bibliography

[BDLM09]

[Foua|

[Foub]

[Fri37]

[Gooa)

[Goob]

[Gooc]

[HNA*11]

[HSH17]

Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Mor-
rell. To camelcase or under_score. In Program Comprehension, 2009.
ICPC’09. IEEE 17th International Conference on, pages 158-167.
IEEE, 2009. (cited on Page 4)

Python Software Foundation. The python language reference. Web-
site. Available online at https://docs.python.org/3/reference/lexical_
analysis.html; visited on October 8th, 2017. (cited on Page 1)

Python Software Foundation. Style guide for python code. Website.
Available online at https://www.python.org/dev/peps/pep-0008/; vis-
ited on October 9th, 2017. (cited on Page 4)

Milton Friedman. The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance. Journal of the american
statistical association, 32(200):675-701, 1937. (cited on Page 25)

Google. Google c++ style guide. Website. Available online at https:
//google.github.io/styleguide/cppguide.html; visited on October 9th,
2017. (cited on Page 4)

Google. Google java style guide. Website. Available online at https:
//google.github.io/styleguide/javaguide.html; visited on September
18th, 2017. (cited on Page 2)

Google. Google javascript style guide. Website. Available online
at https://google.github.io/styleguide/jsguide.html; visited on Octo-
ber 9th, 2017. (cited on Page 4)

Kenneth Holmqvist, Marcus Nystrom, Richard Andersson, Richard
Dewhurst, Halszka Jarodzka, and Joost Van de Weijer. Eye tracking:
A comprehensive guide to methods and measures. OUP Oxford, 2011.

(cited on Page 5 and 28)

Johannes Hofmeister, Janet Siegmund, and Daniel V Holt. Shorter
identifier names take longer to comprehend. In Software Analysis,
FEvolution and Reengineering (SANER), 2017 IEEE 24th International
Conference on, pages 217-227. IEEE, 2017. (cited on Page 13)

https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html
https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/jsguide.html

42

Bibliography

[JCS0]

[KUMA™*84]

[Lug07]

[Mau40]

[Mic]

[MKW+90]

[MMNSS3]

INTS02]

[PE0S]

[Rat93]

[SM]

[SM10]

Marcel A Just and Patricia A Carpenter. A theory of reading: From
eye fixations to comprehension. Psychological review, 87(4):329, 1980.

(cited on Page 5)

Thomas E Kesler, Randy B Uram, Ferial Magareh-Abed, Ann
Fritzsche, Carl Amport, and Hubert E. Dunsmore. The effect of in-
dentation on program comprehension. International Journal of Man-
Machine Studies, 21(5):415-428, 1984. (cited on Page 2)

AJP Lugtigheid. Distributions of fixation durations and visual acqui-
sition rates. PhD thesis, Erasmus University, 2007. (cited on Page 21)

John W Mauchly. Significance test for sphericity of a normal n-variate
distribution. The Annals of Mathematical Statistics, 11(2):204-209,
1940. (cited on Page 25)

Microsoft. C-sharp coding conventions. Website. Avail-
able online at https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/inside-a-program/coding-conventions; visited on
October 9th, 2017. (cited on Page 4)

James G May, Robert S Kennedy, Mary C Williams, William P Dun-
lap, and Julie R Brannan. Eye movement indices of mental workload.
Acta psychologica, 75(1):75-89, 1990. (cited on Page 5)

Richard J Miara, Joyce A Musselman, Juan A Navarro, and Ben Shnei-
derman. Program indentation and comprehensibility. Communications
of the ACM, 26(11):861-867, 1983. (cited on Page 2, 7, 8, and 12)

Minoru Nakayama, Koji Takahashi, and Yasutaka Shimizu. The act
of task difficulty and eye-movement frequency for the’oculo-motor in-
dices’. In Proceedings of the 2002 symposium on Eye tracking research
& applications, pages 37-42. ACM, 2002. (cited on Page 5)

Matthew H Phillips and Jay A Edelman. The dependence of visual
scanning performance on search direction and difficulty. Vision re-
search, 48(21):218472192, 2008. (cited on Page 5)

Roger Ratcliff. Methods for dealing with reaction time outliers. Psy-
chological bulletin, 114(3):510, 1993. (cited on Page 19)

Inc. Sun Microsystems. Code conventions for the java program-
ming language. Website. Available online at http://www.oracle.
com/technetwork /java/codeconvtoc-136057.html; visited on Septem-
ber 18th, 2017. (cited on Page 2, 4, and 14)

Bonita Sharif and Jonathan I Maletic. An eye tracking study on
camelcase and under_score identifier styles. In Program Comprehension
(ICPC), 2010 IEEE 18th International Conference on, pages 196-205.
IEEE, 2010. (cited on Page 4)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Bibliography

43

[SW65]

Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance
test for normality (complete samples). Biometrika, 52(3/4):591-611,
1965. (cited on Page 19)

TIOBE. Tiobe index. Website. Available online at https://www.tiobe.
com/tiobe-index//; visited on October 6th, 2017. (cited on Page 12)

Tobii. Tobii eyex tracker. Website. Available online at http:
//tobiigaming.com/product /tobii-eyex/; visited on September 12th,
2017. (cited on Page 17)

Max Wertheimer. Untersuchungen zur lehre von der gestalt. ii. Psy-
chologische forschung, 4(1):301-350, 1923. (cited on Page 3)

Universitét Ziirich. Einfaktorielle varianzanalyse (mit messwiederhol-
ung). Website. Available online at http://www.methodenberatung,.
uzh.ch/de/datenanalyse/unterschiede/zentral /evarianzmessw.html;
visited on September 12th, 2017. (cited on Page 25)

https://www.tiobe.com/tiobe-index//
https://www.tiobe.com/tiobe-index//
http://tobiigaming.com/product/tobii-eyex/
http://tobiigaming.com/product/tobii-eyex/
http://www.methodenberatung.uzh.ch/de/datenanalyse/unterschiede/zentral/evarianzmessw.html
http://www.methodenberatung.uzh.ch/de/datenanalyse/unterschiede/zentral/evarianzmessw.html

44

Bibliography

Zusammenfassung

Diese Arbeit untersucht den Effekt von Einriickungen auf Programmversténdnis
basierend auf den positiven Ergebnissen einer Studie von Shneiderman et al. Zusét-
zlich werden das subjektive Schwierigkeitsempfinden in Betracht gezogen und das
urspriingliche Design erweitert, um zusétzliche Erkenntnisse iiber den Einfluss von
Einriickungen auf das visuelle Verhalten zu gewinnen. Das Ziel dieser Arbeit war
es, eine empirische Begriindung fiir die Empfehlung von Einriickungstiefe in Coding
Conventions zu liefern. Im Laufe unserer Studie wurden 22 Teilnehmer darum ge-
beten, die Ausgabe von Java-Programmen mit verschiedenen Einriickungstiefen zu
bestimmen, wihrend ihre Blickbewegungen mittels eines Eye-Trackers aufgezeichnet
wurden. Obwohl kein signifikanter Nachweis fiir die untersuchten Effekte gefunden
wurde, kann diese Arbeit ein Ausgangspunkt fiir weitere Studien in diesem Bereich
sein.

Eidesstattliche Erklarung:

Hiermit versichere ich an Eides statt, dass ich diese Bachelorarbeit selbstédndig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausfithrungen, die wortlich oder sinngeméf {ibernommen wurden,
als solche gekennzeichnet sind, sowie dass ich die Bachelorarbeit in gleicher oder
dghnlicher Form noch keiner anderen Priifungsbehorde vorgelegt habe.

Jennifer Bauer

Passau, den 12. Oktober 2017

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Code Listings
	1 Introduction
	2 Background
	2.1 Program Comprehension and Indentation
	2.2 Subjective Assessment of Difficulty and Indentation
	2.3 Visual Effort and Indentation
	2.4 Research Questions

	3 Original Study
	4 Study
	4.1 Participants
	4.2 Design
	4.2.1 Independent Variable
	4.2.2 Dependent Variables
	4.2.2.1 Program comprehension
	4.2.2.2 Subjective Assessment
	4.2.2.3 Visual Effort

	4.2.3 Differences to original Study

	4.3 Material
	4.4 Procedure

	5 Results
	5.1 Summary of data
	5.1.1 Correctness and Time
	5.1.2 Rating
	5.1.3 Fixation Duration
	5.1.4 Fixation Rate
	5.1.5 Saccadic Amplitude

	5.2 Statistical analysis
	5.2.1 Test description
	5.2.2 Test results

	6 Discussion
	6.1 Program Comprehension and Times
	6.2 Subjective Assessment
	6.3 Visual Effort
	6.4 Differences to original study

	7 Threats to Validity
	7.1 Internal Validity
	7.2 Construct Validity
	7.3 External Validity

	8 Conclusion
	A Appendix
	A.1 Codes
	A.2 Questionnaire

	Bibliography

