
Master’s Thesis

VAL IDAT ING VARA’ S FEATURE -REG ION
DETECT ION ON REAL -WORLD PROGRAMS
BY APPROX IMAT ING FEATURE LOCAT IONS

THROUGH COVERAGE DATA
jan schmitz

January 18, 2024

Advisors:
Florian Sattler Chair of Software Engineering
Sebastian Böhm Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Andreas Zeller CISPA Helmholtz Center for Information Security

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Jan Schmitz:ValidatingVaRA’s Feature-RegionDetection on Real-World Programs byApproximating
Feature Locations through Coverage Data, © January 2024

Science demands patience.

— Arthur C. Clarke

Dedicated to my family and friends.

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

ABSTRACT

Instead of writing programs for a single purpose only, developers tend to reuse existing
software systems, adding new functionality or features to them as needed. Usually they
introduce new configuration options that enable, disable, or tune the newly introduced
features. Adding new features to existing programs is a reasonable choice from a developer
perspective but comes with a hidden cost: The number of possible configurations grows
exponentially with every added configuration option. Furthermore, the project gets more
complicated because featuresmay interact with one another. This complexity then complicates
development and maintenance.

To reason about such complexities, the variability-aware analysis framework VaRA pro-
vides a feature-region detection that can be used to help developers manage the increased
maintenance burden. The feature-region detection identifies code regions that correspond to
specific features or configuration options. By mapping features to code regions, developers
gain valuable insights into the program’s complex structure. For instance, they can directly
observe which configurations are affected when modifying a single line of code.

Although VaRA’s feature-region detection has produced promising results in test applica-
tions, it has not yet undergone extensive validation. The reason for this is that the baseline
needed for validation had to be created manually by hand, which is unfeasible to do for large
programs in practice. Therefore, in order to validate VaRA’s feature-region detection on a
large scale, an automatic method is needed to generate the required baseline for real-world
programs.

In this thesis, we create such an automatic method to validate the feature-region detection of
VaRA on real-world programs by leveraging coverage data to automatically generate baselines.
First, we conduct a qualitative analysis to identify conceptual differences when using our
coverage-based baseline for validation andmitigate them if necessary. Then, we quantitatively
evaluate how VaRA’s feature-region detection performs on real-world programs by using our
baseline for result classification. We analyze classification outcomes in detail that cannot be
explained based on the insights from our first step to find their cause. In this way, we can
either spot bugs in VaRA’s feature-region detection or verify that it works as intended.

Our evaluation indicate thatVaRA’s feature-region detection on thewholeworks as intended
and returns valid results. However, our work also reveals a potential bug and identifies some
shortcomings that can be improved upon.

vii

Software engineering is the part of computer science which is too difficult for the computer scientist.

— Friedrich L. Bauer

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my family and friends for their unwaver-
ing support and encouragement during my studies and especially throughout this thesis.
Specifically, I thank my parents for always being there for me when I needed them, while also
allowing me to develop freely and pursue my interests. Furthermore, I would like to thank the
Chair of Software Engineering for the supervision of this thesis. In particular, I am grateful
for the collaboration with my advisors Florian Sattler and Sebastian Böhm, who provided
valuable feedback and motivated me to surpass my own expectations. Special thanks go to
Prof. Dr. Sven Apel and Prof. Dr. Andreas Zeller for their time and effort to examine this thesis.
Finally, I would like to express my gratitude to my proofreaders for their helpful remarks and
encouraging words.

ix

CONTENTS

1 Introduction 1
1.1 Goal of this Thesis . 3
1.2 Overview . 4

2 Background 5
2.1 Configurable software systems . 5
2.2 VaRA . 6

2.2.1 Static and Dynamic Analysis . 6
2.2.2 LLVM . 7
2.2.3 Control-Flow Graph . 8
2.2.4 Feature-Taint Analysis . 9
2.2.5 VaRA’s Feature-Region Detection Approach 9

2.3 Coverage-Based Baseline . 10
2.3.1 Baseline and Ground Truth . 11
2.3.2 Coverage Data . 11
2.3.3 Code Regions and Feature Regions . 12
2.3.4 Binary Decision Diagram (BDD) . 13
2.3.5 Presence-Condition Simplification . 13

3 Implementation 15
3.1 Generating the Coverage-Based Baseline . 15

3.1.1 Initial approach: Diffing coverage data 15
3.1.2 Better approach: Building presence conditions 16

3.2 Exporting VaRA’s Feature Regions . 17
4 Methodology 21

4.1 Research Questions . 21
4.2 Comparison Process . 22

4.2.1 Interpreting Feature Regions . 22
4.2.2 Mapping Features to Command-Line Options 23
4.2.3 Classification and Performance Assessment 23

4.3 Operationalization . 25
4.3.1 Experiment Design . 25
4.3.2 Qualitative Analysis . 25
4.3.3 Quantitative Analysis . 26

5 Evaluation 29
5.1 Results . 29

5.1.1 Qualitative Analysis . 29
5.1.2 Quantitative Analyis . 39

5.2 Discussion . 47
5.2.1 RQ1: What conceptual differences in detected feature regions exist? . . 47
5.2.2 RQ2: VaRA’s feature-region detection performance 48
5.2.3 Thesis Goal: Does VaRA’s feature-region detection yield valid results? . 51

xi

xii contents

5.3 Threats to Validity . 51
5.3.1 Internal validity . 51
5.3.2 External validity . 53

6 Related Work 55
7 Concluding Remarks 57

7.1 Conclusion . 57
7.2 Possible tooling improvements . 57
7.3 Future Work . 58

a Appendix 61
a.1 Feature interaction in ECT . 61
a.2 Disabled exception handling . 61

Bibliography 63

L I ST OF F IGURES

Figure 2.1 Feature model of ZIP example visualized as feature diagram 6
Figure 2.2 LLVM compiler architecture . 7
Figure 2.3 Control-flow graph of the ZIP example 9
Figure 2.4 Dominator trees of the ZIP example . 10
Figure 2.5 Code region tree . 12
Figure 2.6 Example BDDs . 13

L I ST OF TABLES

Table 3.1 ZIP example, data export . 20
Table 4.1 Confusion matrix for classification . 24
Table 4.2 Qualitative analysis: Examined example programs 26
Table 4.3 Quantitative analysis: Examined real-world and synthetic programs . 27
Table 5.1 Unmitigated results for MSMR . 30
Table 5.2 Unmitigated results for SFI . 30
Table 5.3 Results MSMR and SFI, after condition handling mitigation 32
Table 5.4 Results MSMR and SFI, after parsing-code mitigation 33
Table 5.5 Results SFI, after feature-dependent function mitigation 34
Table 5.6 Mitigated results for SynthDADynamicDispatch 35
Table 5.7 Mitigated results for SynthIPRuntime 36
Table 5.8 Mitigated results for SynthSAFlowSensitivity 37
Table 5.9 Mitigated results for SynthDARecursion 38
Table 5.10 Totals for synthetic programs . 39
Table 5.11 Mitigated results for Bzip2 . 40
Table 5.12 Mitigated results for gzip . 41
Table 5.13 Mitigated results for XZ . 42
Table 5.14 Arithmetic mean of performance metrics per feature group 48

xiii

L I ST INGS

Listing 1.1 Conceptual example of a ZIP compression tool 2
Listing 1.2 ZIP example, feature regions detected by VaRA 2
Listing 1.3 ZIP example, presence conditions by leveraging coverage data 3
Listing 2.1 ZIP example code as LLVM IR . 8
Listing 3.1 Definition of a node in the code region tree 16
Listing 3.2 Pseudocode for creating a coverage-based baseline 16
Listing 3.3 ZIP example, generating the coverage-based baseline in three steps . 18
Listing 3.4 VaRA’s feature variable metadata annotations in LLVM IR 19
Listing 3.5 Assigning exported instructions to code regions 20
Listing 5.1 Difference in handling conditions . 31
Listing 5.2 Difference between command-line option and feature variable detection 33
Listing 5.3 Difference detecting feature-dependent functions 34
Listing 5.4 Threshold difference in SynthIPRuntime 36
Listing 5.5 Threshold difference in SynthIPRuntime’s LLVM IR 36
Listing 5.6 Threshold difference in SynthSAFlowSensitivity 37
Listing 5.7 Threshold difference in SynthDARecursion 38
Listing 5.8 Threshold difference in SynthDARecursion’s LLVM IR 38
Listing 5.9 Features as preprocessor macros in Bzip2 43
Listing 5.10 Feature variables as enum in XZ . 44
Listing 5.11 Wrongly annotated feature region in XZ 44
Listing 5.12 Definition and usage of lzma_lzma_preset 45
Listing 5.13 Declaration of lzma_lzma_preset in LLVM IR 45
Listing A.1 Feature interaction in ECT . 61
Listing A.2 VaRA’s detected feature regions without -fno-exceptions 62

xiv

ACRONYMS

BA Balanced Accuracy
BDD Binary Decision Diagram
DNF Disjunctive normal form
FN False Negative
FP False Positive
ISA Instruction Set Architecture
MSMR MultiSharedMultipleRegions
PPV Positive Predictive Value
SFI SimpleFeatureInteraction
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
VaRA Variability-aware Region Analyzer

xv

1
INTRODUCT ION

Modern software systems often solve problems of an entire domain rather than just a single
problem. To do so, they are usually highly-configurable. Similar to a swiss army knife, modern
software systems provide a diverse set of functionality or have features that can be tailored to
a specific use case through configuration options. Configuration options represent switches
that turn on/turn off user-controllable functionality or features. They are normally parsed at
program load time from, for example, command line parameters, environment variables, or
configuration files and usually have corresponding variables in the source code. These feature
variables influence the control flow of the program to achieve the requested behavior and
adapt the program to the desired use case. This means that, depending on the variables’ value,
different parts of the program that implement the requested functionality of the enabled
features are executed.

For developers of the aforementioned software systems, the high configurability poses
challenges. With every added configuration option the configuration space grows exponen-
tially, making it unfeasible in general to consider every possible configuration when working
on the software system. Additionally, features often influence the behavior of each other in
unforeseen ways [6]. For example, when one feature changes the expected program flow,
data state, or visible behavior of another feature. Therefore, developers must detect, manage,
and resolve these feature interactions to ensure that features and the software system as a
whole work correctly [2, p. 214]. Usually that requires special handling in code. This added
complexity through configurability complicates development and maintenance because every
possible configuration has to be considered whenever making a change.

To illustrate the complexity challenge of configurable systems consider the ZIP example
in Listing 1.1. The code on the left may be used in the zip1 utility which provides several
command-line options to create various kinds of ZIP files. For simplicity, assume it just
provides --compress for enabling compression and --enc for enabling encryption (with
corresponding feature variables in Line 1 and 2). These two command-line options can
already be combined in four different ways. This results in four possible configurations of
ZIP, each processing the data in a different way (right side of Listing 1.1). Since the used
encryption algorithm is a block cipher, the data has to be a multiple of the block size. In this
example, we assume that the compress function always outputs data that is a multiple of the
block size. Therefore, no padding is needed when compressing and encrypting. But for the
case that the data should be encrypted but not compressed, padding has to be added. This is
a special case where glue code (Lines 8–10) is required that manages this interaction between
the Encryption and Compression feature. Now consider the real-world zip utility which has
over 80 command-line options, some can even be set to non-binary values. That means, the
real-world zip utility can be configured in more than 280 ways. This leads to a way higher
complexity than that of our example and makes it very unlikely that a developer knows

1 https://man.archlinux.org/man/zip.1.en (visited on January 16, 2024)

1

https://man.archlinux.org/man/zip.1.en

2 introduction

1 bool UseCompression; |

2 bool UseEncryption; |

3 |

4 if (UseCompression) { | Possible Data Processing:

5 Data = compress(Data); | 1. ZIP(Data)

6 } | 2. ZIP(compress(Data))

7 if (UseEncryption) { | 3. ZIP(encrypt(addPadding(Data)))

8 if (not UseCompression) { | 4. ZIP(encrypt(compress(Data)))

9 Data = addPadding(Data); |

10 } |

11 |

12 Data = encrypt(Data); |

13 } |

Listing 1.1: Conceptual example of a ZIP compression tool.

which features are affected when they make a change. Hence, introducing bugs becomes
more likely.

Fortunately, the analysis framework Variability-aware Region Analyzer (VaRA) [25] can
help with that. VaRA provides a feature-region detection that statically analyzes a program
to find code regions dependent on feature variables. The resulting code region to feature
mapping can be used by other tools, for example, to annotate the feature-dependent regions
in a program to assist developers of configurable software systems. Listing 1.2 depicts a
visualization of the code region to feature mapping for our ZIP example.

1 bool UseCompression; Feature Variable: UseCompression
2 bool UseEncryption; Feature Variable: UseEncryption
3

4 if (UseCompression){

5 Data = compress(Data); 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
6 }

7 if (UseEncryption){ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛
8 if (not UseCompression){

9 Data = addPadding(Data); 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
10 }

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛11

12 Data = encrypt(Data);

13 }

Listing 1.2: ZIP example, feature regions detected by VaRA.

However, VaRA’s feature-region detection has not yet been validated on large-scale on real-
world programs. This is due to the lack of an easy way to generate the necessary baseline or

1.1 goal of this thesis 3

reference data for verifying VaRA’s feature-region detection results. Typically, generating such
a baseline is done manually, which is a very labor-intensive task that is impractical for large
code bases [27]. Therefore, research focused on evaluating different feature-region detection
approaches [27] or only validated some components of VaRA’s feature-region detection [14].

Fortunately, coverage data poses a solution to this impediment because it contains informa-
tion about the executed source code of a program, including the source code belonging to
active features during a run. By leveraging this information, we can determine which code
regions belong to which feature [22] and generate a baseline for a program automatically.
A coverage-based trace of a program execution contains the code regions that were active
during that execution. When the same program is executed again but this time with exactly
one configuration option changed, the active code regions change too. The difference in active
code regions is the influence of the changed configuration option (i. e., the code that belongs
to that configuration option [22]). Therefore, executing the program for all possible configura-
tions and building the difference between the obtained coverage data yields a feature to code
region mapping that is based on run-time information, we call it coverage-based baseline.
Listing 1.3 depicts our coverage-based baseline for our ZIP example.

In this thesis, we validate VaRA’s feature-region detection by comparing its results with
our coverage-based baseline. Since both approaches use completely different concepts to
generate the same type of data, it is unlikely that they share the same shortcomings. Therefore,
comparing the results of both gives us the chance to find bugs in VaRA’s feature-region
detection or confirm that it works as intended.

1 bool UseCompression;

True2 bool UseEncryption;

3

4 if (UseCompression){

5 Data = compress(Data); compress
6 } True
7 if (UseEncryption){ enc
8 if (not UseCompression){

9 Data = addPadding(Data); ¬compress ∧ enc
10 }

enc11

12 Data = encrypt(Data);

13 }

Listing 1.3: ZIP example, presence conditions by leveraging coverage data.

1.1 goal of this thesis

The goal of this thesis is to validate VaRA’s feature-region detection on large-scale real-world
programs. To accomplish this, we provide a way to automatically build a coverage-based

4 introduction

baseline for real-world programs and demonstrate how it can be compared to the results
of VaRA’s feature-region detection. Since VaRA’s feature-region detection technique relies on
static code analysis, while the generation of the coverage-based baseline is basically a dynamic
analysis, it is uncertain how comparable the results of these two approaches are. Therefore,
we first validate small example programs with our coverage-based baseline and analyze the
results in detail to draw conclusions about possible differences in the identified feature regions.
In a second step, we evaluate howwell VaRA’s feature-region detection performs on real-world
programs by using the coverage-based baseline to measure performance metrics. We base
our assessment of these results on the conclusions drawn in step one and examine cases
where the two approaches diverge in detail. This way, we determine whether the cause is a
shortcoming of one approach or whether we have found an actual bug in the implementation.
Therefore, we can either identify areas for improvement in VaRA’s feature-region detection or
verify that it works as intended.

1.2 overview

This thesis is structured as follows: Chapter 2 provides the necessary background information
for our work. It introduces important terms and concepts of configurable software systems
and explains the tools and analysis approaches that VaRA and our coverage-based baseline
use. In Chapter 3, we describe how we build our coverage-based baseline and how we
associate VaRA’s feature-region information with it. Chapter 4 focuses on our methodology.
It includes our research questions, explains how we interpret the information from both
approaches to make them comparable, describes our comparison procedure, and presents the
operationalization of our experiments. In Chapter 5, we showcase our results, discuss them,
answer our research questions and thesis goal, and disclose threats to validity. Chapter 6
provides an overview of related work, specifically previous research on feature detection in
general, previous evaluation attempts related to VaRA’s feature-region detection, as well as
relevant work upon which we base our implementation. Lastly, Chapter 7 concludes what we
have accomplished and gives recommendations for immediate possible tool improvements
around VaRA and future work.

2
BACKGROUND

We present in this chapter the essential background knowledge needed to understand our
work. First, we discuss the concepts and terminology of configurable software systems. Then,
we introduce the respective tools and techniques of VaRA and our coverage-based baseline.

2.1 configurable software systems

A software system consists of several cooperating components that work together to solve a
task. Each component has a specific purpose and contributes to the overall solution of the
problem. Components can be implemented in various ways, for example, as an independent
program or as a part of a program itself. To avoid developing software systems from scratch,
the concept of software product lines has been established.

A software product line is a set of useful, reusable components, which can be combined
into a software product or software system tailored to the user’s needs [2, Section 1.3]. Each
of these components realizes a certain functionality. If this functionality is end-user visible,
then it is called a feature [2, Definition 2.1].

The variability of a software product line, that is, which features can be combined to
obtain a valid software product, is commonly modeled by a feature model [2, pp. 26–27].
Usually, feature models can be transformed into a Boolean expression that describes all
valid feature combinations. A visual representation of a feature model is a feature diagram,
a tree structure with features as nodes and possibly additional constraints. The purpose
of this representation is to display for each node the conditions that child features must
satisfy to obtain valid configurations. As an example, we present the feature diagram for
our ZIP example in Figure 2.1, which we extended to include decompression support for the
sake of completeness. Feature models are composed of both abstract and concrete features.
Abstract features are used to structure the feature model and for documentation purposes,
but unlike concrete features, they typically do not have implementation artifacts [2, p. 35].
In our feature diagram, we have two abstract features that group features. ZIP acts as the
root of the tree and represents the entire functionality of the ZIP example. It forms an “And”
group, which requires all conditions of the features in this group to be fulfilled to obtain valid
configurations. Furthermore, we have the abstract feature OperationMode, which is used to
assign the concrete features Compress and Decompress to an alternative group. This means
that Compress and Decompress cannot be activated at the same time. In addition to group
memberships, features can be either optional or mandatory. Concat is mandatory in our
case, which means that our ZIP example always concatenates several files into a single one.
The features Encrypt and OperationMode are optional, meaning that the encryption and the
compression or decompression functionality can be activated as needed depending on the
use case. Additional constraints that cannot be expressed directly in the tree are shown below
in the feature diagram. In our ZIP example, this is the condition that we cannot encrypt while
decompressing. This case is not relevant in practice and is therefore not supported.

5

6 background

ZIP

Concat Encrypt OperationMode

Compress Decompress

Legend:

Abstract Feature
Concrete Feature
Mandatory
Optional
And Group
Alternative Group

Constraint: Decompress ⟹ ¬Encrypt

Figure 2.1: Feature model of ZIP example visualized as feature diagram.

Software product lines may have features that are always active and cannot be configured
by the user, such as our mandatory Concat feature. However, developers often provide users
with the ability to customize their software system by implementing configuration options
that allow them to enable or disable features or tweak their functionality. The end users can
configure the program to their needs by setting the desired configuration options. Developers
have three options for implementing variability in their software product line: at compile
time, load time or run time [2, Section 3.1.1]. Preprocessor directives or configuration options
in the build system allow for compile-time variability. Load-time configuration options are
typically implemented through configuration files, environment variables, or command-line
options. A program evaluates them at load time, that is, before it starts operating. Run-time
configuration options are often also set at load time but unlike load-time configuration options
they can be changed during run time. They allow users to reconfigure a program without
restarting it.

VaRA’s feature-region detection can analyze the use of load-time and run-time configuration
options in programs. However, in our experiments, we only examine load-time variable pro-
grams configured via command-line options. Therefore, in this work, we define a feature as a
configurable feature with a corresponding configuration option. Furthermore, a configuration
option is equivalent to a command-line option in the following, unless we state otherwise.

2.2 vara

The Variability-aware Region Analyzer (VaRA) is an analysis framework based on LLVM [25].
It provides several high-level static or dynamic analyses that work on LLVM IR and allow
users to detect code of interest. In the following subsections we explain important terminology
and concepts related to VaRA.

2.2.1 Static and Dynamic Analysis

A static analysis works on the source code of a program or the instructions generated from it
without executing these. In contrast, a dynamic analysis executes the program and observes
the execution. Both static and dynamic analysis methods have advantages and disadvantages.

2.2 vara 7

Static analysis methods often require an entry point in the source code to start from, which
requires some preparation before they can be used. Dynamic analysis methods, on the other
hand, can usually be used out of the box without any adjustments or markups to the source
code. However, they do not scale as well as static analysis methods, as they only collect
information about one program execution at a time. To analyze the entire program, dynamic
analysis must be performed repeatedly until all executions have covered the entire source
code. However, this task requires a significant amount of computational effort and is not
feasible for sufficiently complex programs. In contrast, static analysis only needs to analyze
the source code once and can then make statements about the entire program.

2.2.2 LLVM

LLVM is a compiler framework [17], which allows to compile a program for an arbitrary
supported CPU instruction set architecture (Instruction Set Architecture (ISA)ISA). LLVM achieves this ability through its
modular design. It has three different types of components, language frontends, the LLVM
optimizer, and ISA backends. The only interface between LLVM components is an architecture-
independent intermediate representation of a program, referred to as LLVM IR [16].

As shown in Figure 2.2, the first step in the compilation process of an input program with
LLVM is to parse the source code by an corresponding language frontend which translates
the program into LLVM IR. The resulting LLVM IR may not be optimal yet, for example, it
may contain instructions for code that will never be executed. Therefore, as second step, an
optimizer can be used that performs various analyses, called LLVM passes, on the LLVM IR.
A LLVM pass can alter the LLVM IR in any way. Usually, passes implement optimizations that
make the LLVM IR more efficient, for example, by removing unnecessary instructions. The
final step in the LLVM compilation process is to process the LLVM IR with an ISA backend
that produces the actual machine code that can be executed on the desired CPU architecture.

Figure 2.2: LLVM compiler architecture as depicted in [16].

2.2.2.1 LLVM IR

LLVM IR is a low-level program representation that is later translated into machine-specific
code. The LLVM IR for Lines 1–6 in our ZIP example code is shown in Listing 2.1. One can

8 background

clearly recognize the variable declarations of UseCompression and UseEncryption (Lines 1–2),
as well as the UseCompression if-case (Lines 5–14).

Declarations and instructions in LLVM IR can be annotated with metadata. This metadata
provides additional information about the entity that can be helpful when debugging LLVM
passes, for example. Metadata is appended to the end of an entry in the comma-separated
format: !<metadata_name> !<reference_number>. The reference number refers to the corre-
sponding metadata entry at the bottom of the LLVM IR. We can also see this in Listing 2.1,
where we instruct LLVM to generate metadata for debugging. This results in declarations
and instructions having !dbg metadata that links them to the corresponding locations in the
source code (Lines 18–22).

1 @UseCompression = internal global i8 0, align 1, !dbg !991

2 @UseEncryption = internal global i8 0, align 1, !dbg !992

3 ...

4 entry:

5 %1 = load i8, i8* @UseCompression, align 1, !dbg !2683

6 %tobool = trunc i8 %1 to i1, !dbg !2683

7 br i1 %tobool, label %if.then, label %if.end, !dbg !2685

8
9 if.then:

10 ; Call compress function

11 ...

12 br label %if.end, !dbg !2691

13
14 if.end:

15 ; Continue with program

16 ...

17
18 !991 = !DILocation(line: 1, column: 1, scope: !42)

19 !992 = !DILocation(line: 2, column: 1, scope: !42)

20 !2683 = !DILocation(line: 3, column: 1, scope: !2684)

21 !2685 = !DILocation(line: 4, column: 21, scope: !2677)

22 !2691 = !DILocation(line: 6, column: 1, scope: !2687)

Listing 2.1: ZIP example code (Listing 1.1) Line 1–6 as LLVM IR.

2.2.3 Control-Flow Graph

The control flow in a program is determined by conditions. Depending on the conditions,
so-called basic blocks are executed or not. “A basic block is a linear sequence of program
instructions having one entry point (the first instruction executed) and one exit point (the
last instruction executed).” [1] The possible control flows in a program can be represented by
a control-flow graph (CFG). “A control flow graph is a directed graph in which the nodes
represent basic blocks and the edges represent control flow paths.” [1]

2.2 vara 9

If all control-flow paths to a basic block 𝑋 go exclusively through a basic block 𝑌, we say
basic block 𝑋 is dominated by 𝑌 [1]. The same works in the other direction. Here we speak of
post-domination [1].

Such a control-flow graph for the ZIP example is depicted in Figure 2.3. It has the basic
blocks 𝐴-𝐺 as nodes and the control-flow decisions as edges.

Figure 2.3: Control-flow graph of the ZIP example (Listing 1.1).

2.2.4 Feature-Taint Analysis

Taint analysis is a static or dynamic analysis that reveals the information flow in a program.
It begins at a labeled start point (taint source) and marks all places in a program that use the
taint source as tainted. If such a place is a variable assignment, then the assigned variable is
also marked as tainted. The taint analysis continues its search on the freshly marked variables
and eventually identifies all places in the program that use information from the taint source.

VaRA implements a static feature-taint analysis that works with feature variables as taint
source. It taints LLVM IR instructions that depend on a feature variable as feature-dependent.
This way, it creates a mapping from feature variables to the affected instructions.

2.2.5 VaRA’s Feature-Region Detection Approach

VaRA detects feature regions in two steps. First, it uses the feature-taint analysis to obtain
feature-dependent instructions. In the second step, it analyzes the last instruction in each
basic block to determine which basic blocks depend on a feature. The last instruction in a

10 background

basic block of LLVM IR is a branch instruction that determines which basic block is executed
next. Therefore, if this last instruction is a feature-dependent conditional branch instruction,
the decision depends on the corresponding features. VaRA treats all connected basic blocks
affected by this decision as a feature region.

VaRA’s feature-region detection determines which basic blocks belong to a feature region
through domination and post-domination relationships in the control-flow graph. It uses
dominator trees to describe the domination relationship. A dominator tree has the same basic
blocks as nodes as the control-flow graph and a node’s children are the basic blocks that are
directly dominated by it. For our ZIP example, we visualize the dominator trees in Figure 2.4.
The nodes 𝐴-𝐺 correspond to the basic blocks in Figure 2.3. A feature region consists of basic
blocks that are dominated by a feature-dependent condition but are not post-dominated by it.
The dominator trees illustrate that, for example, for the basic block 𝐴. 𝐴 dominates both 𝐵
and 𝐶, but 𝐶 post-dominates 𝐴. As a result, 𝐶 and all basic blocks dominated by 𝐶 are not
part of the feature region. This leaves only 𝐵 as the basic block that is exclusively affected by
the feature-dependent condition in 𝐴. VaRA’s feature-region detection counts the basic block
with the feature-dependent condition as part of a feature region by default. Therefore, in this
case, the feature region consists of both 𝐴 and 𝐵.

In total, VaRA’s feature-region detection finds three feature regions in our ZIP example: two
for the Compression feature, consisting of the basic blocks 𝐴 and 𝐵, as well as 𝐷 and 𝐸. The
third feature region belongs to the Encryption feature and consists of 𝐶, 𝐷, 𝐸, and 𝐹.

A

B C

D

E F

G

Dominator tree

G

F

E D

C

B A

Post-dominator tree

Figure 2.4: Dominator trees of the ZIP example.

2.3 coverage-based baseline

Our coverage-based baseline is a mapping of code regions to features, or more precisely, to
their presence conditions. Presence conditions describe feature combinations under which
the code regions are executed and can be automatically generated from coverage information.
In the following, we explain terms and techniques relevant to our coverage-based baseline.

2.3 coverage-based baseline 11

2.3.1 Baseline and Ground Truth

A baseline is reference data that serves as a basis for comparison with other data. It enables
the determination of differences between the baseline and other data, and can be used to
classify the latter. If the baseline has been verified and is known to be true, it is often referred
to as ground truth.

Since, in this thesis, we automatically generate a code region to feature mapping from
coverage data without always verifying it, we use the term coverage-based baseline rather
than coverage-based ground truth.

2.3.2 Coverage Data

Measuring code coverage, that is, what parts of a program are executed during run time, is a
common and established technique due to the easy accessibility of tools formost programming
languages1. Coverage information is often used to estimate the quality of software tests,
because the more code of a program is tested, the more likely it is that bugs are found [20].

LLVM can also measure code coverage. We can instruct the compiler to compile a program
that generates a coverage log when it is executed. A coverage log contains information about
the code regions of the program and the count of how many times they were executed. We
use these counts to determine which code regions were active in a program and identify code
regions that belong to a feature.

The command-line options listed below take care of compiling an instrumented program:

• -fprofile-instr-generate: Enables instrumented code generation that collects execution
counts in a .profraw file2.

• -fcoverage-mapping: Writes a coverage mapping3 to the .profraw file to enable code
coverage analysis4.

The resulting instrumented program saves raw profiling data during its execution in a
.profraw file. A .profraw file is an append-friendly unstructured LLVM-internal format that
is neither forward nor backward compatible and can change with every LLVM version5.
Therefore, in order to work with the raw data and to create a coverage report from them, they
must first be indexed6. LLVM provides the llvm-profdata tool for this purpose. With the
command:

llvm-profdata merge name.profraw -o name.profdata

1 Java: https://www.jacoco.org/jacoco/ (visited on January 16, 2024); Python: https://coverage.readthedocs.
io (visited on January 16, 2024); Many more: https://about.codecov.io/ (visited on January 16, 2024)

2 https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fprofile-instr-generate

(visited on January 16, 2024)
3 https://llvm.org/docs/CoverageMappingFormat.html (visited on January 16, 2024)
4 https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fcoverage-mapping

(visited on January 16, 2024)
5 https://clang.llvm.org/docs/SourceBasedCodeCoverage.html?highlight=profraw#

format-compatibility-guarantees (visited on January 16, 2024)
6 https://clang.llvm.org/docs/SourceBasedCodeCoverage.html?highlight=profraw#

creating-coverage-reports (visited on January 16, 2024)

https://www.jacoco.org/jacoco/
https://coverage.readthedocs.io
https://coverage.readthedocs.io
https://about.codecov.io/
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fprofile-instr-generate
https://llvm.org/docs/CoverageMappingFormat.html
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fcoverage-mapping
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html?highlight=profraw#format-compatibility-guarantees
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html?highlight=profraw#format-compatibility-guarantees
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html?highlight=profraw#creating-coverage-reports
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html?highlight=profraw#creating-coverage-reports

12 background

an indexed data profile (.profdata file) is created from which coverage information can be
extracted by llvm-cov7. In order to make the coverage data easy to parse, we export it as
JSON with:

llvm-cov export --instr-profile=name.profdata path/to/instrumented_program

2.3.3 Code Regions and Feature Regions

Code regions are parts of the source code that are grouped together by a specific syntax
and may consist of one or more statements. In C/C++ programs, for example, curly braces
or control-flow structures such as if-then-else statements form code regions. In this thesis,
code regions refer to the corresponding data structure in LLVM’s coverage JSON8. From our
perspective, the most important fields in this data structure are the start and end locations in
the source code, which define the contents of a code region, and the execution count, which
tells us how often that code region has been executed. By parsing this data structure, we can
determine the entire structure of a program.

From the standpoint of VaRA’s feature-region detection, we can define a code region as
consisting of one or more basic blocks that are located directly in that code region, given the
source-code location of their instructions. Apart from minor deviations, which we describe in
Section 5.1.1.2 and Paragraph 5.2.1, this understanding is correct.

In the ZIP example (Listing 1.3), there are essentially four code regions color coded as gray
(Lines 1–13), blue (Lines 4–6), orange (Lines 7–13), and brown (Lines 8–10). We depict how
these code regions are nested as a code region tree in Figure 2.5. A code region tree consists
of nodes that represent code regions. The code region of each child node in a code region
tree is entirely contained within the start and end locations of the parent node. We use the
labels of the nodes to visualize the basic blocks from Figure 2.3 that are exclusively contained
in a code region.

A|C|G

B D|F

E

Figure 2.5: Code region tree.

feature region In the context of the coverage-based baseline, we call a code region a
feature region when the execution of the code region depends on a configuration option.
Regarding VaRA’s feature-region detection, we define a feature region as a code region whose

7 https://llvm.org/docs/CommandGuide/llvm-cov.html (visited on January 16, 2024)
8 https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#interpreting-reports (visited on January

16, 2024)

https://llvm.org/docs/CommandGuide/llvm-cov.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#interpreting-reports

2.3 coverage-based baseline 13

associated instructions are all detected as feature-dependent. Therefore, the blue, orange,
and brown code regions in our ZIP example are feature regions for both approaches. To
differentiate between feature regions and regions without features associated, we use the
term “normal” region to refer to a code region that is not a feature region.

flaky feature region Due to the instruction-level granularity of VaRA’s feature-region
detection, it is possible that not all instructions within a code region are identified as feature-
dependent by VaRA. Therefore, if a code region consists of both feature-dependent and
non-feature-dependent instructions, we call the code region a flaky feature region.

2.3.4 Binary Decision Diagram (BDD)

Boolean formulas respectively functions can be efficiently represented by a Binary Decision
Diagram (BDD) [4, 5], as can be seen for example in Figure 2.6. A BDD is a directed acyclic
graph whose nodes represent the variable of the Boolean formula and its edges represent
the values true (1; continuous arrow) or false (0; dashed arrow). The graph has a start node
and two terminal nodes, 0 and 1, denoting the result of the Boolean function. Each path
through the graph represents a possible input and its corresponding output. An interesting
property of BDDs is their canonical form, that is, equivalent Boolean functions with the same
input variable order have the same unique function graph [4]. This allows for the automatic
minimization of Boolean formulas, which is why BDDs can be used for logic minimization,
that is, minimizing a formula to an equivalent shorter formula.

compress

encrypt

0 1

1

0 1

0

BDD of compress ∧ encrypt

compress

encrypt

0 1

0

0 1

1

BDD of compress ∨ encrypt

Figure 2.6: Example BDDs.

2.3.5 Presence-Condition Simplification

If certain states of a Boolean expression cannot occur, they can be removed to simplify the
expression. In our case, we know from the featuremodelwhich valid configurations a program
has. Therefore, we can use this knowledge to minimize presence conditions. Rhein et al. [24]

14 background

introduced the term “Presence-Condition Simplification” for this approach and formally
described the concept with the formula:

𝑚 ⟹ (simp(𝑝, 𝑚) ⟺ 𝑝)

In this formula, 𝑚 represents the context, which in our case is the feature model, 𝑝 represents
the presence condition, and “simp” stands for a simplification algorithm. The formula states
that, given a context 𝑚 and a presence condition 𝑝, the presence-condition-simplification algo-
rithm must output a presence condition that is equivalent to the original presence condition
𝑝 in the context of 𝑚. Ideally, the new presence condition is shorter than the original. In other
words, presence-condition simplification minimizes the presence condition in context of the
feature model.

We follow the recommendation of Rhein et al. [24] and apply the Restrict algorithm to
simplify presence conditions represented as BDDs [5, 8]. Admittedly, this only provides us a
minimized presence condition, not necessarily the most minimal one. To obtain a minimal
presence condition, we would have to use the Quine-McClusky algorithm [9], which scales
poorly because it is NP-complete. However, for our purpose, a guaranteed optimal solution is
not necessary since we only aim to reduce the complexity of presence conditions.

3
IMPLEMENTAT ION

In the following sections, we explain how the coverage-based baseline, our code region to
features mapping used to validate VaRA’s feature-region detection, is generated by leverag-
ing coverage data and how VaRA’s information about feature regions can be exported and
associated with the baseline.

3.1 generating the coverage-based baseline

To create the coverage-based baseline for a program, we require coverage logs first. To generate
these, we proceed as described in Section 2.3.2 and instrument the program with profiling
instructions. In addition, we generate all valid configurations from the feature model. We
then run the instrumented program for each configuration on all matching workloads. The
execution of all workloads matching the configuration is important to increase the coverage
because in real-world programs parts of the program execution may depend on the type of
workload. The more code we execute for a configuration, that is, the more workloads we run,
the more complete our coverage-based baseline will be. Ideally, our workloads execute all
possible code for each configuration, giving us the optimal baseline.

3.1.1 Initial approach: Diffing coverage data

Initially, we tried to generate the coverage-based baseline by computing the difference in
coverage data. To do this, we divide the coverage logs into two groups. Group 𝐴 comprises
the coverage logs in which a feature 𝑋 is deactivated, while group 𝐵 comprises the logs with
feature 𝑋 activated. By merging the coverage logs in group 𝐴 and those in group 𝐵, we obtain
coverage log 𝑎 and 𝑏. The sole dissimilarity between coverage log 𝑎 and 𝑏 is feature 𝑋. Thus, the
difference in covered code regions between 𝑎 and 𝑏 corresponds to the code regions affected
by feature 𝑋. By repeating this procedure for further features, we can determine the features
that affect each code region.

While this approach is straightforward and sufficient for a direct comparison with the
features identified by VaRA, it can only determine features that affect a code region, not the
presence condition of the code region. For instance, regarding Line 9 in the ZIP example
presented in Listing 1.3, we just know that it depends on compress and enc, but not that it
will only be executed if ¬compress ∧ enc. However, this presence condition is helpful when
analyzing possible inconsistencies of the feature regions detected by VaRA in the LLVM IR, as
it provides us with additional context. Therefore, we changed our approach to the following
in order to obtain presence conditions.

15

16 implementation

1 class CodeRegion:

2 start: RegionStart

3 end: RegionEnd

4 count: int # How often this code region was executed

5 parent: tp.Optional[CodeRegion] # Code region in which this is located

6 children: tp.List[CodeRegion] # Subregions of this code region

7 presence_condition: tp.Optional[Function] # Formula in BDD

8 vara_instrs: tp.List[VaraInstr] # LLVM IR instruction associated with this node

9 ...

Listing 3.1: Definition of a node in the code region tree.

3.1.2 Better approach: Building presence conditions

We can build presence conditions for every code region by utilizing the coverage logs recorded
for each configuration. A coverage log contains all code regions of our program, their cor-
responding source code file and how often they were executed. We parse this information
and use it to create a code region tree per file. The code region tree consists of nested code
regions. A node in this tree is a code region depicted in Listing 3.1. The children of a node
are all code regions that lie directly in the code region. If a node has no children, it is a leaf.
The root of the code region tree is a code region that spans the whole file. It contains all other
code regions.

Since all coverage logs come from the same program, the locations of all code regions are
identical, and thus the structure of the code region trees is also identical. They only differ in
the execution counts of the code regions. We use this to determine the presence conditions,
that is, under which conditions the code region was executed. To do so, we proceed with the
three steps shown in the pseudocode in Listing 3.2.

1 # Create code region trees for every configuration.

2 trees = []

3 for configuration in valid_configurations(feature_model):

4 tree = record_coverage(configuration)

5
6 # Step 1: Annotating conditions

7 tree.annotate(configuration)

8 trees.append(tree)

9
10 # Step 2: Building presence condition

11 feature_tree = merge(trees)

12
13 # Step 3: Presence-condition simplification

14 for code_region in feature_tree:

15 presence_condition = code_region.presence_condition

16 presence_condition.restrict(feature_model)

Listing 3.2: Pseudocode for creating a coverage-based baseline.

3.2 exporting vara’s feature regions 17

3.1.2.1 Step 1: Annotating conditions

Initially, we convert the configuration corresponding to the coverage log to a Boolean formula
with command-line options as variables. To do this, we set the command-line options that
are specified in the configuration as positive literals and the others as negative literals. We
then connect the literals using conjunctions to create the formula. For example, if our ZIP
example was executed only with the compress command-line option, we get the condition
compress ∧ ¬enc. We set this condition as initial presence condition for all executed code
regions in our code region tree. For all code regions that are not executed, we set the presence
condition to False.

3.1.2.2 Step 2: Building presence condition

We now have structurally identical code region trees with initial presence conditions for each
coverage log. The actual presence conditions for each code region are determined by merging
all code region trees per source code file. This happens in the second step. When merging two
code region trees, we simply build the disjunction of both presence conditions. In this way,
we build a formula in disjunctive normal form (Disjunctive normal form (DNF)DNF) for each code region. Through using
a BDD as the underlying data structure for our Boolean expressions, the presence condition
is minimized with each merge. We merge the code region trees until we have one tree per
source code file left. These trees contain the presence condition for each code region.

3.1.2.3 Step 3: Presence-condition simplification

We now have the presence condition for each code region, but not yet in the context of
the feature model. Let’s assume that at least one of the features Compression or Encryption
must always be enabled in our ZIP example. So after the second step, all code regions that
are consistently executed independently of a feature, would have the presence condition
compress ∨ enc. This, of course, distorts our coverage-based baseline because it seems that
these code regions are affected by the Compression and Encryption feature. To correct this error,
we apply presence-condition simplification to obtain the presence conditions in the context of
the feature model. To do so, we restrict the presence conditions with the feature model. Since
the feature model itself is compress ∨ enc, the affected presence conditions reduce to True.

The changes in the presence conditions of the ZIP example are visualized in Listing 3.3. The
column Annotated Conditions contains the conditions that we build from the configurations as
described in the first step. Presence Condition is the Boolean formula, automatically minimized
by the BDD. The last column Simplification contains the presence condition, after the restriction
to the feature model.

3.2 exporting vara’s feature regions

The feature-region detection of VaRA is based on the dominator approach described in Sec-
tion 2.2.5 and implemented as a LLVM pass. It operates at an instruction-level granularity,
that is, for each instruction in the LLVM IR, we can see what features it depends on. However,
this data is only accessible internally to other LLVM passes. Therefore, to compare the feature
regions identified by VaRA with those from our coverage-based baseline, we must first export

18 implementation

Annotated Conditions Presence Condition Simplification

1 bool UseCompression;

𝑐 ∧ ¬𝑒, ¬𝑐 ∧ 𝑒, 𝑐 ∧ 𝑒 𝑐 ∨ 𝑒 𝑇𝑟𝑢𝑒2 bool UseEncryption;

3

4 if (UseCompression){

5 Data = compress(Data); 𝑐 ∧ ¬𝑒, 𝑐 ∧ 𝑒 𝑐 𝑐
6 } 𝑐 ∧ ¬𝑒, ¬𝑐 ∧ 𝑒, 𝑐 ∧ 𝑒 𝑐 ∨ 𝑒 𝑇𝑟𝑢𝑒
7 if (UseEncryption){ ¬𝑐 ∧ 𝑒, 𝑐 ∧ 𝑒 𝑒 𝑒
8 if (not UseCompression){

9 Data = addPadding(Data); ¬𝑐 ∧ 𝑒 ¬𝑐 ∧ 𝑒 ¬𝑐 ∧ 𝑒
10 }

¬𝑐 ∧ 𝑒, 𝑐 ∧ 𝑒 𝑒 𝑒11

12 Data = encrypt(Data);

13 }

Listing 3.3: ZIP example, generating the coverage-based baseline in three steps. The feature model is
compress ∨ enc. compress is abbreviated with 𝑐, enc with 𝑒.

all instructions and their features, and then assign them to code regions. To accomplish this
task, we perform the following steps.

At first, we generate LLVM IR from the program’s source code, containing the information
needed for VaRA’s feature-region detection and our LLVM pass called FeatureDebugLocation-
Export. We accomplish this by utilizing the CFLAGS:

• -O0: To disable almost all other LLVM passes. This gives us the unoptimized LLVM IR.

• -g: To annotate the LLVM IRwith source-level debug information1 (i. e., line and column
number as shown in Listing 2.1).

• -fno-exceptions: To disable generating exception handling code for C++2. This is
necessary to get comparable feature regions from VaRA for C++ programs. Omitting it
causes the instructions following exception handling code within feature regions to also
depend on the previously identified features, resulting in non-intuitive feature regions
as demonstrated in Listing A.2.

• -fvara-fm-path=<value>: Path to feature model for delivering VaRA the locations of
feature variables in the source code.

• -fvara-feature: To mark feature variables in LLVM IR by metadata.

1 https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-g (visited on January 16,
2024)

2 https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fexceptions (visited
on January 16, 2024)

https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-g
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fexceptions

3.2 exporting vara’s feature regions 19

The resulting LLVM IR is similar to Listing 2.1, but the feature variables are now linked to
the corresponding feature by the metadata !FVar, as depicted in Listing 3.4.

1 @UseCompression = internal global i8 0, align 1, !dbg !991, !FVar !1932

2 @UseEncryption = internal global i8 0, align 1, !dbg !992, !FVar !1933

3
4 ...

5 !1932 = !{!”Compression”}
6 !1933 = !{!”Encryption”}

Listing 3.4: VaRA’s feature variable metadata annotations in the LLVM IR of the ZIP example.

Next, we run VaRA’s feature-region detection to generate feature-region information for
instructions in the LLVM IR and then our LLVM pass called FeatureDebugLocationExport to
export this information. This is done by invoking the LLVM optimizer opt with the following
options:

• -vara-PTFDD: Runs VaRA’s feature-region detection pass.

• -vara-export-feature-dbg: Runs the FeatureDebugLocationExport pass that exports LLVM
IR instructions together with relevant information.

• -vara-report-outfile=<value>: To which file the exported data is written.

The FeatureDebugLocationExport pass iterates over all instructions in the LLVM IR and
exports instructionswith debug locations inCSV format. Instructionswithout debugmetadata
are not directly related to the source code and can be ignored. For each instruction, we export
the path to the source file, the line and column number, the features annotated by VaRA,
the consecutive instruction index, and the instruction itself. The instruction index and the
instruction itself are not required for comparison with the coverage-based baseline, but are
useful for analyzing inconsistencies. The relevant data from the export of our ZIP example,
namely the location and the annotated features, can be seen in Table 3.1.

The exported instructions can be associated to the code regions in our code region trees
based on their location. This is done by searching the code region tree belonging to the source
file for the smallest code region in which the instruction is located. That is the deepest code
region in the code region tree, between whose start and end point the location lies. After
finding this code region, the corresponding instructions and their features are mapped to it.
In this way, we get a code region to feature mapping for VaRA. The pseudocode for this can
be seen in Listing 3.5.

Wehave demonstrated how coverage data can be utilized to create a coverage-based baseline,
which consists of code regions and their corresponding presence conditions, and how to map
LLVM IR instructions, including feature information from VaRA, to these code regions. Based
on this data, we validate VaRA’s feature-region detection.

20 implementation

Table 3.1: Columns of the data export for comparison with the coverage-based baseline. Every row
contains the location of an instruction in the ZIP example and the associated features.

Source File Line Column Features

ZIP.cpp 1 1 -
… … … …

4 21 Compression
5 3 Compression
… … …
7 1 -
… … …
7 20 Encryption
… … …
8 27 Encryption, Compression
… … …
12 3 Encryption
… … …
13 2 -

1 for instr in data_export:

2 source_file = instr[”source_file”]
3 code_region_tree = trees[source_file]

4 line = instr[”line”]
5 column = instr[”column”]
6 code_region = code_region_tree.find(line, column)

7 code_region.vara_instrs.append(instr)

Listing 3.5: Assigning exported instructions to code regions to create a feature to code region mapping
for VaRA.

4
METHODOLOGY

We validate the results of VaRA’s feature-region detection by comparison with our coverage-
based baseline. In Chapter 3, we already described the creation of our coverage-based baseline
and how VaRA’s feature-region information can be exported and mapped to code regions.
In this chapter, we focus on the research questions we answer in order to validate VaRA’s
feature-region detection. Furthermore, we discuss our comparison process and the analyses
of the comparison results we perform to answer the research questions.

4.1 research questions

We use our coverage-based baseline to validate VaRA’s feature-region detection and answer
our thesis goal—whether VaRA’s feature-region detection yields valid results. To do this,
we compare the results of the two approaches. Since both approaches are implemented
independently and are conceptually different, it is unlikely that feature-region detection
errors occur in the same place. That is, by examining the deviations of VaRA’s feature-region
detection results from the coverage-based baseline, we can identify these errors or verify that
VaRA’s feature-region detection works as intended. In order to understand the deviations and
the performance of VaRA’s feature-region detection, we have two research questions.

Conceptual Differences

Our coverage-based baseline relies on run-time information, whereas VaRA’s feature-region
detection is based on static analysis. As a consequence, not all differences between the results
necessarily indicate an error in either approach. Rather, they may be caused by conceptual
differences that lead to different detected feature regions. Consequently, in order to correctly
classify and interpret the comparison results, we need to understand how the two approaches
differ conceptually. Therefore, we formulate our first research question:

RQ1: What conceptual differences in detected feature regions exist between the
coverage-based baseline and VaRA’s feature-region detection?

Performance of VaRA’s Feature-Region Detection on Real-World Programs

Once we understand how the coverage-based baseline and VaRA’s feature-region detection
differ conceptually, we can mitigate these differences, which makes it easier for us to evaluate
the performance of VaRA’s feature-region detection with the coverage-based baseline. We
evaluate the performance using real-world programs, as this gives us more general results
than if we were to evaluate only individual example programs or synthetic benchmarks.
Therefore, our second research question is:

RQ2: How well does VaRA’s feature-region detection perform on real-world programs?

21

22 methodology

To assess VaRA’s feature-region detection performance, we determine how many of the
detected feature regions are correct or incorrect from the perspective of the coverage-based
baseline. Precision and recall are relevant performance metrics that provide insight into this
matter. Precision is the percentage of feature regions that VaRA’s feature-region detection
identified correctly. However, it does not provide information about the feature regions that
VaRA does not identify. That is the purpose of recall (i. e., the percentage of valid feature
regions that VaRA’s feature-region detection identifies). Therefore, we divide the second
research question into the two sub-questions:

RQ2.1: What is the fraction of detected feature regions that are genuine? (Precision)
RQ2.2:What is the fraction of genuine feature regions that are detected as such? (Recall)

Based on the research questions and any discovered shortcomings or bugs in one of the
approaches, we can determine the validity of VaRA’s feature-region detection results. The
following sections describe the methodology we use to answer the research questions and to
achieve our thesis goal.

4.2 comparison process

This section describes how we interpret the data of the coverage-based baseline and VaRA’s
feature-region detection such that we can compare feature regions of both approaches, classify
feature regions of VaRA using our coverage-based baseline as reference, and compute relevant
performance metrics.

4.2.1 Interpreting Feature Regions

The raw data from the coverage-based baseline consists of code regions associated with a
presence condition. Our data of VaRA’s feature-region detection consists of code regions and
corresponding LLVM IR instructions. However, presence conditions and instructions cannot
be compared directly. Therefore, to be able to compare them, it is necessary to determine
whether a code region qualifies as a feature region based on our coverage-based baseline or
VaRA.

For our coverage-based baseline, this is straightforward. A code region is a feature region
if its execution depends on a command-line option. This is the case if its presence condition
contains command-line options as variables, that is, the presence condition is neither True
nor False.

For VaRA, the situation is more complicated. Since the feature-region detection of VaRA
works at instruction-level granularity, it is possible that some instructions in a code region
have features assigned to them but others have not. Thus, it is not always straight-forward to
determine whether VaRA recognizes a code region as feature region and on which features
the region depends on. In fact, there are only two clear cases. First, if a code region has no
instructions or only instructions without assigned features, then it is just a normal code region.
Second, if all instructions of a code region have exactly the same assigned features, then the
code region is obviously a feature region with said features. For all other cases in between,
we require a decision boundary (i. e., a threshold).

4.2 comparison process 23

We say that VaRA detected a code region 𝑅 as feature region with the features 𝑋, 𝑌, 𝑍
if the proportion of instructions that have annotated the features 𝑋, 𝑌, 𝑍 to the remaining
instructions is greater than or equal to the threshold 𝑇, according to the following formula:

feature_region(𝑅, 𝐹, 𝑇) =
instructions in 𝑅 with features 𝐹

all instructions in 𝑅 ≥ Threshold 𝑇

This allows us to try out different thresholds for our analysis and examine their impact on
the outcome.

4.2.2 Mapping Features to Command-Line Options

We can now determine for both approaches whether a code region is a feature region. How-
ever, a direct comparison of feature regions is not yet possible. The coverage-based baseline
associates command-line options to its feature regions, while VaRA associates features from
the feature model to its feature regions. That is, they are named differently. Additionally,
abstract features have no corresponding command-line options on the coverage side. Thus, in
order to compare command-line options to features, we need a mapping between command-
line options and their corresponding features. We store this mapping explicitly as part of the
feature model. To maintain the integrity of the results, the comparison implementation omits
features that our coverage data has no information about, such as abstract features without a
corresponding command-line option.

4.2.3 Classification and Performance Assessment

Now that we are able to decide if feature regions are affected by the same feature, we can
compare the feature regions detected by our coverage-based baseline and VaRA. The actual
comparison is a classification, that is, the coverage-based baseline is used as a reference to
determine if the feature regions identified by VaRA are indeed feature regions. This is realized
by iterating over all code regions and comparing the annotated features of both approaches as
follows: For each feature and code region, we compare whether the two approaches consider
that code region as feature region with the same feature.

There are four potential outcomes when comparing code regions. True positives (True Positives (TPs)TPs) are
code regions that VaRA correctly identifies as being affected by feature 𝑋. False positives (False Positives (FPs)FPs)
are code regions that VaRA associates with feature 𝑋 but our coverage-based baseline does
not. False negatives (False Negatives (FNs)FNs) are code regions that our coverage-based baseline associates with
feature 𝑋 while VaRA does not. Lastly, true negatives (True Negatives (TNs)TNs) refer to code regions that are not
associated with feature 𝑋 by both approaches. The four cases can be displayed as confusion
matrix as shown in Table 4.1. We use the confusion matrix to calculate the metrics precision,
recall, specificity, and balanced accuracy to assess the performance of VaRA’s feature-region
detection.

Positive Predictive Value (PPV)True Positive Rate (TPR)True Negative Rate (TNR)Balanced Accuracy (BA)

24 methodology

Table 4.1: Confusion matrix to classify results of VaRA’s feature-region detection.

VaRA’s Feature-Region Detection
Feature Region No Feature Region

Coverage-Baseline Feature Region True Positive (TP) False Negative (FN)
No Feature Region False Positive (FP) True Negative (TN)

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (4.1)

Precision = Positive Predictive Value (PPV) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (4.2)

Recall = True Positive Rate (TPR) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (4.3)

Specificity = True Negative Rate (TNR) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (4.4)

Balanced Accuracy (BA) =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2 (4.5)

Accuracy (Equation 4.1) is the fraction of code regions correctly identified by VaRA’s
feature-region detection. However, accuracy alone cannot sufficiently assess the feature-region
detection performance of VaRA as it is susceptible to imbalanced data. For instance, if there are
10 feature regions and 90 non-feature regions, but VaRA fails to detect any feature region, the
accuracy would still be 90%. This looks promising at first, but in reality it means that VaRA’s
feature-region detection does not work at all! Thus, it is crucial to consider other metrics to
gain further insights. For our purposes, precision (Equation 4.2) and recall (Equation 4.3)
are the most important metrics to assess VaRA’s feature-region detection performance, since
they tell us how accurate feature regions get identified. Precision, also known as positive
predictive value (PPV), is the fraction of feature regions identified by VaRA that were genuine
feature regions. If VaRA does not classify code regions incorrectly as feature regions, then the
precision is 100%. Recall, also known as true positive rate (TPR), measures the proportion of
genuine feature regions identified as such by VaRA. If VaRA detects all actual feature regions,
recall will reach 100%. As additional metric the specificity (Equation 4.4) can be considered.
Specificity, also referred to as true negative rate (TNR), is the percentage of non-feature regions
that are correctly identified as such by VaRA. It is related to the recall, as it measures the
opposite case. To express recall and specificity together as one value, the balanced accuracy
(Equation 4.5) is used. Balanced accuracy (BA) is the sum of recall and specificity divided by
two to stay in the 0–100% range. In contrast to the normal accuracy, balanced accuracy is not
susceptible to imbalanced data.

4.3 operationalization 25

4.3 operationalization

Here, we present the experiments we use to address our research questions. As we use the
coverage-based baseline as ground truth for classification, we first need to find out how well
it approximates VaRA’s results. To do this, we conduct a qualitative analysis on reasonable
examples, through which we can identify conceptual differences between the two approaches
and learn how to mitigate them if possible. Subsequently, we conduct a quantitative analysis
wherewe evaluate the performance of VaRA’s feature-region detection on real-world programs
and investigate anomalous results. The common procedure for both analyses and the analyses
themselves are explained in the following sections.

4.3.1 Experiment Design

Our analyses follow the same experiment design. We use our comparison process to classify
the results of VaRA’s feature-region detection for a program and examine the outcome. We
especially pay attention to false positives and false negatives, because in these cases the
coverage-based baseline and VaRA’s feature-region detection disagree.

To identify inconsistencies not only in detected feature regions, but also in individual
instructions, we run the comparison process twice. Once with the threshold > 0% and another
time with the threshold 100%. The former means that a single instruction annotated with a
featuremakes the code region a feature region,while the lattermeans that all instructionsmust
have this feature annotated, such that the code region is considered as a feature region. In this
way, we can detect flaky feature regions, that is, code regions that we cannot unambiguously
assign, by the differences in the corresponding confusion matrices.

We investigate the differences we find in detail to decide whether there is a bug in the
implementation of one approach that can be fixed, or whether this is intended behavior. This
enables us to validate the results of VaRA’s feature-region detection step-wise, or to figure out
where problems exist and how we can address them.

4.3.2 Qualitative Analysis

The goal of our qualitative analysis is to identify conceptual differences between the feature
regions found by VaRA and our coverage-based baseline and, if possible, mitigate their impact
on the results. Through this analysis we answer RQ1. By comprehending the differences
between the two approaches, we can assess how well VaRA’s feature-region detection results
can be approximated by our coverage-based baseline.

To identify conceptual differences, analyzing small but reasonable examples is sufficient.
We have chosen the example programsMultiSharedMultipleRegions (MSMR) and SimpleFea-
tureInteraction (SimpleFeatureInteraction (SFI)SFI) from VaRA’s test suite for this purpose. MSMR has four feature variables
that are stored in different ways and checked independently one after the other. Therefore, it
is well-suited for detecting basic differences. For edge cases, such as feature interactions, we
analyze SFI. It resembles the feature interaction in our ZIP example. In fact, our ZIP example
is based on SFI. An overview of the analyzed programs is available in Table 4.2.

26 methodology

Since the data we are analyzing is manageable, we manually verify it by tracking the classi-
fication of each code region. This ensures that we can rule out errors in our implementation
and do not overlook any differences that arise in our example programs.

Table 4.2: Examined example programs1 in qualitative analysis.

Language Program # Configurations # Features Commit

C++ MultiSharedMultipleRegions 16 4
4300ea495e

SimpleFeatureInteraction 4 2

4.3.3 Quantitative Analysis

The goal of the quantitative analysis is to assess the performance of VaRA’s feature-region
detection by examining the performance metrics, precision, and recall and interpreting them
based on the insights gained from the qualitative analysis. This allows us to answer RQ2.
Additionally, we analyze in detail any results that cannot be explained by the previous findings.
That enables us to identify further conceptual differences between the two approaches, reveal
bugs in their implementation, or find potential areas for improvement.

We evaluate the performance of VaRA’s feature-region detection on the real-world C pro-
grams Bzip2, gzip, and XZ. These are well-known compression tools that are also part of
previous research [14, 27]. All three programs have similar features, but they implement
some of them differently. For instance, Bzip2 uses macros to implement its various operation
modes, while gzip uses an int variable, and XZ uses enums. Therefore, they are well-suited for
comparing VaRA’s feature-region detection performance between similar features or assessing
the detection performance of different feature implementations. Originally, we planned to
analyze the SAT solver PicoSAT and the file optimizer ECT. PicoSAT is of particular inter-
est because it differs from the previous real-world programs as it does not come from the
compression domain and therefore has distinct features. ECT is also of interest to us because
it is implemented in C++, which allows different programming patterns than C, such as
object-oriented programming. However, both programs use fields in structs as an essential
part of their program logic. For the case of ECT, the entire load-time configuration (i. e., all
feature variables) are saved in one struct. At the time of our testing, VaRA’s field-sensitivity
support, which is necessary to track individual fields of a struct in LLVM IR, was not mature
enough to be tested on real-world programs. Therefore, we abstain from analyzing PicoSAT
and ECT to avoid incomplete or falsified results. As compensation, we analyze six of VaRA’s
synthetic benchmarks that test feature-region detection in various real-world scenarios. We
provide an overview of the real-world programs and synthetic benchmarks analyzed in
Table 4.3.

1 https://github.com/se-sic/FeaturePerfCSCollection/tree/master/src (visited on January 16, 2024)

https://github.com/se-sic/FeaturePerfCSCollection/tree/4300ea495e7f013f68e785fdde5c4ead81297999/src/MultiSharedMultipleRegions
https://github.com/se-sic/FeaturePerfCSCollection/tree/4300ea495e7f013f68e785fdde5c4ead81297999/src/SimpleFeatureInteraction
https://github.com/se-sic/FeaturePerfCSCollection/tree/master/src

4.3 operationalization 27

Table 4.3: Examined real-world programs and synthetic benchmarks2 quantitative analysis.

Language Program # Configurations # Features Commit

C

Bzip2 96 8 1ea1ac188a

gzip 448 10 23a870d14a

XZ 160 13 4773608554

PicoSAT 1024 11 33c685e822

ECT 2304 12 e98502a01b

SynthDADynamicDispatch 3 3 04de0642af

SynthDARecursion 4 2 daf81de073

C++ SynthIPRuntime 5 4 7930350628

SynthOVInsideLoop 4 2 51d3c768e5

SynthSAContextSensitivity 12 2
06eac0edb6

SynthSAFlowSensitivity 4 2
2
https://github.com/se-sic/FeaturePerfCSCollection/tree/master/projects (visited on January
16, 2024)

https://github.com/libarchive/bzip2/tree/1ea1ac188ad4b9cb662e3f8314673c63df95a589
https://github.com/vulder/gzip/tree/23a870d14a49803c6d2579071886c1acf497c9d1
https://github.com/xz-mirror/xz/tree/4773608554d1b684a05ff9c1d879cf5c42266d33
https://github.com/se-sic/picoSAT-mirror/tree/33c685e82213228726364980814f0183e435de78
https://github.com/danjujan/Efficient-Compression-Tool/tree/e98502a01ba807778df751b279e040432cafb844
https://github.com/se-sic/FeaturePerfCSCollection/tree/04de0642afe35a42931e03c670b588e8f294dcfc/projects/SynthDADynamicDispatch
https://github.com/se-sic/FeaturePerfCSCollection/tree/daf81de0738cb861b800c4dae1a805e8dabaa544/projects/SynthDARecursion
https://github.com/se-sic/FeaturePerfCSCollection/tree/793035062810ea3a2d9a10f831cd199fbbb82090/projects/SynthIPRuntime
https://github.com/se-sic/FeaturePerfCSCollection/tree/51d3c768e5688a6471cb77d36433804088496ca8/projects/SynthOVInsideLoop
https://github.com/se-sic/FeaturePerfCSCollection/tree/06eac0edb6886a7e487867c8d5629cb2409b54fd/projects/SynthSAContextSensitivity
https://github.com/se-sic/FeaturePerfCSCollection/tree/06eac0edb6886a7e487867c8d5629cb2409b54fd/projects/SynthSAFlowSensitivity
https://github.com/se-sic/FeaturePerfCSCollection/tree/master/projects

5
EVALUAT ION

In this chapter, we perform the qualitative and quantitative analysis described in Section 4.3
to answer the research questions. Subsequently, we derive conclusions from the obtained
results and discuss them in relation to our thesis goal: Does VaRA’s feature-region detection
yield valid results? Lastly, we disclose potential threats to result validity and our efforts to
mitigate them.

5.1 results

In this section, we first report the conceptual differences between our coverage-based baseline
and VaRA’s feature-region detection that we found through our qualitative analysis. We then
present the results of our quantitative analysis on the precision and recall of VaRA’s feature-
region detection on real-world programs. All results are based on the VaRA version 437b4a40c1,
which was the most recent commit at the time of our testing.

5.1.1 Qualitative Analysis

For our two example programs, MSMR and SFI, we conduct a qualitative analysis to answer
our first research question:

RQ1: What conceptual differences in detected feature regions exist between the
coverage-based baseline and VaRA’s feature-region detection?

To achieve this, we classify the detected feature regions ofVaRAwith these from the coverage-
based baseline. The results can be seen in Table 5.1 and Table 5.2. Our tables have two rows
per feature, one for each threshold. Each row displays the confusion matrix classifications
and their corresponding metrics for the feature and threshold. The classifications are listed
by count (TP, FN, FP, TN), while the metrics precision (PPV), recall (TPR), specificity (TNR),
and balanced accuracy (BA) are presented as percentages. The total rows at the end of the
table provide a summary of all features. They are calculated by summing the count of each
classification for the corresponding threshold and then using these sums to compute the
performance metrics.

Our first observation is that the values for the two thresholds do not differ. This means
that VaRA’s feature-region detection marks either all instructions in a code region as feature-
dependent or none. Consequently, MSMR and SFI do not have flaky feature regions. In the
following tables, we therefore omit the threshold if it is not relevant.

However, both tables show false negatives and false positives. That is, the coverage-based
baseline and VaRA’s feature-region detection find different feature regions. In the following
sections, we examine these differences in detail.

29

30 evaluation

Table 5.1: Results for MSMR without conceptual differences mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

cpp >0 % 1 7 1 57 50.00 12.50 98.28 55.39
100 % 1 7 1 57 50.00 12.50 98.28 55.39

extern >0 % 1 7 1 57 50.00 12.50 98.28 55.39
100 % 1 7 1 57 50.00 12.50 98.28 55.39

header >0 % 2 6 1 57 66.67 25.00 98.28 61.64
100 % 2 6 1 57 66.67 25.00 98.28 61.64

slow >0 % 2 6 1 57 66.67 25.00 98.28 61.64
100 % 2 6 1 57 66.67 25.00 98.28 61.64

TOTAL >0 % 6 26 4 228 60.00 18.75 98.28 58.51
100 % 6 26 4 228 60.00 18.75 98.28 58.51

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

Table 5.2: Results for SFI without conceptual differences mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

compress >0 % 2 8 2 38 50.00 20.00 95.00 57.50
100 % 2 8 2 38 50.00 20.00 95.00 57.50

enc >0 % 3 8 1 38 75.00 27.27 97.44 62.35
100 % 3 8 1 38 75.00 27.27 97.44 62.35

TOTAL >0 % 5 16 3 76 62.50 23.81 96.20 60.01
100 % 5 16 3 76 62.50 23.81 96.20 60.01

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

5.1 results 31

5.1.1.1 Conceptual differences

Some of these differences can be attributed to conceptual differences between the coverage-
based baseline and VaRA’s feature-region detection. Because of their conceptual nature, we can
devise mitigations that exclude these differences from our results. We identify the following
conceptual differences and mitigate them.

condition handling The false positives in the results are exclusively control flow deci-
sions in which the corresponding feature variable is checked, as shown in Listing 5.1. From
the perspective of VaRA, these conditions are part of the feature regions by default, since all
instructions in them depend on the feature variable. However, they are not part of the feature
regions from the perspective of our coverage-based baseline, because the instructions are
always executed regardless of the feature variable. Both views are valid, as this is a conceptual
difference in how the two approaches operate. To mitigate this conceptual difference in our
analysis results, we account for it as follows. VaRA is able to tell us whether instructions are
part of a condition. We use this information in our FeatureDebugLocationExport LLVM pass to
mark the feature introduced by the condition in instructions belonging to the condition with
a prefix. During classification, we then simply ignore the features found by VaRA with such a
prefix. In this way, we align the condition handling of VaRA with that of our coverage-based
baseline. This mitigation results in the conditions being classified as true negatives, as shown
in Table 5.3, which increases the precision and specificity of VaRA’s feature-region detection
results for MSMR and SFI to 100 %.

1 bool UseCompression; Coverage VaRA

2 bool UseEncryption;

3

4 if (UseCompression){

5 Data = compress(Data); compress 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
6 }

7 if (UseEncryption){ enc 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛
8 if (not UseCompression){

9 Data = addPadding(Data); ¬compress ∧ enc 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
10 }

enc 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛11

12 Data = encrypt(Data);

13 }

Listing 5.1: ZIP example, feature region difference: condition handling. The conditions highlighted
using darker colors are considered as feature region by VaRA’s feature-region detection but
not by the coverage-based baseline.

option parsing code As can be seen in Table 5.3, MSMR and SFI still exhibit a significant
number of false negatives, that is, code regions that are only identified as feature regions by the

32 evaluation

Table 5.3: Threshold-independent results for MSMR and SFI with condition handling differences miti-
gated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Program Feature

MSMR

cpp 1 7 0 58 100.00 12.50 100.00 56.25
extern 1 7 0 58 100.00 12.50 100.00 56.25
header 2 6 0 58 100.00 25.00 100.00 62.50
slow 2 6 0 58 100.00 25.00 100.00 62.50
TOTAL 6 26 0 232 100.00 18.75 100.00 59.38

SFI
compress 2 8 0 40 100.00 20.00 100.00 60.00
enc 3 8 0 39 100.00 27.27 100.00 63.64
TOTAL 5 16 0 79 100.00 23.81 100.00 61.90

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

coverage-based baseline.Most of these false negatives originate from the command-line option
parsing code. As illustrated in Listing 5.2, the coverage-based baseline identifies code regions
that depend on the command-line option as feature regions, while VaRA’s feature-region
detection only finds feature regions that depend on the feature variable. VaRA’s detection
method is not conceptually capable of recognizing feature regions in command-line option
parsing code, since the feature variables are only assigned their value provided from the
outside (e. g., via command-line arguments) there, but are not used. Static analysis cannot
detect individual features earlier, as this is the earliest point in the information flow from
argv into the feature variables where the features become distinguishable. However, the
command-line option parsing code is usually relatively easy to identify by hand in most
programs. Therefore, we manually locate the parsing code and ignore its code regions during
classification for our further analysis. This reduces the number of false negatives in MSMR to
zero, as shown in Table 5.4. For MSMR, the coverage-based baseline and VaRA’s feature-region
detection now agree on the detected feature regions.

feature-dependent functions By applying the previous mitigations, the number of
false negatives in SFI has been significantly reduced, as can be seen in Table 5.4. The remain-
ing false negatives originate from feature-dependent functions, that is, functions that are
exclusively called within feature regions. As demonstrated in Listing 5.3, the coverage-based
baseline as a dynamic analysis can identify these, whereas VaRA’s feature-region detection
with its static approach currently cannot. VaRA could attempt to construct a call graph to
determine if a function is solely invoked in feature regions. This approach would work for
the static calls in our SFI example, but the effort would be only useful to a limited extent.
If dynamic calls are added through pointers or language features like dynamic dispatch,
where a decision regarding which implementation to use is made at run time, the static call
graph is not useful. In fact, it might worsen the results of VaRA’s feature-region detection

5.1 results 33

1 bool HelloWorld = false; Coverage VaRA

2

3 if (isFeatureEnabled(argc, argv, std::string(”−−hello−world”))){
4 HelloWorld = true; 3 7
5 }

6

7 if (HelloWorld){

8 std::cout << ”Hello ”; 3 3
9 }

10

11 if (isFeatureEnabled(argc, argv, std::string(”−−hello−world”))){
12 std::cout << ”World!”; 3 7
13 }

Listing 5.2: Difference in detected command-line option dependent and feature variable dependent
feature regions.

Table 5.4: Threshold-independent results for MSMR and SFI with condition handling and parsing code
differences mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Program Feature

MSMR

cpp 1 0 0 48 100.00 100.00 100.00 100.00
extern 1 0 0 48 100.00 100.00 100.00 100.00
header 2 0 0 47 100.00 100.00 100.00 100.00
slow 2 0 0 47 100.00 100.00 100.00 100.00
TOTAL 6 0 0 190 100.00 100.00 100.00 100.00

SFI
compress 2 2 0 28 100.00 50.00 100.00 75.00
enc 3 2 0 27 100.00 60.00 100.00 80.00
TOTAL 5 4 0 55 100.00 55.56 100.00 77.78

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

34 evaluation

if a feature-dependent function is called both statically and dynamically. We handle this
conceptual difference similarly to the previous one, by manually detecting and ignoring
feature-dependent functions. In this way, we also achieve a complete agreement in identified
feature regions of both approaches for SFI, as can be seen in Table 5.5.

1 bool UseCompression; Coverage VaRA

2

3 PackageData compress(PackageData Data){

4 … 3 7
5 }

6 …
7 if (UseCompression){

8 Data = compress(Data); 3 3
9 }

Listing 5.3: Feature-dependent functions are detected as feature-region by the coverage-based baseline
but not by VaRA’s feature-region detection.

Table 5.5: Threshold-independent results for SFI with condition handling, parsing code, and feature-
dependent function differences mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature

compress 2 0 0 27 100.00 100.00 100.00 100.00
enc 3 0 0 26 100.00 100.00 100.00 100.00

TOTAL 5 0 0 53 100.00 100.00 100.00 100.00

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

5.1.1.2 Flaky feature regions

During the evaluation of both synthetic and real-world programs for RQ2, we encountered
flaky feature regions, that is, feature regions whose detection depends on the threshold. We
describe these flaky feature regions here because they reveal more subtle differences between
the two feature detection approaches.

classes To overcome the limitation of static analysis in dynamic dispatching, VaRA offers
an additional feature detection process called FunctionBasedFeatureDetection. This pass can be
enabled with the -vara-FBFD command-line option and allows us to assign features to classes
or functions. We make use of this functionality to assign the three classes, BrutForceSearcher,
SortingSearcher, and HashSearcher, in SynthDADynamicDispatch their respective feature. As

5.1 results 35

a result, VaRA’s feature-region detection also annotates the instructions belonging to the class
with the feature. There is a high agreement in detected feature regions, as shown in Table 5.6.
However, every feature has a flaky false positive, namely the root of our code region tree. The
root code region is flaky because it contains some of the feature-dependent class initialization
instructions together with other non-feature-dependent instructions. Additionally, it is a
flaky false positive because, from the perspective of the coverage-based baseline, the root
code region cannot be feature-dependent since its instructions are always executed. Hence,
whenever VaRA marks a class as feature-dependent, we will observe it as a flaky false positive
in our comparison results.

Table 5.6: Results for SynthDADynamicDispatch with condition handling, parsing code, and feature-
dependent function differences mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

brut-force >0 % 11 0 1 71 91.67 100.00 98.61 99.31
100 % 11 0 0 72 100.00 100.00 100.00 100.00

hashing >0 % 9 0 1 73 90.00 100.00 98.65 99.32
100 % 9 0 0 74 100.00 100.00 100.00 100.00

sorting >0 % 10 0 1 72 90.91 100.00 98.63 99.32
100 % 10 0 0 73 100.00 100.00 100.00 100.00

TOTAL >0 % 30 0 3 216 90.91 100.00 98.63 99.32
100 % 30 0 0 219 100.00 100.00 100.00 100.00

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

short-circuiting conditions Another cause of flaky feature regions are short-circuiting
conditions, that is, conditions with short-circuiting operators like the logical AND (&&) or the
logical OR (||) operator. The term ”short-circuit” pertains to their behavior of ceasing the
evaluation of other operands once the final outcome is fixed. Such a short-circuit condition
occurs, for example, in SynthIPRuntime and causes the threshold difference in Table 5.7.
The relevant code is displayed in Listing 5.4. As we can see, in the threshold >0 % case the
smallmode variable in Line 2 gets assigned the smallmode feature by VaRA, even though we
actually ignore this code region through our condition handling mitigation. This issue is
caused by the last instruction in Listing 5.5, which LLVM still attributes to the first operand
(Column 7), although the br instruction evaluates the second operand, the decompress variable
(Column 20). That means, in a basic block, theremay be br instructions that belong to different
code regions than the rest of the basic block. This cannot be easily mitigated by us.

ternary operators The same problem of counting the location of the second br instruc-
tion towards the beginning of the condition also causes threshold differences in
SynthSAFlowSensitivity, as can be seen in Table 5.8. However, this time it is caused in

36 evaluation

Table 5.7: Results for SynthIPRuntime with condition handling, parsing code, and feature-dependent
function differences mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

1 >0 % 2 0 0 84 100.00 100.00 100.00 100.00
100 % 2 0 0 84 100.00 100.00 100.00 100.00

2 >0 % 5 0 1 80 83.33 100.00 98.77 99.38
100 % 5 0 0 81 100.00 100.00 100.00 100.00

c >0 % 6 11 15 54 28.57 35.29 78.26 56.78
100 % 6 11 15 54 28.57 35.29 78.26 56.78

d >0 % 11 1 3 71 78.57 91.67 95.95 93.81
100 % 11 1 3 71 78.57 91.67 95.95 93.81

TOTAL >0 % 24 12 19 289 55.81 66.67 93.83 80.25
100 % 24 12 18 290 57.14 66.67 94.16 80.41

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy
1 = fastmode, 2 = smallmode, c = compress, d = decompress

1 int getBufsize(bool smallmode, bool decompress){ Coverage VaRA

2 if (smallmode || decompress){ True || ¬2 ∨ ¬c
3 return 100 * 1024; 2 ∨ ¬c smallmode
4 }

5 return 10 * 1024 * 1024; ¬2 ∧ c smallmode,
6 } decompress

Listing 5.4: Threshold difference in SynthIPRuntime marked in red.

1 entry: Line Column VaRA

2 …
3 %0 = load i8, i8* %smallmode.addr, align 1 2 7
4 %tobool = trunc i8 %0 to i1 ⋯ ⋯
5 br i1 %tobool, label %if.then, label %lor.lhs.false 17
6 ⋯
7 lor.lhs.false: ;preds = %entry

8 %1 = load i8, i8* %decompress.addr, align 1 20
9 %tobool2 = trunc i8 %1 to i1 ⋯ smallmode
10 br i1 %tobool2, label %if.then, label %if.end 7

Listing 5.5: Threshold difference in SynthIPRuntime’s LLVM IR.

5.1 results 37

a different place, namely the ternary operator. The relevant part of the program is depicted in
Listing 5.6.

Table 5.8: Results for SynthSAFlowSensitivity with condition handling, parsing code, and feature-
dependent function differences mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

cutoff 4 >0 % 2 0 12 52 14.29 100.00 81.25 90.62
100 % 2 0 10 54 16.67 100.00 84.38 92.19

rec >0 % 2 6 0 58 100.00 25.00 100.00 62.50
100 % 2 6 0 58 100.00 25.00 100.00 62.50

TOTAL >0 % 4 6 12 110 25.00 40.00 90.16 65.08
100 % 4 6 10 112 28.57 40.00 91.80 65.90

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

1 CutOff = CutOff < MAX_CUTOFF ? CutOff : MAX_CUTOFF;

2 unsigned TargetN = UserInput > CutOff ? CutOff : UserInput;

Listing 5.6: Threshold difference in SynthSAFlowSensitivity marked in red.

early returns The previous feature regions are flaky because only a few instructions have
a feature annotated, but the rest has not. We discover the opposite case in SynthDARecursion
for the limit option, as can be seen in Table 5.9. In SynthDARecursion the limit option limits
the recursion depth of a function similar to the one depicted in Listing 5.7. In this recursive
function the last feature region is flaky, but the cause for this can only be seen in the LLVM
IR in Listing 5.8. The instruction ret void (Line 9) belongs to the feature region located in
Lines 5–7 of the source code. However, it is correctly not annotated with the RecursionLimit
feature, as it can be reached from both the if.then and if.end blocks, while the former is
not feature-dependent. The if.then block can also be reached through the N == 0 condition,
which is also not feature-dependent. This conceptual difference is not restricted to recursive
functions. It may also affect normal functions that return from feature regions as well as
normal regions.

5.1.1.3 Summary

As shown above, the feature-region detection of the coverage-based baseline and VaRA differ
conceptually in the detection of conditions, command-line option parsing related code, and
feature-dependent functions. Additionally, flaky feature regions may arise from classes, short-
circuiting conditions, ternary operators, and early returns.

38 evaluation

Table 5.9: Results for SynthDARecursion with condition handling, parsing code, and feature-
dependent function differences mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

limit 0 >0 % 8 1 0 35 100.00 88.89 100.00 94.44
100 % 7 2 0 35 100.00 77.78 100.00 88.89

rev >0 % 1 0 0 43 100.00 100.00 100.00 100.00
100 % 1 0 0 43 100.00 100.00 100.00 100.00

TOTAL >0 % 9 1 0 78 100.00 90.00 100.00 95.00
100 % 8 2 0 78 100.00 80.00 100.00 90.00

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

1 void recursion(vector<int> &Result, int N, int Depth = 0){ Coverage VaRA

2 if (N == 0 || Depth == RecLimit){

3 return; True
4 }

5 Result.push_back(N)

6 recursion(Result, N * N, Depth + 1); ¬limit 0 RecursionLimit
7 }

Listing 5.7: Threshold difference in SynthDARecursion visualized as simplified recursive function.

1 if.then: ;preds = %lor.lhs.false, %entry Line Column VaRA

2 br label %return 3 5
3

4 if.end: ;preds = %lor.lhs.false, %if.then

5 … 5–7 - RecursionLimit
6 br label %return 7 1
7

8 return: ;preds = %if.end, %if.then

9 ret void 7 1

Listing 5.8: Threshold difference in SynthDARecursion’s LLVM IR.

5.1 results 39

Table 5.10: Totals for synthetic programs.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Program Threshold

DADynamicDispatch >0 % 30 0 3 216 90.91 100.00 98.63 99.32
100 % 30 0 0 219 100.00 100.00 100.00 100.00

DARecursion >0 % 9 1 0 78 100.00 90.00 100.00 95.00
100 % 8 2 0 78 100.00 80.00 100.00 90.00

IPRuntime >0 % 24 12 19 289 55.81 66.67 93.83 80.25
100 % 24 12 18 290 57.14 66.67 94.16 80.41

OVInsideLoop >0 % 2 0 0 102 100.00 100.00 100.00 100.00
100 % 2 0 0 102 100.00 100.00 100.00 100.00

SAContextSensitivity >0 % 24 102 32 255 42.86 19.05 88.85 53.95
100 % 24 102 32 255 42.86 19.05 88.85 53.95

SAFlowSensitivity >0 % 4 6 12 110 25.00 40.00 90.16 65.08
100 % 4 6 10 112 28.57 40.00 91.80 65.90

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

5.1.2 Quantitative Analyis

We conduct a quantitative analysis on synthetic benchmarks and real-world programs in
order to address RQ2:

RQ2: How well does VaRA’s feature-region detection perform on real-world programs?
RQ2.1: What is the fraction of detected feature regions that are genuine? (Precision)
RQ2.2:What is the fraction of genuine feature regions that are detected as such? (Recall)

The results of the synthetic benchmarks are presented in Table 5.10. For the real-world
programs, the results are shown in Table 5.11, 5.12, and 5.13. However, for the latter, we no
longer mitigate the feature-dependent functions, as they cannot be clearly identified by hand
anymore.

To assess performance, we need to take a closer look at precision and recall. Since we
found that some types of features are recognized better than others, we evaluate RQ2.1 and
RQ2.2 per feature group. The group membership of the features is indicated in the real-world
program tables by the superscript number at the feature name.

40 evaluation

Table 5.11: Results for Bzip2 with condition handling, parsing code differences and alternative group
issues mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

13 >0 % 0 0 60 5558 0.00 - 98.93 -
100 % 0 0 56 5562 0.00 - 99.00 -

93 >0 % 0 1 60 5557 0.00 0.00 98.93 49.47
100 % 0 1 56 5561 0.00 0.00 99.00 49.50

compress1 >0 % 0 1050 0 4568 - 0.00 100.00 50.00
100 % 0 1050 0 4568 - 0.00 100.00 50.00

decompress1 >0 % 0 696 0 4922 - 0.00 100.00 50.00
100 % 0 696 0 4922 - 0.00 100.00 50.00

force6 >0 % 4 10 32 5572 11.11 28.57 99.43 64.00
100 % 4 10 27 5577 12.90 28.57 99.52 64.04

keep6 >0 % 6 0 2 5610 75.00 100.00 99.96 99.98
100 % 6 0 0 5612 100.00 100.00 100.00 100.00

quiet5 >0 % 0 0 19 5599 0.00 - 99.66 -
100 % 0 0 18 5600 0.00 - 99.68 -

small6 >0 % 2 136 45 5435 4.26 1.45 99.18 50.31
100 % 2 136 41 5439 4.65 1.45 99.25 50.35

test1 >0 % 0 615 0 5003 - 0.00 100.00 50.00
100 % 0 615 0 5003 - 0.00 100.00 50.00

TOTAL >0 % 12 2508 218 47824 5.22 0.48 99.55 50.01
100 % 12 2508 198 47844 5.71 0.48 99.59 50.03

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy, Feature𝑛 = Group 𝑛

5.1 results 41

Table 5.12: Results for gzip with condition handling, parsing code differences and alternative group
issues mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

63 >0 % 0 2 93 4075 0.00 0.00 97.77 48.88
100 % 0 2 90 4078 0.00 0.00 97.84 48.92

93 >0 % 1 3 92 4074 1.08 25.00 97.79 61.40
100 % 1 3 89 4077 1.11 25.00 97.86 61.43

decompress4 >0 % 370 474 578 2748 39.03 43.84 82.62 63.23
100 % 342 502 538 2788 38.86 40.52 83.82 62.17

force6 >0 % 14 0 872 3284 1.58 100.00 79.02 89.51
100 % 14 0 809 3347 1.70 100.00 80.53 90.27

keep6 >0 % 13 11 6 4140 68.42 54.17 99.86 77.01
100 % 13 11 5 4141 72.22 54.17 99.88 77.02

list4 >0 % 2 81 118 3969 1.67 2.41 97.11 49.76
100 % 2 81 114 3973 1.72 2.41 97.21 49.81

no-name6 >0 % 7 5 732 3426 0.95 58.33 82.40 70.36
100 % 6 6 677 3481 0.88 50.00 83.72 66.86

quiet5 >0 % 1 1 59 4109 1.67 50.00 98.58 74.29
100 % 1 1 40 4128 2.44 50.00 99.04 74.52

stdout6 >0 % 43 131 97 3899 30.71 24.71 97.57 61.14
100 % 43 131 93 3903 31.62 24.71 97.67 61.19

test4 >0 % 8 508 25 3629 24.24 1.55 99.32 50.43
100 % 8 508 19 3635 29.63 1.55 99.48 50.52

verbose5 >0 % 16 5 27 4122 37.21 76.19 99.35 87.77
100 % 16 5 23 4126 41.03 76.19 99.45 87.82

TOTAL >0 % 475 1221 2699 41475 14.97 28.01 93.89 60.95
100 % 446 1250 2497 41677 15.15 26.30 94.35 60.32

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy, Feature𝑛 = Group 𝑛

42 evaluation

Table 5.13: Results for XZ with condition handling, parsing code differences and alternative group
issues mitigated.

TP FN FP TN PPV (%) TPR (%) TNR (%) BA (%)
Feature Threshold

63 >0 % 0 639 0 3139 - 0.00 100.00 50.00
100 % 0 639 0 3139 - 0.00 100.00 50.00

93 >0 % 0 0 0 3778 - - 100.00 -
100 % 0 0 0 3778 - - 100.00 -

compress2/4 >0 % 97 241 269 3171 26.50 28.70 92.18 60.44
100 % 91 247 259 3181 26.00 26.92 92.47 59.70

decompress2/4 >0 % 80 215 195 3288 29.09 27.12 94.40 60.76
100 % 77 218 186 3297 29.28 26.10 94.66 60.38

force6 >0 % 14 496 13 3255 51.85 2.75 99.60 51.17
100 % 13 497 10 3258 56.52 2.55 99.69 51.12

format=auto4 >0 % 0 4 18 3756 0.00 0.00 99.52 49.76
100 % 0 4 18 3756 0.00 0.00 99.52 49.76

format=xz4 >0 % 3 14 167 3594 1.76 17.65 95.56 56.60
100 % 3 14 162 3599 1.82 17.65 95.69 56.67

keep6 >0 % 6 175 10 3587 37.50 3.31 99.72 51.52
100 % 6 175 10 3587 37.50 3.31 99.72 51.52

list2/4 >0 % 4 231 273 3270 1.44 1.70 92.29 47.00
100 % 2 233 261 3282 0.76 0.85 92.63 46.74

robot6 >0 % 16 127 25 3610 39.02 11.19 99.31 55.25
100 % 16 127 23 3612 41.03 11.19 99.37 55.28

stdout6 >0 % 28 488 58 3204 32.56 5.43 98.22 51.82
100 % 28 488 53 3209 34.57 5.43 98.38 51.90

suffix=.su6 >0 % 4 24 16 3734 20.00 14.29 99.57 56.93
100 % 4 24 16 3734 20.00 14.29 99.57 56.93

test2/4 >0 % 71 106 204 3397 25.82 40.11 94.33 67.22
100 % 68 109 195 3406 25.86 38.42 94.58 66.50

v5 >0 % 26 166 30 3556 46.43 13.54 99.16 56.35
100 % 25 167 27 3559 48.08 13.02 99.25 56.13

TOTAL >0 % 349 2926 1278 48339 21.45 10.66 97.42 54.04
100 % 333 2942 1220 48397 21.44 10.17 97.54 53.85

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy, Feature𝑛 = Group 𝑛

5.1 results 43

5.1.2.1 Features implemented as preprocessor macros

The first group of features we would like to discuss are those that are defined through
preprocessor macros. In Table 5.11 this applies to the features compress, decompress and test.
These have no precision and a recall of 0 % because they are only recognized by the coverage-
based baseline. VaRA is currently unable to assign macros to a feature as macro expansion
occurs before the creation of LLVM IR and thus before VaRA is able tomark its feature variables.
In principle, it should be possible in LLVM to associate LLVM IR instructions with a macro,
since the code regions in LLVM’s coverage JSON contain information about the macro from
which they are expanded. However, it is debatable whether the effort would be justified
because as can be seen in Listing 5.9, VaRA’s feature-region detection recognizes the abstract
feature opMode for the corresponding feature regions. Since the feature-dependent macros
are always compared to the opMode feature variable, it is currently possible to detect operation
mode dependent feature regions in Bzip2, albeit not that granular.

1 /*-- operation modes --*/ Coverage VaRA

2 #define OM_Z 1 //compress

3 #define OM_UNZ 2 //decompress

4 #define OM_TEST 3 //test

5 Int32 opMode; //either OM_Z, OM_UNZ or OM_TEST

6 ⋯
7 if (opMode == OM_Z){

8 ⋯ compress OpMode
9 }

Listing 5.9: Features as preprocessor macros in Bzip2.

5.1.2.2 Features implemented as enum values

The second group contains features whose feature variables are part of an enum. This is the
case for the features compress, decompress, list, and test in Table 5.13. These features have a high
number of false positives compared to the other features. As can be seen in Listing 5.10, this is
because VaRA’s feature region detection often detects all the features in an enum for a feature
region. As a result, the precision is not as high as it could be. There are feature regions similar
to the one in Lines 9–10 where VaRA only recognizes Compr and Mode as expected. However,
we could not identify any differences in the corresponding instructions that could cause this
varying behavior.

Furthermore, VaRA’s feature-region detection has identified alleged feature regions that
are definitely not feature regions. For instance, the function hardware_threads_set in XZ, as
illustrated in Listing 5.11, is not a feature region. Here, the variable n seems to depend on the
operation_mode enum, which probably causes that all features of the enum are annotated to
the code region in Lines 3–5. We have traced the information flow to n in the LLVM IR, but
without finding an explanation. In total, there are three instances where hardware_threads_set

44 evaluation

1 enum operation_mode { Coverage VaRA

2 MODE_COMPRESS, //Compr

3 MODE_DECOMPRESS, //Decompr

4 MODE_TEST, //Test

5 MODE_LIST, //Info

6 };

7 enum operation_mode opt_mode; //Mode

8 ⋯
9 if (opt_mode == MODE_COMPRESS){

10 ⋯ compress Compr, Decompr, Info, Mode, Test
11 }

Listing 5.10: Feature variables as enum in XZ.

1 extern void VaRA

2 hardware_threads_set(uint32_t n){

3 if (n == 0){ Compr, Decompr,
4 ⋯ Info, Test
5 }

6 }

7 ⋯
8 hardware_threads_set(str_to_uint64(”threads”, optarg, …));

9 ⋯
10 hardware_threads_set(1); Compr, Mode

Listing 5.11: Wrongly annotated feature region in XZ.

is called: one in the parsing code at Line 8, and two more from feature regions annotated with
Compr andMode, shown in Line 10. The passed argument is not feature-dependent for any call.
Therefore, it appears to be a bug in VaRA’s feature-region detection or the underlying feature-
taint analysis, which may also trigger the behavior shown in Listing 5.10, at the expense of
precision and recall.

5.1.2.3 Features with numeric arguments

Thirdly, we discuss features with numeric arguments as used in Bzip2 (Table 5.11), gzip
(Table 5.12) and XZ (Table 5.13). There, the compression level can be adjusted using the
numerical options -1 to -9, a tradeoff between computational effort and resulting file size. Both
the coverage-based baseline and VaRA’s feature-region detection had difficulties identifying
these features.

5.1 results 45

In the real-world programs we test, numeric options are primarily utilized to determine the
number of times a loop should be executed (gzip and XZ) or the block size into which the data
should be split for compression (Bzip2). Both cases have little influence on the executed code
regions in the coverage data. Consequently, our coverage-based baseline is unable to identify
these usages of numeric options. Precision and recall, therefore, hold little significance, and
we must examine the false negatives and false positives to evaluate VaRA’s feature-region
detection performance.

For Bzip2 and gzip, there exist false positives, which means that VaRA identifies feature
regions for the compression level. We analyzed these feature regions and discovered that
they all depend on the compression level variable. Hence, they are legitimate feature regions.

Only in XZ, VaRA does not find the compression level, as we see from the missing false
positives and true positives. However, this is not caused by a design flaw, but by missing
instructions in the LLVM IR that prevent continuous tracking of the feature variable’s infor-
mation flow. Specifically, this affects the function lzma_lzma_preset, which is called with the
feature variable preset_number as an argument, as seen in Listing 5.12. One would anticipate
that the output also depends on preset_number, and therefore the feature region in Lines 5–7 is
found. In the LLVM IR, however, the function is only declared as in Listing 5.13. The complete
body of the function is absent. This is because the implementation of lzma_lzma_preset occurs
in the library liblzma, which is linked dynamically instead of statically by default. By changing
this behavior, VaRA’s feature taint analysis should be capable of tracking information flow
through the liblzma library.
1 extern LZMA_API(lzma_bool)

2 lzma_lzma_preset(lzma_options_lzma *options, uint32_t preset)

3 ...

4
5 if (lzma_lzma_preset(&opt_lzma, preset_number)) {

6 // Should be detected as feature region.

7 }

Listing 5.12: Definition and usage of lzma_lzma_preset.

1 ; Function Attrs: nounwind

2 declare i8 @lzma_lzma_preset(%struct.lzma_options_lzma* noundef, i32 noundef) #3

Listing 5.13: Declaration of lzma_lzma_preset in LLVM IR.

The numerous false negatives observed for compression level -6 in XZ are due to the fact
that -6 is the default compression level for XZ. Since the compression level is a mandatory
feature in XZ’s feature model, all configurations have one specified as command-line option.
Even configurations that activate other modes such as decompress, list, and test, although they
do not compress, have -6 specified. Therefore, our coverage-based baseline assumes that these
feature regions also depend on compression level -6. However, this is not the case.

5.1.2.4 Features in an alternative group

The fourth group contains features that are part of an alternative group in the feature model,
that is, only one feature in this group can be enabled at a time. This applies to gzip and

46 evaluation

XZ, where the different operation modes (compress, decompress, list, and test) fall under this
category. It would make no sense to compress and decompress data at the same time. In
Table 5.12 and 5.13, we observe that these features exhibit high levels of precision and recall
simultaneously. Therefore, there is a relatively high agreement on them between the coverage-
based baseline and VaRA’s feature region-detection. Nonetheless, these particular features
have a high number of false negatives and false positives compared to the other features.
The reason for this is that these features make up larger parts of the program than the other
features, which means that the conceptual differences between VaRA and the coverage-based
baseline also accumulate. Some of these differences may originate from the feature-dependent
functions that we could not mitigate for the tested real-world programs as they were hard
to identify. However, there are also false negatives and false positives that are specifically
caused through our implementation of the coverage-based baseline.

Our implementation can generate different presence conditions for features in alternative
groups. For instance, in XZ, a code region executed onlywhen the compression feature is active
can have two corresponding presence conditions: compress and ¬decompress ∧ ¬list ∧ ¬test.
Both conditions are equivalent because compress cannot coexist with the other features in
the alternative group. Since we are using a BDD that automatically minimizes our presence
conditions, we have no direct control over whether the former or the latter presence condition
results. If the latter occurs, false negatives and false positives will be the consequence. We
could mitigate the problem if we had information from the feature model about alternative
groups for our presence-condition simplification, but this is not currently implemented. As
a workaround, in step 1 (Section 3.1.2.1) of our approach where we construct the initial
presence condition from the configuration, we omit appropriate negated literals if a positive
literal from the same alternative group occurs. That biases the BDD in the right direction. This
workaround reduces the amount of false negatives and false positives and improves precision
and recall by low single-digit percentages. However, it does not solve the problem completely.

5.1.2.5 Features managing verbosity

As a fifth group, we discuss features that affect the verbosity of a program. In other words,
features such as quiet, verbose, or v in Table 5.11, 5.12, and 5.13. For these, precision and recall
depend heavily on the extent to which the features are used in the error handling code. In
our real-world programs, these features are often used in the error-handling code to decide
whether or how detailed an error should be output. However, the coverage-based baseline is
generated by executing only valid configurations with valid workloads, so error handling
code is usually not covered. Therefore, our coverage-based baseline can only detect feature
regions that are not in error-handling code. As a result, verbosity features tend to have lower
precision and higher recall. We examined the false positives again to verify the feature regions
not covered by the coverage-based baseline, without detecting anomalies.

5.1.2.6 Remaining Features

The remaining features in group six are rather hit-or-miss regarding their precision and recall
values. Some like keep in Table 5.11 and 5.12 have particularly high precision and recall values,
others like small in Table 5.11 have particularly low values. The remaining features, such as
stdout (Table 5.12 and 5.13) or suffix (Table 5.13) have mediocre precision and recall values.

5.2 discussion 47

Despite the variability in their values, these features share the common trait of having higher
precision than recall. This means that the coverage-based baseline identifies a greater number
of feature regions compared to VaRA for those features.

However, with force and no-name in Table 5.12 there are two outliers in this group with low
precision, high recall and a large number of false positives. Due to the sheer quantity, we are
unable to individually validate all of the false positives. However, the majority seems to be
indeed incorrectly detected feature regions by VaRA. Since numerous sections of gzip have
force and no-name annotated without a clear rationale, it appears that at some point VaRA’s
taint analysis marks a wrong instruction or variable.

5.1.2.7 Summary

As shown, features from different categories have different performance characteristics. The
reasons for this are diverse. In some cases, it is due to detection limitations of VaRA (macros)
or the coverage-based baseline (numeric and verbosity features). Sometimes, it is due to
detection anomalies in one of the approaches, like for enums or features in alternative groups.
However, in other cases it works as expected, like for most features in the remaining feature
group.

5.2 discussion

In this section, we discuss the results of our quantitative and qualitative analysis in order to
answer RQ1 and RQ2. Furthermore, we discuss the obtained insights in relation to our thesis
goal.

5.2.1 RQ1: What conceptual differences in detected feature regions exist?

As seen in Section 5.1.1, there are two types of conceptual differences that cause the coverage-
based baseline and VaRA to identify different feature regions.

source-code-level differences The first category are source-level differences, that is,
different parts of the source code that are considered feature-dependent. These are conditions,
command-line option parsing related code, and feature-dependent functions. They cause the
largest deviations between the coverage-based baseline and VaRA’s feature-region detection,
but can be mitigated well. Our mitigations are not intended to improve the performance
metrics, that is only a side effect. Rather, we implement these measures in order to reduce the
over-approximation of the coverage-based baseline to avoid already known false negatives
and false positives in the results. This reduces our manual analysis effort. The significance of
the results is not affected by our mitigations, as we only mitigate the conceptual differences
that are always present. This does not change the big picture.

instruction-level differences The second category are instruction-level differences
where parts of a basic block belong to different code regions, causing flaky feature regions.
We observe these differences in classes, short-circuiting conditions, ternary operators, and
early returns. However, these kinds of differences cause only a small deviation between the

48 evaluation

coverage-based baseline and VaRA’s feature-region detection, as evident by the small number
of flaky feature regions. Mitigating them does not make a big difference.

Therefore, we answer our first research question as follows.

Answer RQ1: There are conceptual differences in the identified feature regions between
the coverage-based baseline and VaRA’s feature-region detection, both at the source
code level and at the instruction level. The former are differences in the detection of
conditions, command-line-option-related code, and feature-dependent functions. The
latter concern classes, short-circuit conditions, ternary operators, and early returns.

5.2.2 RQ2: How well does VaRA’s feature-region detection perform on real-world programs?

As we have seen in Section 5.1.2, the performance of VaRA’s feature-region detection is very
different for certain kinds of features. For a better overview, we present the averaged metrics
of the features in a group in Table 5.14. Since these feature groups are not uncommon and
are found in other real-world programs, we assume that the performance results for other
real-world programs are similar. In the following, we discuss the reasons behind the varying
performance results of each group.

Table 5.14: Arithmetic mean of performance metrics per feature group (for threshold 0 %).

PPV (%) TPR (%) TNR (%) BA (%)
ID Group

1 Macro - 0.00 100.00 50.00
2 Enum 20.71 24.41 93.30 58.86
3 Numeric 0.27 6.25 98.90 52.44
4 Alternative 16.61 18.12 94.15 56.13
5 Verbosity 21.33 46.58 99.19 72.80
6 Remaining 31.08 33.68 96.15 64.91

Legend: PPV = Precision, TPR = Recall, TNR = Specificity, BA = Balanced Accuracy

macros Since macros are preprocessor directives that get expanded before generating the
LLVM IR, it is currently impossible for VaRA to track feature variables defined as macros.
Therefore, VaRA is unable to detect any associated feature regions. However, the coverage-
based baseline can identify these feature regions because it does not depend on the concrete
implementation of the feature variables. This is why there are only false negatives and true
negatives in the macro feature group. Given the absence of true positives and false positives,
calculating the precision is not possible. However, the recall is 0 %.

enums VaRA’s feature-region detection can assign specific enum values to feature regions.
The results show that this is not always working. There are some feature regions that get

5.2 discussion 49

assigned all enum values for no apparent reason. This leads to a high number of false positives,
which reduces the precision. We suspect that this is a bug in VaRA’s feature-taint analysis,
which underlies the feature-region detection. For the Enum feature group, we determine
a precision of 20.71 % and a recall of 24.41 %. However, these values are not exclusively
due to the bug, because the features implemented as enum value in XZ are also part of an
alternative group. This causes additional false positives and false negatives that negatively
impact precision and recall average of the Enum feature group.

numeric features Our coverage-based baseline has a detection problem with numeric
features. This is due to the fact that numerical features often do not change the regions of
code that are executed. Numerical features that are only used in computations or passed to
the operating system (e. g., the size of data to read into a block) have no effect on coverage
and therefore cannot be detected. However, even if numeric features occur in conditions, for
example, to determine how often a loop is executed, they are very difficult to detect. This is
because we generally have to test all possible values to find those that satisfy the condition,
or no longer satisfy the condition, in order to achieve a change in executed code regions. This
significantly increases the effort, which is why we avoid it. For static analyses, such as VaRA’s
feature-region detection, numeric features do not pose a challenge, as we can see from the
false positives. However, due to the scarcity of feature regions detected by the coverage-based
baseline, we barely have any true positives. This absence explains the extremely low precision
and recall values of 0.27 % and 6.25 %. Both of these values are caused by the single true
positive for the feature 9 in gzip (Table 5.12). Without it, precision and recall would be 0 %.

alternative groups For the features that are part of an alternative group in the feature
model, our implementation of the presence-condition simplification causes problems. The
presence condition of a feature in an alternative group can be represented either as a positive
literal of the feature itself or as a conjunction of the negated literals of the other features
in the alternative group. Our implementation lacks information about alternative groups
in the feature model, which means we cannot influence the specific case to which our BDD
minimizes the presence condition. This leads to a large number of false positives and false
negatives for alternative groups when the wrong case occurs. In Section 5.1.2.4, we previously
explained our workaround that partially mitigates this issue but fails to resolve it entirely.
Despite the workaround, due to the many false negatives and false positives, we obtain an
average precision of 16.61 % and a recall of 18.12 % for features in an alternative group. We
anticipate that resolving this issue will lead to an increase of another 5–15 % in precision and
recall for these features. This is because feature regions of this kind are actually correctly
identified by the coverage-based baseline, but poorly interpreted by our implementation.

verbosity features Features in the verbosity group are frequently used in error-handling
code in the real-world programs we tested. As we do not execute invalid configurations
or invalid workloads to create our coverage-based baseline, this error-handling code is not
executed. As a result, our coverage-based baseline does not find any feature regions there, but
VaRA does. This imbalance results in an average precision of 21.33 % and a more than twice as
high recall of 46.58 %. Assuming wewould also execute the error-handling code, the precision
and recall would probably be about the same as for the other feature groups. However, the

50 evaluation

effort to execute all the error handling code is enormous. This is because we would have
to run not only all invalid configurations of a program, but also every configuration with
not only valid but also many invalid workloads, since an invalid workload is likely to cause
exactly one error. In addition, we would have to run the program with different resources,
for example, to trigger errors if there is not enough memory available. Thus, if we try to run
error-handling code, we do not scale. For this reason, we have decided not to pursue this
approach.

remaining features As noted in Section 5.1.2.6, the remaining group of features contains
two outliers with very low precision and high recall (force and no-name in Table 5.12). These
influence our average precision and recall of 31.08 % and 33.68 % strongly. Because if we
exclude them from the average, we get a different picture with 37.02 % precision and 24.59 %
recall. Higher precision than recall means that the coverage-based baseline is more likely
to over-approximate the feature regions found by VaRA. Empirical data from our example
programs, MSMR (Table 5.1) and SFI (Table 5.2), generally support this assumption. This
property is welcome because it means that the coverage-based baseline is more likely to find
toomany of VaRA’s feature regions than too few. That this is still the case despite our condition
handling and option parsing code mitigations confirms that they are not too restrictive.

As we have seen significant differences between the individual feature groups, we answer
our two sub-questions per feature group.

Answer RQ2.1: The fraction of detected feature regions that are genuine is: Not mea-
surable for macros, 20.71 % for enums, 0.27 % for numeric features, 16.61 % for features
in an alternative group, 21.33 % for features managing verbosity, and 31.08 % (37.02 %
without outliers) for remaining features.
Answer RQ2.2: The fraction of genuine feature regions that are detected as such is:
0 % for macros, 24.41 % for enums, 6.25 % for numeric features, 18.12 % for features in
an alternative group, 46.58 % for features managing verbosity, and 33.68 % (24.59 %
without outliers) for remaining features.

In absolute values, the performance of VaRA’s feature region detection on real-world pro-
grams is not great. The average metrics of the individual feature groups, as well as the totals
of the real-world programs, reveal this. Nonetheless, we cannot conclude that VaRA itself
performs poorly, only that we could not measure better performance stats with our coverage-
based baseline. The concepts of the coverage-based baseline and VaRA are too different for
that. On a small scale, we were able to ignore most differences in our example programs
and synthetic benchmarks with our mitigations. However, that is not the case anymore for
real-world programs where we do not mitigate feature-dependent functions anymore. Addi-
tionally, our coverage-based baseline has its shortcomings, particularly with numeric features,
alternative groups, and error-handling code. As a result, we experience a high number of
false positives and false negatives, that negatively affect our performance metrics. Therefore,
we answer our second research question as follows.

5.3 threats to validity 51

Answer RQ2: The precision and recall of VaRA’s feature-region detection on real-world
programs is not very high, but this does not mean that VaRA is bad at detecting feature
regions in real-world programs. There are areas where VaRA’s feature-region detection
could be improved, such as the lack of macro support or the feature-taint analysis,
which seems to be buggy in some places. However, a large part of the low performance
metrics is due to differences between the coverage-based baseline and VaRA, which add
up and become more significant the larger the code base.

5.2.3 Thesis Goal: Does VaRA’s feature-region detection yield valid results?

We tested VaRA’s feature-region detection on small (example and synthetic programs) and
large (real-world programs) scale. By classifying the results using the coverage-based baseline,
we validate most of the results automatically. Unfortunately, our coverage-based baseline
also has its shortcomings regarding numeric features, alternative groups, and error handling
code, so we still need to validate these areas manually. However, we found no new anomalies
during our validation of the corresponding source code in the real-world programs. VaRA’s
feature-region detection performed as expected. Therefore, we stick to our findings from the
previous two research questions regarding the validity of VaRA’s feature-region detection
results.

Answer thesis goal: The feature-region detection results from VaRA are valid on the
whole. However, there seems to be a bug in the underlying feature-taint analysis, which
manifests itself in enum comparisons, for example, and causes too large parts of a
program to be considered feature-dependent.

5.3 threats to validity

There are several threats to the validity of our results, both internal and external. Internal
threats to validity can arise from faultymeasurements or improper processing of themeasured
data during analysis. External validity threats impact the generalizability of our results. In
this section, we discuss what these threats are and how we mitigate them when possible.

5.3.1 Internal validity

Mühlbauer et al. [22] demonstrated, among others, that they could identify feature regions
with coverage data. Therefore, we do not have to prove anymore that this is possible. Hence,
the only question remaining is whether our methodology is valid. Our results are only reliable
if the classification of VaRA’s feature-region detection results with our coverage-based baseline
works as intended. To obtain a good coverage-based baseline, we first need valid coverage
data that covers a large portion of the program under investigation. When the coverage data
is not valid or of poor quality, we cannot find all the coverage-based feature regions.

52 evaluation

For valid and precise coverage data, we use LLVM’s source-based coveragemeasurements, a
mature functionality that has proven reliable in practice for many years. These measurements
involve profiling instructions added at the beginning of every code region, which track the
number of times that code region is executed. To prevent the profiling instructions from
interfering with VaRA’s feature-region detection, we compile our programs twice. Once with
profiling instructions and once without. Apart from the profiling instructions, the resulting
LLVM IR is identical, as the other compiler options remain the same.

In order to obtain high-quality coverage data, we execute all valid configurations with
workloads that match their features. In other words, we make sure that the workload is
capable of executing the feature-relevant code. This is especially crucial for our real-world
programs, which have multiple operation modes with different input requirements. For
instance, if we want to decompress data, we require a compressed file as the workload. Using
an uncompressed file as input would only result in an error. Furthermore, we ensure that our
coverage data is deterministic, meaning that two executions of a programwith the same inputs
result in the same coverage data. This is important because code regions in non-deterministic
programs that are sometimes executed and sometimes not would be falsely identified as
feature regions by our coverage-based baseline. To avoid this, we only test deterministic
configurations of programs. For instance, it is feasible to execute XZ with several threads
for faster compression. However, that causes non-deterministic executions, which will likely
result in non-deterministic coverage data. Hence, we always run XZ in single-threaded mode.

In addition to the coverage data, the generated LLVM IR may also cause problems. To
be able to uniquely assign instructions to code regions, each instruction must have exactly
one location in the source code, effectively a one-to-many mapping. However, compiler
optimizations or language features like preprocessor macros may lead to a many-to-many
mapping, where multiple source code locations are represented by a single instruction. In
this situation, it is unclear to which section of the source code the instruction belongs, since
instructions in LLVM can only have one debug location. We would overlook that instruction
for the other relevant code regions. While this possibility cannot be completely eliminated,
we greatly reduce its likelihood by disabling compiler optimizations when compiling our
programs. As a result, many-to-many mappings in the LLVM IR should occur rarely, if at all,
which in the worst case could slightly affect our results. However, this does not render our
results invalid per se.

Despite the correctness of the coverage data and LLVM IR, our implementation could still
introduce errors when processing them. We have identified potential risks in the parsing
of LLVM’s coverage data JSON format to code region trees, the simplification of presence
conditions, and the classification of feature regions. These areas are relatively complex to
implement. However, we anticipate a low probability of bugs in our implementation, as
we thoroughly test these areas with our test suite and continuously check many of our
assumptions with assertions. Through the latter, we discovered, for example, that the coverage
data also contains information about compile-time generated source files (e. g., config.h
generated by GNU autotools), which we have not included in our code region trees because
they are not part of the actual source code of the program. Furthermore, we found a bug in
the LLVM version we use. LLVM 14 erroneously reports the end column of a single code
region in ECT to be higher than the length of the corresponding line. However, this issue

5.3 threats to validity 53

occurs only in this place. All other code regions are correctly represented in the coverage
data.

Even with correct implementation, we might make mistakes in our evaluation. For example,
we may miss feature regions in our quantitative analysis if they are not detected by both the
coverage-based baseline and VaRA. Such instances are categorized as true negatives. The only
way to confirm these true negatives is through manual verification, which can be a significant
undertaking, especially for the real-world programs, due to their large number. However, we
do not assume that there are any missed feature regions among the true negatives. First, the
coverage-based baseline and VaRA’s feature region detection differ conceptually, making it
likely that at least one approach will identify the feature region. Second, in our qualitative
analysis, we explicitly validate the true negatives and found them to be correct, so it is unlikely
to be a general problem. Also, when we examined the false positives and false negatives in
both the synthetic and real-world programs, we did not notice anything out of the ordinary.
Therefore, even if we missed feature regions in the true negatives, their occurrence would be
rare and have low impact on the validity of our findings.

Another potential factor affecting internal validity is our choice of features to test. Due to
the need to execute all valid configurations to establish a coverage-based baseline – and the
exponential growth in the number of configurations based on the number of tested features –
it is not feasible to test all available features. Hence, wemust strategically select the features we
wish to evaluate in real-world programs. However, there is a risk that the selection of features
affects our results because, as we saw in Section 5.1.2, features part of distinct feature groups
have different performance characteristics. The overall performance metrics could vary if
different features are chosen, which may no longer accurately represent VaRA’s detection of
feature regions across the entire program. To minimize the number of configurations required
for testing, we limit the values of numerical features in the real-world programs to two: the
default value, if available, and one other. We also refrain from testing rather insignificant
features such as help or version, which only print some text but do not execute the primary
logic of the program. These measures enable us to test nearly all features of Bzip2 and gzip,
thus avoiding the problem. However, with XZ, we cannot test all features because XZ has
more than twice as many features as Bzip2 or gzip. Therefore, we restrict testing to the most
common features that have the potential to interact with each other. Since the chosen features
incorporate various functionalities, many of which overlap with those present in Bzip2 and
gzip, we still get a broad view of VaRA’s feature-region detection performance for XZ.

Finally, it is worth noting that our chosen methodology affects our results. Our approach
to detect feature regions via coverage data is, of course, conceptually different from the static
analysis of VaRA’s feature-region detection. How the two approaches differ, how we mitigate
these differences, and how this affects the results has already been described in detail in
Section 5.1.1 and 5.2.1.

5.3.2 External validity

Although we examine several real-world programs, the generalizability of our results is
limited. This is because all of the real-world programs we test have three things in common:
they are from the compression domain, are written in C/C++, and do not implement their
feature variables in config structs. As a result, our performance metrics may look quite

54 evaluation

different for programs in other domains, other compiled programming languages like Rust,
or when config structs are used. However, we do not consider this an issue for this work as our
intention is to validate the current state of VaRA’s feature-region detection. Currently, VaRA
only supports C/C++, and the necessary field sensitivity support to correctly handle config
structs is not yet fully developed. However, some of the reasons behind the different feature
groups (lack of macro support, numeric features, error handling code) are generalizable, as
they are more fundamental issues that occur regardless of the used programming language
and implementation specifics.

6
RELATED WORK

Feature detection tools map features to source code, which helps developers or maintainers
in locating the implementation of a feature in a program. An overview of the subject and
different approaches is provided by Dit et al. in their paper “Feature location in source code: a
taxonomy and survey” [10]. Essentially, there are two methods for locating features in source
code. One can collect information during program execution (dynamic analysis) or analyze a
program statically, that is, without executing it.

Wilde et al. [26] are the first to solve the problem of feature detection with dynamic analysis
in 1992. They gather coverage data from executions with and without activated features and
compare the two sets to identify feature-related code. This concept of using coverage data to
locate features still exists today and is used in modified forms [7, 12, 22].

In 1994, Biggerstaff, Mitbander, and Webster [3] introduce the first static approach to
feature detection. Their static analysis is text-based, that is, the source code itself is analyzed.
For example, among other things, they search for the occurrences of identifier names that
can be related to a feature. Over time, various static concepts were developed to enhance
detection accuracy. A noteworthy concept is the analysis of preprocessor directives for locating
compile-time variable features in programs [15, 21]. However, we will not delve into the
specifics as this thesis focuses on load-time variability only. The static analysis tool most
akin to VaRA is Lotrack [19]. Just like VaRA’s feature-region detection, Lotrack uses a taint
analysis to track the flow of data from configuration options or feature variables through
the program. It also considers instructions whose control flow depends on a tainted value to
be feature-dependent. However, Lotrack is designed specifically for detecting features in
Android applications, and thus only supports the Java ecosystem. VaRA, on the other hand,
supports feature detection in C/C++ programs.

During the development of VaRA’s feature-region detection, it became evident that an
automatically generated ground truth is needed, against which the results of the feature
region detection can be compared, for example, for evaluation or validation purposes. Until
now, the ground truth for a program had to be laboriously createdmanually, which limited the
evaluation possibilities in scale and scope. Two evaluations related to VaRA’s feature-region
detection have been performed so far. One was conducted by Keller [14]. In his bachelor
thesis, he evaluates the underlying feature-taint analysis of VaRA’s feature-region detection
on four real-world programs. To accomplish this, he had to create the necessary ground
truth data by hand. The other was undertaken by Zahlbach [27] also in his bachelor thesis.
He compares different feature-region detection approaches with each other on real-world
programs. However, he could only validate the results of the detection approaches on small
code examples because it was not feasible to generate the necessary ground truth data on
such large scale. Our work builds on his proposal to automatically generate ground truth
from coverage data in order to be able to validate VaRA’s feature-region detection approaches
on a large scale on real-world programs.

55

56 related work

Although there have been hybrid approaches to feature detection that attempt to combine
the strengths of dynamic and static analysis [11, 13, 23], to the best of our knowledge, we are
the first to attempt to evaluate and validate a static feature-region detection analysis with
a dynamic analysis. Our initial approach for creating the coverage-based baseline is very
similar to the one used by Mühlbauer et al. [22] in their work. As explained in Section 3.1.1, it
is possible to detect feature regions by computing the difference of coverage data. The sole
difference is that their implementation uses lines of code as the granularity, while we use
code regions. Using code regions is more precise, because it is possible that a line of code
consists of multiple code regions, some of which are covered and some of which are not. In
such cases, the coverage tools usually display the maximum count of all code regions in the
line, which can result in code regions being marked as covered when they are not. Thereby,
the accuracy of the generated baseline decreases.

However, as also described in Section 3.1.1, the coverage diffing approach only gives us the
features that affect a code region, but not the presence condition of the code region. The key
idea for implementing presence conditions for our coverage-based baseline came from Rhein
et al. In their paper “Presence-Condition Simplification in Highly Configurable Systems” [24],
they describe how to minimize presence conditions in the context of a feature model and
test the efficiency of different algorithms for doing so. Our implementation follows their
recommendation to use a BDD for presence-condition simplification, as this is currently the
best scaling technique.

7
CONCLUDING REMARKS

To conclude this thesis, we summarize our findings, make recommendations for immediate
improvements, and provide an outlook for future research.

7.1 conclusion

The goal of this thesis is to validate VaRA’s feature-region detection on real-world programs.
This has been impractical so far, since the baseline required for validation could only be
created by hand on a small scale. We solve this problem by implementing a method that
extracts feature regions from coverage data and use it to automatically generate baselines for
real-world programs.

We evaluate VaRA’s feature-region detection on programs by comparing its results with
the coverage-based baseline. Since both approaches are based on different concepts, we first
work out their conceptual differences so that we are able to correctly assess the comparison
results. We found that VaRA’s feature-region detection and our coverage-based baseline differ
on the source code level in terms of condition handling, option parsing code, and feature-
dependent functions. However, these differences can be mitigated without compromising the
meaningfulness of the results. Some minor discrepancies exist at the instruction level, but
they are not significant.

Based on our findings, we assessed the performance of VaRA’s feature-region detection on
three real-world programs: Bzip2, gzip, and XZ. We discovered that various feature groups
exhibit different performance characteristics. This is due to shortcomings of both the coverage-
based baseline and VaRA. The coverage-based baseline has problems finding numeric features,
features in error handling code, and, due to our implementation, features that are part of an
alternative group. VaRA cannot track feature variables defined as macros due to the absence
of macro support and might have a bug in the feature-taint analysis, which manifests when
enum values are involved in conditions, among others.

Apart from the aforementioned issues, we did not find any systematic errors during our
validation of the results, so we conclude that VaRA’s feature region-detection provides valid
results on the whole.

That is, we are confident that our coverage-based baseline will substantially decrease the
manual labor needed to evaluate VaRA’s feature-region detection or comparable tools in the
future. This will ultimately expedite further development efforts.

7.2 possible tooling improvements

Albeit not being the main goal of this thesis, while working towards the evaluation, we have
developed tools around the coverage-based baseline that could be of immediate use in the
further development of VaRA. One of them is a side-by-side view of the source code and the
features associated with each line. This visualization provides an initial overview of whether

57

58 concluding remarks

corresponding feature-region detection approaches are finding the correct feature regions.
Such an visualization has been missing from VaRA until now. With little effort, we could also
visualize the feature taints in this view, for example, by color coding the tainted variables in
the source code according to the corresponding feature. This could facilitate bug finding in
the feature-taint analysis.

Furthermore, our tools could help to detect and correct deviations of our feature models
from reality. During our experiments, we computed and executed all valid configurations
of a program based on the feature model. However, some of these configurations were in
reality invalid and the program returned an error. We corrected the feature models for the
case studies investigated in our evaluation, but it is possible that other feature models are
also incorrect. Therefore, we recommend to check whether other feature models correctly
model the reality. Note that validating feature models is a separate research topic with its
own challenges [18]. However, for smaller systems, the simple approach of running all valid
configurations and checking the exit code should suffice.

Finally, as we have seen in the case of XZ, dynamically linked libraries cause problems
for VaRA’s feature-taint analysis. Their instructions are not present in the analyzed LLVM IR,
which hinders the feature-taint analysis from continuously analyzing the LLVM IR. Therefore,
to prevent unintentional omitted instructions, VaRA’s tooling should display a warning for
dynamically linked libraries during the compile process.

7.3 future work

As we have seen through our experiments, there is potential for improvement in our coverage-
based baseline, VaRA’s feature-region detection, as well as in our mitigations to reduce the
conceptual differences between the two.

For the coverage-based baseline, it is possible to evaluate the coverage data at a more
fine-grained level. Currently, we only distinguish between executed and non-executed code
regions to assign initial presence conditions. As a result, our coverage-based baseline rarely
detects any numeric features. If we could determine for how many executions of a feature
region a feature is responsible, we could improve numeric feature detection in loops, since
we would know how many loop executions a feature caused. However, there is a risk that the
coverage-based baselinemay becomemore susceptible to noise, such aswhen loopswait for an
event to happen, which could degrade the results. Furthermore, the coverage-based baseline
could be extended to support compile-time variability. We assume that the locations of code
regions in the coverage data remains the same across compile-time variants, so our code
region trees should still have the same structure. Thus, to support compile-time variability, it
should suffice to combine the corresponding compile-time configuration with the run-time
configuration and set the outcome as the initial presence condition for all executed code
regions.

VaRA’s feature-region detection could implement macro and field-sensitivity support to
be able to handle features implemented as macros and enable feature detection in config
structs. Furthermore, VaRA could also implement presence conditions for feature regions.
To accomplish this, symbolic execution of control-flow paths that lead to feature regions
could be performed. The validation of this presence condition implementation could be easily
achieved by comparing to our coverage-based baseline.

7.3 future work 59

Regarding our mitigations for the conceptual differences between the coverage-based
baseline and VaRA’s feature-region detection, we had to manually find and ignore feature-
dependent functions. However, we were unable to clearly identify feature-dependent func-
tions in the real-world programs, so we decided to not mitigate them. As explained in Para-
graph 5.1.1.1, we could automatically ignore these functions by statically detecting them with
a call graph. However, this approach carries the risk of overlooking dynamic calls, which
would falsely declare functions as feature-dependent. Therefore, it would be interesting to
find out how prevalent this problem is in practice and whether the call graph approach is
useful.

Finally, it could be beneficial to combine our coverage-based baseline and VaRA’s feature
region detection to overcome each other’s shortcomings and increase feature detection accu-
racy. Similar approaches have been used successfully in research [23]. However, the specifics
of how this could work in our case are still unclear.

A
APPENDIX

a.1 feature interaction in ect

During our preparations to evaluate ECT, we encountered a feature interaction between
the -gzip command-line option and --disable-png or --disable-jpg. As demonstrated in
ListingA.1, enabling the gzip feature reactivated the previously disabled features. The problem
has been fixed by the developer1.

1 ./ect --disable-png --disable-jpg image.png image.jpg

2 No compatible files found

3
4 ./ect -gzip --disable-png --disable-jpg image.png image.jpg

5 Processed 2 files

6 Saved 40.77KB out of 276.14KB (14.7637%)

Listing A.1: Feature interaction in ECT.

a.2 disabled exception handling

In C++ programs, exceptions that are not handled usually trigger an abort of the program.
Although these exceptions are not handled explicitly in source code, the compiler implicitly
handles them in LLVM IR. For example, in Listing A.2 the operations compress, encrypt,
and addPadding try to allocate memory, which can fail. Since this exception is not explicitly
handled, the program can abort at these locations early. However, this changes the control
flow of the program because it causes the execution of subsequent instructions to depend on
the success of previous operations. Consequently, the features identified by VaRA’s feature-
region detection begin to accumulate, as can be seen in the right column of Listing A.2.
Unfortunately, this causes VaRA’s detected feature regions to deviate significantly from our
coverage-based baseline. To avoid this phenomenon, we compile all programs with disabled
exception handling.

1 https://github.com/fhanau/Efficient-Compression-Tool/issues/133 (visited on January 16, 2024)

61

https://github.com/fhanau/Efficient-Compression-Tool/issues/133

62 appendix

51 ⋯| Coverage VaRA

52 if (UseCompression){ True
53 Data = compress(Data); compress 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
54 } True 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
55 if (UseEncryption){ enc Encryption, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
56 if (not UseCompression){

57 Data = addPadding(Data); ¬compress ∧ enc 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
58 }

enc 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛59

60 Data = encrypt(Data);

61 }

62

63 //Sending

64 fpsc::sleep_for_secs(2); True 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
65 send(&Data);

66 ⋯

Listing A.2: VaRA’s detected feature regions in SFI compiled without -fno-exceptions.

B IBL IOGRAPHY

[1] Frances E. Allen. “Control Flow Analysis.” In: Proceedings of a Symposium on Compiler
Optimization. Urbana-Champaign, Illinois: Association for ComputingMachinery, 1970,
pp. 1–19. isbn: 9781450373869. doi: 10.1145/800028.808479. url: https://doi.org/
10.1145/800028.808479.

[2] SvenApel, Don Batory, Christian Kästner, and Gunter Saake. “Software Product Lines.”
In: Feature-Oriented Software Product Lines: Concepts and Implementation. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2013, pp. 3–15. isbn: 9783642375217. doi: 10.1007/
978-3-642-37521-7_1. url: https://doi.org/10.1007/978-3-642-37521-7_1.

[3] Ted J. Biggerstaff, Bharat G.Mitbander, andDallas E.Webster. “ProgramUnderstanding
and the Concept Assignment Problem.” In: Commun. ACM 37.5 (1994), pp. 72–82. issn:
0001-0782. doi: 10.1145/175290.175300. url: https://doi.org/10.1145/175290.
175300.

[4] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. “Efficient Implementation of a
BDD Package.” In: Proceedings of the 27th ACM/IEEE Design Automation Conference. DAC
’90. Orlando, Florida, USA: Association for Computing Machinery, 1991, pp. 40–45.
isbn: 0897913639. doi: 10.1145/123186.123222. url: https://doi.org/10.1145/
123186.123222.

[5] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation.” In:
IEEE Transactions on Computers C-35.8 (1986), pp. 677–691. doi: 10.1109/TC.1986.
1676819.

[6] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. “Feature
interaction: a critical review and considered forecast.” In:Computer Networks 41.1 (2003),
pp. 115–141. issn: 1389-1286. doi: https://doi.org/10.1016/S1389-1286(02)00352-3.
url: https://www.sciencedirect.com/science/article/pii/S1389128602003523.

[7] Bruno Castro, Alexandre Perez, and Rui Abreu. “Pangolin: An SFL-Based Toolset for
Feature Localization.” In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 2019, pp. 1130–1133. doi: 10.1109/ASE.2019.00119.

[8] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. “Verification of syn-
chronous sequential machines based on symbolic execution.” In: Automatic Verification
Methods for Finite State Systems. Ed. by Joseph Sifakis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1990, pp. 365–373. isbn: 978-3-540-46905-6.

[9] Olivier Coudert and Tsutomu Sasao. “Two-Level Logic Minimization.” In: Logic Syn-
thesis and Verification. Ed. by Soha Hassoun and Tsutomu Sasao. Boston, MA: Springer
US, 2002, pp. 1–27. isbn: 978-1-4615-0817-5. doi: 10.1007/978-1-4615-0817-5_1. url:
https://doi.org/10.1007/978-1-4615-0817-5_1.

63

https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1007/978-3-642-37521-7_1
https://doi.org/10.1007/978-3-642-37521-7_1
https://doi.org/10.1007/978-3-642-37521-7_1
https://doi.org/10.1145/175290.175300
https://doi.org/10.1145/175290.175300
https://doi.org/10.1145/175290.175300
https://doi.org/10.1145/123186.123222
https://doi.org/10.1145/123186.123222
https://doi.org/10.1145/123186.123222
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/https://doi.org/10.1016/S1389-1286(02)00352-3
https://www.sciencedirect.com/science/article/pii/S1389128602003523
https://doi.org/10.1109/ASE.2019.00119
https://doi.org/10.1007/978-1-4615-0817-5_1
https://doi.org/10.1007/978-1-4615-0817-5_1

64 bibliography

[10] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. “Feature
location in source code: a taxonomy and survey.” In: Journal of Software: Evolution
and Process 25.1 (2013), pp. 53–95. doi: https://doi.org/10.1002/smr.567. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.567.

[11] Marc Eaddy, Alfred V. Aho, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. “CER-
BERUS: Tracing Requirements to Source Code Using Information Retrieval, Dynamic
Analysis, and Program Analysis.” In: 2008 16th IEEE International Conference on Program
Comprehension. 2008, pp. 53–62. doi: 10.1109/ICPC.2008.39.

[12] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. “Feature-driven program
understanding using concept analysis of execution traces.” In: Proceedings 9th In-
ternational Workshop on Program Comprehension. IWPC 2001. 2001, pp. 300–309. doi:
10.1109/WPC.2001.921740.

[13] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. “Locating features in source
code.” In: IEEE Transactions on Software Engineering 29.3 (2003), pp. 210–224. doi:
10.1109/TSE.2003.1183929.

[14] Janik Keller. “Feature Taint Analysis: How Precise can VARA Track the Influence of
Feature Variables in Real-World Programs?” Bachelor’s thesis. Saarland Informatics
Campus, Saarland University, 2023.

[15] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and Thorsten
Berger. “Where is my feature and what is it about? A case study on recovering feature
facets.” In: Journal of Systems and Software 152 (2019), pp. 239–253. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2019.01.057. url: https://www.sciencedirect.
com/science/article/pii/S0164121219300184.

[16] Chris Lattner. The Architecture of Open Source Applications (Volume 1) LLVM. 2011. url:
https://aosabook.org/en/v1/llvm.html (visited on 05/23/2023).

[17] Chris Lattner and Vikram Adve. “LLVM: a compilation framework for lifelong pro-
gram analysis & transformation.” In: International Symposium on Code Generation and
Optimization, 2004. CGO 2004. 2004, pp. 75–86. doi: 10.1109/CGO.2004.1281665.

[18] Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun. “Validating consistency
between a feature model and its implementation.” In: Safe and Secure Software Reuse:
13th International Conference on Software Reuse, ICSR 2013, Pisa, June 18-20. Proceedings
13. Springer. 2013, pp. 1–16.

[19] Max Lillack, Christian Kästner, and Eric Bodden. “Tracking Load-Time Configuration
Options.” In: IEEE Transactions on Software Engineering 44.12 (2018), pp. 1269–1291. doi:
10.1109/TSE.2017.2756048.

[20] Yashwant K.Malaiya,MichaelNaixin Li, JamesM. Bieman, andRickKarcich. “Software
reliability growth with test coverage.” In: IEEE Transactions on Reliability 51.4 (2002),
pp. 420–426. doi: 10.1109/TR.2002.804489.

https://doi.org/https://doi.org/10.1002/smr.567
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.567
https://doi.org/10.1109/ICPC.2008.39
https://doi.org/10.1109/WPC.2001.921740
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/https://doi.org/10.1016/j.jss.2019.01.057
https://www.sciencedirect.com/science/article/pii/S0164121219300184
https://www.sciencedirect.com/science/article/pii/S0164121219300184
https://aosabook.org/en/v1/llvm.html
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/TSE.2017.2756048
https://doi.org/10.1109/TR.2002.804489

bibliography 65

[21] Gabriela Karoline Michelon, David Obermann, Lukas Linsbauer, Wesley Klewerton
G. Assunção, Paul Grünbacher, and Alexander Egyed. “Locating Feature Revisions
in Software Systems Evolving in Space and Time.” In: Proceedings of the 24th ACM
Conference on Systems and Software Product Line: Volume A - Volume A. SPLC ’20.Montreal,
Quebec, Canada: Association for Computing Machinery, 2020. isbn: 9781450375696.
doi: 10.1145/3382025.3414954. url: https://doi.org/10.1145/3382025.3414954.

[22] Stefan Mühlbauer, Florian Sattler, Christian Kaltenecker, Johannes Dorn, Seven Apel,
and Norbert Siegmund. “Analyzing the impact of workloads on modeling the perfor-
mance of configurable software systems.” In: Proceedings of the International Conference
on Software Engineering (ICSE), IEEE. 2023.

[23] Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano Antoniol, and
Vaclav Rajlich. “Feature Location Using Probabilistic Ranking of Methods Based on
Execution Scenarios and Information Retrieval.” In: IEEE Transactions on Software Engi-
neering 33.6 (2007), pp. 420–432. doi: 10.1109/TSE.2007.1016.

[24] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk Beyer,
and Thorsten Berger. “Presence-Condition Simplification in Highly Configurable Sys-
tems.” In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 1. 2015, pp. 178–188. doi: 10.1109/ICSE.2015.39.

[25] Florian Sattler. “A Variability-Aware Feature-Region Analyzer in LLVM.” Master’s
thesis. Department of Informatics and Mathematics, University of Passau, 2017.

[26] Norman Wilde, Juan A. Gomez, Thomas Gust, and Douglas Strasburg. “Locating user
functionality in old code.” In: Proceedings Conference on Software Maintenance 1992. 1992,
pp. 200–205. doi: 10.1109/ICSM.1992.242542.

[27] Tom Zahlbach. “Finding Feature-Dependent Code: A Study on Different Feature-
Region Detection Approaches.” Bachelor’s thesis. Saarland Informatics Campus, Saar-
land University, 2023.

https://doi.org/10.1145/3382025.3414954
https://doi.org/10.1145/3382025.3414954
https://doi.org/10.1109/TSE.2007.1016
https://doi.org/10.1109/ICSE.2015.39
https://doi.org/10.1109/ICSM.1992.242542

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Overview

	2 Background
	2.1 Configurable software systems
	2.2 VaRA
	2.2.1 Static and Dynamic Analysis
	2.2.2 LLVM
	2.2.3 Control-Flow Graph
	2.2.4 Feature-Taint Analysis
	2.2.5 VaRA's Feature-Region Detection Approach

	2.3 Coverage-Based Baseline
	2.3.1 Baseline and Ground Truth
	2.3.2 Coverage Data
	2.3.3 Code Regions and Feature Regions
	2.3.4 Binary Decision Diagram (BDD)
	2.3.5 Presence-Condition Simplification

	3 Implementation
	3.1 Generating the Coverage-Based Baseline
	3.1.1 Initial approach: Diffing coverage data
	3.1.2 Better approach: Building presence conditions

	3.2 Exporting VaRA's Feature Regions

	4 Methodology
	4.1 Research Questions
	4.2 Comparison Process
	4.2.1 Interpreting Feature Regions
	4.2.2 Mapping Features to Command-Line Options
	4.2.3 Classification and Performance Assessment

	4.3 Operationalization
	4.3.1 Experiment Design
	4.3.2 Qualitative Analysis
	4.3.3 Quantitative Analysis

	5 Evaluation
	5.1 Results
	5.1.1 Qualitative Analysis
	5.1.2 Quantitative Analyis

	5.2 Discussion
	5.2.1 RQ1: What conceptual differences in detected feature regions exist?
	5.2.2 RQ2: VaRA's feature-region detection performance
	5.2.3 Thesis Goal: Does VaRA's feature-region detection yield valid results?

	5.3 Threats to Validity
	5.3.1 Internal validity
	5.3.2 External validity

	6 Related Work
	7 Concluding Remarks
	7.1 Conclusion
	7.2 Possible tooling improvements
	7.3 Future Work

	A Appendix
	A.1 Feature interaction in ECT
	A.2 Disabled exception handling

	 Bibliography

