
University of Passau

Department of Informatics and Mathematics

Bachelor Thesis

Evaluating the Influence of
Feature Interactions on the

Learnability of Non-functional
Properties

Author:

Jakob Hoffmann

June 25, 2018

Advisors:

Prof. Dr. Sven Apel

Chair of Software Engineering I

Alexander Grebhahn

Chair of Software Engineering I

Hoffmann, Jakob:
Evaluating the Influence of Feature Interactions on the Learnability of Non-
functional Properties
Bachelor Thesis, University of Passau, 2018.

Abstract

As many modern software systems are highly configurable, there is the need to gain
insights of the influences on the performance of those configuration options. As the
configuration space can be of possibly exponential size, this can be solved by em-
ploying machine learning techniques to identify those influences on the performance.
This approach is implemented in a tool called SPL Conqueror. This thesis aims at
identifying influences on this machine learning approach as well as finding potential
obstacles to learning a software system. To this end, we use realistically generated
data with varying characteristics that enable us to identify influences on the learning
process in a way that is not possible with real world measurements. An experiment
design is proposed with the objective to identify those influences. Additionally, some
extensions to the tool used for the data generation named Thor had to be made to
be able to conduct those experiments. Eventually, the observed results are discussed
and the identified influences on the learnability of a software system are outlined.

v

vi

Contents

List of Figures xi

List of Tables xiii

List of Code Listings xv

1 Introduction 1
1.1 Goal of this Thesis . 2
1.2 Structure of this Thesis . 3

2 Background 5
2.1 Feature Modeling . 5

2.1.1 Feature Models . 5
2.1.2 Attributed Feature Models . 6
2.1.3 Interactions . 6

2.2 SPL Conqueror . 7
2.3 Thor . 8
2.4 Learnability of Non-Functional Properties 9
2.5 PeMoCo . 10

3 Experimental Setup 11
3.1 Variables . 11

3.1.1 Dependent Variables . 11
3.1.2 Control Variables . 12
3.1.3 Independent Variables . 12

3.2 Challenges with Initial Experiments 13
3.3 Attribute Values and Distributions 14

3.3.1 Feature and Interaction Importance 14
3.3.2 Feature and Interaction Distributions 16

3.4 Interaction Number and Order Distribution 17
3.4.1 Number of Interactions . 17
3.4.2 Interaction Order Distribution 18

4 Implementation 21
4.1 Random Functions . 21
4.2 Scaling Attribute Distributions . 22
4.3 Improvements to Thor . 24
4.4 Challenges with Thor . 24

viii Contents

5 Evaluation 27
5.1 Effects of Attribute Values and Distribution 27

5.1.1 Feature and Interaction Importance 27
5.1.2 Feature and Interaction Distribution 33

5.2 Effects of Interaction Number and Order Distribution 40
5.2.1 Interaction Numbers and Orders 40
5.2.2 Interaction Order Distribution 43

5.3 Discussion . 44
5.3.1 Challenges with PeMoCo . 44
5.3.2 Attribute Values and Distribution 45
5.3.3 Interaction Numbers and Orders 46

6 Threats to Validity 47
6.1 Internal Validity . 47
6.2 External Validity . 48

7 Future Work 49

8 Conclusion 51

Bibliography 53

A Appendix 55

List of Figures

2.1 Example of a feature diagram whereby the empty bullet denotes an
optional feature . 6

2.2 Overview of the process of generating attributed feature models [SSA17] 9

4.1 Density plot of the estimated probability measure for the BDB Bina-
rySize sample . 23

5.1 Error rate and PeMoCo score of the feature importance experiment
showing higher percentages . 28

5.2 Error rate and PeMoCo score of the feature importance experiment . 28

5.3 Error rate and PeMoCo score of the feature importance experiment
with the feature-wise sampling strategy 30

5.4 Error rate and PeMoCo score of the feature importance experiment
with the pair-wise sampling strategy 30

5.5 Error rate and PeMoCo score of the interaction importance experiment 32

5.6 Error rate and PeMoCo score of the interaction importance experi-
ment with the pair-wise sampling strategy 33

5.7 Error rate and PeMoCo score of the feature attribute distribution
experiment considering only the attribute distributions independent
of the scale . 34

5.8 Generated feature attribute values for a scale maximum of 100 34

5.9 Error rate and PeMoCo score of the feature attribute distribution
experiment considering only the scales independent of the attribute
distribution . 35

5.10 Error rate and PeMoCo score of the feature attribute distribution
experiment considering only the attribute distributions independent
of the scale with the feature-wise sampling strategy 36

5.11 Error rate and PeMoCo score of the feature attribute distribution
experiment considering only the attribute distributions independent
of the scale with the pair-wise sampling strategy 36

x List of Figures

5.12 Error rate and PeMoCo score of the interaction attribute distribution
considering only the attribute distribution independent of the scale . 38

5.13 Generated interaction attribute values for a scale maximum of 100 . . 38

5.14 Error rate and PeMoCo score of the interaction attribute distribution
experiment considering only the scale independent of the attribute
distribution . 39

5.15 Error rate and PeMoCo score of the interaction attribute distribution
experiment considering only the attribute distribution independent of
the scale with the pair-wise sampling strategy 39

5.16 Error rate and identified interactions of the interaction number ex-
periment considering only the interaction numbers independent of the
order . 41

5.17 Error rate and identified interactions of the interaction number ex-
periment considering only the interaction order over all interaction
numbers up to 25 . 41

5.18 Error rate and identified interactions of the interaction number ex-
periment considering the interaction order and only an interaction
number of 25 . 42

5.19 Error rate and identified interactions of the interaction number ex-
periment considering the interaction number and only interactions of
order 1 with the pair-wise sampling strategy 43

5.20 Error rate and identified interactions of the interaction order distri-
bution experiment . 44

A.1 Error rate and PeMoCo score of the interaction importance experi-
ment with the feature-wise sampling strategy 55

A.2 Generated feature attribute values for a scale maximum of 10 56

A.3 Generated feature attribute values for a scale maximum of 1000 . . . 56

A.4 Generated feature attribute values for a scale maximum of 10000 . . . 56

A.5 Error rate and PeMoCo score of the feature attribute distribution
experiment considering only the scales independent of the attribute
distribution with the feature-wise sampling strategy 56

A.6 Error rate and PeMoCo score of the feature attribute distribution
experiment considering only the scales independent of the attribute
distribution with the pair-wise sampling strategy 57

A.7 Error rate and PeMoCo score of the interaction attribute distribution
experiment considering only the attribute distribution independent of
the scale with the feature-wise sampling strategy 57

A.8 Error rate and found interactions of the interaction number exper-
iment considering only the interaction numbers independent of the
order with the feature-wise sampling strategy 57

List of Figures xi

A.9 Error rate and found interactions of the interaction number exper-
iment considering only the interaction numbers independent of the
order with the pair-wise sampling strategy 58

A.10 Error rate and found interactions of the interaction number experi-
ment considering only the interaction order and all interaction num-
bers up to 25 with the feature-wise sampling strategy 58

A.11 Error rate and found interactions of the interaction number experi-
ment considering only the interaction order and all interaction num-
bers up to 25 with the pair-wise sampling strategy 58

A.12 Error rate and found interactions of the interaction number experi-
ment considering the interaction order and solely an interaction num-
ber of 25 with the feature-wise sampling strategy 59

A.13 Error rate and found interactions of the interaction number experi-
ment considering only the interaction order and solely an interaction
number of 25 with the pair-wise sampling strategy 59

A.14 Error rate and identified interactions of the interaction order distri-
bution experiment with the feature-wise sampling strategy 59

A.15 Error rate and identified interactions of the interaction order distri-
bution experiment with the pair-wise sampling strategy 60

xii List of Figures

List of Tables

3.1 Maximum number of interactions per order 18

3.2 Selected discrete order distributions of interactions 19

xiv List of Tables

List of Code Listings

4.1 Function getDistributionSample 22

xvi List of Code Listings

1. Introduction

As many modern software systems are configurable to a vast extent, end-users can
feel overwhelmed by the sheer amount of configuration options [XJF+15]. Those
options can not only have huge influences on the desired functionality, but also on
the non-functional properties of a software system such as runtime, main memory
consumption or binary size. Thus, many end-users opt to use a default configura-
tion or rarely change a single option. This leads to a severe waste of optimization
potential built into many software systems that remains unused as identifying the
optimal configuration for a certain functionality is difficult. An approach proposed
by Siegmund et al. [SGAK15] intents to solve this issue via a machine learning ap-
proach, that aims to identify options or interactions between options with the largest
influence on the performance. To this end, a performance-influence model is learned
which – if learned correctly – describes all influences on the performance of a soft-
ware system in a human readable manner. This approach is implemented in a tool
called SPL Conqueror. In previous work, this machine learning approach has been
found to be effective in finding those influences for real world systems of multiple
domains, written in multiple programming languages and for varying configuration
option types [SGAK15, GSKA16]. However, those evaluations were only capable of
examining that a specific software system is learnable, but not which properties of
the system influence this learnability.
According to our understanding, learnability is the capability to learn a performance-
influence model that correctly contains all influences on the performance. Knowing
influences on the learnability enables us to better assess why a performance-influence
model can be more easily learned as well as identify possible pitfalls that hinder
learning. Furthermore, this information might help to improve the proposed ma-
chine learning approach, especially if negative influences on learnability are present.
As there is a huge variance in software systems, finding systems with similar in-
fluences is infeasible and therefore exposing the effects of specific properties of a
software system is not unproblematic. To identify the effect of varying some prop-
erty of a software system on the learnability of a performance-influence model, real
world software systems are not suitable because we will hardly find another sys-
tem with only this characteristic varied. Additionally, the problem arises that the

2 1. Introduction

resulting performance-influence model can often not be confirmed to be correct as
this model is initially unknown for real world data which also complicates finding
influences on the learnability.
To solve this issue generated data is required. For this purpose we use an approach
proposed by Siegmund et al. [SSA17] that is implemented within the tool Thor. This
approach allows a realistic generation of input data for SPL Conqueror and enables
us to vary the data to our preference. The proposed approach attempts to combat
the issue of using unrealistically generated influences on configurations of a given
software system in the field of research. The main factors of influence on the gen-
erated data are the attribute distribution of the influences that can be distributed
according to real world systems, the number of interactions between configuration
options and the number of participating configuration options in those interactions.
Furthermore, the possible configuration options and possible configurations need to
be given.

1.1 Goal of this Thesis

Based on this generated data, it might be possible to identify unique influences on
the learning of performance-influence models and make statements about the gen-
eral learnability of a software system. Those identified influences might be beneficial
for more general assertions when learning a model is hard.
To be able to examine the learnability, there is the need to divide it into certain
aspects: therefore, two group of research questions are defined, each containing two
questions. Each group corresponds to a specific aspect of possible influences on the
learnability.
The first group of questions is concerned with the attribute values of influences on
a program configuration. For those values, two relations can be considered: First,
the relation between an influence value and the total performance value of a con-
figuration, ergo how important the influence on a configurations is. Secondly, the
relation between multiple influences, ergo how their values are distributed over a
certain value range, is examined.
This leads to the first set of research questions:

RQ 1.1: How does a change in the relative importance of configuration options
affect the learnability?
RQ 1.2: How does a change in the distribution of influences of configuration options
affect the learnability?

The second group of research questions focuses on changing the amount and type
of interactions among configuration options as well as how those interactions occur.
Here, we propose two further research questions: the first question focuses on the
amount and order of interaction influences, whereas the second one concentrates on
the distribution of those interactions over different orders. The order of an interac-
tion between influences denotes how many influences interact.
This leads us to the following set of research questions:

1.2. Structure of this Thesis 3

RQ 2.1: How does the number and order of interactions influence the learnability?
RQ 2.2: How does the distribution of interactions over varying order influence the
learnability?

To this end, an experiment design is proposed to examine those aspects of possible
influences. Therefore, this thesis will utilize the possibilities uniquely given by Thor
to evaluate the learnabilty of performance-influence models for certain possible in-
fluences. The results of the proposed experiment design will be used to answer the
research questions.

1.2 Structure of this Thesis

This thesis is structured as follows: First in Chapter 2, the required concepts and
tools are introduced. This includes the basic concepts of the tools needed for this
thesis, Thor and SPL Conqueror.
In Chapter 3, the setup of the conducted experiments is explained which includes
a description of all independent, dependent and control variables as well as some
problems that occurred while conducting the experiments and the influence on the
selected variables. According to the previously introduced research questions, the
experiments are structured in multiple experiment sets. Subsequently, the changes
to Thor to conduct the beforehand outlined experiments are presented in Chapter 4.
This includes new features as well as multiple corrections of software bugs. The re-
sults of the experiments are presented and used to answer the research questions in
Chapter 5. In Chapter 6, we discuss possible threats to the validity of our approach
and in Chapter 7, an outlook to future work is given. Finally, Chapter 8 concludes
this thesis.

4 1. Introduction

2. Background

In this chapter, we provide an overview of the essential basic concepts and required
tools. At first in Section 2.1, the process of feature modeling is outlined and an
explanation of features and interactions is presented. In Section 2.2 and Section 2.3,
an overview of both main programs necessary for this thesis, SPL Conqueror and
Thor respectively, and the underlying concepts is given.

2.1 Feature Modeling

In software product line engineering, feature modeling is an approach to model
variability of configurable software systems. All possible configurations of a software
system form its configuration space. The purpose is to be able to document all
possible elements of the configuration space in an elegant way [ABKS16].

2.1.1 Feature Models

A configuration option can also be denoted as a feature and describes a character-
istic of a software system visible to the end-user. The end-user either can, for a
binary feature, enable or disable this feature determining whether this characteristic
is active for the end-user. A valid combination of features form a configuration of
that software system [ABKS16].
A feature model is a representation of all possible valid feature combinations and
the relationships between those features. The set of all features of the feature model
is denoted with F . As the number of possible configurations rises exponentially
with the number of features and simply listing those configurations is not feasible,
the need for an efficient and elegant representation arises. This can, for example,
be achieved by representing the feature model as a tree structure where each node
represents a feature. This representation of a feature model is called a feature dia-
gram [ABKS16].
A simple example of a data base system with only the later explained optional fea-
tures can be seen in Figure 2.1.
As all features can not be freely combined, the following parent-child relations can

6 2. Background

Figure 2.1: Example of a feature diagram whereby the empty bullet denotes an
optional feature

be directly modelled in this tree structure. A feature can be optional or mandatory,
meaning that they either can be selected or must be selected if the corresponding
parent feature is selected. Furthermore, there are two types of groups: alternative-
groups and or-groups. In an alternative-group the selection of the parent feature
implies the selection of exactly one child feature. This group corresponds to the
logical XOR. The or-group corresponds to the logical OR and denotes that at least
one child needs to be selected if the corresponding parent feature is selected.
Apart from those parent-child relations, cross-tree constraints can exist among fea-
tures. Those constraints are independent of the tree structure and can be any
boolean expression that needs to be fulfilled for a configuration to be valid. Com-
monly used constraints are Require and exclude constraints where the selection of a
feature either implies or prevents the selection of another feature.
The set of all possible combinations of selected features under those constrains pro-
duces the configuration space C of a software system, whereby each element c ∈ C
is called a configuration of that software system. A configuration c ∈ C can be
modelled as a function c : F → [0, 1] that for a feature f ∈ F returns if the feature
is enabled in this configuration.
This approach serves for a better understanding and analysis of all configurations,
but is only capable of modelling functional aspects of configurable software systems.
To model other properties like performance or cost, there is the need for a feature
model that is extended to additional attributes.

2.1.2 Attributed Feature Models

An attributed feature model is an extension to feature models proposed by Bena-
vides et al. [BTRC05] that incorporates non-functional properties (NFP) into the
standard feature model. A NFP is either a continuous value or a discrete value and
is normally measured or specified and denotes a performance. This attribute value
represents the influence of that feature on the aggregated NFP value of a configura-
tion. This enables additional analyses of a configurable software system like finding
the configuration with the least main memory consumption, for example. Neverthe-
less, as the influence of a feature can differ per configuration where that feature is
present, attributed feature models are not enough to fully describe the influence of
a feature. This difference in influence comes due to the interaction of features.

2.1.3 Interactions

An interaction occurs among features and influences the NFP of those program con-
figurations where all participating features of that interaction are enabled [Sie12].
Interactions can exist in different orders, meaning that a different amount of features

2.2. SPL Conqueror 7

is involved. In this thesis, we will refer to an interaction of order n if n+1 features
participate; e.g. an interaction of order 1 means that two features interact with each
other.
As observed by Siegmund et al. [SKK+12], interactions in real world systems mainly
occur in order 1. Additionally, interactions of order 2 are more likely when a cor-
responding sub-interactions is present. We denote an interaction as sub-interaction
if its participating features are a subset to the higher order interaction. Further
observations by Apel et al. [AKS+13] indicate that most interactions are of lower
order but also that high order interactions occur.
Interactions can occur in a way that they are easily explained. For example in a
database software that has the two features encryption and compression (cf. Fig-
ure 2.1), the interaction between those features is easily explained: while each feature
negatively impacts the overall performance, selecting both at the same time leads to
a proportional better performance as the compressed data is smaller and therefore
faster to encrypt. Though, interactions can also occur unforeseen in a way that even
the developer can not predict. This may lead to an unexpected drop in program
performance.
As we want to consider all possible influences on a configuration, there is the need
for a technology to identify those interactions as well as the feature attributes. This
can be achieved, for example, with the tool SPL Conqueror.

2.2 SPL Conqueror

SPL Conqueror is a tool proposed by Siegmund et al. [SGAK15] to identify influ-
ences of features and interactions among them on continuous NFPs in a configurable
software system.
As the configuration space can grow exponentially with the number of features, a
complete measurement of all configurations and the precedent measurement of the
concerned NFP values is often unfeasable. SPL Conqueror solves this problem by
employing machine learning techniques on a subset of all possible configurations to
produce a performance-influence model that can be used to predict the NFP values
of all configurations.
A performance-influence model is essentially a function from the configuration space
to a continuous NFP value range: Π : C → R. This function can always be described
as the sum of the minimum base performance, the influences of the individual fea-
tures and the influences of all present interactions. This model is eminently suitable
as it represents all influences on configurations of a software system while having a
human readable form.
An example of a performance-influence model for the feature model shown in Fig-
ure 2.1 with the options statistics(S), encryption(E) and compression(C) can be
seen in the following Equation 2.1:

Π(c) = 100 + 5 · c(S) + 30 · c(E) + 20 · c(C)− 10 · c(E) · c(C) (2.1)

SPL Conqueror uses stepwise linear regression in combination with forward feature
selection [CS14] and therefore attempts to fit the performance-influence model in-
crementally. This incremental learning starts with a simple model that considers
the influence of no feature. A set of candidate models is generated, each of them

8 2. Background

considering another feature of the feature model. Each possible new model is then
learned via linear regression and the best model, with regards to the prediction er-
ror, is chosen as next candidate. In the next step, further candidate models are
generated similarly, again considering one feature of the feature model, but also in
combination with the influences existing in the model. This incremental step is re-
peated until a certain threshold, such as the mean error rate over all configurations
and the improvement compared to the previous round, are reached. However, no
backwards elimination is performed, which would remove unnecessary influences.
SPL Conqueror also implements multiple sampling strategies to enable learning on
a subset of the measurement data. Those sampling strategies limit the amount
of measurements needed and serve to find a balance between measurement effort
and prediction accuracy [SKK+12]. For our purposes, two of the available sampling
strategies are utilized: feature-wise and pair-wise sampling. Feature-wise sampling
avoids interactions and aims to incorporate a minimal configurations for every fea-
ture. Meaning that for every feature, a configurations with that feature enabled
and the least amount of other enabled features is selected. This required amount of
measurements is therefore linear to the number of features.
Pair-wise sampling aims at identifying interactions of order 1 as this order contains
the majority of interactions according to the in Section 2.1.3 mentioned observation.
Therefore, for every existing pair of features, the configuration is selected that con-
tains this pair of features and is otherwise minimal.
If an reasonably accurate performance-influence model is found it can be used to
help developers and end-users likewise. From an end-user point of view, the selection
of the desired feature combinations can be simplified. If a certain feature is desired
the performance-influence model can be used to find all useful as well as all less
suitable additional features.
From a developer perspective, as the model explicitly depicts interactions it is
straightforward to verify whether a program behaves as expected or if there are
any undesired interactions. Additionally, it can be used to gain deeper understand-
ing of the performance of the system as well as identify characteristics that do not
fit the expectations of the developer [KSK+18].

2.3 Thor

As current research still relies mostly on attributed feature models with artificial
NFP value distributions and mostly ignores interactions, there is the need to realis-
tically generate attributed feature models as well as interactions, where the attribute
values follow realistic distributions. Thor is a tool proposed by Leutheuss [Leu16]
that is able to create attributed feature models with interactions to a given feature
model. To this end, the following inputs have to be defined for Thor :

• Feature Model

• Number of Interactions

• Interaction Order Distribution

• Feature Attribute Distribution

• Feature Attribute Distribution Scale

• Interaction Attribute Distribution

2.4. Learnability of Non-Functional Properties 9

Figure 2.2: Overview of the process of generating attributed feature models [SSA17]

• Interaction Attribute Distribution Scale

The interaction order distribution are float values that represent a percentage of
interactions of a specific order. For example, the input 0.5 for order 1 and 0.5 for
order 3 means that 50% of the selected interaction number are in order 1 and 50%
in order 3. The attribute distributions are lists of float values where each value
represents a measured feature or interaction attribute value of a real world system.
Those distributions are therefore identified via the name of the software system and
the NFP that was measured.
Thor will fit these selected real world distributions to the given feature and interac-
tion numbers which is achieved via kernel density estimation. This is a nonparamet-
ric method to estimate the continuous probability measure of a finite dataset. The
implementation of Thor uses a Gaussian kernel. From the estimated probability
measure, multiple random samples are taken. The best fitting random sample is
then determined via the two-sample Kolmogorov-Smirnov test. This test compares
two finite samples and checks if those are taken from the same probability measure.
The interactions are created randomly, meaning that for an interaction of order 3
Thor will select 4 random features and check if those features can exist in a configu-
ration, as is specified by the feature model, as well as if this interaction has not been
selected. The resulting feature attribute values as well as the generated interactions
and there attribute values compose the output of Thor. An overview of this process
can be seen in Figure 2.2.
Thor has the additional functionality to generate a subset of all possible configura-
tions where the attribute values of this subset also are similarly distribute to a real
world measurement of configurations. This is a multi-objective optimization prob-
lem and Thor uses a genetic algorithm as a solution approach. This is mainly an
issue for feature models with a large configuration space and therefore not relevant
for our purpose and not further explained.

2.4 Learnability of Non-Functional Properties

The learnability of the NFP of a configurable software system can be defined as the
general quality of the learned performance-influence model. The quality of a learned
model has two aspects. First, the accuracy of the model to predict the performance

10 2. Background

of a configuration and second, the correctness of the model with regards to the
existing influences of the input software system.
The first aspect can be described as the mean error rate over all configurations where
the results of the model is compared to the actually input configuration value. The
second aspect is more complicated as there is the need to syntactically compare the
output model to the input influences. This can be done via the tool PeMoCo that
is explained in Section 2.5.
This is necessary as some influences might only have a small influence on total NFP
values of all configurations, thus not effecting the mean error rate. As we use the
tool Thor to generate those input influences, a syntactical comparison to the output
of SPL Conqueror to its input is possible.

2.5 PeMoCo

PeMoCo (Performance Model Comparer) is a tool proposed by Kaltenecker [Kal16]
that aims at syntactically comparing two performance-influence models. Originally,
it was intended to compare two performance models of two multigrid programs.
Specifically, the aim was to compare the analytical performance model created by a
domain expert to the empirical performance model created by SPL Conqueror.
It is utilized to validate if the output performance-influence model by SPL Con-
queror is similar to the via Thor defined influences without the need to rely on the
error rates of the calculated configuration values.
Generally, the similarity score is computed by assigning each term of the performance-
influence model a score. The score for a term is in the range [−2, 2] whereby the
total similarity score of a model is the sum of all terms of the model.
The score of a term, in a binary setting, can be calculated as follows:

score of a term =



−2 if the other model has no such term

1 + simV alue if the term exist in the other model with

a different value

2 if the term exist in the other model with

the same value

(2.2)
The simV alue is defined as max(0, 1− e) where e is the error rate of the two values

of the term. The error rate is defined as |x−y|
y

where x is the influence of the term
from the via Thor generated model and y is the identified model by SPL Conqueror.
The possible maximum and minimum score is influenced by the number of existing
terms in both models. Therefore, if the number of terms change, the scores are no
longer comparable. This implicates that only scores can be compared where the
input feature model as well as the number of interactions do not change.
As a result, the utility in some experiments that, for example, rely on changing the
number of interactions is reduced. However, it is still generally useful as it enables
us to check whether the relevant influences are identified.

3. Experimental Setup

In this chapter, we define the conducted experiments to answer our research ques-
tions. To this end, we first present all variables of the experiments – independent,
dependent and control.
To focus on the different aspects of the research questions, the experiments are
grouped into two sets, each corresponding to two related research questions. For
each of those two sets, multiple experiments are performed to examine the influence
of different aspects with regards to the related research question.
The first set of experiments addresses the importance of features and interactions
and their attribute distribution. With those experiments we aim at answering RQ
1.1 and RQ 1.2 as it concentrates on the attribute values of the input.
The second set detains the effects of rising number and different types of interactions
and is therefore intend to answer RQ 2.1 and RQ 2.2.
In general, as Thor relies on randomness to generate the attribute values and inter-
actions, every experiment was conducted 10 times to account for possible variance in
the results. In Section 3.1, we explain the dependent, control and independent vari-
ables of the experiments. Additionally, in Section 3.2 some of the problems that were
encountered and their influence on the constraints of the conducted experiments are
outlined. Finally, in Section 3.3 and Section 3.4, the two sets of experiments are
described.

3.1 Variables

In this section, we introduce all variables of the experiments. However, for the
independent variables introduced in Section 3.1.1, we use those to only to confine
the possible variables we want generally alter. In Section 3.3 and Section 3.4, those
variables are further defined as required for the specific experiments.

3.1.1 Dependent Variables

The term dependent variable denotes the outcome of an experiment. This outcome
is influenced by the independent variables (see Section 3.1.3) as it depends on those

12 3. Experimental Setup

variables, hence the term.
The output from SPL Conqueror is, as mentioned in Section 2.2, a learned performance-
influence model. As the purpose is to evaluate the learnability of a software system,
we limit our dependent variables to the in Section 2.4 defined quality measurements
gained from the performance-influence model.
The first dependent variable is the computed mean error rate of all configurations
of the input feature model. For a single configuration the error rate can be cal-
culated as seen in Equation 3.1. In this equation, generated is the performance
value of a configuration that is calculated by using the generated feature and inter-
action attribute values of Thor and predicted is the value that is computed from
the influences defined in the learned performance-influence model.

error =
|generated− predicted|

generated
(3.1)

The mean error rate allows us to easily compare different results of multiple exper-
iments and is generally applicable.
However, only using the mean error rates brings some drawbacks as it is not able to
capture the syntactical difference between the learned and the generated performance-
influence model, as explained in Section 2.4. To determine these syntactical differ-
ences between models the PeMoCo similarity score is used which represents the
second dependent variable.
These two variables can be effectively used to evaluate the learnability of a performance-
influence model as both, a semantical and a syntactical result for a learned data set
are obtained.

3.1.2 Control Variables

A control variable is one that is not altered throughout the course of the experi-
ment. For our scenario this is foremost SPL Conqueror as the tool used to learn
the generated data and thus, producing the dependent variables. This tool is so far
the only one, to our knowledge, capable to learn a performance-influence model on
program configurations that are easily human interpretable.
Further dependent variables are the parameters of the machine-learning technique
applied in SPL Conqueror as well as the parameters of the Thor evolutionary al-
gorithm. The variant generation settings of Thor, which includes the evolutionary
algorithm, are mostly irrelevant as explained in Section 2.3, hence those settings are
not changed.
In consideration of the SPL Conqueror settings, this thesis focuses on the input
data, not the learning settings as the focus is not to find the most suitable settings.
This being the case, we use predominantly fixed settings. Furthermore, we always
learned on the complete set of measurements, however, data was relearned with
the in Section 2.2 explained sampling techniques implemented in SPL Conqueror to
verify the results as well as to be able to better explain the results.

3.1.3 Independent Variables

In experiments, a variable whose influence on the dependent variables is examined,
is called an independent variable.

3.2. Challenges with Initial Experiments 13

Since we control the parameters of the machine learning technique used in SPL
Conqueror and limit our input for SPL Conqueror to data generated by Thor, its
inputs are the main independent variables.
Those inputs, and therefore our independent variables, were previously explained
in Section 2.3. Additionally, there is another characteristic of the generated data
that we want to consider: The offset of the root feature or the basic influence that
every configuration has independent of the selected features or interactions. This
offset can not directly be defined in Thor. Furthermore, the attribute distributions
present in Thor do not contain the relation between the root feature attribute value
and the feature attribute values. The root feature attribute value is instead equally
generated to all feature attribute values and therefore needs to be edited to the
desired value previous to learning.
Consequently, each element e of an experiment E can be described as a tuple e ∈ E
where
E = {FM× IN × IOD ×RO ×FD ×FDS × ID × IDS} where

• FM = {Selected Feature Models}
• IN = {Selected Interaction Numbers}
• IOD = {Selected Interaction Order Distribution}
• RO = {Selected Root Feature Offsets}
• FD = {Selected Feature Attribute Distribution}
• FDS = {Selected Feature Attribute Distribution Scale}
• ID = {Selected Interaction Attribute Distribution}
• IDS = {Selected Interaction Attribute Distribution Scale}

The specific selection of the elements in each of those sets define an experiment
series that can be conducted. The scale for feature and interaction is required as
the attribute distributions present in Thor were measured from different NFPs and
therefore the value ranges differ greatly. However, the scale is not necessary when
using random functions as attribute distribution because the value range can be
influenced by the selected random function itself. A scale s is defined as a tuple of
two integers: s ∈ {(n,m)|n,m ∈ N ∧ n < m}.
In the following sections we describe the conducted experiment series and the con-
straints under which these defined sets were selected. Beforehand, challenges with
early experiments are discussed to better understand some of the constraints that
were imposed and their influences on the final experiments.

3.2 Challenges with Initial Experiments

For the first experiment we more extensively relied on the included attribute distri-
butions as well as multiple feature models as we first wanted to detain the effects of
varying attribute distributions. The observed results were very random and erratic
and consequently, the decision to eliminate as many potential disruptive factors as
possible was made. This lead to conducting relative simple base-line experiments
where mostly only a single independent variable was manipulated.
One of the factors was the usage of a very simple and basic feature model. Ini-
tially, the feature models contained in the SPL Conqueror measurements datasets
were analysed. This dataset includes NFPs measurements and feature models of

14 3. Experimental Setup

46 software systems, but we restricted the number of considered models to those
containing a whole population measurement of all possible system configurations.
Based on this analysis, three feature models were selected with varying size in rela-
tion to the number of binary features. However, the two larger models were dropped
and only the smallest selected model of the software system BerkeleyC was used.
This is a very simple and basic feature model consisting of only 8 optional binary
features and no constraints among those features. This is a valid constraint for our
purpose because it merely limits the influence of the feature model which is of no
importance to this thesis.
Furthermore, we ascertain that SPL Conqueror has difficulties regarding configu-
rations with a NFP value of 0 or below. For all generally known NFPs, negative
configurations are not possible. For example, a negative program runtime is im-
possible. Therefore, this restriction to SPL Conqueror is reasonable. However, if
we want to utilize negative attribute values, preventing negative configurations is
not trivial. Thus, we mostly chose to avoid negative attribute values completely.
In Section 4.2 an adjustment to Thor is discussed that directly results from this
restriction. Besides, for the later needed realistic attribute distributions included in
Thor the random factor resulting of the limited sample size of some of the distribu-
tions has been partially eliminated. As the included attribute distributions consist
of a number of float values observed from realistic models, the challenge arises that
some included distributions consist only of a small number of float numbers. As the
sample size was as low as one or two elements in some occasion, we presume that
trying to fit a probability measure onto that sample size leads to varying results and
that this contributed to the observed random results. Thus, distributions with less
than 10 samples were excluded whereby this is a well-founded decision as it solely
concerns a small number of distributions.
Additionally, we detected that Thor is unable to generate an individual interaction
on its own, ergo, a minimum of two interactions is always generated if interactions
are enabled. These constrains lead to the experiment series we define next.

3.3 Attribute Values and Distributions

The experiment series we describe in this section serve the purpose to identify in-
fluences on the learnability of SPL Conqueror that can be attributed to different
feature and interaction attribute values as well as different attribute distributions.
Therefore, the independent variables that are focused on are root feature offsets,
attribute distributions and scales. The following experiment series is introduced to
answer RQ 1.1 as well as RQ 1.2 including two experiment series each.

3.3.1 Feature and Interaction Importance

As the influences on the attribute value of a configuration can be split into feature
influence and interaction influence, each of those influence is examined separately.
In these two resulting experiments we either change the influences of all features or
the influence of all interactions on the total attribute value of a configuration. Ergo,
vary the importance of features or interactions. These experiments are therefore
conducted to answer RQ 1.1.
Generally, the importance of a feature or an interaction can be defined as its relation

3.3. Attribute Values and Distributions 15

with the root feature. The root feature is chosen as it is enabled in all configurations
and consequently suited to denote the impact of an influence on the NFP value of
all configurations. For an influence of the root feature b and an influence value i, the
importance relation is defined as the ratio | i

b
| ∗ 100. Therefore, if the importance of

an influence rises, it will have more impact on the NFP value of the configurations
where it is enabled.
For our case however, we will consider this importance relation only for all features
or interactions collectively. This is done to simplify the required experiment design
as well as to allow for better analysis of the results. To this end, normal distributions
are used to generate all attribute values as the center of attention is exclusively the
value range of the attributes, but not the distribution of those attributes. The
importance relation can therefore be given as the relation not between a single
influence but between the mean of the selected normal distribution and the root
offset.
For both importance experiments, the value of the root feature offset will be set to
1000 as this allows for a reasonable amount of percentages to be utilized without
generating values that are close to zero. Furthermore, the value of the standard
deviation of the normal distribution is set to 10, to actually generate a range of
elements that is not to broad. Additionally, no scales are needed as the value range
is modified via the mean of the attribute distribution.

Experiment 1: Feature Importance

To consider relevant importance values, the selected percentages are mainly small.
Therefore, the selected percentage values are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50}.
Furthermore, no interactions were chosen to also eliminate this possible influence.
As the percentage values are very low, the possibility exists that negative values
are generated due to the selected standard deviation. However, this should only
occur for experiments where 1 % or possibly 2 % are chosen as importance value.
Additionally, we do not expect this to be a large influence. In general, this leads to
the following experiment series:

• FM = {BerkeleyC}
• IN = {∅}
• IOD = {∅}
• RO = {1000}
• FD = {N (µ, 10) | µ ∈ {r·x% | x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50}∧
r ∈ RO}}
• FDS = {∅}
• ID = {∅}
• IDS = {∅}

Experiment 2: Interaction Importance

Again, only considering interesting importance percentages, the selected percentage
values are {1, 5, 10, 15, 25, 50, 75, 100, 150, 200, 250, 500, 1000}. For this
experiment we select two interactions that are both of order 1. This is sufficient as
only the influence of interactions is the center of attention whereas the influence of
multiple interactions as well as order is a concern in the experiments in Section 3.4.

16 3. Experimental Setup

Additionally, possible influences that arise due to too many interactions are avoided.
Again for the 1% importance value, negative interactions are possible. This leads to
the following sets defining this experiment series:

• FM = {BerkeleyC}
• IN = {1

4
· n | n = no. Features}

• IOD = {Order 1}
• RO = {1000}
• FD = {N (r, 10) | r ∈ RO}
• FDS = {∅}
• ID = {N (µ, 10) | µ ∈ {r · x% | x ∈ {1, 5, 10, 15, 25, 50, 75, 100, 150,

200, 250, 500, 1000} ∧ r ∈ RO}}
• IDS = {∅}

3.3.2 Feature and Interaction Distributions

To answer RQ 1.2, we perform two experiment series with the focus on either fea-
tures or interactions.
For these experiments, the main focus are the attribute distributions included in
Thor. As mentioned in Section 3.2, there is a restriction which distributions are
actually used.
As the distributions are taken from multiple real world NFPs, there is a huge differ-
ence in value range between these distributions. Therefore, the distributions need
to be scaled to be able to compare them and to solely consider the influence of the
attribute distributions without an influence of the value range. The scale minimum
is set to 1 to avoid generating values that are very low. In some of the included
distributions, there exist an accumulation of minimal values and this accumulation
then occurs at the scale minimum. Originally, the minimum was planed at 0, but
this leads to very low values with little influence and therefore no relevance. The
scale maximum is varied for both experiments as the value range between scale max-
imum and scale minimum could also influence the results. To this end, the selected
values for the scale maximum are {10, 50, 100, 500, 1000, 5000, 10000}. Increasing
the scale maximum leads to an increase of the generated attribute values. If the
root feature remains constant, this consequently increases the relative importance
of all features. As this is another influence that we want to avoid, the root feature
must also be varied. Therefore, the root feature offset is always set to the maximum
of the selected scale to further limit the influence of varying attribute importance.
Thus, the relative importance remains the same for both feature and interaction
attribute values even if the scaling changes.

Experiment 1: Feature Attribute Distribution

Regarding the experiments with focus on the attribute distributions of features, in-
teractions were ignored as only the influence of changing the distributions is relevant.
These requirements lead to the following total experiment series:

• FM = {BerkeleyC}
• IN = {∅}

3.4. Interaction Number and Order Distribution 17

• IOD = {∅}
• RO = {m}
• FD = {x ∈ {Feature Attribute Distributions of Thor} | |x| ≥ 10}
• FDS = {(n,m)|n = 1 ∧m ∈ {10, 50, 100, 500, 1000, 5000, 10000}}
• ID = {∅}
• IDS = {∅}

Experiment 2: Interaction Attribute Distribution

Considering the experiments varying the interaction attribute distribution, the num-
ber of interaction was set to 8. This is done not only to have a number of interactions
that can actually be differently distributed but also to match the number of features
in our selected feature model.
In this experiment, we do not vary the order of the interactions but only set it order
1 as those interactions are more realistic as mentioned in Section 2.1.3. Furthermore,
the effect of varying the order of interactions is examined with the experiments in
Section 3.4. Apart from setting the root feature offset to the current scale maximum,
the feature attribute distribution is also set to N (m, 1) for the currently selected
scale (n,m) as the importance of a feature should remain equal for the course of the
experiment and therefore does not effect the results.

• FM = {BerkeleyC}
• IN = {n |n = no. Features}
• IOD = {Order 1}
• RO = {m}
• FD = {N (m, 1)}
• FDS = {∅}
• ID = {x ∈ {Interaction Attribute Distributions of Thor} | |x| ≥ 10}
• IDS = {(n,m)|n = 1 ∧m ∈ {10, 50, 100, 500, 1000, 5000, 10000}}

3.4 Interaction Number and Order Distribution

To answer RQ 2.1 and RQ 2.2, we consider the influence of the number of in-
teractions, the order of interactions and order distribution of interactions on the
learnability. To this end, we define two experiment series with this focus: the first
for varying interaction number and order with regards to RQ 2.1 and the second
according to RQ 2.2 regarding varying order distributions of interactions.

3.4.1 Number of Interactions

The first experiment series focuses on the number of interactions. Thereto, the max-
imum number of possible interactions of a specific order has to be known which is
given by the feature model as well as the specific order of the interactions. Generally,
the maximum number of interactions for a single order n is every combination of
n+ 1 features from the feature model under the restriction that this feature combi-
nation exists in a valid configuration. This is not a concern as the used BerkeleyC
feature model consist solely of optional features and thus, every combination of n
features exists in a valid configuration. Therefore, in our case the maximum num-
ber of interactions for the order n is the binomial coefficient

(
8

n+1

)
. All maximum

18 3. Experimental Setup

Order 1 2 3 4 5 6 7

Maximum number of interactions 28 56 70 56 28 8 1

Table 3.1: Maximum number of interactions per order

interaction numbers can be seen in Table 3.1.

As mentioned in Section 3.2, Thor can not handle generating only a single interaction
and therefore the sole interaction of order 7 is ignored. Apart from that, we wanted
to include a high number of interactions as well as all other orders. Thus, the order
of an experiment defines the possible maximum number of interactions. This leads
us to the selected interaction numbers. We wanted to have a reasonable range of
numbers with a reasonable extent. This leads to the following set of interaction
numbers: {2, 3, 4, 5, 7, 10, 15, 20, 25, 35, 50}.
We refrained from using the highest possible number, 70, to be able to compare the
highest selected number over multiple orders.
Consequently, the following experiments series is specified:

• FM = {BerkeleyC}
• IN = {n |n ∈ {2, 3, 4, 5, 7, 10, 15, 20, 25, 35, 50} ∧ n < max no. of interactions

in current order}
• IOD = {Order 1, Order 2, Order 3,Order 4, Order 5, Order 6}
• RO = {∅}
• FD = {N (25, 10)}
• FDS = {∅}
• ID = {N (100, 10)}
• IDS = {∅}

3.4.2 Interaction Order Distribution

Finally, the experiment series which focuses on the distribution of interactions over
different orders are defined to answer RQ 2.2. In this experiment, we do not change
the number of interactions but only the distribution of those interactions among
varying order as we want to compare the different distributions.
We also aim at considering a large number of interactions to be able to effectively
distribute interactions onto different orders. As seen in Table 3.1, 28 interactions
is the highest value that a majority of orders can support. Therefore, only orders
up to the maximum of 5 are present while orders 6 and 7 can not have that many
interactions, hence will be ignored. For reasons of simplification, a number of 25
interactions was chosen as it was easy to effectively distribute uniform over 5 different
orders.
To define a distribution of interactions among orders, we can give the concrete
numbers of interactions per order. This is done as both number of interactions as well
as the orders are fixed and finite. To avoid further factors, only simple distributions
are incorporated. Additionally, distributions were not exclusively selected according
to real world interaction order distributions.
The uniform distribution of the interactions over all orders was selected as a base line

3.4. Interaction Number and Order Distribution 19

result. Additionally, a more realistic interaction order distribution where the number
of interactions is descending as the order is increasing is included. To introduce
the opposite distribution, its inverse is included whereby an ascending number of
interactions is distributed to higher order. Eventually, the interactions are normal
distributed over the orders to also include a distribution where the maximum number
of interactions is not present in order 1 or 5. Once more an inverse of this distribution
is included, with a distribution where the number of interactions is descending from
order 1 to order 3 and afterwards is ascending up to order 5. This forms a kind of
inverse normal distribution. This leads to the following distributions and concrete
interaction numbers seen in Table 3.2.

Eventually, to eliminate additional factors, the attribute distributions for both

Distribution Order 1 Order 2 Order 3 Order 4 Order 5

Uniform 5 5 5 5 5
Descending 9 7 5 3 1
Ascending 1 3 5 7 9

Normal 3 5 9 5 3
Inverse Normal 8 4 1 4 8

Table 3.2: Selected discrete order distributions of interactions

features and interactions are set to a normal distribution with a standard deviation
of 10. According to the previous defined experiments with regards to the interaction
number, the mean of the attribute distributions of interactions is set to 100. Again,
this is done as SPL Conqueror should be able to detect the interactions and therefore
the observed results are due to the different distributions, not due to the undiscovered
interactions. This also makes the results comparable to those of the interaction
number experiments considering only a number of 25 interactions and can therefore
also see the effect of 25 interactions in one order. Overall, this leads us to the
following experiment series:

• FM = {BerkeleyC}
• IN = {25}
• IOD = {Uniform, Ascending, Descending, Normal, Invers-Normal}
• RO = {∅}
• FD = {N (25, 10)}
• FDS = {∅}
• ID = {N (100, 10)}
• IDS = {∅}

20 3. Experimental Setup

4. Implementation

In this chapter, we describe the changes and novel features that were implemented
in Thor to enable conducting the previously outlined experiments as well as the
auxiliary.
In general, Thor as well as SPL Conqueror were executed on a computer with an
Intel Core i5-4590 @ 3.30 GHz with 4 CPU cores and 16 GB RAM. To this end,
the generation of the required input for Thor as well as the execution of Thor was
automated by Python scripts. This allowed us to start generating an experiment
series as a total and afterwards simply starting SPL Conqueror with each single
dataset. All scripts written for this purpose are available on GitHub1.
Apart from the Python scripts, multiple additions and corrections of software bugs
were required for Thor to enable the experiments and to minimize the number of
random factors.
In Section 4.1, the changes necessary to enable the usage of random functions and in
Section 4.2 the changes to enable scaling the attribute distributions are explained.
Any further additions and corrections are illustrated in Section 4.3 before in Sec-
tion 4.4 some challenges in working with Thor are outlined.

4.1 Random Functions

As mentioned in Section 3.2, there is the need to eliminate as many factors as pos-
sible and therefore, random functions were used as attribute distributions. Thor
implements two random functions: uniform distribution or normal distribution re-
spectively. Despite this, the implementation in Thor was unsuitable for our purpose
because the results were too random as Thor only took a single random sample from
the selected random function.
We implemented an additional function (see Listing 4.1) that takes multiple samples
from the selected random function and returns the best fitting sample. The best
fitting sample is determined using the one sample Kolmogorov-Smirnov test. This
test compares a sample to a probability measure and estimates if this sample was

1https://github.com/JakobHoffmann/GenerateSPLConquerorExperiments

22 4. Implementation

drawn from that random distribution. We applied this methodology based on the
pre-existing implementation in Thor to scale the selected attribute distributions to
the given problem sizes, e.g. the number of features. Thor estimates the probability
measure of the selected attribute distribution via kernel density estimation and then
takes multiple random samples of the given problem size. This sample is compared
to the original measurement data and the best fitting one is selected. To this end,
Thor uses a two sample Kolmogorov-Smirnov test. As we do not have to estimate
a probability measure but have it given as our input, we can resort to using the one
sample Kolmogorov-Smirnov test.
Our implementation can be easily used for more random functions than the two
currently accessible in Thor. This is also utilized as we added the possibility to
select an exponential random function.

1 private double [] getDistributionSample(int amount , int rounds ,

2 UnivariateContinuousDistribution dist)

3 {

4 double [] values = new double[amount];

5 double PValue = 0.0;

6 for (int i = 0; i < rounds; i++)

7 {

8 double [] temp_values = dist.Generate(amount);

9 KolmogorovSmirnovTest test =

10 new KolmogorovSmirnovTest(temp_values , dist);

11 if (PValue < test.PValue)

12 {

13 values = temp_values;

14 PValue = test.PValue;

15 }

16 }

17 return values;

18 }

Listing 4.1: Function getDistributionSample

4.2 Scaling Attribute Distributions

To utilize the included realistic attribute distributions included in Thor, we need to
scale those to a common value range as explained in Section 3.3.2. Thor has already
such scaling method, but it is implemented in such a manner that the minimum and
maximum value of all attribute values would always be selected. In case of scaling
the attribute values between 0 and 10, a feature with the attribute value 0 and one
with 10 would always exist. This should be avoided as it defeats the purpose of
generating realistic data. This scaling method is applied after the generation of the
attribute values.
Originally, we thought that applying this exact scaling to the input distribution val-
ues would solve this problem as only the input would contain the fixed values while
the generated data differs. However, Thor uses kernel density estimation to fit a
probability measure to the input distribution and samples from this measure. Thus,
negative attribute values and therefore negative configurations are not avoided even
if the original input contains no negative values. This can be clearly observed in
Figure 4.1 where the histogram and estimated probability measure of the in Thor

4.2. Scaling Attribute Distributions 23

Figure 4.1: Density plot of the estimated probability measure for the BDB Binary-
Size sample

contained BDB BinarySize interaction attribute sample is shown. For our purpose,
negative attribute values need to be prevented as negative configurations need to be
avoided (cf. Section 3.2) and implementing a feasible verification if all configurations
are positive, is not within the scope of this thesis.
Generally, negative attribute values are explicitly desirable in Thor as they occur
in real world models and consequently there was no function implemented to avoid
those. Additionally, as Thor assigns the generated attribute values at random, there
is no mechanism in place to avoid negative configurations.
As mentioned in Section 3.2, SPL Conqueror is unable to manage those negative con-
figurations which is according to real world expectations. Continuous NFPs values
are always consumption of resources and therefore, the total value of a configuration
is positive. For example, a configuration with negative main memory usage implies
that executing the program with that configuration increases the main memory of
the system.
Increasing the minimum of the scale is no problem-solving approach as increasing the
maximum of the scale is also desired. This is due to the effect that if the maximum
of the scale is increased enough to reach the previous ratio between minimum and
maximum, the random sample from the estimated probability measure will again
contain negative attribute values.

The solution approach is to edit the method how Thor takes a random sample
from the estimated probability measure. As the distributions are scaled beforehand,
we expected to only have some negative attribute values. Therefore, we doubled the
sample size and removed all values outside the bounds given by the selected scale.
Ensuing, if the remaining values are bigger than the needed sample size, values are
chosen randomly until the needed sample size is reached. This change takes effect
before the Kolmogorov-Smirnov goodness of fit test is applied, meaning that this
procedure is executed multiple times and solely the final best candidate is chosen.
This is the reason why this approach does not distort the result as we do only avoid
out of bound values, but do not prohibit the original procedure to work as intended.
This implemented functionality enables us to scale the attribute values over different
ranges and still avoiding unrealistic given values. Apart from the explained func-

24 4. Implementation

tionality additions to Thor, further improvements and additions are explained in the
following subsection.

4.3 Improvements to Thor

Some software bugs as well as the need of additional enhancements were identified
while using Thor.
Regarding the command-line, Thor was not terminating after completing the data
generation. As the data is written by another thread, this was done intentionally
to ensure that this thread is not aborted prematurely. We solved this issue as it
was essential to automate our data generation as a huge number of experiments is
generated.
The command-line in Thor would not allow selecting random functions. Therefore,
commands are added for the existing random functions as well as the newly added
exponential random function. However, this functionality is enabled for the existing
random functions in the Thor graphical user interface (GUI).
Additionally, the commands for scaling the attribute distributions were not imple-
mented in the command-line. This functionality is again enabled in the GUI and
commands to access it from the command line were added. This is done indepen-
dently of the modification to the scaling in Thor mentioned in Section 4.2.
As all of those commands were already implemented in the GUI of Thor this leads
to the conclusion that the implementation was probably planned, but subordinated
to other features.
Furthermore, two software bugs while generating interactions in Thor that also
needed to be corrected were identified. The method for checking whether an inter-
action already exist was responsible for the first error as it would falsely identify an
interaction as existing if a sub-interaction of that interaction exists.
Additionally, the method iterating through all orders and creating the required in-
teractions was flawed. For every increase of order, an interaction was created, i.e.
the validation if an interaction in the current order was required was only done after
creating the first interaction. The integration of a loop that increases the interaction
order until an interaction actually needs to be created, solved this issue.
A smaller software bug occurring while loading an attribute distribution due to not
parsing the input correctly, was also rectified. We also added another command to
pass a random seed that enables reproducibility.
Regarding the documentation, a pull request was made for every additional imple-
mentation was made as well as a issue for each found error was opened in the Thor
GitHub repository2.

4.4 Challenges with Thor

As previously mentioned in Section 4.3, we identified and rectified some software
bugs in Thor. Besides, some additional challenges have arisen while using Thor, as
the for our purposes indispensable command line was probably just an afterthought.
Therefore, the following errors are specific to the command line and may not be

2https://github.com/se-passau/thor-avm

4.4. Challenges with Thor 25

present while using the GUI. Furthermore, no attempt was made to exactly identify
and or solve these errors as it was out of the scope for this thesis.
Due to missing input checks in Thor, some errors can be attributed to false input.
Additionally, some crashes were not due to input errors but rather to additional
software bugs. For example, Thor can not generate a sole interaction which should
typically be possible, but it simply seems to be some counting error in a loop.
Furthermore, Thor also crashes if there is no attribute distribution given to Thor
for either interactions or variants, even with those functions are set to false. It seems
that the flag for both variant and interaction calculation has no effect whereas in
the GUI disabling this functionality via those flags is possible.
Overall, the combination of software bugs, missing defensive programming and false
input made identifying those bugs very time consuming and tedious. In hindsight,
we only needed a small subset of the functionality of Thor, reimplementing those
functions could have been a viable option. As a direct consequence, the presence
of these errors and pitfalls lead to a reduction of the feasible experiments, as the
working time on this thesis is limited.

26 4. Implementation

5. Evaluation

In this chapter, the results of the conducted experiments are presented and the con-
clusions to the research questions are discussed.
In general, as mentioned in Section 3.1.2, we also repeated all experiments with the
feature-wise and pair-wise sampling strategy. Those results are also discussed, how-
ever, we do not evaluate them to the full extent, but use them to verify our results.
To visualize the resulting data, we resorted to using box-plots as those are most
suitable for the requirement of depicting a certain value range for a specific result.
Violin-plots could have also be used as they generally can give more information
about the specific distribution of the data. However, for the following experiments,
this was never the case as most of the results had not enough data and we further
saw no benefit but rather a reduced visibility of the results.

5.1 Effects of Attribute Values and Distribution

First, according to the separation of the experiments with regards to RQ 1.1 and
RQ 1.2, the results for the importance and the value distribution experiments are
presented.

5.1.1 Feature and Interaction Importance

According to RQ 1.1, we use the following two experiments to identify influences on
the learnability that result from varying importance of the influences. The following
figures show two plots, the error rate in percent on the y-axis of the left side plot
and the PeMoCo score on the y-axis of the right side plot. The x-axis displays the
in Section 3.3.1 defined importance percentage of the considered influence and is the
same for both plots. The shown data points are the results from the 10 repetitions
for each importance value and are depicted as a box plot.

Experiment 1: Feature Importance

In Figure 5.1, it can be observed that for feature importance values higher than
25 %, the error rate as well as the PeMoCo score indicates a perfect result as the

28 5. Evaluation

1 5 10 15 25 50 75 100 150 200 250 5001000
Feature Importance in Percent

0

1

2

3

4

5

6

Er
ro

r i
n

Pe
rc

en
t

1 5 10 15 25 50 75 100 150 200 250 5001000
Feature Importance in Percent

5

0

5

10

15

Pe
M

oC
o

Sc
or

e

Figure 5.1: Error rate and PeMoCo score of the feature importance experiment
showing higher percentages

1 2 3 4 5 6 7 8 9 10 15 25 50
Feature Importance in Percent

0

1

2

3

4

Er
ro

r i
n

Pe
rc

en
t

1 2 3 4 5 6 7 8 9 10 15 25 50
Feature Importance in Percent

5

0

5

10

15

Pe
M

oC
o

Sc
or

e

Figure 5.2: Error rate and PeMoCo score of the feature importance experiment

5.1. Effects of Attribute Values and Distribution 29

error is minimal and the PeMoCo score is maximal. Therefore, lower importance
values were selected for the experiment with regards to feature importance, seen in
Figure 5.2, where those perfect results only occur for the 25 % and 50 % importance.
For lower importance percentages, seen in Figure 5.2, there are a few experiments
with a higher error rate. Additionally, for the lowest numbers of importance percent-
ages from 1 % to 4 %, the error rate does no longer have a large standard deviation
and is always around 1 %. For those results, SPL Conqueror is no longer able to
identify all influences whereas for all higher results, a perfect model is most of the
times identified.
Considering the PeMoCo score, a clear decrease is observed for those low importance
percentages. However, this does not lead to an increase in error rate for those low
importance numbers. It is also notable that the results for the importance values
4 %, 7 %, 9 %, 10 % and 15 % show that the observed error is always due to a single
unidentified feature as the score indicates. Furthermore, if an error is present, it
increases with increasing importance which is according to the definition of impor-
tance in our context. The importance denotes a higher influence on the NFP of a
configuration and thus, the error rate. The lower importance can also explain the
absent rise in error rate for the lower importance percentages, that can be expected
due to the lower PeMoCo score. However, as the influence of those unidentified
features is negligible, the increase in unidentified features is compensated. Thus,
the error remains approximately the same.
This leads to the conclusion, that as the features are less important, the probabil-
ity to identify those decreases. This explains the erratic results for the importance
values from 4 % to 15 % where only single results have a higher error rate and most
models are perfectly identified. Those can be attributed to random factor of the
data generation, however, we see an overall trend. There is a point in importance,
around 15 %, where the probability that an feature is not identified is no longer very
small, and this probability increases while the importance decreases. Furthermore,
regarding the importance percentage of 1 %, the PeMoCo score indicates that only a
remaining small number of features is identified. Decreasing the importance further
should lead to a further decrease in PeMoCo score. Once the minimum PeMoCo
score is reached, the error rate should also decrease as the influence of the options
become less relevant.
Finally, a skewed peak in error rate can be observed for the low importance numbers
smaller than 15 % as the number of found influences decreases. Once the importance
is so small that no influences are found, the error will drop again as the importance
decreases further.

Varying the sampling does show the same observed results. However, there are
two interesting characteristics: for the feature-wise sampling seen in Figure 5.3 and
pair-wise sampling seen in Figure 5.4, the possible error rate is higher. Additional
analysis of the data showed that the improvement per round reached the required
minimum and this improvement is measured on the sampled data. Regarding the
feature-wise sampling as well as for the pair-wise sampling, the training set gets re-
duced in a way that distorts the amount of occurrences of influences. Meaning, that
in the training set an influence will effect a smaller number of configurations than
before. As the configurations space of the BerkeleyC feature model is the power set
of the set of features, a single feature is present in half of the configurations. Thus,

30 5. Evaluation

1 2 3 4 5 6 7 8 9 10 15 25 50
Feature Importance in Percent

0

5

10

15

20

25

Er
ro

r i
n

Pe
rc

en
t

1 2 3 4 5 6 7 8 9 10 15 25 50
Feature Importance in Percent

5

0

5

10

15

Pe
M

oC
o

Sc
or

e

Figure 5.3: Error rate and PeMoCo score of the feature importance experiment with
the feature-wise sampling strategy

1 2 3 4 5 6 7 8 9 10 15 25 50
Feature Importance in Percent

0

2

4

6

8

10

12

Er
ro

r i
n

Pe
rc

en
t

1 2 3 4 5 6 7 8 9 10 15 25 50
Feature Importance in Percent

5

0

5

10

15

Pe
M

oC
o

Sc
or

e

Figure 5.4: Error rate and PeMoCo score of the feature importance experiment with
the pair-wise sampling strategy

5.1. Effects of Attribute Values and Distribution 31

a single feature is present in 50 % of all configurations whereas for the feature-wise
sampling as for every feature a minimal configurations is selected, it is only present
in 12.5 % of all configurations. This leads to the higher error rate as the error rate is
only optimized to this reduced training set and the effect of an unidentified feature
is higher while regarding the error rate on all configurations. We expect this effect
to be also present for pair-wise sampling as the maximum error rate is also higher
compared to the experiment while using the complete data for learning.
The second characteristic can again be observed for the pair-wise sampling (cf. Fig-
ure 5.4) as well as for the feature-wise sampling (cf. Figure 5.3). In contrast to the
experiment regarding the feature importance, the PeMoCo score does not increase
for lower importance values. On the contrary, the lowest PeMoCo scores can be
observed for the highest importance values with an error rate different than zero.
Again, analysis of the learned performance-influence models showed that the number
of present features in a model remains approximately the same for higher importance
values, however, the values of the identified features are incorrect. For the feature-
wise sampling as SPL Conqueror only learns on configurations where only a single
feature is enabled and as all features have a similar attribute value, it is sufficient for
the error rate to just assume a higher root feature value. This problem arises as the
via the feature-wise sampling reduced training set is not representative of the whole
configuration space. For example, considering the 10 % importance value and while
only testing on configurations with only a single feature enabled, the error rate is
low if SPL Conqueror just learns a root feature value of 1100. Therefore, the re-
maining identified features all have a value around the standard deviation of 10. For
an importance value of 1 %, the root feature value is approximated to 1010 whereas
the identified features have the same attribute value around the standard deviation
of 10. As the influence of the features are therefore more correct, resulting in the
observed increase of the PeMoCo score for lower importance values. We expect this
observation to also hold for pair-wise sampling in a similar manner.

Experiment 2: Interaction Importance

Regarding the experiments where we change the importance of the interactions, seen
in Figure 5.5, the same skewed peak already observed for the feature importance
experiment exists. As this experiment was conducted with only 2 interactions, the
PeMoCo scores, apart from the experiment where the importance is set to 200 %,
are always around three values. A PeMoCo score of approximately 14 represents
no identified interaction whereas the scores 18 and 22 represent 1 and 2 identified
interactions respectively. This aggregation also implies that the features are always
identified. The result for a 200 % importance value, has the curiosity that there is
always an interaction identified with a very small value between e−12 and e−13. This
has no influence on the error rate, however, it reduces the PeMoCo score. We were
not able to explain this characteristic, but it is not relevant for the general tendency
and can therefore be ignored.
Compared to the feature importance results, the importance percentage needed that
SPL Conqueror identifies an interaction is much higher. For an importance percent-
age of 250 or higher, all interactions are found, resulting in a perfect model. The
highest error rate is again reached for the highest importance where no longer all
interactions are found. The number of found interactions drops from 25 to 15 % and

32 5. Evaluation

1 5 10 15 25 50 75 100 150 200 250 5001000
Interaction Importance in Percent

0

2

4

6

8

10
Er

ro
r i

n
Pe

rc
en

t

1 5 10 15 25 50 75 100 150 200 250 5001000
Interaction Importance in Percent

14

16

18

20

22

Pe
M

oC
o

Sc
or

e

Figure 5.5: Error rate and PeMoCo score of the interaction importance experiment

is not reflected in the error rate as their influence is small. The continuous drop in
error rate, which we predicted for the feature importance experiment, can be also
observed for this experiment.

The results for the feature-wise sampling technique is ignored as no interactions are
found and the resulting plot can be found in the Appendix. Considering the results
with pair-wise sampling, seen in Figure 5.6, a larger variance can be observed.
The results for importance values higher than 100 % can probably be attributed to
unidentified feature influences as the PeMoCo score indicates. The observation for
unidentified interactions, illustrated in Figure 5.5, is also present, but for much lower
importance values. For an importance value of 10 % and below, the PeMoCo score
drops and the error increases slightly. This indicates that the importance value for
the pair-wise sampling needs to be much lower for an interaction to be no longer
identified. The high error rate for the importance values above 100 %, however, is
not explained as the previous observations are still present and this seems to be due
to the pair-wise sampling.

5.1. Effects of Attribute Values and Distribution 33

1 5 10 15 25 50 75 100 150 200 250 5001000
Interaction Importance in Percent

0

10

20

30

40

50
Er

ro
r i

n
Pe

rc
en

t

1 5 10 15 25 50 75 100 150 200 250 5001000
Interaction Importance in Percent

15

10

5

0

5

10

15

20

Pe
M

oC
o

Sc
or

e

Figure 5.6: Error rate and PeMoCo score of the interaction importance experiment
with the pair-wise sampling strategy

5.1.2 Feature and Interaction Distribution

With the following two experiments, we want to identify influences on the learnabil-
ity that result from varying attribute distribution of the influences. This corresponds
to RQ 1.2. Furthermore, the distributions were scaled to varying maximums.
The following figures show two plots each, with the error rate and PeMoCo score be-
ing the respective x-axis whereas the varying attribute distributions or the selected
scale maximum can be seen on the y-axis. If not further specified, while consider-
ing the attribute distributions, the shown data points are the results from the 10
repetitions for each scale and vice versa. For each of the two experiments, there is
an additional figure that consist only of one plot and shows the generated attribute
values on y-axis whereas the x-axis shows the attribute distributions.

Experiment 1: Feature Attribute Distribution

Apart from the outliers, the feature attribute distribution results are overall very
similar and the error rate is mostly below 1 % (cf. Figure 5.7). However, it can
be seen in the PeMoCo result that the increasing error mostly corresponds to an
decreasing PeMoCo score. Therefore, the error can be attributed to influences that
were not identified.
To evaluate these results, we additionally need to consider the generated values. In
Figure 5.8 those values for the maximum scale of 100 are illustrated whereby it must
be noted that the relation between those values does not change significantly for dif-
ferent scales. The plots for the other scales can be found in the Appendix. This plot
demonstrates that the results with highest error rate have a similar generated value
distribution whereby most values are near the scale minimum, especially the SNW
BinarySize and Violet BinarySize attribute distributions, with only a few outliers
(cf. Figure 5.8). This indicates, that those values have a lower relative importance
compared to the root feature value as it always is the scale maximum. Additionally,

34 5. Evaluation

SQ
Lit

e
Bi

na
ry

Si
ze

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
x2

64
 M

ai
nM

em
or

y
SQ

Lit
e

M
ai

nM
em

or
y

Em
ai

l P
er

fo
rm

an
ce

Lin
ke

dL
ist

 B
in

ar
yS

ize
Cu

rl
M

ai
nM

em
or

y
x2

64
 P

er
fo

rm
an

ce
LL

VM
 M

ai
nM

em
or

y
BD

B
M

ai
nM

em
or

y
BD

BC
 P

er
fo

rm
an

ce
LL

VM
 P

er
fo

rm
an

ce
BD

BJ
 P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Feature Attribute Distribution

0

1

2

3

4

5
Er

ro
r i

n
Pe

rc
en

t

SQ
Lit

e
Bi

na
ry

Si
ze

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
x2

64
 M

ai
nM

em
or

y
SQ

Lit
e

M
ai

nM
em

or
y

Em
ai

l P
er

fo
rm

an
ce

Lin
ke

dL
ist

 B
in

ar
yS

ize
Cu

rl
M

ai
nM

em
or

y
x2

64
 P

er
fo

rm
an

ce
LL

VM
 M

ai
nM

em
or

y
BD

B
M

ai
nM

em
or

y
BD

BC
 P

er
fo

rm
an

ce
LL

VM
 P

er
fo

rm
an

ce
BD

BJ
 P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Feature Attribute Distribution

5

0

5

10

15

Pe
M

oC
o

Sc
or

e

Figure 5.7: Error rate and PeMoCo score of the feature attribute distribution ex-
periment considering only the attribute distributions independent of the scale

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
x2

64
 M

ai
nM

em
or

y
Lin

ke
dL

ist
 B

in
ar

yS
ize

Em
ai

l P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

SQ
Lit

e
M

ai
nM

em
or

y
Cu

rl
M

ai
nM

em
or

y
LL

VM
 M

ai
nM

em
or

y
BD

B
M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Attribute Distribution

0

20

40

60

80

100

Ge
ne

ra
te

d
At

tri
bu

te
 V

al
ue

s

Figure 5.8: Generated feature attribute values for a scale maximum of 100

for the results with the smallest error rate, there is also a similarity in the gener-
ated values as those also have a higher accumulation of values. However, with the
difference that those values are located at the center of the scale or above. This
observation suggests that the difference in error rate can be attributed to varying
importance of the feature influences which results to less identified feature influences
for the results with lower importance.

Considering the result while regarding the varied scale, which can be seen in Fig-
ure 5.9, also supports this. There are two observations: first, the error rate slightly
decreases with higher scales and second, the PeMoCo score is also decreasing with
higher scales. The error rate is therefore highest for the maximum scale 10. As
we have observed in the feature importance experiments, there is a point in fea-
ture importance where SPL Conqueror is unable to identify the influences although
these influence still have a significant impact on the error rate. In the experiments

5.1. Effects of Attribute Values and Distribution 35

10 50 100 500 1000 5000 10000
Feature Attribute Scale Maximum

0

1

2

3

4

5
Er

ro
r i

n
Pe

rc
en

t

10 50 100 500 1000 5000 10000
Feature Attribute Scale Maximum

5

0

5

10

15

Pe
M

oC
o

Sc
or

e

Figure 5.9: Error rate and PeMoCo score of the feature attribute distribution ex-
periment considering only the scales independent of the attribute distribution

considering the influence of the feature importance, this point was roughly around
an feature importance that is 15 % of the root feature. It is reasonable to assume
that the higher error rate for the maximum scale 10 is due to this previously made
observation as the fixed scale minimum is 1 and the accumulation of values near this
minimum suggests that those are therefore roughly around that 15 % importance
relation as the root feature offset is the scale maximum. Regarding higher scales,
the error then decreases as those values are still close to the scale minimum of 1 and
thus have a lower importance.
Some of the outliers seen in Figure 5.7 can also be explained with this observation, as
those high error rates of approximately 5 % were only observed for the 15 % impor-
tance relation. This impacts the attribute distributions where the values are mainly
generated at the minimum of the scale. If the values are generated at the center of
the scale, the relative importance of those influences always remains the same, and
therefore the error rate is minimal.
The decreasing PeMoCo score for higher scales can also be explained by the value
accumulation near the scale. The importance of values near the minimum scale
decreases if the scale maximum is increased, as the root feature value is set to the
scale maximum. A lower importance leads to more unidentified influences. However,
their influence on the error rate is also no longer as severe. This is also present in
Figure 5.2 for the feature importance experiment where this drop in unidentified
features occurs for importance values smaller 4 %.

It seems as if the main issue for feature attributes is their importance compared
to the root feature. However, we could not identify further influences as the rest of
the results are relatively similar.

Regarding the two sampling strategies, the results remain similar. Those results
are seen in Figure 5.10 for the feature-wise and in Figure 5.11 for the pair-wise
sampling. The two results with the highest error rate, namely SWN BinarySize and

36 5. Evaluation

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
x2

64
 M

ai
nM

em
or

y
Em

ai
l P

er
fo

rm
an

ce
Lin

ke
dL

ist
 B

in
ar

yS
ize

Cu
rl

M
ai

nM
em

or
y

x2
64

 P
er

fo
rm

an
ce

BD
B

M
ai

nM
em

or
y

LL
VM

 M
ai

nM
em

or
y

wg
et

 M
ai

nM
em

or
y

LL
VM

 P
er

fo
rm

an
ce

BD
BJ

 P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

SQ
Lit

e
M

ai
nM

em
or

y
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Feature Attribute Distribution

0

5

10

15

20

Er
ro

r i
n

Pe
rc

en
t

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
x2

64
 M

ai
nM

em
or

y
Em

ai
l P

er
fo

rm
an

ce
Lin

ke
dL

ist
 B

in
ar

yS
ize

Cu
rl

M
ai

nM
em

or
y

x2
64

 P
er

fo
rm

an
ce

BD
B

M
ai

nM
em

or
y

LL
VM

 M
ai

nM
em

or
y

wg
et

 M
ai

nM
em

or
y

LL
VM

 P
er

fo
rm

an
ce

BD
BJ

 P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

SQ
Lit

e
M

ai
nM

em
or

y
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Feature Attribute Distribution

5

0

5

10

15

Pe
M

oC
o

Sc
or

e

Figure 5.10: Error rate and PeMoCo score of the feature attribute distribution
experiment considering only the attribute distributions independent of the scale
with the feature-wise sampling strategy

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
x2

64
 M

ai
nM

em
or

y
Lin

ke
dL

ist
 B

in
ar

yS
ize

Em
ai

l P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

SQ
Lit

e
M

ai
nM

em
or

y
Cu

rl
M

ai
nM

em
or

y
LL

VM
 M

ai
nM

em
or

y
BD

B
M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Feature Attribute Distribution

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Er
ro

r i
n

Pe
rc

en
t

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
x2

64
 M

ai
nM

em
or

y
Lin

ke
dL

ist
 B

in
ar

yS
ize

Em
ai

l P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

SQ
Lit

e
M

ai
nM

em
or

y
Cu

rl
M

ai
nM

em
or

y
LL

VM
 M

ai
nM

em
or

y
BD

B
M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Feature Attribute Distribution

20

15

10

5

0

5

10

15

20

Pe
M

oC
o

Sc
or

e

Figure 5.11: Error rate and PeMoCo score of the feature attribute distribution
experiment considering only the attribute distributions independent of the scale
with the pair-wise sampling strategy

5.1. Effects of Attribute Values and Distribution 37

Violet BinarySize are the same as in Figure 5.7. However, the overall error rate
is lower for both samplings. These results further support that the influence of an
attribute distribution for features is minimal and the error rate is resulting due to
feature attribute values being not important enough to be identified. Therefore, for
both sampling strategies, we can confirm our observations for the experiments with
varying feature attribute distributions.

Experiment 2: Interaction Attribute Distribution

Considering the influence of the distribution of interaction attributes (cf. Fig-
ure 5.12), a larger variance in the error rates compared to the feature attribute
distribution plot can be observed. Additionally, differently for the experiments with
regards to the attribute distribution of features, a drop in the error rate does not
correspond to the PeMoCo score, so the results with the lowest error rate also have
a low PeMoCo score. This is also the case for the results with a high error.
Again, we need to consider the generated attribute values, seen in Figure 5.13, to

be able to explain the results. The low error rate for the first three results, namely
ZipMe Performance, AJStats Performance and wget MainMemory, can be explained
due to their low importance as all values are near the scale minimum. However, the
PeMoCo score could be influenced by the small variance of the generated values and
not necessarily due to their importance.
Considering only results with a PeMoCo score lower than 15, it can be seen that
those results have a small variance for the generated values and that the error rate
corresponds to the mean of those values. As an unidentified interaction with a higher
value has a higher influence on the error rate, this is unsurprising. This suggests that
it is complicated to identify interactions that are distributed with a small variance.
One explanation for this observation could be that SPL Conqueror can more easily
find an interaction if those are more distinguishable from one another with respect to
their influence. Additionally, this issue is probably amplified by the relatively high
number of interactions as they are not always identified even for higher importances
as seen in Section 5.2.1.
For the results of the distributions with higher variance, the error increases for a
higher median of the generated values whereas the PeMoCo score decreases. This
further confirms that those observations are not due to varying importance of the
interactions as this would lead to an increased PeMoCo score.
We further confirmed that the seen maximum PeMoCo score of 34 is actually a score
from a result where all interactions have been identified.

Finally, to rule out other influences, the results while solely regarding the different
scales can be seen in Figure 5.14. Apart from the random factor given due to the
implementation, there can not be seen much difference in the results, thus, the ob-
served results are not overly influenced by the scale.

Considering the pair-wise sampling, seen in Figure 5.15, the overall results are er-
ratic. We assume that this is due to the high number of interactions that for the
pair-wise sampling lead to difficulties identifying feature influences, especially if the
interaction importance is high. This sampling is designed to identify interactions

38 5. Evaluation

Zi
pM

e
Pe

rfo
rm

an
ce

AJ
St

at
s P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
Em

ai
l P

er
fo

rm
an

ce
LL

VM
 M

ai
nM

em
or

y
BD

B
Bi

na
ry

Si
ze

Vi
ol

et
 B

in
ar

yS
ize

LL
VM

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

BD
B

M
ai

nM
em

or
y

Ap
ac

he
 P

er
fo

rm
an

ce
Lin

ux
 B

in
ar

yS
ize

PK
Ja

b
Bi

na
ry

Si
ze

Cu
rl

M
ai

nM
em

or
y

SQ
Lit

e
M

ai
nM

em
or

y
x2

64
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze

Interaction Attribute Distribution

0

2

4

6

8

10

Er
ro

r i
n

Pe
rc

en
t

Zi
pM

e
Pe

rfo
rm

an
ce

AJ
St

at
s P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
Em

ai
l P

er
fo

rm
an

ce
LL

VM
 M

ai
nM

em
or

y
BD

B
Bi

na
ry

Si
ze

Vi
ol

et
 B

in
ar

yS
ize

LL
VM

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

BD
B

M
ai

nM
em

or
y

Ap
ac

he
 P

er
fo

rm
an

ce
Lin

ux
 B

in
ar

yS
ize

PK
Ja

b
Bi

na
ry

Si
ze

Cu
rl

M
ai

nM
em

or
y

SQ
Lit

e
M

ai
nM

em
or

y
x2

64
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze

Interaction Attribute Distribution

5

0

5

10

15

20

25

30

35

Pe
M

oC
o

Sc
or

e

Figure 5.12: Error rate and PeMoCo score of the interaction attribute distribution
considering only the attribute distribution independent of the scale

Zi
pM

e
Pe

rfo
rm

an
ce

AJ
St

at
s P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
Em

ai
l P

er
fo

rm
an

ce
LL

VM
 M

ai
nM

em
or

y
BD

B
Bi

na
ry

Si
ze

Vi
ol

et
 B

in
ar

yS
ize

LL
VM

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

BD
B

M
ai

nM
em

or
y

Ap
ac

he
 P

er
fo

rm
an

ce
Lin

ux
 B

in
ar

yS
ize

PK
Ja

b
Bi

na
ry

Si
ze

Cu
rl

M
ai

nM
em

or
y

SQ
Lit

e
M

ai
nM

em
or

y
x2

64
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze

Attribute Distribution

0

20

40

60

80

100

Ge
ne

ra
te

d
At

tri
bu

te
 V

al
ue

s

Figure 5.13: Generated interaction attribute values for a scale maximum of 100

5.1. Effects of Attribute Values and Distribution 39

10 50 100 500 1000 5000 10000
Interaction Attribute Scale Maximum

0

2

4

6

8

10

Er
ro

r i
n

Pe
rc

en
t

10 50 100 500 1000 5000 10000
Interaction Attribute Scale Maximum

5

0

5

10

15

20

25

30

35

Pe
M

oC
o

Sc
or

e

Figure 5.14: Error rate and PeMoCo score of the interaction attribute distribution
experiment considering only the scale independent of the attribute distribution

Zi
pM

e
Pe

rfo
rm

an
ce

AJ
St

at
s P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
BD

B
Bi

na
ry

Si
ze

Lin
ux

 B
in

ar
yS

ize
BD

BC
 P

er
fo

rm
an

ce
Em

ai
l P

er
fo

rm
an

ce
BD

B
M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
SQ

Lit
e

M
ai

nM
em

or
y

LL
VM

 M
ai

nM
em

or
y

Vi
ol

et
 B

in
ar

yS
ize

x2
64

 M
ai

nM
em

or
y

x2
64

 P
er

fo
rm

an
ce

Ap
ac

he
 P

er
fo

rm
an

ce
BD

BJ
 P

er
fo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
PK

Ja
b

Bi
na

ry
Si

ze
Cu

rl
M

ai
nM

em
or

y

Interaction Attribute Distribution

0

10

20

30

40

50

Er
ro

r i
n

Pe
rc

en
t

Zi
pM

e
Pe

rfo
rm

an
ce

AJ
St

at
s P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
BD

B
Bi

na
ry

Si
ze

Lin
ux

 B
in

ar
yS

ize
BD

BC
 P

er
fo

rm
an

ce
Em

ai
l P

er
fo

rm
an

ce
BD

B
M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
SQ

Lit
e

M
ai

nM
em

or
y

LL
VM

 M
ai

nM
em

or
y

Vi
ol

et
 B

in
ar

yS
ize

x2
64

 M
ai

nM
em

or
y

x2
64

 P
er

fo
rm

an
ce

Ap
ac

he
 P

er
fo

rm
an

ce
BD

BJ
 P

er
fo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
PK

Ja
b

Bi
na

ry
Si

ze
Cu

rl
M

ai
nM

em
or

y

Interaction Attribute Distribution

30

20

10

0

10

20

30

Pe
M

oC
o

Sc
or

e

Figure 5.15: Error rate and PeMoCo score of the interaction attribute distribution
experiment considering only the attribute distribution independent of the scale with
the pair-wise sampling strategy

40 5. Evaluation

of order 1, however, it could be that difficulties to identify influences of features
arise if the number of interactions is too high. This is also supported by the in
Section 5.2.1 evaluated results of the experiments with regards to numbers of in-
teractions with pair-wise sampling. For the results with lower error rates, it can
be again observed that the three results with low interaction values, namely ZipMe
Performance, AJStats Performance and wget MainMemory, have negligible influ-
ence and are not identified as the PeMoCo score indicates. However, for almost
every attribute distribution, an outlier for an error rate of 40 % exists, which in turn
supports that this is a general issue for the pair-wise sampling.
As feature-wise sampling is unable to identify interactions, the resulting plot can be
found in the Appendix.

5.2 Effects of Interaction Number and Order Dis-

tribution

Again, the results for the following experiments are presented according to the ex-
periment separation regarding to RQ 2.1 and RQ 2.2. In general, for the following
experiments, we refrain from using the PeMoCo score due to the in Section 5.3.1 dis-
cussed challenges and use the percentage value of found interactions instead. Thus,
the following figures for both experiments again show two plots, with the error rate
in the left plot and the percentage value of found interactions in the right plot.

5.2.1 Interaction Numbers and Orders

In relation to RQ 2.1, this experiment attempts to find influences on the learn-
ability with regards to varying interaction number and interaction order. The plots
for this experiments either show the results for the varied number of interactions or
the varied order of interactions. If not further specified, considering the number of
interactions, the shown data points are the results from the 10 repetitions for each
order of interactions and vice versa. However, it should be noted that we chose to
ignore order 6 completely for the shown plots as it only has a maximum interaction
number of 8.
Regarding the number of interactions, we can see that for an increasing number of

interactions, the error rate gets higher as well as a lower percentage interactions is
identified (cf. Figure 5.16). The increase in interactions leads to a linear increase
in error rate whereby it has to be taken into account that the visual exponential
error increase is only due to the selection of tested interaction numbers. The in-
creased error rate is corresponding to the decreased percentage of found interaction.
Additionally, it can be observed that for an interaction count greater than 30, SPL
Conqueror is not able to identify every interaction. This might be due to the higher
required order as those interaction counts are only possible in higher order.
Considering the order (cf. Figure 5.17), the amount of found interactions decreases

for higher orders as expected – but the observed error rate is not completely cor-
responding to this. The mean error rate is nearly the same for order 2 and 3 as
well as order 4 and 5. If we examine the results of varying order while limiting
the number of interactions to solely 25 (cf. Figure 5.18), as this is the maximum
tested number supported by the majority of orders, we can again see this decrease

5.2. Effects of Interaction Number and Order Distribution 41

2 3 4 5 7 10 15 20 25 30 40 50
Interaction Number

0

10

20

30

40

Er
ro

r i
n

Pe
rc

en
t

2 3 4 5 7 10 15 20 25 30 40 50
Interaction Number

20

40

60

80

100

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure 5.16: Error rate and identified interactions of the interaction number exper-
iment considering only the interaction numbers independent of the order

O1 O2 O3 O4 O5
Interaction Order

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r i
n

Pe
rc

en
t

O1 O2 O3 O4 O5
Interaction Order

20

40

60

80

100

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure 5.17: Error rate and identified interactions of the interaction number ex-
periment considering only the interaction order over all interaction numbers up to
25

42 5. Evaluation

O1 O2 O3 O4 O5
Interaction Order

0

5

10

15

20

25

30
Er

ro
r i

n
Pe

rc
en

t

O1 O2 O3 O4 O5
Interaction Order

20

40

60

80

100

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure 5.18: Error rate and identified interactions of the interaction number exper-
iment considering the interaction order and only an interaction number of 25

in identified interactions. However, the error rate does not increase correspondingly:
it even slightly decreases from order 2 to order 4. This can be explained as the
influence of interactions on all configurations decreases with increasing order. This
connotes that an interaction of higher order is present in less configurations than
an interaction of a smaller order which in turn leads to the lower error rate. This
effect appears in the decreasing error rate for higher orders. This effect also explains
why for interaction numbers greater than 30, SPL Conqueror never identifies all
interactions.

Considering the two sampling strategies, all plots are found in the Appendix as
they both can either find only interactions of order 1 or no interactions at all and
therefore the results are mostly monotone. However, for the pair-wise sampling in
Figure 5.19 an additional figure is given, showing the results for varying number of
interactions while only considering an interaction order of 1. It can be seen that
the overall error is high as well as that only for an interaction number of two all
interactions are always found. However, this is specific to the pair-wise sampling
and is only included to better explain the results for the experiments with varying
attribute distributions of interactions while using pair-wise sampling in Section 5.1.2
as those showed erratic results (cf. Figure 5.15).

5.2. Effects of Interaction Number and Order Distribution 43

2 3 4 5 7 10 15 20 25
Interaction Number

0

10

20

30

40

50

60

70
Er

ro
r i

n
Pe

rc
en

t

2 3 4 5 7 10 15 20 25
Interaction Number

0

20

40

60

80

100

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure 5.19: Error rate and identified interactions of the interaction number exper-
iment considering the interaction number and only interactions of order 1 with the
pair-wise sampling strategy

5.2.2 Interaction Order Distribution

With this experiment, we want to identify possible influences that arise due to the
varying distribution of a number of interactions over multiple orders. Therefore, the
following plot shows the tested interaction distribution over orders on the x-axis.
Seemingly counter-intuitive, the error rate of the ascending interaction distribution
is better than the descending distribution (cf. Figure 5.20). We expected that the
generated interactions of the descending interaction distribution are easier to iden-
tify as they are realistically distributed and therefore lead to a better error rate.
This is only partly the case, as the number of found interactions is actually better
than the ascending distribution, but the error rate is worse.
For the ascending interaction distribution the performance-influence model is worse,

the average error rate, however, is better. In this case, those interactions are not
identified, but must have minor influence on the error rate. However, regarding
the descending interaction distribution, more identified interactions are leading to a
higher PeMoCo score. As the error rate is higher, the unidentified interactions must
have a higher impact. This effect was previously observed in Section 5.2.1 where
interactions of higher orders had a smaller effect on the error rate.
As for the other three interaction distributions, the normal distribution has the worst
error rate, as well as the least amount of identified interactions. This order distribu-
tion has most interactions in order 3 which means that those will be found less likely,
however, those interactions still have an effect on the error rate. This can also be
seen in Figure 5.18 where interactions in order 2 and 3 have the highest error rate.
The invers-normal distribution has the best overall error rate as well as the second
best average amount of identified interactions. Normally 11 out of 25 interactions
are correctly identified as the median percentage of identified interactions is 45 %.
Therefore, most of the interaction of order 1 and order 2 must be detected as lower
order interactions are more easily found. In comparison to the other distributions,

44 5. Evaluation

invers normal uniform ascending descending normal
Interaction Order Distribution

5

10

15

20

25

30

35
Er

ro
r i

n
Pe

rc
en

t

invers normal uniform ascending descending normal
Interaction Order Distribution

10

20

30

40

50

60

70

80

90

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure 5.20: Error rate and identified interactions of the interaction order distribu-
tion experiment

this distribution has not many interactions in order 3 and 2 where their impact on
the overall error is still high, thus, leading to a lower error rate.
The error of the uniform distribution is slightly higher and there are also less inter-
actions identified. As those interactions are again probably found in lower orders,
this error can again be attributed to the unidentified interactions of order 3.

As both sampling strategies are unable to identify interactions of higher order, the
resulting plots for those samplings are found in the Appendix.

5.3 Discussion

In this section, the presented results will be summarized and the research questions
from Chapter 1 will be answered. Additionally, we outline some challenges with
PeMoCo that arose while evaluating the experiments where higher order interactions
were incorporated.

5.3.1 Challenges with PeMoCo

As mentioned in Section 2.2, SPL Conqueror does not perform a backwards elimina-
tion of influences. Thus, already identified influences will not be eliminated if those
influences become irrelevant in future rounds. Additionally, SPL Conqueror only
combines existing influences and the present features of the feature model. Thus,
to find an interaction of order 2 or higher, a corresponding sub-interaction has to
be found primarily and those sub-interactions will always remain an influence in the
model. Regarding experiments with higher interaction numbers, this implies that
the output model will always contain more terms than present in the input. As a
concrete example, the best possible output from SPL Conqueror for a generated
model with an interaction of order 3 would always contain 2 sub-interactions, of
order 1 and 2 respectively, both with an influence of nearly 0 and the order 3 inter-
action that is actually present.

5.3. Discussion 45

As the PeMoCo score is mainly determined by the terms that are present in both
models, the score even for a perfectly learned model under those constraints is not
optimal. Furthermore, it is also possible that the score of a result, where only the
feature influences were identified, might be better than the score of a result where
all interactions were identified, due to a large amount of sub-interaction terms.
Therefore, the PeMoCo score is unsuitable for higher orders as it can not identify
terms with no influence. As a consequence, this score can not be utilized. How-
ever, we included the amount of correctly identified interactions and used those to
interpret the observed results even though this is incapable to completely depict the
correctness of the identified model.
This change to our considered dependent variable is conform with the definition of
learnability as this was the capability to correctly identify an accurate model. The
accuracy is still given through the error rate and the correct model is given through
the found interactions as for those experiments the feature influences are mostly not
important.

5.3.2 Attribute Values and Distribution

RQ 1.1: How does a change in the relative importance of configuration
options affect the learnability?

Based on the results explained in Section 5.1.1, the observation was made that only
influences are identified if they are important enough. Therefore, if the importance
is too low, learnability is negatively influenced as the produced model is no longer
completely accurate. There is also an influence on the error rate which is a direct
result of the produced model. However, if the importance is further reduced the
influence on the error rate can be ignored. As those influences have no influence
apart from being not identified, those can probably be neglected.
Concluding, there is a critical range for the importance of influences where the
learnability is effected negatively. Outside that range, either if there is no more
influence on the error rate or if all influences are easily identified, there is no observed
effect.
To avoid overfitting the dataset, a lower number of terms in a model is preferred.
Thus, for both importance experiments, this behaviour is desirable. If a term would
be present for every point of data, the learning results are prefect, however, the
model is not generally applicable [Rob14]. Therefore, this error is justified and will
always occur as unimportant terms need to be avoided.

RQ 1.2: How does a change in the distribution of influences of configu-
ration options affect the learnability?

As the results explained in Section 5.1.2 show, the effect of different attribute distri-
butions varies. For feature influences, the effect is mostly small and can mainly be
attributed to a small feature importance. This is also supported by the experiments
with regards to the importance of features. Additionally, the overall low error rate
leads to the conclusion that the feature attribute distribution has no effect, if the
generated values are important enough that they are found.
However, for interactions only the error can be attributed to the importance. The
ability to identify those interactions depends on the attribute distribution. If the

46 5. Evaluation

interaction attribute values are similar, the learnability is effected negatively as they
are less likely to be identified. For distributions where the accumulation of values is
less, the error could be attributed to the importance.
For both distribution experiments, we were unable to completely explain all obser-
vations and further experiments are needed.

5.3.3 Interaction Numbers and Orders

RQ 2.1:How does the number and order of interactions influence the
learnability?

As the results in Section 5.2.1 show, regarding higher interaction numbers, there is
a clear increase in error rate as well as a limited capability to identify those interac-
tions. Even in this scenario, where all settings for this experiments were chosen to
enable finding those interactions, this is unambiguous. Therefore, the learnability is
always negatively influenced by an increasing number of interactions.
However, this is not entirely correct for the order due to the varying importance of
those influences. As an interaction of higher order is present in less configurations,
its influence on the error rate is reduced. Therefore, even if the number of unidenti-
fied interactions increases linear for higher orders, the error rate does not. We even
observed lower error rates compared to the next lower order, but those can also be
attributed to the random factor of the data generation.
Additionally, this reduced influence of higher orders does not imply that those are
always unidentified as the results for small interaction numbers show.

RQ 2.2: How does the distribution of interactions over varying order
influence the learnability?

Based on the results in Section 5.2.2, the distribution of interactions over different
orders has an influence on the learnability mainly via the amount of interactions for
specific orders. The error rate decreases if more interactions exist in order 2 and
order 3 and the number of found interactions decreases if the order is higher. Those
influences on the learnability are according to the results of the interaction number
experiments in Section 5.2.1. However, it is noticeable that those orders are also
the orders that support the highest numbers of interactions. A clear influence that
could be directly attributed to the varying distribution was not observed. Therefore,
this research question can not be entirely answered. There are further implications
with regards to realistic interactions for those experiments which are discussed in
Chapter 7.

6. Threats to Validity

In this chapter the possible threats to both internal and external validity are dis-
cussed.

6.1 Internal Validity

Internal validity signifies to what extend our conclusions are valid and how system-
atic errors were avoided.
For our axillary implementation, meaning the automation of the data generation and
starting the experiments, the correctness was confirmed as only the generated exper-
iments needed to be checked. The main potential error was the computation of the
generated measurements that are needed as SPL Conqueror input. As the output of
Thor consists of the influences of both features and interactions, the NFP value for
each configuration needs to be calculated. We spot-checked the results manually and
could confirm that the computation of a NFP value is correct even with included
interactions. Additionally, we verified that for all experiments with interactions,
those occur in the generated data. Moreover, the additional implementations to
Thor needs to be validated. Generally, despite the existence of some software bugs,
we expect Thor to be working correctly. Therefore, confirming correctness for both
the additions that enabled existing functionality for the command-line as well as the
bug corrections was simply done via checking if for a sample the generated result
was as expected. This is also justified as the bug corrections are simple changes that
are only effecting the concerned method.
Correctness was also confirmed for the new functionality added to Thor via sample
experiments. Those functions in Thor solely ensure that its results are more suit-
able, thus increasing the validity of Thor. Regarding the random function addition
the most suitable random sample out of 100 is now chosen, opposed to a single ran-
dom sample. And for the scaling addition we modify a random sample in a way that
only eliminates values that are not necessary for a correct result. The correctness
check is still conducted afterwards, also guaranteeing a valid result.
Concerning the validity of our experiments, we first avoided the bias that can occur
due to the random generation of values as we repeated every experiment 10 times.

48 6. Threats to Validity

Additionally, we can guarantee for all experiments that there is a causal connection
between the observed results and our independent variables. For every experiment,
as many influences as possible were eliminated and as we only have a finite set of
possible influences on the generated data as well as the SPL Conqueror settings,
there are no changing variables that could influence our results.

6.2 External Validity

External validity denotes to what extent our conclusions can be generalized.
In general, Thor is mostly able to create realistic data and therefore, results utilizing
this realistic data generation can more easily be generalized. Furthermore, all con-
ducted experiments are of a very basic kind. All possible influences on the results
were reduced to a minimum. The used feature model contained no constraints, and
so every feature was optional. The observed results can therefore be only attributed
to the varied inputs. As the observed influences on the learnability can only be due
to the input and also valid in the most basic scenario, the are generally valid.
The used feature model only contained 8 features, however, this number is sufficient
as we wanted base-line results. Additionally, this is only an issue for the experiments
with varying attribute distribution as only those could benefit from a higher number
of features. However, the observed generated values do vary largely, meaning that
even for 8 features the utilized attribute distributions largely effect the data.
As mentioned in Section 2.3, Thor can not generate realistic interactions as they
are chosen randomly and new interactions are therefore not based on pre-existing
smaller interactions. This is solely a problem for the interaction order distribution
experiments as we, apart from those, only have interactions of order one or explicitly
want to see the effect of interactions of higher orders with no interactions in lower
orders. However, for a software system where interactions are more according to
real world observations, SPL Conqueror is more likely to identify those interactions
as explained in Section 5.3.1. However, for those realistic interaction order distribu-
tions, this was already observed.
Finally, the basic kind of the conducted experiments lead to a high confidence in the
validity of our results.

7. Future Work

This chapter describes possible extensions to the experiments as well as further
scopes to continue the work done in this thesis.
For this thesis, we resorted to only using a single feature model - this selected feature
model could also be a factor on the learnability of SPL Conqueror and therefore also
of interest. However, the focus of this thesis was the attribute values of influences
and not the influence of varying feature models, but this aspect is also worthy of
investigation.
Another future work would be considering the influence of negative attribute values
as we mostly avoided those. As SPL Conqueror can not manage negative configura-
tions, there is the need to find a way that allows negative values, but also efficiently
prevents negative configurations. This challenge needs to be solved to be able to
effectively evaluate negative attribute values. Negative attribute values were incor-
porated in the feature importance experiments, but they did not have an influence
on those specific observed results. However, this may not be generally applicable
and therefore needs to be further investigated.
Additionally, there is also the aspect of time to accuracy that was not evaluated.
Meaning the time that SPL Conqueror needs to learn a performance-influence model
that qualifies for a certain accuracy. For the conducted testing, this was not a con-
cern as the focus was general on the ability to learn a model and not the needed
time. To be able to evaluate this aspect, the feature model also needs to be changed
to a larger model as SPL Conqueror is always fast on the selected small model and
will have only a small variance in the time results.
Furthermore, there is the need to better categorize and control the selected at-
tribute distributions. As the present distributions were real world samples, we had
little information about their characteristics and the results of the feature attribute
experiments were not too extensive and we were only able to draw basic conclusions
about the influences of attribute distributions. Expanding those experiments with
better controlled attribute distributions with exactly known characteristics might
help to be able to draw more comprehensive conclusions.
As the interactions generated by Thor were always random combinations of fea-
tures, we were unable to evaluate the effects of realistic interactions. To this end,

50 7. Future Work

we need to influence the interaction generation over multiple orders to create related
interactions where for every interaction of higher order a sub-interaction is present.
Additionally, there is the need to influence how many interactions are in such a
sub-interaction relationship to each other interactions. This is also relevant for the
interaction order distribution experiments. Those distributions may have a bigger
impact and a more identifiable influence on the learnability if the interactions are in
a more realistic way.
Finally, as the SPL Conqueror settings were not changed, those could also have a
influence that needs to be evaluated. Furthermore, another aspect is that for dif-
ferent software system, different settings may be superior. We have also observed
this for the varying sampling strategies we utilized. However, evaluating the SPL
Conqueror settings was out of the scope of this thesis and is therefore another future
work.

8. Conclusion

In this thesis, we were able to evaluate the learnability of software systems in a way
that is unachievable without the possibility to use generated test data.
We aimed at finding influences on the learnability of a software system. To this end,
we designed experiments tailored to examine the effects of certain characteristics
that we could influence through Thor. The varied characteristics are the impor-
tance of influences, different attribute distribution of the influence values, number
and order of interactions and also the distribution of interactions over varying or-
ders.
For those conducted experiments, we found that there is a critical point if the im-
portance of an influence is reduced, it is no longer identified by the machine learning
approach while it still influences the error rate. This behaviour, however, is justified
as it avoids overfitting the training data. For the interaction number and order exper-
iments, we found that only increasing the number inevitably has a negative influence
on the learnability of a software system. By contrast, the order does not necessarily
lead to an increase in error rate and only the capability to identify all influences
is negatively impacted. Regarding the experiments for varying attribute distribu-
tions, we observed that no explicit influence could be attributed to the attribute
distribution of features. However, for the attribute distributions of interactions, we
observed that interactions with a lower variance in attribute values had a negative
impact on the learnability. Nevertheless, we were unable to completely explain all
observations. Finally, regarding the experiments for varying the distribution of in-
teractions over different orders, we again can not completely identify clear influences
on the learnability. However, we observed that distributions where less interactions
exist in orders that support a higher total number of interactions, performed better
with regards to the learnability.
As the state of Thor, especially the command-line, was suboptimal, conducting those
experiments was more time consuming than expected. This lead to a reduction in
the total amount of possible experiments as well as their extent. Nonetheless, based
on this thesis, some significant software bugs were identified in Thor as well as func-
tions added that will ease future use of this tool.
Even though we were not completely able to answer all research question, our identi-

52 8. Conclusion

fied influences on the learnability will help in understanding the capabilities of SPL
Conqueror as well as be supportive to explain possible obstacles to the learnability
of configurable software systems. However, there is still additional work to be done
as some aspects were not completely discussed.

Bibliography

[ABKS16] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
oriented software product lines. Springer, 2016. (cited on Page 5)

[AKS+13] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner,
and Brady Garvin. Exploring feature interactions in the wild: the new
feature-interaction challenge. In Proceedings of the 5th International
Workshop on Feature-Oriented Software Development, pages 1–8. ACM,
2013. (cited on Page 7)

[BTRC05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated
reasoning on feature models. In International Conference on Advanced
Information Systems Engineering, pages 491–503. Springer, 2005. (cited

on Page 6)

[CS14] Girish Chandrashekar and Ferat Sahin. A survey on feature selection
methods. Computers & Electrical Engineering, 40(1):16–28, 2014. (cited

on Page 7)

[GSKA16] Alexander Grebhahn, Norbert Siegmund, Harald Köstler, and Sven Apel.
Performance prediction of multigrid-solver configurations. In Software for
Exascale Computing-SPPEXA 2013-2015, pages 69–88. Springer, 2016.
(cited on Page 1)

[Kal16] Christian Kaltenecker. Comparison of Analytical and Empirical Per-
formance Models: A Case Study on Multigrid Systems. Masterthesis,
University of Passau, Germany, 2016. (cited on Page 10)

[KSK+18] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander
Grebhahn, and Sven Apel. Tradeoffs in modeling performance of highly
configurable software systems. Software & Systems Modeling, pages 1–19,
2018. (cited on Page 8)

[Leu16] Thomas Leutheusser. Generating Realistic Attributed Variability Mod-
els. Masterthesis, University of Passau, Germany, 2016. (cited on Page 8)

[Rob14] Christian Robert. Machine learning, a probabilistic perspective. Taylor
& Francis, 2014. (cited on Page 45)

54 Bibliography

[SGAK15] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Käst-
ner. Performance-influence models for highly configurable systems. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 284–294. ACM, 2015. (cited on Page 1 and 7)

[Sie12] Norbert Siegmund. Measuring and Predicting Non-Functional Proper-
ties of Customizable Programs. PhD thesis, University of Magdeburg,
Germany, 2012. (cited on Page 6)

[SKK+12] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel,
Don Batory, Marko Rosenmüller, and Gunter Saake. Predicting perfor-
mance via automated feature-interaction detection. In Software Engi-
neering (ICSE), 2012 34th International Conference on, pages 167–177.
IEEE, 2012. (cited on Page 7 and 8)

[SSA17] Norbert Siegmund, Stefan Sobernig, and Sven Apel. Attributed variabil-
ity models: outside the comfort zone. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pages 268–278.
ACM, 2017. (cited on Page ix, 2, and 9)

[XJF+15] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupa-
thy, and Rukma Talwadker. Hey, you have given me too many knobs!:
understanding and dealing with over-designed configuration in system
software. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pages 307–319. ACM, 2015. (cited on Page 1)

A. Appendix

All additionally produced plots are shown in this chapter. Furthermore, all con-
ducted experiments as well as the used Python scripts and tools are provided digi-
tally by the included DVD.

1 5 10 15 25 50 75 100 150 200 250 5001000
Interaction Importance in Percent

0

5

10

15

20

25

30

Er
ro

r i
n

Pe
rc

en
t

1 5 10 15 25 50 75 100 150 200 250 5001000
Interaction Importance in Percent

13.4

13.6

13.8

14.0

14.2

14.4

14.6

Pe
M

oC
o

Sc
or

e

Figure A.1: Error rate and PeMoCo score of the interaction importance experiment
with the feature-wise sampling strategy

56 A. Appendix

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
x2

64
 M

ai
nM

em
or

y
Lin

ke
dL

ist
 B

in
ar

yS
ize

Em
ai

l P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

SQ
Lit

e
M

ai
nM

em
or

y
Cu

rl
M

ai
nM

em
or

y
LL

VM
 M

ai
nM

em
or

y
BD

B
M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Attribute Distribution

2

4

6

8

10

Ge
ne

ra
te

d
At

tri
bu

te
 V

al
ue

s

Figure A.2: Generated feature attribute values for a scale maximum of 10

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
x2

64
 M

ai
nM

em
or

y
Lin

ke
dL

ist
 B

in
ar

yS
ize

Em
ai

l P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

SQ
Lit

e
M

ai
nM

em
or

y
Cu

rl
M

ai
nM

em
or

y
LL

VM
 M

ai
nM

em
or

y
BD

B
M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Attribute Distribution

0

200

400

600

800

1000

Ge
ne

ra
te

d
At

tri
bu

te
 V

al
ue

s

Figure A.3: Generated feature attribute values for a scale maximum of 1000

Lin
ux

 B
in

ar
yS

ize
SQ

Lit
e

Pe
rfo

rm
an

ce
SQ

Lit
e

Bi
na

ry
Si

ze
x2

64
 M

ai
nM

em
or

y
Lin

ke
dL

ist
 B

in
ar

yS
ize

Em
ai

l P
er

fo
rm

an
ce

BD
BC

 P
er

fo
rm

an
ce

x2
64

 P
er

fo
rm

an
ce

SQ
Lit

e
M

ai
nM

em
or

y
Cu

rl
M

ai
nM

em
or

y
LL

VM
 M

ai
nM

em
or

y
BD

B
M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
SN

W
 B

in
ar

yS
ize

Vi
ol

et
 B

in
ar

yS
ize

Attribute Distribution

0

2000

4000

6000

8000

10000

Ge
ne

ra
te

d
At

tri
bu

te
 V

al
ue

s

Figure A.4: Generated feature attribute values for a scale maximum of 10000

10 50 100 500 1000 5000 10000
Feature Attribute Scale Maximum

0

5

10

15

20

Er
ro

r i
n

Pe
rc

en
t

10 50 100 500 1000 5000 10000
Feature Attribute Scale Maximum

5

0

5

10

15

Pe
M

oC
o

Sc
or

e

Figure A.5: Error rate and PeMoCo score of the feature attribute distribution ex-
periment considering only the scales independent of the attribute distribution with
the feature-wise sampling strategy

57

10 50 100 500 1000 5000 10000
Feature Attribute Scale Maximum

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Er
ro

r i
n

Pe
rc

en
t

10 50 100 500 1000 5000 10000
Feature Attribute Scale Maximum

20

15

10

5

0

5

10

15

20

Pe
M

oC
o

Sc
or

e

Figure A.6: Error rate and PeMoCo score of the feature attribute distribution ex-
periment considering only the scales independent of the attribute distribution with
the pair-wise sampling strategy

AJ
St

at
s P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
Zi

pM
e

Pe
rfo

rm
an

ce
BD

B
Bi

na
ry

Si
ze

BD
BC

 P
er

fo
rm

an
ce

Lin
ux

 B
in

ar
yS

ize
Em

ai
l P

er
fo

rm
an

ce
LL

VM
 M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
BD

B
M

ai
nM

em
or

y
SQ

Lit
e

M
ai

nM
em

or
y

Vi
ol

et
 B

in
ar

yS
ize

x2
64

 P
er

fo
rm

an
ce

Ap
ac

he
 P

er
fo

rm
an

ce
x2

64
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
PK

Ja
b

Bi
na

ry
Si

ze
Cu

rl
M

ai
nM

em
or

y
SQ

Lit
e

Bi
na

ry
Si

ze

Interaction Attribute Distribution

0

5

10

15

20

Er
ro

r i
n

Pe
rc

en
t

AJ
St

at
s P

er
fo

rm
an

ce
wg

et
 M

ai
nM

em
or

y
Zi

pM
e

Pe
rfo

rm
an

ce
BD

B
Bi

na
ry

Si
ze

BD
BC

 P
er

fo
rm

an
ce

Lin
ux

 B
in

ar
yS

ize
Em

ai
l P

er
fo

rm
an

ce
LL

VM
 M

ai
nM

em
or

y
LL

VM
 P

er
fo

rm
an

ce
BD

B
M

ai
nM

em
or

y
SQ

Lit
e

M
ai

nM
em

or
y

Vi
ol

et
 B

in
ar

yS
ize

x2
64

 P
er

fo
rm

an
ce

Ap
ac

he
 P

er
fo

rm
an

ce
x2

64
 M

ai
nM

em
or

y
BD

BJ
 P

er
fo

rm
an

ce
PK

Ja
b

Bi
na

ry
Si

ze
Cu

rl
M

ai
nM

em
or

y
SQ

Lit
e

Bi
na

ry
Si

ze

Interaction Attribute Distribution

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Pe
M

oC
o

Sc
or

e

1e 12+2

Figure A.7: Error rate and PeMoCo score of the interaction attribute distribution
experiment considering only the attribute distribution independent of the scale with
the feature-wise sampling strategy

2 3 4 5 7 10 15 20 25 30 40 50
Interaction Number

20

40

60

80

Er
ro

r i
n

Pe
rc

en
t

2 3 4 5 7 10 15 20 25 30 40 50
Interaction Number

0.04

0.02

0.00

0.02

0.04

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure A.8: Error rate and found interactions of the interaction number experiment
considering only the interaction numbers independent of the order with the feature-
wise sampling strategy

58 A. Appendix

2 3 4 5 7 10 15 20 25 30 40 50
Interaction Number

0

10

20

30

40

50

60

70

Er
ro

r i
n

Pe
rc

en
t

2 3 4 5 7 10 15 20 25 30 40 50
Interaction Number

0

20

40

60

80

100

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure A.9: Error rate and found interactions of the interaction number experiment
considering only the interaction numbers independent of the order with the pair-wise
sampling strategy

O1 O2 O3 O4 O5
Interaction Order

20

40

60

80

Er
ro

r i
n

Pe
rc

en
t

O1 O2 O3 O4 O5
Interaction Order

0.04

0.02

0.00

0.02

0.04

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure A.10: Error rate and found interactions of the interaction number experiment
considering only the interaction order and all interaction numbers up to 25 with the
feature-wise sampling strategy

O1 O2 O3 O4 O5
Interaction Order

0

10

20

30

40

50

60

70

Er
ro

r i
n

Pe
rc

en
t

O1 O2 O3 O4 O5
Interaction Order

0

20

40

60

80

100

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure A.11: Error rate and found interactions of the interaction number experiment
considering only the interaction order and all interaction numbers up to 25 with the
pair-wise sampling strategy

59

O1 O2 O3 O4 O5
Interaction Order

10

20

30

40

50

60

70

80

90

Er
ro

r i
n

Pe
rc

en
t

O1 O2 O3 O4 O5
Interaction Order

0.04

0.02

0.00

0.02

0.04

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure A.12: Error rate and found interactions of the interaction number experiment
considering the interaction order and solely an interaction number of 25 with the
feature-wise sampling strategy

O1 O2 O3 O4 O5
Interaction Order

10

15

20

25

30

35

40

45

50

Er
ro

r i
n

Pe
rc

en
t

O1 O2 O3 O4 O5
Interaction Order

0

5

10

15

20

25

30

35

40

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure A.13: Error rate and found interactions of the interaction number experiment
considering only the interaction order and solely an interaction number of 25 with
the pair-wise sampling strategy

ascending normal uniform invers normaldescending
Interaction Order Distribution

25

30

35

40

45

50

55

60

Er
ro

r i
n

Pe
rc

en
t

ascending normal uniform invers normaldescending
Interaction Order Distribution

0.04

0.02

0.00

0.02

0.04

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure A.14: Error rate and identified interactions of the interaction order distribu-
tion experiment with the feature-wise sampling strategy

60 A. Appendix

invers normaldescending uniform normal ascending
Interaction Order Distribution

10

20

30

40

50

Er
ro

r i
n

Pe
rc

en
t

invers normaldescending uniform normal ascending
Interaction Order Distribution

0

5

10

15

20

25

30

35

Id
en

tif
ie

d
In

te
ra

ct
io

ns
 in

 P
er

ce
nt

Figure A.15: Error rate and identified interactions of the interaction order distribu-
tion experiment with the pair-wise sampling strategy

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Bachelorarbeit selbständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
als solche gekennzeichnet sind, sowie dass ich die Bachelorarbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Jakob Hoffmann

Passau, den 25. Juni 2018

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Code Listings
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Structure of this Thesis

	2 Background
	2.1 Feature Modeling
	2.1.1 Feature Models
	2.1.2 Attributed Feature Models
	2.1.3 Interactions

	2.2 SPL Conqueror
	2.3 Thor
	2.4 Learnability of Non-Functional Properties
	2.5 PeMoCo

	3 Experimental Setup
	3.1 Variables
	3.1.1 Dependent Variables
	3.1.2 Control Variables
	3.1.3 Independent Variables

	3.2 Challenges with Initial Experiments
	3.3 Attribute Values and Distributions
	3.3.1 Feature and Interaction Importance
	3.3.2 Feature and Interaction Distributions

	3.4 Interaction Number and Order Distribution
	3.4.1 Number of Interactions
	3.4.2 Interaction Order Distribution

	4 Implementation
	4.1 Random Functions
	4.2 Scaling Attribute Distributions
	4.3 Improvements to Thor
	4.4 Challenges with Thor

	5 Evaluation
	5.1 Effects of Attribute Values and Distribution
	5.1.1 Feature and Interaction Importance
	5.1.2 Feature and Interaction Distribution

	5.2 Effects of Interaction Number and Order Distribution
	5.2.1 Interaction Numbers and Orders
	5.2.2 Interaction Order Distribution

	5.3 Discussion
	5.3.1 Challenges with PeMoCo
	5.3.2 Attribute Values and Distribution
	5.3.3 Interaction Numbers and Orders

	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity

	7 Future Work
	8 Conclusion
	Bibliography
	A Appendix

