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Abstract

As software development projects grow, more and more merge scenarios between software
artifacts occur. It is important to keep the number of conflicts as low as possible. Classical
merge tools employ line-based algorithms to provide low runtime and applicability to all
text documents.

The tool JDime1 focuses on using the abstract syntax tree of the source code artifacts
being merged to detect changes like moved methods that would produce conflicts in a line-
based tool. The current tree matching algorithms however are, for performance reasons,
constrained in the amount of matchings they consider.

This thesis builds on the work of Kumar et al. who introduced Flexible Tree Matching by
extending their cost model for use with abstract syntax trees. The algorithm is implemented
as a component of JDime with the option of using it as a replacement, post-processing
step, or integrated part of the previously available tree matchers.

The matching quality of all three options is compared against the old matchers. For 5
previously difficult merge tasks, a significant increase in matching performance is observed.
Post-processing provides the best compromise between increase in runtime and matching
quality.

1url: http://www.infosun.fim.uni-passau.de/se/JDime/ (visited on 12/09/2016).
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1 Introduction

The problem of having to merge multiple versions of a source code file quickly arises in
larger software development projects. It is also a concern in product-line or model-driven
software engineering. Version control programs like git1 and Subversion2 are used to handle
these merge scenarios. They produce a merged version of the different revisions of the
software artifacts that are involved in the merge scenario.

Several approaches exist for merging multiple revisions of a file into one. They may be
categorized into textual, syntactic, semantic, and structural merging [Men02]. In this
thesis, a general tree matching algorithm called Flexible Tree Matching is integrated into
JDime alongside its classical tree matchers.

1.1 Motivation

Most available tools (such as the ones used by git and Subversion) perform unstructured (i.e.
line based) merging. As such, the tools can resolve trivial merge conflicts but require user
input even for situations that appear obvious to the user. However, they are applicable to
all textual artifacts and the algorithms involved have a low runtime.

Some approaches to structured merging are implemented as part of the tool JDime. It
supports merging the abstract syntax trees of Java source code files. JDime has previously
been used to improve merge results over textual merging when methods are moved or
code is reformatted [Leß12]. However, other changes, such as renaming of methods or sur-
rounding of code with constructs like loops, could not be recognized due to the constraints
inherent in the tree matching algorithms employed by JDime which will be described in
Section 2.1.1.

Structured merging appears to be a good fit for preventing conflicts when source code is
refactored in such a way that whole subtrees change position in the ASTs. This is the

1url: https://git-scm.com/ (visited on 05/09/2016).
2url: https://subversion.apache.org/ (visited on 05/09/2016).
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case in the mentioned examples of surrounding a code fragment with a loop or conditional
construct. If JDime can be improved to provide accurate matches between these ASTs, it
may at some point represent a better alternative to the unstructured merge tools that are
in use today.

1.2 Contributions

This thesis focuses on improving the tree matching capabilities of JDime by adding Flexible
Tree Matching to its repertoire. The algorithm, described in detail in Chapter 3, uses
a cost model based on weighted edge costs to express the quality of a set of matchings
between two trees.

To make it applicable to the AST matching domain, a cost term dealing with ordering
of children is added to the original cost model. The algorithm is further customized by
making the weighing of costs dependant on the types of nodes being matched. In the
current implementation, the renaming of method and class declarations is penalized less
than that of other types of nodes. Additionally, the ordering cost is implemented such
that it only applies when the ordering of the AST nodes is relevant. Weights, producing
good matchings for situations that were previously hard to match, are learned using an
evolutionary approach.

The resulting customized Flexible Tree Matching approach is combined in different ways
with the old JDime matchers. To test its effectiveness, a number of merge tasks that are
difficult to match using the previous algorithms are identified. Optimal reference matchings
for these tasks are produced by hand. Using the new matcher as a post-processing step to
try and match nodes that were left unmatched by the old matchers leads to a significant
increase in matching performance. Runtime is also increased but not as much as by using
Flexible Tree Matching as a replacement for the old algorithms.

1.3 Thesis Overview

In chapter Chapter 2, the general problem of graph isomorphism and its specialisa-
tion for trees is described. Two tools performing structured merging of source code
as well as two papers improving upon aspects of structured merging are then intro-
duced.

1 INTRODUCTION 2
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Chapter 3 recounts the definition of Flexible Tree Matching from the original paper and de-
scribes the extensions and modifications that were made to the algorithm. Chapter 4 then
describes the implementation of Flexible Tree Matching as a component of JDime.

To evaluate the usefulness of Flexible Tree Matching in the AST merging domain, the
optimal reference matchings for a number of difficult code examples are compared to those
produced using the old matching techniques and the ones resulting from Flexible Tree
Matching in Chapter 5.

1 INTRODUCTION 3



2 Background

The most general form of the problem one faces when structurally merging abstract syntax
trees is that of the isomorphism of graphs. Given two graphs G and H it is the problem
of finding a bijection f between the vertices of G and H given by V (·). This function
f : V (G)→ V (H) has to have the property that an edge exists between two vertices a and
b from G if and only if there exists one between f(a) and f(b). If such an isomorphism
exists, the graphs are called isomorphic.

This problem is further specialized by adding labels (and possibly other attributes) to
the vertices of the graphs and requiring that the bijection preserves all attributes of the
vertices. In this general form, the problem is known to be in NP , but it is neither known
to be in P nor whether it is NP-complete [For96].

In the structural merging domain, the problem is to find a set of matchings between two
labelled trees. It is defined as a subset M ⊂ L×R where L and R are labelled trees. This
subset has to have the property that no node from L or R occurs in more than one element
of M . The elements of M can be taken to represent editing operations that transform L

into R. An unmatched node in L is a deletion, one in R is an addition and nodes being
matched identifies them as the same in both revisions.

Even though domain specific restrictions, such as ordering being important for many
levels of an AST, can be made, finding such an optimal set of matchings still requires
solving the largest common embedded subtree problem. This problem is known to be
APX -hard. As such, a polynomial-time approximation algorithm for the problem is
possible.

2.1 Existing Tools

All widely used existing tools for merging software (such as GNU diff1) are line based.
This is mainly due to line based merging being fast and applicable to all plain text

1url: https://www.gnu.org/software/diffutils/ (visited on 05/09/2016).
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documents.

Structured merge tools promise less need for user interaction when resolving conflicts by
using the structure inherent in code files. They work on the AST of the code file, not its
lines.

Several research projects exist that attempt to use structured merging techniques to reduce
the number of conflicts a user has to resolve by hand.

2.1.1 JDime

JDime is a structured merge tool being developed at the University of Passau, Germany.
Since its introduction in the Master’s thesis entitled “Adjustable Syntactic Merge of Java
Programs” [Leß12] by Olaf Leßenich, it has been used in several projects dealing with
structured merging.

It focusses on providing a structured merge that can resolve more conflicts than an
unstructured merge, but still retains a similar runtime. In the evaluation done as part of
the aforementioned Master’s thesis, JDime proved to be a viable alternative to traditional
line based merging when reordering or reformatting of code was involved in the merge
scenario. By using an auto-tuning approach that first attempts a line based merge and
then a structured merge if there are conflicts, the runtime of JDime is kept below that of
purely structured tools.

While merging of reordered or reformatted code can be greatly improved by JDime, it
lacks the capability to merge situations like code being surrounded by constructs such as
loops or conditional statements. This is due to the tree matching algorithms in JDime
being too restricted to be able to match the necessary parts of the ASTs. This thesis aims
to improve the matchings in these situations.

2.1.2 ChangeDistiller

ChangeDistiller is a plugin for the Eclipse2 Java IDE. It was developed by Fluri et al. in
their paper entitled “Change Distilling: Tree Differencing for Fine-Grained Source Code
Change Extraction” [Flu+07]. The plugin uses the version control capabilities provided by
the Eclipse platform to extract the version history of project files. It then extracts changes
from successive revisions by matching the ASTs against each other.

2url: https://eclipse.org/ (visited on 26/09/2016).
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The tree matching algorithm in ChangeDistiller is based on a more general algorithm
for detecting changes in hierarchically structured data by Chawathe et al. [Cha+96].
It was customized to take the additional attributes and requirements of AST matching
into account. The original algorithm produced sub-optimal matchings since it made
assumptions that do not necessarily hold for ASTs. An example is the assumption that
for any leaf in one tree, there exists at most one leaf in the other that is similar (or equal)
to it. However, source code frequently contains similar statements.

The authors manually classified 1064 changes in 219 revisions of eight methods from
three open source projects. Their algorithm proved to be effective in approximating the
minimum edit script better than the original change extraction algorithm by Chawathe
et al. did. The extracted changes are stored in a database. This repository of data about
software changes can be used to answer questions about the kinds of changes that cause
bugs when developing software.

2.1.3 Integrating into Version Control Systems

Most users of merging tools use them as part of larger version control systems. Major tools
like git3 and Subversion4 include unstructured (i.e. line based) merge tools.

Both git and Subversion support using other merge tools that conform to a specific call
syntax. Several applications make use of this facility to add graphical user interfaces for
conflict resolution. Popular command line editors like Emacs and Vim also provide merge
tools that can be used with git.

Another approach would be to use a structured merge tool such as JDime. In this way, the
powerful version control systems could be extended with the improved conflict resolution
that is possible when merging structurally. To enable this, JDime supports the call syntax
expected by git mergetool5.

2.2 Related Work

In this section two of the papers that deal with problems related to the matching of
trees are mentioned. Section 2.2.1 describes an approach for calculating the size of the
maximum common embedded subtree for ordered trees. Section 2.2.2 deals with a paper

3url: https://git-scm.com/ (visited on 05/09/2016).
4url: https://subversion.apache.org/ (visited on 05/09/2016).
5url: https://git-scm.com/docs/git-mergetool (visited on 27/09/2016).
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that aims to improve matching quality via a number of pre- and post-processing steps
that can be applied to any matching algorithm.

2.2.1 Maximum Common Embedded Subtree in Ordered Trees

Lozano et al. reduce the maximum common embedded subtree problem for ordered trees
to a variant of the longest common subsequence problem in their 2004 paper [LV04].
They present a dynamic programming algorithm that runs in polynomial time, namely
O(n1 · n2 ·min(d1, l1) ·min(d2, l2))). The trees being examined have n1 and n2 nodes, are
of depth d1 and d2, and have l1 and l2 leaves.

They define the concept of a “Balanced Sequence” to describe trees as well-formed par-
enthesis strings over the alphabet {0, 1}. The balanced sequence of a leaf is empty, the
balanced sequence of any other node is the concatenation of the balanced sequences of its
children, each preceded by a 0 and followed by a 1. Additionally, they describe how to par-
tition a balanced sequence s into its head and tail. They are the two unique subsequences
such that s = 0 head(s) 1 tail(s).

In Theorem 2 of the paper it is proved that the longest common balanced subsequence
of two trees is the balanced sequence of a maximum common embedded subtree of the
trees. The authors then give a recursive definition for the length of such a longest common
balanced subsequence between two trees s and t.

lcs(s, λ) = 0

lcs(λ, t) = 0

lcs(s, t) = max


lcs(head(s), head(t)) + lcs(tail(s), tail(t)) + 1

lcs(head(s) tail(s), t)

lcs(s, head(t) tail(t))

The empty balanced sequence is denoted by λ. An implementation of the above defin-
ition would dynamically cache lengths for balanced sequences while the recursion is in
progress.

This algorithm can be used for generating scores for matchings between subtrees as they are
needed by the matcher implementation in JDime (see Section 4.2).

2 BACKGROUND 7
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2.2.2 Move-Optimized Source Code Tree Differencing

In their 2016 paper Dotzler et al. contribute five general purpose optimizations for
tree matching algorithms [DP16]. These optimizations are aimed at reducing the num-
ber of edit actions needed to express the changes between revisions of a source code
file.

The optimization consist of one pre-processing step and four optimizations that may be ap-
plied after a tree matching algorithm produced a set of matchings. The pre-processing step
is what the authors call “Identical Subtree Optimization”. A fingerprint is calculated for
every subtree in both trees being matched. One of the trees is then traversed and if the fin-
gerprint of a subtree can be found in the other tree (and the fingerprints are unique in their
ASTs) matchings between all nodes of the subtrees are recorded.

One example of a post-processing step is the so called “LCS Optimization”. After the
actual matching algorithm ran, the matchings are examined by flattening the subtrees
whose roots were matched and applying the longest common subsequence (LCS) algorithm
to them. If there are pairs of unmapped nodes with the same label in the longest common
subsequence, the optimization step adds matchings between them.

The authors applied their optimizations to the tree matching algorithms used by three
different tools and found that the edit scripts could be shortened in all cases. JDime
includes a similar pre-processing step in the EqualityMatcher (see Section 4.2) but lacks
the post-processing steps. Overall JDime uses a more general approach to tree matching,
no optimizations or error corrections are performed after the matching in Algorithm 2 is
completed.

2 BACKGROUND 8



3 Flexible Tree Matching

A matching between two labeled trees L and R can be viewed as a bipartite graph between
the nodes of the trees. A classical measurement of the quality of such a matching is the
tree edit distance [Bil05]. The matchings are interpreted as operations transforming L into
R. A matching between nodes with a different label represents a renaming. Not matching
a node in L or R represents deletion and insertion respectively. Given a cost function for
every kind of operation one can define the tree edit distance as the minimum sum of costs
of an edit script transforming L into R.

In the 2011 paper submitted to the IJCAI1 by Kumar et al. the authors describe their
approach to the tree matching problem [Kum+11b]. They define a set of matchings M as
a subset of the complete bipartite graph G between the nodes of L∪ {⊗L} and R ∪ {⊗R}
with ⊗L and ⊗R representing additional no-match nodes. M must be chosen such that
every node from L ∪R is included in exactly one matching.

Classical tree matching algorithms have rigid requirements such as preservation of ancestry
(matching nodes l and r implies that descendants of l may only be matched to those of r)
and ordering of children. Flexible Tree Matching relaxes these requirements and introduces
a per-matching cost model that makes it possible to weigh the role of different attributes
of M to tune the results of the algorithm for approximating optimal matchings described
in Section 3.3.

Given a function c(m) calculating the cost of a matching m ∈ M , the problem of tree
matching is finding a set of matchings that minimizes the sum of the costs defined
as

c(M) =
1

|L|+ |R|
∑
m∈M

c(m).

In Section 5 of their paper Kumar et al. present a proof of the NP-completeness of
the decision problem "Does there exist a zero-cost flexible mapping between the trees?".
They formulate a polynomial-time reduction from 3-PARTITION [GJ75]. As therefore no

1url: http://ijcai.org/ (visited on 05/09/2016).
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polynomial-time algorithm for flexible tree matching can exist, the authors propose the
stochastic algorithm described in Section 3.3 of this document to approximate the optimal
set of matchings.

3.1 Cost Functions

To calculate c(m) the authors use four weights which are applied to quantities (costs) de-
scribing properties of a matching. For m = [l, r] they define c(m) as

c([l, r]) =

{
wn if l = ⊗L ∨ r = ⊗R

cr([l, r]) + ca([l, r]) + cs([l, r]) otherwise
.

The additional no-match nodes ⊗L and ⊗R were introduced to allow weighing the cost of
not matching a node using the weight wn. If m represents an actual match, three costs cr,
ca and cs, which are internally weighed using the corresponding wr, wa and ws weights,
are summed up.

The first summand cr(m) represents the cost of matching two nodes that have different
labels. The cost is defined to be 0 if the labels of l and r match, wr otherwise. Note that
this is the only cost function not requiring knowledge about the other elements of M to
be calculated.

The cost of violating ancestry relationships between the nodes in L and R is represented
by ca. This cost function examines the children of l and r to count the ones not being
matched to children of the opposite node. Let C(n) represent the children of a node and
M(n) the node that n is being matched with in the matchings M . The children violating
the ancestry relationship are then given by

VM(l) = {l′ ∈ C(l) | M(l′) ∈ R \ C(M(l))}

for a node in L and symmetrically for a node in R. Then we have

ca([l, r];M) = wa · (|VM(l)|+ |VM(r)|).

The cost cs penalizes matchings that do not preserve sibling relationships between the trees.
To calculate cs, the functions P (n) giving the parent of a node and S(n) = C(P (n)) (the
siblings of a node) are introduced. The authors then define the sets of sibling-invariant,

3 FLEXIBLE TREE MATCHING 10
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and sibling-divergent nodes. The former is the set of nodes in l’s sibling group that are
mapped to nodes in M(l)’s sibling group.

IM(l) = {l′ ∈ S(l) | M(l′) ∈ S(M(l))}

The latter is the opposite set of nodes in l’s sibling group that are not sibling-invariant
but do represent an actual match.

DM(l) = {l′ ∈ S(l) \ IM(l) | M(l′) 6= ⊗R}

Lastly the set of distinct parent families is given by

FM(l) =
⋃

l′∈S(l)

P (M(l′)).

All three terms are defined symmetrically for r. The sibling group breakup cost is then
calculated as

cs([l, r];M) = ws ·
(

|DM(l)|
|IM(l)| · |FM(l)|

+
|DM(r)|

|IM(r)| · |FM(r)|

)
.

3.2 Bounding the Cost Functions

The cost functions ca and cs and co (see Section 3.5.2) present a problem when searching
for an optimal set of matchings directly. To calculate the cost of a single matching, they
expect the other matchings to be present in the previously defined form, having exactly
one matching covering every node in the trees L and R. They can therefore not be used
for directly calculating an optimal set of matchings.

Kumar et al. describe an approach for bounding the values of ca and cs when presented
with a set G ⊂ L∪ {⊗L}×R∪ {⊗R} that may contain multiple elements covering a node
from L or R. The bounds are determined by two questions: “Is it possible that the cost is
incurred?” and “Is it unavoidable that the matching is penalized?”. The former informs
the upper bound, the latter the lower.

For ca two indicator functions are introduced which encode these questions. Whether it
is possible that a child will violate ancestry is defined as

1Ua (l
′, r) =

{
1 if ∃[l′, r′] ∈ G : r′ /∈ C(r) ∪ {⊗R}
0 otherwise

.

3 FLEXIBLE TREE MATCHING 11
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Whether an ancestry violation is guaranteed for a child l′ is given as

1La (l
′, r) =

{
1 if ¬∃[l′, r′] ∈ G : r′ ∈ C(r) ∪ {⊗R}
0 otherwise

.

These functions are defined symmetrically for children from the right tree being tested
against parents from the left (with the only change being the use of ⊗L instead of ⊗R). The
authors then define the upper and lower bounds for ca([l, r];M) as

Ua([l, r]) = wa ·

 ∑
l′∈C(l)

1Ua (l
′, r) +

∑
r′∈C(r)

1Ua (r
′, l)

 ,

and

La([l, r]) = wa ·

 ∑
l′∈C(l)

1La (l
′, r) +

∑
r′∈C(r)

1La (r
′, l)

 .

To bound cs, the sizes of all involved sets have to be bounded first. Define the other
siblings of a node n as S(n) = S(n) \ {n}. To bound the sizes of D(·), I(·) and F (·) for
a matching m = [l, r], the questions “Is it possible that a node is in the set?” and “Is a
node guaranteed to be in the set?” are encoded as indicator functions. Considering a node
l′ ∈ S(l) the authors define them as

1UD(l
′, r) =

{
1 if ∃[l′, r′] ∈ G : r′ /∈ S(r) ∪ {⊗R}
0 otherwise

,

1LD(l
′, r) =

{
1 if ¬∃[l′, r′] ∈ G : r′ ∈ S(r) ∪ {⊗R}
0 otherwise

,

and
UD([l, r]) =

∑
l′∈S(l)

1UD(l
′, r),

LD([l, r]) =
∑

l′∈S(l)

1LD(l
′, r).

To bound the invariant sibling set size |I(l)| similar indicators are defined:

1UI (l
′, r) =

{
1 if ∃[l′, r′] ∈ G : r′ ∈ S(r)
0 otherwise

,

3 FLEXIBLE TREE MATCHING 12
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1LI (l
′, r) =

{
1 if ∀[l′, r′] ∈ G : r′ ∈ S(r)
0 otherwise

,

and
UI([l, r]) = 1 +

∑
l′∈S(l)

1UI (l
′, r),

LI([l, r]) = 1 +
∑

l′∈S(l)

1LI (l
′, r).

As they appear in the denominator of the sibling cost calculation, the bounds for the
number of distinct sibling families are only relevant if the numerator is nonzero. In this
case the lower bound for |FM(l)| is 2 (as there is at least one divergent sibling having a
different parent than l) and the upper bound is LD(l, r) + 1.

All other quantities are defined symmetrically. The bounds for cs([l, r];M) are then given
as

Us([l, r]) =
ws

2
·
(
UD(l, r)
LI(l, r)

+
UD(r, l)
LI(r, l)

)
and

Ls([l, r]) = ws ·
(

LD(l, r)

UI(l, r) · (LD(l, r) + 1)
+

LD(r, l)

UI(r, l) · (LD(r, l) + 1)

)
.

The bounds for the cost of a matching are then the sum of all bounds and the renaming
cost cr.

cU(m) = cr(m) + Ua(m) + Us(e)

cL(m) = cr(m) + La(m) + Ls(m)

3.3 Approximating the Lowest Cost Matchings

The authors use the Metropolis algorithm to iteratively approximate an optimal set of
matchings [CG95]. To that end they define their objective function as

f(M) = exp[−β · c(M)].

The constant β is determined based on the size of the trees. It is responsible for scaling
the costs of two sets of matchings, in effect making it more or less likely that a set with
a higher cost will replace a comparatively cheaper set. Every iteration of the Metropolis
algorithm proposes a new set of matchings M̂ . This set becomes the new reference with

3 FLEXIBLE TREE MATCHING 13
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probability

α(M̂ | M) = min

(
1,
f(M̂)

f(M)

)
.

To initializeM the algorithm starts with the complete bipartite graph G and calculates the
cost bounds of all matchings. Then G is ordered by increasing bound and traversed. Every
matching is considered for assignment toM with a fixed probability p. After a matching is
chosen, it is fixed in G and assigned to M . Any other matchings that contain a node from
the fixed matching are then removed from G and the bounds of all matchings remaining
in G are then recalculated. Since there is now less variability in the matchings, the new
bounds can be calculated more accurately. This continues until only fixed matchings
remain in G. M is then returned.

Proposing a new set of matchings M̂ employs the same selection process used for initial-
ization. G is set to the complete bipartite graph and a random index j from [1, |M |] is
chosen. The first j matchings in M are then fixed. The rest of the matching is arrived at
using the same selection process as above.

Over all iterations, the set of matchings with the lowest cost is stored and returned in the
end.

3.4 Application

In the original paper, the implementation of the Flexible Tree Matching algorithm is
motivated by the goal of automatically retargeting Web pages [Kum+11b; Kum+11a].
The authors apply the algorithm to a segmentation of the DOM tree that represents the
visual structure of the Web pages. The matching between Web pages is used to guide the
transfer of content and design between them.

Kumar et al. tune the parameters of the cost model by having participants in a study
specify matchings between 52 unique pairs of page trees. Learning a consistent cost model
is complicated by the fact that humans do not produce identical mappings between pages.
Nevertheless, the algorithm was successfully used for prototyping of websites. The content
of an original website can be automatically retargeted to a number of different layouts
and styles.

3 FLEXIBLE TREE MATCHING 14
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3.5 Extensions

As this thesis applies Flexible Tree Matching to abstract syntax trees, the original approach
was extended in two main ways.

3.5.1 Weighting Functions

In the original paper the weighing of costs was performed by either multiplying some
quantity produced in the calculation of the cost by a weight, or returning the weight itself
as the cost. The former held for ca and cs while the latter was the case for cr and not
matching a node.

While the existing cost functions themselves were not modified, the weights were replaced
by weighting functions. In addition to the quantity that is being weighed (in the case
of ca and cs) the matching that is being evaluated is passed to the weighting function.
It may then be implemented as simple multiplication, ignoring the additional parameter,
but may also modify the given weight based on some attribute of the AST nodes being
matched. In the implementation described in Chapter 4 the cost of renaming for nodes
representing method or class declarations is lowered. Another use would be to eliminate
the ordering cost introduced in Section 3.5.2 when the order of the nodes being matched
is determined to be irrelevant.

3.5.2 Ordering Cost

Ordering is an important concern in ASTs. Though it may be unimportant for certain lan-
guage elements (such as method declarations in Java), for most levels of the tree ordering is
relevant. Keeping in theme with the original cost model, an additional cost term and weight-
ing function was introduced. The function co and its weight wo penalize matchings that
introduce an ordering which is being violated by other matchings.

A test whether a matching m1 = [l1, r1] violates the ordering introduced by another
matching m2 = [l2, r2] is needed to calculate co. To be able to compare all pairs of
matchings, the function LCA(x, y) is defined for nodes x and y from the same tree. The
function returns the lowest pair of ancestors of x and y that are part of the same sibling
group. Figure 3.1 shows the ancestors (marked by endpoints of red arrows) that would
be returned for calling LCA(B,C) and LCA(A,C) respectively.

3 FLEXIBLE TREE MATCHING 15
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R
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C
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Figure 3.1: The Lowest Common Ancestors

Let I(n) be the index of node n in its sibling group and LCA(l1, l2) = (la1, la2) and
LCA(r1, r2) = (ra1, ra2). If the order of all nodes in the sibling groups of la1 and ra1

is irrelevant, no ordering violation is possible. Otherwise the ordering violation test is
defined as

V O([l1, r1], [l2, r2]) =


I(ra1) > I(ra2) if I(la1) < I(la2)

I(ra1) < I(ra2) if I(la1) > I(la2)

false otherwise

.

Given a matching [l, r] ∈ M the matches containing siblings of l or r are examined.
SMM selects all relevant matches from M to compare them with the matching being
evaluated.

SMM([l, r]) = {[l′, r′] ∈M | (l′ ∈ S(l) ∧ r′ ∈ R) ∨ (l′ ∈ L ∧ r′ ∈ S(r))}

The cost function co can then be defined as

co(m;M) =

{
wo(m) ∃m′ ∈ SMM(m) : V O(m′,m)

0 otherwise
.

Figure 3.2 shows a set of matchings between the trees rooted in L and R. None of the
matchings represented by edges between the trees violate the ordering constraint imposed
by co even though the nodes B′, B′′, C ′, and C ′′ were introduced.
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Figure 3.2: A Correctly Ordered Set of Matchings

To bound the cost co(m;M) with Lo(m) and Uo(m) one has to answer two questions for
all siblings of the nodes l and r contained in m. Is it possible that a matching containing
one of the siblings will introduce an ordering violation? Secondly, is it unavoidable that
such a violation exists? As with the original bounding cost functions, the former question
determines the upper bound, and the latter the lower.

Let G be a subset of the complete bipartite graph between the nodes of L and R and
MSG(n) = {[l, r] ∈ G | l = n ∨ r = n} a function collecting all matchings contain-
ing n from G. Furthermore NM([l, r]) = l = ⊗L ∨ r = ⊗R determines whether a
matching represents a no-match. We can then determine whether a violation is possible
using

V PG([l, r]) = ∃s ∈ S(l) ∪ S(r) : ∃m ∈MSG(s) : ¬NM(m) ∧ V O(m, [l, r])

and whether ordering is possible with

OPG([l, r]) = ∀s ∈ S(l) ∪ S(r) : ∃m ∈MSG(s) : NM(m) ∨ ¬V O(m, [l, r]).

If ordering is not possible, we get Lo(e) = Uo(e) = wo(e), otherwise we set Lo(e) = 0 and
Uo(e) = wo(e) if a violation is possible, otherwise it is also zero.
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4 Implementation

The tool JDime1 was first introduced as part of the masters thesis by Olaf Leßenich in
[Leß12]. Chapter 4 of that thesis described the implementation of the tool. The key
goals of the design were adjustability and extensibility with the latter being particularly
important for this thesis.

JDime has the ability to first run an unstructured merge and switch to a structured merge if
the first attempt produced conflicts. Thereby the complexity of the merge strategy can be
adjusted to the complexity of the merge itself. The application was also designed to make
the implementation and integration of new algorithms relatively easy. This makes JDime
the ideal environment for executing and evaluating Flexible Tree Matching for abstract
syntax trees. The algorithm was therefore implemented as an additional tree-matcher for
JDime with the hope of improving the existing matching results.

4.1 Basic Datastructures

JDime makes heavy use of the type generics and inheritance features of the Java pro-
gramming language to enable merging of directory trees, and abstract syntax trees using
essentially the same code path. It is important to understand a few basic data structures
used in the program to get an overview of how a merge proceeds.

4.1.1 Artifact

The basic building block of the JDime architecture is the Artifact class. Most other
classes are parametrized with the specific type of Artifact that they deal with. An
Artifact represents (in the current JDime version) either a file in a directory tree or a
node in an AST.

1url: http://www.infosun.fim.uni-passau.de/se/JDime/ (visited on 12/09/2016).
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Artifact

+ Artifact(Revision)
+ getChildren() : List<T>
+ getParent() : T
+ isOrdered() : boolean
+ matches(Artifact) : boolean

T extends Artifact<T>

FileArtifact

+ FileArtifact(File)

ASTNodeArtifact

+ ASTNodeArtifact(FileArtifact)

Figure 4.1: The Artifact class structure

The tree structure is implemented generically in the base Artifact class shown in Fig-
ure 4.1. Most other classes, such as Merge, work with any kind of Artifact. This
opens up the possibility of using the same code for merging both directory trees and
abstract syntax trees. If one were to extend JDime for a different language than Java,
implementing a new Artifact representing a node in the new AST would be the first
step.

To produce an ASTNodeArtifact from a FileArtifact, a Java AST builder is required.
The decision was made to use ExtendJ2 (formerly known as JastAddJ). ExtendJ is an
extensible compiler that is based on the JastAdd3 meta-compilation system. In ExtendJ
an AST is built from nodes that are part of a Java class hierarchy, each representing
a different piece of the abstract syntax. This AST is wrapped in ASTNodeArtifact

instances.

For the Matcher that is described in Section 4.2 the methods isOrdered() and
matches(Artifact) are particularly important. The former is used to determine whether
the order of this artifact and its siblings is important when merging. For a concrete
ASTNodeArtifact representing an import statement this method would return false since
import statements may be given in any order in Java. On the other hand, the order of state-
ments within a method body must be taken into consideration. The matches(Artifact)

2url: http://jastadd.org/web/extendj/ (visited on 12/09/2016).
3url: http://jastadd.org/web/ (visited on 12/09/2016).
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method returns whether an Artifact can be considered equal to another Artifact irre-
spective of its children. One can consider the nodes of an artifact tree as being implicitly
labeled by their matches(Artifact) function.

4.1.2 MergeStrategy

The strategy pattern is used in JDime to select the general approach to merging a set of
inputs [Gam+96]. Using the -mode MODE command line option a strategy may be chosen.
All extensions of the abstract MergeStrategy class implement the MergeInterface and
can merge artifacts contained in a MergeOperation using the configuration options rep-
resented by the MergeContext. The three most used merge strategies are shown in
Figure 4.2.

The LineBasedStrategy simply passes the given input files to git merge-file4, collects
the output and uses it as the result of the merge. This strategy is used on its own for sanity
checking and to compare the runtime of a traditional unstructured merge to any other
approaches implemented in JDime. It is also the first stage of the CombinedStrategy.
Its main advantage is the low runtime when compared to the more complex algorithms
employed by the StructuredStrategy.

When using a StructuredStrategy, the input FileArtifact instances are converted to
ASTNodeArtifact trees. The strategy then employs the Merge class that is described in
Section 4.1.3 to merge the trees. The resulting combined tree is pretty-printed back to
source code and represents the result of the merge. Changes that would cause a conflict
using unstructured merging, such as changing the order of method declarations or imports,
can be detected by the StructuredStrategy [ALL12].

4url: https://git-scm.com/docs/git-merge-file (visited on 12/09/2016).
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�interface�
MergeInterface

+ merge(MergeOperation<T>, MergeContext)

T extends Artifact<T>

MergeStrategy

T extends Artifact<T>

StructuredStrategy

+ merge(MergeOperation<FileArtifact>, MergeContext)

LineBasedStrategy

+ merge(MergeOperation<FileArtifact>, MergeContext)

CombinedStrategy

+ merge(MergeOperation<FileArtifact>, MergeContext)

Figure 4.2: The MergeStrategy class structure

The CombinedStrategy implements the approach described in Chapter 4 that combines
unstructured and structured merging. First, a LineBasedStrategy is applied to check
whether the files are mergeable using traditional methods. If the LineBasedStrategy pro-
duces a merge result containing conflicts, a structured merge is then attempted using the
StructuredStrategy. By using the cheaper unstructured merge first, and only using the
structured strategy if it is necessary, the CombinedStrategy achieves less conflicts than the
LineBasedStrategy while being significantly faster than the StructuredStrategy. In an
evaluation involving 72 merge scenarios with more than 17 million lines of code it was meas-
ured to be 5 times faster on average than purely structured merging [ALL12].

There are also other, more specialized MergeStrategy implementations available. The
NWayStrategy for example implements a structured merge between an arbitrary number of
input files. A semistructured merge that uses unstructured merging for method bodies but
structured merging for the AST above the methods has also been implemented in JDime
as a proof of concept [Ape+11]. A full reference implementation, using superimposition

4 IMPLEMENTATION 21



Applying Flexible Tree Matching to Abstract Syntax Trees

of program structure trees, is included in FeatureHouse5.

4.1.3 Merge

The class Merge is used to merge Artifact trees. Depending on the number of input
artifacts either a three-way or a two-way merge is performed. In any case, the Matcher

that is described in detail in Section 4.2 is used to compare the necessary pairs of artifact
trees.

Algorithm 1: The General Merge Algorithm
Input: The artifact trees being merged as L, B, R
Output: The combined artifact tree

1 if B 6= null then
2 Match(L, B)
3 Match(B, R)
4 end

5 Match(L, R)

6 if AnyChildOrdered(L, B, R) then
7 return OrderedMerge(L, B, R)
8 else
9 return UnorderedMerge(L, B, R)

10 end

The call to Match determines the matchings between the trees and stores information
about the matching partner in the nodes of the trees. Then the children of L, B, and
R are examined to determine whether any of them are ordered. If that is the case,
an OrderedMerge is performed, otherwise an UnorderedMerge is used. In both cases
the concrete merge algorithm considers the direct children of the trees and executes add-,
delete-, merge-, or conflict-operations depending on the matchings. To merge the children’s
children the concrete merge functions again call the general merge function to determine
the correct approach and execute the merge.

4.2 Matcher

In the current implementation of the Matcher class that provides the Match method used
in Algorithm 1, a strategy similar to the one in the Merge class is used. The matching

5url: http://www.infosun.fim.uni-passau.de/spl/apel/fh/ (visited on 15/09/2016).

4 IMPLEMENTATION 22

http://www.infosun.fim.uni-passau.de/spl/apel/fh/


Applying Flexible Tree Matching to Abstract Syntax Trees

algorithm is implemented top down using a general method that, based on the attributes
of the artifacts being matched, decides which concrete matching algorithm to use. The
class structure surrounding the Matcher is shown in Figure 4.3.

To optimize the case where L and R are exactly the same, the EqualityMatcher is
used to provide the TrivialMatch function. Therein the trees are traversed in depth
first order and checked for exact equality. The EqualityMatcher will only return a
set of matchings if there are no differences between the trees. The complexity of the
EqualityMatcher is O(n) where n is the number of nodes in the smaller of both trees. In
contrast, the general matching may employ matchers like the HungarianMatcher which
has a O(n3) runtime where n is the maximum number of nodes in one of the trees being
matched.

Algorithm 2: The General Match Algorithm
Input: The artifact trees being matched as L, R
Output: The matchings between nodes of L and R

1 matchings ← TrivialMatch(L, R)

2 if matchings 6= null then
3 return matchings
4 end

5 if Matches(L, R) then
6 if AnyChildOrdered(L, R) then
7 matchings ← OrderedMatch(L, R)
8 else
9 matchings ← UnorderedMatch(L, R)

10 end
11 end

12 return matchings

If they do not trivially match, L and R are then compared using their matches(Artifact)
method. If they do not match, the algorithm returns no matchings, otherwise an appro-
priate strategy is chosen to produce a match between L and R based on a matching
between their children. The match will have an associated score indicating how many
of the children could be matched. All concrete implementations behind OrderedMatch

and UnorderedMatch need to match pairs of children of L and R to arrive at a fi-
nal match between the artifacts. For this purpose the general Match method is used
again.

For the unordered case, currently two implementations of UnorderedMatch exist. Firstly,
the HungarianMatcher, which constructs a matrix of matchings between all pairs of
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de.fosd.jdime.matcher

de.fosd.jdime.matcher.cost_model

de.fosd.jdime.matcher.ordered

de.fosd.jdime.matcher.unordered

�interface�
MatcherInterface

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>
Matcher

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>

CostModelMatcher

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>

OrderedMatcher

# matcher : MatcherInterface

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>

SimpleTreeMatcher

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>

UnorderedMatcher

# matcher : MatcherInterface

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>

EqualityMatcher

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>

SimpleTreeMatcher

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>

Figure 4.3: The Matcher class structure
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children of L and R, interprets the scores of the matchings as edge weights in a bipartite
graph between the two sets of children and then solves the assignment problem using the
Hungarian Method as described in [Kuh10].

If all nodes being matched have a string representation that is unique in their sib-
ling group (as is the case for example for import statements in the ExtendJ AST) a
UniqueLabelMatcher is used. This matcher sorts the children of both L and R by their
unique label and then iterates once over both lists simultaneously to find pairs of matching
children.

For ordered trees the SimpleTreeMatcher is used. The class implements a customized
version of Yang’s “Simple Tree Matching” [Yan91]. Yang generalized a longest common
subsequence algorithm to the problem of matching two trees. A matrix of similarity
scores between children of L and R is constructed by recursively using the Simple Tree
Matching algorithm on pairs of children. In JDime the recursive call is replaced by a
call to the general Match method from Algorithm 2. The runtime complexity of the
original implementation is in O(m · n) where m and n are the sizes of the trees L and
R.

4.2.1 Limitations

The Match method was designed to give an acceptable runtime without using heuristics to
match the trees. It solves the Largest Common Subtree-problem as opposed to the Largest
Common Embedded Subtree-problem. The former can be solved in P for both ordered
and unordered trees, while the latter is known to be NP-hard for unordered trees but is
also in P in the ordered case [ZSS92]. Unordered trees are the norm when working with
abstract syntax trees. Inherent in the design of the Match method are two limitations
which this thesis aims to improve upon.

If two nodes do not match, the algorithm aborts instead of comparing the subtrees.
Matchings between children of L and R are never considered. Let L and R represent
the declaration of the same method (in different revisions of a source code file) and their
children the statements within the method. If the only change between the revision were
the renaming of that method, then L and R themselves would no longer match, but all
their children would be exactly the same. In the current implementation of the Match

method, the renaming would not be detected and a conflict between the two methods
would be produced.
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Due to the concrete MatcherInterface implementations being used, only artifacts on the
same level in the overall ASTs can be matched. Certain plausible changes in the source
code, such as surrounding a number of lines with an if statement, however lead to a
portion of the AST moving down one or more levels. The nodes that were moved down
can not be matched to their counterparts in the other revision as they are no longer on
the same level.

Given well-formatted source code files, an unstructured merge would handle these cases
better than the current structured approach. The lines representing the method body (in
the renaming case) and the shifted code would be matched by the unstructured algorithm.
Producing useful matchings in these situations using a structured strategy is the current
development focus of JDime and the motivation for implementing Flexible Tree Matching
as an additional matching method.

4.3 Implementing Flexible Tree Matching

To extend the JDime matching capabilities a new class implementing the MatcherInterface
was added. The CostModelMatcher uses the cost model introduced in Chapter 3 and the
Metropolis algorithm to approximate an optimal set of matchings between AST nodes
[Kum+11b; CG95].

The main goal in adding the CostModelMatcher was to develop a way of generically dealing
with situations that the other matchers could not. In Flexible Tree Matching, all possible
pairs of nodes from the two trees may be considered as a matching. This makes it possible
to detect renaming of methods and classes as well as code that has been shifted in one tree.
The downside of this generalized approach is that less strict guarantees can be made about
the matchings. Ordering of siblings is the most striking example: the algorithm can only
be incentivized to respect the ordering in the matchings it chooses.

Flexible Tree Matching was introduced independently of implementation concerns in
Chapter 3. To achieve an acceptable runtime, several optimizations had to be made in
the implementation as a JDime matcher. As the algorithm does not share the limitations
described in Section 4.2.1 an increase in runtime over the previous combination of matching
algorithms was to be expected. The quality of matchings and the runtime of the algorithm
will be further discussed in Chapter 5.
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�interface�
MatcherInterface

+ match(MergeContext, T, T) : Matchings<T>

T extends Artifact<T>

CostModelMatcher

+ cost(MergeContext, Matchings<T>, T, T) : float
– cost(CMMatchings<T>, CMParameters<T>) : float
– cost(CMMatching<T>, CMMatchings<T>, CMParameters<T>) : float
– boundCost(CMMatchings<T>, CMParameters<T>) : float
– boundCost(CMMatching<T>, CMMatchings<T>, CMParameters<T>) : float
+ match(MergeContext, T, T) : Matchings<T>
+ match(MergeContext, T, T, Matchings<T>) : Matchings<T>
– initialize(CMMatchings<T>, CMParameters<T>) : CMMatchings<T>
– propose(CMMatchings<T>, CMMatchings<T>, CMParameters<T>) : CMMatchings<T>
– complete(CMMatchings<T>, CMParameters<T>) : CMMatchings<T>
– objectiveVal(CMMatchings<T>, CMParameters<T>) : float
– acceptanceProb(CMMatchings<T>, CMMatchings<T>, CMParameters<T>) : float

T extends Artifact<T>

Figure 4.4: The CostModelMatcher class.

The most important methods used to implement Flexible Tree Matching as a
MatcherInterface are shown in Figure 4.4. The class provides three public methods.
The match(MergeContext, T, T) method is mandated by the interface and returns a
set of matchings between nodes of the two given trees. An overloaded version of this
method adds an additional parameter to specify a set of matchings that were fixed be-
forehand. This version of the match(MergeContext, T, T) method will only add match-
ings between nodes that were not matched in the previously fixed matchings. This de-
tail has been elided from the following pseudocode algorithms to improve readability.
cost(MergeContext, Matchings<T>, T, T) is provided to easily calculate the cost of a
set of matchings. This is used primarily for comparing the results of classical matchers to
those of the CostModelMatcher.

The cost model itself is implemented as two sets of functions which are used internally
by the match(...) method. The private version of cost(...), shown as pseudocode in
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Algorithm 3: The Exact Cost Functions
1 Function Cost(Matchings) is
2 if IsEmpty(Matchings) then
3 return 0
4 end

5 sum ← 0

6 for M ← Matchings do
7 sum ← sum + Cost(M, Matchings)
8 end

9 lSize ← TreeSize(Matchings.L)
10 rSize ← TreeSize(Matchings.R)

11 return sum ∗ 1
lSize+rSize

12 end

13 Function Cost(Matching, Matchings) is
14 if IsNoMatch(Matching) then
15 return NoMatchCost(Matching)
16 end

17 cr ← RenamingCost(Matching, Matchings)
18 ca ← AncestryViolationCost(Matching, Matchings)
19 cs ← SiblingGroupBreakupCost(Matching, Matchings)
20 co ← OrderingCost(Matching, Matchings)

21 return cr + ca + cs + co
22 end
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Algorithm 3, calculates the exact cost of a set of matchings based on the currently set
weights. It expects that for every node of the two trees, exactly one matching including this
node exists. The boundCost(...) function is implemented analogously to Algorithm 3.
It however assumes that there may be more than one matching containing a given node
from one of the trees and therefore can only determine a lower and upper bound for ca, cs
and co.

It should also be noted that the specific ordering cost function from Section 3.5 has been
added to both the exact and bounded cost functions.

The specific cost functions also implement the modification to the weighting mechanism
introduced in Section 3.5.1. When a quantity is being weighed it is not simply multiplied
by a weight but passed (along with the matching for which the cost is being computed) to
a weighting function. This function may be implemented as multiplication but it may also
be more complex. The weighting function for the cost of renaming is implemented in such
a way that method and class declarations are cheap to rename.

Two main measures were taken to improve the practical runtime of the algorithm. As the
calculation of the exact, as well as the bounded cost of an edge only requires read access to
the state of the CostModelMatcher, both the cost(...) and boundCost(...) functions
are executed in parallel for every matching in the set that is being evaluated. Thanks
to the Stream class that was introduced in Java 8, this feature was easily implemented.
Additionally a cache was used to store the results of some computations that are needed
by several of the specific cost functions. In the case of the boundCost function both the
ca and cs calculations need to find all matchings containing a given node. This result can
be cached. The necessary synchronization on the caches is handled by the Java standard
library class ConcurrentHashMap.

The speed of the algorithm is mainly dependant on how often the function
SortByBoundedCost in Algorithm 4 is executed. This means that the version of match(...)
that pre-fixes some matchings can return quicker the more matching are fixed before-
hand.

4.3.1 Approximating Optimal Matchings

The match(...) method is implemented using the customized Metropolis approach from
Section 3.3. The pseudocode in Algorithm 4 shows a simplified version of the actual
implementation. The main Match function first chooses an initial set of matchings (by
invoking Complete with an empty set of fixed matchings). Then the Metropolis algorithm
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with the configured number of iterations is performed. Each consists of proposing a new
set of matchings, calculating the acceptance probability for the new set and then accepting
or rejecting it. Over all iterations the set of matchings with the lowest cost is saved and
returned in the end.

To propose a new set, a random portion of the previous matchings is fixed and then
completed to a set that satisfies the constraint that for every node in the left and right
tree there is exactly one matching containing that node. Such a set can be passed to
AcceptanceProb which uses Cost and the objective function described in Section 3.3 to
determine the chance of accepting the matchings.

Crucial to the quality of the matchings that result from a run of the match(...) function
is how Complete is implemented. The algorithm starts with the complete bipartite graph
between the two trees. The matchings making up the graph are randomly shuffled to
prevent any bias resulting from the iteration order. From this set all matchings are pruned
that are not part of fixed_matchings but contain an artifact that is part of a matching in
fixed_matchings. Then a loop is executed that runs until for each node in the trees only
one matching remains that contains the node.

In each iteration of the loop, the bounded costs for all remaining matchings in the current
subset of the bipartite graph are calculated and the matchings are sorted by their lower
(and then upper) bound. Then a matching (that has not previously been fixed) is chosen
from this list. To find a matching to fix, the authors of the original paper describe
traversing the list in order of increasing bound and considering each matching with a fixed
probability p. To avoid this iteration a probability distribution with probability mass
function P (X = k) = p · (1− p)k is sampled using the inversion method until a valid index
into the remaining matchings is found. This method ensures that less costly matchings are
more likely to be fixed as they have a lower index in the sorted list.

4.3.2 Integration

Several options exist for integrating the CostModelMatcher into JDime. The most naive
way of using it is to replace the previous matchers entirely as the CostModelMatcher

should theoretically be able to deal with all situations that they covered. This however
forces JDime to use Flexible Tree Matching even in situations that are not complicated
enough to warrant the complexity of the Flexible Tree Matching algorithm. One such
case is the sanity check of matching a tree with itself. In this case the CostModelMatcher
has the same runtime as with any other pair of trees. This is unacceptable compared
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Algorithm 4: The Approximation Algorithm for Optimal Matchings
1 Function Match(L, R) is
2 matchings ← Initialize(L, R)
3 lowest ← matchings

4 for i← 0; i < number_iterations; i← i+ 1 do
5 next_matchings ← Propose(matchings)

6 if Chance(AcceptanceProb(matchings, next_matchings)) then
7 matchings ← next_matchings
8 end

9 if Cost(next_matchings) < Cost(lowest) then
10 lowest ← next_matchings
11 end
12 end

13 return lowest
14 end

15 Function Propose(matchings) is
16 index ← RandomInt(Length(matchings))
17 fixed ← Sublist(matchings, index)

18 return Complete(fixed)
19 end

20 Function Complete(fixed_matchings) is
21 current ← Bipartite(fixed_matchings.L, fixed_matchings.R)
22 fixed ← Copy(fixed_matchings)

23 PruneAll(current, fixed)

24 while Length(fixed) 6= Length(current) do
25 SortByBoundedCost(current)

26 fixable ← RemoveAll(Copy(current), fixed)
27 to_fix ← Get(fixable, SampleInt(Length(fixable)))

28 Add(fixed, to_fix)
29 Prune(current, to_fix)
30 end

31 return fixed
32 end
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to the minimal runtime of the EqualityMatcher that dealt with this situation previ-
ously.

To minimize the amount of edges the CostModelMatcher has to consider, but still use it
to improve the quality of matchings, two approaches were implemented. One is to use
the CostModelMatcher as a post processing step over the matchings that were produced
by the classical matchers. To that end the pre-fixing capability described in Section 4.3
is used. All classical matchings are fixed and the CostModelMatcher is used to try and
match the previously unmatched nodes.

The second approach is to use the CostModelMatcher during the execution of the classical
matchers (see Algorithm 2) whenever a subtree was not fully matched. A threshold
was implemented to determine how little of the subtree has to be matched for the
CostModelMatcher to become active. If using the CostModelMatcher leads to more
nodes being matched, its matchings are returned instead of those of whatever concrete
matcher was chosen.

These options are compared and evaluated in Chapter 5.
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5 Evaluation

The success of the addition of the CostModelMatcher to JDime is evaluated using a
set of test cases that contain situations in which JDime hopes to improve the merge
results over unstructured tools. Different JDime configurations are used to produce sets of
matchings for these scenarios. For each test case, an optimal set of reference matchings was
constructed by hand if the classical matcher could not produce it.

To compare the sets of matchings against the reference, the Jaccard similarity coefficient
is used. For two sets A and B it is defined as J(A,B) = 1 if both A and B are empty,
otherwise it is

J(A,B) =
|A ∩B|
|A ∪B|

.

For every configuration, the similarity of the matchings to the reference, and the runtime
of the configuration, are contrasted.

5.1 Setup

Four configurations of JDime (as introduced in Section 4.3.2) will be compared. The
names defined in Table 5.1 are used to refer to the configurations in the rest of this
chapter.

Table 5.1: The JDime Configurations

Name Description

C1 The JDime matchers without the addition of the CostModelMatcher. This
provides the baseline this thesis hopes to improve upon.

C2 The CostModelMatcher as a replacement of the classical matchers.
C3 The CostModelMatcher as a post-processing step after the classical matchers.
C4 The CostModelMatcher as an integrated component of the Match method from

Algorithm 2.
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5.1.1 Merge Tasks

Six merge tasks were constructed to test the effectiveness of Flexible Tree Matching in
C2 to C4 compared to C1. Most were deliberately chosen to exhibit weaknesses of the
previous JDime matchers.

The MovedMethod task in Listing 5.1 shows the strength of structured merging. Traditional
unstructured tools produce a conflict when faced with the reordering of methods in a class.
In the AST, this change is represented by the reordering of the children of the nodes
representing the class declaration. JDime can deal with this situation by performing un-
ordered matching. This test case is included to determine whether the CostModelMatcher
can handle reordering as well, specifically since the ordering cost co was added in such a
way that it should not punish edges in this case.

1 public class MovedMethod {
2

3 private void foo() {
4 System.out.println("Hallo");
5 }
6

7 public int bar() {
8 return 42;
9 }

10 }

1 public class MovedMethod {
2

3 public int bar() {
4 return 42;
5 }
6

7 private void foo() {
8 System.out.println("Hallo");
9 }

10 }

Listing 5.1: Merge Task 1: MovedMethod

The first limitation described in Section 4.2.1 is exemplified by the test case in Listing 5.2.
The renamed methods can not be matched by JDime since the method declaration nodes
have different labels. Matching stops at the declaration nodes and the trees representing
the bodies of the methods are never examined. Using Flexible Tree Matching, the hope is
to match the method declaration nodes and all their children.

In Listing 5.3 a code fragment was surrounded with a for-loop construct. In the AST,
this means adding several layers of nodes representing the loop before the subtree of the
surrounded fragment occurs. A challenge here is that the loop, as well as the surrounded
fragment contain a variable assignment producing a similar AST.

Listing 5.4 represents a similar problem as Listing 5.3 does, however with the added com-
plexity of the catch block. The CostModelMatcher is expected to match the surrounded
code but not the additional nodes of the surrounding construct.
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1 public class RenamedMethod {
2

3 int getAnswer() {
4 return 42;
5 }
6 }

1 public class RenamedMethod {
2

3 int getResult() {
4 return 42;
5 }
6 }

Listing 5.2: Merge Task 2: RenamedMethod

1 public class SurroundWithLoop {
2

3 public boolean isOnline() {
4 boolean online = false;
5

6 online = check();
7

8 return online;
9 }

10

11 public boolean check() {
12 return true;
13 }
14 }

1 public class SurroundWithLoop {
2

3 public boolean isOnline() {
4 boolean online = false;
5

6 for (int i = 0; i < 5; i++) {
7 online = check();
8 }
9

10 return online;
11 }
12

13 public boolean check() {
14 return true;
15 }
16 }

Listing 5.3: Merge Task 3: SurroundWithLoop

1 public class SurroundWithTry {
2

3 public void doSmth() {
4 String s = ex();
5 }
6

7 private String ex() {
8 throw new RuntimeException();
9 }

10 }

1 public class SurroundWithTry {
2

3 public void doSmth() {
4 try {
5 String s = ex();
6 } catch (RuntimeException e) {
7 e.printStackTrace();
8 }
9 }

10

11 private String ex() {
12 throw new RuntimeException();
13 }
14 }

Listing 5.4: Merge Task 4: SurroundWithTry
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In Listing 5.5 the left lines 7 and 8 are surrounded by another common construct, the if
block. Matching the surrounded code fragment is complicated by the addition of the right
line 12 whose AST has a similar structure and is on the same level as the one contributed
by the left line 8.

1 import java.util.List;
2

3 public class ShiftedCode {
4 public List<String> l;
5

6 public int firstLength() {
7 String s = l.get(0);
8 return s.length();
9 }

10 }

1 import java.util.List;
2

3 public class ShiftedCode {
4 public List<String> l;
5

6 public int firstLength() {
7 if (l != null) {
8 String s = l.get(0);
9 return s.length();

10 }
11

12 return 0;
13 }
14 }

Listing 5.5: Merge Task 5: ShiftedCode

In addition to these five merge tasks a test case in which an AST is matched against itself
was added to act as a sanity check. This case will be labeled as Sanity.

5.1.2 Parameters

To generate optimal matchings, the Flexible Tree Matching algorithm requires a domain
specific configuration via its parameters. The weights wn, wr, wa, ws and wo have a major
influence on the matchings the algorithm produces. Other than that, the parameters that
have to be fixed are the fixing probability p in SampleInt of Algorithm 3, the scaling factor
β in the objective function of the Metropolis algorithm, and the number of iterations to
run when approximating optimal matchings.

In Section 8 of their paper Kumar et al. describe their approach to learning a cost model
that produces mappings with desirable characteristics for their use case. They set up a
number of reference matchings and then use the generalized perceptron algorithm to learn
weights that minimize the cost of these matchings. The weights that were used to generate
the results in Section 5.2 were learned using a different technique.
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Given the reference matchings described in the previous section, the Jaccard index provides
a convenient way of calculating the quality of a set of matchings. A fitness function was
defined as the average similarity (over all test cases) of the results of the standalone
CostModelMatcher and the reference matchings. This fitness function takes as an input
the weights to use for producing matchings. For a single chromosome of five values from
the range [0, 1] corresponding to the weights, the fitness function was maximised using an
evolutionary algorithm provided by the Jenetics1 library. After 100 generations, the cost
model wr = 0.7, wn = 0.9, wa = 0.45, ws = 0.30, and wo = 0.95 was chosen. Increasing
the generation count did not result in a better average fitness.

As in the original paper, p was set to 0.7. Recall that, when completing a subset of the
complete bipartite graph to a set of matchings in which every node is covered by exactly
one element, the probability of fixing the matching at index k is P (X = k) = p · (1− p)k.
Choosing p as 0.7 leads to matchings being chosen that have very low bounds, as these
make up the lower indices of the available matchings.

The parameter β was fixed at 30 since all involved trees have a similar size. This choice
leads to the probability of accepting a significantly higher cost set of matchings (for the
merge tasks being considered) being under 40%. Kumar et al. do not mention how they
arrived their choice for β, only that it is determined based on the size of the trees. An AST
specific function for calculating β may be a topic of future work.

The Metropolis algorithm was configured to perform 200 iterations. For their use case, Ku-
mar et al. used 100 iterations. For the merge tasks being evaluated, an increase in matching
quality was observed by using 200 (but not more) iterations.

5.2 Results

The results were gathered on a machine equipped with an Intel Core i7-4790 clocked at
3.60 GHz with 16 GiB of RAM available. Table 5.2 shows the runtimes of the different
configurations for the test cases. As the application is running multithreaded inside the
Java Virtual Machine, the runtimes were averaged over 20 runs.

Table 5.3 contains the similarity of the matchings that the configurations produced to the
reference matchings. The similarity is calculated by taking the aforementioned Jaccard
coefficient.

1url: http://jenetics.io/ (visited on 15/09/2016).
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Table 5.2: The Runtime Results in Milliseconds

# Merge Task C1 C2 C3 C4

1 MovedMethod 1.15 5,191.10 0.50 301.60
2 RenamedMethod 0.15 1,119.50 232.95 369.95
3 SurroundWithLoop 0.40 14,111.05 542.10 457.75
4 SurroundWithTry 0.30 11,900.75 600.15 1,153.60
5 ShiftedCode 0.25 12,909.45 699.90 2,657.85
6 Sanity 0.25 12,056.30 0.25 0.20

Table 5.3: The Similarity Results

# Merge Task C1 C2 C3 C4

1 MovedMethod 100.00% 80.85% 100.00% 100.00%
2 RenamedMethod 47.83% 100.00% 100.00% 100.00%
3 SurroundWithLoop 90.20% 92.45% 100.00% 90.20%
4 SurroundWithTry 78.72% 91.84% 95.83% 88.00%
5 ShiftedCode 58.82% 84.91% 92.16% 96.00%
6 Sanity 100.00% 84.75% 100.00% 100.00%

5.3 Discussion

The aim of this thesis was to evaluate whether Flexible Tree Matching could be applied
to abstract syntax trees and improve the tree matching capabilities of JDime. With the
data collected in Tables 5.2 and 5.3, this section will evaluate the increase in matching
performance over the classical matchers and examine where the various configurations of
the CostModelMatcher failed to produce optimal matchings. See Table 5.1 for a detailed
description of the configurations.

5.3.1 Configuration C1

The first column of Table 5.3 shows, as expected, that the old JDime matchers do not
match the test cases, except MovedMethod and the sanity check, properly. In case 2, the
reference matches the whole left AST to its right counterpart. C1 only manages to match
the nodes above the method declaration. For cases 3 to 5 the old matchers also match
the upper levels of the ASTs but can not match the surrounded code pieces lower in the
tree. C1 still achives relatively high scores since the surrounded fragments only account
for a small piece of the AST. The sanity test of matching a tree against itself is of course
passed by the old matchers.
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Even though C1 does not come close to the reference matchings for cases 2 to 5, it
fails fast. The early exit when two nodes do not match in their label leads to very low
runtimes. Case 6 is matched by the EqualityMatcher which produces the expected
matching after one traversal of both trees simultaneously. Only case 1 has a slightly
longer runtime as an unordered match on the level of the method declarations must be
performed.

5.3.2 Configuration C2

In C2 the CostModelMatcher is used as a replacement of the classical matchers. This leads
to the expectedly large increase in runtime. Without the restrictions leading to an early
exit in the old matchers, the runtime of the CostModelMatcher is mostly determined by
the size of the trees and the number of iterations performed. As the latter stays constant
at 200, the C2 column of Table 5.2 reflects the size of the ASTs representing the test cases.
Notably the Sanity case, representing the easiest possible matching scenario, takes as
much time as the similarly sized cases 3 to 5.

With the increased runtime also comes an increase in the quality of the matchings. The
difficult cases 2 to 5 are all handled better than in C1. The CostModelMatcher even
produces perfect matchings for the RenamedMethod merge task. The fact that cases 1 and
6 are not matched perfectly exposes a fundamental difficulty in matching ExtendJ ASTs.
They contain a lot of small and similar subtrees. An empty list of method parameters
produces the same structure as an empty list of visibility modifies on a field. When
multiple of these small subtrees occur in the trees being matched, the CostModelMatcher
tends to confuse them as they have the same labels and structure. Often the ancestry
and sibling weights that lead to good matches in a situation like case 2 allow mismatching
these small subtrees.

5.3.3 Configuration C3

Configuration C3 suffers a lot less from this problem. All cases except 4 and 5 are handled
perfectly and the two suboptimal cases are matched better than with C2. In case 2, one
of the mentioned empty lists is mismatched. Case 5 is more interesting. In this case, the
old matchers that run before the CostModelMatcher match the return statement in line
12 of the right side with the one in line 8 of the left side. This matching is fixed and the
CostModelMatcher is unable to veto the decision even though matching lines 8 and 9 of
the left and right sides would produce a lower cost matching.
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In addition to the quality of the matchings, the runtime is also improved. As mentioned,
the less nodes need to be considered, the faster the algorithm runs. As the old matchers
match a large portion of the AST, the post processing CostModelMatcher runs a lot
faster. A major upside is that in cases where the old matchers suffice (cases 1 and 6), the
CostModelMatcher adds no additional runtime.

5.3.4 Configuration C4

Configuration C4 represents an attempt at remedying the vetoing problem mentioned in
Section 5.3.3. The CostModelMatcher is used to try and improve the matchings returned
by one of the older matchers if they are below a certain quality threshold. In the current
implementation, this threshold is fixed, causing case 5 to be improved while cases 3 and 4
are not improved as much over C1 as they are in C3. In case 5, the erroneous matching of
the return statement is remedied using C4.

The runtime here depends on the threshold. If it is chosen to high, the recursive structure
of the Match algorithm in combination with the classical matchers may lead to many calls
to the CostModelMatcher. With the threshold chosen for C4, the runtime stayed within
acceptable limits.

5.3.5 Summary

Without further optimization, the CostModelMatcher should not be used as a standalone
matcher for ASTs. Configuration C2 shows an increase in runtime that is to large to
make it useful. The strengths of the CostModelMatcher lie in matching difficult sub-
trees in isolation after the obvious matchings were produced by the classical match-
ers.

Barring a better selection criterion than a static threshold, configuration C3 should be
used. Future work may improve upon the integration of the CostModelMatcher into the
Match algorithm, as now the results and runtime of C4 are too unpredictable to be used.
If C4 can be better integrated, it may become preferable over C3 as it solves the vetoing
problem inherent in it.
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6 Conclusions and Future Work

In this thesis a working implementation of Flexible Tree Matching was added to the
structured merge tool JDime. To successfully apply the algorithm to abstract syntax trees,
a new cost term was introduced and the weights of the cost model were adjusted. By
learning appropriate weight factors and weighing matchings of certain types differently,
the matching of previously difficult scenarios was improved.

However, applying the Flexible Tree Matching algorithm incurred significant performance
costs. These costs were partially mitigated using caching and parallelization techniques.
One focus of future work may be to further optimize the matching process. Not only in
terms of making the CostModelMatcher faster but also by applying it more efficiently (e.g.
by pre-fixing a greater number of matchings).

Furthermore, while the weights wn, wr, wa, and ws were tuned, other parameters of
the Flexible Tree Matching algorithm remain. The number of iterations is a significant
factor in the performance of the algorithm. Determining what the minimal value is that
still produces acceptable matchings would be a valuable contribution. To that end other
proposition strategies may be evaluated. One could try and use the exact cost of the
edges from the last iteration to select a better set than the first j for the next iteration.
In addition to that, the parameter p that determines the probability of fixing an edge in
Algorithm 4 (by way of SampleInt) may also have an influence on the required number
of iterations. Another open question is a way of determining an appropriate value for β
in the objective function of the Metropolis algorithm.

The pre-fixing of edges between the trees being matched had a significant, positive effect
on the runtime of the matcher. There were however situations in which the pre-fixing of
edges had a negative effect on the quality of the matchings. A way of vetoing pre-fixed
edges when significantly better alternatives exist while retaining the runtime advantages
would also be a valuable contribution to the CostModelMatcher.
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