
C H A N G E - R E G I O N D E T E C T I O N I N L LV M

florian niederhuber

master thesis

Chair of Software Engineering
Faculty of Computer Science and Mathematics

University of Passau

Advisor: Florian Sattler, M.Sc.

Supervisor: Prof. Dr.-Ing. Sven Apel

2nd corrector: Prof. Christian Lengauer, Ph.D.

February 2018



Florian Niederhuber: Change-Region Detection in LLVM , © February 2018



A B S T R A C T

Code changes are an essential part in the life cycle of a software,
whether the program is still under development or already shipped
to the customer. Regardless whether such a modification introduces a
new feature, prevent errors, or solve compatibility issues, each change
can have a major impact on the rest of the software (e.g., functionality,
performance, ...). Depending on the level of experience of the devel-
oper performing the change, the developer can notice or miss the
potential impact on the behavior of the program. This may lead to
unexpected problems for users and other developers.

In order to support the developer, we aim to provide a way to an-
alyze changes in a software repository, completely transparent to the
developer and, more importantly, in a language independent manner.
We propose a tool-chain to identify, organize, and analyze changes,
based on the meta-data extracted using Git. To this end, we annotate
the source-code of the software and use these annotations during the
compilation process. Furthermore, we provide ideas and an actual
implementation how to use the annotated regions for analyses and
describe how we integrated our approach in the Variablility-aware
Region Analyzer (VaRA) and in the compiler framework LLVM.

We used our analyses to infer relations among instructions to detect
control-flow and data-flow interactions among commits for a hand-
written example and the open-source software GNU zip (gzip). More-
over, we discuss the results of the evaluation and present our findings.

iii





A C K N O W L E D G M E N T S

I would first like to thank my family and my girlfriend who have
always believed in me and encouraged me during my years of study.
Furthermore, I would like to thank my friends for having an open
ear when I needed one. Especially, I would like to thank my advisor
Florian Sattler who consistently allowed this paper to be my own
work, but steered me in the right direction. Another special thanks
goes to Stefan Löwe who provided me with very valuable comments
on this thesis.

v





C O N T E N T S

1 introduction 1

1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 background 3

2.1 Control-Flow Graph and Data-Flow Analysis . . . . . . 3

2.1.1 Control-Flow Graph . . . . . . . . . . . . . . . . 3

2.1.2 Data-Flow Analysis . . . . . . . . . . . . . . . . 4

2.2 LLVM Compiler Framework . . . . . . . . . . . . . . . . 5

2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 LLVM Intermediate Representation . . . . . . . 7

2.2.3 Compiler Front-End clang . . . . . . . . . . . . . 9

2.2.4 Optimization Pass . . . . . . . . . . . . . . . . . 12

2.2.5 Variability-Aware Region Analyzer . . . . . . . 14

2.3 Git a Revision Control System . . . . . . . . . . . . . . 16

3 region detection and annotation 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Introducing SC-R to clang . . . . . . . . . . . . . . . . . 20

3.2.1 General Approach . . . . . . . . . . . . . . . . . 20

3.2.2 SC-R Keywords . . . . . . . . . . . . . . . . . . . 20

3.2.3 Parse SC-R . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Processing . . . . . . . . . . . . . . . . . . . . . . 23

3.2.5 Emit IR-R . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.6 Process IR-R . . . . . . . . . . . . . . . . . . . . . 25

3.3 Automated Annotation of SC-R using Git . . . . . . . . 26

3.3.1 Tag-group-based Annotation . . . . . . . . . . . 28

4 evaluation 31

4.1 Change-Region Based Analysis . . . . . . . . . . . . . . 31

4.1.1 Control-Flow Analysis . . . . . . . . . . . . . . . 31

4.1.2 Data-Flow Analysis . . . . . . . . . . . . . . . . 34

4.1.3 Report Pass . . . . . . . . . . . . . . . . . . . . . 34

4.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Graph Visualization . . . . . . . . . . . . . . . . 37

4.2.2 Interaction Plot . . . . . . . . . . . . . . . . . . . 39

4.2.3 Whole Program LLVM . . . . . . . . . . . . . . . 39

4.2.4 Repository Preperation . . . . . . . . . . . . . . 40

4.3 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Hand-Crafted Example Program . . . . . . . . . 41

4.3.2 GNU Zip . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Experiment 1 - Calculator . . . . . . . . . . . . . . . . . 42

4.4.1 Addressing RQ1.1 . . . . . . . . . . . . . . . . . 46

4.4.2 Addressing RQ1.2 . . . . . . . . . . . . . . . . . 47

vii



viii contents

4.4.3 Addressing RQ2 . . . . . . . . . . . . . . . . . . 48

4.5 Experiment 2 - Gzip . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Addressing RQ1.1 . . . . . . . . . . . . . . . . . 49

4.5.2 Addressing RQ1.2 . . . . . . . . . . . . . . . . . 50

4.5.3 Addressing RQ2 . . . . . . . . . . . . . . . . . . 50

5 conclusion 53

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 54

a appendix : code 57

a.1 Module Pass Example . . . . . . . . . . . . . . . . . . . 57

a.2 Hand Crafted Example . . . . . . . . . . . . . . . . . . . 57

bibliography 61



L I S T O F F I G U R E S

Figure 1 Control-flow graph of an example program. . 4

Figure 2 Three-layer architecture of LLVM [11]. . . . . . 6

Figure 3 Region detection and annotation work-flow. . 20

Figure 4 The work-flow depicting the general approach
to convert SC-R to IR-R. . . . . . . . . . . . . . . 20

Figure 5 The graph visualization of the functions "foo"
and "bar". . . . . . . . . . . . . . . . . . . . . . . 38

Figure 6 The call-graph visualization based on regions. 38

Figure 7 An overview depicting the control flow, data
flow, and call relations between functions and
regions. . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 8 Interaction-quantity bar charts, control-flow based
on the left and data-flow based on the right. . 40

Figure 9 Overview graph of the sample application "Cal-
culator". . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 10 Interaction plot based on the control flow of
the hand crafted example. . . . . . . . . . . . . 44

Figure 11 Interaction plot based on the data flow of the
hand crafted example. . . . . . . . . . . . . . . 45

Figure 12 Graph illustrating the analyses results for the
main function. . . . . . . . . . . . . . . . . . . . 46

Figure 13 Graph representation of the analyses results
for the zip function. . . . . . . . . . . . . . . . 50

Figure 14 Interaction plot based on the control flow of gzip. 52

L I S T O F TA B L E S

Table 1 Table mapping regions to an abbreviated version. 49

Table 2 List of commits 9 to 5 from the hand-crafted
example. . . . . . . . . . . . . . . . . . . . . . . 59

Table 3 List of commits 4 to 1 from the hand-crafted
example. . . . . . . . . . . . . . . . . . . . . . . 60

ix



L I S T I N G S

Listing 1 "Hello World" example in LLVM intermediate
representation (LLVM-IR). . . . . . . . . . . . . . 8

Listing 2 "Hello World" example in LLVM-IR with meta-
data annotations. . . . . . . . . . . . . . . . . . 9

Listing 3 Example C code. . . . . . . . . . . . . . . . . . . 10

Listing 4 Example code in abstract-syntax-tree (AST) form. 10

Listing 5 Example of a new keyword introduced to clang. 11

Listing 6 C source-code and corresponding LLVM-IR Ex-
ample. . . . . . . . . . . . . . . . . . . . . . . . . 12

Listing 7 LLVM optimizer command example. . . . . . . 14

Listing 8 Output of the Git annotate function on a file
from the LLVM repository. . . . . . . . . . . . . 16

Listing 9 Add and list tags in the Git repository. . . . . . 17

Listing 10 C example with SC-R. . . . . . . . . . . . . . . . 21

Listing 11 Syntax validation issue. . . . . . . . . . . . . . 22

Listing 12 Context-dependent keyword issue. . . . . . . . 22

Listing 13 Simplified output of git-annotate. . . . . . . . 27

Listing 14 Resulting source file after annotation is finished. 27

Listing 15 Annotated multi-line macro in C. . . . . . . . . 28

Listing 16 Grouping git tags for annotation. . . . . . . . . 29

Listing 17 Example report in YAML Ain’t Markup Lan-
guage (YAML) format, containing string map-
pings. . . . . . . . . . . . . . . . . . . . . . . . . 35

Listing 18 Example report in YAML format, containing anal-
ysis information. . . . . . . . . . . . . . . . . . . 36

Listing 19 Part of the main function from the hand-crafted
example. . . . . . . . . . . . . . . . . . . . . . . 47

Listing 20 Part of the zip function from gzip. . . . . . . . 51

Listing 21 Example of a ModulePass in LLVM. . . . . . . . 57

Listing 22 Implementation of the hand-crafted example
used in the evaluation. . . . . . . . . . . . . . . 58

A C R O N Y M S

sc-r source-code region

ir-r IR-meta region

llvm-ir LLVM intermediate representation

x



acronyms xi

ast abstract-syntax-tree

rcs revision control system

vara Variablility-aware Region Analyzer

sha Secure Hash Algorithm

spedi Static Patch Extraction and Dynamic Insertion

cfg control-flow graph

risc Reduced Instruction Set Computer

ssa static-single-assignment

jit just-in-time

wllvm Whole Program LLVM

svg Scalable Vector Graphics

gzip GNU zip

yaml YAML Ain’t Markup Language





1
I N T R O D U C T I O N

In software development a lot of projects suffer from the fact that they
are getting continuously harder to maintain: One reason for this is the
growing size and complexity of these projects, another reason is that
software requirements change over time to accommodate the expec-
tations of the user [2, p. 4]. Furthermore, software may evolve over
several years before they even considered stable enough for produc-
tion and few people working on such projects stay until it is ready for
production, and even fewer remember the initial requirements or the
rationale behind them [2, pp. 4-5]. Lastly, most software projects are
changed even if they are already in production. ISO/IEC standard [4]
identifies four categories of changes occurring during maintenance in
the life-time of a software:

1. Corrective maintenance, changes resolving errors in the soft-
ware.

2. Preventive maintenance, changes necessary to prevent and de-
tect potential errors in the software.

3. Adaptive maintenance, changes that are necessary to support
new environments.

4. Perfective maintenance, changes enhancing the performance and
the usability of the software.

Changes are a fundamental part in the life-cycle of software programs.
However, modifying single parts of a software may have unexpected
impact on regions not targeted by a certain modification. We believe
that identifying the affected regions in the source code and providing
it to the compiler enables analyses to reason about changes and their
impact. Thus, allowing not only software researchers to extract the
information but also the creation of mitigation tactics that prevent
errors or warn the developer.

1.1 goal

Our main goal is to find interactions of changes in a software project
and determine their impact in order to aid software developer in the
maintenance process, by providing a way to analyze changes and
present the affected parts of the code to the developer. Furthermore,
the region detection and analyses are built upon and integrated in
VaRA in order to allow them to be used in a language independent

1



2 introduction

manner. However, in this thesis we aim on an implementation in
clang to support the programming languages C and C++.

1.2 contribution

In this thesis we introduce a way to annotate source code based on
software changes, gathered from a revision control system (RCS). We
further provide an implementation that is able to utilize the annota-
tions and perform analyses on it. Furthermore, we present an analysis
that determines the impact of a certain change on the rest of the soft-
ware.

1.3 overview

This thesis is organized as follows. In Chapter 2, we introduce the
basic concepts of the methodologies, frameworks, and software used
throughout the thesis. In Chapter 3, we present how change regions
are annotated, utilized by clang, and provided to the LLVM optimizer.
Chapter 4, describes how the region information is used to determine
correlations between different code regions and we present the results
and insights generated. Finally, in Chapter 5, we draw a conclusion
from our work with a final statement of the author, suggestions to
further improve our approach, and discuss similar efforts made by
other researchers.



2
B A C K G R O U N D

In the following chapter, we give information regarding the technolo-
gies, theories, and software used in this thesis. First, we introduce
the general methodologies of control-flow and data-flow analyses.
Second, we introduce the compiler framework LLVM including the
front-end clang in Section 2.2. Finally, we describe the required com-
ponents of the RCS Git.

2.1 control-flow graph and data-flow analysis

In the following section, we introduce the concept of a control-flow
graph, a graph representation of the program flow. Furthermore, we
describe the basic concept of a data-flow analysis.

execution path Regarding to Aho et al.[1] the execution of a
program can be seen as a chronological sequence of transformations
to the program state, which represents the values of all variables at
a given point in the program’s execution. Each transformation con-
verts its input state into an an output state. An execution path then
represents a chain of transformations, where the output state of trans-
formation Ti is the input state of the succeeding transformation Ti+1.
Furthermore, the execution path may contain instructions that change
the flow of control, as a result a program can have an infinite number
of possible execution paths.

control-flow in basic blocks A program is organized in ba-
sic blocks. Each of theses blocks contain instructions, whereby none
of them change the flow of control of the application, except the one
terminating the block. Therefore, the execution path in a basic block
can be denoted as follows: Every instruction i1, i2, ..., in contained in
a basic block is executed exactly in that order.

2.1.1 Control-Flow Graph

The control-flow graph (CFG) represents all possible execution paths
through a program. Since the flow of control in basic blocks is straight
forward the CFG describes only the relation between basic blocks. The
example depicted in Figure 1 contains the CFG of an example program
described as follows. At the start of the program the variable a is de-
fined and initialized in basic block one denoted with BB1. On the end
of BB1 the program jumps to the beginning of the next basic block

3



4 background

BB2. The program requests a character from the user and decides,
based on the value, of the character whether to jump to BB3 or di-
rectly to the end of the program in BB4. Since both execution paths
are possible, we assume the condition is fulfilled and the control flow
is directed towards the basic block containing the while body BB3.
In BB3 the previously defined variable a is increased by one and the
program jumps back to the while condition in BB2. If the user input
does not fulfill the condition the program jumps to BB4 printing the
current value of a to the console and the program exits.

Figure 1: Control-flow graph of an example program.

2.1.2 Data-Flow Analysis

Data-flow analysis is a generic term for techniques that derive infor-
mation about the flow of data along the program execution path [1].
In this section, we introduce the general concepts enabling these tech-
niques.

transfer function The transfer function takes an input state
and uses it to produce, according to the constraints given by the in-
structions semantics, a new output state. Based on whether the data
flow is propagated forward [7] or backward [3] the state before an
instruction is used to generate a new value after an instruction, or
the state after an instruction is used to produce a new before value,
respectively. We denote the transfer function for an instruction i with
fi.

in and out sets The values of the states before and after in-
structions along the execution path are stored in an IN and an OUT

set, whereby the IN set refers to the value of the state before an in-
struction, the OUT set refers to the value of the state after an instruc-
tion. The IN and OUT set for an instruction i is denoted with IN[i]



2.2 llvm compiler framework 5

and OUT [i]. Lets assume we have a program with a single execution
path i1, i2, ...in. The IN set for the first instruction i1 is the empty set
IN[i1] = ∅. The transfer function transforms the input set IN[i1] to the
output set OUT [i1] for instruction i1. The next instruction i2 uses the
output state from the first instruction as its input IN[i2] = OUT [i1]

and transforms it to the output set OUT [i2] by using the transform
function for instruction i2. We can generalize this for all instructions
in the program, for j = 1, 2, ...,n− 1:

IN[ij+1] = OUT [ij]

OUT [j+ 1] = fi+1(IN[ij+1])

in and out of a basic block Since the execution path of a
basic block has no control-flow changes, we can generalize the IN and
OUT set such that it applies to basic blocks. The OUT set of a basic
block OUT [BB] is determined by a series of transformations based on
the set IN[BB]. However, the control flow between basic blocks can
be influenced by certain instructions, as a result the program contains
a number of execution paths. Since we perform a static analysis we
have to consider all of these paths. Base on whether we want to follow
the data flow in forward or backward direction, we have to take all of
the basic blocks predecessor or successor states into account. In order
to join the resulting sets to a single one we need to define a specific
meet operator

∧
, that is able to join the information.

In terms of a forward data flow the IN set for a basic block BB is
determined by the OUT sets of all its direct predecessors P:

IN[BB] =
∧
p∈P

OUT [p]

If the data-flow analysis is done backwards the OUT set for a basic
block BB is determined by the IN sets of all its direct successors S:

OUT [BB] =
∧
s∈S

IN[s]

specific analyses These concepts can be used for a specific anal-
yses that are based on the data-flow of a program, e.g., reaching def-
initions and live variable analysis. Depending on their use case they
either follow the control-flow path forward or backward. The transfer
function and the meet operator are then used to specify which and
how the information is propagated.

2.2 llvm compiler framework

LLVM is a compiler framework designed to support life long pro-
gram analysis and transformations to a software program and still



6 background

provide transparency to their programmers [12]. Today LLVM is a
collection of sub-projects introducing programming languages and
bring support for various platforms and tools condensed in a single
framework1. In the following section we introduce the architecture
and important components of LLVM.

2.2.1 Architecture

The LLVM framework has a three-layer architecture depicted in Fig-
ure 2. The design consists of a front-end (left), an optimizer (middle),
and a back-end (right).

Figure 2: Three-layer architecture of LLVM [11].

front-end A front-end supports a high-level programming lan-
guage, e.g., C, C++, or Haskell. It is responsible for parsing, validat-
ing, and diagnosing errors in the input files [11]. Furthermore, the
front-end may apply language-specific optimizations to the program
before it generates and passes the LLVM-IR code on to the optimizer.

optimizer LLVM offers modules, so called passes, that can be
used to analyze and alter the code of a software, as well as to cre-
ate reports based on the gathered insights. They are categorized into
three groups: analysis pass, transform pass, and utility pass2. Since
every front-end translates its input to LLVM-IR the optimization passes
can be applied to every piece of code, no matter the original input lan-
guage. The language-independent optimizations are one of the great-
est benefits of LLVM, since they only need to be written once in order
to enhance numerous programs.

back-end The improved code from the optimizer is used by the
back-end whose main purpose is to generate native machine code
and perform architecture-dependent optimizations. Due to the mod-

1 The LLVM Compiler Infrastructure Project. https://llvm.org/. (Accessed on
10/02/2017)

2 LLVM’s Analysis and Transform Passes — LLVM 6 documentation. https://llvm.org/
docs/Passes.html. (Accessed on 10/02/2017)

https://llvm.org/
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html


2.2 llvm compiler framework 7

ular three-layer design the program can be deployed to numerous
platforms, providing a LLVM back-end, using the same input from
the optimizer.

modularity LLVM is basically a set of libraries that can be used
to create a compiler, a virtual machine, or tools to analyze and op-
timize programs built with the framework. For example the static-
value-flow analysis tool SVF [16], the Static Patch Extraction and
Dynamic Insertion (SPEDI) [5], or the Variablility-aware Region An-
alyzer (VaRA) [15], which is described in more detail in Section 2.2.5.
Furthermore, the modularized subsystem allows to easily extend the
optimizer with new passes by loading them from external libraries.

2.2.2 LLVM Intermediate Representation

In the following section, we introduce the LLVM intermediate repre-
sentation (LLVM-IR), its properties, and some of the design decisions
made by the inventors. A detailed definition of the syntax and seman-
tics of LLVM-IR is provided by the LLVM reference manual3.

design LLVM-IR is designed to serve as a platform and language-
independent representation of computer programs, allowing the com-
piler to perform transformations and analyses upon them. The light-
weight and low-level design with an instruction set similar to a
Reduced Instruction Set Computer (RISC) offers a simple type system
with strongly-typed instructions. Furthermore, it provides an infinite
set of registers in static-single-assignment (SSA) form. While not all
language and platform-specific features are represented by LLVM-IR

directly, it allows the front-end to map the high-level features to it
and allows the back-end to derive platform specific instructions from
it to use all components form the target platform. LLVM utilizes the
code representation in three different forms: (a) As a representation
in the compiler (b) in bitcode form, e.g., for just-in-time (JIT)-compiler,
(c) and to be a human-readable assembly-language representation [11,
12].

example program The example provided in Listing 1 is a pro-
gram expressed in LLVM-IR writing the string "Hello World!" to the
standard output stream. In LLVM, such a program as shown in the
example is called a module. In the first line of the module we define
a constant string in global scope with the value "Hello World!". As
mentioned earlier LLVM-IR preserves types and the type of this string
is a sequence of 13 8-bit integers. In Line 3 we declare the external
function printf, which is needed to print values to the standard out-

3 LLVM Language Reference Manual — LLVM 6 documentation. https://llvm.org/docs/
LangRef.html. (Accessed on 10/08/2017)

https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html


8 background

put stream. The definition of the main function starts in Line 5. The
function has no arguments and returns a 32-bit integer. In the body
we first calculate a pointer to the string @hello stored in the variable
%s. The first argument we define is the base type used for offset cal-
culations, the second one is the base address of the string, the third
and forth argument indexes the first character in the string. Now we
can use the pointer to the character sequence to call instruction that
prints our string. The printf function in Line 7 is executed using the
call instruction, which, in our case, takes three arguments: i32 is the
return type a 32-bit integer, (i8, ...) is the signature of the func-
tion, and the last argument @printf(i8* %s) is the function pointer
to printf followed by its parameters, the pointer variable pointing to
the "Hello World!" string. In the last line of the function body we
return a zero, the first parameter of the ret instruction is the return
type and the second one the value.

1 @hello = constant [13 x i8] c"Hello wordl!\00"

2

3 declare i32 @printf(i8*, ...)

4

5 define i32 @main() {

6 %s = getelementptr [13 x i8], [13 x i8]* @hello,

i32 0, i32 0↪→

7 call i32 (i8*, ...) @printf(i8* %s)

8 ret i32 0

9 }

Listing 1: "Hello World" example in LLVM-IR.

metadata LLVM offers a way to annotate instructions with cus-
tom information via metadata annotations. This additional informa-
tion on the program can be utilized by the optimizer with only little
effort. Each of these annotations is grouped in a so-called metadata-
group and each record is identified by an incrementing number, start-
ing with zero. We extend the example from Listing 1 with metadata,
by adding two custom metadata-groups: (a) CustomInfo and (b) Ex-
ternInfo and three distinct metadata nodes. The updated example is
depicted in Listing 2. The distinct nodes we added are appended to
the end of the file, see Lines 11 to 13. We now are able to reference
these nodes by appending the group and the ID after an instruction.
We are also able to reuse the ID to annotate different instructions with
the same metadata, see Line 6 and 7. The optimizer is now able to re-
quest the annotations for a given group and can take measures based
on them.



2.2 llvm compiler framework 9

1 @hello = constant [13 x i8] c"Hello wordl!\00",

!CustomInfo !1↪→

2

3 declare i32 @printf(i8*, ...), !ExternInfo !2

4

5 define i32 @main() {

6 %s = getelementptr [13 x i8], [13 x i8]* @hello,

i32 0, i32 0, !CustomInfo !3↪→

7 call i32 (i8*, ...) @printf(i8* %s), !CustomInfo

!3↪→

8 ret i32 0

9 }

10

11 !0 = !{!"Contains a string."}

12 !1 = !{!"libc"}

13 !3 = !{!"Used to output string."}

Listing 2: "Hello World" example in LLVM-IR with meta-data annotations.

2.2.3 Compiler Front-End clang

In the following section, we introduce clang, a front-end to support
C and C++ for LLVM. The front-end aims for high performance and
efficiency, it also offers expressive diagnostics and is rather easy to
extend with new features4.

source location The source location is used by clang to deter-
mine the line and column of a certain token. This feature is mainly
used to generate more meaningful diagnostic reports. The location
tracking relies on two components the clang::SourceManager and the
clang::SourceLocation. The clang::SourceManager is created only
once for every translation unit and manages the loading and caching
of source files in general. The clang::SourceLocation on the other
hand is attached to every token, in order to avoid a performance loss
all the necessary information, like source file ID and the relative lo-
cation in the code, is encoded in a 32 bit sequence. In combination
with the information stored in the clang::SourceManager the exact
position of the instruction in the source file can be calculated.

abstract-syntax-tree An AST represents the source code of a
program in tree form, whereby the structure of the program is pre-
served and all unnecessary information is omitted [14, Section 3.17.2].
The clang AST specifically preserves, compared to those used in sim-

4 Clang - Features and Goals. https://clang.llvm.org/features.html. (Accessed on
10/11/2017)

https://clang.llvm.org/features.html


10 background

ilar compilers, more information, e.g., source location and compile-
time constants5. In clang the clang::ASTContext class manages all the
information related to the AST, available during a translation of a mod-
ule. Every node in the tree is expressed through either a clang::Type

representing a single base type, a clang::Decl representing a single
declaration or definition, a clang::DeclContext representing decla-
ration types with context information, a clang::Stmt representing a
single statement, or through a node class derived from one of these
four classes. The corresponding AST for the following example shown
in Listing 3 is depicted in Listing 4.

1 char s[] = "Hello World!";

Listing 3: Example C code.

We cropped internal clang declarations, marked with the three dots,
for the sake of simplicity. The following node is a variable declara-
tion of the 13 character array char s[]. The declaration has one child
clang::StringLiteral, that is based on the clang::Stmt.

1 ...

2 ‘-VarDecl 0x55ccdd455248 <example.c:1:1, col:12> col:6 s

’char [13]’ cinit↪→

3 ‘-StringLiteral 0x55ccdd4aae30 <col:12> ’char [13]’

lvalue "Hello World!"↪→

Listing 4: Example code in AST form.

lexing and parsing As one of the first steps after clang loaded
the source code, is to interpret the character encoded parts of the
program. The process is called tokenization and is performed by the
lexer component. The lexer splits the source code, from the example
program shown in Listing 3, in the following token:

(1) char

(2) s

(3) [

(4) ]

(5) =

(6) "Hello World!"

(7) ;

Each token is then passed on to the parser, which decides how to act
on each and every token. In clang a recursive-descent parser is used,
which uses in clang a top-down direction and a depth-first strategy.
We do not describe recursive-descent parsing any further, more de-
tailed information can be found in the compiler-design reading [14,

5 Introduction to the Clang AST — Clang 6 documentation. https://clang.llvm.org/

docs/IntroductionToTheClangAST.html. (Accessed on 10/12/2017)

https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://clang.llvm.org/docs/IntroductionToTheClangAST.html


2.2 llvm compiler framework 11

Section 3.12]. The parser starts with the first token and may request
additional ones based on the underlying grammar. The grammar is
used to validate the input source code whether it is well-formed or
not. In order to perform these validations, clang has a semantic anal-
ysis component. If the input code is not well-formed the analysis
reports the issues back to the developer, otherwise the program is
translated into an AST.

add a new keyword In order to introduce a new keyword to
clang we need to adapt the lexer, the parser, and the semantic engine
components so that they are able to handle the instruction properly.
The first step in introducing a new keyword is to add a token-kind
definition. These definitions are required so that the lexer is able to
translate the character sequence into a token. To add a new token
kind we need to adapt the include/clang/Basic/TokenKinds.def file in the
clang project. The example depicted in Listing 5 introduces a new
token named example. The KEYALL attribute defines in which C-family
the keyword is available. In our case the token is recognized by all
variations clang has to offer.

1 KEYWORD(example , KEYALL)

Listing 5: Example of a new keyword introduced to clang.

The lexer is now able to translate the token. In the next step we
need to introduce the keyword to the parser and define its behavior
on the occurrence of the token. Usually keywords expect some kind
of successor token, like the type declarator int expects an identifier.
We made sure that the syntax is correct in the parser component, now
we need to make sure the semantic of the keyword fits our needs. In
the last step we have to create an AST representation of our newly-
created keyword and include it in the AST.

code generation Lastly, clang uses the AST to generate LLVM-IR

code. The code produced looks slightly different from the one we
wrote by hand in Section 2.2.2. The example shown in Listing 6 con-
tains on the left side a program written in C and on the right side the
corresponding instructions in LLVM-IR code. The output is produced
with clang in version 6.0.0. In the example we start with the decla-
ration and initialization of the global variable a and continue with
the declaration of the function foo in Line 5, declaring variable b and
result. We initialize b and add the global a and the local variable
b together in Line 12. The result of the calculation is stored in the
variable res. In Line 15, we exit from the function foo and return the
value of the variable res.



12 background

We cropped the arguments and metadata generated by clang to fo-
cus on the translation of the code parts. In the first line, we declare
and initialize the global variable @a, notice the explicit alignment set
by clang, affecting the alignment of address to the value. In Line 5,
clang defined the main function and assigned the set of attributes
introduced in Line 18. These attributes are used to enhance the opti-
mization process of the function. The following two lines in the func-
tion body allocate space for the variables b and res and the address is
stored in a virtual register. The variable b is initialized in Line 9. The
two required variables for the addition are loaded in a virtual register
and added up in Line 12. The result of the addition is stored in the
local variable %res. The last two lines in the function body load the
result from memory and return the value.

1

2 int a = 31;

3

4

5 int foo() {

6

7 int b;

8 int result;

9 b = 42;

10

11

12 res = a + b;

13

14

15 return res;

16 }

17

18

19

1 ...

2 @a = global i32 31, align 4

3

4 ; Function Attrs: noinline ...

5 define i32 @foo() #0 {

6 entry:

7 %b = alloca i32, align 4

8 %res = alloca i32, align 4

9 store i32 42, i32* %b, align 4

10 %0 = load i32, i32* @a, align 4

11 %1 = load i32, i32* %b, align 4

12 %add = add nsw i32 %0, %1

13 store i32 %add, i32* %res, align 4

14 %2 = load i32, i32* %res, align 4

15 ret i32 %2

16 }

17

18 attributes #0 = { ... }

19 ...

Listing 6: C source-code and corresponding LLVM-IR Example.

2.2.4 Optimization Pass

In this section, we introduce the different types of LLVM passes,
their capabilities, and how to write a certain optimization pass.

categories In LLVM the following list of passes are available:

• ModulePass

• CallGraphSSCPass

• FuncationPass

• LoopPass

• RegionPass

• BasicBlockPass



2.2 llvm compiler framework 13

All these passes are a subclass of the Pass class, which implement the
functionality based on their area of application. Each pass of a certain
area is executed on different parts of the input source-code. For ex-
ample, the ModulePass is run upon a whole LLVM-IR module, whereby
the FunctionPass is executed on every function in the LLVM-IR bitcode
file. As already mentioned earlier, LLVM categorizes the actions made
by passes in three different groups: Analysis, transform, and utility.
Analysis passes do not alter the input, but their purpose is to compute
information. The objective of a transformation pass is to apply opti-
mizations by altering the code, e.g., the inline pass, which replaces
the function call in their callees with the actual function body. Util-
ity passes are used to aid the programmer, for example by printing
information to the output stream. Another important feature is the
capability to request results from other passes. In order to retrieve
these results the required pass needs to be executed beforehand. The
right execution order is ensured by the scheduling function of the
PassManager.

pass manager Every pass in the LLVM optimizer is registered
with the PassManager. This component of LLVM manages the ac-
tive passes and schedules their execution, based on the dependencies
they require. A pass can invalidate the results from another one. It is
the responsibility of the PassManager to reschedule these invalidated
passes. Furthermore, it is responsible for sharing the results among
the passes. In LLVM version 6 two different PassManager exist the
legacy version and the replacement for it. We described and used the
legacy PassManager, since it is still default in LLVM version 6.

module pass We now take a closer look on the former mentioned
ModulePass. This pass is the most general of all the passes, which
operates on the entire program as a unit. The main advantage is, in
the pass we have access to every bit of information that is available for
a program, e.g., from the Module we can request the list of contained
Functions, each of these contains a list of BasicBlocks where we can
request Instructions from. Quite contrary to the FunctionPass or
LoopPass, which operate only on small parts of the program. The
downside of operating on a whole Module is that the PassManager

has little possibilities to optimize the execution of the passes, since the
scheduler has no knowledge about the operations that are performed
in the ModulePass.

defining a new module pass First, we have to define the con-
structor where we need to pass an identifier to the base-class con-
structor. The value of the identifier is not important, because LLVM
initializes the ID by using the address of the parameter to identify the
pass. The constructor definition looks like this:



14 background

4 static char ID;

5 ExampleModulePass() : ModulePass(ID) {}

Second, we need to override the runOnModule function. It provides
the following parameter Module &M referencing the module that is
currently processed. In the function body follows the implementation,
which performs,e.g, analyses or transformations upon the given mod-
ule &M. To signal the PassManager whether we modified the LLVM-IR,
and thus invalidated other analyses, we need to return true, other-
wise false.

7 bool runOnModule(Module &M) override {

8 /*
9 ...

10 */

11 return false;

12 }

Before we can use the pass in the optimizer we have to register it in
the PassManager. To register the pass we need to add the following
line after the function definition:

16 static RegisterPass<ExampleModulePass> X("example",

"Example pass", false, false);↪→

The first argument of the registration function X states the command-
line parameter to enable the pass. The second one is the name of the
pass. The third states whether we modified the CFG and the last one
indicates if it is an analysis pass or not. The full code is available in
Listing 21 in the appendix.

run the example-module-pass After we compiled the new
pass we can use it to apply the ExampleModulePass on LLVM-IR code.
First, the optimizer command opt needs to load the library containing
our pass with the -load argument and activate the pass with the
-example flag, as we provided in the register function. With the last
argument we define the input file. The command with all parameter
is shown in Listing 7.

1 opt -load lib/ExampleModulePass.so -example

example_hello_world.ll↪→

Listing 7: LLVM optimizer command example.

2.2.5 Variability-Aware Region Analyzer

In the following section, we introduce the Variablility-aware Region
Analyzer (VaRA), a framework built into the LLVM compiler infras-
tructure. This framework aims to enable software-engineering research



2.2 llvm compiler framework 15

and aid engineers by providing the capability to extract and use soft-
ware metrics within the compiler pipeline. Furthermore, it provides
reusable data structures and debugging utilities to develop analy-
ses [15].

interest regions VaRA provides the llvm::IRegion data struc-
ture, which represents a list of instructions from a program grouped
together. These interest regions are used in analyses provided by
the framework. The creation of a region is managed through the
framework and stored in the llvm::IRegionStore. The main pur-
pose of this database is to store all different kinds of interest regions
in a single optimization run. The store also ensures that each re-
gion is unique. Furthermore, the framework extends the base type
llvm::Value, that is the base class of the types used in the LLVM-IR

language, including llvm::BasicBlock, llvm::Function, and
llvm::Instruction, with a reference to a llvm::IInfo object, which
maintains a list of references to llvm::IRegions. This allows us to
assign a single instruction to an interest region or utilize the ones
already created in other detection passes.

flow analysis The vara::FlowAnalysis is a generic component
managing the traversal through a graph-based data structure to gather
information based on the concept of a data-flow analysis. It requires
a llvm::GraphTrait, which describe how to traverse through the
graph, and a vara::DefaultAnalysisTrait, which specifies how the
analysis information is propagated. The llvm::GraphTrait and the
vara::DefaultAnalysisTrait serve as base classes for an actual anal-
ysis. In order to implement a specific analysis we need to provide a
llvm::GraphTrait template specialization for targeted data structure
and a specialized version of the vara::DefaultAnalysisTrait. This
specialized analysis trait must offer a join and update method, rep-
resenting the analysis specific implementation of the meet operator
and the transfer function. Furthermore, we have to provide an initial
list of nodes and optionally we can provide an initial lattice state, and
a filter to omit unwanted nodes from the analysis. These additional
information we have to provide heavily depends on the graph trait
and the analysis trait we are using.

function def-use-graph The vara::FunctionDefUseGraph is a
data structure offered by VaRA to use in combination with the
vara::FlowAnalysis. The data structure provide the ability to iterate
over the def-use chain of the encapsulated llvm::Function. A def-
use chain consists of a definition of a variable and all the uses that
are reachable from that definition.



16 background

taint-flow-analysis traits

The vara::TaintFlowAnalysisTraits class is a specialized form of
the vara::DefaultAnalysisTrait, which implements a simple context-
insensitive taint flow analysis on LLVM-IR. The main purpose of the
taint flow analysis is to handle the propagation of taint information
based on the type of instruction.

The analysis can be combined with the vara::FunctionDefUseGraph
in a FlowAnalysis to perform a data-flow analysis based on taints, as
we will see in Chapter 4.

2.3 git a revision control system

This section introduces the most important parts of the version con-
trol system Git to be able to understand how to automatically de-
termine regions by tracking changes applied to the source code of a
program versioned via Git.

commit A commit in Git is a snapshot of one or more files in the
repository. Furthermore, it is the only way to introduce alterations to
a project managed with Git. This fact is exploited in a later chapter
regarding the region detection. Additionally, a commit is identified
by a SHA 1 hash and serves as a unique identifier for these specific
alterations [13, pp. 65,66].

annotate Git provides an annotate function (git annotate),
which annotates every line in a file of a repository with detailed in-
formation about the commit that introduced the line. An example is
shown in Listing 8. The listing depicts a snippet of the output gener-
ated by the annotation function. Every line of the target file is anno-
tated with the unique identifier of the commit followed by the author
and date. Finally, the respective source code is displayed.

17 ...

18 a6a87b59 (Chandler Carruth 2015-01-31 03:43:40 +0000

18)#include "llvm/CodeGen/BasicTTIImpl.h"↪→

19 f35ce237 (Hal Finkel 2014-05-08 09:14:44 +0000

19)#include "llvm/Analysis/LoopInfo.h"↪→

20 be04929f (Chandler Carruth 2013-01-07 03:08:10 +0000

20)#include "llvm/Analysis/TargetTransformInfo.h"↪→

21 a6a87b59 (Chandler Carruth 2015-01-31 03:43:40 +0000

21)#include

"llvm/Analysis/TargetTransformInfoImpl.h"

↪→

↪→

22 ...

Listing 8: Output of the Git annotate function on a file from the LLVM
repository.



2.3 git a revision control system 17

tagging A tag points to an important change in the history of
a Git project and is often used to mark release points, as described
in the documentation6. Tags are managed with the command git

tag. The example shown in Listing 9 depicts how to create the tag
"NewTag" in Line 1. This tag would point to the currently checked-
out commit ID. The other command shows how to print a list of all
tags in the project, in our case the newly created one, in Line 3.

1 > git tag NewTag

2

3 > git tag

4 NewTag

Listing 9: Add and list tags in the Git repository.

6 Git - Tagging. https://git-scm.com/book/en/v2/Git-Basics-Tagging. (Accessed on
12/09/2017)

https://git-scm.com/book/en/v2/Git-Basics-Tagging




3
R E G I O N D E T E C T I O N A N D A N N O TAT I O N

3.1 introduction

In the following chapter, we define how our regions are extracted
from common repositories and how they are used to extend the orig-
inal software with region information. Furthermore, we explain how
the information passes the clang compiler front-end and how it is
processed in the optimizer of the compiler.

region definition We define a region as a set of program in-
structions combined in an organizational unit that does not alter the
behavior of the program itself. They may not change the output of
the binary directly, but they can be utilized by the compiler in order
to optimize the output binary.

For our approach, we particularly need two kinds of regions at
different layers. On source-code level we introduce source-code re-
gion (SC-R), these are then linked to their LLVM-IR counterparts the
IR-meta region (IR-R), to introduce a mapping between source code
and LLVM-IR.

A SC-R is used to add region information to a software in its orig-
inal form. It is organized as a group of consecutive statements and
declarations surrounded by a begin and an end annotation. Every
SC-R has an identifier, which has to be unique throughout the whole
software. Furthermore, a SC-R can overlap or be nested within other
regions.

The IR-R is used to add region information to a software program
that was translated to LLVM-IR. An IR-R is identified by a unique string.
This identifiers are used to annotate single functions, basic blocks and
instructions in order to map them to the corresponding IR-R. In order
to express nested regions each one can have a list of identifiers.

approach We begin with a software repository, which provides
the necessary information needed to detect regions, in particular the
source code of the program and the commit hashes, e.g., a Git reposi-
tory. In the next step, the source files are annotated with SC-R based on
the changes tracked by RCS. Next we execute the compiler front-end
with the annotated source files, in order to translate the source-code
and its annotations into LLVM-IR. Finally, the front-end passes the in-
formation to the optimizer, which is able to extract and use this infor-
mation for further analyses and optimizations. The approach and the
steps are depicted in Figure 3.

19



20 region detection and annotation

Source-
code

in RCS

Annotate
SC-R in

source files

Generate
LLVM-IR

with IR-Rs

Optimizer

Figure 3: Region detection and annotation work-flow.

In the following sections, we describe every step in more detail.

3.2 introducing sc-r to clang

In order to enhance a software program with regions the compiler
front-end needs to be capable to process the provided information.
In this section we describe how to enhance clang with this capability.
Fist we present our general approach before we go further into detail
by describing how SC-R are introduced in the programming languages
C and C++. Furthermore, we explain the parsing phase and its chal-
lenges, the processing stage, and how the information is emitted and
passed along to the LLVM optimizer.

3.2.1 General Approach

The work-flow depicted in Figure 4 represents the general approach
how the region detection works in clang. In the first stage the com-
piler reads the input file and passes the source code to the second
stage, which extracts the SC-R information. In the processing phase
the data is used by the front-end to create a mapping of the region
information from statements and declarations to instructions. These
are then facilitated in the third stage, where they are annotated as
IR-R and forwarded to the last phase where the emitted instructions
are either written to an output file or passed on to the optimizer.

Input
source
code

Parse
SC-R

Processing Emitting
IR-R

Output
LLVM-IR

Figure 4: The work-flow depicting the general approach to
convert SC-R to IR-R.

3.2.2 SC-R Keywords

In order to describe a SC-R two keywords are needed. One keyword
to start and another keyword to enclose a SC-R. For this, we extended
the clang front-end with ___REGION_START <ID> to open and
___REGION_END <ID> to enclose a SC-R. Each keyword expects an ar-
gument named ID, which serves as unique identifier over the whole



3.2 introducing sc-r to clang 21

project. An example written in C is depicted in Listing 10. The ex-
ample shows three regions identified by R1, R2, and R3. R1 has two
nested regions R2 and R3. R2 overlaps with R3 in Line 8.

1
___REGION_START R1

2 #include <stdio.h>

3

4 int main() {

5
___REGION_START R2

6 int a = 1;

7
___REGION_START R3

8 int b = 0;

9
___REGION_END R2

10 int result = a / b;

11
___REGION_END R3

12 printf("Result: %d\n", result);

13 }

14
___REGION_END R1

Listing 10: C example with SC-R.

3.2.3 Parse SC-R

The first attempt to process the newly introduced keywords, from Sec-
tion 3.2.2, was to extend the language with a new kind of scope, the re-
gion scope. Similar to a block scope in C and C++, the ___REGION_START
keyword is used to open a new scope and the ___REGION_END to en-
close it. The idea was to process and annotate all instructions sur-
rounded with these keywords. Unfortunately this attempt did not
cover all desired applications. The following paragraph describes why
this attempt brought no success.

syntax problem One of the main goals is that the keywords
defining a SC-R are not depending on the position in the source code.
Unfortunately the lexer and the recursive-descent parser used in clang
are not designed to support context-independent keywords.
The recursive-descent parser technique constructs a tree from top to
bottom by parsing the input provided by the lexer beginning with
the left most symbol and ending with the right most. For every ter-
minal and non-terminal symbol exists a procedure handling a single
production rule from the C++ language grammar[8].

The problem is that the lexer is reading every token from the source
buffer and decides what the respective token means and how it has to
be processed. The token is passed on to the responsible parser func-
tion, which validates the syntax by requesting additional tokens from
the lexer. The following example, depicted in Listing 11, illustrates



22 region detection and annotation

the problem. The example shows an if-statement and a SC-R annota-
tion identified by IF_1. The lexer reads the if token and passes it on
to the parser, which performs a syntax check. In the validation pro-
cess further tokens are requested from the lexer. As soon as the parser
tries to validate the ___REGION_START token an error is raised. The rea-
son causing this error is that the function handling the if-statement is
not aware of the keyword at this point in the source code. In order to
solve the problem the SC-R annotations need to be introduced to every
function in the parser performing a similar syntax check, making this
technique hard to implement, maintain, and thus error-prone.

1 if (true)

2
___REGION_START IF_1 // Error

3 {

4 printf("Hello World!");

5
___REGION_END IF_1

6 }

Listing 11: Syntax validation issue.

context-dependent keyword problem Similar to the chal-
lenge described above, the parser used in clang reveals another prob-
lem concerning context-dependent keywords. The fact that keywords
depend on the position in the source code makes the implementation
much more complex. In order to make the SC-R annotation keywords
context-independent the parser needs to be extended with additional
production rules. The example in Listing 12 illustrates the problem.
In the first line a SC-R start annotation is added, which is parsed as a
top-level declaration. In Line 2 the parser enters the function func1,
which is not handled by the top-level declaration routine. In order to
parse the annotation in Line 5 the keyword needs a separate imple-
mentation in the statement parser function.

1
___REGION_START C_1 // Top-Level-Decl

2 void func1 ()

3 {

4 printf("Hello World!");

5
___REGION_END C_1 // Statement-Or-Declaration

6 }

Listing 12: Context-dependent keyword issue.

solution Since these two challenges imply major changes in the
parser component of clang we propose another approach. In order to
circumvent problems similar to the ones mentioned earlier the SC-R

implementation is done in the lexer. The Lex function is visited every



3.2 introducing sc-r to clang 23

time the parser requests a token from the stream. The current imple-
mentation utilizes this bottleneck by calling its own custom parsing
function for every token appearing in the source code. As soon as
either a ___REGION_START or ___REGION_END occurs the keyword and
the following string literal are consumed. The consumed string lit-
eral, the ID of the region, is added to a list of active regions if the
start annotation is consumed and removed from the list if an end
annotation is consumed. For all other token a mapping between the
active regions and the current processed token is created.

3.2.4 Processing

The extended lexer is now able to handle SC-R annotations and use the
information they provide to further process it in the internal structure
of clang. In the following, we first introduce the region store, which
maintains a mapping between tokens and the regions it is contained
in, then we describe how we use the component to propagate infor-
mation to the code generation.

region store The RegionStore class provides functionality to
lookup region information for a specific instruction based on its source
location. The component is available throughout all compilation stages
in the front-end. Its main purpose is to allow the region handler to
store region information and make it available to the code generation.

instruction annotation The main goal regarding the region
detection and annotation in clang is to transfer the region information
from the source code to the LLVM-IR, so we can analyze it later on. In
order to do that a SC-R is converted into a IR-R. Since every instruction
in a IR-R contains information about the regions it is a part of, the com-
piler front-end needs to ensure that the information is accessible dur-
ing the code generation. We achieve that by storing the regions for ev-
ery statement and declaration and provide access to the information
while emitting the corresponding instructions. The implementation in
clang works as follows. For every occurrence of a ___REGION_START

annotation in the source code, the compiler appends the identifier
of the SC-R to the activeRegion set. An entry is removed as soon as
the ___REGION_END annotation with the specific identifier is processed.
The source location of all instructions, handled during the module
compilation, is used to generate a mapping between the entries in
the activeRegion set and the currently processed instruction. These
mappings are then stored in the RegionStore database.



24 region detection and annotation

3.2.5 Emit IR-R

The final step to complete the conversion from SC-R to IR-R is to an-
notate the instructions in LLVM-IR with region information. As we
already mentioned in Section 3.2.3 we do not want to adapt every
function in clang. Therefore, the general idea is to circumvent all the
following stages in the compilation process after the parsing phase
and identify the instructions right before they are emitted by the code
generation. We then use the gathered information from the last sec-
tion to annotate the affected instructions.

identify instruction in code generation In order to iden-
tify instructions we facilitate the information offered by the
SourceLocation. It serves as a unique identifier and is assigned to
every token parsed in the front-end. The ID is passed along with the
source-code fragment no matter how the information is transformed
during the process. In the code generation we exploit this fact by
looking up the ID in the RegionStore, which provides us with re-
gion information of the currently processed instruction. Since there
are three different kinds of instructions the implementation has to be
done in all three. This affects the CodeGenModule::EmitTopLevelDecl,
CodeGenFunction::EmitStmt and CodeGenFunction::EmitDecl meth-
ods.

tackling information loss The code generation in clang uses
functions from LLVM to generate LLVM-IR instructions. Since LLVM is
language independent, it has no access to data structures specific to
the front-end like the SourceLocation, which is needed to access the
information in the RegionStore, though these insights are needed to
generate the IR-R annotations. We solve this problem by introducing
the llvm::RegionAnnotation class to LLVM, which caches a string
containing the information for the currently processed instruction.
The clang front-end is now able to pass the output from the
RegionStore to the llvm::RegionAnnotation, which enables LLVM
to request the necessary information.

LLVM-IR metadata The instructions in LLVM, similar to the one
in the code generation of clang, are processed on three different choke
points, namely when constructing a llvm::Function, llvm::Instruc-
tion, or a llvm::GlobalVariable. In order to annotated each value
that is emitted we need to adapt all of these constructors. Fortunately,
the VaRA version of clang offers the MDProvider and the MDAnnotater,
which provides an interface to add metadata without the need of any
modification to one of the constructors. These VaRA components work
as follows: Our class, to handle the information conversion and anno-
tation, RegionAnnotation extends the MDProvider class and overrides



3.2 introducing sc-r to clang 25

the getCurrentMetadata function, which provides the region informa-
tion as MDNode object. The MDNode class is an attachment representing
the metadata for emitted instructions containing the metadata-group
and data, in our case the region information. During the construction
of our class it introduces itself to the MDAnnotator, that requests and
adds a MDNode to an emitted instruction. This annotated information
is identified by the metadata-group Region, such that the optimizer is
able to recognize that the metadata is containing IR-R information.

3.2.6 Process IR-R

In order to facilitate the information provided by the IR-R we create
an optimizer pass, which extracts and stores the information. The
vara::MarkerDetection pass enhances the VaRA framework with re-
gion detection capabilities and provides compatibility to its analysis
functions.

extraction In order to extract the information stored in the
LLVM-IR files we have to create a new module pass in the optimizer.
The pass is supposed to run on a whole module because we want to
store information for every function, basic block, or instruction sepa-
rately. Storing it separately allows us to run the generic analysis func-
tions available in VaRA not only on instructions but on basic blocks,
and functions, too. The module object provided by the pass enables
us to request every component, which are nested within one another.
To extract the information we iterate through all the interleaved com-
ponents and parser their metadata and build an internal database
based on the following set. Let F be a set of functions, BB a set of ba-
sic blocks, I a set of instructions, R a set of regions, and g(c) a function
returning the assigned regions of the provided component c. For ev-
ery instruction ∀i ∈ I that is part of a basic block bb ∈ BB, the regions
assigned to the instructions g(i) are also assigned to the parent basic
block bb. This also applies in a similar manner to every basic block
∀bb ∈ BB that is contained in a function f ∈ F, the regions assigned
to the basic block g(bb) are also assigned to the parent function f. We
can express the resulting set as follows: g(i) ⊆ g(bb) ⊆ g(f).

internal representation Regions are represented as a
vara::MarkerRegion in LLVM. The internal representation is derived
from llvm::IRegion interface, which is part of the VaRA framework.
VaRA provides generic analysis functions, which require to implement
the former mentioned interface. This interface ensures that the ana-
lyzer is able to obtain the relevant data gained in the previously de-
scribed extraction process.



26 region detection and annotation

mapping Every vara::MarkerRegion identified by its ID is created
once to keep the overhead low. However, a region can be defined by
more than one basic block, function, or instruction. Hence, we have to
create a mapping between instructions and regions. The VaRA compat-
ible version of LLVM provides the llvm::IInfo object that is capable
of describing such a mapping. Furthermore, the llvm::LLVMContext

provides a separate mapping assigning an llvm::IInfo object to a
llvm::Value, which is the most common base class of every basic
block, function, and instruction. This allows us to add a reference
in the llvm::IInfo object to the corresponding vara::MarkerRegion.
The creation and requests of regions are managed by the
llvm::IRegionStore, a component available in the VaRA compatible
version of LLVM.

3.3 automated annotation of SC-R using git

In the previous sections we ensured that the compiler is able to utilize
SC-Rs from a provided input file. We now want to annotate whole
projects with SC-R automatically. In order to do that we make use of
the commit information provided in the RCS Git to find and annotate
regions.

identify responsible commit hashes In order to annotate
the files in the repository with region information we need to iden-
tify which lines are affected by a certain commit. We can achieve this
by using the git-annotate command. We process the output gener-
ated by git-annotate by tracking down the first an the last change
made by a certain commit. A SC-R is defined by all the code that is
contained between the first and the last change. For example, the out-
put depicted in Listing 13 contains a simplified version of the output
git-annotate would produce. As we can see the first line affected by
commit with ID 9aa9da is in Line 1 and the last line affected is in Line
10. Hence the resulting SC-R contains all lines of the source file. In
comparison with the commits affecting Line 5 and Line 7, where the
first is the same as the last line modified by the responsible commit.
Therefore, only the single line is contained in the resulting SC-R.



3.3 automated annotation of SC-R using git 27

1 9aa9da 1)

2 9aa9da 2)

3 9aa9da 3)

4 9aa9da 4)

5 d8527c 5)

6 9aa9da 6)

7 45dcb1 7)

8 9aa9da 8)

9 9aa9da 9)

10 9aa9da 10)

#include <stdio.h>

int main() {

int a = 1;

int b = 0;

int result = a / b;

printf ("Result: %d\n", result);

}

Listing 13: Simplified output of git-annotate.

In the next step, we generate a new version of the source file that
contains the SC-R annotations. As identifier for these SC-R we use the
commit hashes. They are especially suitable because it is unlikely a
repository yields two identical hashes, as stated in the official Git doc-
umentation1. Furthermore, they can be useful if we want to combine
the insights generated by an analysis and the information provided
by Git. The result of the transformation from the example used in
Listing 13 is provided in Listing 14. For every detected commit we
added a begin annotation before the first line, see Line 1, 6, and 10

and an end annotation after the last affected line, see Line 8, 12, and
16.

1
___REGION_START "9aa9da"

2 #include <stdio.h>

3

4 int main() {

5 int a = 1;

6
___REGION_START "d8527c"

7 int b = 0;

8
___REGION_END "d8527c"

9

10
___REGION_START "45dcb1"

11 int result = a / b;

12
___REGION_END "45dcb1"

13

14 printf ("Result: %d\n", result);

15 }

16
___REGION_END "9aa9da"

Listing 14: Resulting source file after annotation is finished.

1 Git Tools - Revision Selection. https://git-scm.com/book/en/v2/

Git-Tools-Revision-Selection. (Accessed on 12/05/2017)

https://git-scm.com/book/en/v2/Git-Tools-Revision-Selection
https://git-scm.com/book/en/v2/Git-Tools-Revision-Selection


28 region detection and annotation

tackle multi-line preprocessor code The clang front-end
handles the SC-R annotations at compile time after the preprocessing
is finished. The detection and annotation process we just described
does not concern itself whether the lines wrapped are preprocessor
instructions or C/C++ code. Based on these facts an error arises as
soon as an annotation is between a multiline preprocessor definition.
An example causing a compiler error is shown in Listing 15. Process-
ing the example with the clang preprocessor is starting to parse the
definition in Line 1, since the definition is not finished by the end of
the line, expressed with the \ (backslash), the parser consumes the
next one. Unfortunately the ___REGION_START ERROR_1 is not a key-
word the preprocessor can act on, therefore it raises an error.

1 #define F(x) (x) \

2
___REGION_START ERROR_1

3 + \

4
___REGION_END ERROR_1

5 (x)

Listing 15: Annotated multi-line macro in C.

We can solve the problem by converting multi line to single line
preprocessor code before we add the annotations to the output-file.
The downside of this solution is that we loose accuracy, since the
region shown in the example affects only the plus operator. After
reducing the macro to a single line the whole macro is contained in
the SC-R. However, omitting the information has little effect on the
outcome, since the automatic annotation considers only line changes.
For example, the example depicted earlier in Listing 14 in Line 11. If
we change the operator from a division to addition the corresponding
annotation affects the whole line, which is inaccurate since we only
changed the operator. Since we accept this kind of inaccuracy the
impact of converting multi-line to single-line macros is negligible.

3.3.1 Tag-group-based Annotation

The organization of commits is the responsibility of the project. A
single commit can introduce a simple change or contain a whole fea-
ture. However, Git offers another organizational feature that we can
base our annotations on. Tags in Git refer to a certain commit ID in
the working tree and they are used to highlight important points in
history as stated in the Git documentation2. We exploit the fact that
tags mark important changes to group them together, to be able to
analyze specifically these sets of important changes.

2 Git - Tagging. https://git-scm.com/book/en/v2/Git-Basics-Tagging. (Accessed on
12/09/2017)

https://git-scm.com/book/en/v2/Git-Basics-Tagging


3.3 automated annotation of SC-R using git 29

To list the available tags in a project Git offers the command git

tag. In order to get the corresponding commit ID and its predecessors
we use the git rev-list command. We combine the two commands
to get a set of IDs newly introduced in the given tag. The example
in Listing 16 shows the execution of the git rev-list command in
Line 1. The command is provided with two tags "v1.7" and "v1.8".
The three dots separating these tags affect the result of the command
to yield all changes made after the first tag v1.7 up to the change
referenced by the second tag v1.8. The resulting list is ordered top-
down, the commit ID in the first line is the newest.

1 > git rev-list v1.7...v1.8

2 3022fdb32287089d2201e715b7beb133a47ff608

3 d21616b9a9479331d721c07c6ad56bd72f4edd1f

4 f879a0511c034a21b0e9a15caf866006f9d1bed5

5 3557cd57906915eb9c990b5f386e25c395592643

6 a420fbafe812f9584f4e71cf3bd42f222bae74c8

7 525cc2dd42483bbdb4e4e60cec659fd286ead55f

Listing 16: Grouping git tags for annotation.

The annotation process is performed similar to the one described
previously with the difference that all IDs yield by the git annotate

command are substituted with the corresponding tag name. In this
manner we are able group together small changes to larger organiza-
tional units.





4
E VA L U AT I O N

In the last chapter, we introduced an approach to detect change-
regions from a Git repository and propagate them forward to LLVM.
In this chapter, we describe how we utilize commit-region informa-
tion to analyze software. We introduce approaches based on control-
flow and data-flow in order to determine interactions between re-
gions. We visualize and then discuss our results in order to provide
an answer to our research questions.

impact of a change By our means, the impact of a change, in-
troduced by a commit, is measured by the effect it has to the behavior
of a program.

research questions The following three questions are evalu-
ated in the upcoming chapter:

• RQ1.1: Can we use LLVM-IR based control-flow to detect inter-
actions between different commit regions?

• RQ1.2: Can we use LLVM-IR based data-flow to detect interac-
tions between different commit regions?

• RQ2: Can we measure the impact of a change introduced by a
commit region through its interactions to other commit regions?

4.1 change-region based analysis

In this section, we introduce the LLVM passes we created to evaluate
our approach. Furthermore, these passes should give an idea how the
change-region information can be utilized for the analysis of software.
At first we describe the control-flow and data-flow analysis passes,
which uses the regions provided by the detection pass introduced
earlier. The results generated in the analysis are then aggregated in
the report pass, which serializes the information to YAML and stores
the content to an output file.

4.1.1 Control-Flow Analysis

The purpose of the analysis is to generate a graph from the extracted
IR-R based on the control-flow. The result generated in the process
is an ordered set of visited IR-R gathered while traversing along the
control-flow edges. In addition, the analysis gathers call information

31



32 evaluation

from source to destination IR-R. The pass is based in the VaRA frame-
work, where it utilizes the vara::FlowAnalysis component to gener-
ate insights. In order to be able to use this component, we need a
compatible data structure and a flow-analysis trait that fits our need.

markerinfo Before we can introduce the flow-analysis trait we
need to define an object capable of storing information that is prop-
agated throughout the analysis. The MarkerInfo object stores three
different attributes: (a) Predecessor IR-R, the IR-R visited in the pre-
vious node, in order to detect a control flow between two regions.
(b) Control-flow edges, to track the flow from one region towards an
other. The structure is organized as a pair, whereby the first precedes
the second regarding the control flow. (c) Called functions, a map
which uses the source region as a key and a list of called functions as
value.

maker-flow-analysis traits The MarkerFlowAnalysisTraits

gathers control-flow information form the llvm::Instructions con-
tained in llvm::BasicBlocks and propagates it within MarkerInfo ob-
jects. The flow-analysis trait is derived from the vara::DefaultAnaly-

sisTrait that requires to implement the join and update function to
work. A description of how they are implemented follows.

update The update function is called by the underlying
flow-analysis algorithm and provided with the following three pa-
rameter:

1. The corresponding llvm::BasicBlock, since we perform the
vara::FlowAnalysis on a llvm::Function.

2. A MarkerInfo storage object as IN set, which provides the re-
sults from the predecessor.

3. A MarkerInfo storage object as OUT set, which stores the inter-
mediate results gained in the current update step.

We start our update routine by merging the previous obtained control-
flow edges and function-call mappings with the empty OUT set, in
order to preserve the results already obtained.

We use the predecessor regions from the IN set and copy them to an
intermediate set of predecessor regions, since the IN set is immutable
and we need to update the predecessor region set nearly after every
instruction.

In the next step, we iterate through the instructions contained in
the basic block node. In every iteration we check whether the instruc-
tion is a call to a function, and if so, for every region assigned to
this instruction we store a mapping in the OUT set associating those
regions with the targeted function of the call instruction.



4.1 change-region based analysis 33

In the same iteration step we use the intermediate predecessor re-
gions to create control-flow edges by combining every region from
this set with all those assigned to the current instruction. Each newly
created edge is added to the OUT set and the intermediate predeces-
sor region store is emptied and refilled with the regions assigned to
the currently processed instruction. If an instruction has no regions as-
signed to it the algorithm will simply use those from last predecessor
that had regions assigned to it. If there are no preceding instructions
with region entries nor entries from the IN set, no control-flow edges
will be generated.

After all instructions are processed the predecessor region store in
the OUT set is filled with all regions assigned to the basic block. Since
we propagate the regions upward in the detection pass, all regions
assigned to any instruction in the basic block are also assigned to the
parent. The exact behavior how regions are propagated is described
in Section 3.2.6.

Finally, the function returns true if the OUT set differs from the
IN set, otherwise false is returned. This information is crucial to the
underlying FlowAnalysis component, e.g., to handle recursion.

join The join function has a rather simple responsibility, it merges
the results from two different paths in the flow. The function is pro-
vided with four parameters:

1. The preceding node.

2. A MarkerInfo storage object as IN set, which provides the re-
sults from the preceding node.

3. The currently processed node that needs joining.

4. A MarkerInfo storage object as OUT set, in which the changes
are joined into.

In our case the join function just needs to copy the contents from the
IN set to the OUT set.

Similar to the update function the return value is either true if the
OUT set is different to the IN set, otherwise false is returned.

analysis wrapper-passes We have to create a new pass to ac-
tually run the flow analysis. Since we built our control-flow based
analysis on functions we create a function pass. In the runOnFunction

method we perform the actual analysis based on the algorithm intro-
duced in Section 4.1.1. First, we filter whether the function is defined
externally or not. We can not access the definition of functions that
are introduced via a library. If the function fulfills the prerequisites
we continue to initialize the analysis. Second, we have to provide a set
of entry blocks, which define the basic blocks used to start the traver-
sal through the flow graph, and the targeted function. Furthermore,



34 evaluation

the MarkerDetection pass, which handles the extraction of IR-R from
LLVM-IR, is required as a dependency. Finally, we run the analysis and
store the results in the Result field of the MarkerFlowDetection pass.

4.1.2 Data-Flow Analysis

In the last section, we introduced our implementation to analyze the
control flow of a program in order to find relations between IR-R. In
this section, we describe how we determined the data-flow relations
between regions. Fortunately, VaRA already offers an implementation
to analyze the data-flow of a program, which we are able to utilize
for our evaluation.

flow-analysis components Again we use the
vara::FlowAnalysis component in combination with the vara::Func-
tionDefUseGraph, which provide paths based on def-use chains, and
the vara::TaintFlowAnalysisTraits. The flow analysis manages the
traversal through the vara::FunctionDefUseGraph and the propaga-
tion of gathered insights with the vara::TaintFlowAnalysisTraits.
However, the analysis trait operates on taints, which are represented
by the vara::Taint structure. We need to extend the implementation
such that nodes in the graph can be tainted with their corresponding
IR-R.

The MarkerTaint class inherits from the vara::Taint class and es-
sentially wraps a reference to the corresponding IR-R offering wrapper
functions in order to be compatible with the vara::TaintFlowAnaly-

sisTraits.

analysis wrapper-passes Again we create a function pass actu-
ally executing the analysis. Since the data-flow analysis is also based
on functions, similar to the analysis based on control flow, however,
the function is wrapped in the vara::FunctionDefUseGraph struc-
ture. In addition, we need to provide a list of entry blocks contain-
ing all instructions from the currently processed function and a lat-
tice consisting of a preset taint to instruction mapping. Again, the
MarkerDetection pass is required as a dependency. We can access
the results via the function pass.

4.1.3 Report Pass

The results gained in the analysis need to be aggregated an exported
in order to use the insights for external processing. For this, we cre-
ated the MarkerFlowReport pass that runs on the whole llvm::Module.
The aggregation process is performed as follows. We start by iterat-
ing over all functions in the module, except those we were not able
to analyze, external functions and functions with no annotations. The



4.1 change-region based analysis 35

results are copied to an intermediate data structure used to generate
a YAML file.

yaml generation We export the generated insights in YAML for-
mat using the YAML traits provided by LLVM. These traits describe
how to map from an internal data structure to its corresponding YAML

formatted string and backwards. Our implementation, however, only
supports export of results. A more detailed explanation can be found
in the corresponding LLVM documentation1.

In order to save the results to disk, we need to set the path to the
output file with the -yaml-out-file parameter. The example shown
in Listing 17 and 18 illustrates how the report is organized. The file
is extracted as a whole, though it contains two different YAML docu-
ments.

The first one, shown in Listing 17, contains a mapping of functions
and IR-R from their unique ID to entry-specific information.

The first list in this document represents all functions contained
in the module, even those not providing results. The reason why we
added them as well is that function calls can call an external function
and we want to be able to resolve these functions. Each function rep-
resentation in the list has a unique ID, the first region appearing in
the body, if available, and its textual representation.

The second list in this document contains a mapping from inter-
nal used unique IDs to their string representation of IR-R. The second

1 ---

2 function-info:

3 - id: 11

4 region-id: 21

5 function-name: foo

6 - id: 12

7 region-id: 22

8 function-name: bar

9 region-mapping:

10 - id: 21

11 representation: ’Region_1’

12 - id: 22

13 representation: ’Region_2’

14 - id: 23

15 representation: ’Region_3’

16 ...

Listing 17: Example report in YAML format, containing string mappings.

1 YAML I/O — LLVM 6 documentation. https://llvm.org/docs/YamlIO.html. (Ac-
cessed on 12/11/2017)

https://llvm.org/docs/YamlIO.html


36 evaluation

document in the report contains a list of functions and their corre-
sponding results. These results are identified by the textual repre-
sentation of the function and followed by a list of called functions
identified by call-graph-edges. Each of these entries describe which
ones are called from a certain region, whereby the regions are ref-
erenced by their ID and the functions by their string representation.
Furthermore, for each distinct region a unique entry is created and
each of these entries can contain a list of targeted functions. The list
is in the same order in which they were analyzed. The second list
control-flow-edges in the report describes the control flow between
regions as an edge, from the source region from to the destination
region to, whereby both values represent a region by their unique ID.
The data-flow-relations contains a similar list, however, the entries
represent data-flow edges between regions.

17 ---

18 - function-name: foo

19 call-graph-edges:

20 - from-region: 21

21 to-functions:

22 - bar

23 - foo

24 - from-region: 23

25 to-functions:

26 - bar

27 control-flow-edges:

28 - from: 21

29 to: 22

30 data-flow-relations:

31 - function-name: bar

32 call-graph-edges:

33 control-flow-edges:

34 - from: 21

35 to: 23

36 - from: 23

37 to: 21

38 data-flow-relations:

39 - from: 21

40 to: 23

41 - from: 23

42 to: 22

43 ...

Listing 18: Example report in YAML format, containing analysis information.



4.2 tools 37

4.2 tools

The following section describes all tools used to facilitate the eval-
uation process. We start by introducing the graph-plot generation
tool, which creates a graphical representation of the relations between
regions. We continue with the interaction-plot tool, which offers a
quantity-based look on the results. Further, we introduce Whole Pro-
gram LLVM (WLLVM)2, a wrapper for the LLVM front-end clang to
produce a binary and its corresponding bitcode version. Finally, we
describe a tool used to ease the result generation of larger projects.

4.2.1 Graph Visualization

The graph plot generation tool utilize the report we introduced in
the last section. The tool is designed to serve only for evaluation pur-
poses, therefore, the settings are limited to process a given input file
and output the resulting plots. The input must have the format in-
troduced in Listing 17 and 18, otherwise the tool will not be able to
process the data. If provided with a valid report it will write the plots
in Scalable Vector Graphics (SVG) format to the subdirectory plot in
the current working directory.

control and data flow in functions The first kind of plot
generated depicts the control and data flow between regions regard-
ing a function. An example, base on the report shown Listing 17 and
18, is shown in Figure 5. The plot is structured as follows. The func-
tion name is depicted on the bottom center. The nodes in the directed
graph represent different regions, they are shown regardless whether
a flow exists or not. The solid directed lines describe the control-flow
edges, e.g., our analysis detected a control flow in function foo from
Region_1 to Region_2. Similar, dashed directed lines represent a data-
flow edge, e.g., in function bar from Region_1 to Region_3 and from
Region_3 to Region_2. A mutual control or data flow is depicted with
two separate lines, as we can see in the example function bar. The
plot is generated for every function we were able to analyze.

region-based call graph The next plot generated describes
the call relations between regions. We take a look at the example
depicted in Figure 6. Again every node in the graph represents an
independent region and every solid line describes one or more calls
toward a function located in the targeted region. The source region
of the edge is determined by the call instruction and depicted with
the plain end of the line. If the call instruction is located in multiple
regions, an edge will be drawn for every source region. The destina-
tion region is defined by the first one appearing in the control flow of

2 https://github.com/travitch/whole-program-llvm

https://github.com/travitch/whole-program-llvm


38 evaluation

foo

Region_1

Region_2

Region_3

bar

Region_1

Region_3

Region_2

Figure 5: The graph visualization of the functions "foo" and "bar".

the targeted function, if the target has no region in the control flow a
new node with the function name is generated and used instead. Fur-
thermore, the edges targeting such functions are drawn with dashed
lines. In the example the external function printf is drawn as sepa-
rate node identified by its name since it is defined external and we
have no region information. In the graph visualization the destination
region is denoted with an arrow head pointing towards it.

Call graph based on regions with extern function calls.

Region_1

Region_2

printf

Region_3

Figure 6: The call-graph visualization based on regions.

overview The graph-plot generation also offers a visualization
depicting a combination of both variants, flow graph with call edges.
The example depicted in 7 illustrates the combination of the above in-
troduced plots. Each graph visualizing a function is located in a circle
around the zero point. The function graph is similar to the one intro-
duced above. However, the call-graph edges are drawn from the func-
tion where the call instruction is located towards the target function.
Furthermore, the edges are connecting the corresponding regions di-
rectly, in the source function the region, in which the call instruction
resides in, is connected with the destination functions entry region.

However, in our opinion, this type of visualization is only useful
for graphs with a small amount of nodes, otherwise the illustrations
gets very complex. For automated annotation it is possible to reduce



4.2 tools 39

the region size by enabling tag based annotation or a commit-ID filter
in the annotation tool.

foobar

Region_1

Region_2Region_2

Region_3

Region_1

Region_3

Figure 7: An overview depicting the control flow, data flow, and call rela-
tions between functions and regions.

4.2.2 Interaction Plot

The interaction-plot tool utilizes the data provided in the YAML report
to generate a bar chart depicting the quantity of interactions based on
the control and data flow between regions. The example in Figure 8,
depicts two interaction plots. Both are based on the example we used
earlier in Listing 18. The plot on the left is generated with the data
from the control-flow analysis. The plot on the right is based on the
data flow. In both plots for every region a set of two bars is displayed,
the left one with a loose mashed red and orange texture represents the
amount of interactions originating from the region. The other one on
the right with the tight mashed texture in blue and yellow describes
the amount of interactions targeting the region.

This kind of visualization allows us to reason about the complexity
of a region regarding the size and impact.

However, the report does not contain duplicates, regarding the con-
trol and data flow edges, therefore we can not fully deduce the impact
of a region in a single function with this technique. Still, we are able
to reason about the impact beyond these function boundaries.

4.2.3 Whole Program LLVM

Whole Program LLVM (WLLVM) is a tool set for building a binary
and a LLVM bitcode version from C or C++ projects. We use these
generated bitcode files to perform our flow analyses, described in
Section 4.1, upon them. WLLVM works as a wrapper for the clang
front-end, that can be used as a drop-in replacement for the compiler.
We use the tool to compile our sample projects that are introduced
in Section 4.3. The tool processes the project in two stages. In the
first one it invokes the compiler to build the object files. The second
stage uses these object files to generate LLVM bitcode. Finally, the



40 evaluation

Figure 8: Interaction-quantity bar charts, control-flow based on the left and
data-flow based on the right.

result is linked together providing a binary and a bitcode version of
the program. WLLVM project provide a detailed explanation in their
documentation3.

4.2.4 Repository Preperation

In order to speed up the evaluation process, we created a prepara-
tion tool which utilizes the graph generation and WLLVM to provide
an environment that is ready to start a build. The preparation script
works as follows, it creates a copy of the chosen repository in a new
subdirectory called out. Afterwards the annotation tool annotate all
C and C++ files in the out directory. Furthermore, the tool sets up
the WLLVM environment variables in order to use clang as compiler.
Lastly, a series of user-defined commands are executed sequentially
or, if no commands are provided, a new shell is started with the

3 Whole Program LLVM: A wrapper script to build whole-program LLVM bitcode files. https:
//github.com/travitch/whole-program-llvm. (Accessed on 12/13/2017)

https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm


4.3 samples 41

proper settings. We use this tool to build our sample projects later
in this chapter.

4.3 samples

In this section, we first introduce a hand-crafted program written in C
and how we use it identify errors in the annotation process. Further-
more, we introduce a Git based software project, where we perform
our evaluation on.

4.3.1 Hand-Crafted Example Program

Before we apply our analysis on preexisting software we developed
a small example that serves as a sanity check, to verify if the analysis
works as expected. The example is written in C and consists of a
single file, 5 functions, and 59 lines of code in 9 commits. It introduces
a very basic calculator that offers addition and subtraction, as well as
input and output functionality. The commits are small, about 6 lines
per commit, and contain only essential changes, e.g, a single commit
introduces the add function and another the implementation in the
main function. With small commits we intended to get a better look
on the impact of faulty changes. A list of all commits applied to the
example is shown in Table 2 and 3 in the appendix. These tables
consist of the following four columns: Nr. the order in which the
commits were submitted. We use the number later on in the analysis
to refer to single commits. The commit Message tell how we describe
the changes, and Diff denotes the code changes introduced with the
commit.

Furthermore, the full example in its latest state is provided in the
appendix in Listing 22.

4.3.2 GNU Zip

Our second example is gzip a compression utility maintained by the
GNU project4. At the time of evaluation the program consisted of 17

C source files and 4 header files containing a total of 5700 lines of code
without documentation and dependencies. The project is organized
in a Git repository containing 556 commits in the master branch. On
average a commit introduces 91 and removes 57 lines to files in the
repository. These measurements concern all files in the repository not
only the source code files. Base on these commits we could identify a
maximum of 119 individual regions alone in the source files.

4 https://www.gnu.org/

https://www.gnu.org/


42 evaluation

4.4 experiment 1 - calculator

In the following section, we answer our research questions by analyz-
ing our hand-crafted example. We already generated the results and
visualized these in graph plots.

overview graph The graph, depicted in Figure 9, provides an
overall view of the program from the perspective of the analyses. The
depicted figure does not require that we understand the nodes in
detail, we use it just to get an impression of the results, since most of
the insights generated are visualized in the overview.

Before we take a look on single functions we examine the infor-
mation provided by this graph. We recall from earlier: Dotted lines
are function calls, dashed represent a data-flow relation, and solid
lines describe control-flow a relation. Our first observation reveals
that all functions originate from the main function. Furthermore, the
called functions correlate with the commits introducing the function-
ality as expected, e.g., Commit C7 calls the function add according
to the graph. The add, sub, listOperations, and readVaraiable func-
tions are helper functions serving the main. For this example, we can
derive the commit that introduced the functionality to the program
by looking at the control and data flow. For example, the only con-
trol and data flow revealed in the add function is the one between
Commit C1, which is the initial commit, and Commit C2, which in-
troduces the function. However, we can not conclude that this is true
for all examples, since it highly depends on how the commits are or-
ganized. Another observation shows that the majority of interactions
are located in the main function, which we expected, since the func-
tion orchestrates the programs behavior and is part in most of the
committed changes.

interaction plots Next, we take a look at the interaction plots
to expand our knowledge about the program. We start with the control-
flow based plot in Figure 10. The first thing we noticed is that the
From and To ratio is about even. That is because of the annotation
strategy we used: For every changed that is wrapped within another,
potentially an edge from the wrapper region to the inner region and
one from the inner region to the wrapper region is created. However,
the region with most interactions is Commit C1, since it introduced
the initial program and all other changes are made within the initial
code. The Commit C2, C3, C4, and C5 just add a function upon the
initial commit, which is reflected by the count of interactions in the
plot, whereby Commit C4 and C5 have more interactions, since they
were modified later on.

Let us now look at Commit C6. Compared to the other commits the
amount of interactions is significantly higher. The reason for that can



4.4 experiment 1 - calculator 43

add(int, int)

readVariable()

listOperations()

sub(int, int)

main

Added Sub function.

Added Add function.

Added Main with no functionality.

Added Console Read function.

Implemented Add handling.

Added Print Op function.

Implemented main operation chooser.

Changed interm. vars from int to short.

Implemented Sub handling.

Added Sub function.

Added Add function.

Added Main with no functionality.

Added Console Read function.

Implemented main operation chooser.

Implemented Add handling.

Added Print Op function.

Changed interm. vars from int to short.

Implemented Sub handling.

Added Sub function.

Added Add function.

Added Main with no functionality.

Added Print Op function.

Implemented main operation chooser.

Added Console Read function.

Implemented Add handling.

Changed interm. vars from int to short.

Implemented Sub handling.

Added Sub function.

Added Main with no functionality.

Added Add function.

Added Console Read function.

Implemented Add handling.

Added Print Op function.

Implemented main operation chooser.

Changed interm. vars from int to short.

Implemented Sub handling.

Added Sub function.

Added Add function.

Added Main with no functionality.

Implemented Add handling.

Implemented main operation chooser.

Changed interm. vars from int to short.

Implemented Sub handling.

Added Console Read function.

Added Print Op function.

Figure 9: Overview graph of the sample application "Calculator".

be observed by taking a look at the changes introduced by the commit.
We notice in addition to the changes stated in the commit message it
also resolves a reference error and add changes the console output.

Lets focus on the uneven commits. For every interaction counted to
From exists one that counts to To, again owed to the annotation strat-
egy we use. Based on the plot we can reason whether Commit C9



44 evaluation

influences Commit C7 and C8, because the interactions seem to orig-
inate from the one commit influencing the others. We take a look at
the changes made by Commit C9, it changes the type of the variables
used by both other commits leading to a possible error.

Figure 10: Interaction plot based on the control flow of
the hand crafted example.

Next, we take a look at the interaction plot based on data flow
depicted in Figure 11. We observer that Commit C1 has the highest
interaction count, which was also the case in the plot based on control
flow. However, if we take a look at the source code, we can not find
evidence proving a data flow originating from Commit C1. Similar
to the problem encountered previously the data is highly influenced
by the annotation technique we are using. Since new changes might
get wrapped in older ones causes the older commit to appear as a
data source. This behavior can be observed for the variable op, which
is not contained in Commit C1. However, Commit C1 encapsulates
Commit C6, which does actually introduce the op variable. Hence,
the data flow originating form op will count for Commit C1 as well.

Another thing we notice is that the From and To ratio is even for all
regions in this example. One reason is that, similar to the control-flow
plot, if the data-flow passes a region that is fully contained in another,
then always two edges are created for each region involved. Further-
more, a certain imprecision results from a small implementation trick
the analysis uses to circumvent the case where it cannot determine
the successor memory access of a store instruction.



4.4 experiment 1 - calculator 45

However, in case of our example program we can gain useful infor-
mation from this illustration. In our example we can determine the
impact a region has to the program by the amount of interactions.
For example, Commit C1 introduces the main method and provides
dependencies for the upcoming changes, Commit C6 changes the be-
havior of three different functions, and Commit C9 just changes the
type from int to short in a single line, though it influencing the
whole input behavior in three regions.

Figure 11: Interaction plot based on the data flow of
the hand crafted example.

The interaction plots provide us with a general overview about how
entangled certain commits are in a program. In our case we were able
to identify commits introduces worthwhile to investigate.

control and data flow of the main function We now
focus on the graph plots especially on the one of the main function,
which, as already noted, is responsible for the principle behavior of
our program. The graph illustrating the results for the function is
depicted in Figure 12. We notice that in most cases the data-flow
and control-flow results are similar. This confirms the observation
we made by looking at the interaction plots. However, the Commit
C7 and C8 are operating on the same data, whereby they do not in-
teract by their flow of control. What we observe here is an inaccuracy
problem, the one we mentioned earlier. By looking at the changes in-
troduced in both commits, the variables are initialized and used in



46 evaluation

the same commit region, therefore there should not be a data flow
between those regions at all.

Aside the inaccuracy problem, in most cases the flow of data is
depicted correctly. Now we take a look at a more problematic commit.
The changes introduced in Commit C9 to the main function could lead
to possible errors. For this example, we can identify affected regions
by looking at the graph nodes targeted by the malicious commit.

The graph representation for the example offers a good view on
how different commits are interacting with each other.

main

Added Sub function.

Added Add function.

Added Main with no functionality.

Implemented Add handling.

Implemented main operation chooser.

Changed interm. vars from int to short.

Implemented Sub handling.

Added Console Read function.

Added Print Op function.

Figure 12: Graph illustrating the analyses results for the main function.

4.4.1 Addressing RQ1.1

To address RQ1.1 we focus on the control-flow based results of the
main function in Figure 12. Regarding the graph, Commit C7 has
control-flow relations with Commit C1, C6 and C9. We validate the
these interactions by looking at the snippet depicted in Listing 19. The
listing contains a cropped version of the calculator example including
region annotations.

We can confirm the bidirectional interaction between Commit C7

and C1, since the control-flow passes from Commit C1, containing
the whole program, to C7 and back to C1. This is also true for the
interactions between Commit C7 and C6. Furthermore, we can vali-
date the interaction from C9 towards C7, the control-flow passes C9

in Line 38 and enters Commit C7 in Line 42.



4.4 experiment 1 - calculator 47

Hence, we can confirm RQ1.1 that we are able detected interactions
between regions based on LLVM-IR control-flow.

33
___REGION_START "C1"

34 ...

35
___REGION_START "C6"

36 ...

37
___REGION_START "C9"

38 short v1, v2, op = readVariable();

39
___REGION_END "C9"

40 switch (op) {

41
___REGION_START "C7"

42 case 0:

43 printf("Var 1: ");

44 v1 = readVariable();

45 printf("Var 2: ");

46 v2 = readVariable();

47 printf("%d",add(v1, v2));

48 break;

49
___REGION_END "C7"

50
___REGION_START "C8"

51 case 1:

52 printf("Var 1: ");

53 v1 = readVariable();

54 printf("Var 2: ");

55 v2 = readVariable();

56 printf("%d",sub(v1, v2));

57 break;

58
___REGION_END "C8"

59 ...

60
___REGION_END "C6"

61 ...

62
___REGION_END "C1"

Listing 19: Part of the main function from the hand-crafted example.

4.4.2 Addressing RQ1.2

Now we address RQ1.2 by focusing on the data-flow based results
of the main function for Commit C7. The commit has data-flow in-
teractions with Commit C1, C6, C8, and C9 according to the graph
depicted in Figure 12.

We can confirm that Commit C1 and C6 interact with Commit C7,
since the instructions contained in Commit C7 are also contained in
Commit C1 and C6. This is owed to the annotation technique we



48 evaluation

use, but, more importantly, we can identify data-flow relations for
the variables v1, v2, and op, as we can see in Listing 19, that are re-
sponsible for the resulting edges. We can confirm a data-flow relation
between Commit C7 and C9 based on the variables v1 and v2. Fur-
thermore, we can verify the interactions between C7 and C8 using the
same variables. However, some edges result from overapproximation
of the data-flow analysis.

Nevertheless, we detected data-flow interactions based on LLVM-IR,
therefore we can answer RQ1.2 positively.

4.4.3 Addressing RQ2

To address RQ2 we take a look at the control-flow based interaction
plot depicted in Figure 10, as we already observed, more relations
are originating form Commit C9 than targeting it. We use this clue
and explore the corresponding interactions in the graph of the main

function depicted in Figure 12. The graph illustrates the interactions
to three prior commits, whereby we will ignore Commit C1, since
we try to focus on exceptional relations originating form Commit C9.
Therefore, we further investigate the interactions with Commits C7

and C8. We conclude that Commit C9 has an impact on Commit C7

and C8, which we can verify by looking at the introduced changes in
Listing 19. In Line 38 the type of the variables v1 and v2 was changed
from int to short by Commit C9, however, the calculations intro-
duced in Commit C7 and C8 operate still on int. This change has in
our point of view a major impact on the behavior of the program.

Therefore, we are able to confirm RQ2 that the impact of a change
can be measured through the interactions to other regions.

4.5 experiment 2 - gzip

We now focus on analyzing the preexisting software gzip and use the
results to address our research questions. The visualization for larger
projects tend to be more complex regarding the amount of nodes
and edges in the graph. Therefore, we aggregate the results based on
the tags form the repository. By doing so we are able to reduce the
amount of commit regions from 116 to 19. Furthermore, the project
does not consist entirely of C source or header files, hence, another
6 commits are omitted. The downside of aggregating commits in the
analysis is that we may miss interesting observations, the upside on
this is that we can focus on certain commits in the repository. In our
case we focus on the newer unversioned ones. We think analyzing
them this is especially useful in order to identify possible unwanted
interactions in the development process, e.g., before releasing a new
version.



4.5 experiment 2 - gzip 49

Nr. Message

G1 * NEWS: Version 1.3.12 released.

G2 version 1.3.13

G3 version 1.4

G4 version 1.5

G5 version 1.6

G6 version 1.7

G7 version 1.8

G8 maint: change "time stamp" to "timestamp" globally

G9 gzip –no-name: avoid spurious warning

G10 gzip: drop mentions of Amiga, VMS

G11 gzip: fix some Y2038 etc. bugs

G12 gzip: minor time stamp cleanups’

G13 gzip: fix bug in unpack EOB check

Table 1: Table mapping regions to an abbreviated version.

table of commits Table 1 contains all resulting regions gained
from the analysis, as well as their abbreviations that we use to refer-
ence certain region.

In this experiment we focus directly on the research questions,
since we use the same approach we did with the hand-crafted ex-
ample. We closely observe the visual results and try to confirm our
findings by looking at the changes introduced by the region.

4.5.1 Addressing RQ1.1

We further reduced the amount of regions by joining the commits
from Region G1 to G7 together. To answer RQ1.1 we focus on the
interactions originating from single-commit regions. Therefore, the
relation between condensed regions in not important in this section.

We now focus on the control-flow based analysis results of the zip

function depicted in Figure 13. Based on the results depicted in the
graph we can conclude Region G9 interacts with G7, G8, and G11. In
order to verify the information we observed, we take a look at Listing
20 containing parts of the zip function including region annotations.
We can confirm that Region G9 interacts with G7, since the instruc-
tions enclosed in Region G9 are also enclosed in Region G7, which
results in a relation between these two regions. We can also verify the
interaction from Region G9 to G8 and G11 by following the control
flow originating from Region G9 towards them.

Hence, we can confirm RQ1.1 that we can successfully detect com-
mit interactions based on LLVM-IR control-flow.



50 evaluation

zip

gzip: fix some Y2038 etc. bugs

maint: change "time stamp" to "timestamp" globally

version 1.8

gzip --no-name: avoid spurious warning

gzip: fix bug in unpack EOB check

gzip: minor time stamp cleanups

gzip: drop mentions of Amiga, VMS

Figure 13: Graph representation of the analyses results for the zip function.

4.5.2 Addressing RQ1.2

Again we take a look at the results of the zip function depicted in
Figure 13, but now we focus on the data flow. We take a look on the
data flow originating from Region G11, which interacts with Region
G7 and G8 based on the graph illustration. We verify our findings
based on the source code depicted in Listing 20, by focusing on the
stamp variable. In Line 65, 69, and 75 a value is stored to the variable
in Region G11, the value is than loaded in Line 78 in Region G7.
Therefore, we can confirm a data-flow interaction between Region
G11 and G7.

However, we can not verify the data flow towards Region G8 based
on the source code. If we investigate this issue further, we notice that
Region G8 is wrapped in Region G11. In the perspective of the analy-
sis both regions affect the data flow of the instruction shown in Line
73 of the source code. We will discuss this problem and a possible
solution later in Chapter 5.

Nevertheless, we can identify interactions between commit regions
based on LLVM-IR data flow. Hence, we can answer the RQ1.2 posi-
tively, but the interactions found represent an overapproximation.

4.5.3 Addressing RQ2

In order to answer RQ2 we take a look at the control flow based inter-
action plot depicted in Figure 14. We focus, like we did with the hand-
crafted example, on the regions with a high amount of interactions.
We notice that the Region G10 has the highest amount of control-flow
relations compared to the other single-commit regions. The commit



4.5 experiment 2 - gzip 51

61
___REGION_START "G7"

62 ...

63
___REGION_START "G9"

64 if (time_stamp.tv_nsec < 0)

65 stamp = 0;

66 else if (0 < time_stamp.tv_sec && time_stamp.tv_sec <=

0xffffffff)↪→

67
___REGION_START "G11"

68
___REGION_END "G9"

69 stamp = time_stamp.tv_sec;

70 else

71 {

72
___REGION_START "G8"

73 warning ("file timestamp out of range for gzip

format");↪→

74
___REGION_END "G8"

75 stamp = 0;

76 }

77
___REGION_END "G11"

78 put_long (stamp);

79 ...

80
___REGION_END "G7"

Listing 20: Part of the zip function from gzip.

affects 5 files, whereby it introduces 18 new lines and removes 103.
Compared to Region G8, altering 2 files with 3 additions and 3 dele-
tions and G12, changing 1, file adding 21 lines and removing 19, the
amount of changes made by Region G10 is significantly higher. How-
ever, as we showed in our first experiment, quantity of changes is not
necessarily relevant when measuring the impact of these changes to
the software. Furthermore, we can not argue based on the changed
source code, since we do not know all the implications these changes
have to the program. Therefore, we look up the official statement in
the changelog5 for the upcoming release published by Jim Meyering,
which states:

"Support for VMS and Amiga has been removed. It was
not working anyway, and it reportedly caused file name
glitches on MS-Windowsish platforms."

Based on our observations and the statement of the developers,
can we confirm RQ2 that the impact introduced by a change can be
measured through its interactions to other commit regions.

5 GNU gzip - News: gzip-1.9 released. https://savannah.gnu.org/forum/forum.php?

forum_id=9049. (Accessed on 28/01/2018)

https://savannah.gnu.org/forum/forum.php?forum_id=9049
https://savannah.gnu.org/forum/forum.php?forum_id=9049


52 evaluation

Figure 14: Interaction plot based on the control flow of gzip.



5
C O N C L U S I O N

We conclude our work with a summary of our findings and contri-
butions. Furthermore, we discuss similar efforts in the related work
section and our ideas to further improve our work in the future.

5.1 summary

We presented an approach to detect changes based on the informa-
tion provided by the repository. Based on these changes we organized
the source code in regions using special keywords. Furthermore, we
extended the C and C++ front-end clang with the ability to utilize
these annotations and propagate the information forward to LLVM.
We extended the VaRA framework to support our regions in its data-
flow analysis and implemented an additional analysis, which is based
on the control flow. Moreover, we used these analyses to analyze an
example program we wrote and the open-source software gzip. We
showed in the experiments, that we are able to detect interactions
based on extracted commit information. These results can aid devel-
oper to better understand the implications and relations of certain
changes. In addition, we showed that our approach is also applicable
to software outside of our test environment.

Our goal was to provide developers with a tool that facilitates the
maintenance of software. We introduced a technique that supports
this procedure by enabling analyses during the compilation process.
We think even more software projects written in different languages
can benefit from this concept, since the analyses itself are language
independent. Moreover, as the VaRA framework improves, additional
analyses become available, which allows new researchers to answer
different questions based on our regions.

5.2 related work

To our best knowledge, up to now no publication worked on an ap-
proach to detect and extract change-regions using Git and LLVM.

source-code annotation However, Joy et. al. [9] propose a
novel hybrid automated source-code annotated memory-leak detec-
tion approach for embedded system software. They use classical pars-
ing techniques to identify basic blocks and for each identified block
they insert one annotation in the beginning and one in the end. Un-
like our annotations the ones used by Joy et. al. are implemented with

53



54 conclusion

C macros, which, on disassembling, create basic blocks with unique
identifiers. Based on the control flow between these basic blocks they
extract leak candidate information in dynamic memory allocations.

They used a similar annotation technique in an earlier publica-
tion [10] where they performed a timing analysis for embedded soft-
ware based on these annotations.

change impact visualization Gómez et. al. [6] preset a tool
called Torch that characterizes changes based on information provided
by an RCS. Their aim is to support the developers in comprehending
changes, by providing visualizations and change summaries. Com-
pared to our work they analyze changes based on the source code
and information from repository alone. Their approach does not uti-
lize data provided during the compilation process.

5.3 future work

source-code annotation We introduced an annotation tech-
nique that nest changes in regions. As we observed in the evaluation
this might not be the best strategy for every type of analysis. We
highly recommend to implement and evaluate another annotation
method. In fact, we have already a working prototype, which anno-
tates each change with a single region representing the latest commit
that influences the corresponding part in the source code. We believe,
this method would remove the inherited edges from regions, which
could have a major effect on the results gained from the control-flow
and data-flow analysis. We think, adapting the annotation procedure
with respect to the analyses will improve the value of the generated
results, significantly. Unfortunately, we had not the time to evaluate
this approach in depth.

sematic engine and ast Currently the parsing of annotations
is located in the lexer component. However, this implementation causes
errors regarding correct annotations in LLVM-IR, e.g., when using for-
ward declarations. We believe that adding region information directly
to the each AST node in the parse tree will eliminate such flaws. Fur-
thermore, the current implementation lacks support for syntax and
semantic checks. Adding region annotations to the semantic engine
and the AST could prevent unwanted behavior, like a missing end-
region annotation. However, the overhead to implement and main-
tain a solution that is located in all clang components is much higher
than using the already existing implementation.

analyses improvements The analyses are currently only capa-
ble of analyzing single functions. Enhancing the analyses to be able to
identify interactions throughout function boundaries would increase



5.3 future work 55

the accuracy of the results. Regarding the control-flow analysis, one
could partially achieve this by preprocessing the interaction results
for all functions and retrieve the information for every function call.
However, solving this problem might raise further challenges, like
how to handle recursion and indirect function calls. Nevertheless, we
think its worth putting more effort in enhancing the analyses since
one might gain results of higher quality.

visualization technique The visualizations we used to present
our results tend to get more complex with the size of the analyzed
project. We solve this issue by reducing the participating regions. For
example, in our gzip experiment we joined commits up to a certain
version, in order to be able to investigate the changes that were ap-
plied afterwards. However, this also reduces the informative value of
the results. A dynamic visualization providing the user with the ca-
pability to decide which information is relevant to him and which is
not, would, in our eyes, increase the quality of the insights.

front-end support Furthermore, the analyses are performed
language independent, adding change-region support to additional
LLVM front-ends would increase the number of projects that can ben-
efit from analyses provided by VaRA.





A
A P P E N D I X : C O D E

The following appendix contains example code and the commit his-
tory of the hand crafted example.

a.1 module pass example

Listing 21 shows the basic components needed to create a new LLVM
module pass.

1 #include "llvm/Pass.h"

2

3 class ExampleModulePass : public llvm::ModulePass {

4 static char ID;

5 ExampleModulePass() : ModulePass(ID) {}

6

7 bool runOnModule(Module &M) override {

8 /*
9 ...

10 */

11 return false;

12 }

13 };

14

15 char ExampleModulePass::ID = 42;

16 static RegisterPass<ExampleModulePass> X("example",

"Example pass", false, false);↪→

17 }

Listing 21: Example of a ModulePass in LLVM.

a.2 hand crafted example

Listing 22 shows the source code of the hand-crafted example we
analyzed in Chapter 4. The program fulfills the task of a simple calcu-
lator. The Tables 2 and 3 contain the list of commits submitted during
the development of the hand-crafted example. The first field is the
number of the commit. In the second field the commit message is
presented and the third field contains the changes introduced with
the commit. Furthermore, they are ordered beginning by the latest
commit down to the first one.

57



58 appendix : code

1 #include <stdio.h>

2

3 int add (int a, int b) {

4 return a + b;

5 }

6

7 int sub (int a, int b) {

8 return a - b;

9 }

10

11 int readVariable() {

12 int res;

13 scanf("%d", &res);

14 return res;

15 }

16

17 void listOperations(){

18 printf("0 - Addition\n");

19 printf("1 - Subtraction\n");

20 }

21

22 int main() {

23 printf("Welcome to the Calculator!\n");

24

25 listOperations();

26 printf("Choose operation: ");

27 short v1, v2, op = readVariable();

28 switch (op) {

29 case 0:

30 printf("Var 1: ");

31 v1 = readVariable();

32 printf("Var 2: ");

33 v2 = readVariable();

34 printf("%d",add(v1, v2));

35 break;

36 case 1:

37 printf("Var 1: ");

38 v1 = readVariable();

39 printf("Var 2: ");

40 v2 = readVariable();

41 printf("%d",sub(v1, v2));

42 break;

43 default:

44 printf("Unknown operation: %d", op);

45 }

46 return 0;

47 }

Listing 22: Implementation of the hand-crafted example used in the evalua-
tion.



A.2 hand crafted example 59

Nr. Message Diff

C9 Changed interm. vars from int to short.

@@ -24,7 +24,7 @@

int main() {

listOperations();

printf("Choose operation: ");

- int v1, v2, op = readVariable();

+ short v1, v2, op = readVariable();

switch (op) {

case 0:

printf("Var 1: ");

C8 Implemented Sub handling.

@@ -33,6 +33,13 @@

int main() {

v2 = readVariable();

printf("%d",add(v1, v2));

break;

+ case 1:

+ printf("Var 1: ");

+ v1 = readVariable();

+ printf("Var 2: ");

+ v2 = readVariable();

+ printf("%d",sub(v1, v2));

+ break;

default:

printf("Unknown operation: %d", op);

}

C7 Implemented Add handling.

@@ -26,6 +26,13 @@

int main() {

printf("Choose operation: ");

int v1, v2, op = readVariable();

switch (op) {

+ case 0:

+ printf("Var 1: ");

+ v1 = readVariable();

+ printf("Var 2: ");

+ v2 = readVariable();

+ printf("%d",add(v1, v2));

+ break;

default:

printf("Unknown operation: %d", op);

}

C6 Implemented main operation chooser.

@@ -10,16 +10,24 @@

int sub (int a, int b) {

int readVariable() {

int res;

- scanf("%d", res);

+ scanf("%d", &res);

return res;

}

void listOperations(){

- printf("0 - Addition");

- printf("1 - Substraction");

+ printf("0 - Addition\n");

+ printf("1 - Substraction\n");

}

int main() {

printf("Welcome to the Calculator!\n");

+ listOperations();

+ printf("Choose operation: ");

+ int v1, v2, op = readVariable();

+ switch (op) {

+ default:

+ printf("Unknown operation: %d", op);

+ }

return 0;

}

C5 Added Print Op function.

@@ -14,6 +14,11 @@

int readVariable() {

return res;

}

+ void listOperations(){

+ printf("0 - Addition");

+ printf("1 - Substraction");

+ }

int main() {

printf("Welcome to the Calculator!\n");

return 0;

Table 2: List of commits 9 to 5 from the hand-crafted example.



60 appendix : code

Nr. Message Diff

C4 Added Console Read function.

@@ -8,8 +8,13 @@

int sub (int a, int b) {

return a - b;

}

+ int readVariable() {

+ int res;

+ scanf("%d", res);

+ return res;

+ }

int main() {

printf("Welcome to the Calculator!\n");

return 0;

}

C3 Added Sub function.

@@ -4,6 +4,10 @@

int add (int a, int b) {

return a + b;

}

+ int sub (int a, int b) {

+ return a - b;

+ }

int main() {

printf("Welcome to the Calculator!\n");

C2 Added Add function.

@@ -1,6 +1,11 @@

#include <stdio.h>

+ int add (int a, int b) {

+ return a + b;

+ }

int main() {

printf("Welcome to the Calculator!\n");

return 0;

}

C1 Added Main with no functionality.

@@ -0,0 +1,6 @@

+ #include <stdio.h>

+ int main() {

+ printf("Welcome to the Calculator!\n");

+ return 0;

+ }

Table 3: List of commits 4 to 1 from the hand-crafted example.



B I B L I O G R A P H Y

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools (2Nd Edition).
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2006. isbn: 0321486811.

[2] Robert S. Arnold. Software Change Impact Analysis. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1996. isbn: 0818673842.

[3] Edsger W. Dijkstra. “Guarded Commands, Nondeterminacy and
Formal Derivation of Programs.” In: Commun. ACM 18.8 (Aug.
1975), pp. 453–457. issn: 0001-0782. doi: 10.1145/360933.360975.
url: http://doi.acm.org/10.1145/360933.360975.

[4] Institute of Electrical, Electronics Engineers, International Or-
ganization for Standardization, and International Electrotechni-
cal Commission. Norma ISO/IEC 14764:2006 (E) IEEE Std 14764-
2006 Revision of IEEE Std 1219-1998). IEEE std. IEEE, 2006. isbn:
9780738149608.

[5] Brian Fahs. “SPEDI: Static Patch Extraction and Dynamic Inser-
tion.” In: (Jan. 2008).

[6] Verónica Uquillas Gómez, Stéphane Ducasse, and Theo D’Hondt.
“Visually characterizing source code changes.” In: Sci. Comput.
Program. 98 (2015), pp. 376–393.

[7] C. A. R. Hoare. “An Axiomatic Basis for Computer Program-
ming.” In: Commun. ACM 12.10 (Oct. 1969), pp. 576–580. issn:
0001-0782. doi: 10.1145/363235.363259. url: http://doi.acm.
org/10.1145/363235.363259.

[8] ISO. ISO/IEC 14882:2011 Information technology — Programming
languages — C++. Geneva, Switzerland: International Organiza-
tion for Standardization, Feb. 2012, 1338 (est.) url: http://
www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=50372.

[9] M. M. Joy, W. Mueller, and F. J. Rammig. “Source Code An-
notated Memory Leak Detection for Soft Real Time Embedded
Systems with Resource Constraints.” In: 2014 IEEE 12th Interna-
tional Conference on Dependable, Autonomic and Secure Computing
(2014), pp. 166–172.

[10] Mabel M. Joy, Markus Becker, Wolfgang Müller, and Emi Math-
ews. “Automated source code annotation for timing analysis
of embedded software.” In: 2012 18th International Conference
on Advanced Computing and Communications (ADCOM) (2012),
pp. 12–18.

61

http://dx.doi.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://dx.doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372


62 Bibliography

[11] Chris Lattner. The Architecture of Open Source Applications: LLVM.
http://aosabook.org/en/llvm.html. (Accessed on 10/02/2017).
2015.

[12] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation.” In: Pro-
ceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO’04). Palo Alto, California, 2004.

[13] Jon Loeliger and Matthew McCullough. Version Control with Git:
Powerful tools and techniques for collaborative software development.
" O’Reilly Media, Inc.", 2012.

[14] Torben Ægidius Mogensen. Basics of Compiler Design. Torben
Ægidius Mogensen, 2009.

[15] Florian Sattler. “A Variability-Aware Feature-Region Analyzer
in LLVM.” MA thesis. University of Passau, 2017.

[16] Yulei Sui and Jingling Xue. “SVF: Interprocedural Static Value-
flow Analysis in LLVM.” In: Proceedings of the 25th International
Conference on Compiler Construction. CC 2016. Barcelona, Spain:
ACM, 2016, pp. 265–266. isbn: 978-1-4503-4241-4. doi: 10.1145/
2892208.2892235. url: http://doi.acm.org/10.1145/2892208.
2892235.

http://aosabook.org/en/llvm.html
http://dx.doi.org/10.1145/2892208.2892235
http://dx.doi.org/10.1145/2892208.2892235
http://doi.acm.org/10.1145/2892208.2892235
http://doi.acm.org/10.1145/2892208.2892235


D E C L A R AT I O N

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmit-
tel angefertigt habe und alle Ausführungen, die wörtlich oder sin-
ngemäß übernommen wurden, als solche gekennzeichnet sind, sowie
dass ich diese Masterarbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegt habe.

Passau, Germany, February 7, 2018

Florian Niederhuber


	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Goal
	1.2 Contribution
	1.3 Overview

	2 Background
	2.1 Control-Flow Graph and Data-Flow Analysis
	2.1.1 Control-Flow Graph
	2.1.2 Data-Flow Analysis

	2.2 LLVM Compiler Framework
	2.2.1 Architecture
	2.2.2 LLVM Intermediate Representation
	2.2.3 Compiler Front-End clang
	2.2.4 Optimization Pass
	2.2.5 Variability-Aware Region Analyzer

	2.3 Git a Revision Control System

	3 Region detection and annotation
	3.1 Introduction
	3.2 Introducing SC-R to clang
	3.2.1 General Approach
	3.2.2 SC-R Keywords
	3.2.3 Parse SC-R
	3.2.4 Processing
	3.2.5 Emit IR-R
	3.2.6 Process IR-R

	3.3 Automated Annotation of SC-R using Git
	3.3.1 Tag-group-based Annotation


	4 Evaluation
	4.1 Change-Region Based Analysis
	4.1.1 Control-Flow Analysis
	4.1.2 Data-Flow Analysis
	4.1.3 Report Pass

	4.2 Tools
	4.2.1 Graph Visualization
	4.2.2 Interaction Plot
	4.2.3 Whole Program LLVM
	4.2.4 Repository Preperation

	4.3 Samples
	4.3.1 Hand-Crafted Example Program
	4.3.2 GNU Zip

	4.4 Experiment 1 - Calculator
	4.4.1 Addressing RQ1.1
	4.4.2 Addressing RQ1.2
	4.4.3 Addressing RQ2

	4.5 Experiment 2 - Gzip
	4.5.1 Addressing RQ1.1
	4.5.2 Addressing RQ1.2
	4.5.3 Addressing RQ2


	5 Conclusion
	5.1 Summary
	5.2 Related Work
	5.3 Future Work

	A Appendix: Code
	A.1 Module Pass Example
	A.2 Hand Crafted Example

	Bibliography
	Declaration

