
M A S T E R ’ S T H E S I S

florian heck

Comparing merge stratgies regarding build and test conflicts

chair:
Chair of Software Engineering I

Faculty of Computer Science and Mathematics
University of Passau

Advisor: Georg Seibt
Supervisor: Prof. Dr.-Ing. Sven Apel

2nd corrector: Prof. Dr. Gordon Fraser

submitted:
2019-09-11

A B S T R A C T

An essential part of software development is changing code. Large
projects require multiple developers working on the software and of-
ten their changes are located in the same parts of the source code.
Those different changes need to be merged together without break-
ing their individual functionality or a bug fix needs to be applied to
different versions.

Merging versions often results in conflicts. While the development
of tools for merging focuses on reducing the number and size of those
conflicts, other aspects, in particular the correctness of the resulting
code, might be neglected.

Automated test suites can help the developer to affirm that indi-
vidual changes, as well as merges, keep working code intact. In this
thesis, we utilize automated test suites to evaluate JDime, a structural
merge tool for Java, regarding the correctness of its results and show
that, while reducing the number of syntactic conflicts, the number
of introduced delayed, semantic errors is not significantly increased
compared to default line-based merge algorithms.

iii

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Goal . 1

1.3 Overview . 2

2 background 3

2.1 Git, a distributed version control system 3

2.1.1 Merging versions 4

2.1.2 GitHub, a collaboration git hoster 6

2.2 Unit testing . 6

2.2.1 Flaky test cases 8

2.3 JDime . 10

2.3.1 JDime merge strategies 11

2.3.2 JDime integration 12

3 automated merge quality analysis with test suites 13

3.1 MergeProfiler . 13

3.1.1 Structure . 14

3.2 Evaluating merge test suite data 19

3.2.1 Visualizing merge scenarios 19

3.2.2 Visualizing results from the whole project . . . 21

3.2.3 Statistics . 23

3.2.4 JDime data . 24

4 evaluation 25

4.1 Research questions . 25

4.1.1 Finding bugs caused by a merge 25

4.1.2 Automatic merging with advanced tools does
not introduce delayed defects 26

4.1.3 Differences between regular merges and pull re-
quests . 26

4.2 Analyzed projects . 27

4.3 Results . 28

4.3.1 Project commons-math 28

4.3.2 Project dropwizard 29

4.3.3 Project fastjson 29

4.3.4 Project ghbrp-plugin 30

4.3.5 Project github-api 31

4.3.6 Project javaparser 31

4.3.7 Project jedis . 32

4.3.8 Project okhttp . 32

4.3.9 Project ontop . 33

4.3.10 Project openmrs-core 34

4.4 Discussion . 34

5 conclusion 39

v

vi contents

5.1 Summary . 39

5.2 Related work . 39

5.3 Future work . 39

a appendix 41

a.1 Global merge scenario results 41

a.2 Merge scenario results per projects 44

a.3 Test case results . 48

a.4 Global JDime merge statistics 51

a.5 JDime merge statistics per project 52

bibliography 59

L I S T O F F I G U R E S

Figure 1 Example git graph 4

Figure 2 Example of virtual ancestors in git merge . . . 5

Figure 3 MergeProfiler analysis process 13

Figure 4 Simplified class diagram of the git library . . . 15

Figure 5 Simplified class diagram of the MergeProfiler . 17

Figure 6 Example of the merge scenario visualzation . . 20

Figure 7 Example of a merge result visualization in a
sankey plot . 23

Figure 8 Example of a merge result visualization in a
line plot . 24

Figure 9 Examples merge scenarios showing bug intro-
duction . 35

Figure 10 The data from Table 3 visualized. 37

Figure 11 Comparison between merged pull requests and
regular merges 38

Figure 12 Comparison of filtered and unfiltered merge
scenario results 41

Figure 13 Merge scenario results as a Sankey plot 42

Figure 14 Merge scenario results as a Sankey plot 43

Figure 15 The result category plot for project commons-
math. 44

Figure 16 The result category plot for project dropwizard. 44

Figure 17 The result category plot for project fastjson. . . 44

Figure 18 The result category plot for project ghprb-plugin. 44

Figure 19 The result category plot for project github-api. 44

Figure 20 The result category plot for project javaparser. 44

Figure 21 The result category plot for project jedis. . . . 45

Figure 22 The result category plot for project okhttp. . . 45

Figure 23 The result category plot for project ontop. . . . 45

Figure 24 The result category plot for project openmrs-
core. 45

Figure 25 The global JDime merge statistics. 52

Figure 26 The JDime merge statistics for project commons-
math. 52

Figure 27 The JDime merge statistics for project drop-
wizard. 53

Figure 28 The JDime merge statistics for project fastjson. 53

Figure 29 The JDime merge statistics for project ghprb-
plugin. 54

Figure 30 The JDime merge statistics for project github-api. 54

Figure 31 The JDime merge statistics for project javaparser. 55

vii

Figure 32 The JDime merge statistics for project jedis. . . 55

Figure 33 The JDime merge statistics for project okhttp. . 56

Figure 34 The JDime merge statistics for project ontop. . 56

Figure 35 The JDime merge statistics for project openmrs-
core. 57

L I S T O F TA B L E S

Table 1 Summery results after filtering 22

Table 2 List of analyzed projects. 27

Table 3 Combined results from all merge scenarios. . . 37

Table 4 Results from all merge scenarios that could be
identified as pull requests. 41

Table 5 Combined results from all remaining merge
scenarios. 41

Table 6 The result category data for project commons-
math. 45

Table 7 The result category data for project dropwizard. 46

Table 8 The result category data for project fastjson. . 46

Table 9 The result category data for project ghprb-plugin. 46

Table 10 The result category data for project github-api. 46

Table 11 The result category data for project javaparser. 46

Table 12 The result category data for project jedis. . . . 47

Table 13 The result category data for project okhttp. . . 47

Table 14 The result category data for project ontop. . . 47

Table 15 The result category data for project openmrs-
core. 47

Table 16 Results of all test case scenarios. 48

Table 17 Global JDime merge conflict statistics. 51

L I S T O F L I S T I N G S

Listing 1 Example JUit tests. 7

Listing 2 An example pom.xml 9

Listing 3 Excerpt from a maven surefire report. 10

Listing 4 Excerpt from a generated xml file. 18

Listing 5 Exceprt from commons-math source code. . . 29

viii

1
I N T R O D U C T I O N

This chapter will give an introduction to our thesis and we will de-
scribe the aim of this work.

1.1 motivation

Software development consists of writing code to create computer
programs. For larges projects, this process often involves many devel-
opers working on millions of lines of code. This requires that code is
shared between multiple developers. One way to achieve this is the
use of version control systems, which bring many additional advan-
tages like keeping record of older versions of the codebase or allow-
ing developers to maintain different configurations of the software in
parallel.

However, collaboration brings additional challenges for the soft-
ware development process, which mostly relate to the coordination
of work. This is especially important when integrating changes to the
same code from different developers.

To ensure a high and constant quality of the created program, a key
point is testing the software. Testing can uncover unintended changes
to the behavior of the program. Therefore, the software development
process should always include a testing phase. In general, the earlier
a defect is found, the easier and less costly it is to fix.

As indicated before, one critical point for changing existing code is
the merging of different versions. This is especially difficult since this
process can include many changes made by various developers. To
help reduce the work necessary to be done by the person performing
the merge, tools exist that try to integrate as much of the changes
from both sides as possible. While those tools can reduce the work, it
is not immediately clear, that the result is the intended one.

1.2 goal

With the approach of combining information available through the
version control system with the information provided by test suites,
we aim to show that merge algorithms that reduce the number of
conflicts, and therefore the work necessary to be done by a developer,
do not result in more defects in the automatically merged code.

1

2 introduction

1.3 overview

First, Chapter 2 gives an introduction to some tools and practices
commonly used in the software development process and what they
are used for in our analysis. In Chapter 3 our tool MergeProfiler is
described and the gathered data is detailed. In Chapter 4 results for
the analyzed repositories are reported. Finally, Chapter 5 contains the
conclusion drawn from the findings and we look at suggestions to
further improve the approach and related work by other researchers.

2
B A C K G R O U N D

In this chapter, we look into some tools which are widely used in
software development, specifically in the development of open-source
projects written in the Java programming language. These tools pro-
vide functionality which is used in many different stages of the soft-
ware development process. This includes software versioning, the
software build process and testing the software project.

All of these tools are used in this thesis to gather valuable data that
we use to compile feedback for the developer. These tools include git,
a version control system, Maven, a build system for Java projects, and
JUnit and TestNG, two unit testing frameworks for Java code.

2.1 git, a distributed version control system

Git is a version control system (VCS) that has gained popularity in
recent years12. One of its advantages, which has helped its adoption
especially in the world of open-source projects is its decentralized na-
ture [16]. Each copy of a repository contains the whole history of the
project and is capable of being updated with new versions, called com-
mits. Each commit contains a set of changes made to the repository.
Git saves those changes internally into so-called blobs and hashes
them together with metadata about the commit like the author, a
message, and a link to parent commit. These resulting SHA1 hashes
are used to identify commits as well as any internal structure used by
git. Due to the link to the parent(s) being part of the commits data, a
chain of commits is created that represents the history which contains
all commits, and thereby all incremental changes leading to a given
version.

Git supports branching the history into diverging lines of develop-
ment. Branches are separate chains of commits, usually with a shared
part of the history. Branches are a useful tool in software development,
as often new features of a software are developed in their own branch,
for example, to limit interaction during development. To combine
changes of two or more branches, git allows merging those branches
together with special merge commits that have more than one parent.

1 A historical comparison on open source projects indexed by OpenHub and their
used VCS can be found through the Wayback machine. http://web.archive.org/
web/*/http://www.ohloh.net/repositories/compare, http://web.archive.org/
web/*/https://www.openhub.net/repositories/compare (visited on 2019-07-15).

2 StackOverflow Developer Survey 2018. https : / / insights . stackoverflow . com /

survey/2018 (visited on 2019-08-29).

3

http://web.archive.org/web/*/http://www.ohloh.net/repositories/compare
http://web.archive.org/web/*/http://www.ohloh.net/repositories/compare
http://web.archive.org/web/*/https://www.openhub.net/repositories/compare
http://web.archive.org/web/*/https://www.openhub.net/repositories/compare
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018

4 background

Figure 1: Example of a git revision graph. The commits are named according
to the terminologies used here.

Updates in one copy of a repository can be shared with other copies
by pushing the relevant data from the local repository to the remote
copy or by pulling them from the remote.

Git is a collection of tools and protocols that comprise the whole
version control system, its commands allow high-level operations, as
well as full access to internal data structures. Most of its tools have a
text-based interface that can be accessed under the single command-
line interface git. The documentation for git and all its commands
can be found online3.

2.1.1 Merging versions

As described above, when two (or more) different versions need to
be combined, git creates a merge commit. Therefore, all changes be-
tween the latest commit on each side of the merge and a common
ancestor, a commit that can be reached from all versions in each part
of the diverged history, will be calculated as a final changeset and
used during the merge. Going forward, we will only consider cases,
where there is a common ancestor and the merge commit contains
exactly two merge partners. When combining those two changesets
into one to build the final version that is part of the commit, there
are different cases to consider. In the simple case, where no changed
files on one side coincide with changed files on the other side, it can
be resolved easily by combining the two changesets. When both sides
change lines inside the same file, but those sections do not overlap,
git can also combine those changes for each file.

The most complex scenario is the case where different changes in
both versions overlap on the same lines. With the utilization of both
parent commits and common ancestor (or base commit), git uses a

3 https://git-scm.com/doc (visited on 2019-05-15).

https://git-scm.com/doc

2.1 git, a distributed version control system 5

three-way merge algorithm by default. This technique can sometimes
resolve these so-called merge conflicts. Often this is not the case, and
the remaining conflicts are presented to the developer for manual
resolution. The final version, including all resolved conflicts, is then
committed to the repository.

Besides this default behavior of using its three-way merge algo-
rithm, git can be configured to use a list of merge strategies which
include simple strategies for using only one side of merge as the final
result, using a two-way merge when no base version is available or
complex strategies that can handle situations with ambiguous base
versions. This so-called recursive strategy will recursively merge base
versions until there is a virtual base version available that is unique
to all parents. According to the documentation of git4, this helps to
reduce the number of merge conflicts. An example case, where the re-
cursive strategy creates a virtual ancestor is shown in Figure 2. Here,
the recursive strategy creates an intermediate merge of ancestor b

and ancestor c (where ancestor a is used as the base) that is later
used as the virtual base for merging left parent and right parent.

Figure 2: Example of a git revision graph where the recursive strategy cre-
ates an intermediate merge used as a virtual base for merging.

At the time of the analysis, this recursive strategy is the default
used by git.

Besides different strategies, git can use external tools to perform
the merge instead of the line based textual merge implementation
provided by git itself. These so-called merge drivers can be configured
for specific file types and have full control over the merge result while
still being provided with the same (virtual) ancestors selected by the
merge strategy if the recursive strategy is used.

When we consider a merge, we include all additional relevant com-
mits (parents, base commit) in what we call a merge scenario. Further,

4 https://git-scm.com/docs/merge-strategies#Documentation/merge-strategies.

txt-recursive (visited on 2019-08-21).

https://git-scm.com/docs/merge-strategies#Documentation/merge-strategies.txt-recursive
https://git-scm.com/docs/merge-strategies#Documentation/merge-strategies.txt-recursive

6 background

when we speak of a merge strategy, not only the git merge strategy con-
figuration is included but also potential configured merge drivers.

2.1.2 GitHub, a collaboration git hoster

GitHub5 is a popular online hosting system for git repositories and
has become the largest source code host in the world. Users can cre-
ate their own repositories to share access to their projects. The web
interface allows for easy browsing, contains stats, and has additional
features we will discuss below. A GitHub repository can be used as
a remote for a local repository and changes can thereby be synchro-
nized with a central system.

A feature, that is especially popular in the open-source community
is the ability to fork repositories. A fork is another copy that can be
managed by the forking user, but still has a connection to the original
repository. If the fork is updated, the user can create a so-called pull
(or merge) request to the original repository to merge those changes
back. Thanks to git’s internal structure, this is very similar to merg-
ing branches. GitHub enhances this process by providing a simple
interface and a connection to its issue tracker. Comments and inte-
gration to external tools allow developers a good workflow for code
review using pull requests.

In addition to the web interface and the direct git access, GitHub
provides a REST API6 to access most of the data belonging to a repos-
itory. Issues and pull requests, including comments and information
from the underlying git repository, can be accessed by requesting the
corresponding HTTP URI. The response includes a machine-readable
representation in the form of JSON objects.

2.2 unit testing

The software development lifecycle generally should include testing
the created software. Different methods can be used for testing, and
different stages and parts of the development require different ap-
proaches to testing. One of the fundamental methods of testing soft-
ware is called unit testing.

Unit tests are the smallest category of test cases that target very
specific functionality [5], in the Java world, often on the level of indi-
vidual methods or even below. Due to this fine granularity of testing,
many test cases are needed to check a large portion of the code and
therefore have high coverage. Further, to directly target specific meth-
ods, it is often necessary to do setup before the actual test code can
be executed. This includes prerequisites, which can be provided by

5 https://github.com (visited on 2019-06-30).
6 https://developer.github.com/v3/ (visited on 2019-09-10).

https://github.com
https://developer.github.com/v3/

2.2 unit testing 7

1 import ...

2

3 public class HelloWorldTest {

4

5 public static class Example {

6 public static String test() { return " correct "; }

7 }

8

9 @Test

10 public void passTest() {

11 assertEquals(" correct ", Example.test());

12 }

13

14 @Test

15 public void failTest() { fail(); }

16

17 @Test

18 @Ignore

19 public void skipTest() { }

20 }

Listing 1: Example JUit tests.

mocking and thereby simulating the irrelevant behavior without in-
terfering with the program in normal execution.

For efficient testing and test development, these challenges need to
be handled. Unit test frameworks make it easier for the test developer
to generalize test cases, help to simplify the setup and even provide a
straightforward interface for test execution. Two of the most popular
frameworks for unit testing Java code are JUnit and TestNG. Both fol-
low the "xUnit" convention on how to structure test suites [15]. Since
both frameworks are reasonably similar in features and tooling sup-
port, we will not differentiate unless necessary. Details information
on the latest versions of JUnit7 and TestNG8 can be found online.

Tests are structurally or logically grouped into test classes that con-
tain test methods and setup/teardown methods which are called be-
fore after the test methods, respectively. Annotations tell the frame-
works (see Listing 1, line 17f), how and when to execute certain meth-
ods. The test methods contain one or more calls to assertion methods
of the framework (see Listing 1, line 12), which will determine the
test result. Individual tests can either result in success, if all asser-
tions pass, or fail if at least one of the assertions does not hold or, if
the execution fails with some exception, it may be counted as an ex-
ecution error. The test results are usually displayed on the command
line or exported to a report.

7 https://junit.org/junit5/ (visited on 2019-08-06).
8 https://testng.org/doc/index.html (visited on 2019-08-06).

https://junit.org/junit5/
https://testng.org/doc/index.html

8 background

While there are efforts for automatically creating test cases for Java
programs (for example, as proposed by Fraser et al. [8] with their
tool EvoSuite), in this thesis we focus on the test suites provided by
the project as-is.

2.2.1 Flaky test cases

A major problem with trusting test result is reproducibility. In some
cases, the outcome of a test case depends on factors that cannot be
sufficiently controlled by the test runner. This can result in false neg-
atives, i.e. a test fails even though the code is bug-free. Luo et al.
[13] identified multiple sources for non-determinism in test suites
which can result in flaky tests, including concurrency, randomness,
or floating-point operations. To combat these problems, some frame-
works provide developers with additional tools to mark tests that
they have identified as flaky. For example, Google provides Android
developers with @FlakyTest9. Other sources of non-deterministic be-
havior might not be detectable for developers, like network or IO
interactions.

maven, a build system

To execute a Java program, the source code needs to be compiled by
a Java compiler. The call to the compiler needs to include all relevant
information for compilation, such as a list of all source files and their
external dependencies. Often, additional parameters, depending on
the type of build, the environment, or a feature configuration can
be necessary. As a consequence, build commands can get convoluted
even for small projects. Build tools provide a way to standardize the
build command and therefore the configuration across multiple de-
velopers and systems.

One of the most popular build tools for Java is Maven10. Maven is
a Java program, that reads the configuration for a project and then
executes commands pertaining to the build process. In addition to
the build execution it can also, among other things, help to man-
age external dependencies of the project (see Listing 2, line 9 ff.).
Maven allows its user to configure the build process by specifying
a project definition, relevant source files, dependencies, build profiles
with compiler flags and other information through an XML file called
pom.xml (Project Object Model) inside the project folder. In addition
to the built-in functionalities, Maven can be extended by a multitude
of plugins (see Listing 2, line 18 ff.). Those can be used to automate

9 https://developer.android.com/reference/android/support/test/filters/

FlakyTest.html (visited on 2019-07-15).
10 Eugen Paraschiv. The State of Java in 2018. 2018. https://www.baeldung.com/java-

in-2018 (visited on 2019-08-04).

https://developer.android.com/reference/android/support/test/filters/FlakyTest.html
https://developer.android.com/reference/android/support/test/filters/FlakyTest.html
https://www.baeldung.com/java-in-2018
https://www.baeldung.com/java-in-2018

2.2 unit testing 9

1 <?xml version="1.0" encoding="UTF-8"?>

2 <project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd"

3 xmlns="http://maven.apache.org/POM/4.0.0"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

5 <modelVersion>4.0.0</modelVersion>

6 <groupId>example</groupId>

7 <artifactId>hello-world</artifactId>

8 <version>1</version>

9 <dependencies>

10 <dependency>

11 <groupId>junit</groupId>

12 <artifactId>junit</artifactId>

13 <version>4.12</version>

14 <scope>test</scope>

15 </dependency>

16 </dependencies>

17 <build>

18 <plugins>

19 <plugin>

20 <groupId>org.apache.maven.plugins</groupId>

21 <artifactId>maven-surefire-plugin</artifactId>

22 </plugin>

23 </plugins>

24 </build>

25 </project>

Listing 2: An example pom.xml

processes in different stages of the project management, including
testing, and their configuration is also part of the pom.xml file. An
example configuration file is shown in Listing 2.

Detailed documentation on Maven can be found online11.

Configuring and running test suites

One plugin that integrates test frameworks like JUnit or TestNG into
the Maven infrastructure is the Maven Surefire plugin. Maven Surefire
can integrate the existing test suite at the relevant points of the build
process. Through configuration, test classes and methods can be se-
lected and integrated into the build process. In addition to running
the tests, the Maven Surefire plugin will generate reports about test
execution status.

The plugin will use the configured test framework and its test run-
ner to execute the specified tests. Then the results of all executed
tests will be compiled into one report containing detailed results for

11 https://maven.apache.org/ (visited on 2019-05-01).

https://maven.apache.org/

10 background

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <testsuite tests="3" failures="1" name="HelloWorldTest" time="

0.017" errors="0" skipped="1">

3 <properties>

4 ...

5 </properties>

6 <testcase classname="HelloWorldTest" name="failTest" time="

0.015">

7 <failure type="java.lang.AssertionError">java.lang.

AssertionError

8 ...

9 </failure>

10 </testcase>

11 <testcase classname="HelloWorldTest" name="passTest" time="0"/>

12 <testcase classname="HelloWorldTest" name="skipTest" time="

0.002">

13 <skipped/>

14 </testcase>

15 </testsuite>

Listing 3: Excerpt from a maven surefire report.

all tests. The machine-readable output in the form of an XML file for
the example program in Listing 1 can be found in Listing 3

Like all Maven tasks, this is generally done by calling the Maven
task for the intended action on the command-line interface of Maven,
in the case of test suites this task is normally called test. To automate
this process without the need to interact with Maven on its command-
line interface, we employ the functionally of another Maven plugin
called Maven Invoke. As the name suggests, this plugin enables pro-
grammatically invoking Maven tasks on a project from an external
program.

Documentation on Maven Surefire12 and Maven Invoker13 can be
found online.

2.3 jdime

As described in Section 2.1.1, it is an essential part of the workflow
when using version control, and git especially, to combine two or
more revisions of the same code base often including two versions
of the same source code file. When merging text-based content there
are different aspects of the way the merge result is created. Mens
[14] describes one way to differentiate merge tools is the classifica-

12 https://maven.apache.org/surefire/maven- surefire- report- plugin/index.

html (visited on 2019-02-20).
13 http://maven.apache.org/shared/maven-invoker/index.html (visited on 2019-02-

20).

https://maven.apache.org/surefire/maven-surefire-report-plugin/index.html
https://maven.apache.org/surefire/maven-surefire-report-plugin/index.html
http://maven.apache.org/shared/maven-invoker/index.html

2.3 jdime 11

tion into textual, syntactic, semantic, and structural merging. Addi-
tional, when presenting the conflict to the developer for resolution
that method can be called cut-and-paste merging.

The merge algorithms git itself implements are all independent of
the content within the repository and therefore cannot have any as-
sumptions about the structure of the text data itself. This permits
the use of git for a wide variety of projects but limits the merge
algorithms to textual merges by looking at anchor lines to identify
changed sections.

To improve on this generalization, one can limit the target projects
and focus on a specific programming language and its structure and
use this additional information to improve the results of the merge.
One such tool is JDime, with its latest development presented by
Leßenich et al. in their paper on performant merging of code con-
taining renamings [11]. Its current release version can be found on
GitHub14. JDime focuses on the Java programming language and al-
lows merging of Java source code files with different merge strategies.

2.3.1 JDime merge strategies

Currently, JDime supports three different strategies (called modes in
JDime) for merging Java source files. Firstly, by using libgit215, it
provides access to the line based textual merge provided and used by
git.

Further, JDime implements a syntactic merge (called structured).
This included improved detection of moved code blocks or renames
that would result in conflicts when using textual merging only. To
achieve this, JDime parses the Java source code of all involved ver-
sions and uses the created abstract syntax tree (AST) to merge them
before again generating Java source code and writing this merged
version back. The basic algorithm used for merging the different ver-
sions of the AST first needs to find a matching of the AST nodes
from both sides. Since in Java, there are parts of the AST that are
ordered and others that can be unordered, an algorithm based on
Yang’s SimpleTreeMatching [19] for ordered matching as well as a
linear programming approach for finding am ordering to compare
unordered parts. When the matching is obtained, all unchanged or
consistently changed nodes are copied to the new AST, conflicts are
resolved as possible and conflicts that could not be resolved are in-
serted as dummy nodes to return both versions for later manual res-
olution.

Additionally, JDime provides a semi-structured merge strategy that
is based on a tool called FSTMerge which was originally proposed by
Apel et al. [3]. The standalone tool is an "extension to an existing

14 https://github.com/se-passau/jdime (visited on 2019-05-06).
15 https://libgit2.org/ (visited on 2019-08-04).

https://github.com/se-passau/jdime
https://libgit2.org/

12 background

feature composition tool infrastructure, called FEATUREHOUSE" [3],
[1]. This approach to merging software artifacts is similar to the pre-
viously described structured merge, but only uses the AST nodes and
therefore structure information about the merge subject when merg-
ing certain parts of code. All other parts are handled as plain text and
are merged as such. In the implementation for Java, method bodies,
for example, are such a case. This trade-off was chosen to keep the
necessary work for supporting additional programming languages
smaller than what would be required for full structured merges while
still providing additional information to resolve some conflicts.

Since the added complexity of those merge strategies comes with
higher runtime costs, the authors of JDime implemented a fallback
mode called auto-tuning. This mode provides a trade-off between the
precision of allays calling an expensive strategy, but which potentially
could detect conflicts on a higher level with the benefit of shorter
runtime. In this mode, multiple strategies can be selected. In case the
first strategy results in merge conflicts, the next strategy is tried, until
either no conflict is produced, or all selected strategies have failed.
This strategy has been successfully evaluated by Apel et al. [2].

2.3.2 JDime integration

JDime can be used in combination with git as an external merge
driver. This allows the selective use of its advanced merge capabili-
ties for existing Java projects and their git-based workflows. Due to
its focus on the specific structure of Java, JDime is only capable of
merging Java source files the moment. Other files in the repository
that might change during a merge are merged by git and its default
line-based algorithms.

This integration is done by defining a command for git to call in the
case where both versions of a file have changed during a merge. The
file suffix .java is used to identify Java source files, so JDime is only
executed for those. Further, in the case of git’s recursive merge strat-
egy, it is configurable if only the actual merge should be performed
by JDime.

3
A U T O M AT E D M E R G E Q U A L I T Y A N A LY S I S W I T H
T E S T S U I T E S

To analyze merge scenarios, we implemented a test suite execution
and analyzer tool. The tool was integrated into an existing frame-
work called MergeProfiler. This chapter will describe the process of
the merge analysis and its implementation in the MergeProfiler. An
overview of the analysis process can be seen in Figure 3.

Figure 3: MergeProfiler analysis process

3.1 mergeprofiler

MergeProfiler was created to automate profiling and analysis tasks
on merge scenarios for git repositories. This allows for the implemen-
tation of additional profilers or analysis tools, in this case, a class
called TestSuiteProfiler was added to run test suites and gather
information about their execution and results.

During the setup phase, the tool takes a list of git repositories to
analyze and clones local copies to make code and history available.
Since the main aspect of analysis for this tool are merge scenarios, all
merge commits are gathered from each repository. Together with the
configuration of the profilers, the hashes of these commits are used to
generate individual scripts for each repository that can be executed
in the analysis stage. These scrips are constricted in a manner that

13

14 automated merge quality analysis with test suites

makes the analysis of each commit independent, and therefore allows
for parallelization of the next stage.

The profiling phase is initiated by running the generated scripts.
Each configured profiler is run for each individual merge scenario
and all generated results are accumulated into an XML report that
can be used for further processing.

3.1.1 Structure

The MergeProfiler tool itself and the libraries used to get access to git
and GitHub are written in the Java programming language and make
uses of object orientation to describe data structures.

The heart of the tool itself is the abstract Profiler class. It pro-
vides an interface for all available profilers and analyzers as well
as preparations that are necessary for each scenario. Each profiler,
like TestSuiteProfiler used for our analysis the needs to implement
a method called profileMergeCommit which takes the whole merge
scenario consisting of the underlying repository, the actual merge
commit, its two parent commits, and an optional base commit. This
method should return all reportable information as an XML element
in the resulting report.

3.1.1.1 Git access

The access to the data in the git repository is facilitated by a library
called GitWrapper which is a wrapper around the command-line in-
terface of git. Its central data structures are the Repository class and
the Reference interface, in the form of Commits or Branches.

The Repository provides a general interface to the respective git
repository, for example, to Commit objects by their hash. Stateful op-
erations like getting the current status of the worktree are also possi-
ble.

To get additional access for data that is initially not directly present
in the clone, we build an extension to this git wrapper called GitHub-
Wrapper. By querying the web API of GitHub, the GitHubRepository

subclass also has access to pull requests which implement the Refer-
ence interface and therefore can be used just like any other reference
in git. The extension makes it possible to distinguish between a nor-
mal merge and a merge that is the result of a pull request and would
even allow including of declined and pending pull requests into the
analysis.

An overview of the combined class structure of both, the GitWrap-
per and the GitHubWrapper libraries can be seen in Figure 4.

3.1 mergeprofiler 15

Figure 4: Simplified class diagram of the git / GitHub access library. The
blue parts are the GitHub extension.

3.1.1.2 Testsuite analysis

As detailed above, the TestSuiteProfiler retrieves all relevant com-
mits pertaining to the merge scenario. For each of these commits in

16 automated merge quality analysis with test suites

the scenario, the test suite is analyzed. First, this data is gathered for
both of the parent commits. Then the merge commit is analyzed in
the form it was committed to the repository. The same is then done
for the base commit, which should be generally available in all sup-
ported scenarios.

Finally, the merge is performed again by the configured strategy
and subsequently analyzed. As detailed in Section 2.1.1, git allows for
using different strategies and—trough merge drivers—external tools.
While initially configuring the tool, merge strategies are selected. In
addition to the default strategy used by git, the tool will perform a
re-merge with all of these selected strategies. This allows for the com-
parison of different strategies in the same scenario. Further analysis
is skipped if git reports problems while merging. This also includes
merge conflicts, which therefore always result in a classification as
merge conflict for the whole merge.

The class diagram of the TestSuiteProfiler parts of the MergeProfiler
tool can be found in Figure 5.

To gather the actual test data, TestSuiteProfiler uses an instance of
the BuildTool interface to execute the test suite using the underlying
build tool. For this thesis, the Maven build tool was chosen and the
MavenExecutor class implements this interface to facilitate communi-
cation between the MergeProfiler and the Maven executable, but by
using an interface the design allows for the inclusion of additional
build tools as well. The BuildTool interface provides two actions,
build and test.

During the analysis of each commit in a scenario, first, this commit
is checked out in the worktree, so that the build tool has access to the
current code base of the commit to analyze it. Then, in the case of
Maven, a new Maven InvocationRequest is created and executed by
an Invoker. These two classes are part of the Maven invoker plugin,
which provides a programmatic interface to execute Maven tasks. A
new instance is created for each commit that is checked out. This
ensures, that even if the Maven configuration has changed as part of
the project history, Maven is always executed with a configuration
matching the current state of the project.

Using such InvocationRequests, first, the analyzed project is built
with its default compile task to check if the code base is compilable.
Besides merges that cannot be resolved automatically, which are re-
ported as their own result type, this can happen if broken code was
checked into the repository and this is classified as another type of
test result, namely a build failure. If the build succeeds, the default
test task is executed, additionally, any previous output is cleaned be-
forehand using the clean task. Cleaning the build directory ensures
that there is no interference with previous versions like skipped tests
due to up to date results. Secondly, this makes sure all tests are ex-

3.1 mergeprofiler 17

Figure 5: Simplified class diagram of the MergeProfiler tool, with focus on
the TestSuiteProfiler.

ecuted like it would be the cases with a clean working directory in-
cluding only the code from the repository.

As described in 2.2.1, the test results are compiled into a report.
The tool reads the XML files generated by the Maven Surefire plugin
back and builds a new XML structure for export. Each individual test
result, which can either be PASSED, FAILED, or SKIPPED, is included
together with the full name of the test. Additionally, general errors
during the execution of the maven tasks are also regarded in the clas-
sification of the test suite result. An excerpt from the final XML file
can be found in Listing 4.

Finally, the working directory is cleaned up so that any generated
or changed files do not interfere with subsequent steps of the analy-
sis.

18 automated merge quality analysis with test suites

1 <?xml version="1.0" encoding="UTF-8"?>

2 <mergeCommitResults

3 mergeCommit="d6838d4ba7fbd86c24d20b26e733d1e811f3734e">

4 <leftCommit>a893a2de289bcfb167abc810ce3d0c68689131a2</leftCommit>

5 <baseCommit>a893a2de289bcfb167abc810ce3d0c68689131a2</baseCommit>

6 <rightCommit>498ec7ce80769e67e29c83f3b0b5ddcb12cb1c35</rightCommit>

7 <TestSuiteProfiler>

8 <parent_left

9 hash="a893a2de289bcfb167abc810ce3d0c68689131a2"

10 status="passed">

11 <test

12 name="com.yammer.dropwizard.jersey.tests.

OptionalQueryParamInjectableProviderTest.

injectsAPresentOptionalInsteadOfValue"

13 result="PASSED"/>

14 <test

15 name="com.yammer.dropwizard.assets.tests.AssetServletTest.

supportsIfNoneMatchRequests"

16 result="FAILED"/>

17 <test

18 name="com.yammer.dropwizard.util.tests.DurationTest.

hasAQuantity"

19 result="SKIPPED"/>

20 ...

21 <merge_strategy status="merge_conflicts" conflicts="4" strategy="

JDimeMergeStrategy {--mode structured}">

22 <mergeResults>

23 <mergescenariostatistics status="OK">

24 <mergeScenario type="THREEWAY">

25 <artifact subclass="FileArtifact" type="FILE" id="left:.

merge_file_KNsOWD"/>

26 <artifact subclass="FileArtifact" type="FILE" id="base:.

merge_file_wOHaOh"/>

27 <artifact subclass="FileArtifact" type="FILE" id="right:.

merge_file_k0qs5Z"/>

28 </mergeScenario>

29 <mergeStatistics/>

30 <charStatistics total="5387" numAdded="0" numMerged="0"

numDeleted="0" numOccurInConflict="20"/>

31 ...

32 <conflicts>2</conflicts>

33 <runtime label="merge" timeMS="25"/>

34 </mergescenariostatistics>

35 ...

36 <merge_strategy hash="6a9676c892767d0f9c03d94fc0bf72e18dc6c8c0"

status="build_failure" strategy="JDimeMergeStrategy {--mode

semistructured}"/>

37 </TestSuiteProfiler>

38 </mergeCommitResults>

Listing 4: Excerpt from a generated xml file.

3.2 evaluating merge test suite data 19

3.1.1.3 Performing automatic merges

As stated in the last section, git, as well as our tool, supports different
configurations. The default merge strategy is the one that git per-
forms when git merge is executed. At the time of our analysis, the
default strategy for git merge is recursive. This merge strategy tries
to execute a three-way merge on the two parents and a virtual base
version.

The other merge strategies used in the analysis are based on JDime.
These are based on git merge drivers detailed in Section 2.1.1 and Sec-
tion 2.3.2. Currently, if necessary, intermediate merges are performed
with the default line-based merge by git itself.

3.1.1.4 Detecting flaky test cases

To detect the problem of non-deterministic test results described in
Section 2.2.1, the tool provides an additional mode of operation. Since
the support for marking test cases as flaky is neither consistent, uni-
versally support nor, as evident after reviewing selected projects, com-
mon practice, the easiest way of detecting problematic test cases is
running the test suite multiple times. Considering, that doing this for
all involved commits is very resource-intensive, as the tool follows
the same steps of creating a clean environment, building the project
and subsequently running the test suite, this is only done for the ac-
tual merge commit in the repository as this version is regarded as the
baseline for our analysis.

Running all involved steps during this detection has the additional
benefit of not only detecting flaky test cases but also detect non-
determinism in the build. These results can be used in post-processing
to eliminate the influence of wrongly reported test and build failures.

3.2 evaluating merge test suite data

In addition to the MergeProfiler tool, we created some scripts written
in the Python programming language. These scripts are intended to
process the XML reports generated by the MergeProfiler tool to visu-
alize the results and extract statistics across the analyzed projects.

3.2.1 Visualizing merge scenarios

To visualize the merge scenario as a whole, the post-processed data
can be presented by one of the Python scrips in the form of multi-
colored stripes. This visualization makes it easy for humans to spot
interesting individual test results over the whole scenario. An exam-
ple of this visualization can be found in Figure 6. In this diagram,
each test case is represented by a column of colored line. The test
results of the individual commits in the scenario are arranged on top

20 automated merge quality analysis with test suites

of each other, sorted by their test name, so that the same test case
is at the same position across all shown commits. Thereby, a change
in color within one column indicates a different test result between
the commits. A group of results for the same test over different ver-
sions of the project will be hereafter referred to as a test case scenario.
In this representation, passed tests are colored in green, failed tests
are colored in red. If the detection for flaky tests identified a test as
problematic, a failure is orange instead of red. Tests that were not
executed while the test suite itself did execute, which mostly hap-
pens when individual tests are marked to be skipped in the test suite,
are indicated by a yellow line. To differentiate this result from cases
where the whole test suite did not execute due to a failed build or
an internal failure, those cases are represented by blue and cyan bars,
respectively. If the merge itself was not successful, which also means
that the test suite could not be executed, the version is colored in ma-
genta. Finally, an uncolored white line indicates a test that is missing
from this particular commit. Figure 6 shows this visualization for the
project ontop.

Figure 6: Visualization of one merge scenario from the ontop project. The
green parts in the parents, base, and committed merge test cases
show passed test, whereas failed tests can be seen as red lines in
the right parent and the committed merge. The yellow lines in
the first 4 indicated a skipped test while the white lines indicate
tests not present in this commit. The magenta and cyan bars show
merge conflicts and build failures, respectively.

3.2 evaluating merge test suite data 21

3.2.2 Visualizing results from the whole project

Besides visualizing the individual merge scenarios, there is a script
to visualize the breakdown into the different result categories the
merge of a scenario can fall into. This script supports two different
visualizations that were developed to highlight different aspects of
the data.

The post-processing pipeline can use two different methods of de-
termining the combined result of a merge scenario. Table 1 shows the
full process of this process which we call filtering. The first method
is to trust the build tool with its determination. The second method
uses additional information besides the merge itself. A first filter that
is applied uses the result of the flaky test case detection (see Sec-
tion 2.2.1). If a test failed that was identified to be non-deterministic,
this test case is excluded from the determination of the result. Simi-
larly, if the build is non-deterministic, this merge scenario is counted
as an error, since further classification is not possible without a stable
build result.

Secondly, the parents are included in the determination of the re-
sult as well. We assume that a test that failed on both parents has no
reasonable way of passing in a merge result. This may be a defect that
is unrelated to the current development or a test for unimplemented
functionality. Since this analysis only focuses on the merge results
as a whole, we want to reduce the noise introduced by these unre-
lated failures. The same exclusion is performed when the test case is
only present on one side of the merge, but it fails there. We assume
that this is the addition of a new test case that is not implemented
yet. These filter steps can be seen in Table 1, in lines 5–7 of the sec-
ond section. A similar logic is used to exclude scenarios where the
build fails in all instances since we assume this is related to syntax
or configuration errors in the project that also cannot be fixed by the
merge because otherwise one side of the merge would bring the fix
and therefore the build would succeed. We count these cases with a
passed result, because the failure is the expected result (see Table 1,
second section, line 2 and 3).

The first visualization is a series of Sankey plots, one for each strat-
egy. To allow for comparison across the strategies, the categories are
scaled and aligned equally. The Sankey plot focuses on the distribu-
tion of the different result categories while still supporting compara-
bility. An example of the Sankey plot for the project dropwizard can be
found in Figure 7. The total number of analyzed scenarios is shown
on the left of each Sankey plot, the number of scenarios remaining
in each category is shown inside the graphs and the count for each
category is shown on the bottom.

In the second visualization, only non-passing scenarios are included
to improve the visibility of differences between the tested merge strate-

22 automated merge quality analysis with test suites

Table 1: The table shows the summery results that are assigned, based on
the test/build results from the re-merge and both parents.

Parent 1 Parent 2 result result after filter

filtering due to flaky detection

any any flaky test failue test ignored

any any flaky build failure error

filtering due to parent data

any any merge conflict merge conflict

error error error passed

build failure build failure build failure passed

build failure no build failure build failure build failure

test failure test failure test failure test ignored

test failure not present test failure test ignored

test failure no test failure test failure test failure

any any passed passed

gies. This visualization presents as a line chart displaying the number
of merge scenarios that passed a certain stage in the merge-build-
test process. Even though the results fall into discrete categories, val-
ues from the same strategy are connected. This is done to highlight
the logical progression through the different stages. Connecting the
stages shows the differences between logically consecutive categories
and thereby the number of commits falling into that category. Since
the different strategies are shown in the same frame of reference one
can compare them by their absolute share of passing commits for
each category. Showing the changes between categories as a slope
additionally allows for quickly comparing the differences across mul-
tiple strategies. An example can be found in Figure 8, graphs for all
projects can be found in Section A.2. Even though this plot is more
complicated, it was preferred during this thesis because it provides
more relevant information.

The example in Figure 8 shows the same project as the Sankey
plot in Figure 7, but only showing the four strategies and the results
from the actual merge. For JDime’s structured strategy, around 1.6%
of merge scenarios resulted in merge conflicts while 97% passed all
stages. Besides the difference in the number of merge conflicts, all
strategies performed similar in the build stage, while the test stage
shows some differences.

3.2 evaluating merge test suite data 23

Figure 7: Sankey for project dropwizard.

3.2.3 Statistics

In addition to the visualizations, the Python scripts can generate
statistics for each individual merge scenario as well as for all available
scenarios of the analyzed project. Additionally, all analyzed projects
are combined into global statistics. Those statistics include a sum-
mary of all different occurring test case scenarios. This means that all
occurrences where, for example, a test fails in the committed merge
but passes in all other analyzed states are grouped into one category.
This allows for a quick overview of all different occurring test case
scenarios. We call this group of results from one scenario a pattern,
consisting of single letters for each relevant commit, where P stands
for as passed test case (or the whole test suite), T for a test failure, S for

24 automated merge quality analysis with test suites

Figure 8: Merge result visualization for project dropwizard.

skipped tests, B for build failures, M for merge conflicts and E for any
error. We also use X to stand in for an arbitrary result. The order of
the revisions in the pattern is always the same, first the left and right
parent followed by the original merge, the merge base and finally the
examined strategies, in the order git, JDime linebased, JDime semi-
structured, and JDime structured. Further, these statistics can give a
first indication, if a particular pattern of test failures might be present.
This data is processed into different forms to map a pattern first to
the scenario it occurred in and then, if applicable, to the test case.

Other statistics generated by the Python scripts include the data
used to generate the visualizations shown in Section 3.2.2.

3.2.4 JDime data

In addition to the data generated by our tool, the Python scripts are
also capable of analyzing the data about merge conflicts generated by
JDime. From this data, statistics are gathered about the distribution,
number, and size of conflicts.

4
E VA L U AT I O N

In this chapter, we will look into the analysis of real-world projects
and what data we can gather from using our tool described in the
previous chapter. To find suitable projects which meet the require-
ments for our analysis of being open-source, written in Java, using
Maven as their build system, employed integrated unit test, and git
as the version control system, we searched on GitHub. This allows
for a pre-selection of projects with active development. Further, for
projects from GitHub, our tool can include pull requests as a specific
focus point.

4.1 research questions

To determine the usefulness of our analysis we formulated three ques-
tions we want to answer. In the ideal case, all test cases would pass for
every commit in the repository. This is not always the case. In every
project we analyzed we found some commits where some test cases
did not pass. This can be caused by different situations. Besides the
occurrence of a fault in the program, for example, the introduction
of new test cases that check functionality that is not yet implemented
can result in a failure of those test cases. Since we do not only look at
the merge commit in isolation, but also other commits related to the
merge, we hope to identify those different situations. Therefore, we
focus on particular groups of patterns to analyze for each question.

4.1.1 Finding bugs caused by a merge

At first, we wanted to investigate, whether our analysis can even find
bugs in the form of failed test cases that were introduced by a merge.
For this, we focused on the committed merge and its changes relative
to both parents. As stated above, a test case that passes in every con-
sidered commit is classified as bug-free. More specifically, we only
looked at the parents and the merge as committed in the repository
and a test case, that is present in both parents and passes in all three
commits is regarded as a bug-free merge. When the same test case
fails for either parent and the failure is still present in the merge,
we cannot tell if something changed to affect this test case. In con-
trast, if the test case passed in both parents but fails in the merge
there must be a change that occurred in the merge commit itself that
broke the test case. Therefore, we classify this as a broken merge. We
assume the same is true when the test case is missing in one of the

25

26 evaluation

parents but passes in the other and fails in the merge since that would
mean newly introduced or tested functionality that worked before the
merge broke during integration with other changes.
Our first research question is therefore:

RQ1. Can our analysis detect merge scenarios where a bug was introduced
directly due to the merge?

4.1.2 Automatic merging with advanced tools does not introduce delayed
defects

The second question we tried to answer is in regard to automated
tools. For this, we looked in detail at differences between the results of
the manual merge committed by the developer, the automated merge
performed by git itself, and the results of a merge performed by dif-
ferent JDime strategies. As previous findings by Leßenich et al. [12]
have shown, JDime with its semi-structured and structured strategies
can reduce the number of merge conflicts compared to a line-based
approach. While trying to reproduce these findings, we examined the
consequences of resolving more conflicts automatically. Since the ob-
jective of sophisticated merge strategies is to reduce the workload on
developers, these strategies must resolve conflicts in a way that does
not introduce new bugs to the program. The automated way of detect-
ing bugs trough compilation and unit testing is used as a measure of
detecting these defects and their delay into later development stages.
The second research question, therefore, reads as follows:

RQ2. Can JDime reduce the number of merge conflicts without increasing
the number of build and test failures?

4.1.3 Differences between regular merges and pull requests

The subject of our last question is pull requests. For this question, we
examined the difference between merges that are the result of pull re-
quests and merges performed by the developer directly. Since GitHub
only allows merging of pull requests that can be merged without con-
flicts by git, merges marked as pull requests and therefore performed
through the web interface should resolve cleanly without any con-
flicts. We can use this as a filter for commits that should be simple
enough to be completely merged automatically or pre-resolved by a
developer. In the second case, ideally, any defects introduced by a
complex code merge should have been corrected by the developer re-
questing the merge. Thus, we hoped to find this selection of scenarios
usable as a baseline.
The question we examined, is:

RQ3. Are there significant differences between regular merges and pull re-
quests regarding delayed defects?

4.2 analyzed projects 27

4.2 analyzed projects

Table 2: List of analyzed projects.

Project lines of code16 contributors commits17 merge commits number

(GitHub URL) (thousand) (pull requests) of test18

commons-math 12164 29 7428 109 (12) 5526

(https://github.com/apache/commons-math)

dropwizard 2535 322 6788 1021 (745) 12

(https://github.com/dropwizard/dropwizard)

fastjson 6740 84 3783 453 (239) 4646

(https://github.com/alibaba/fastjson)

ghprb-plugin 403 112 1661 338 (19) 77

(https://github.com/jenkinsci/ghprb-plugin)

github-api 558 94 1381 194 (125) 144

(https://github.com/kohsuke/github-api)

javaparser 7625 93 6219 1664 (603) 1479

(https://github.com/javaparser/javaparser)

jedis 1267 141 3214 366 (233) 420

(https://github.com/xetorthio/jedis)

okhttp 2927 172 4708 1829 (734) 2244

(https://github.com/square/okhttp)

ontop 6809 23 11176 1453 (18) 46

(https://github.com/ontop/ontop)

openmrs-core 7431 321 9085 1152 (1045) 4022

(https://github.com/openmrs/openmrs-core)

Table 2 contains a list of all analyzed projects including some gen-
eral statistics about each project. Information like the number of com-
mits, the size of the code base in terms of lines of code or the number
of contributors can help estimate the size of each project. Further, the
number of merge commits and the number of individual unit tests
can be used to gauge the value from the results of the analysis.

In order to have a wide range of real-world merge scenarios, we se-
lected projects of different sizes—in regard to the number of commits
as well as the size of the source code base—and type.

Besides the search functionality offered by GitHub, we used several
lists of projects from earlier research to compile this list of projects.
During preliminary examinations, several repositories needed to be

16 The line count is taken from the latest commit of the designated default branch, it
might vary over the history. It includes only Java code as reported by GitHub

17 The number of commits is taken across all branches and forks.
18 The number of tests is taken from the latest merge commit that passed analysis, it

might vary over the history.

https://github.com/apache/commons-math
https://github.com/dropwizard/dropwizard
https://github.com/alibaba/fastjson
https://github.com/jenkinsci/ghprb-plugin
https://github.com/kohsuke/github-api
https://github.com/javaparser/javaparser
https://github.com/xetorthio/jedis
https://github.com/square/okhttp
https://github.com/ontop/ontop
https://github.com/openmrs/openmrs-core

28 evaluation

excluded due to different problems. Some projects are configured in
a way that building their history retroactively is not possible with-
out advanced configuration that our tool currently cannot provide.
Other projects included strict requirements in their build step, that
JDime merge strategies were not able to adhere to, for example, due
to whitespace and other formatting constraints imposed by the Check-
style plugin19. Further, not included in this list are some small reposi-
tories where the different strategies resulted in no differences at all.

4.3 results

In the following section, the results of all the analyzed projects that
were included in the final data set are examined in detail.

4.3.1 Project commons-math

Apache commons-math is a Java library of mathematical and statisti-
cal functions. Its goal is to provide additional functionality where the
Java standard library’s math package lacks specific functions while be-
ing as lightweight as possible. Like other Apache commons projects,
commons-math has its origin at the Apaches Software Foundation.

4.3.1.1 Overview

Of 110 merges present at the time of the analysis, our tools could
analyze 96, of which 12 are pull requests and 84 are regular merges
found in the history. Of the 22 merges that failed in-depth analysis
most had build errors due to missing dependencies. Some revisions,
for example, rely on internal snapshot builds of libraries that are not
available to the build tool any longer.

4.3.1.2 Results and examples

The results from this project show uniform numbers of conflicts and
build failures across all strategies, while the number of test failures
slightly increases for JDime. Further, this project shows the necessity
for flaky test case detection. Within the test suite for the code for the
commons-math library, a random number generator is used and even
tested. This includes, at the current revision, at least one test case, in
which the test cases documentation states:

19 https://maven.apache.org/plugins/maven-checkstyle-plugin/ (visited on 2019-
05-01).

https://maven.apache.org/plugins/maven-checkstyle-plugin/

4.3 results 29

1 /**
2 * Generate 1000 random values and make sure they look OK.

3 * Note that there is a non-zero (but very small) probability that

4 * these tests will fail even if the code is working as designed.

5 */

6 @Test

7 public void testNext() throws Exception {

8 tstGen(0.1);

9 tstDoubleGen(0.1);

10 }

Listing 5: Excerpt from the file src/test/java/org/apache/commons/math4/

distribution/EmpiricalDistributionTest.java showing the
only documentation for the possible test failure not due to an
actual fault in the tested code nor the test itself.

During preliminary evaluations, this test failed multiple times due
to the generated numbers not "looking OK". This prompted the ex-
tension of our tool to include detection for such cases. Since the test
is not annotated in any way, the only way to detect this flakiness is to
hope for a random failure during the detection run.

The merge scenarios from this project resulted in 19 different pat-
terns. Most of those patterns occuedr only once or twice but would
be interesting to the result of our analysis. Unfortunately, because of
the problems detailed above, this was not alway the case.

4.3.2 Project dropwizard

Dropwizard is a Java framework for building web services adhering to
the REST architectural style. It connects other libraries to provide a
simple and fast framework. Dropwizard was created by Coda Hale at
Yammer, Inc. and is maintained by the Dropwizard team.

Overview and results

There were 861 merges of the 1028 found scenarios that passed the
analysis tool. These are comprised of 745 pull requests and 115 regu-
lar merges. Within these, 172 scenarios failed the build in all relevant
versions, again mostly due to missing snapshot dependencies. Look-
ing at the usable results shows a small reduction of merge conflicts
for JDime semi-structured and a further reduction for JDime struc-
tured, while at the same time the number of build and test failures is
constant.

4.3.3 Project fastjson

Fastjson is a Java library for parsing and generating JSON representa-
tions of Java objects. Is was created with high performance and wide

30 evaluation

compatibility in mind. Fastjson is developed at Alibaba by the Fastj-
son Develop Team.

Overview

In this project 453 scenarios were found, of which 452 passed the
analysis. These consist of 209 regular merges and 239 pull requests. A
total of 16 scenarios failed to build due to various reasons, including,
again, unavailable dependencies.

Results and examples

In this project, 19 different result patterns can be found but only three
are common, all having uniform results across all merge tools. The
rest show a reduction of merge conflicts of more than 50% for JDime
structured compared to the line-based strategies and even though
the number of test failures is higher, the total number of non-clean
scenarios is lower.

Commit e165825 shows a common problem with text-based merge
tools, that JDime is able to correctly resolve. In the file src/main/java/
com/alibaba/fastjson/parser/deserializer/JavaBeanDeserializer

.java, a similar code block is added on both sides, on the one side, an
if-statement is added, on the other side, the same statement is added,
but with an additional statement in the body. Since both versions do
not add the same changes but touch on the same lines, this results
in a conflict. JDime’s structured strategy is not bound by this limita-
tion because the merge is done on an abstract representation of the
code instead of plain text with context markers. Therefore, the merge
succeeds. JDime’s semi-structured strategy does not use the method
of merging on AST representations for changes inside Java method
bodies, thus, it is not able to resolve this conflict here.

4.3.4 Project ghbrp-plugin

The GitHub Pull Request Builder Plugin is a plugin for the build au-
tomation server Jenkins. It allows Jenkins to get access to pull re-
quests on GitHub through the GitHub API. It is developed by the
community behind the Jenkins project.

Overview and results

All of the 318 merge scenarios that were found in this project passed
the analysis and none failed to build for all relevant versions. Of these,
299 are regular merges and 19 pull requests. The results show a sim-
ilar trend as the fastjson project, a slight decrease in conflicts with an
increase in build and test failures, while still maintaining an improve-
ment.

4.3 results 31

4.3.5 Project github-api

GitHub API for Java is a library for accessing the GitHub API in an
object orient way from Java. It tries to provide methods for interacting
with most of GitHub’s APIs. The project is maintained by Kohsuke
Kawaguchi and developed by a community.

Overview

188 of the found 195 merges passed the analysis, 63 of which are regu-
lar merges and 125 are pull requests. Merely four scenarios returned
only as build failures in all relevant revisions.

Results and examples

There were no relevant test failures in this project and the results
across all strategies are almost uniform.

Merge scenario 240bcab is an example of a merge conflict, that
can be resolved by using structured merging. Here, on one side of
the merge, a string constant is added in the file src/main/java/org/

kohsuke/github/Previews.java, on the other side one is removed.
Coincidentally, they are directly next to each other. This is of no rele-
vance to JDime, since constants have no ordering in the AST. During
the merge, JDime adds the constant from the one side and removes
the other one from the result. Whereas text-based merge tools which,
in the context of git, work by adding or removing lines and need
to identify the corresponding locations by—among others—context
markers, cannot find the anchor lines for the change and are there-
fore unable to resolve this conflict.

4.3.6 Project javaparser

The JavaParser project is a Java library providing tools to process and
generate Java source code. It is used in many projects to parse and
analyze Java code. The JavaParser project is maintained by Danny van
Bruggen based on an earlier, now inactive project and it is developed
by a community on GitHub.

Overview and results

Of 1679 scenarios present at the time of analysis, 1588 produced a
result. These consist of 985 regular merged and 603 merged pull re-
quests. Of these, 211 resulted in build failures for every relevant ver-
sion, mostly due to errors while configuring the build system. For
this project, JDime structured and semi-structured performed equally
well and reduces the number of conflicts by more than 20%, while
keeping the other results almost the same.

32 evaluation

4.3.7 Project jedis

Jedis is a Java client for the key-value database server Redis. The goal
for the Jedis project is to provide simple access to a Redis server for
native Java use. It is maintained by Jonathan Leibiusky on GitHub.

Overview

For this project, there were 366 merge scenarios available at the time,
of which 312 merge scenarios passed through the analysis. Those 312

analyzable scenarios consist of 233 regular merges and 79 pull re-
quests. Of the analyzed merge scenarios 163 had no compiling ver-
sion, which leaves 149 for further analysis.

Results and examples

Looking at different test case scenarios that occurred within the re-
sult of this project we can find 15 different patterns of test suite re-
sults. More than half of the scenarios fall into the category of a passed
test case in all analyzed revisions of the merge scenario. Besides uni-
formly failing tests, most other scenarios resulted in some combina-
tion of merge conflicts. Both advanced JDime strategies resulted in
a significant reduction of merge conflicts while keeping the number
of build conflicts low and stable. Further, even though the number of
conflicts was halved (in the case of JDime structured), no relevant test
failures were reported.

The commit a0aa723 is a good example to show the relevance of
both the first and second research questions. When using git to auto-
matically merge the parents 2cfc07f and 8f725f9 of revision a0aa723

we get a merge conflict in the file src/main/java/redis/clients/

jedis/Protocol.java. This merge conflict spans two lines of an enum
definition, one of which added an element to the enum. Both ad-
vanced strategies of JDime resolve this conflict correctly which allows
the project to build whereas the build after merging with line-based
merge tools is faulty. The added member of the enum gets removed
and results in a build failure due to a missing symbol in the com-
mit merge a0aa723. Our tool identified the merge scenario as one
where the committed merge introduces a new defect and we show
that JDime is able to prevent the problem by not requiring the devel-
oper to manually resolve the conflict. Similar examples can be found
in eight other commits.

4.3.8 Project okhttp

OkHttp is an HTTP and HTTP2 client library for Java and is also
explicitly supporting Android apps. The aim is to provide an efficient

4.3 results 33

and stable connection to communicate with a web server. OkHttp is
primarily developed by Square Inc.

Overview and results

Of 1869 available scenarios 1081 were analyzable, which includes 347

regular merges and 734 pull requests. Of those 1081 scenarios, 156

resulted in build failures for every analyzed version. The reasons
include unresolvable dependencies and a misconfigured build sys-
tem. For this project, JDime structured performed the worst out of all
strategies, both, in regard to merge conflicts and test failures. How-
ever, the share of non-clean scenarios is only about 2%, even for JDime
structured.

4.3.9 Project ontop

Ontop is a framework for interfacing between SPARQL, a graph-based
query language for RDF data, and relational databases. Ontop is a
project by the "Knowledge Representation meets Databases" research
group at the Free University of Bozen Bolzano.

Overview

Of a total of 1480 merges present in the history, 1455 passed the analy-
sis. These are comprised of 1437 regular merges and 18 pull requests.
For 471 of the analyzed scenarios, no revision resulted in a successful
build, which includes, like most previous projects, snapshot depen-
dencies that could not be resolved.

Results and examples

For this project, the share of non-clean merges is relatively high, which
is in part due to the mentioned build errors. Further, many merge con-
flicts are present across all strategies. While JDime is able to reduce
this high number up to 15%, a few more build failures can be found.
Nevertheless, as with the previous examples, the majority of scenar-
ios resulted in a passed test suite, followed by uniform test failures
and in this project many errors. In total, 53 different test suite result
patterns can be found in the results of this repository. Other patterns
occurred only a few times, some of which are interesting to our anal-
ysis.

With merge scenario eae4d9f, a counterexample to JDime’s correct-
ness can be seen. Here, even though JDime structured is the only
merge tool that is seemingly able to resolve all merge conflicts, the
following build fails. The java compiler reports a missing symbol, is
this case getPrimaryKeys() inside the file reformulation-core/src/

34 evaluation

main/java/it/unibz/inf/ontop/executor/leftjoin/RedundantSelf-

LeftJoinExecutor.java is not present in the merged version. This is
the case because on one side of the merge this method got renamed to
getUniqueConstraints(), while the version on the other side of the
merge contains a new implementation of the mentioned file, which re-
lies on the old name. This is a clear case of a semantic conflict, which
JDime is neither able to detect not resolve. A similar albeit simpler
example has been used by Mens [14] to distinguish semantic from
syntactic conflicts.

4.3.10 Project openmrs-core

OpenMRS is an open-source medical records system with a focus on
customizability. The openmrs-core project is its base API and web ap-
plication code. The program is developed by the OpenMRS Inc. non-
profit.

Overview and results

Of 1153 available, 1139 merges passed the analysis. Those include
1045 pull requests and 108 regular merges. 351 scenarios had no
meaningful result because of build failures due to a failure while
setting up a specific dependency. For this project, there is a relatively
high share of scenarios that result in test failures. Further, both JDime
strategies have a slight increase in all failure categories.

4.4 discussion

To answer our questions, we look at the detailed results of single
repositories as well as the combination of all gathered data. As shown
by the examples above, the analysis points out merge scenarios that,
without introducing new changes by themselves, break the build or
test cases.

Research question 1

Using the visualization provided by our tool, it is easy to identify
merge scenarios where a test case previously passed but fails in the
merge. A best practice that is followed in many projects is that at
least revisions on the main branch should always compile. So, when
developers merge their feature branches back into that main branch,
they should always make sure that the changeset they are about to
commit compiles. This gives the developer a chance to detect any
faults introduced by the merge that would prevent clean compilation.
Running the test suite on the changeset alone cannot always give the
same information about the functionality. Considering the situation

4.4 discussion 35

where there is currently an unrelated test case failing on the target
branch the test suite as a whole will fail after the merge. It might be
hard for the developer to distinguish between such a case and a new
failure introduced by the merge itself. This requires detailed informa-
tion about test results from both parents. This additional information
is clearly visible in the plots generated for each merge scenario. An
example that visualizes the difference can be found in Figure 9.

During our analysis of the 7490 analyzed merge scenarios, we found
276 test cases across 65 scenarios that were broken by the merge com-
mit, 63 of which (across 61 scenarios) at least one of the tested merge
strategies was able to resolve. We can, therefore, answer in regard
to RQ1 that our tool is able to detect and even highlight merge
scenarios that introduce bug by the merge itself.

(a) A test case failure introduced by the merge commit. (b) A failing test case unrelated to the merge.

Figure 9: The relevance of test suite information from the parents can be
seen in these examples from the openrms-core project, Figure 9a
shows a bug introduced by the merge while Figure 9b is an un-
related failing test case. In both cases, the test suite reports failed
test cases.

Research question 2

The chart showing the results from all merge scenarios (Figure 10)
suggests that our assumptions about the performance of JDime are
confirmed. As shown by the data in Table 3, the results for the merge
conflict category confirm that we were able to reproduce the results
from Leßenich et al. [12]. While JDime’s line-based strategy produced
results similar to git internal implementation, the semi-structured
strategy resulted in 57 fewer scenarios with conflicts while the struc-
tured approach produced the fewest merge conflicts (additional 36

scenarios fewer). Further, as shown in Figure 25, the conflict statistics
provided by JDime itself, when comparing the number of conflict-
ing sections, files, and lines within individual scenarios is also sig-
nificantly reduced. This satisfies the prerequisite for answering the
second question.

The results of categories build failure and test failure reveal that,
across all analyzed projects, the ratio of commits failing at these cer-

36 evaluation

tain stages to commits passing the immediately preceding stage does
not change more than half a percentage point across different strate-
gies. Since the number of commits reaching a certain stage differs
between strategies, it is important to base all conclusions on this ratio
of failing commits to previously passing commits instead of absolute
figures. While the comparison of merge conflicts shows clear signs
for the better performance of JDime, the share of build failures is
constant across strategies. Whereas test suite analysis shows a low
increase of failures for the more complex strategies.

When looking directly at individual test cases instead of combin-
ing all test case/build/merge results for a merge scenario, there is a
similar pattern. Section A.3 shows that the most common pattern—
aside from all versions passing all tests (with 5135042 occurrences)—
is merge conflicts in all merge tools. Further down, but still with signifi-
cant volume are cases where JDime structured is the only merge tool
to merge successfully, and then cases, where both JDime structured
and JDime semi-structured are able to resolve all conflicts without
failure while line-based strategies are not. Grouping similar patterns,
e.g. build failures in the merge base, the ranking is as follows:

1. XXXXMMMM (153747 occurrences)
2. XXXXMMMP (20798)
3. XXXXMMPP (9811)

Cases like the pattern PPPPPPPT occur only in a relatively small
number of cases. These bould be problematic, as the T in the last col-
umn indicates a test failure that was introduces by the JDime struc-
tured merge (see Section 3.2.3 for further explanation on the pattern).

When focusing on singe projects, the results are not always show-
ing the same outcome. Similar to the previous results from Leßenich
et al. [12], in some instances, JDime is not able to reduce the num-
ber of merge conflicts. Further, for some projects like commons-math,
using these advanced merge strategies will result in a slight increase
in defects introduced by the merge. While the variations are not sig-
nificant, it is important to note that JDime is not yet able to handle
all codebases equally well. The same is true for the test suite results.
While some projects show no increase or even a decrease of test fail-
ures, others show an increase.

Basing our reasoning on the combined results from all analyzed
projects, we can answer RQ2. The structured (and semi-structured)
merge strategy provided by JDime is evidently able to reduce the
number of conflicts while only introducing a small number delayed
defects.

One additional noteworthy observation can be made by looking
at the occurring patterns. Patterns in the form where either parent
has a build failure and JDime structured or semi-structured strategies
result in merge failures might be explained due to the fact that JDime

4.4 discussion 37

must be able to parse the source code into an AST to be able to merge.
A common reason for build failures is code that cannot be compiled
due to syntax errors. These errors might, in turn, prevent JDime from
working correctly and thus resulting in a failed merge.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 43 0.0057 (7490) 0 0 (7447) 169 0.023 (7447) 70 0.0096 (7278) 7208 1 (7208)

Git linebased 264 0.035 (7490) 459 0.064 (7226) 106 0.016 (6767) 64 0.0096 (6661) 6597 1 (6597)

JDime linebased 264 0.035 (7490) 449 0.062 (7226) 111 0.016 (6777) 58 0.0087 (6666) 6608 1 (6608)

JDime semistructured 269 0.036 (7490) 401 0.056 (7221) 122 0.018 (6820) 65 0.0097 (6698) 6633 1 (6633)

JDime structured 267 0.036 (7490) 365 0.051 (7223) 124 0.018 (6858) 73 0.011 (6734) 6661 1 (6661)

Table 3: Combined results from all merge scenarios.

Figure 10: The data from Table 3 visualized.

Research question 3

In Figure 11, a comparison between 3773 merged pull requests and
3712 regular merges can be seen. While the pull request group still
shows some conflicting merges, with approximately one percent of
all scenarios falling into this category our assumptions are confirmed.
Similarly, build failures are also reduced by almost a factor of 5. In
contrast, the test failure rate has more than doubled. This might be a
result of survivorship bias because the higher rate of merge conflicts
in the regular merges group might filter out more scenarios early on.

38 evaluation

This is supported by the fact that the merged version that was found
in the history shows change at the same scale.

To answer RQ3, as expected, the share of merge conflicts for pull
requests is greatly reduced, while the share of test failures is signif-
icantly increased.

This can also help us interpret the findings from the previous ques-
tion. The data shows a slight increase of test failures for both ad-
vanced JDime strategies. Using the findings for pull requests, this
could also be attributed to the survivorship bias, but a conclusive
argument cannot be made based on the available data.

(a) An test case failure introduced by the merge com-
mit.

(b) A failing test case unrelated to the merge.

Figure 11: Comparison between merged pull requests and regular merges

5
C O N C L U S I O N

5.1 summary

In this thesis, we have verified that using JDime can help to reduce
the number of merge conflicts and their size in real-world applica-
tions. An improvement can be seen with the semi-structured strategy,
a further reduction is evident with the structured strategy. Addition-
ally, we have shown that this reduction does not introduce substan-
tially more bugs in the merge result that would lead to build or test
failures than standard tools do. We have therefore shown, that while
JDime provides improvements, the possible drawback in regard to
the quality of the results is almost neglectable.

5.2 related work

The approach of using the results of build tool and unit test suite exe-
cution is the basis for other tools with the goal of helping developers
during the development of features by detecting potential merge con-
flicts with other branches. For this purpose, Brun et al. [6] proposed
a tool called Crystal that detects and classifies conflicts into similar
categories as our MergeProfiler. Guimarães et al. [9] expand on the
concept to provide similar information not only isolated for one de-
veloper but all developers working on the code base and integrate
the results into the developer’s IDE. In both cases, the goal was to aid
the developer during the development process by showing potential
conflicts that could occur later on.

Besides JDime, there are other tools that incorporate structure infor-
mation into the merge process. Pioneer work was done by Westfechtel
[17] and Buffenbarger [7], and a range of merge and differencing tools
have been proposed [4], while other tools even try to use semantic in-
formation to detect and resolve additional conflicts [10].

5.3 future work

The current version of the MergeProfiler is restricted in some aspects,
for example only Maven is supported as build system. However, the
structure of the MergeProfiler tool, especially the BuildTool interface,
allows us to extend the possibilities for analyzing projects to other
build tools in the Java world as well. Implementations for Gradle and
Apache Ant, both popular build management tools, are being cur-
rently worked on. The TestSuiteProfiler can check for a supported

39

40 conclusion

build system and select the one present in the repository. With the
possibility of analyzing projects built with the three most popular
build tool for Java programs and libraries, the techniques shown in
this thesis can be used for a wide range of candidates. This would also
allow the analysis of projects where the build tool was switched dur-
ing the development. Also, as shown in Section 4.3, in some projects
a high rate of merge commits failed the analysis. We are working on
improving the share of scenarios that can be analyzed.

As mentioned in Section 2.3.2, JDime is currently only enabled for
the actual merge. In the future, the analysis can be expanded to exe-
cute JDime on all necessary merges, including intermediate ones.

The integration of additional data from GitHub would allow the
tool to analyze more scenarios like unmerged or rejected pull re-
quests. As stated in RQ3, GitHub only allows pull requests to merge
if they resolve cleanly. It might be interesting to check if this con-
tributes to the decision of rejecting pull requests as their merge would
be to complex.

A
A P P E N D I X

a.1 global merge scenario results

In this section we show all data generated by our tools during the
analysis of the 10 projects.

(a) filtered (b) unfiltered

Figure 12: Comparison of merge scenario results filtered as detailed in Sec-
tion 3.2.2 and the raw results provided by the merge/build tools.

Table 4: Results from all merge scenarios that could be identified as pull
requests.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 7 0.0019 (3773) 0 0 (3766) 29 0.0077 (3766) 50 0.013 (3737) 3687 1 (3687)

Git linebased 9 0.0024 (3773) 45 0.012 (3764) 26 0.007 (3719) 46 0.012 (3693) 3647 1 (3647)

JDime linebased 9 0.0024 (3773) 44 0.012 (3764) 27 0.0073 (3720) 47 0.013 (3693) 3646 1 (3646)

JDime semistructured 9 0.0024 (3773) 39 0.01 (3764) 28 0.0075 (3725) 50 0.014 (3697) 3647 1 (3647)

JDime structured 9 0.0024 (3773) 34 0.009 (3764) 28 0.0075 (3730) 50 0.014 (3702) 3652 1 (3652)

Table 5: Combined results from all remaining merge scenarios.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 35 0.0094 (3712) 0 0 (3677) 140 0.038 (3677) 20 0.0057 (3537) 3517 1 (3517)

Git linebased 255 0.069 (3712) 414 0.12 (3457) 80 0.026 (3043) 18 0.0061 (2963) 2945 1 (2945)

JDime linebased 255 0.069 (3712) 405 0.12 (3457) 84 0.028 (3052) 11 0.0037 (2968) 2957 1 (2957)

JDime semistructured 260 0.07 (3712) 362 0.1 (3452) 94 0.03 (3090) 15 0.005 (2996) 2981 1 (2981)

JDime structured 258 0.07 (3712) 331 0.096 (3454) 96 0.031 (3123) 23 0.0076 (3027) 3004 1 (3004)

41

42 appendix

Figure 13: The data for JDime results, same as in Figure 12a, visualized as
aSankey plot.

A.1 global merge scenario results 43

Figure 14: Similar to Figure 13, but with all passing merge scenarios re-
moved, to improve visibility.

44 appendix

a.2 merge scenario results per projects

In this section, the line plots for each project are shown.

Figure 15: The result category plot for project
commons-math.

Figure 16: The result category plot for project
dropwizard.

Figure 17: The result category plot for project
fastjson.

Figure 18: The result category plot for project
ghprb-plugin.

Figure 19: The result category plot for project
github-api.

Figure 20: The result category plot for project java-
parser.

A.2 merge scenario results per projects 45

Figure 21: The result category plot for project
jedis.

Figure 22: The result category plot for project
okhttp.

Figure 23: The result category plot for project on-
top.

Figure 24: The result category plot for project
openmrs-core.

The data on which the plots are based is provided in the following
tables.

Table 6: The result category data for project commons-math.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 1 0.01 (96) 0 0 (95) 6 0.063 (95) 5 0.056 (89) 84 1 (84)

Git linebased 1 0.01 (96) 12 0.13 (95) 4 0.048 (83) 7 0.089 (79) 72 1 (72)

JDime linebased 1 0.01 (96) 11 0.12 (95) 5 0.06 (84) 4 0.051 (79) 75 1 (75)

JDime semistructured 1 0.01 (96) 11 0.12 (95) 5 0.06 (84) 8 0.1 (79) 71 1 (71)

JDime structured 1 0.01 (96) 11 0.12 (95) 5 0.06 (84) 9 0.11 (79) 70 1 (70)

46 appendix

Table 7: The result category data for project dropwizard.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 0 0 (861) 0 0 (861) 5 0.0058 (861) 2 0.0023 (856) 854 1 (854)

Git linebased 0 0 (861) 19 0.022 (861) 5 0.0059 (842) 0 0 (837) 837 1 (837)

JDime linebased 0 0 (861) 19 0.022 (861) 5 0.0059 (842) 3 0.0036 (837) 834 1 (834)

JDime semistructured 0 0 (861) 17 0.02 (861) 5 0.0059 (844) 1 0.0012 (839) 838 1 (838)

JDime structured 0 0 (861) 15 0.017 (861) 5 0.0059 (846) 1 0.0012 (841) 840 1 (840)

Table 8: The result category data for project fastjson.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 17 0.038 (452) 0 0 (435) 14 0.032 (435) 3 0.0071 (421) 418 1 (418)

Git linebased 16 0.035 (452) 28 0.064 (436) 10 0.025 (408) 1 0.0025 (398) 397 1 (397)

JDime linebased 16 0.035 (452) 24 0.055 (436) 14 0.034 (412) 3 0.0075 (398) 395 1 (395)

JDime semistructured 18 0.04 (452) 22 0.051 (434) 15 0.036 (412) 4 0.01 (397) 393 1 (393)

JDime structured 17 0.038 (452) 11 0.025 (435) 15 0.035 (424) 6 0.015 (409) 403 1 (403)

Table 9: The result category data for project ghprb-plugin.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 1 0.0031 (318) 0 0 (317) 2 0.0063 (317) 4 0.013 (315) 311 1 (311)

Git linebased 0 0 (318) 30 0.094 (318) 3 0.01 (288) 1 0.0035 (285) 284 1 (284)

JDime linebased 0 0 (318) 30 0.094 (318) 3 0.01 (288) 1 0.0035 (285) 284 1 (284)

JDime semistructured 0 0 (318) 29 0.091 (318) 5 0.017 (289) 0 0 (284) 284 1 (284)

JDime structured 0 0 (318) 25 0.079 (318) 5 0.017 (293) 2 0.0069 (288) 286 1 (286)

Table 10: The result category data for project github-api.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 5 0.027 (188) 0 0 (183) 6 0.033 (183) 0 0 (177) 177 1 (177)

Git linebased 4 0.021 (188) 9 0.049 (184) 4 0.023 (175) 0 0 (171) 171 1 (171)

JDime linebased 4 0.021 (188) 8 0.043 (184) 5 0.028 (176) 0 0 (171) 171 1 (171)

JDime semistructured 4 0.021 (188) 9 0.049 (184) 5 0.029 (175) 0 0 (170) 170 1 (170)

JDime structured 4 0.021 (188) 8 0.043 (184) 5 0.028 (176) 0 0 (171) 171 1 (171)

Table 11: The result category data for project javaparser.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 11 0.0069 (1588) 0 0 (1577) 31 0.02 (1577) 5 0.0032 (1546) 1541 1 (1541)

Git linebased 9 0.0057 (1588) 74 0.047 (1579) 19 0.013 (1505) 3 0.002 (1486) 1483 1 (1483)

JDime linebased 9 0.0057 (1588) 73 0.046 (1579) 17 0.011 (1506) 3 0.002 (1489) 1486 1 (1486)

JDime semistructured 11 0.0069 (1588) 56 0.036 (1577) 19 0.012 (1521) 2 0.0013 (1502) 1500 1 (1500)

JDime structured 11 0.0069 (1588) 56 0.036 (1577) 19 0.012 (1521) 2 0.0013 (1502) 1500 1 (1500)

A.2 merge scenario results per projects 47

Table 12: The result category data for project jedis.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 0 0 (312) 0 0 (312) 6 0.019 (312) 0 0 (306) 306 1 (306)

Git linebased 0 0 (312) 49 0.16 (312) 3 0.011 (263) 0 0 (260) 260 1 (260)

JDime linebased 0 0 (312) 49 0.16 (312) 3 0.011 (263) 0 0 (260) 260 1 (260)

JDime semistructured 0 0 (312) 32 0.1 (312) 3 0.011 (280) 0 0 (277) 277 1 (277)

JDime structured 0 0 (312) 26 0.083 (312) 2 0.007 (286) 0 0 (284) 284 1 (284)

Table 13: The result category data for project okhttp.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 3 0.0028 (1081) 0 0 (1078) 9 0.0083 (1078) 2 0.0019 (1069) 1067 1 (1067)

Git linebased 3 0.0028 (1081) 4 0.0037 (1078) 9 0.0084 (1074) 5 0.0047 (1065) 1060 1 (1060)

JDime linebased 3 0.0028 (1081) 4 0.0037 (1078) 9 0.0084 (1074) 2 0.0019 (1065) 1063 1 (1063)

JDime semistructured 3 0.0028 (1081) 4 0.0037 (1078) 9 0.0084 (1074) 3 0.0028 (1065) 1062 1 (1062)

JDime structured 3 0.0028 (1081) 7 0.0065 (1078) 9 0.0084 (1071) 6 0.0056 (1062) 1056 1 (1056)

Table 14: The result category data for project ontop.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 5 0.0034 (1455) 0 0 (1450) 73 0.05 (1450) 5 0.0036 (1377) 1372 1 (1372)

Git linebased 231 0.16 (1455) 211 0.17 (1224) 39 0.038 (1013) 5 0.0051 (974) 969 1 (969)

JDime linebased 231 0.16 (1455) 209 0.17 (1224) 39 0.038 (1015) 2 0.002 (976) 974 1 (974)

JDime semistructured 232 0.16 (1455) 197 0.16 (1223) 45 0.044 (1026) 2 0.002 (981) 979 1 (979)

JDime structured 231 0.16 (1455) 182 0.15 (1224) 47 0.045 (1042) 3 0.003 (995) 992 1 (992)

Table 15: The result category data for project openmrs-core.

error % (of) merge % (of) build % (of) test % (of) passed % (of)

conflict failure failure

Commit 0 0 (1139) 0 0 (1139) 17 0.015 (1139) 44 0.039 (1122) 1078 1 (1078)

Git linebased 0 0 (1139) 23 0.02 (1139) 10 0.009 (1116) 42 0.038 (1106) 1064 1 (1064)

JDime linebased 0 0 (1139) 22 0.019 (1139) 11 0.0098 (1117) 40 0.036 (1106) 1066 1 (1066)

JDime semistructured 0 0 (1139) 24 0.021 (1139) 11 0.0099 (1115) 45 0.041 (1104) 1059 1 (1059)

JDime structured 0 0 (1139) 24 0.021 (1139) 12 0.011 (1115) 44 0.04 (1103) 1059 1 (1059)

48 appendix

a.3 test case results

The following table contains the results of all test case scenarios where
the test case is present in all related commits with all scenarios ig-
nored due to flaky tests filtered out. M indicates a merge conflict, B
indicates a build failure with the merge result, T indicates a failed
test case, P a passed one.

Table 16: Results of all test case scenarios.
Scenario Number

of
occurrences

le
ft

pa
re

nt

ri
gh

t
pa

re
nt

co
m

m
it

te
d

m
er

ge

m
er

ge
ba

se

gi
t

m
er

ge

JD
im

e
lin

eb
as

ed

JD
im

e
se

m
i-

st
ru

ct
ur

ed

JD
im

e
st

ru
ct

ur
ed

P P P P P P P P 5135042

P P P P M M M M 101824

P B P B B B B B 59091

P P B B B B B B 36594

B P B P P P P P 22183

B B P P P P P P 21104

P P P P M M M P 20262

P B P B M M M M 19726

P P P B M M M M 15392

P P P P M M P P 9811

P P P P M B B B 9208

P B P B M B B B 8416

B B P P M M M M 7154

P P P B B B B B 5334

P P P B M M B B 5011

P B B B M M M M 2979

P B P B M M M B 2955

P P P P P P M M 2928

P P P P P P P M 2595

B B P B M M M M 2584

P P P P P P M P 1608

P P B P M M M M 1577

P P P B M M P P 1368

P P P P M M B M 1304

P P P B M M M B 1193

P P P B M M P M 1127

P P B B M M M M 1019

Continued

Scenario Number
of
occurrences

le
ft

pa
re

nt

ri
gh

t
pa

re
nt

co
m

m
it

te
d

m
er

ge

m
er

ge
ba

se

gi
t

m
er

ge

JD
im

e
lin

eb
as

ed

JD
im

e
se

m
i-

st
ru

ct
ur

ed

JD
im

e
st

ru
ct

ur
ed

P P P P M M M B 920

P P P P M M B B 591

P P P B M M M P 534

B P P P M M M M 530

B P P B B B B B 521

P P P P B P P P 517

B P B B M M M M 513

P P P B B B B M 411

P B P P P P P P 393

T T B B B B B B 323

B P P P P P P P 276

P P P P M M P M 275

P P P P P P B B 263

P P P B B P P P 259

P P P P M M B P 258

P P P P M P M P 246

P P P P M P P M 246

T T P P P P P P 208

P P B P P P P P 200

P P T P M M M M 149

T T T T M M M M 145

P P P P P P P T 127

P P P P M B P P 119

B B T T T T T T 110

B T B T T T T T 93

P P T T T T T T 84

T T T T M B B B 76

B B B B M M M M 62

P T P T T T T T 61

T B T B B B B B 60

T T T B M M M M 60

P T P P P P P P 51

P P P T M M M M 49

Continued

A.3 test case results 49

Scenario Number
of
occurrences

le
ft

pa
re

nt

ri
gh

t
pa

re
nt

co
m

m
it

te
d

m
er

ge

m
er

ge
ba

se

gi
t

m
er

ge

JD
im

e
lin

eb
as

ed

JD
im

e
se

m
i-

st
ru

ct
ur

ed

JD
im

e
st

ru
ct

ur
ed

P P P P P P T P 34

T P P P P P P P 32

P P P T P P P P 31

P P T P P P P P 31

T P T P P P P P 28

P P P P T P P P 26

T T B T M M M M 25

P B P B B B M M 24

P P P B M M B M 24

P P P P P T P P 21

P P P T T T T T 17

P P B P B B B B 12

T B P B B B B B 11

P P T B B B B B 9

P B T B B B B B 9

P P P P T P T P 6

P T P P P T P P 5

P P P P P T T P 4

T P P P P T P P 4

P T P P T P P P 4

B B T T M M M M 4

P T P T M M M M 4

P P P P T P P T 3

P P P P T T P P 3

T P P P P P T P 3

T P P P T P T T 3

T P P P T T P P 3

P P P T P P T T 3

P P P T T P P P 3

T P P T P P P P 3

T P P T P P P T 3

P P T P P P P T 3

P P T P P P T P 3

Continued

Scenario Number
of
occurrences

le
ft

pa
re

nt

ri
gh

t
pa

re
nt

co
m

m
it

te
d

m
er

ge

m
er

ge
ba

se

gi
t

m
er

ge

JD
im

e
lin

eb
as

ed

JD
im

e
se

m
i-

st
ru

ct
ur

ed

JD
im

e
st

ru
ct

ur
ed

P P T P P T P P 3

P P T P T P P P 3

P P T P T P T P 3

P T P P P P T P 3

P T P P T P T P 3

P T P P T T P P 3

T T P P P P P T 3

P T P T P P P P 3

T T B B M M M M 3

T T T B B B B B 3

B B T B M M M M 2

P P P P P P T T 2

P P P P P T T T 2

P P P P T T P T 2

T P P P P T T T 2

P P P T P T P P 2

P P P T P T P T 2

P P P T P T T P 2

T P P T T P P P 2

T P P T T P T P 2

P P T T P P T T 2

P T P P P P P T 2

P T P T P P T P 2

T T P T P P P P 2

P T T P P P P P 2

T P P T T T T T 2

P T P T M M T T 2

T B T T T T T T 2

B T B B M M M M 2

B T T T M M M M 2

P T B B B B B B 2

B B T P P P P P 1

P P P P T T T P 1

Continued

50 appendix

Scenario Number
of
occurrences

le
ft

pa
re

nt

ri
gh

t
pa

re
nt

co
m

m
it

te
d

m
er

ge

m
er

ge
ba

se

gi
t

m
er

ge

JD
im

e
lin

eb
as

ed

JD
im

e
se

m
i-

st
ru

ct
ur

ed

JD
im

e
st

ru
ct

ur
ed

T P P P P P P T 1

T P P P P P T T 1

T P P P P T P T 1

T P P P T P P P 1

T P P P T T T P 1

T P P P T T T T 1

P P P T P P P T 1

P P P T T T T P 1

T P P T P P T T 1

T P P T P T P P 1

T P P T P T P T 1

T P P T P T T P 1

T P P T T P T T 1

P P T P P P T T 1

P P T P P T T P 1

P P T P T P P T 1

P P T P T P T T 1

P P T P T T P T 1

P P T P T T T T 1

T P T P M M M M 1

T P T P P P T P 1

T P T P T P P P 1

T P T P T T P P 1

P P T T P T T P 1

P P T T T P T T 1

P P T T T T P T 1

T P T T P P P P 1

T P T T T P P P 1

T P T T T P T P 1

T P T T T P T T 1

T P T T T T T P 1

T P T T T T T T 1

P T P P P T T P 1

Continued

Scenario Number
of
occurrences

le
ft

pa
re

nt

ri
gh

t
pa

re
nt

co
m

m
it

te
d

m
er

ge

m
er

ge
ba

se

gi
t

m
er

ge

JD
im

e
lin

eb
as

ed

JD
im

e
se

m
i-

st
ru

ct
ur

ed

JD
im

e
st

ru
ct

ur
ed

P T P P P T T T 1

P T P P T P P T 1

P T P P T T T T 1

T T P P P P T T 1

T T P P P T P P 1

T T P P P T T P 1

T T P P T T P T 1

T T P P T T T P 1

P T P T P T P P 1

P T P T P T P T 1

P T P T T P P P 1

T T P T P P T T 1

P T T T P P P P 1

T B T B M M M M 1

P P T T P P P P 1

B B P T P P P P 1

P P P P T T T T 1

P T P P P T P T 1

T T P T P P P T 1

T P T P M M M P 1

T T T T M M B B 1

T T T T M M M B 1

T B P B M B B B 1

T P B B B B B B 1

P P P T T T P P 1

P T P T P P P T 1

T P P P M M M P 1

T T P P M B B B 1

A.4 global jdime merge statistics 51

a.4 global jdime merge statistics

Hereafter follow statistics and box plots generated from data recorded
by JDime during its runs. First an overview of all projects combined
is given. For better visibility, there are two versions, on with all data
points and on without displaying outliers. The p-Values below are
obtained by running a Wilcoxon signed-rank test ([18]) on the paired
samples. If a strategy does not produce a conflict, it is recorded with a
0. Values in red indicate a small sample set with limited significance.

Table 17: Global JDime merge conflict statistics.

type sum mean median standard deviation min max

JDime linebased

conflicts 4041 9.78 2 38.27 0 647

files 1709 4.14 1 12.32 0 198

lines 76570 185.40 22 733.60 0 8129

JDime semistructured

conflicts 2922 7.12 1 27.87 0 454

files 1275 3.08 1 10.24 0 157

lines 199854 483.91 11 2418.40 0 29551

JDime structured

conflicts 2752 6.66 1 29.95 0 514

files 1164 2.82 1 10.06 0 127

lines 274677 665.08 4 3389.57 0 38655

52 appendix

Figure 25: The global JDime merge statistics.

a.5 jdime merge statistics per project

The JDime conflict statistic box plots for each project are presented in
this section.

Figure 26: The JDime merge statistics for project commons-math.

A.5 jdime merge statistics per project 53

Figure 27: The JDime merge statistics for project dropwizard.

Figure 28: The JDime merge statistics for project fastjson.

54 appendix

Figure 29: The JDime merge statistics for project ghprb-plugin.

Figure 30: The JDime merge statistics for project github-api.

A.5 jdime merge statistics per project 55

Figure 31: The JDime merge statistics for project javaparser.

Figure 32: The JDime merge statistics for project jedis.

56 appendix

Figure 33: The JDime merge statistics for project okhttp.

Figure 34: The JDime merge statistics for project ontop.

A.5 jdime merge statistics per project 57

Figure 35: The JDime merge statistics for project openmrs-core.

B I B L I O G R A P H Y

[1] Sven Apel, Christian Kästner, and Christian Lengauer. “Feature-
House: Language-independent, automated software composi-
tion.” In: 2009 IEEE 31st International Conference on Software En-
gineering. 2009, pp. 221–231. doi: 10.1109/ICSE.2009.5070523.

[2] Sven Apel, Olaf Leßenich, and Christian Lengauer. “Structured
merge with auto-tuning: balancing precision and performance.”
In: 2012 Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering. 2012, pp. 120–129. doi:
10.1145/2351676.2351694.

[3] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer,
and Christian Kastner. “Semistructured Merge: Rethinking Merge
in Revision Control Systems.” In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Founda-
tions of Software Engineering. 2011, pp. 190–200. doi: 10.1145/
2025113.2025141.

[4] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean
Harrold. “A differencing algorithm for object-oriented programs.”
In: Proceedings of the 19th IEEE International Conference on Auto-
mated Software Engineering. 2004, pp. 2–13. doi: 10.1109/ASE.
2004.1342719.

[5] Boris Beizer. Software Testing Techniques (2Nd Ed.) Van Nostrand
Reinhold Co., 1990. isbn: 0-442-20672-0.

[6] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin.
“Proactive detection of collaboration conflicts.” In: Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of Software Engineering. 2011, pp. 168–178.
doi: 10.1145/2025113.2025139.

[7] Jim Buffenbarger. “Syntactic software merging.” In: Selected Pa-
pers from the ICSE SCM-4 and SCM-5 Workshops, on Software Con-
figuration Management. 1995, pp. 153–172. doi: 10.1007/3-540-
60578-9_14.

[8] Gordon Fraser and Andrea Arcuri. “EvoSuite: Automatic Test
Suite Generation for Object-Oriented Software.” In: Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of Software Engineering. 2011, pp. 416–419.
doi: 10.1145/2025113.2025179.

[9] Mário Luís Guimarães and António Rito Silva. “Improving early
detection of software merge conflicts.” In: Proceedings of the 34th
International Conference on Software Engineering. 2012, pp. 342–
352. doi: 10.1109/ICSE.2012.6227180.

59

https://doi.org/10.1109/ICSE.2009.5070523
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1109/ASE.2004.1342719
https://doi.org/10.1109/ASE.2004.1342719
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1007/3-540-60578-9_14
https://doi.org/10.1007/3-540-60578-9_14
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/ICSE.2012.6227180

60 bibliography

[10] Daniel Jackson and Davida Ladd. “Semantic Diff : A Tool for
Summarizing the Effects of Modifications.” In: Proceedings 1994
International Conference on Software Maintenance. 1994, pp. 243–
252. doi: 10.1109/ICSM.1994.336770.

[11] Olaf Lesenich, Sven Apel, Christian Kastner, Georg Seibt, and
Janet Siegmund. “Renaming and shifted code in structured merg-
ing: Looking ahead for precision and performance.” In: Proceed-
ings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering. 2017, pp. 543–553. doi: 10.1109/ASE.2017.
8115665.

[12] Olaf Leßenich, Sven Apel, and Christian Lengauer. “Balancing
precision and performance in structured merge.” In: 2012 Pro-
ceedings of the 27th IEEE/ACM International Conference on Auto-
mated Software Engineering. 2015, pp. 367–397. doi: 10.1007/
s10515-014-0151-5.

[13] Qingzhou Luo, Lamyaa Eloussi, Farah Hariri, Darko Marinov,
and A Motivation. “Can We Trust Test Outcomes?” 2014.

[14] Tom Mens. “A state-of-the-art survey on software merging.” In:
IEEE Transactions on Software Engineering 28.5 (2002), pp. 449–
462. doi: 10.1109/TSE.2002.1000449.

[15] Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Pren-
tice Hall PTR, 2006. isbn: 0131495054.

[16] Bryan O’Sullivan. “Making Sense of Revision-control Systems.”
In: Communications of the ACM 52.9 (2009), pp. 56–62. doi: 10.
1145/1594204.1595636.

[17] Bernhard Westfechtel. “Structure-oriented merging of revisions
of software documents.” In: Proceedings of the 3rd International
Workshop on Software Configuration Management. 2004, pp. 68–79.
doi: 10.1145/111062.111071.

[18] Frank Wilcoxon. “Individual comparisons of grouped data by
ranking methods.” In: Journal of economic entomology 39.6 (1946),
pp. 269–270. doi: 10.1093/jee/39.2.269.

[19] Wuu Yang. “Identifying syntactic differences between two pro-
grams.” In: Software: Practice and Experience 21.7 (1991), pp. 739–
755. doi: 10.1002/spe.4380210706.

https://doi.org/10.1109/ICSM.1994.336770
https://doi.org/10.1109/ASE.2017.8115665
https://doi.org/10.1109/ASE.2017.8115665
https://doi.org/10.1007/s10515-014-0151-5
https://doi.org/10.1007/s10515-014-0151-5
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1145/1594204.1595636
https://doi.org/10.1145/1594204.1595636
https://doi.org/10.1145/111062.111071
https://doi.org/10.1093/jee/39.2.269
https://doi.org/10.1002/spe.4380210706

E I D E S S TAT T L I C H E E R K L Ä R U N G

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe.

Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt
und nicht veröffentlicht.
Passau, 2019-09-11

Florian Heck

	Abstract
	Contents
	List of Figures
	List of Tables
	List of listings
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Overview

	2 Background
	2.1 Git, a distributed version control system
	2.1.1 Merging versions
	2.1.2 GitHub, a collaboration git hoster

	2.2 Unit testing
	2.2.1 Flaky test cases

	2.3 JDime
	2.3.1 JDime merge strategies
	2.3.2 JDime integration

	3 Automated merge quality analysis with test suites
	3.1 MergeProfiler
	3.1.1 Structure

	3.2 Evaluating merge test suite data
	3.2.1 Visualizing merge scenarios
	3.2.2 Visualizing results from the whole project
	3.2.3 Statistics
	3.2.4 JDime data

	4 Evaluation
	4.1 Research questions
	4.1.1 Finding bugs caused by a merge
	4.1.2 Automatic merging with advanced tools does not introduce delayed defects
	4.1.3 Differences between regular merges and pull requests

	4.2 Analyzed projects
	4.3 Results
	4.3.1 Project commons-math
	4.3.2 Project dropwizard
	4.3.3 Project fastjson
	4.3.4 Project ghbrp-plugin
	4.3.5 Project github-api
	4.3.6 Project javaparser
	4.3.7 Project jedis
	4.3.8 Project okhttp
	4.3.9 Project ontop
	4.3.10 Project openmrs-core

	4.4 Discussion

	5 Conclusion
	5.1 Summary
	5.2 Related work
	5.3 Future work

	A Appendix
	A.1 Global merge scenario results
	A.2 Merge scenario results per projects
	A.3 Test case results
	A.4 Global JDime merge statistics
	A.5 JDime merge statistics per project

	Bibliography
	Declaration

