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Abstract

In this master thesis we model huge sets of smartphone applications (e.g.

an application store) as a software product line to fit for a variability-aware

analysis. We developed and implemented algorithms for the detection of data

security leaks emerging from the interaction of applications. An evaluation

shows the efficiency of our approach.
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1. Motivation

Over the past 10 years, the market for smartphones has grown rapidly and is

still enormously growing [2]. In the fourth quarter of 2010, smartphones even

outsold PCs for the first time. With the high sales rates for smartphones, the

market for applications running on these devices also grew permanently. The

two biggest application markets, Apple’s App Store and Google’s Play Store,

reported in total over 40 billion [12] and 25 billion [21] downloads in 2012,

respectively.

These statistics are an indicator on how intensively smartphones are used

nowadays. In fact, smartphone have become an important part of our private

as well as business lives. Users personalise their devices and store sensitive

data such as their contacts, their calendar, or other kind of protect-worthy

data on their phones. But also the smartphones themselves provide a variety

of potentially sensitive data sources, such as the GPS location or the device’s

identification number (IMEI). If any of this data, or combinations of it, can be

unwantedly exposed, this can cause a serious security leak. Therefore, there

is a need for mechanisms which can detect and warn users from leaking data-

flows.

Today’s smartphone operating systems such as Google’s Android [14] ship

various security mechanisms for the protection of application internal data[26].

Android implements a sandboxing mechanism that, e.g., forbids access to an

application’s run-time environment from an application external entity. Inside

an application sandbox, a developer is completely free how she wants to use

sensitive data and it is up to the user whether to trust the developer and install

an application or not.

Android also implements a permission mechanism which controls access to

certain system services (for example the establishment of network connections

or access to device sensors) or to custom application features. All required

permission must be requested for an application at installation and can only be

granted by the user. The set of requested permissions reflects the capabilities
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1. Motivation

of an application and helps a user to decide if she wants to trust the application

and install it. For example, when an application requests the permissions for

Internet access and at the same time to the contact book, it could unwantedly

send all contacts to an untrusted server.

However, there are two main problems coming with Androids permission

system: firstly, the permissions were criticised to be too coarse grained [18, 19].

Secondly, a recent study showed that permissions are rather rarely used in

practice [5]. Octeau et al. [5] also report that only roughly 5% of the system-

wide accessible application components1 were protected by permissions. This

high rate of exposed but unprotected components provides a broad range of

targets for potential so called permission re-delegation attacks. Permission re-

delegation is a special case of the confused deputy problem [11] in which an

application component exploits the permissions of another component which

it does not have itself [9]. Let’s say we have an application A with some

component cA and no granted permissions. Also, we have an application B

with granted permission p to access component cC of application C. Calling

component cB of application B does not require any permissions. So, cA can

call cB with parameters such that cB calls cC . Thus, cA can access the features

provided by cC without being directly allowed to call cC but by exploiting the

permissions of component cB. The scenario is illustrated in Figure 1.1.

A

c

B

c

C

c

No permission required Requires permission p

p

Granted permissions: pGranted permissions: - Granted permissions: -

A B C

Figure 1.1.: Permission re-delegation exploit using Android application com-

ponents

1components are the basic program modules of Android applications. Simplified

spoken is an application a set of component implementations (for more see Sec-

tion 3)
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As it is for any other platform, also smartphone operating systems struggle

against security issues through malware [24]. Therefore, many scientific re-

search has been done to either improve the existing security mechanisms [18,

19], or to introduce additional security features for application security [7, 8,

10].

Though most developments vary tremendously in their actual approach, they

all have one commonality: the provided solutions are device-centric, i.e. they

are integrated in the operating system. As a consequence, the mechanisms all

run directly on the device introducing a certain performance overhead. More

importantly, only a device with the improved security mechanism installed

gains an increased level of protection. Whereas the issue of performance over-

head can be reduced to some extent through optimisations, a comprehensive

deployment of a mechanism is much more of a practical issue. In fact, smart-

phone vendors fail to provide updates to newer Android versions for older

devices, leading to a high percentage of outdated still-in-use Android versions

[22]. Hence, even if one of the approaches was integrated in a new Android

version, most Android devices would not be affected by the protection mechan-

ism. It is therefore much more appropriate to develop a protection mechanism

that is fully independent of the version of the operating system. Our goal is to

detect undesired data-flows in and between smartphone applications. So, to be

device independent, we design our approach to run directly in the application

store and to analyse the applications before even installing them.

Device-centric approaches have the big advantage that the system’s config-

uration and the set of concretely installed applications are known, whereas for

an application store-side approach this knowledge is of course hidden. The

information is in particular crucial for inter-component data-flows and the de-

tection of the above described permission re-delegation problem. As a naive

approach one can try all possible application install combinations and check

them for data security conflicts. However, the number of combinations is of

up to exponential size and thus the naive approach is highly impracticable.

We will provide a solution which borrows techniques from the field of software

product line engineering [1] to cope with the sheer size of the analysis space.

The basic idea is not to verify all possible combinations separately but instead

to analyse all applications at once.

We introduce VarDroid, a tool that tracks data-flows across application

boundaries and detects data security conflicts. VarDroid works in three phases:

first, the application internal analysis, second, the interrelating of application

3



1. Motivation

components, and third, the detection of data security conflicts. We use An-

droid as an exemplary smartphone operating system for our prototype imple-

mentation.

The master thesis is structured as follows: after looking at related work in

Chapter 2, we introduce the Android basics (Chapter 3) and give an overview

of variability-awareness in Chapter 4. In Chapter 5 we provide a definition of

security labels. Chapter 6 covers the newly developed approach in detail by

discussing the basic algorithms and demonstrating their workflow in examples.

In Chapter 7, we describe our prototype implementation VarDroid, as well as

a generator for random components which we use for our evaluation. The

evaluation is provided in Chapter 8. Chapter 9 covers current limitations.

Last, we give an outlook on future work in Section 10.
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2. Related Work

There are several approaches analysing Android applications in terms of se-

curity matters.

TaintDroid [7] is a dynamic taint analysis tool which is directly embedded

in Android. It tracks the runtime flows of data and detects security violations.

However, for the reasons given in Chapter 1, for example that we don’t want

to modify the operating system itself, we aim for a fully static analysis instead.

Other approaches try to detect possible data insecurities based on Android’s

permission system [8, 9]. Kirin, for example, statically checks for undesired

combinations of permissions requested by an application. Though permissions

are an indicator for the capabilities of an applications, the approach is quite

coarse and does not consider the true behaviour, i.e. its control- and data-flow,

which can lead to misleading results.

Tools like FlowDroid [3] or Chex [17] analyse the data-flow of Android ap-

plications. Though FlowDroid and Chex differ completely in the way they’re

implemented, both identify data sources and sinks within the program code

and detect security violations. They focus on the analysis of individual ap-

plications and their internal behaviour. They do not consider inter-component

or inter-application data-flows. However, these tools match the requirements

for Phase 1 of our approach. In fact, we are currently working on integrating

FlowDroid for extracting the relevant information from Android applications

and for providing the information to VarDroid’s inter-component analysis.

ComDroid [4] and Epicc [5] are tools which focus on inter-component and

inter-application analysis. Their goal is to find vulnerabilities and attacks

enabled through inter-component communication, e.g. application hijacking.

They first identify entry and exit points of application components, and second,

interrelate them. The main object of observation is the usage of intents. In

contrast, we want to detect when incautious uses of intents lead to data security

vulnerabilities. So, instead on the misuse of intents, we focus on the misuse of

data sent via intents.
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2. Related Work

SCanDroid [10] is the approach closest to ours. Their approach is to incre-

mentally analyse applications as they are installed on a device. They perform

a component internal analysis based on the Java source code and additional

sources such as the manifest file. A checker module then uses the application

information to track data-flows including cross-component and -application

flows. The result of their analysis are constraints over a permissions. The first

problem with SCanDroid is that they work on the actual Java source or byte

code, not on Android specific code. In practice, however, applications are dis-

tributed in the Dalvik byte code, an Android specific variant of the Java byte

code. VarDroid in contrast works on a component black box representation

which makes our own implementations completely independent from any kind

of source code. For the black box generation, we use analysis tools specialised

in Android handling the application Dalvik byte codes for VarDroid. Also,

specialised tools incorporate the exact behaviour of the Android API in their

results. SCanDroid, on the other hand, uses self-defined stubs to model API

calls which are rather imprecise and incomplete. SCanDroid was designed to

analyse an new application at install time in the context of the already in-

stalled ones. So, SCanDroid follows an incremental approach. Analysing a

huge set of applications, as we aim to do with VarDroid, with an incremental

approach would demand runs in the quantity of the size of the application set

and each run with growing complexity. VarDroid was designed to handle a

huge set of applications and only needs a single pass.
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3. Android Basics

Our tool is designed to analyse sets of applications created for Google’s smart-

phone operating system Android. In this chapter, we will cover the basic struc-

ture of Android applications and the basic mechanisms for inter-application

communication. It is not required to fully understand the Android platform

for this work and we will focus only on the aspects which directly affect our

approach. For a complete description of the Android system we refer to the

official documentation [13].

3.1. Basic System Architecture

Android is a Linux-based operating system for mobile devices. Besides the

Linux kernel and device drivers, Android comes with libraries, e.g., for data-

base support or the standard C-libraries. The upper layers provide program-

ming interfaces and services which can be used by the actual applications.

Android’s system architecture is shown in Figure 3.1.

All applications are written in the Java programming language. However,

the applications are compiled into so called Dalvik byte code which is suited

for running in a register-based Java virtual machine as it is used by Android.

By default, each application is started in its own virtual machine sandboxing

an applications runtime environment. Also, Android uses the Linux user iden-

tifiers for making files accessible only to the applications which created them.

Application internal data can therefore only be accessed by other applications

through Android’s inter-application communication mechanisms.

1http://source.android.com/devices/tech/security/index.html
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3. Android Basics

Figure 3.1.: Android system architecture1

3.2. Application Components

An Android application is basically a composition of so called components

functioning as its logical units. There are four different types of components

predefined by Android which fulfil certain purposes. The component types are

as follows:

Activity: These components implement the graphical user interface (GUI) for

applications and short computations. Every application must ship at least one

Activity component which acts as the start-up component for an application.

Service: A Service component can be used to implement background tasks

which might take longer (e.g. a file download), or just do not require any direct

user interaction. A Service are controlled though hooks for callbacks and other

inter-component communication.
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3.3. Intents and Intent Filters

Content Provider: The purpose of a Content Provider is to provide a data

management module. Its predefined programming interface is designed to re-

semble common database interfaces, in particular to ease the usage of SQLite

which ships with the Android base libraries. Content Providers are a com-

mon way to provide application-external components access to the application-

internal data. This data is otherwise protected by the application sandboxes

and therefore not directly accessible to application-external components. Note

that Content Providers are not the only way to transfer data between com-

ponents. Another way is, e.g., via Intents (see Section 3.3).

Broadcast Receiver: The fourth component type is for listening for and

reacting to system-wide announcements, e.g., Android sends a broadcast mes-

sage on low battery level. Broadcast messages are sent as Intents which are

described in Section 3.3.

3.3. Intents and Intent Filters

An Intent is a message for inter-component communication. Among others,

it can be used to start other components and transfer data. So, technically

spoken, an Intent is a container object holding a description of the addressed

target components, flags (e.g. how to start a component), and optionally

data which can be transmitted with an Intent object. For inter-component

communication, an Intent is created and filled with the respective data. Then

it is handed over to the system which resolves for the target component and

initialises the intended action. For example, when an Intent is given to the

system through calling the API function startActivity, Android tries to start

the addressed Activity. There are two ways on how to specify the target

components:

Explicit Intents When creating an explicit Intent, the target component is

explicitly named using the component’s unique identifier. The processing of an

explicit Intent succeeds only if the specified component exists and the Intent

creator has the required permissions to communicate with the target compon-

ent.

9



3. Android Basics

Implicit Intents Implicit Intents do not exactly define the target component

but provide a description of the wanted feature the target component should

implement. A component can be described with a category of the provided fea-

ture (e.g. ”CATEGORY GADGET” for an Activity which can be embedded

in a host Activity) and the action it performs (e.g. ”ACTION CALL” if the

target component should be able to initialise a phone call). With implicit In-

tents it is possible to have multiple target component candidates. In this case

Android asks the user to select an application from a list before, respecting

the user’s choice, continuing with the processing of the Intent.

3.4. Permissions

With Intents Android provides a mechanism to access other application com-

ponents. But Android also provides ways to restrict this access if in certain

cases it should not be allowed for security reasons. In case a component should

only be available for components within the same application, a flag can be

set at development time which reduces the visibility of the particular com-

ponent to its application. The other case is that access to a component is

required from outside an application but its availability should be restricted

nonetheless. Android comes with a permission mechanism that addresses this

situation.

Permissions are defined and associated with a component during develop-

ment time. If a component has to be allowed to access a permission-protected

component, the permission must be specified for request at development time,

and granted by the user at installation time. The set of requested permissions

is static, i.e. it cannot be changed at any time later after installation. An

application can only be installed if all requested permissions are granted.

10



4. Variability-awareness

In this chapter, we look at the basic verification strategies commonly used in

the field of software product line engineering, project the scenario of analysing

a whole application store into the verification strategies, and eventually argue

why we chose the variability-aware strategy for our analysis. The explanations

of the strategies, in particular the one about variability-awareness, not only

helps to better understand the overall design decisions but also the workflows

of the algorithms presented in Chapter 6.

Note that this chapter only provides an brief overview of software product

lines and variability-awareness. For more details on this topic, we refer the

reader to the literature, e.g., the survey by Apel et al. [1] or Thüm et al. [23].

4.1. Software Product-Line Verification Overview

A software product line (SPL) is a set of software systems which share common

features. The different end products are created from a common source base by

configuring the compilation to enable or disable certain features, respectively.

A famous non-commercial example is the Linux kernel providing configuration

options for hardware features like USB, network interfaces etc. [15].

Our overall goal is to analyse a smartphone application market with re-

gards to data security. We see the set of all applications as our SPL and the

individual applications as its features. The installation and removal of applic-

ations to and from a device is therefore equivalent to enabling and disabling of

features, respectively. The feature model dependencies are given through the

accessibility information of applications and their components (for example

through Android permissions).

When analysing SPLs the differences of the end products must be taken into

account. It is not only important that each feature by itself provides valid code,

but also that the interactions of enabled features do not lead to defects. For

our approach, feature interactions are equivalent to application interactions.

11



4. Variability-awareness

There are three basic analysis strategies which we will now briefly discuss and

rate for applicability in the context of our approach.

4.2. Product-Based Strategy

The naive way of analysing a SPL is to simply verify all possible products.

Though this strategy provides full coverage it is only applicable to very small

SPLs. For instance, for a SPL with only three features there are up to 8

(= 23) possible feature combinations. When increasing the number of features

to only 10, there are however already 1024 (= 210) possible combinations. So,

the product-based verification strategy does not scale for SPLs with even only

moderate feature size. In fact, as just demonstrated in the small example the

number of combinations can grow exponentially with the number of features.

For our approach, we see each applications as a feature which can be en-

abled through installation on a device. With an application market of roughly

700.000 applications [21], the product-based strategy is clearly not an option

for us.

4.3. Sample-Based Strategy

A way to reduce the enormous number of possible products as described for

the product-based strategy is to only analyse a selected subset. There are

various heuristics for the selection criteria for the sample products, e.g., single

conf, pairwise or code coverage.

Since we modelled applications as the features in our approach, samples are

certain sets of installed applications.

The main issue with sample-based strategies is that it reduces the analysis

coverage. This implies for our approach that security conflicts are likely not

to be detected. For the above given example heuristics, this is in particular

the case when security conflicts emerge from a call chain of more than two

application components. Also, a recent study showed that the variability-aware

strategy outperforms the sample-based strategy in terms of detection efficiency

while providing full analysis coverage [1]. Because of these drawbacks, we chose

not to use the sample-base strategy but to implement variability-awareness

instead.

12



4.4. Variability-aware Strategy

4.4. Variability-aware Strategy

The third strategy is called variability-aware or family-based analysis. The

basic idea is to analyse all possible products but to reduce the analysis space

by exploiting the similarities of the products in a product line. The key features

are late-splitting and early-joining which allow to merge equivalent program

states as often as possible. The common states must then be handled only

once during the analysis instead of multiple times for each individual product.

A variability-aware analysis runs in a single pass while providing full analysis

coverage.

In our approach, the source code of a SPL is given through the source codes

of the installed applications. Thus, we can merge data-flows as soon as the

states in an application execution are the same. Since we want to detect

security conflicts in data-flows, states are later defined with respect to the

security properties of the flowing data. Consequently, we split the analysis on

data-flows with different security properties.

We chose the variability-aware strategy for several reasons: first, it provides

full analysis coverage, i.e. we detect all possibly emerging security conflicts.

Second, recent studies showed that variability-awareness scales when applied to

real-world product-lines and can even outperforms the sample-based strategy

[16].
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5. Security Labels

Security labels are the main object of our analysis. In our approach, we propag-

ate them through a component black box call graph to detect security conflicts.

Through security conflicts we can identify possible data leaks in the applica-

tions. Therefore, it is important to have a clear understanding of what security

labels and security conflicts are. In the following sections we will define both

terms in general and also give a concrete definition which we use in the course

of this master thesis.

5.1. Definition

The goal of our approach is to trace security labels associated with data-

flows. So, a security label is in our context some kind of security related

data ”history”, i.e. it records the security classifications of actions performed

on the flowing data. As an example, we assume that the current location

of a mobile device is protect-worthy data. The location manager of a device

as the producer of the location data is therefore annotated as private. As

consequence, all data-flows having one of their sources in a location manager

must somehow include private in their security label. The same applies to

data sinks. Lets assume we declare any outgoing network connection as an

untrusted output. So, we annotate every network socket as public. As an

implication, the security labels of data-flows reaching a network socket are

updated with the public security label.

In the two above examples we used terms which need clarification: annota-

tions, and private and public, respectively.

We use annotations to associate security labels with certain Android API

calls. The annotated security labels classify the implications of an API call

execution for the processed data in terms of security. In the first example, the

classification of the location manager API was that we labelled it as private to

express protect-worthiness. Network sockets, on the other hand, were classified
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as untrusted and thus annotated with public. For the master thesis we assume

the annotations as given for all API calls.

In the examples we used private and public as the security labels. Though

these were intuitive enough and therefore sufficient for the examples, we will

now abstract from it and give a general formal definition of security labels as

we use them throughout this work.

We define a security label as a set of security tokens. For each analysis exists

a set of pre-defined security tokens of a fixed size n.

Security Tokens := {t1, t2, ..., tn}

The concrete value for n is configurable for each analysis run (see Section

7.2.1). In the above examples we used the token set {private, public} of size

n = 2.

The set of all possible security labels is therefore defined as

Security Labels := P(Security Tokens)

The definition of security labels as a set of security tokens is a way to keep

the explanations of the security label processing in this master thesis simple.

However, the concrete definition of security labels is not the central point and

the introduced algorithms are widely independent from it. In fact, only the

security label update and conflict detection functions are directly related to

this definition. This eases a later change of the definition and reduces the

efforts for adjustments in the function implementations. In future work we

will move to a academically more accepted definition of security labels, e.g.,

the definition as a lattice by Denning [6].

5.2. Security Conflicts

During the analysis we propagate security labels through the component black

box call graph and detect security conflicts. We define a security conflict as an

undesired security label. Thus, a security conflict is a security label which gets

reported when it emerges during the evaluation. A set of security conflicts is

therefore defined as

16



5.2. Security Conflicts

Security Conflicts ⊆ P(Security Tokens)

In the exmaple of the previous section we used the security tokens private

and public. When we want to detect flows in which private data goes to a

public output we define the set of security conflicts as {{private, public}}.
Recall that security labels are a set of security tokens and we therefore get a

set of sets. Here we also see a drawback of our definition of security labels as a

set. With the security conflicts specified as {{private, public}} we detect flows

from private sources to public sinks and from public sources to private sinks

likewise, though the latter flows are usually deemed as harmless. However,

the main focus of this work is on the propagation algorithms and we leave an

improvement of the security label definition to future work.
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After providing the necessary background and giving the basic definitions we

are now ready to introduce the workflows and algorithms of our approach. Our

approach performs in three phases:

1. Component black box generation

2. Creation of the component black box call graph

3. Propagation of security labels through the graph of Phase 2

and detection of security conflicts

The first phase runs a component-internal analysis. The goal is to collect

information about each existing application component and to create black

boxes as an abstraction from the source code. Later phases only work on the

basis of these abstractions. The black boxes hold information about input- and

output-interfaces, internal data sources and sinks, and component relations,

i.e. when and how components can interact.

The second phase explores the relations of application components. The

goal is to construct a component black box call graph for later propagation

of security labels during the third phase. Starting with the black boxes of all

components a user can directly launch from the operating system (in our case

Android) the functions of the second phase incrementally search for the black

boxes of the respectively callable successor components.

The third and last phase produces the actual result of our approach, i.e.

propagates the security labels through the global call graph and detects secur-

ity conflicts. Here, the component information stored in the black boxes and

the call graph from the previous phases are used. Since the call graph from

the second phase can grow to exponential size, we apply techniques from the

field of product line engineering to reduce the actual analysis space [25].

In the remainder of this chapter, we discuss all three phases in more detail

(Sections 6.1 - 6.3). We will motivate each phase, look into the respective
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workflows, and discuss their results. We explain the essential steps of the used

algorithms and provide examples to demonstrate their functionality. There

are several optimisations for the performance of the basic approach, e.g., the

combination of Phase 2 and Phase 3 which we cover in Section 6.4. In Sec-

tion 9 we address the most significant limitations of the current stage of our

approach.

6.1. Phase 1: Black Box Generation

In this section, we first motivate the abstraction from application components

and discuss the usage of existing tools for the data-flow analysis of application

components. Next, we describe the result of Phase 1, the component black

boxes and their elements as the abstraction from the component source code,

in more detail.

6.1.1. Phase Description

The goal of Phase 1 is to create abstract representations of the compon-

ents from an application set. For every component, a black box with input-

and output-interfaces is created. Input-interfaces represent the program code

through which a component can be accessed. Output-interfaces represent the

program code with which a component starts another component. Since we are

not only interested in the inter-component but the overall data-flow and their

security properties, component black boxes can include internal data sources

and internal data sinks. A black box also holds the relation information of

the black box elements, e.g. whether data might flow from a certain input-

interface to a certain internal sink. Component black boxes are described in

more detail in Section 6.1.2.

There are several advantages coming with the creation of component black

boxes. The first one which was also the initial idea for this design decision

is that the subsequent phases of our approach must no longer operate on the

actual program source code but can rely on the abstractions. It allows to

solely work on component black boxes, their elements and relations, but hides

technical details such as how component entry points can be implemented.

The abstraction simplifies the view on components to four different types of

component elements, namely input-interfaces, output-interfaces, internal data
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sources, and internal data sinks. Having only the four element types instead

of numerous kinds of different possible source code fragments the abstraction

eases the definition of the algorithms of Phase 2 and 3 tremendously. However,

care must be taken not to strip too many details from the abstraction in order

to preserve a certain degree of precision and reference to the original component

code.

The relevant information about application components can be retrieved

from two different sources: the application manifest file and the program source

code.

Manifest File: For every application there is a mandatory manifest file called

AndroidManifest.xml. It contains general information about the whole applic-

ation (e.g. the used API-level) as well as component specific one. Relevant

information retrievable from the manifest file is which components are avail-

able at all and to whom, i.e. if it is only accessible from within the same

application or globally, which permissions restrict the access and so forth.

Source Code: Most of the relevant information can be found in the ac-

tual component implementations. When analysing the source code, we must

identify the parts through which a component can be accessed (input-interfaces),

another component can be called (output-interfaces), where data is created (in-

ternal data sources,) or leaves the runtime environment (internal data sinks),

respectively. Also important are the actual data-flows within a component, i.e.

from where to where data traverses the source code. The flow information is

represented as connections of the elements in a black box. Note, that at this

point we do not look for inter-component data-flows yet. This task is left to

Phase 2. However, we are interested in which data may leave a component

through an output-interface.

The retrieval of information about applications and their components is a

quite complex task. Though, the analysis of the manifest file is rather straight

forward, the inspection of the source code demands a full data-flow analysis.

Therefore, we decided to rely on already existing tools specialised in the ana-

lysis of data-flows in Android applications, and not to implement Phase 1

ourselves. This shows another advantage of the abstraction through black

boxes: Phase 2 and Phase 3 operate only on the basis of the created black
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boxes and are otherwise completely independent from the actual information

retrieval process and the utilised tools. Hence, we can modify the information

retrieval and exchange the tools at any time later without affecting the other

phases. We plan to use two different tools: First, FlowDroid [3] developed

by Fritz et al., and the second, a tool developed by Daniel Scheckling at the

University of Passau1. The use of different tools will allow us to experiment

with different data-flow analysis strategies and their precision and perform-

ance. The integration of the analysis tools is not done yet and is left to future

work. Instead, we simulate the data-flow analysis through randomly gener-

ated component black boxes. The implementation of the component black

box generator is described in Section 7.1.

6.1.2. Component Blackboxes

As motivated in the previous section, we use black boxes as a way to abstract

from the source code of application components. In this section we describe

the black boxes in more detail. In particular, we will informally and formally

define the so called black box elements. A black box elements is either an

input interface, an output-interface, an internal data source, or an internal

data sink.

Component Black Box: A component black box represents an application

component as a unit holding all its relevant information, i.e. the component

elements, the defined permissions, and meta-data such as the component iden-

tifier. Black boxes are directly created from the manifest file and the respective

source code. Since the source code is assumed to be static and thus cannot

be changed, black boxes are also static and will never change their structure

during the analysis. For example, component elements cannot be added to or

removed from a black box, respectively.

Formally, a black box is defined as a 5-tuple of a set of input-interfaces in, a

set of output-interfaces out, a set of internal data sources src, a set of internal

data sinks sink, and some metadata meta:

1Unfortunately, the tool is still not published and there was no official reference

available at the time of writing the master thesis
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(in, out, src, sink, meta) with in ∈ P(”Inputs-Interfaces”),

out ∈ P(”Output-Interfaces”), src ∈ P(”Internal Data Sources”),

sink ∈ P(”Internal Data Sinks”), meta ∈ ”Metadata”

Internal Data Source: Component-internal data sources are system API

calls which in some way introduce data items to a runtime environment. The

API method calls are defined by Android and are therefore all known prior

to the analysis. This allows us to statically specify all data sources through

annotations. An examples for an API call treated as internal data source

is getDeviceId() for retrieving the device’s identification number (IMEI). The

annotations are also used to attach security labels to the API calls. These

labels classify the security relevance of the created data, for example they can

define whether the source creates data to which access is generally allowed

(labelled with public) or to which data should be restricted (labelled with

private).

In the context of our analysis we are interested in where data can flow to.

Internal data sources represent program code where data is created. Therefore,

we need to know to which sinks data can flow. A sink is either an internal

data source or an output-interface from the same component as the internal

data source. An internal data source references all directly reachable sinks and

additionally holds some metadata such as which API call it represents.

Formally, an internal data-flow is a 3-tuple of a set of data sinks (sinks), a

security label (label), and some metadata (meta):

(sinks, label, meta) with

sinks ∈ P(”Internal Data Sinks” ∪ ”Output-Interfaces”),

label ∈ ”Security Labels”, meta ∈ ”Metadata”

Internal Data Sink: Component-internal data sinks are system API calls

which in some way expose data items from the runtime environment. As

for internal data sources, the method calls are defined by Android, and can

therefore be statically annotated prior to the analysis execution. An example

for an API call, which is treated as an internal data sink, is sendTextMessage

for sending SMS. Similar to internal data sources, the annotations are also

used to attach security labels to the API calls. This time the interpretation

of the labels is the security classification of the target, e.g., the API method

sendTextMessage could be annotated as a public output because the sent data
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leaves the phone and the recipient could be untrusted. Internal data sinks also

hold some metadata such as the represented API call.

Formally, an internal data sink is a tuple of a security label (label) and its

metadata (meta):

(label, meta) with label ∈ ”Security Labels”, meta ∈ ”Metadata”

Input-interface: Component input-interfaces are data entry points to applic-

ation components. Similar to internal data sources, input-interfaces are certain

pre-defined API calls. The difference is that the data origin is yet unknown

for an input-interface. This is caused by the fact that at analysis time it is not

known which component will concretely access the input-interface at runtime.

As an implication the security labels for input-interfaces are not known prior

to the analysis in Phase 3 of our approach. An example for an entry point is

the onCreate()-method of an Activity component.

To know how an input-interface can be reached, we must create an interface

description. In Android the information for the description is given through

the definition of intent-filters, in particular the Action and Category definitions

to which the component can react. In our work, we will only handle Action

and Category tags, and do not consider tags such as Data for specifying the

MIME-type of the involved data. We leave an extension to future work.

Since input-interfaces deal with inter-component communication, Android’s

permission system applies to them. More precisely, we must know which

permissions are required to be allowed to access the input-interface during

runtime. This permission information which is provided in the manifest file is

also stored with an input-interface.

Input-interfaces are a special kind of data source. Thus it is relevant where

the data handed over to an input-interface flows to. This can be one or more

of an output-interface or an internal data sink. Data can be handed over

to another component via Android’s intent mechanism. So, the information

whether an input interface acts as a data source can be extracted from the

source code.

An input-interface is formally defined as a 4-tuple of a set of intent-filters

(filters), a set of required permissions (perms), a set of all directly reachable

sinks (sinks), and some metadata (meta):

24



6.1. Phase 1: Black Box Generation

(filters, perms, sinks, meta) with

filters ∈ ”Intent-Filters”, perms ∈ P(”Permissions”),

sinks ∈ P(”Internal Data Sinks” ∪ ”Output-Interfaces”),

meta ∈ ”Metadata”

Output-interface: Component output-interfaces are data exit points from

application components. Similar to internal data sinks, output-interfaces are

certain pre-defined API calls. The difference is that the data-flow target is

not necessarily known for an output-interface. For Android component exit

points are where an intent is created and sent to the operating system to

start a component instance. So, a target component is unknown when an

output-interface represents source code using an implicit intent and the called

successive component is chosen by the user during runtime.

At an output-interface, we must know which components, more precisely

which input-interfaces, can be accessed. Therefore, we create a description of

the target input-interfaces. We must distinguish between explicit and implicit

intents. For explicit intents, we need to extract the concrete name of the

target component from the source code. For implicit intents, we must extract

the Action and Category specifications for the potential target input-interfaces.

As for input-interfaces, output-interfaces deal with inter-component commu-

nication. Therefore, Android’s permission system is taken into account. For

output-interfaces, it relevant which permissions are granted to an application.

We use the permission information stored in the application manifest file.

Output-interfaces implement a special kind of data sink. However, the se-

curity label of an output-interface is not necessarily known before analysing.

This is in particular the case when data comes from an input-interface for

which the security labels are also still not known during Phase 1.

An output-interface is formally defined as 3-tuple of an sent intent (intent),

a set of granted permissions (perms), and metadata (meta):

(intent, perms, meta) with intent ∈ ”Explicit Intents” ∪ ”Implicit Intents”,

perms ∈ P(”Permissions”), meta ∈ ”Metadata”

6.1.3. Example

We will use the same set of application components for the examples of all three

phases. The goal is to illustrate the results of the respective phases while
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keeping the examples simple enough to easily understand them. Therefore,

the used set contains only three components (A, B, and C) of which only one

is launchable (component A). Though the example set seems small, we will

see that the resulting graphs can grow quite rapidly (especially for examples

without merging). This also the reason why we do not use a real world example

which are usually much bigger and more complex. Also, we omit some aspects

such as the implications of the component access restrictions in applications

to fully concentrate on the core functionality of the respective phases. We will

now introduce the properties of each component and the structure of its black

box representation:

Component A: Component A is the only launchable component in the ex-

ample set. It can be launched through code represented by the input-

interface iA. There is no direct data-flow from iA to any other black

box element. The component creates an implicit intent with the action

flag set to ”a”. The intent contains data originating from an internal

data source srcA. The creation and sending of the intent is represented

by the output-interface oA. There are no security label annotations in

component A. The component is shown in Figure 6.1a.

Component B: The second component black box consists of an input-interface

iB and an internal data sink sinkB. All data incoming with the intent

accessing iB flows to sinkB which is annotated with the security la-

bel public. sinkB could, e.g., represent an Android API call to send a

message to another device. Component B can be started through an

implicit intent with the action flag set to ”a”. Thus, it can called from

the output-interfaces of components A and C. Component B is shown in

Figure 6.1b.

Component C: The last component can be started through an implicit intent

with action ”a”. Data sent with the incoming intent at the only input-

interface iC can directly flow to the output-interface oC,1. During this

flow the data is modified such that when it reaches oC,1 it adds the label

private to the data. Component C has an internal data source srcC
which produces data that flows to output-interface oC,2. Both of C’s

output-interfaces represent source code creating an implicit intent with

action ”a”. Thus, from oC,1 and oC,2 components B and C can be called.

The call of a component instance of C is rather unrealistic for real world
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applications but allows us to show the issue of loops in the component

black box call graphs. Component C is shown in Figure 6.1c.

(a) Component A (b) Component B (c) Component C

Figure 6.1.: Example component black boxes used to illustrate results of all

phases

6.2. Phase 2: Creation of Component Call-graph

The second phase of our approach uses the black boxes created during Phase

1 and generates relations between component black box instances. In the

following, we introduce an algorithm which creates transitions between output-

and input-interfaces to construct a component black box call graph which is

needed for Phase 3.

6.2.1. Phase Description

As the initial component set for the algorithm, we use all components, which

can be directly launched from the system by a user through clicking the ap-

plication icon in the application menu. In Android a component is launchable

by a user if the application’s manifest file contains the code shown in Figure

6.2 in its component specification.
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1 <intent -filter >

2 <action android:name=" android.intent.action.MAIN" />

3 <category android:name=" android.intent.category.LAUNCHER" />

4 </intent -filter >

Figure 6.2.: Intent-filter XML code to mark an Activity component as launch-

able

For the black box representation the launch of a component means entering

a black box at one of its input-interfaces. As a first step we, must therefore

identify these input-interfaces in our initial component set. We store the intent-

filters as the description information of the input-interfaces which makes it easy

to extract them from the black box set. In practice, the launchable components

must be activity components. The launch entry point of an activity is always

the onCreate method.

Launchable components are in fact not the only components which can be

used to start an application. Recall that broadcast receiver is the component

type which listens for system-wide messages. As an example, Android sends

a broadcast message after it finished the booting process. There are many

applications which use this message for a self-launch, e.g., Google’s Gmail app2.

Thus, these broadcast receivers, or at least the components started through

them as a reaction on broadcast messages, could also be included in the initial

component set. Nevertheless, we will only consider launchable components

as the initial set throughout the thesis. We believe that activities provide a

sufficient basis for a first prototype implementation and its evaluation.

Starting with the launchable input-interfaces, we perform a breadth first

search (BFS) to find first all reachable output-interfaces. From the output-

interfaces we continue the search to find all from a directly callable compon-

ents, more precisely their respectively accessible input-interfaces. Basically,

the search for successive components could be done with a depth first search,

too. In Phase 3, we will use the principle of BFS to obtain better perform-

ance for state merging. Thus, using BFS in the second phase allows us to

easier combine both phases as an optimisation of our approach later in Section

6.4. Through the optimisation, the successive components of a component are

found on the fly, reducing memory usage and execution time.

2https://play.google.com/store/apps/details?id=com.google.android.gm
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1 connectComponents ():

2 Components startComponents = {c|c.isComponent () ∧ c.isLaunchable ()}

3 int depth = 0

4 InputInterfaces inputs = ∅
5 foreach c in startComponents do

6 inputs = intputs ∪ c.startInputInterface ()

7 od

8 startInputs = inputs

9 while depth < MAX_DEPTH do

10 inputs = findSuccessors(inputs)

11 depth = depth + 1

12 od

13 return startInputs

Figure 6.3.: Initial function for constructing the component call graph up to a

given call depth

Figure 6.3 shows the function connectComponents initialising Phase 2 as

pseudocode. In line 2, the set of launchable components is created. The

loop in lines 5-7 extracts the set of input-interfaces which are used for launch

from the initial component set. In the loop in lines 9-12, the actual search

for successors in the component call graphs is executed. For a current set

of input-interfaces the function findSuccessors determines the respective suc-

cessor component black boxes, more precisely the input-interfaces through

which the respective black boxes are accessed. Each set inputs in the loop

contains all input-interfaces reachable in a certain common call graph depth.

In phase 2, we need the maximum call depth to overcome the existence of

loops in the black box call graph and to guarantee termination for our al-

gorithm. Let’s assume we have two components A and B where A can call

B and B can call A. Without the maximum call depth limitation function

connectComponents would be stuck in an infinite loop alternating A and B.

The concrete value for the maximum call depth is purely heuristic and config-

uring the search with a sufficient value is not a trivial task. In Phase 3 we will

introduce a fix-point detection which obviates the need of the maximum call

depth value. However, in Phase 2 we do not yet have the notion of states and

therefore do not yet apply fix-point detection. In Section 6.4 we get this fea-

ture for Phase 2 as a side effect of the optimisation of combining Phase 2 and

3. Function findSuccessors stores the references to the respectively reachable
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1 findSuccessors(InputInterfaces inputs ):

2 InputInterfaces succInputs = ∅
3 foreach InputInterface i in inputs do

4 Component c = i.getComponent ()

5 Sources sources = {s|s.isSourceIn(c)} ∪ {i}

6 foreach Source s in sources do

7 foreach OutputInterface o in {o|o.isDirectlyReachableFrom(s)} do

8 InputInterfaces successors = {succ|succ.isInputInterface ()

9 ∧ succ.isDirectlyReachableFrom(o)}

10 o.successors = successors

11 succInputs = succInputs ∪ successors

12 od

13 od

14 od

15 return succInputs

Figure 6.4.: Function for finding and connecting all from a component directly

callable components

input-interfaces of the successor component black box instances in the reached

output-interfaces. Through this, findSuccessors creates the component black

box call graph structure with all dependencies. The initial input-interfaces set

is returned as the entry points to the graph.

Function findSuccessors (shown in Figure 6.4 as pseudocode) receives a set

of input-interfaces reached at a certain call depth in the black box call graph.

For each of these input-interfaces we retrieve the set of data sources in its

black box instance (line 5). The set contains all component internal data

sources. The idea is that data-flows originating at these internal sources can

be triggered through, e.g., a button click event as soon as the component is

started and must therefore be considered in the call graph. We also add the

input-interface through which the black box was reached to the data source set.

Remember that intents cannot only be used to call other components but also

as a container object to transfer data to another component. This data might

flow to a data sink, i.e. an internal data sink or an output-interface. So, the

transferred data can directly influence the data-flow and the accessed input-

interface must therefore be part of the black box call graph. Consequently,

data-flows from other input-interfaces of the same component which were not

reached must not be considered and are not added to the data source set.
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In line 6-13 of Figure 6.4, we process the output-interfaces reachable from

a data source of the set created in line 5. For every output-interface, we

create the set of directly reachable input-interfaces. In case of an explicit

intent, the provided identifier can be directly used to find the matching target

input-interface. In case of an implicit intent, we must first look up all input-

interfaces matching the provided description. In either case, we additionally

check the granted and required permissions to see if access is allow. If the

permission check fails, the input-interface is not reachable for the currently

handled output-interface. The set of reachable input-interfaces is stored with

the respective output-interface as its successors (line 10), and added to the

function result set in line 11. The result set forms the set of input-interfaces of

the next call depth in the call graph. As described above, the result is returned

to function connectComponents which decides whether to call findSuccessors

again, depending on the current call depth.

6.2.2. Example

We will now demonstrate the workflow of Phase 2 by using the example com-

ponent black boxes from Section 6.1.3. Basically, the example comprises three

component black boxes A,B, and C. A represents the only launchable com-

ponent which creates an implicit intent for calling components B or C. Com-

ponent black box B has an internal data sink but no output-interfaces. C has

an internal data source and two output-interfaces. From both of C’s output-

interfaces the input-interface B or C can be reached. We will use a maximal

call depth of 3 in the example of this section.

In the following, we will explain the basic steps of the execution of Phase 2.

The resulting component black box call graph is shown in Figure 6.5.

The very first step of Phase 2 is to identify the set of launchable components

and to identify all input-interfaces which are accessed when launched. In our

example, this set contains only a single input-interface, the input-interface iA
of component black box A.

Based on the current input-interface set, the next step is to construct the

set of relevant data sources for the current call depth. The set of relevant

data sources is the currently reached input-interface united with the set of

all internal data sources of the input-interface’s component black box. In our

example this results in the set {iA, srcA}. From the set of relevant data sources

only one output-interface oA is directly reachable (reachable through srcA).
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Figure 6.5.: Component black box call graph resulting from executing function

connectComponents of Phase 2.

Now that we have all reachable output-interfaces, we search for all reachable

input-interfaces. This search returns us the set of the input-interfaces of B and

C, respectively, i.e. the set {iB1 , iC1}. We create new black box instances B1

and C1 and connect the output-interface oA to the input-interfaces of the new

black box instances. The numbers in the exponent of the black box identifiers

represent the instance identifier.

With the now increased current call depth of 1 we have not yet reached the

maximal call depth and we therefore continue constructing the call graph. The
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set of relevant data sources is now {iB1 , iC1 , srcC1}. With this set we retrieve

the set of reachable output-interfaces {oC1,1, oC1,2}. From each of the output-

interfaces we can both times reach the input-interfaces of component black

boxes B and C. For oC1,1 and oC1,2 we create each new successor instances of

B and C and get {iB2 , iC2} for oC1,1 and {iB3 , iC3} for oC1,2, respectively. So,

the new set of reached input-interfaces is {iB2 , iC2 , iB3 , iC3}. Last, we increase

the call depth to 2.

We have now a similar input-interface set as with call depth 1. The only

difference is that for black boxes B and C we have each two instances instead

of a single one. Thus, the computation steps are the exact same ones as for call

depth 1 but with a double-sized set. This results in the new input-interface

set {iB4 , iC4 , iB5 , iC5 , iB6 , iC6 , iB7 , iC7}. The new current call depth is 3 which

is also the maximal call depth. So, the algorithm of Phase 2 terminates and

we are done constructing the component black box call graph.

6.3. Phase 3: Propagation of Security Labels

The third and last phase uses the security label information collected during

Phase 1 to propagate them through the component black box call graph re-

turned by Phase 2. During the propagation of the security labels we will use

merging and branching of nodes to reduce the actual graph size. The result of

Phase 3 is the set of detected security conflicts as well as the directed graph

which was used for the detection. So, basically we transform the black box

call graph into a state graph while checking for security conflicts.

In this section, we will first describe which data is observed (Section 6.3.1),

define the notion of states for our approach in Section 6.3.2, and finally discuss

the algorithms for the security label propagation and security conflict detection

in Sections 6.3.3 - 6.3.5.

6.3.1. Propagated Data

The result of our analysis is to know where and with which security properties

data might flow beyond application and component boundaries. To be able to

achieve this goal, we first need to know from which sources to which sinks data-

flows exist. These relations are extracted from source code in Phase 1. Based

on this information, Phase 2 then generates the global connection between
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components, more precisely the connections of the black boxes representing

components. For computing the security properties of component instances

and detecting conflicts, we need to propagate the security labels annotated

with API calls through the black box call graph. So, we do not observe the

flowing data itself but only the security labels associated with them. In fact,

we are in no way interested in any of the actual data values but only use

their flows as an indicator of their relations. The flows allow us to correctly

propagate the security labels.

Though the algorithm presented in this section is fairly independent from

the concrete structure of the security labels (only the security label update

and conflict detection functions are affected) we assume the definition from

Chapter 5 for the rest of this work.

6.3.2. States

In our work, a state is a set of cumulated black box elements with the same

security label and call depth. Formally, a state is defined as a tuple of a security

label label and a set of black box elements elems :

(label, elems) with label ∈ ”Security Labels”, elems ∈ P(”Elements”)

and ∀e1, e2 ∈ elems : callDepth(e1) = callDepth(e2)

We aggregate black box elements with the same security label. So, as soon

as we detect a security conflict for a state we automatically know that there

must be a conflict for all other elements within the same state, too.

The definition of state requires for all black box elements to have the same

call depth. However, the concrete call depth value is not relevant but rather

the fact that it is the same for all elements. This implies that after handling a

certain call depth, no element can be added to the state. The unchangeability

of states allows to have fixed points which are used for a natural termination

of Phase 3.

Neither predecessors nor successors are included in the definition of state.

The first allows adding of predecessors at any time without changing the sate

itself and thus a fixed point analysis through detection of and linking to already

existing states. Successors are not included because they are directly derivable

from the set of a state’s black box elements. Since the set of black box elements

can never change after creation, the set of successors can’t either.
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In our definition of state, we do not require the black box elements to be of

the same type. However, all states will have the same element type in practice

due to the work flow of our algorithms which handle the black box elements

of each type separately.

We define the equivalence of states as follows:

State Equivalence

Two states are equivalent if and only if their security label and their sets of

black box elements are equivalent.

Note that for the equivalence of states we do not demand the black box ele-

ments to have the same call depth. This allows to globally search for equivalent

states within the call graph and to find already reached states, i.e. global fixed

points.

6.3.3. Basic Security Label Propagation Algorithm

Phase 3 implements the propagation of security labels through the black box

call graph and detects possible security conflicts. It uses the entry points to

the graph resulting from Phase 2 as the initial set of states. The main func-

tion of Phase 3 is shown in Figure 6.6. After performing an intra-component

analysis, it runs a loop alternately performing an inter-component and an intra-

component analysis. The loop stops when either there are no more security

labels to propagate or a maximal call depth was reached. Security conflicts

are detected and reported in the intra- and inter component analysis steps.

The intra-component analysis function propagates security labels from data

sources to data sinks, i.e. propagates security labels within component bound-

aries. Data sources are input-interfaces and internal data sources. Data sinks

are internal data sinks and output-interfaces. Since the entry points to the

graph of Phase 2 are data sources, the intra-component analysis is called first.

We discuss the intra-component analysis function in more detail in Section

6.3.4.

The inter-component analysis function propagates security labels from output-

interfaces to the respectively directly reachable input-interfaces. So, the inter-

component analysis propagates security labels beyond component boundaries.

The function is discussed in more detail in Section 6.3.5.
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1 securityLabelPropagation(States startInputs ):

2 int depth = 1

3 States outputs = intraComponentAnalysis(startInputs)

4 while ((not outputs.isEmpty ()) ∧ (depth <= MAX_DEPTH )) do

5 States inputs = interComponentAnalysis(outputs)

6 outputs = intraComponentAnalysis(inputs)

7 depth = depth + 1

8 od

Figure 6.6.: Initial function for global security label propagation with max.

call depth

The main difference between the intra- and inter-component analysis func-

tions is that in the intra-component analysis function new data-flows can be

introduced through internal data sources. When a component is started, a flow

from an internal data sources may be triggered through, e.g., clicking a button

click event to open a file. These data-flows do not directly depend on the

data-flow originating in the input-interface through which the component was

reached but are assumed to be startable whenever the surrounding component

is accessed. Opposed to that, the inter-component analysis propagates secur-

ity labels from output-interfaces to input-interfaces which may never introduce

new data-flows to the analysis.

The algorithms in Phase 3 use a breadth-first search strategy (BFS) to

traverse the call graph. Though basically a depth-first search strategy (DFS)

would also be applicable, Rhein et al. [25] argue that in practice BFS performs

better than DFS. Based on their claim, we decided to design our algorithms

in a BFS fashion.

6.3.4. Intra-component Security Label Propagation

The intra-component analysis function propagates security labels between ele-

ments of the same black box component and detects possible security conflicts.

The basic idea is to first identify all relevant data sources for each reached com-

ponent and then to propagate the security labels to the reachable data sinks.

During these steps, merges are applied where appropriate.

Relevant data sources are the input-interface through which the component

was accessed and all internal data sources of the same component. Any other
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input-interfaces are irrelevant since the component was not accessed through

them. Thus, all possible in Phase 1 identified data-flows passing these inter-

faces do not exits in practice for the particular component call. Any data-flow

originating from an internal source however is assumed to be potentially started

through events such as user interactions, e.g., an button click event. Therefore,

all internal sources are included in the set of relevant data sources.

The next step is the propagation of the security labels to all reached data

sinks. Data sinks are either internal sinks or output-interfaces. Internal sinks

do not have successors. So, whenever an internal sink is reached its security

label is updated but the sink itself does not influence the further analysis.

Nevertheless, security conflicts can occur at internal data sinks and they must

therefore be processed as any other black box element. The security labels of

output-interfaces are updated, the resulting states merged, and if an equivalent

state never occurred before in the global graph, the state is added to the

function output set for further processing.

In Figure 6.7 we show the function intraComponentAnalysis implementing

the above computation steps. Basically, the function iterates over all input-

interfaces of each state. For each through an input-interface reached compon-

ent black box, the set of relevant data sources is created and iterated over in

line 7. All reachable data sinks are updated accordingly in the loop in lines 9

- 17. The implementation of the security label update function (called in line

10) depends on the definition of security labels. Section 5.2 defines security

labels as a set of security tokens. Hence, an update of security labels is in our

case a union of security token sets. The function mergeStatesOnLevel called in

line 12 and 15 is the state constructing function. With every iteration of the

loop from line 9 - 17 a black box element is added to some state. This means

in particular that states constantly change. Therefore the states are still kept

local at this point until every data sink was updated. When done so, the states

are fully constructed and will never change again. This allows to now check

for already existing equivalent states in the global graph, i.e. for fixed points

(function calls mergeStatesGlobally in lines 21 and 22). Function mergeStates-

Globally returns the set of states for which no equivalent already existing state

could be found. These states are the actual new ones and are therefore further

processed. In line 23 we finally call the function detectConflicts which checks

the new states for security conflicts. The function depends on the actually

used conflict specification which is discussed in Section 5.2. Function detect-

Conflicts does not interrupt the analysis but only records security conflicts.
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The set of output states is the return value of intraComponentAnalysis.

1 intraComponentAnalysis(InputStates inputs ):

2 OutputStates outputs = ∅
3 InternalDataSinkStates sinks = ∅
4 foreach InputState state in inputs do

5 foreach InputInterface i in state do

6 Component c = i.getComponent ()

7 foreach Source src in {src|src.isInternalSourceIn(c) ∨ (src=i)} do

8 Sinks sinkElems = {s|s.isDirectlyReachableFrom(src)}

9 foreach Sink s in sinkElems do

10 s.updateSecurityLabel(src.securityLabel)

11 if (s ofType OutputInterface) then

12 outputs = mergeStatesOnLevel(outputs , s)

13 fi

14 if (s ofType InternalDataSink) then

15 sinks = mergeStateOnLevel(sinks , s)

16 fi

17 od

18 od

19 od

20 od

21 outputs = mergeStatesGlobally(outputs)

22 sinks = mergeStatesGlobally(sinks)

23 detectConflicts(outputs ∪ sinks)

24 return outputs

Figure 6.7.: Function implementing the intra-component security label

propagation including conflict detection

6.3.5. Inter-component Security Label Propagation

The inter-component analysis function propagates security labels between black

boxes, i.e. from output-interfaces to input-interfaces. While propagating, it

detects possible security conflicts.

The function interComponentAnalysis which implements the inter-component

analysis is shown in Figure 6.8. It is similar though less complex as the pre-
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viously discussed intraComponentAnalysis function. So first it iterates over

the output-interfaces of each state. Each from an output-interface reachable

input-interfaces is updated in line 6. As for intraComponentAnalysis, the up-

date function depends on the definition of security labels is therefore a union

of security token sets. Also, as long as input-interfaces are still update states

are under constant change. Function mergeStatesOnLevel therefore constructs

and updates the states locally. After updating all security labels, we globally

look for equivalent states and merge them accordingly (function call mergeSt-

atesGlobally line 11). The set of unmergeable states is then checked for security

conflicts in line 12 before returning the set as the result of interComponentAna-

lysis. We already discussed functions mergeStatesOnLevel, mergeStatesGlob-

ally and detectConflicts in the previous subsection, and therefore kept the

explanations quite short to avoid redundancy.

1 interComponentAnalysis(OutputStates outputs ):

2 InputInterfaces inputs = ∅
3 foreach OutputState state in outputs do

4 foreach OutputInterface out in state do

5 foreach InputInterface i in {i|i.isReachableFrom(o)} do

6 i.updateSecurityLabel(out.securityLabel)

7 inputs = mergeStatesOnLevel(inputs , i)

8 od

9 od

10 od

11 inputs = mergeStatesGlobally(inputs)

12 detectConflicts(inputs)

13 return inputs

Figure 6.8.: Function implementing the inter-component security label

propagation including conflict detection

6.3.6. Example

We continue the example from Phase 1 and 2 to demonstrate the workflow

of Phase 3. In the example of Phase 1 we introduced three fairly simple
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component black boxes (Section 6.1.3). In the example of Phase 2 we re-used

the black boxes to construct the black box call graph with a maximal call

depth of 3 (Section 6.2.2). In the example of Phase 3 we will use this call

graph to propagate security labels and to eventually detect security conflicts

within the graph.

The annotations of the security labels were already integrated in the example

black boxes in Phase 1. We used the security token set with elements private

and public. Security conflicts were generally defined as a set of unwanted

security labels (Section 5.2). In our example we want to detect all security

labels which contain both, the private and the public token. Thus, we specify

the security conflict set as follows {{private, public}}. As in the example of

Phase 2, we again use a maximal call depth of 3. We will see however that this

time the algorithm terminates by itself thanks to the fixed point detection.

We will now sketch the execution of the functions introduced for Phase 3 but

do not cover the whole execution in full detail which would be far to extensive

for the purpose of an example. The result of applying Phase 3 to the black

box call graph from the example of Phase 2 is shown in Figure 6.9.

The main function of Phase 3 securityLabelPropagation (Figure 6.6) expects

the entry points of the resulting call graph of Phase 2 as states. In our ex-

ample, there is only the single graph entry point iA and therefore also only a

single start state. The first function call of interComponentAnalysis in line 5

in Figure 6.6 returns a set of states of input-interfaces. Though there are two

input-interfaces iC and iB reachable at this point, the return set only contains

a single state. However, this state encapsulates the two input-interfaces be-

cause both share the same security label. This is a situation in which VarDroid

merges black box elements to a single state. VarDroid continues the analysis

by propagating the security labels to the successors of iC and iB. An example

for state splitting is given in the subsequent call of intraComponentAnalysis

in line 6 of Figure 6.6. From iC we reach the black box elements oC,1 with

security label {private}. Via the internal data source srcC in component C we

reach element oC,2 with both times empty security label. From iB we reach

the internal data sink sinkB with security label {public}. So, all black box

elements have a different security label or are of a different element type. We

must therefore create four separate states during the execution of intraCom-

ponentAnalysis. Phase 3 also features a fixed point detection which for our

approach means that already existing equivalent states are detected. From

the just created state containing output-interface oC,2 we can reach the input-
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Figure 6.9.: State Graph resulting from applying functions of Phase 3 to black

box call graph of example in Phase 2 (Section 6.2.2)

interfaces iC and iB during execution of the interComponentAnalysis function

with both times empty security label. The for the input-interfaces created

common state was already created when calling interComponentAnalysis for

the very first time. Thus, the analysis reached a fixed point and the state must

not be considered in the remaining analysis.

6.4. Optimisation

In this section we describe how we can combine Phase 2 (Section 6.2) and

Phase 3 (6.3) to a single pass analysis to improve the overall performance. In

the following we first motivate the optimisation and then show its practical
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work flow.

6.4.1. Motivation

The purpose of Phase 2 is to find all from an application component callable

components. More precisely, Phase 2 finds all from the output-interfaces of a

component black box instance reachable input-interfaces of other component

black box instances. Thus, the result of Phase 2 is a black box call graph with

up to exponential size, limited only by the maximal call depth. The maximal

call depth was introduced to guarantee termination.

Proof. As a simplification we assume a single input-interface and a single

output-interface per component black box. The number of different black

boxes n is fixed for an analysis run. If from every output-interface all other

black boxes can be called, every output-interface has n successors. The para-

meter for the height of the black box call graph is the maximum call depth d.

Therefore, the size of the resulting call graph is O(
∑d

i=1 n
i) = O(nd).

Through merging of black box elements in Phase 3, we reduce the ana-

lysis space, i.e. the black box call graph, whenever possible. Everytime two

black box elements are merged, the subsequent analysis only has to traverse

a single subgraph instead of two. Thus, the redundant subgraph was created

unnecessarily during Phase 2. Note that the construction of states in Phase

3 does not actually reduce the analysis space since all black box elements are

kept in the states and must be individually checked for successors. The state

representation only reduces the number of nodes in the resulting graph.

Another implication of separate Phases 2 and 3 is the fact that the black box

call graph is traversed twice: once for the graph creation, once for the security

label propagation. Especially in the first case the graph with up to exponential

size is traversed at any rate. For the latter, the graph is potentially smaller due

to merging (though the exponential size is still possible). Obviously, traversing

a graph twice is less performant as a single traverse.

Given the above issues, we will combine Phase 2 and 3 to improve the

runtime performance of our approach. For this, we will integrate Phase 2 in

Phase 3 to only search for black box element successors when needed.
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6.4.2. Optimisation Description

The idea of combining Phase 2 and 3 is to execute an on-demand successor

search. The successors for input-interfaces and internal sources directly depend

on the respective component they belong to and are therefore directly known

through the black box representation. Trivially, internal sinks do not have

successors at all. The successor black box elements of output-interfaces on the

other hand are the respectively callable input-interfaces. The goal of Phase 2

is to find these input-interfaces. Therefore, we must search for successors only

when continuing the analysis after reaching output-interfaces.

Technically spoken, we extend the base algorithm of Phase 3 (Figure 6.6)

such that before every execution of the inter-component analysis function the

successive input-interfaces of the reached output-interfaces are found. Also,

Phase 2 identifies the set of launchable components and filters for their start-

up input-interfaces (see algorithm in Figure 6.3). This functionality is added

to the beginning of the combined algorithm.

1 securityLabelPropagation ():

2 Components startComponents = {c|c.isComponent () ∧ c.isLaunchable ()}

3 InputInterfaces startInputs = ∅
4 foreach c in startComponents do

5 startInputs = startInputs ∪ c.startInputInterface ()

6 od

7 int depth = 0

8 States outputs = intraComponentAnalysis(startInputs)

9 while ((not outputs.isEmpty ()) ∧ (depth < MAX_DEPTH )) do

10 outputs = findInputInterfaces(outputs)

11 States inputs = interComponentAnalysis(outputs)

12 outputs = intraComponentAnalysis(inputs)

13 depth = depth + 1

14 od

15 return startInputs

Figure 6.10.: Optimised initial function for global security label propagation

with max. call depth

We show the new algorithm in Figure 6.10. Lines 2 - 6 implement the
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search for all start-up input-interface of the launchable components. Function

findInputInterfaces which handles the successor search is inserted in line 10.

The rest of the function is the same as in the original function shown in Figure

6.6.
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In this chapter we present the current prototype implementation of the phases

introduced in Chapter 6. We will first describe the tool ComponentGenerator

for randomly generating component black boxes (Section 7.1. With this tool we

simulate the analysis of application components and the black box generation.

Until we replace the ComponentGenerator with analysis tools for real world

applications, it enables us to execute first test and evaluation runs. Second,

we describe in Section 7.2 the status of the actual prototype implementation

of our approach called VarDroid. We explain its basic architecture and how it

can be configured for running in different execution modes.

7.1. ComponentGenerator

The ComponentGenerator is a tool for generating random application com-

ponent black boxes and storing them in an XML file. In the following we will

describe in more detail how the black boxes are created, which configuration

options exist, and the used XML output format.

7.1.1. Component Generation

ComponentGenerator creates sets of application component black boxes with

random internal structure. The produced sets are meant for testing VarDroid

and getting performance results without having to analyse real world applica-

tions. Therefore, the black boxes only reflect the basic structure of real com-

ponents and do not contain every feature possible for real components. For

example, when creating an action tag for an input-interface as can be defined

in the AndroidManifest.xml, ComponentGenerator uses generic names such as

Action1, but does not use real action names, e.g., the in Android predefined

action ACTION CALL for intending to make phone calls. The only excep-

tion is when creating an input-interface which can be directly started by the
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user through clicking the application icon. Here, the actual predefined action

ACTION MAIN is used. The same applies for categories.

Other component related features are not included at all. For example, there

are no associations for components which would group components to an ap-

plication. This implies that the generated test sets do not allow to fully test for

security aspects related to the application sandbox. Another missing feature

is, e.g., the Extra tag which can be defined for intent-filters in the manifest

file. However, ComponentGenerator is meant as a test set generator and hence

does not need to generate all aspects of real world application components.

Besides the existing limitations, ComponentGenerator allows to quickly gen-

erate huge test sets in which the internal structure of all component black boxes

depends on certain probabilities. These probabilities can be set in a configur-

ation file. Amongst others it can be specified how many elements of each type

a component contains and with which likelihood there is a data-flow from one

element to another. Generally, there can be only data-flow transitions from

data sources to data sinks. However, there is no limit on how many outgoing

or incoming transitions exist, respectively (though there can be maximal only

one of each possible data source-data sink pair)

7.1.2. Program Arguments

ComponentGenerator expects two mandatory runtime arguments: the path to

the configuration file, and the path to the output file. The configuration file

path is denoted with a preceding -config, the output file path with a preceding

-o. The structure of the configuration and output file are described in the

following sections.

7.1.3. Configuration Options

We will now introduce all configuration options for ComponentGenerator.

Each of the options are mandatory for definition in the configuration file but

the order is arbitrary. The tool expects a new line for each option and every

line in the format ”option = value”. Empty lines are allowed. We use a

uniform probability for the decisions and the selection of concrete values.

An example configuration file which we used for our evaluation is given in

the Appendix A.
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components: the total number of component black boxes. The value must be

an integer and at least one.

minInputs: the minimum number of input-interfaces. The value must be an

integer and at least one. It also must be less or equal maxInputs.

maxInputs: the maximum number of input-interfaces. The value must be an

integer and at least one. It also must be equal or greater than minInputs.

minOutputs: the minimum number of output-interfaces. The value must be

a non-negative integer and less or equal maxOutputs.

maxOutputs: the maximum number of output-interfaces. The value must be

a non-negative integer and equal or greater than minOutputs.

minSources: the minimum number of internal data sources. The value must

be a non-negative integer and less or equal maxSources.

maxSources: the maximum number of internal data sources. The value must

be a non-negative integer and equal or greater than minSources.

minSinks: the minimum number of internal data sinks. The value must be a

non-negative integer and less or equal maxSinks.

maxSinks: the maximum number of internal data sinks. The value must be a

non-negative integer and equal or greater than minSinks.

probInputSink: the probability that a transition from an input-interface to an

internal data sink is created. The value must be a floating point number

in the interval from zero to one, while allowing the values zero and one.

probInputOutput: the probability that a transition from an input-interface

to an output-interface is created. The value must be a floating point

number in the interval from zero to one, while allowing the values zero

and one.

probSourceOutput: the probability that a transition from an internal data

source to an output-interface is created. The value must be a floating

point number in the interval from zero to one, while allowing the values

zero and one.
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numActions: the total number of different actions generally available for intent-

filters. Actions can only be set for implicit intents. The value must be a

non-negative integer.

probExplicitIntent: the probability that an output-interface represents source

code of an explicit intent. The probability for an implicit intent is auto-

matically set to ”1−propExplicitIntent”. The value must be a floating

point number in the interval from zero to one, while allowing the values

zero and one.

numPermissions: the total number of different permissions generally available

which can be required for the access to input-interfaces or granted to

black box interfaces, respectively. The value must be a non-negative

integer.

probGrantPermission: the probability that a permission is required at an

input-interface. The value must be a floating point number in the interval

from zero to one, while allowing the values zero and one.

probRequirePermission: the probability that a permission was granted to a

component. The value must be a floating point number in the interval

from zero to one, while allowing the values zero and one.

numSecurityLabels: the total number of generally available security labels.

The value must be a non-negative integer.

probInputSecLabel: the probability that a security label is annotated to an

input-interface. The value must be a floating point number in the interval

from zero to one, while allowing the values zero and one.

probSourceSecLabel: the probability that a security label is annotated to an

internal data source. The value must be a floating point number in the

interval from zero to one, while allowing the values zero and one.

probSinkSecLabel: the probability that a security label is annotated to an

internal data sink. The value must be a floating point number in the

interval from zero to one, while allowing the values zero and one.
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probOutputSecLabel: the probability that a security label is annotated to

an output-interface. The value must be a floating point number in the

interval from zero to one, while allowing the values zero and one.

7.1.4. XML Output Format

The output created by ComponentGenerator is a file in XML format. An

example snippet from an output file is shown in Figure 7.1. The example

contains all allowed XML elements though in some cases arbitrary many are

allowed, i.e. elements could be left out or multiple elements are valid.

Overall, the file includes at least one element component, representing a

component black box. The component name acts as the identifier and thus

must be unique within the component set. A component can have various

elements: input-interfaces, internal-sources, internal-sinks, output-interfaces,

relations, and granted-permissions. The order of these elements is arbitrary.

Except input-interfaces, all other elements are optional.

The XML element input-interfaces is mandatory and inlcudes at least one

input element with an component internal unique identifier and the flag if the

intput-interface represents the entry point to the component launching the

application. The input element can have a description element representing

the Android intent-filter, and an element required-permissions listing the for

this input-interface used permissions.

The elements internal-sources and internal-sinks are fairly similar. The

first one contains all internal source definitions (source elements), whereas the

second contains all internal sink definitions (sink elements). The source and

sink elements have each a component internal unique identifier and optionally

specifies the annotated security label (label element).

The output-interface has a component internal unique identifier. Addition-

ally, it must specify if the target component(s) are called implicitly or expli-

citly. The example in Figure 7.1 shows an explicit call. An implicit call can

be defined in the same way as the description for input-interface ”in1” in the

example.

The relations element lists the transitions between black box elements in

the relation elements. Recall, that only transitions from data sources to data

sinks are valid.

Last, the granted-permissions element lists the permissions granted to an

Android component as specified in the manifest file (permission elements).

49



7. Implementation

1 <components >

2 <component name=" Comp42">

3 <input -interfaces >

4 <input name="in1" startup ="false">

5 <descriptions >

6 <implicit >

7 <action name=" android.intent.action.MAIN"/>

8 <category name=" android.intent.category.LAUNCHER"/>

9 </implicit >

10 </descriptions >

11 <required -permissions >

12 <permission name="p2"/>

13 </required -permissions >

14 </input >

15 </input -interfaces >

16 <internal -sources >

17 <source name="src1">

18 <label conf="L2" />

19 </source >

20 </internal -sources >

21 <internal -sinks >

22 <sink name="sink2">

23 <label conf="L0" />

24 </sink >

25 </internal -sinks >

26 <output -interfaces >

27 <output name="out1">

28 <descriptions >

29 <explicit target =" Comp23"/>

30 </descriptions >

31 </output >

32 </output -interfaces >

33 <relations >

34 <relation input ="in1" sink="sink0"/>

35 <relation input ="in2" sink="sink0"/>

36 </relations >

37 <granted -permissions >

38 <permission name="p1"/>

39 </granted -permissions >

40 </component >

41 ...

42 </components

Figure 7.1.: Example XML output snippet created by ComponentGenerator
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7.2. VarDroid

In this section we introduce VarDroid. VarDroid is the prototype implement-

ation of the overall approach presented in this master thesis. Its basic design

is shown in Figure 7.2. Its core module is the so called Propagation Handler

which implements the security label propagation functions of Phase 3. The

Propagation Handler retrieves the black box component call graph from the

Component Connector which implements the functions of Phase 2. The call

graph can either be requested completely or stepwise as described in Section

6.4. The Propagation Handler also calls the Conflict Detector at certain points

to check for security conflicts. All three modules can be configured in many

ways. A user of VarDroid can specify the Component Connoector’s source file

for the black boxes, the file containing the security conflict specification, and

the execution modes of the Propagation Handler.

Figure 7.2.: VarDroid implementation architecture

In the remainder of this chapter, we first describe the available execution

modes and configuration options (Section 7.2.1). Afterwards, we give an over-

view about the implementations of the three computation phases (Sections

7.2.2 - 7.2.4). Last, in Section 7.2.5, we explain the implementation of the
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conflict detection mechanism.

7.2.1. Execution Modes and Configurations

One of the design goals was to make VarDroid as easily evaluable and compar-

able in the different execution modes as possible. Therefore, VarDroid provides

various configuration options which are specified in a configuration file. All

options are mandatory. VarDroid uses a single configuration file which location

must be given as the only runtime argument. The command for running the

VarDroid jar-file is:

java -jar ”path/to/VarDroid.jar” ”path/to/configuration/file”

The order of the configuration options in the file is arbitrary though there must

be a new line for each option. Space lines are allowed. Each configuration

option must be defined in the following format:

”option name” = ”value”

In the following, we will explain all execution modes and show how to practic-

ally configure them.

Component Call Graph Generation There are two ways of creating the

component call graph. The first one as described in Section 6.2 is to separ-

ately construct the full component call graph up to a certain call depth and

then propagate the security labels based on this graph. The other way is the

combination of the second and third phase and to construct the call graph

on demand as described in the optimisation in Section 6.4. VarDroid allows

to switch between the two strategies to find the successive component black

boxes. Further details on the concrete implementation of the component call

graph generation can be found in Section 7.2.2.

The desired construction behaviour is specified through the configuration

option findSuccessor. The only valid values are either separate for the unop-

timised or combined for the optimised component call graph creation.

Maximal Call Depth If the separate component call graph construction is

chosen it is possible that call loops occur which lead to non-terminating be-

haviour. We overcome this issue by introducing a maximal component call
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depth, i.e. artificially limiting the size of the graph. If the value combined is

set for the configuration option findSuccessor, the maximal call depth simply

ignored.

The maximal call depth is defined through the option callDepth. The value

must be a non-negative integer. If the call depth is 0, VarDroid never searches

for black box successors. If it is set to 1, VarDroid performs the search once

and so forth.

Merge Modes VarDroid implements different merging strategies for better

comparison of the practical performance. Besides the global merging of states

as described in Section 6.3, VarDroid also allows to run the analysis without

globally merging states. Other modes only focus on merging black box ele-

ments either globally or only on level-basis. It is also to not merge at all.

More details on the concrete implementations of the different merge modes

can be found in Section 7.2.4.

The configuration option for selecting the merge mode is mergeMode. It

expects one of the following values for the respective above mentioned merge

modes: state-global, state-level, elem-global, elem-level, none

Component Black Box Definition File As stated earlier in Section 6.1,

VarDroid does not implement the component black box generation itself but

rather relies on specialised external tools to perform this task. The integration

of a data-flow analysis tool is currently not done yet. Therefore, we use the

tool ComponentGenerator which produces a file with XML-formatted random

component black boxes. ComponentGenerator is introduced in Section 7.1.

The path to the concretely used XML file containing the black boxes must

be given as the value of the configuration option input.

Conflict Definition File The purpose of VarDroid is to detect conflicts in

the security labels occurring in the component call graph. However, it must

be defined what conflicts actually are. The path to the XML formatted file

containing this definition is given as the value of the configuration option

conflicts. The concrete implementation of conflict detection is discussed in

Section 7.2.5.
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Logging There are three logging types available for VarDroid: debugging,

warning and error. Log output is produces in various situations in the source

code. The output can be enabled or disabled for each logging type individually.

The configuration option log specifies for which logging type output is pro-

duced. Valid values are the characters d, w and e. To enable logging types,

the respective characters are concatenated in arbitrary order, i.e. log = dew is

equivalent to log = wde. If a logging output is unwanted, the respective char-

acter is left out. To fully disable logging, use none instead of the characters.

Graphical Output VarDroid provides the feature to create a graphical rep-

resentation of the constructed component call graph of Phase 2 and the merged

graph after Phase 3. If not present, a folder named ”output” is automatically

created in the current working directory. The graphs are written to separate

files in the ”output” folder. The files are created in the graph description

language DOT [20]. Be aware that the size of the graphs can grow rapidly.

Therefore, it is recommended to only use this feature when very small com-

ponent black box sets are analysed.

The graphical output can be enabled or disabled by setting either a 1 or a

0 as the value of the configuration option dot, respectively. Additionally, it

is possible to enable or disable transition labels. The values 1 enables and 0

disables the option labels, respectively. If the graphical output is disabled, the

value for labels is ignored.

7.2.2. Blackbox Generation (Phase 1)

As explained in Section 6.1, VarDroid does not implement the component black

box generation itself but relies on specialised tools, e.g. FlowDroid[3], to fulfil

this task. However, in this master thesis we want to focus on the algorithms

for security label propagation and conflict detection as described in Sections

6.2 and 6.3, respectively. Therefore, we use the tool ComponentGenerator,

introduced in Section 7.1, to generate random component black boxes. Com-

ponentGenerator writes its results to an XML formatted file. So, at this point

VarDroid only needs to parse the component black boxes from file and to create

the black boxes in their Java object representation for further processing.
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7.2.3. ComponentConnector (Phase 2)

VarDroid implements Phase 2 of our approach (Section 6.2) in the abstract

and generic ComponentConnector Java class. It defines all methods for either

executing Phase 2 separately or in combination with Phase 3 (cf. Section

6.4). Thus, it allows to either construct the full component call-graph up to a

specified call depth or to only find successive component black boxes stepwise.

ComponentConnector also supports the different merging modes which is

either black box element based or state based. More precisely, we inherited two

subclasses from ComponentConnector, namely ElementConnector and State-

Connector, which implement the modes. However, the ComponentConnector

implementations do not differentiate between level or global based merging.

This is due to the purpose of finding successive black boxes which is the same

for level and global merging modes.

A ComponentConnector is a passive module meaning that it never triggers

any actions itself but rather waits for a PropagationHandler instance (see Sec-

tion 7.2.4) to call it respecting the current execution mode.

7.2.4. PropagationHandler (Phase 3)

The propagation handler implements the propagation of security labels and the

different merging modes. It is responsible for calling the component connector

accordingly, i.e. either for a separate or combined construction of the black

box call graph (Section 6.4). The propagation handler also calls the conflict

detector during the propagation process to allow on-the-fly conflict detection.

The conflict detector is explained in Section 7.2.5.

The different merging modes are in fact implemented separately. So, we

provide an implementation for all of the following merge modes:

None This implementation provides no merging at all. It uses the full black

box call graph with the up to exponential size. This mode was imple-

mented to demonstrate the basic problem motivating this work.

Black Box Elements (level merge) In this mode, the Propagation Handler

propagates security labels while only merging black box elements with

the same call depth. This means in particular that there is no fixed point

detection and hence, we need a maximal call depth to ensure termination.

Also, there is no notion of state.
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Black Box Elements (global merge) Similar to the level-based element mer-

ging, this mode only merges black box elements but this time on the over-

all call graph. Therefore, we have a fixed point detection implemented

in this mode. Again, there is no notion of state.

States (level merge) This mode is based on the level based black box ele-

ment merge mode. However, this implementation introduces states. So,

additionally to the merge of black box elements, the resulting elements

are grouped to states complying the definition of Section 5.1. Since there

is no fixed point detection, a maximal call depth is required to ensure

termination.

States (global merge) Eventually, the last mode implements Phase 3 exactly

as described in Section 6.3. Thus, it extends the previously introduced

mode by additionally merging states globally, i.e. detecting whether the

exact same state occurred before.

VarDroid can be configured to run in one of the above merging modes with

either separate or combined construction of the black box call graph. We

give more details on the configuration options in Section 7.2.1. We tried to

implement the propagation handlers as similar as possible to allow a expressive

comparison of the different modes. The evaluation and comparison is presented

in Chapter 8.

7.2.5. ConflictDetector

The conflict detector implements the decision point that checks security labels

for certain security conflicts. Besides the merging functions, it is the only mod-

ule in VarDroid that depends on the definition of security labels and security

conflicts. Currently, the conflict detector implements the definition given in

Section 5.2.

The concrete security conflicts must be pre-defined in an XML formatted file.

The path to this file is specified in the runtime configuration file as described in

Section 7.2.1. Security conflicts are basically certain unwanted security labels.

This representation is reflected in the XML structure of the specification file.

Figure 7.3 shows an example set of security conflicts specifying security labels

{L0, L1} and {L0, L2} as unwanted. Similar to the given example, arbitrarily

many security conflicts of arbitrary size can be specified in general.
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1 <conflicts >

2 <conflict >

3 <label conf="L0" />

4 <label conf="L1" />

5 </conflict >

6 <conflict >

7 <label conf="L0" />

8 <label conf="L2" />

9 </conflict >

10 </conflicts >

Figure 7.3.: Exemplary security conflict specification in XML format

The conflict detector implements only the decision point which implies it

does not know anything about the analysis algorithms itself. Therefore, the

propagation handler is responsible to call the conflict detector in appropriate

situations. Currently, this is whenever a security conflict is updated. However,

the separation of the conflict detector from the actual analysis algorithms

allows to keep the propagation handler independent from the definition of

security labels and security conflicts.
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The (though yet far away) goal of our approach is to be able to analyse a

whole application store. Therefore, it is important to measure the performance

of VarDroid right from the beginning. We executed several experiments to

see how VarDroid scales in general, and how it performs compared to other

merging strategies, in particular to the naive execution with no merging at all

and to component element merging, i.e. merging without the notion of states.

In our experiments we focused mostly on execution times.

In this chapter we will discuss the evaluation of our prototype implementa-

tion VarDroid. We first describe the execution environment and configuration

and then report the evaluation results. We conclude this chapter by inter-

preting the results and derive implications and consequences to improve our

approach in future work.

8.1. Execution configuration

We performed all experiments with an Ubuntu 12.04 operating system on a

Dell PowerEdge R715 with 2.8 GHz and 128 GB RAM. However, we limited

all JMVs to a maximum of 32 GB which was only exceeded twice1. VarDroid

implements five analysis modes as described in Section 7.2.4: no merging,

level-based black box element merging, global black box element merging, level-

based state merging, and global state merging. For each of these modes we

executed analyses on component black box sets in the range from 100 to 2000

components. We increased the set sizes stepwise with 100 black boxes. For

every set size we repeated each experiment ten times (ten different sets for

each size) to get more expressive mean values, e.g., for the execution times.

1For the memory exceedances we did not count runs without any kind of merging

since they all ran out of memory after only few call depths
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The black box component sets were all randomly generated by the Compon-

entGenerator introduced in Section 7.1. The used configuration file is provided

in the appendix 2.

In our experiments there are three different security tokens L0, L1, L2.

Though we propagate these labels through the data-flow graph and update

the black box elements appropriately, security conflicts play a secondary role

in our experiments. Therefore, we used a rather simple security conflict set

shown in Figure 8.1. Instead of evaluating the set of detected conflicts, we

focus on the overall execution performance of VarDroid. All experiments were

1 <conflicts >

2 <conflict >

3 <label conf="L0" />

4 <label conf="L1" />

5 <label conf="L2" />

6 </conflict >

7 </conflicts >

Figure 8.1.: Security conflict set used for the experiments

exclusively executed with the optimisation as described in Section 6.4, i.e. with

combined black box connecting and security label propagation.

8.2. Evaluation Results

In this section we will show the evaluation results. We evaluated the approach

regarding the needed maximum call depths, and the graph sizes, and the overall

execution times. Though we intended to compare our results with a naive

analysis, i.e. without any kind of merging at all, we excluded it from the

resulting statistics. The reason is that with a component black box set of only

100 we always ran out of memory after a call depth of only 5 even though we

2The appendix shows the configuration file for 2000 components. Though this

number varies for the different experiments, the rest of the file stays the same

for all experiments.
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doubled the JVM’s available memory to 64 GB. Though this fact is interesting

by itself the obtained numbers are not expressive enough for any statistic

especially when it comes to comparing them to the other execution modes.

Besides for the no-merging mode we also encountered two memory ex-

ceedances when performing analyses in the level-based element merge mode.

Both times the black box set was of size 2000. Once it occurred at the call

depth of 65 the second time at the call depth of 100. The reason for this is the

immense graph size which almost linearly grows for the level-based element

merging. We discuss the graph size evaluation in more detail in Section 8.2.2.

In VarDroid we use the hash values of states for the equivalence comparison.

For the computation of the hash value we use the states security label and

the contained black box elements which matches exactly the definition of state

equivalence as given in Section 6.3.2. The usage of hash values is a simple trick

to reduce the comparison of two states to a simple numeric one. However, there

is the possibility of hash collisions, i.e. the situation in which the hash codes

are equal without their states being equivalent. In all the evaluation runs we

encountered in total only four collisions3. Though this is an acceptable rate,

every collision distorts the final result and therefore in future work we must

look into ways to reduce the chances for collisions even further.

8.2.1. Graph Call Depth

The evaluation of the needed call depths was motivated by the question how

fast the algorithms terminate in terms of the graph size and fixed point detec-

tion. As we will see later, the call depth is directly related to the graph size

and execution times. We show the result of the call depth evaluation in Figure

8.2.

For all performed evaluations we set the maximum call depth to 100. Since

the level-based execution modes of VarDroid do not implement fixed point

detection their maximum call depth is trivially always exactly 100. Because

of the same graph depth, their behaviour is in general fairly similar for the

black box element count as well as for the overall execution time which we

both discuss in the following subsections.

The call depth of the two modes implementing global merging are relatively

low with a mean of 4.25 for the global element merging and a mean of 31

3again without taking the no-merge execution mode into account
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Figure 8.2.: Mean black box call depths using black box set in the size range

from 100 to 2000.

for the global state merging. While the global element merging stays almost

constant, the call depth of the global state merging deviates much more. Also

for the latter, there is a slight increase in the needed maximum call depth from

a mean 27.2 in the range of 100 − 1000 black boxes to 34.8 in the range of

1100 − 2000. As we will see, this correlates with the total number of states

within the resulting graph.

8.2.2. Graph Size

The evaluation of the graph sizes was motivated by the question how big the

graphs can grow and how fast their sizes increase. We are also interested

whether there is a coherence between the graph size and other behaviour such

as the runtimes. Depending on the execution mode of VarDroid, the graph

nodes can either be black box elements or states. For a better comparison

we therefore created two statistics: one which considers the total numbers of

graph nodes, i.e. regardless whether they are black box elements or states, the

other shows the total numbers of black box elements in the overall graph. The
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results are shown in Figure 8.3 and Figure 8.4.
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(a) Total graph size including the level-based black box element merge.
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Figure 8.3.: Mean graph sizes after applying Phase 3 while using black box set

in the size range from 100 to 2000.

63



8. Evaluation

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

 200  400  600  800  1000  1200  1400  1600  1800  2000

m
e
a
n
 e

le
m

e
n
ts

 p
e
r 

g
ra

p
h

components

global element merging
level element merging

global state merging
level state merging

Figure 8.4.: Mean element count in graph after applying Phase 3 while using

black box set in the size range from 100 to 2000.

We show the total graph sizes in two graphics 8.3a and 8.3b. While the

first one shows all four execution modes, the second contains all but the level-

based element merge mode. The reason is that the level-based merge mode

contains far the most graph nodes which makes the other execution modes

hardly visible in the first graphic. However, the high number of nodes is not

surprising: firstly, it only merges black box elements per level and therefore as

many redundant elements on different call depths, and secondly it the missing

fixed point detection always leads to the full maximum call depth (cf. Section

8.2.1). Thought the number of total graph nodes is much lower for the level-

based state merging, the number of total black box elements is almost the

same, increasing linearly with the number of black boxes. The explanation of

this behaviour is the same as for level-based element merging. Interestingly,

the total number of graph nodes, i.e. the total number of states, increases

only slightly compared to the more dramatic growth of the black box elements

count. So, at this point we can already see the advantage of states to reduce

the total graph size.

The global state merging shows the same behaviour for the total number

64



8.2. Evaluation Results

of graph nodes but is of course much lower for the total number black box

elements. Compared to the global element merging, it has much fewer graph

nodes. More importantly, the number of nodes growth far slower than for

global element merging keeping the graph at a relatively small size. However

when looking at the number of black box elements for the two global merging

modes, the global element merging has much less elements. The reason is the

definition of state in which it is possible that equivalent black box elements

coexist in different states. However for the global element merging equivalent

elements are always merged and thus can never coexist. Because of the chance

of not merging the black box elements their number is higher in the global

state merging mode than when merging elements globally.

8.2.3. Execution Time

The motivational questions for the evaluation of the runtime were how long

the individual executions take, how the runtimes change with increasing black

box sets, and how the different execution modes perform in comparison. We

show the results in Figure 8.5.

As expected the runtime of the two level-based execution modes behave

similar. This is a direct consequence of the other statistics we already handled,

most significantly the total number of black box elements within the respective

graphs. Also the reached call depth which is the maximum one for all level-

based executions influences the similar behaviour. It is interesting that though

the total number of black box elements grows quite linearly the execution times

of the level-based modes increases faster and non-linear to size of the black box

sets.

The behaviour of the global execution modes is much more outstanding.

While the execution times of global element merging took an average of 36

seconds with 2000 black box elements, the times for global state merging ex-

ploded to an average of 2 hours and 34 minutes. The good runtimes for the

global element merge mode is clearly based on the previously elaborated facts:

the relative small call depths paired with a reasonable growth in the number

of graph nodes leads to a early termination of our algorithms. In contrast, the

massive increase of the execution time of the global state merging algorithms

was completely unexpected. Firstly, the mean call depth was indeed higher

than the one for global element merging but within reasonable range. Also the

only slight increase of the mean required call depth did not hint any dramatic
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Figure 8.5.: Mean runtime in milliseconds using black box set in the size range

from 100 to 2000.

increase of the execution times. Secondly, the resulting state graphs keep to

a reasonable size with a mean of 2792 nodes and 819384 black box elements

when processing 2000 black boxes (the graph of global element merging has

41689 nodes / black box elements). However, the most unexpected behaviour

of global state merging was that it is even much slower than the level-based

merging modes with roughly 45 minutes execution time.

8.3. Result Interpretation

There are two possible reasons for the outstandingly long execution times of the

global state merging execution mode: either it is a design or an implementation

problem. Indeed, when we look at the algorithms in Section 6.3 we can see that

we use four nested loops in the intraComponentAnalysis function and three

nested loops in the interComponentAnalysis function. However, every state

and every black box element is only iterated over at most once per function call.

Besides, the algorithms for the global element merging are exactly the same as
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for the global state merging except for the state construction. So, the reason

for the huge difference of the execution time is not on the conceptual level of

the algorithms. A common reason for unexpected performance behaviour are

bugs in the practical implementation. Like it is for the conceptual level, also

VarDroid’s implementations for the different merging modes share common

code. In fact, the code implementing the global element merging is almost

completely the same as the one of the global state merging. The difference of

the source codes is the construction of states. This of course suggests that the

reason for the long execution times must lie in the state construction code.

However, we were not able to identify the exact location at the time of writing

this master thesis.
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This master thesis presents the first basic developments for an analysis of a

huge set of smartphone applications. The current approach still comes with

various assumptions and limitations. In this chapter, we discuss the most signi-

ficant ones while leaving the improvements to overcome the existing limitations

to future work.

Concurrency and Side Effects Up to now, we only considered sequential

calls of application components. As an implication, we do not have concurrency

in program executions. This limitation affects several system features as, e.g.,

listeners, threads, but also the component types we can use for first evaluations.

Implications on the latter are discussed below. In case there are multiple

candidates for the next execution step, we assume an equal chance for all

candidates as the next execution step. If for example an activity implements

two button on-click event listeners l1 and l2, we follow the control flows if either

l1 or l2 was triggered. Moreover, we assume only a single click, i.e. we do not

consider click sequences as, e.g. l1 → l2 → l1.

Component Types Though the in this master thesis provided approach

handles components in general, the focus lies on activity components. The

reason is closely related to the issue of concurrency. For example, the purpose

of services is to provide a mechanism for background tasks, hence automat-

ically comes with concurrency which we cannot handle appropriately. A pos-

sible first way to overcome this limitation is to make the assumption that the

runtime environment waits for the termination of the, e.g., service component

code before continuing with execution of the rest. However, this is not yet

implemented.

Evaluation Due to the exclusion of concurrency and the implication on the

handling of components, we currently cannot analyse arbitrary real world ap-
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plications from, e.g., the Google Play-Store. Therefore, we only used randomly

generated component black boxes as examples for our evaluations.

Non-intent Data-flows Besides intents, there are several other ways to trans-

fer data from one component to another which we currently do not cover in our

approach. For example, it is not possible to correctly track flows between two

components of the same application using public static Java class variables.

This is caused by the fact that our approach does not support component state

preservation but instead assumes a new component instance on every call in

the component call graph.
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There are improvements for our approach and practically for VarDroid we

want to undertake. Throughout the master thesis we already stated some of

the currently existing assumptions and limitations which we will try to remove

in future versions to create a more powerful analysis tool. In this chapter we

will address some of the most relevant topics which we will cover in future

work.

VarDroid is designed to be fairly independent from the actual component

black box generation. For first test runs and performance evaluations it was

sufficient to use the randomly generated black boxes created by Component-

Generator. However, we are of course interested how VarDroid performs with

real world applications. Therefore, we need to undertake certain improve-

ments: first, we will replace the ComponentGenerator used in Phase 1 with

specialised Android application analysis tools. In fact, we are currently already

investigating how to adjust and integrate tools such as FlowDroid [3] to pro-

duce the required component black box representations.

Android allows inter-component communication in many different ways. In

VarDroid we currently focus on intent-based component calls. However, for ex-

ample service components offer inter-process method calls via IBinder objects.

Consequently, we need to extend the current black box model, in particular

the input- and output-interfaces, to also allow other communication channels

besides intents.

Application components dynamically created during runtime must not be

explicitly handled by VarDroid. We see it as the task of the application analysis

tool during Phase 1 to detect their existence and to create a suitable black box

representing them.

Another topic we want to examine is the definition of security labels. VarDroid

provides a configurable set of security tokens and security conflicts. The dis-

advantage of sets is, e.g. that it does not respect the order in which security

tokens were added to a security label. For example, we get the same security
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10. Future Work

label when data originating from a private source flows to a public sink as for

data from a public source flowing to a private sink. Though the first situation

is correctly detected as a security leak, the latter is usually a permitted flow

because no private data is leaked. We therefore plan to improve the definition

of security labels to more accurately encode certain data-flow aspects.
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A. Appendix

1 components = 2000

2

3 minInputs = 1

4 maxInputs = 3

5 minOutputs = 0

6 maxOutputs = 3

7 minSources = 0

8 maxSources = 3

9 minSinks = 0

10 maxSinks = 3

11

12 probInputSink = 0.5

13 probInputOutput = 0.5

14 probSourceOutput = 0.5

15

16 numActions = 4

17 probExplicitIntent = 0.5

18

19 numPermissions = 3

20 probGrantPermission = 0.3

21 probRequirePermission = 0.3

22

23 numSecurityLabels = 3

24 probInputSecLabel = 0.0

25 probSourceSecLabel = 1.0

26 probSinkSecLabel = 0.5

27 probOutputSecLabel = 0.25

Figure A.1.: Configuration file which was used for the evaluation runs in

Chapter 8
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