
University of Passau
Faculty of Computer Science and Mathematics

Master’s thesis

Adjustable Family-based Performance
Measurement

Christian Kapfhammer

submitted at: 11th August 2017

First examiner:
Prof. Dr.-Ing. Sven Apel

Second examiner:
Prof. Christian Lengauer, Ph.D.

Tutor:
Florian Sattler

Abstract

A Software Product Line enables the creation of configurable systems. The base
product can be enhanced by selecting a set of configurable features such that
the user is able to construct multiple products with specific properties. Since a
feature extends the functionality of the base code, additional code is added to
the product and influences the performance of the system. A Software Product
Line usually contains more than one configuration option, i.e. multiple options
that affect the performance.

Thus, we analyse the influence of each feature on the performance. To do this,
we extend the work of Florian Garbe who already modified the tool Hercules
by inserting certain functions to measure the execution time of each feature
block. Afterwards, the results were used to predict the performance of other
possible configurations of the SQLite case study [1].

The results of our measurements are useful because it shows the impact of each
feature. Unfortunately, increasing the number of measurements also increases
the produced overhead of the measurement functions such that the overhead
surpasses the actual execution time of the original code. Hence, we are going to
improve the performance measurement by introducing several algorithms that
determine which feature blocks should actually be measured. We apply each
algorithm to the SQLite case study. At the end, we compare all results with
each other and with the results of Florian Garbe.

i

Acknowledgements

First, I thank my supervisors Prof. Dr.-Ing. Sven Apel and Prof. Dr.-Ing.
Norbert Siegmund for giving me the opportunity to work besides them. They
recruited me as working student to have a sneak peek into performance mea-
suring.

Furthermore, I also want to thank Florian Sattler for tutoring me and for many
fruitful discussions and feedback during my work on this thesis.

Finally, I thank my student colleague and writer of the former master thesis
Florian Garbe for helping me understand the framework TypeChef and its
extension Hercules.

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Objectives . 2
1.2 Structure . 2

2 Background 3
2.1 Software Product Lines . 3
2.2 Feature and Feature Model . 4
2.3 Variability with C Preprocessor 6
2.4 TypeChef and Hercules . 7
2.5 Statistic methods . 9

3 Approach 11
3.1 Block Coverage . 11
3.2 Granularity . 13

3.2.1 General approach . 13
3.2.2 Special influences on the performance 14
3.2.3 Metrics for granularity . 18

3.3 Limitations . 21

4 Evaluation 25
4.1 Test system specifications . 25
4.2 SQLite Case Study . 25

4.2.1 SQLite TH3 Test Suite Setup 26
4.2.2 Adjustments of the test setup 27
4.2.3 Calculated score distribution and filter properties 27

4.3 Comparison between results . 30
4.3.1 Measurements and overhead 31
4.3.2 Prediction results . 34

v

5 Concluding Remarks 39
5.1 Conclusion . 39
5.2 Future work . 40
5.3 Related work . 41

A Appendix 43
A.1 Modifiers of each metric . 43
A.2 Selected modifiers for case study 45
A.3 Additional prediction results data 46

Bibliography 49

vi

List of Figures

2.2.1 Feature diagram of the Car SPL 4
2.2.2 Feature model in DIMACS format 5
2.4.1 Process of performance measuring, schema of Florian Garbe [1] . 7
2.4.2 Converting variability from source code into an AST 8
2.4.3 Insertion of performance functions 9
2.5.1 Data sets with lines and pearson coefficient 10

3.1.1 Block coverage example . 12
3.2.1 Current transformation of Hercules 13
3.2.2 Influence of conditional statements 15
3.2.3 Influence of loops to blocks . 15
3.2.4 Interruptions in loops with breaks 16
3.2.5 Interruptions in loops with continues 17
3.2.6 Example for score calculation . 19
3.3.1 Disjunction with specialization 21
3.3.2 Two blocks with the same condition 22

4.2.1 SQLite case study setup, schema of Florian Garbe [1] 26
4.2.2 Score distribution of bin scores 28
4.2.3 Score distribution of weighting statements 29
4.2.4 Performance distribution of blocks 30
4.3.1 Comparison of measurements with bin score 31
4.3.2 Comparison of overhead with bin score 31
4.3.3 Comparison of measurements with weighting statements 32
4.3.4 Comparison of overhead with statement weighting 32
4.3.5 Comparison of measurements with performance filtering 33
4.3.6 Comparison of overhead with performance filtering 33
4.3.7 Comparison of prediction errors 36
4.3.8 Comparison of prediction errors including deviation 37

vii

List of Tables

4.1 Number of blocks in each bin . 28

A.1 Median percent errors in prediction results 47
A.2 Median percent errors in prediction results including deviation . 47

ix

Chapter 1

Introduction

Product Lines are well-known approaches in many industries such as in car
manifacturing. But the way products were manifactured in the past differs
from nowadays approach. Products were only designed individually for each
customer. As time went on, society changed. More and more people were
able to afford buying products and the era of mass production arose. The car
manufactorer company Ford was the first to utilize the concept of production
lines. Although this way of production was cheaper than before, the standard-
ized products did not fulfill the needs of the individual customer. Therefore,
production lines were combined with mass customization which allowed the pro-
duction of individualized products [2].

Creating invidual products by reusing components can also be applied to soft-
ware systems, calling this process Software Product Lines (SPL). SPLs are soft-
ware systems which are highly configurable and can be tailored to customer
needs. The implementation of variability depends on the domain of the SPL.
The variability of C SPLs is realized by the preprocessor directives which are
not oblivious to the underlying programming language. Unfortunately, there is
one aspect in which SPLs are hard to design. That is their performance. The
reason for this problem is the dependance of the performance on the selected
features. The amount of possible product versions of an SPL, called variants,
grows exponentially the more options are available to configure the SPL. Thus,
applying traditional analysis methods to every possible variant is not practica-
ble [3].

Therefore, new analysis methods, called family-based analysis, are applied to
achieve our goal. These methods provide results in a fraction of time compared
to sequential analyses [4]. But, before these methods can be used, the C code
has to be transformed. By applying the principle of configuration lifting [5]
we can convert compile-time variability into run-time variablity, i.e. the condi-
tional directives used by the preprocessor are transformed into if-statements.
The presence conditions of the if-statements are constructed by global variables

1

resembling the configuration options of the preprocessor. Thus, we result in one
product containing every variant of the SPL.

As we want to determine the performance of a variant of a SPL, we have to
find a way to calculate the performance of each feature. Variability encoding
already replaces conditional preprocessor directives with if-statements. So, we
can enhance its functionality by adding functions to measure the performance of
each configuration option. Therefore, every single feature is measured. The re-
sults can be used to predict the performance of the remaining configurations [1].

Nevertheless, this raises the question if truly every feature block has to be
measured to predict the performance of a product line variant. If a feature is
measured and does not influence the performance at all, the overhead of the
measurement increases. The idea is to remove as many measuring functions
without raising the error percentage of the predictions. To reach this goal, we
have to define when exactly a feature block is not measured. The key factors
in this task are the feature block’s contents and its surroundings. As there are
multiple ways to rate the features, we present different ways to estimate the
feature block’s complexity.

1.1 Objectives

Currently, Hercules adds measurement functions before and after every fea-
ture block to collect performance data in the code. However, these added func-
tions also produce a significant overhead that impacts the performance of the
program and thereby the acccuracy of the measurements. The objective of this
thesis is to improve the measurement by reducing the overall overhead. We
achieve this by rating each feature block regarding its influence on performance
and only adding measurement functions to relevant blocks. We are going to look
at several options how to rate each feature block and determine which one is
the most feasible by comparing each of their results on the SQLite case study.

1.2 Structure

The thesis is structured as follows. In Chapter 2, we explain basic terms,
definitions, and summarize important facts about background aspects. Chap-
ter 3 introduces improvements to Hercules, calculating the block coverage
and multiple agorithms to filter the measurement functions. We also discuss
further problems and limitations we encountered while working with the pro-
gram. Chapter 4 explains the general evaluation process as well as the case
study SQLite. In Chapter 5, we conclude our work, give ideas how our work
could be further improved, and discuss related topics.

2

Chapter 2

Background

In this section, we introduce multiple concepts, definitions, and explain the
major concept based on the example of a car. We begin by defining Software
Product Lines as well as other related concepts. Lastly, we give a brief overview
about the functionalities of the frameworks TypeChef and Hercules.

2.1 Software Product Lines

A Software Product Line (SPL) is a set of similar software-based systems that
are created from a set of common core components and use a shared set of
features that satisfy the needs of a certain market segment [6]. In this process,
these software components are reused to create multiple versions of a product.
Selecting a subset of features determines which software components are used
in the product. A single product version is refered to as a variant. While the
initial process of planning and management is not free, SPLs show multiple
advantages in the creation of specific products. Reusing core aspects results
in reduced costs of development and maintenance [7]. As the customer has
specific needs that need to be fulfilled, SPLs enable the simple customization of
products which are tailored to the needs of the customer and the current market.

We use this general definition to specify our preprocessor-based C Software Prod-
uct Lines. The preprocessor-free code resembles our shared set of software com-
ponents. It is used in every product of this product line. The preprocessor also
uses code segments that are depending on optional program features. These
program features add functionality to our product (see Section 2.2). The selec-
tion of features is described by the arguments of the preprocessor and create a
variant of the software product line.

3

2.2 Feature and Feature Model

There are several ways how the term feature is defined as it depends on the
context in which the term is used [8]. In our case, features are the core aspects
of a product line. They represent the requirements and show similarities as well
as differences between product variants. Thus, features are used as specification
of product variants. To generate a product variant, the user has to choose a set
of desired features. This set is also called a configuration.

If a configuration of a program has been chosen, the program variant can be
generated. But not every configuration can be used for this purpose. For ex-
ample, a configuration may contain two features like WINDOWS and UNIX that
exclude each other. Therefore, a feature model can be used to check the validity
of a configuration. Feature models usually appear in one of the two following
types: the first uses multiple propositional formulas where a configuration is
valid if all formulas are fulfilled. The second one uses a structure called feature
diagram to determine valid feature combinations.

Mandatory

Optional

Inclusive Or

Exclusive Or

Requires

Excludes

Car

Transmission EnginePull_TrailerBody

Gasoline ElectricManual Automatic

Figure 2.2.1: Feature diagram of the Car SPL

A feature diagram is a compact representation of all possible product variants
and visualizes which products can be generated [9]. It can be used to deter-
mine valid configurations of a product. Figure 2.2.1 shows the feature diagram
containing multiple features. In this example, we are going to use a car as an
SPL. This car should have a body, an engine and a way to change the gear. As
an additional feature our car may be able to pull a trailer. We are going to use
this example in the rest of this thesis to explain all issues.
Mandatory features always have to be selected if the corresponding parent is
also selected. In this case, Body, Transmission, and Engine are present in all
possible configurations. Optional features on the other hand may or may not
be selected. For example, we may add the feature Pull Trailer to our Car

product. Both, mandatory and optional features, can only be selected if the
corresponding parent features are selected. In other words, it is not possible to

4

select Gasoline without its parent Engine.
These two abstractions are not sufficient to visualize complex product variants.
There is also an exclusive OR and an inclusive OR which can be used to enforce
at least one or exactly one feature. In this case, either Manual or Automatic can
be selected for the behavior of the gear. In the other case, Gasoline or Electric
can be selected for the engine in the system. However, there is also a possibility
to select both of them. There are two arrows to illustrate further dependencies
between two features , thus reducing the amount of valid configurations. Here,
the feature Automatic needs to be selected if the feature Electric is going to
be used.
If it is needed, there is also the possibility to add custom propositional formu-
las to the feature model. These constraints also have to be fulfilled to get a
valid configuration. Thus, we can set an upper limit to the number of possi-
ble configurations for our software product line. In this example, a valid con-
figuration of our feature model could be (Body, Transmission, Automatic,

Engine, Gasoline, Electric) while an invalid selection of features could be
(Transmission, Manual, Automatic, Engine, Pull Trailer,

Electric) due to the missing feature Body and the invalid selection of Manual
and Automatic.

Of course, this visualized form of a feature model is not optimal for checking the
validity of a configuration. Instead, we should use the other mentioned form,
a list of propositional formulas. Within this model, each feature represents a
literal which equals either true or false depending on the chosen configuration
[9]. A given configuration is valid if and only if all propositional formulas of the
feature model are fulfilled. This feature model is useful regarding the automated
validity checking of configurations [7]. Furthermore, the propositional formulas
can be described in different formats. When operating with TypeChef the
user has to give the program a feature model in the DIMACS format [10]. In
this format, all features are listed and consecutively numbered in the beginning
followed by the clauses and expressions in the Conjunctive Normal Form (CNF)
format.

1 c 1 Body
2 c 2 Transmission
3 c 3 Manual
4 c 4 Automatic
5 ...
6 c 9 Electric
7 p cnf 9 9
8 3 4
9 -3 -4

10 -3 2
11 -4 2
12 ...

Figure 2.2.2: Feature model in DIMACS format

Figure 2.2.2 shows the feature model of Figure 2.2.1 in its DIMACS format. As
we can see, our 9 features are labeled at the beginning of the file. Furthermore,

5

we list all relations between the features in the CNF form. Either Manual or
Automatic may be selected, but not both at the same time. Thus, we add clauses
that if the feature Manual is deactivated, the feature Automatic is selected (see
line 8) and vice versa (see line 9).

2.3 Variability with C Preprocessor

There are two types of technologies which integrate variability into a program:
language-based variability mechanisms and tool-driven variability mechanisms
[7]. On the one hand, language-based variability mechanisms try to implement
variability by using available concepts in programming languages like design
patterns or frameworks. On the other hand, tool-driven variability mechanisms
use external tools to infuse variability into the code. Build systems, version-
control systems, but also preprocessors are part of this technique. In this thesis,
we have a closer look at the C preprocessor.

The C preprocessor, also called CPP, is a macro preprocessor that extends the
capabilities of the standard C programming language. It allows the developer
to enrich the source code with commands which instruct the compiler to chose
between different code snippets at compile time. This kind of variability is also
known as compile-time variability. Because the CPP annotations are oblivious
to the structure of the programming language, it can be inserted at any level of
the source code [11]. The CPP enables the utilization of three specific directives:
file inclusion, text substitution and conditional compilation. #include allows
the inclusion of a file. #define defines a macro which can be used in the code.
Regarding conditional compilation there are several ways to use this directive.
The directive #ifdef checks if the specified identifier is defined, while #if and
#elif are used for checking arithmetic expressions. Using the function defined,
the directive #ifdef can be replaced by the #if directive. For example, the ex-
pression #ifdef Body checks the same condition as #if defined(Body). In
combination with the directives #else and #endif, the syntax of the condi-
tional directives resembles the usage of conditional expressions in most of the
programming languages.

The conditional directives are our main focus in this thesis. The features of an
SPL may be used as presence conditions of the conditional directives. In this
thesis, the content between the conditional CPP directives is referenced as a
feature block. A feature block consists of multiple lines of code that share the
same presence condition. The start of the block is represented by an #if or
#ifdef. Afterwards the block can either be ended with an #endif or continued
with an #elseif or #else resulting in new feature blocks with other conditions.
A feature block is often represented by its condition used in the conditional
directives of the CPP. Although, a program may contain more than one block
with the same condition. In case of nested blocks, the conditions of the outer
blocks still have to be fulfilled in the inner blocks.

6

2.4 TypeChef and Hercules

TypeChef1 is a research project that can be used for parsing and type-checking
processor-based product lines in C [12]. The tool analyzes variability caused by
the CPP’s #ifdef directive in the source code. During the analysis the source
code is transformed in multiple steps, as Figure 2.4.1 shows [1]. During all its
steps the results never lose their variability-awareness.

TypeChef

gcc

variability-aware

parser framework

variability-aware

parser
variability-aware

type system

variability-aware

further analysis

compile & execute

different configurations

#ifdef A
#define X 4
#else
#define X 5
#endif
2*3+X

variability-aware

lexer

partial configuration

include directories

Hercules variability
encoding

injection of performance

measuring functions

collect measured data &

predict performance
of other configurations

2 · * · 3 · + · 4A · 5¬A

+

* ♦A

2 3 4 5

Feature Time
BASE 5.4

A 1.6
¬A 1.3

Figure 2.4.1: Process of performance measuring, schema of Florian Garbe [1]

The framework begins its analysis with lexing in which TypeChef partially
evaluates preprocessor directives. In this step, included directories are inlined
into the code and all macros are being replaced by their corresponding definition.
However, conditional directives are left untouched, thus keeping the variability
of the code. The lexing process also divides the input code in different tokens
and annotates each token with a presence condition.
After obtaining the conditional token stream from the lexer, TypeChef parses
the stream to create a syntax tree from this information. During the parsing
process the variability-aware parser framework enforces disciplined annotations.
Disciplined annotations are declarations, definitions and directives that include
a statement inside a function or fields inside a union or struct. The reason for
the enforcement is the need of TypeChef to convert the variability from the
token level to the abstract syntax tree (AST), creating a variability aware AST.
This data structure contains all information about the preprocessor-variability
in the source code, mapping all structures of the source code into AST elements.
Figure 2.4.2 shows, the condition of the if-statement in (a) depends on the

1https://ckaestne.github.io/TypeChef/ (visited: 2017-02-20)

7

https://ckaestne.github.io/TypeChef/

char* getTrailer() {
if (

#ifdef Pull_Trailer
1

#else
0

#endif
) {

return "Trailer";
}

#ifdef Automatic
displayError("No trailer available.");

#endif

return null;
}

(a) Code variability
(b) (Simplified) AST variability

Figure 2.4.2: Converting variability from source code into an AST

Choice node with the condition Pull Trailer and the single statement calling
the function displayError is listed as Opt node with the condition Automatic in
(b).

All in all, TypeChef is a variability-aware parsing tool to analyze and transform
the variability of C code which is created with preprocessor directives. For
our cause, there is a further extension to this framework named Hercules2.
Hercules transforms compile-time variability into run-time variability by using
if-statements, renamings and duplications. The code is transformed in such a
way that it is possible to choose which code is executed while running the
programm. To be able to measure the performance of the features in a program,
Florian Garbe added the functionality to insert measurement functions. There
are two kinds of measurement functions: one is starting the measurement under
a specific context, the other one ends the last called measurement. In this thesis,
these functions are denoted as perf before and perf after. These functions are
placed at the beginning and at the end of each block. Additionally, there are
statements that can leave the measured blocks, for example a goto-statement,
for which additional ending functions are placed right before this statement.
In case of return-statements while performance measuring, a perf return is
inserted containing the returning value and a call of perf after as parameter.
This is necessary because the returning value may have further influences on
the performance of the program.
Figure 2.4.3 shows the transformation process of Hercules. (a) displays the
initial code and (b) the results of the process. The conditional directive in line
7 is being transformed into an if-statement. The condition of the directive is
described by global variables representing the used features. At the borders of
the block in line 7-11 the measurement functions perf before and perf after

2https://github.com/joliebig/Hercules (visited: 2017-02-20)

8

https://github.com/joliebig/Hercules

1 void driveCar() {
2 driving = true;
3

4 while(driving) {
5 moveCar();
6

7 #if defined(Gasoline) && defined(Electric)
8

9 useFuel(getChosenFuel());
10

11

12 #elif defined(Gasoline)
13

14 useGasoline();
15

16

17 #else
18

19 useElectricity();
20

21 #endif
22

23 if(fuel == 0) {
24 driving = false;
25 }
26 }
27 }

(a) Initial code

void driveCar() {
driving = true;

while(driving) {
moveCar();

if (id2i_gasoline && id2i_electritc) {
perf_before("Gasoline && Electric");
useFuel(getChosenFuel());
perf_after();

}
if (id2i_gasoline && !id2i_electritc) {

perf_before("Gasoline && !Electric");
useGasoline();
perf_after();

}
if (!id2i_gasoline && id2i_electritc) {

perf_before("!Gasoline && Electric");
useElectricity();
perf_after();

}

if(fuel == 0) {
driving = false;

}
}

}

(b) Transformed code

Figure 2.4.3: Insertion of performance functions

are inserted which handle the measurement process. The block’s content in
line 9 is placed between the two measurement functions. This process is also
repeated for the blocks in the lines 12-16 and 17-21.

2.5 Statistic methods

Later we need to calculate scores for the blocks and measure their performance.
As we want to investigate the connection between scores and performances,
we take a look at correlation between the calculated value and the measured
performance. The Pearson correlation3 calculates a coefficient which describes
the linear correlation of two variables.

r =

∑n
i=1 xiyi√∑n

i=1 x
2
i

∑n
i=1 y

2
i

If we visualize this principle in a graph, this means that we have a set of n
data points (x1, y1), ..., (xn, yn) that are spread around the plane. The Pearson
correlation tries to draw a line through the data points as good as possible. The
calculated coefficient r describes how big the variation of the data points around
the line is. The coefficient range is between 1 and −1.

3onlinestatbook.com/2/describing_bivariate_data/bivariate.html (visited: 2017-06-
22)

9

onlinestatbook.com/2/describing_bivariate_data/bivariate.html

r = 1

●

●

●

●

●

●

●

●

●

●

x

y

r = 1

●

●

●

●

●

●

●

●

●

●

x

y

0 < r < 1

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x

y

0 > r > −1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

x

y

r = 0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x

y

Figure 2.5.1: Data sets with lines and pearson coefficient

Figure 2.5.1 shows different data sets and the presents the correlation coefficient.
The signum of the coefficient describes the direction of the line. Positive values
resemble a growth of the line while negative coefficients show a decrease of the
line.

10

Chapter 3

Approach

In this section, we discuss multiple concepts to improve the functionality in Her-
cules. We introduce the principle of block coverage to calculate configurations
and have a closer look at the granularity of our measurement functions. Besides
all the improvements of the measurement we also discuss which problems we
encountered and how they restrain our work.

3.1 Block Coverage

Configurations are one of the essential aspects of our evaluation. Choosing a
random valid configuration might result in a program with low functionality and
thus in poor evaluation measurement. Our goal is to calculate configurations
that transform the program in a way such that most of the code is executed.
With this appraoch we make sure that every block in the code is measured at
least once. By using the idea of block coverage, we construct configurations that
aid finding better configurations suitable for testing.

The main idea of block coverage is that every block is covered by at least one
configuration. We are going to extend this idea by covering as many blocks
as possible in one single configuration and thus, try to reduce the amount of
needed configurations to cover all blocks. If one configuration is not enough,
other configurations are created to cover the rest of the blocks.
To achieve this goal there are several steps to take. By using the AST created by
TypeChef we can easily iterate through all elements of our program. During
the iteration we can check if an element of the AST contains a condition which
needs to be fulfilled so that the corresponding block can be executed. Due to
the structure of the AST we iterate from the top to the bottom of the program.
As a result, all calculated configurations of previous blocks are used in the next
blocks. In case a condition of an block cannot be merged with any previously
calculated configurations, a new configuration is created. Within nested blocks
there has to be no extra calculations to guarantee the outer condition because

11

the conditions of the inner blocks already contain the condition of their outer
elements.
After iterating through the AST and calculating all configurations we have to
check if the selected configurations are valid. In some cases, it could be possible
that some features are selected without their parents. Furthermore, mandatory
features also have to be included in those configurations if their requirements
are fulfilled. If these features are included into the calculated partial configu-
rations, we end up with a set of configurations that covers every possible block
in a program. It is important to mention that these configurations may not be
optimal for measuring the performance of the program.
Checking a given configuration follows the same process. We also iterate through
the AST from top to bottom and keep track of the conditions of the elements.
Instead of creating configurations, we count the number of encountered blocks
and the number of fulfilled blocks.

The following example Figure 3.1.1 illustrates the strategy of the algorithm in
which the configurations are calculated.

void startEngine() {
playEngineSounds();

#ifdef Manual
initializeManualGear();

#endif
#ifdef Automatic

initializeAutomaticGear();
#endif
#ifdef Electric

playQuietEngineSounds();
#endif

actuallyStartEngine();
}

void startCar() {
startEngine();

#ifdef Pull_Trailer
setTrailer(true);

#endif
}

Figure 3.1.1: Block coverage example

In the beginning, we create a default configuration {(True)} at which the other
features are concatenated. We reach our first #ifdef and concatenate the fea-
ture Manual to our only configuration resulting in the feature set {(Manual)}.
Regarding the next block we cannot combine the feature Automatic with the
feature Manual. Thus, we create a new configuration resulting in the configura-
tion set {(Manual), (Automatic)}. The block with the condition Electric has
no conflicts with the previously calculated configurations, so we concatenate this
feature to each configuration. After doing the same with the block Pull Trailer

in the next function definition the resulting configuration set is {(Manual,

12

Electric, Pull Trailer), {(Automatic, Eletric, Pull Trailer)}. These
configurations are not valid yet because they do not contain all necessary parent
features (see Figure 2.2.1), meaning we have to add further features to the con-
figurations to make them valid. After adding the missing mandatory features we
end up with the final configuration set {(Manual, Electric, Pull Trailer,

Body, Transmission, Engine), (Automatic, Electric, Pull Trailer,

Body, Transmission, Engine)}.

3.2 Granularity

When a valid configuration is chosen, it is used to determine which feature
blocks are executed and measured. The measurement of each feature is done by
inserting measurement functions whenever a block starts or ends. Simply put,
blocks that have up to no influence on the performance of the program are also
measured. As a consequence, this creates unnecessary overhead which increases
the execution time of our measurement up to the point that the overhead time
even surpasses the actual execution time.

double getCurrentGasoline() {
#ifdef Gasoline

return amountGasoline;

#else

return 0.0;
#endif
}

(a) Initial code

double getCurrentGasoline() {
if (id2i_gasoline) {

perf_before("Gasoline");
perf_return(

amountGasoline, perf_after());
}
if ((! id2i_gasoline)) {

perf_before("!Gasoline");
perf_return(0.0, perf_after());

}
}

(b) Transformed code

Figure 3.2.1: Current transformation of Hercules

In Figure 3.2.1 (a) and (b), we simply return the amount of gasoline if the
corresponding feature Gasoline is defined. Returning a single value does not
affect the performance of the program very much. If we measure such blocks
of code, we add unnecessary overhead to the program. Thus, there has to be
a way to differ between complex blocks and non-complex blocks, so we only
add measurement functions where they are needed. The idea of granularity
is to measure only the feature blocks which influence the performance of the
program in at least a specific rate. The general process how we achieve this goal
is described in the next section.

3.2.1 General approach

The goal is to measure the code of feature blocks which have a certain influence
on the performance. This means we have to check if measurement functions
have to be added to a block while transforming the code. To achieve this goal

13

we have to carry out multiple steps. Our initial data is the AST of the C file
and a threshold to filter the ignored statements.

1. Determine blocks in AST.

2. Assign statements to blocks.

3. Calculate the score of each block.

4. Filter blocks by using threshold.

In the beginning, we have to determine the used blocks of the program and
label them with an alias. This way, we can easily refer to a block by using its
created alias even if the condition of two blocks are identical. While labeling
the blocks, the statements are assigned to its block in which they are used. A
statement is used in one block only, i.e. if a statement is within a constellation
of nested blocks, the statement is assigned to the most inner block. The third
step contains the calculation of scores of each block. The values of the scores
depend on the used metric (see Section 3.2.3). The calculated score is going to be
adjusted by the specified modifiers (see Appendix A.1). In the last step, we can
determine which blocks should be filtered and should not get any measurement
functions by specifying a threshold. The statements of the filtered blocks are
given to Hercules. While transforming the code, Hercules checks if the block
gets any measurement functions by checking the list of filtered statements.

3.2.2 Special influences on the performance

Although this seems like a simple task, there are multiple special cases that
need to be addressed. Even if a block has a low score on its own, it does not
mean that this block needs to be ignored immediately. We are going to discuss
which problems may occur while iterating through the AST and how these can
be solved.

Conditionals

if-statements are used in nearly every programming language and help to per-
form different computations depending on the specified condition. If a condition
is never fulfilled, the corresponding branch is never executed. This raises the
question in which way this influences the measurement of our blocks. If a block
highly impacts the performance and is rarely executed, unnecessary overhead is
added.
In Figure 3.2.2 (a) and (b), starting an engine is complex. But it is only exe-
cuted if a key is inserted into the car. This has an influence on the measured
block Engine because this decreases the chance that the code impacting the per-
formance of the block is executed. Increasing the number of branches decreases
the chance even further that the branch with the complex code is executed.
The same problem occurs with switch-statements. If a switch-statement lists
a large number of case-statements and only one of them contains code that

14

void startCar() {
#ifdef Engine

if (keyInserted) {
startEngine();

}

#endif
}

(a) Initial code

void startCar() {
if (id2i_engine) {

perf_before("Engine");
if (keyInserted) {

startEngine();
}
perf_after();

}
}

(b) Transformed code

Figure 3.2.2: Influence of conditional statements

increases the execution time of the program, we can not assure that the block is
reached. Thus, the number of branches/case-statements is used to modify the
content’s score such statements.

Loops

A block containing a single line of code does not inflict any influences to the
performance of a program. But before we ignore this block, we have to analyze
its surroundings. Executing the code once might not have a big impact on the
performance, but if it is repeated a large number of times, the influence of this
single block may rise.

void decreaseFuel() {
while(driving) {

#ifdef Gasoline

fuelGasoline--;

#endif
}

}

(a) Initial code

void decreaseFuel() {
while(driving) {

if(id2i_gasoline) {
perf_before("Gasoline");
fuelGasoline--;
perf_after();

}
}

}

(b) Transformed code

Figure 3.2.3: Influence of loops to blocks

Even if the code is not very complex and does not contain any special con-
structs, the block still might influence the program’s performance as we see in
Figure 3.2.3 (a) and (b). Executing the decrementation once does not show
any affection on the performance. But in combination with the while-loop sur-
rounding the block Gasoline the execution time of the block increases. This
problem can also be transferred to the for and do-while-loops analogously. As
we do not know the exact number of iterations of the loop most of the time,
we have to correct the score of each statement inside a loop in some way (see
Appendix A.1).

15

Control flow irregulations

Now, we could generally assume that every measuring function in a loop can
stay in the code. But there are multiple inappropriate ways to get out of a
loop. We cannot guarantee that loops are exited the same way every time. If
only one iteration is interrupted, the complete loop may be interrupted or we
jump to a different part of the program. This can be problematic in many
ways. The following examples show how break, continue and goto influence
the measuring of the feature performances.
The keyword break is used to jump out of a loop when it is executed. If there
are nested loops, only the most inner loop is interrupted in which the keyword
is executed. Using the example of Figure 3.2.3, we can construct a show case in
which this functionality influences the performance measurement.

void decreaseFuel() {
while(driving) {

#ifdef Gasoline

fuelGasoline--;

#endif
break;

}
}

(a) Initial code

void decreaseFuel() {
while(driving) {

if(id2i_gasoline) {
perf_before("Gasoline");
fuelGasoline--;
perf_after();

}
break;

}
}

(b) Transformed code

Figure 3.2.4: Interruptions in loops with breaks

As Figure 3.2.4 (a) and (b) show, inserting the keyword break in the while-
loop changes the context of the block completely. We might think that the block
Gasoline costs a lot of time if it is contained in a loop. In reality, the block is
executed only once, the break-statement exits the while-loop and the program
continues with the code after the loop. In that way, the usage of break negates
the influences of the loop on the block such that only a single line of code is
measured.
We have a similar case with continue. Although we do not interrupt the
complete loop, we are still able to end some iterations of it. Thus, there is
a similar example like in Figure 3.2.4.
We see in Figure 3.2.5 (a) and (b) that the feature measurement takes place
once. If the car is currently not moving, we enter the if-block that contains a
continue-statement. In this way, we only measure the block Gasoline if the
car is moving. This results in getting about the same effects as with break.
The last keyword that needs to be discussed is goto. It can be used to jump
to labels which can be inserted at any part of the scope. Thus, goto shows the
same effects we analyzed with break and continue.

16

void decreaseFuel() {
while(driving) {

if (notMoving) {
continue;

}
#ifdef Gasoline

fuelGasoline--;

#endif
}

}

(a) Initial code

void decreaseFuel() {
while(driving) {

if (notMoving) {
continue;

}
if(id2i_gasoline) {

perf_before("Gasoline");
fuelGasoline--;
perf_after();

}
}

}

(b) Transformed code

Figure 3.2.5: Interruptions in loops with continues

Using one of these keywords results in ignoring the rest of the code afterwards.
Therefore, we have to act accordingly. But if we encounter one of these key-
words, we don’t stop the calculations at this point. We rather adjust the score of
the structure containing the keywords. The structure is either a loop or a func-
tion because break and continue-statements are only contained in loops and
goto-statements may occur anywhere. The adjustement of the score depends
on the type of keyword. break and goto decrease the score of the code more
than continue because they exit the loop completely or jump to another part
of the structure. continue only stops one iteration, so there is still a chance to
execute the block’s code in the loop. As there is no indication to which part of
the code the keyword goto leads, there will be no any special calculations for
this.

Function calls

Even if a block contains only one line of code, its content still plays an important
role. The execution of this code may lead to other parts of the program that
are unknown at the point of the granularity calculation. Using functions is
one of these cases. If a function is called in a block, it may lead to other
complex calculations. Thus, it needs to be measured. This depends on the
called function. The function itself can be defined before or after calling it.
This means that we also have to know the general influence of a function as
well. Therefore, we are also going to calculate the score of each function defined
in our program.
Calling a function may lead to further function calls resulting in a chain reaction
of accumulated functions. We may be able to extend this idea by returning to
the source and creating a recursion. Unfortunately, there is no way to determine
how many times the recursion functions are called.

17

3.2.3 Metrics for granularity

There are multiple ways to rate the blocks in a program. Choosing two different
metrics may result in different score values. We are going to regard possible
metrics which can be used to calculate the score. The general idea about score
is that it should show the influence of the block on the program’s performance:
the higher the score, the bigger the impact of a feature on the performance of
the program.

Bin scores

There are already multiple algorithms that rate a specific object in a certain
topic. For example, the Building Energy Asset Score1 assesses the physical and
structural energy efficiency of buildings. This score is a value between 1 and 10
and depends on various factors like the location and the type of the building.
We can adapt this idea and also assess our blocks by their contents. The idea
is to pick certain categories in which each block is rated. We call this type of
score bin score. Each category is also rated by a value between 1 and 10. There
are certin structures that may impact the block’s performance. Thus, we choose
the following categories:

1. if-statements

2. switch-statements

3. Loops

4. Function calls

5. Control flow irregulations

The first category takes a look at the if-statements inside the blocks. Here,
the important factors are the number of if-statements and how many branches
each statement has. An if-statement can be used to execute only specific code
pieces, i.e. if there is a huge number of if-statements in the block, there is
a high chance that this code is not executed. A general if-statement has two
branches, one in which the conditon is fulfilled and the other one in which the
condition is not fulfilled. The number of branches increases if there are else-if-
statements. Additional branches decrease the probability that the statements
of a branch are executed. Thus, this category has to be weighted negatively.
The same reasoning can be applied to switch-statements with one exception.
case-statements without a break-statement continue with the next case-state-
ment. Apart from that, this category is also weighted negatively.
As mentioned in Section 3.2.2, loops and function calls may increase the per-
formance of the program. Unfortunately, there is no indication how often loops
and, if existent, recursions are executed. Nevertheless, a high number of loops

1https://energy.gov/eere/buildings/building-energy-asset-score (visited: 2017-06-
27)

18

https://energy.gov/eere/buildings/building-energy-asset-score

and function calls should still be weighted positively. Regarding function calls,
we are calculating bin scores for them as well to estimate their general impact
on the performance. These scores are used when evaluating the function calls
within the blocks.
The last category rates the block regarding control flow irregulatons. As they in-
terrupt the normal flow of programm, a huge number of such statements should
logically be weighted negatively.
All in all, each block is rated according to these categories. In the end, all ratings
have to be combined and result in a score ranging from 1 to 10. The influence
of each category can be adjusted by the specified modifiers (see Appendix A.1).

1 void updateGear() {
2 if (currentSpeed == 0) {
3 currentGear = 0;
4 } else if (currentSpeed < 25) {
5 currentGear = 1;
6 } else if (currentSpeed < 75) {
7 currentGear = 2;
8 } else {
9 currentGear = 3;

10 }
11 }
12

13 void brake() {
14 slowlyDecreaseSpeed();
15

16 #ifdef Automatic
17 while(carIsBraking) {
18 currentDisplayText = "Now braking automatically";
19

20 updateGear();
21 }
22

23 currentDisplayText = "Stopped braking";
24 #endif
25 }

Figure 3.2.6: Example for score calculation

We present an example in Figure 3.2.6 that shows the score calculation in detail.
In this example, we use the same modifiers as in our later case study (see
Appendix A.2) and we particularly have a look at the function updateGear and
the block Automatic. First, we rate the function updateGear. This function
only contains one if-statement with 4 branches, which is rated negatively since
a lot of branches implicate that code which affects the performance may not be
executed. Thus, we rate the if-bin of this function with the value 9. As for
the other bins, there are corresponding statements that are used for these bins.
Therefore, the score of the switch-bin and the bin for control flow irregulations
is 10. The bins for function calls and loops both get a score 1. As we set our
modifiers to specific values, the bin score of the function equals a bin score of
3. Next, we calcuate the score of the block Automatic. Since there are no if-
statements, switch-statements and control flow irregulations, the corresponding
bins are rated with the value 10. The block Automatic contains exactly one
while-loop. But since it is just one loop, the score of this bin stays at 1.

19

Nevertheless, we still have a function call inside the block. Since we have a
score for this function, we consider that score in our calculation and get a score
of 6. In the end, the block Automatic has a score of 5.

Weighting statements

If we have a closer look into the contents of the blocks, we may calculate more
accurate scores for the blocks. Therefore, we weight the occuring statements in
each block. This is done by simply iterating through the AST and increasing
the score of the current blocks whenever we encounter a statement. Initially, we
start with a weight of 1 for each statement. But the weight is being adjusted
whenever we encounter a special structure (see Appendix A.1). If we encounter
nested blocks, the statements of the inner blocks also increase the score of the
outer blocks and the function containing the blocks. Nevertheless, there are
some statements which do not increase the score, namely empty statements
and control flow irregulations, i.e. break, continue and goto. For function
calls, we save the location in which the call occurs and the weight that modifies
the function call’s weight. We calculate a temporary score for each block by
adding the scores of nested blocks to the outer blocks. These scores are used to
estimate a score for the functions. The last step handles the function calls in the
program. If a function call occurs in a block, we get the score of this function
and iterate through further function calls. Each returned value is multiplied
by the function call’s saved weight. In case of recursions, we calculate the set
of functions that form the recursion, add the scores of each function in this
set together and handle all calls out of the recursions appropriately. The final
scores contain their own statements, the scores of the nested blocks and their
function calls.
To illustrate the process of this metric, we use the example in Figure 3.2.6.
We set the general weight for loops to 2 while every other modifier will be
not specialized further. In this example, we want to calculate the score of the
block Automatic. As this block is not in any loop, there are no special weight
modifiers. After iterating through the AST once we have the following scores.
Since line 17 starts a loop and counts as statement as well, it increases the score
of the block. We chose a general loop weight of 2. Thus, the score of the block
Automatic is increased by this value. The statement in line 18 is an assignment
with an original weight of 1. As this statement is inside a loop, we multiply
it by the loop’s modifier and increase the block’s score by 2 once again. The
function call in line 20 does not affect the score yet. Lastly, The statement in
line 23 is outside the loop and increases the score of the block Automatic by 1.
This leaves us with a temporary score of 5. While iterating through the AST,
we calculated a score for the function updateGear as well. This score consists
of the statements in line 2 to 9. These statements form an if-structure. This
reduces the weight of each statement within as well as the conditions as well. In
total, there are 4 branches in this if-structure and the weight of all statements
from line 2 to 9 is set to 0.25. Therefore, the score of the function updateGear

is 2. In the last step, we resolve all function calls in blocks. In this example, we

20

have only one function call in the block Automatic. Since the function call is
within a loop, we multiply the score of the function updateGear by 2 and add
it to the current score of the block. Finally, the algorithm ends and the block
Automatic has a score of 9.

Performance filtering

As we want to measure only the blocks which majorly influence the performance,
a logical option is filtering the blocks by their performance. Of course, this
metric does not work until we actually measure each block at least once. If the
needed data is available, the process of this metric is simple. Each block gets
a score of either 0 if the block should be filtered or 1 if the block should be
measured. Rather than setting a threshold for the score we use this threshold
as minimal execution time a block should have. In this way, we only have to
check if the block’s execution time is greater than the specified threshold.

3.3 Limitations

During the development of the improvements we encountered several special
cases which limit the rating of the blocks. In this section, we list all code
limitations with a corresponding explanation and example.
In order to determine the blocks of the code, we have to look at the conditions
of statements in the AST. This is the only way to determine the blocks of the
given code. A block begins if the condition of the current statement is not a
subset of the previous statement’s condition. There is one case in which the
distinction of the block limits is impossible.

void printFuelAmount() {
#if defined(Gasoline)||defined(Electric)

print("Current fuel state:");

#if defined(Gasoline)
print("Gasoline: " + getFuelGasoline());

#endif
#if defined(Electric)

print("Electric: " + getFuelElectric());
#endif

print("Fuel printed");
#endif
}

(a)

void printFuelAmount() {
#if defined(Gasoline)||defined(Electric)

print("Current fuel state:");
#endif
#if defined(Gasoline)

print("Gasoline: " + getFuelGasoline());
#endif
#if defined(Electric)

print("Electric: " + getFuelElectric());
#endif
#if defined(Gasoline)||defined(Electric)

print("Fuel printed");
#endif
}

(b)

Figure 3.3.1: Disjunction with specialization

Both code segments (a) and (b) in Figure 3.3.1 have the same AST in which
we use a disjunction and specialization combined. But we clearly see that they
do not have the same code structure. In (a), the disjunction block contains the

21

specialization, while in (b) all blocks are on the same level. TypeChef simpli-
fies the condition of the inner statements of (a) and transforms the condition
(Gasoline ∨ Electric) ∧ Gasoline into the simplified form Gasoline, resulting
in an identical structure of the ASTs. Logically, this makes sense. But regard-
ing the calculation of the block scores, these are two different cases because
the statements of the specialization in (a) influence the score of the disjunction
block. To avoid this case, we have to use the code style in (b).

In C code, a block has two specific points that define the start and the end.
The CPP directives are not available when using only the AST. So we have
to determine the block boundaries by examining the condition change of the
statements. Whenever the current statement has a different condition regarding
the previous statement’s condition, we know that the current block changed. If
the condition c1 of the current statement is no subset of the previous statement’s
condition c2, the block with the previous condition c2 ended and a new one began
with the condition c1. This raises the question what happens when a block is
followed by a block with the same condition.

void changeGearAutomatic() {
#ifdef Automatic

updateGear(getCurrentVelocity());
#endif

#ifdef Automatic
updateGearView(getCurrentGear());

#endif
}

(a)

void changeGearAutomatic() {
#ifdef Automatic

updateGear(getCurrentVelocity());

updateGearView(getCurrentGear());
#endif
}

(b)

Figure 3.3.2: Two blocks with the same condition

In Figure 3.3.2, code segment (a) divides both updates when changing the gear
while in (b) both updates are in the same block. Even if the functionality is
divided into two blocks with the same condition, we merge both blocks together
which results in less needed measurement functions. The inclusion of measure-
ment functions can be enforced if an empty statement is placed between the two
blocks.

Lastly, there are multiple factors that can affect the performance of the program
and are not directly visible in the code itself. We already mentioned loops and
recursions. In the metrics of this thesis, these two structures are considered in
the scores and are estimated by the modifiers. But we do not know exactly how
long they last. If the user has to give input in this case, we cannot determine the
iteration length of the structure. Regarding function calls and recursions, the
usage of different parameters in calls may also affect the performance metrics.
A potential recursion can be ended immediately if certain parameters are used.
As these are special cases that refer to the logic of the code, we do not consider
these cases in the metrics. Futhermore, function pointers can be used at any

22

place of the code. If the referenced function is executed, we cannot determine
which function exactly is executed. In this case, we are using a default value for
function calls which are unknown or not defined. Nevertheless, this is also an
estimation as there is no information apart of the initialization which function
is used. The worst case is that either an empty function or a recursion are
referenced by the pointer. These cases are a fraction of what we cannot detect.

23

Chapter 4

Evaluation

Now that we are able to give every block a score, we can also determine the
execution time of every block and further combinations. With this information
we can determine which blocks claim the most execution time. In the following
section, we take a look at the resulting data we obtain while calculating our
scores and measuring our blocks. Furthermore, we are going to compare the
previous results of Florian Garbe with the filtered results.

4.1 Test system specifications

As we want to compare our results with the ones of Florian Garbe, we should
use the same test system. The experiments were executed on a cluster system
consisting of 17 nodes with an Intel Xeon E-5 2690v2 @ 3.00 GHz with 10 cores
each. The system was equipped with 64 GB RAM per CPU and running Ubuntu
16.04 as the operationg system. Each test scenario was executed on its own node
such that there were no disturbances that might influence the measurements.

4.2 SQLite Case Study

SQLITE1 is a database product line with 93 configuration options. It is the
most widely deployed database in the world and can be tested using the TH3
test suite2. Using these two concepts combined, we are able to use SQLite on
Hercules with some limitations.
As we are going to compare our results with the ones of Florian Garbe, we
use the same setup for our measurements. Therefore, we are going to use the
SQLite case study as well.

1https://www.sqlite.org/ (visited: 2017-05-13)
2https://www.sqlite.org/th3/ (visited: 2017-05-13)

25

https://www.sqlite.org/
https://www.sqlite.org/th3/

4.2.1 SQLite TH3 Test Suite Setup

In this section, we briefly explain our setup of the SQLite TH3 test suite. For
the end results we measured the execution times on our cluster system three
times for each metric and calculated the average performance times to increase
the accuracy of our measurements.

TH3/cfg
64k.cfg

c1.cfg

c2.cfg

wal1.cfg

SQLite/cfg

23 feature-wise

11 pair-wise

50 random

1 allyes

TH3
bugs

cov1

dev

session

6 test
directories

25 TH3
configurations

85 SQLite
configurations

6 * 25 * 85 = 12,750 test scenarios

Figure 4.2.1: SQLite case study setup, schema of Florian Garbe [1]

The test setup consists of 3 initial parts. First, we have the TH3 directories
we are going to test. Each directory contains multiple .test files which are
converted into C files. Linked with SQLite, they execute all given tests. After
certain modifications and restrictions to the test setup (see Section 4.2.2), we
are left with 6 directories containing 1 to 355 .test files.
Next, the TH3 test suite itself has 25 different configurations that transform
the code of the directories in different ways. These configurations should not
be mixed up with the SQLite configurations. Combining each directory with
each TH3 configuration results in 300 different transformations.
Lastly, there are the configurations for SQLite. Unfortunately, it is difficult
to measure all possible configurations and there is no thorough feature model
for SQLite. Thus, we are focusing on a subset of 23 specific features. These
features are used to create configurations that are used on the 300 transforma-
tions. The configurations are divided into four different groups:

• Feature-wise: We generate 23 different feature-wise configurations con-
sisting of one enabled feature and as little as possible other features to
create a valid configuration.

26

• Pair-wise: These configurations were generated with the SPLCA3 tool.
For this type of configuration, we generate all possible pairs of the 23
features. The generated configurations cover multiple pairs at the same
time, resulting in 11 pair-wise configurations.

• Random: Features are randomly selected to create 50 different configu-
rations. As there are 23 features, we generate a random binary number
between 0 and 223 and map it to a configuration. Duplicate or illegal
configurations due to the feature model are discarded beforehand.

• Allyes: All 23 features are selected resulting in a single configuration.

4.2.2 Adjustments of the test setup

After we talked about the general test setup, we take a look at further limi-
tations before evaluating our results. Florian Garbe already modified the test
setup in multiple ways [1]. Originally, there are 26 TH3 configurations. But one
of them never executed any test cases as it is for testing a DOS related filename
scheme and is not compatible with the UNIX setup.
Furthermore, the original TH3 test suite contains 10 directories. The stress di-
rectory was excluded as it contains tests with a very high run time. Excluding
this directory resulted in several SQLite out of memory errors in two direc-
tories. To remove these errors and also reduce the amount of .test files per
directory, one of the directories was partitioned once and the other one had to
be partitioned twice. Florian Garbe also excluded 3 further directories since
their execution time is less than 2 ms. Thus, they are not useful for the mea-
surements.
Lastly, we focus on the code itself. We already mentioned in Section 3.3 that
we are not able to determine every block if a specific code style is used. We
encountered such cases in code of the test suite. As we saw in Figure 3.3.1, a
disjunction with an inner specialization is hard to recognize and even hinders
the filtering of blocks. In the C code of SQLite, we encountered two cases where
this code style was used. Thus, we refactored the cases such that we can work
with the code correctly without generating any errors while the functionality of
the code remains the same. Furthermore, there was also one case in which the
filtering did not work due to a global variable. The variable changed its value
according to the selected features and thus, formed its own block. This resulted
in a filtered measurement function which should not be removed. Therefore, we
had to add an additional statement such that the functionality of the code is
not affected and the measurement function stays.

4.2.3 Calculated score distribution and filter properties

As mentioned in Section 3.2.3, we developed three different possibilities to cal-
culate the score of each block. This results in multiple choices what threshold

3http://martinfjohansen.com/splcatool/ (visited: 2017-05-19)

27

http://martinfjohansen.com/splcatool/

we may choose. If the value of the threshold is guessed without any previous
measurements, the results might turn out as we want. Therefore, we executed
all algorithms but did not filter any blocks. By giving each block a unique name
we measured the performance of each block. In this way, we encountered over
1700 different blocks. Unfortunately, not all blocks could be measured with the
given test setup of SQLite. Nevertheless, we are going to present the calcu-
lated results in this section as well as choose which threshold we are going to
use for each algorithm. The displayed performance of the blocks is their mean
performance value as they were measured multiple times. We removed 5 blocks
from the graphics because their mean performance values are much higher than
the other values. Regarding their scores, the blocks are not filtered when using
the specified thresholds. The used values for the modifiers of each metric can
be found in Appendix A.2.

Bin scores

In Section 3.2.3, we described the process how we divide the blocks into differ-
ent bins. Now, we sort each block into its corresponding bin and discuss the
calculated results.

●
●
● ●●●

●

●

●

●●●

●

● ●● ●● ●●●● ●●●
●●●● ●●●●●●
●●

● ●●● ●●● ● ●●

●

● ●●● ●
●

● ●
●
●● ●● ●
●

● ●●● ●●●● ●●

●
●

●● ●●●●●● ●●●●● ●●●

●

●●●● ●●●●

●

●●●●●● ●●●

●

● ●● ●●● ●●●● ●●●
●●
● ●●●
●
●●●●● ●●●● ●●●● ●

●

●● ●● ●●●

●

●●●

●

● ●●●●●●●●●● ●● ●●●
●
●

●

●●● ●●●●● ●

●

●●● ●●
●

● ●●● ●●●

●

● ●●●●●●

●

● ●●● ●●●

●

●●● ●●●● ●● ●●●● ●●●
●

●●●●

●

●● ●●●●●● ●●●● ●●●●●●● ●●

●
●

●● ●●● ●● ●●●●

●

●● ● ●● ● ●●● ●●● ●● ●●●●

●

●
●

●●●●● ●

●

● ●

●

● ●● ●●●●

●

●● ●●●●

●

● ●●●● ●● ●● ●● ●●● ●●● ●●●● ●●● ●●● ●●●
●

●●●

●

●●●● ● ●● ●●●● ●● ●●●●●●● ●● ●●●● ●●● ●● ●●●●●●● ●●●● ●

●

● ●●

●

●●● ●●● ●●●● ●●●● ●
●

● ●●●●● ●●● ●●●●●●
●

● ●● ●●●● ●●● ●●● ● ●●●●● ●●● ●● ●●●● ●●●● ●●

●
●

●● ●● ●●●● ●●●●● ●● ●●●● ●●● ●●● ●●●

●

●● ●● ● ●●● ●●● ●● ●

●

●

●

●●●●●●● ●●●● ●●●●●●●

●

●0.00

0.25

0.50

0.75

2 3 4 5 6 7

Score

P
er

fo
rm

an
ce

(a) Score distribution

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7

Score

P
er

ce
nt

ag
e

(b) EDF

Figure 4.2.2: Score distribution of bin scores

Bin 2 3 4 5 6 7

#Block 295 52 11 5 171 2

Table 4.1: Number of blocks in each bin

Figure 4.2.2 (a) shows each bin with its blocks and their mean performance
values. Table 4.1 shows the number of blocks contained in each bin. Most of
the blocks are contained in bin 2 while blocks with high performance are sorted
into bin 6. But there are also blocks with low performance in this bin. We
noticed that one block with a high execution time was rated with a low score.

28

This is the case because this block calls a function fsync. This function has not
many statements and any special structures to increase the scores of any bins.
The high execution time is occurs because the function writes data into a file.
Thus, we adjusted the score of this block such that it is not filtered.
Futhermore, we had a closer look at the causes of each block’s score. Almost
all blocks have the highest score in control flow irregulations as most of them
do not contain any of these kind of statements. Rating the switch-statements
give similar results. There are ∼ 10 blocks containing switch-statements with a
large number of case-statements. Furthermore, there are not many blocks that
contain loops. Most of the time blocks are placed inside loops, but in this metric
this case is ignored. The main cause of the high scores are the function calls and
recursions due to their high amount and the size of the recursions. Calculating
the correlation coefficient for this score distribution, we get the value 0.24.
In Figure 4.2.2 (b), we see the empirical distribution function of every transfor-
mation when using bin scores. It shows the percentage of all previous block’s
performances in relation to the overall execution time. The percentage increases
in bin 2 as it contains most of the blocks of all bins. As for the filtering, we have
to choose at least the bin 2 to filter any blocks. We see that the performance
percentage highly increases when we reach the score 3. Thus, we are going to
ignore all blocks that have a lower bin score than 3. In total, we are filtering
295 blocks this way.

Weighting statements

Compared to the bin scores, weighting each statement of each block results in
a variety of score values. As the bin score metric is a more general approach
than this metric, it is expected that the scores are more distributed than in the
previous metric.

●
●

● ●●●

●

●

●

●●●

●

● ●● ●● ●●●● ● ●●
●●●● ●● ● ●●●

●●
● ●● ● ●●● ● ●●

●

● ●●● ●
●

● ●
●
● ●●● ●

●
●● ●● ●●● ● ●●

●

●

● ● ● ●●●● ● ●● ●● ● ●●●

●

●●● ● ● ●●●

●

●● ●●● ● ●●●

●

● ●● ●● ● ●●●● ●●●
●●

● ●● ●
●

●●●●● ● ●● ● ●●●● ●

●

● ● ●● ●● ●

●

●●●

●

●● ● ●● ●● ● ●●● ●● ●●●
●

●

●

●●● ● ●●●● ●

●

●● ●● ●
●

● ●●● ●●●

●

● ●●●●● ●

●

● ●● ● ● ●●

●

● ●● ●●●● ●● ● ●●● ●●●
●

●●●●

●

●● ● ●● ●●● ●● ●● ●●● ●●●● ●●

●
●

● ● ●●● ●● ●● ●●

●

●● ●● ● ● ●●● ●●● ●● ●●●●

●

●
●

●● ●● ● ●

●

● ●

●

● ●● ● ●● ●

●

●● ●● ● ●

●

●●● ●● ●● ●● ●● ●●● ● ●● ●●● ● ●●● ●●● ●●●
●

●●●

●

●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●●● ● ●● ● ●●● ●●●●●● ●● ●● ●

●

● ●●

●

● ● ● ●●●●● ●● ● ● ●● ●
●

● ● ●●● ● ●●●●●● ●●●
●

● ●●● ●●● ●●● ●●● ● ●●●●● ●●● ●● ●●● ● ●●● ● ●●

●
●

●●●● ●● ● ● ●●●●● ●● ●●● ● ●●● ● ●●● ●●

●

● ● ● ●● ●●● ●●●● ● ●

●

●

●

●● ●●● ● ● ●●●● ●●●● ● ● ●

●

●0.00

0.25

0.50

0.75

10−2 100 102 104 106

Score

P
er

fo
rm

an
ce

 (
m

s)

(a) Score distribution

0.00

0.25

0.50

0.75

1.00

10−2 100 102 104 106

Score

P
er

ce
nt

ag
e

(b) EDF

Figure 4.2.3: Score distribution of weighting statements

In Figure 4.2.3 (a), the scores are spread across the whole score-axis. Blocks
with a high average performance get a high score as the performance rises. But

29

blocks with low performance values may also get a high score due to our lim-
ited possibilites to analyse the code’s logic. Comparing the Pearson correlation
coefficient of this score distribution to the one with bin scores, the coefficient is
higher with a value of 0.32.
As in the bin metric, Figure 4.2.3 (b) shows the empirical distribution function
of every transformation when weighting statements. It shows the same as in
Figure 4.2.2 (b), whereas the scores are more distributed in this case. We see
an increase in percentage at the value 2. This point has the biggest influence
on the program’s performance. This is why we want to measure it. Therefore,
the score 2 is used as threshold such that the algorithm filters 223 blocks.

Performance filtering

Unlike in the other two metrics, we do not calculate an actual score for each
block because we filter the blocks by their performance. Therefore, no modifiers
are used in this metric and we take a look at the performance distribution.

● ●●●●● ●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●

0.00 0.25 0.50 0.75

Performance (ms)

Figure 4.2.4: Performance distribution of blocks

The average performance value for each single block varies as Figure 4.2.4 shows.
Most of the performance values are very small. This data was obtained by
labeling each measurement function with the corresponding block alias that is
the same in each transformation and measuring the performance by using the
test setup. As we are interested in the blocks with high performance, we have
to pick a threshold with a low value. In this case, the value of the threshold, we
are going to use, is 0.000125 ms and 261 blocks are going to be ignored.

4.3 Comparison between results

Applying each metric with its corresponding filter threshold transforms the orig-
inal source code in different ways and may ignore other blocks, whereas other
metrics would accept them. Of course, this brings different results in measure-
ments and predictions during our 12,750 test scenarios. This section presents
the differences between these results and compares each with the original data
presented by Florian Garbe.

30

4.3.1 Measurements and overhead

The introduced metrics filter blocks that should not be measured. Thus, the
number of measurements and the amount of overhead should both decrease if
we use any metric. These values depend on the type of used metric. We are
going to look at the data we obtained while measuring the case study.

Bin score

● ●●● ●●●● ●●● ●● ● ●● ●● ●●●●●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ● ●●● ●●● ●● ●●●●● ●●● ●●●● ●●● ●●● ●●● ●●●● ●● ●●●●● ●●● ●● ● ●●●●●●● ●● ● ●●●● ●●●●●● ●● ●● ● ●● ●●●● ●●●● ●●●● ●●●● ●●●●● ●●● ●●●● ● ●●●● ● ●● ●● ●● ●●●●● ● ●● ● ●●●●●●●●●● ● ● ●● ●●● ●●●● ●●●●●● ●●●● ●●● ● ●●● ●●●●●● ●● ● ●● ●●● ●●● ●● ● ● ●●● ●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●● ●●● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

Base

BinScore

0 50000000 100000000 150000000

Total number of
measurements

Figure 4.3.1: Comparison of measurements with bin score

Calling the measurement function perf before increases the number of mea-
surements during the runtime. Figure 4.3.1 shows a comparison of the measure-
ments between the non-filtered and filtered version of the code. Originally, the
value varied between 180 and 180,712,831. By filtering 295 blocks we reduced
the number of measurements severely to a range between 51 and 36,061,770.
The mean is depicted by the squared point and decreased from 23,005,422 to
6,511,300.

●●● ●●● ● ●● ●●

Base

BinScore

0% 100% 200% 300%

Proportion of overhead to remaining execution time

Figure 4.3.2: Comparison of overhead with bin score

Next, we have a look at the overhead produced by the measurement functions.
As we reduced the overall number of measurements, the logical conclusion is that

31

the overhead decreases as well. In Figure 4.3.2, we compare the proportion of the
measured overhead to the remaining execution time. The maximum percentage
drops from 374% to 263%. The execution time for the measurements exceeds
the execution time of the TH3 test code when no filtering is enabled. But
Figure 4.3.2 shows that the median declined from 155% to 68%.

Weighting statements

● ●●● ●●●● ●●● ●● ● ●● ●● ●●●●●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ● ●●● ●●● ●● ●●●●● ●●● ●●●● ●●● ●●● ●●● ●●●● ●● ●●●●● ●●● ●● ● ●●●●●●● ●● ● ●●●● ●●●●●● ●● ●● ● ●● ●●●● ●●●● ●●●● ●●●● ●●●●● ●●● ●●●● ● ●●●● ● ●● ●● ●● ●●●●● ● ●● ● ●●●●●●●●●● ● ● ●● ●●● ●●●● ●●●●●● ●●●● ●●● ● ●●● ●●●●●● ●● ● ●● ●●● ●●● ●● ● ● ●●● ●●

● ●● ●● ●●●● ● ●● ●●●●● ●● ●● ●●●●● ●●● ●●● ●●● ● ●●●● ●●●● ●●● ●●●● ●●● ● ●● ● ●●● ●●● ●●●● ●● ●● ●● ●● ●●● ●●●●● ●●● ●●●● ●● ●●● ●●●●●●●●● ●●●● ●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●● ●● ●●● ●●●●●● ● ●●●● ●●●● ●●●●●● ●●●● ●●●●●●●●●●●●● ●●●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●●● ● ●●●●● ●● ●● ●●●●●●●● ●●●●● ●● ●●●● ●●●●● ●●●●● ●●●● ●●●●●● ●●● ●●●●●●● ●●●● ●●●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ● ●●●●●● ●● ●●● ●●●●●●●●● ●●●● ●● ●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ● ●● ●● ●●●●● ●●●●●●●●●●● ●●● ●●● ● ●●● ● ●●● ●●●● ● ● ●● ●●● ●●●●●●● ●● ● ●●●● ●●● ● ●● ●●● ●● ●● ●● ● ●●●● ●● ●● ●● ●●● ●● ● ● ●●●●●●● ●● ●● ●● ●●● ●●● ●●● ●● ●●● ●● ●● ●● ●●●● ● ● ●●● ●● ●●● ●●●● ●● ●● ● ●●●● ●●● ● ●●● ●● ●●●● ●●● ●●● ●● ●● ●● ●●●●● ●●●● ●●● ● ●●● ●●● ●●● ●●● ●● ●● ●● ●●●●● ● ● ●● ●●●●● ●●●● ●● ●●● ●●● ● ●●● ●● ●●●● ●● ● ●● ●●● ●●● ●●● ●● ●● ●● ●●●● ● ●●● ●● ● ●● ● ●●●● ●● ● ●●●●●● ●●●●● ●● ● ●●● ● ●●●●● ● ●● ●●●● ● ● ●●● ●● ●●● ●● ●●●●●● ●●●● ● ●●●● ●● ● ●●●● ●● ● ●● ●●● ●● ● ●● ● ●●●● ● ●● ●●● ●●●●●● ●● ● ●●● ●● ●● ● ● ● ●●● ●● ● ●● ●● ● ●● ●● ●●●●● ●●●●●●● ●●●●●●●●●● ● ● ● ●●● ●●● ●● ● ●● ●●●● ●●●●●● ●● ● ●●●● ●●● ● ● ●● ●●● ●●● ●● ● ●●●● ●● ● ●●● ●● ●● ●● ●●●● ●●●●●● ●●● ●●● ● ●● ●● ● ●●●●● ●●● ●● ●●●● ●●●● ●●● ● ●●●●●●● ●● ● ●●● ●● ●● ●●● ● ●● ● ●● ●●●● ● ●● ●●● ●●● ●●●

Base

Statements

0 50000000 100000000 150000000

Total number of
measurements

Figure 4.3.3: Comparison of measurements with weighting statements

Applying another metric may provide other results. Figure 4.3.3 presents the
total number of measurements when using the statement weighting as filtering
argument. Since this metric rates the blocks by its contents and its surroundings,
the filtered blocks differ from the ones when using bin scores. All in all, the
number of measurements still decreases and ranges from 153 to 148,569,335. As
for the mean, Figure 4.3.3 shows that the red dot dropped from 23,005,422 to
12,804,930.

Base

Statements

0% 100% 200% 300%

Proportion of overhead to remaining execution time

Figure 4.3.4: Comparison of overhead with statement weighting

Even if the number of measurements did not decrease as much as with bin
scores, the overhead is still adjusted accordingly. Thus, we reduced the median

32

of the overhead proportion from 155% to 103% , as shown in Figure 4.3.4. The
values of the percentages range from 1% to 311%.

Performance filtering

● ●●● ●●●● ●●● ●● ● ●● ●● ●●●●●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ● ●●● ●●● ●● ●●●●● ●●● ●●●● ●●● ●●● ●●● ●●●● ●● ●●●●● ●●● ●● ● ●●●●●●● ●● ● ●●●● ●●●●●● ●● ●● ● ●● ●●●● ●●●● ●●●● ●●●● ●●●●● ●●● ●●●● ● ●●●● ● ●● ●● ●● ●●●●● ● ●● ● ●●●●●●●●●● ● ● ●● ●●● ●●●● ●●●●●● ●●●● ●●● ● ●●● ●●●●●● ●● ● ●● ●●● ●●● ●● ● ● ●●● ●●

●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●● ●● ●●●●●●● ●● ●●● ●●●● ●●●●●● ●● ●● ●●●● ●● ●● ●● ●●● ●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●

Base

PerfFilter

0 50000000 100000000 150000000

Total number of
measurements

Figure 4.3.5: Comparison of measurements with performance filtering

At last, we take a look at the results when filtering by performance in Fig-
ure 4.3.5. In this case, we filtered 261 blocks and the range of the measurements
varies between 79 and 71,127,686. We notice that there are some cases in which
the number of measurements is over 60,000,000. But, they are below 50,000,000
most of the time. The mean also moved from 23,005,422 to 9,156,436.

Base

PerfFilter

0% 100% 200% 300%

Proportion of overhead to remaining execution time

Figure 4.3.6: Comparison of overhead with performance filtering

Regarding the overhead, lesser measurement functions result in lower overhead
percentages in the proportion comparison. Figure 4.3.6 shows the comparison
of the overhead percentages between the base implementation and the filtered
version. We see that the median dropped from 155% to 76%. In comparison to
the base implementation, the filtering causes the maximum overhead percentage
to decrease from 374% to 254%.

33

4.3.2 Prediction results

Removing measurement functions from the code may reduce the total number
of measurements and the amount of overhead produced by such functions. The
measurement functions are used in such a way that if an inner measurement is
removed, the corresponding time is added to the outer measurement. The total
measurement might turn out more inaccurate than before. In this manner, we
are going to compare the prediction results.
We already have detailed information about our 85 SQLite configurations. Flo-
rian Garbe made cross predictions for the different configuration modes, i.e. the
data of a configuration group is used to predict the performance of other groups
[1]. The time of the prediction for a configuration is compared to the time the
performance simulator takes when executed with the corresponding configura-
tion. Therefore, we are going to use the same formula:

percent error =
|predicted value− expected value|

expected value

The results of his research are that the allyes configuration is the worst configu-
ration for predictions while the random configurations yield the best prediction
data. Although, this was only possible by including the variance to the percent
error. We have to keep that in mind while we compare his results with ours in
Figure 4.3.7. This figure compares the percent error of the predictions between
the measurement without filtering to every introduced metric. We compute the
percent error by comparing the average prediction time to the actual time the
performance measuring of that configuration needs. If there are multiple con-
figurations for a prediction, the result is the average of all individual predictions
of this group. A perfect prediction is reached when the percent error equals 0.

Using the allyes configuration as source of our predictions provides the worst
predictions. Florian Garbe discovered that a possible reason is related to the
feature SQLITE NO SYNC. Deactivating this feature drastically increases the exe-
cution time of the program. Since the allyes configuration activates this feature
and has no further information about SQLITE NO SYNC, the predictions are ac-
cordingly bad. This is still the case when applying metrics to the case study.
In Section 4.2.3, we briefly mentioned certain blocks with high execution times
which are not filtered for this reason. One of these blocks is executed when de-
activating the feature SQLITE NO SYNC and causes this behavior. Furthermore,
we see that the median in percent error rises in every case. Bin scores and
filtering by performance provide larger maximum percent errors than the base
implementation or the filtering by statements. However, we proclaimed that this
kind of prediction is not practical. Thus, we analyze the other prediction modes.

34

In general, the predictions are more accurate than before even though some
outliers have a higher error value than in the base implementation. In most of
the cases, the upper quartile is decreased. We are able to see this phenomenon
when predicting pairwise with featurewise and vice versa. Nevertheless, there
are also cases which have a worse predction than in the unfiltered version of the
case study as we can see in pairwise predicts allyes.

The percent errors of the metric measurements vary. The results depend on the
examined prediction mode. The reason for this behavior is the different block
filtering of each metric. For example, while performance filtering removes mea-
surement functions such that the mode pairwise predicts featurewise provides
more accurate predictions than others, weighting statements give lower percent
errors in the mode featurewise predicts allyes. Bin scores usually lower the up-
per quartile but also have a higher median than the other metrics.

During our measurements we also measured the standard deviation of each
configuration. Figure 4.3.8 displays the same as the previous figure with the
additional influence of the variance and we are able to spot the same changes.
While predicting the performance of the allyes configuration, we noticed that
the number of outliers increases when applying the metrics on the case study.
We still have to be careful regarding the random predictions since the variance
is very high in this configuration group. High variance values reduce our percent
errors but they also increase the inaccuracy of our predictions [1]. Even if the
results of the pairwise predictions are improved when including the variance,
they still have high variance values as high as the random predictions.

35

●

●

●

●

●

●●

●
●

●

●

●●
●
●

●
●●●

●

●
●

●

●
●

●●
●
●

●

●

●

●●

●

●
●

●
●●●

●
●
●

●

●
●
●●●●●

●

●

●

●
●

●●
●●

●
●

● ●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●
●●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●
●●●

●

●

● ●●●

●
●

●

●●●●●
●

●

●●●●

●
●●
●●

●●●
●
●

● ●

●●

●

●

●

●

● ●●

●
●

●

●●●
●

●

●●

●

●
●

●

●●

●●

●

●●

●● ●●

●

●●

●
●●

●
●●●●

●●

●
●

●

●●

●● ●●●

●
●

●

●
●

●
●

●

●●

●● ●●
●

●●

●
●●
●●●●●

●●

●●

●

●●

●●

●

●

●

●

●●

●

●

●●
●●
●

●●●●

●

●
●
●

●

●●

●

●
●●

●●

●

●●●

●
●●

●
●
●

●
●
●●

●●●● ●
●
●

●●

●●●
●●
●●
●
●
●●

●
●

●●

●

●●

●
●
●
●●
●●
●●

random predicts allyes random predicts featurewise random predicts pairwise

pairwise predicts allyes pairwise predicts featurewise pairwise predicts random

featurewise predicts allyes featurewise predicts pairwise featurewise predicts random

allyes predicts featurewise allyes predicts pairwise allyes predicts random

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

0%

50%

100%

150%

0%

50%

100%

150%

0%

50%

100%

150%

0%

50%

100%

150%

P
er

ce
nt

 E
rr

or

Figure 4.3.7: Comparison of prediction errors

36

●

●

●

●

●●
●

●
●
●
●●
●

●●

●

●
●

●

●
●

●●
●
●
●

●

●

●●

●
●
●●●

●

●
●●
●●●●●
●●●●
●

●●●●
●●●●●●

●

●
●

●

●●●●

●●●●
●●
●
●

●●●●●●●
●
●

●

●●

●
●
●●●●
●●●●●●
●
●
●●●●●●

●

●

●

●
●
●●●●●
●●●●●
●● ●●

●

●●●
●
●●●●
●●●
●

●
●
●●

●

●●●●●
●
●●

●

●●●

●●●

●
●●
●●

● ●

●

●●●●●●●●●●●●
●●

●

●

●

●
● ●●●●●●●●●●●

●●●●●●●
●●●●●●●
●
●●●●●●

●
●

●

●●
●●●●●●
●
●●●●●●
●

●●●●●●●

●

●

●

●

●

●●
●

●

●

●
●

● ●
●

●

●●●●●●●●●

●

●●●
●
●
●●
●●
●
●●●

●
●●●●●●●●●●●●●●

●
●●●
●●●●●●●

random predicts allyes random predicts featurewise random predicts pairwise

pairwise predicts allyes pairwise predicts featurewise pairwise predicts random

featurewise predicts allyes featurewise predicts pairwise featurewise predicts random

allyes predicts featurewise allyes predicts pairwise allyes predicts random

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

Base

BinScore

Statem
ents

PerfFilter

0%

50%

100%

150%

0%

50%

100%

150%

0%

50%

100%

150%

0%

50%

100%

150%

P
er

ce
nt

 E
rr

or
 in

cl
ud

in
g

V
ar

ia
nc

e

Figure 4.3.8: Comparison of prediction errors including deviation

37

Chapter 5

Concluding Remarks

This section contains the final conclusion of this thesis. We summarize our
results and discuss them as well as the challenges which occured during this
thesis. Furthermore, we give an outlook on topics for future work in this research
direction. Finally, a list of related work is mentioned.

5.1 Conclusion

Hercules transforms the C preprocessor directives in the code in a way such
that the variants of a SPL can be chosen during run-time. The execution time of
each block can be measured by measurement functions that are inserted when-
ever the block is entered or exited. A huge number of such functions creates a
lot of overhead, which exceeds the actual execution time of the code. In this
thesis, we present multiple metrics to filter statements that do not have a huge
impact on the performance of the program.

Regarding the calculated scores, the results vary. On the one hand the bin
scores rate the blocks and put them into 10 bins, while on the other hand the
statement weighting provides no restrictions for the maximum score value. Nev-
ertheless, there are multiple factors that affect the performance of the block we
have no information about. We provide modifiers to estimate the impact of
their influences. Unfortunately, this is not enough as most of the code depends
on the current state of the program.

The prediction results change in different ways as we work with the case study
SQLite. Using no filtering of blocks, the allyes configuration is the worst con-
figuration for performance predictions of other configurations. This fact holds
true for any introduced metric. Comparing the results to the data without any
filtering, the percent error even increases in every metric when predicting with
the allyes configuration. However, we reduced the percent error of most of the
predictions by applying our filtering algorithms. In consideration of the devia-

39

tion, the random configuration predictions still provide the best prediction data.

All in all, we reached our goal to reduce the amount of overhead caused by
the measurement functions without drastically decreasing the accuracy of our
predictions. However, an open issue is that we cannot determine the block’s
influence on the program’s performance by analyzing the code alone. Additional
information about each block might aid us in this task.

5.2 Future work

As we started working on methods how to filter blocks in the code, we deter-
mined several topics for further future work. First, there are multiple possibil-
ities how to filter blocks that were not explored in our research. Due to the
similar processes of each metric it is simple to enhance the current framework of
this work by more metrics. A possible metric is filtering by feature interaction
degree. The degree declares the amount of different features in an interaction.
In this case, the specified threshold for the algorithm represents the maximum
feature interactions degree. Another metric could specify a list of features.
Therefore, all blocks containing these features should be measured. As we see,
there are still several open filtering possibilities.

Next, the third introduced metric filters the blocks of the code by their perfor-
mance. This data was obtained by temporarily labeling the blocks by an alias
and then use this alias in the measurement functions. In this case study, we
simply created a name by adding an incrementing number to the end of the
block’s condition. Thus, we could link each similar block in every transforma-
tion of the source code. Unfortunately, this process does not work on every
possible transformation in other case studies because the number of blocks with
the same condition could differ in two different transformation of another case
study. This might result in an alias that refers to two different blocks. Thus,
a general process of labeling blocks should be used instead. But finding such a
process proves to be difficult as we only work with the AST. The AST does not
have any information about the source code and how the blocks are structured
originally.

Furthermore, we introduced two metrics in this thesis which only use the AST of
the original code. In an additional metric, we also use previously measured per-
formance information to filter blocks that do not need to be measured. We can
use this process in the other two metrics and, thus, use additional information
about the code to improve the current metrics. For example, when weighting
statements we already consider if-statements and switch-statements by count-
ing the branches they create and adjusting the weight of all further statements.
But there is no information in the code if a branch is ever executed or if it is al-
ways executed. Thus, we adjust the weight of the containing statements equally.
Providing execution probabilities for each branch increases the accuracy of the

40

scores.

In this thesis, we had a look at the relation between the calculated score and
the performance values. Now, the question arises if there are other factors that
might have a relation with the performance of a SPL. The selection status of a
feature might not only affect the performance of a variant but also its energy
consumption. Observing the energy management when selecting a feature shows
the influence on the energy consumption of the overall SPL.

Lastly, the measurement approach can be evaluated by applying them on further
case studies. In our current case study SQLite, there is more code inside the
preprocessor directives than in the code base. To be exact, it exceeds 50% of
the code base. But regarding the research of Florian Garbe, it is a suboptimal
target for the performance measuring and prediction approach. Unfortunately,
finding viable case studies is proving to be difficult as specific requirements must
be met. TypeChef needs to compile the code and has to be able to check the
type correctness successfully. A well-thought-out and detailed feature model
already helps solving several issues, but it also needs to be in the right form.
Additionally, Hercules has to transform the C code such that all measure-
ment functions are inserted at the right place. If even one of these functions is
misplaced, the measurement is not going to work.

5.3 Related work

The original motivation for this topic arose from the prior work from Post et. al
about configuration lifting [5] and the paper from Siegmund et. al about family-
based performance measurement [13]. The idea of configuration lifting enabled
the variability encoding as we explained above. The motivation of measuring
the performance of C SPL was developed when working with Siegmund et. al.
In their paper, they were working with JAVA SPL and a tool chain based on
FEATUREHOUSE1. The difference between their approach and ours is that
the variability is only contained in functions while the variability of the CPP
may occur in any level of the code. The results of their evaluation on 5 differ-
ent test systems show that the average prediction accuracy is placed at 98%.
In contrast to a brute-force approach, only a fraction of the effort is needed.
Additionally, they also verified that an increasing number of features in an SPL
also increases the saved time by the measurements while also decreasing the
amount of configurations needed for a 100% code coverage when family-based
performance measurements are used.

Calculating bin scores was inspired by the U.S. Department of Energy’s Build-
ing Energy Asset Score2. The Asset Scoring tool is a web-based evaluation tool

1http://www.infosun.fim.uni-passau.de/spl/apel/fh/ (visited: 2017-07-18)
2https://energy.gov/eere/buildings/building-energy-asset-score (visited: 2017-06-

27)

41

http://www.infosun.fim.uni-passau.de/spl/apel/fh/
https://energy.gov/eere/buildings/building-energy-asset-score

that assesses the physical and structural energy efficiency of commercial and
multifamily residential buildings [14]. To rate a building, the user has to insert
specific input about the building such as the roof type and its location. In this
way, buildings can be compared with each other and helps to determine possi-
bilities where to invest in energy efficiency upgrades.

Finally, there are other tools that estimate the performance of a SPL. Kwon
et. al developed a framework called Mantis that predicts the performance of
Android applications [15]. The framework consists of multiple steps in which
a given program, program schemes and input by the user are used to generate
a function to approximate the program’s execution time that only uses a spe-
cific subset of features. After some adjustments the result is a predictor that
calculates the performance of smartphone applications. They verify in their
evaluation that Mantis achieved an accuracy with a prediction error of 5%.
Furthermore, Mantis was applied on three hardware platforms and generated
predictors that provided accurate estimations.

42

Appendix A

Appendix

A.1 Modifiers of each metric

As we mentioned in Section 3.2.1 and Section 3.2.3, there are mutliple modi-
fiers which modify the score calculation each metric. Each modifier emphasizes
which structure of the code is more or less important. In this section we are
going to list all of them as well as explain the purpose of each metric:

Bin scores

• if weight: Weight for the category regarding if-statements.

• switch weight: Weight for the category regarding switch-statements.

• loop weight: Weight for the category regarding loops.

• function call weight: Weight for the category regarding function calls.

• control flow weight: Weight for the category regarding constrol flow
irregulations

All weights are used to weight each category bin. It does not matter if the sum
of all values does not equal 1. The result is adjusted accordingly.

Weighting statements

• loop weight: General weight for loops. Multiplies the score within loops
by this factor if no specific value is specified.

• for weight: Weight for for-loops. Multiplies the score within for-loops
by this factor.

• while weight: Weight for while-loops. Multiplies the score within while-
loops by this factor.

43

• do weight: Weight for do-while-loops. Multiplies the score within do-

while-loops by this factor.

• control flow weight: General for control flow irregulations. If a break-
statement, continue-statement or goto-statement occurs in the code, the
score is multiplied by this factor if no specific value is specified.

• break weight: Weight for breaks. If a break occurs within a loop, the
score of the loop is multiplied by this factor.

• continue weight: Weight for continues. If a continue occurs within a
loop, the score of the loop is multiplied by this factor.

• goto weight: Weight for gotos. If a goto occurs within a loop, the
score of the loop is multiplied by this factor. gotos outside of loops are
modifying the score of the functions. The factor is adjusted nevertheless.

• recursive weight: Weight for recursions. Multiplies the score of a recur-
sion by this value if a recursive function is called in the code.

• function call weight: Weight for function calls. Multiplies the score of
a function call by this value.

• default function weight: Default weight for functions. If there is no
score for a function, this weight is used.

Furthermore, we introduce two more options to modify the score of function calls
when weighting the statements. First, we may predefine the score of functions if
needed. The specified score is used if the function is called and does not trigger
any calculations regarding further function calls or recursions. By using function
offsets, the specified functions can be prioritized by adding the specified value
to the function’s score. Thus, we are able to choose which functions are capable
of having a high execution time. The reason for those two modifications is that
we are not able to determine the complexity of every function. For example, the
process of saving data is simple and does not require a lot of statements. But
depending on the size of the data, the execution time might be high or low. In
this case, we increase the offset of the called function such that it gets a higher
score at the end.

44

A.2 Selected modifiers for case study

In this section, we list the modifier values we applied on our metrics while work-
ing on the case study and provide explanations why these values were chosen.

Bin scores

• if weight = 0.1

• switch weight = 0.1

• loop weight = 0.35

• function call weight = 0.4

• control flow weight = 0.05

We apply these modifiers in dependence on their impact on the performance.
Since a huge usage of if-statements, switch-statements and control flow irregu-
lations decrease the score of the corresponding bin, the bins get the highst score
if there is none of such statements in the blocks. This does not necessarily mean
that the block has a huge impact on the performance of the program. In this
case, loops and function calls are rated higher as they impact the performance
of the block the most.

Weighting statements

• loop weight = 2.0

• break weight = 0.75

• continue weight = 0.8

• goto weight = 0.5

• recursive weight = 50.0

• function call weight = 1.0

• default function weight = 5.0

• function offsets:

– sqlite3MemGetMemsys3: 200.0

– sqlite3MemGetMemsys5: 200.0

– sqlite3ExplainSelect: 10000.0

– sqlite3CodeSubselect: 100.0

– sqlite3ExprCodeIN: 1000.0

– sqlite3Fts3Init: 2000.0

45

– sqlite3CodeSubselect: 20.0

– sqlite3FkCheck: 500.0

– sqlite3FkActions: 50.0

– sqlite3ExplainExpr: 10000.0

– fsync: 10000.0

In the SQLite case study, we noticed that the impact of the loops is not very
high. But they still have an impact on the score, especially when working
with control flow irregulations. Furthermore, we detected that most of the
blocks containing a recursion have a high average execution time resulting in a
high modifier. As pointed out in Section 3.3, we cannot the determine which
functions are called when using function pointers. In rare cases, we encountered
some function pointers in the code. Nevertheless, the blocks containing these
pointers did not affect the performance that much and thus, we estimated the
weight for such function calls with the value 5.
Regarding the function offsets, we used these values to adjust the scores of
recursions since the corresponding functions forming the recursions are small
and were rated lower than expected. The function fsync gets a higher score as
it saves data. This function is used in the code once within a block with the
condition !SQLITE NO SYNC. This block has the highest execution time of all
blocks because it saves a huge amount of data at some time in the case study.

A.3 Additional prediction results data

In this section, we list further data we obtained during our performance mea-
surements in Section 4.3.2. Table A.1 and Table A.2 displays the median percent
errors of Figure 4.3.7 and Figure 4.3.8 in each prediction mode.

46

Prediction Mode Base BinScore Statements PerfFilter

allyes predicts featurewise 17.1652% 25.3429% 34.0535% 26.4442%
allyes predicts pairwise 32.8288% 40.8156% 35.4929% 37.9424%
allyes predicts random 32.6553% 40.2931% 36.1894% 40.7844%

featurewise predicts allyes 6.6792% 10.8297% 10.6933% 8.5836%
featurewise predicts pairwise 22.9337% 14.2921% 14.1508% 13.8089%
featurewise predicts random 17.5408% 18.7019% 19.2858% 19.0143%

pairwise predicts allyes 8.9712% 11.9944% 11.3233% 11.2236%
pairwise predicts featurewise 21.2108% 5.8749% 8.5811% 5.6302%
pairwise predicts random 26.7113% 12.8566% 16.1893% 15.4229%

random predicts allyes 8.3794% 10.3854% 10.4863% 10.7338%
random predicts featurewise 6.8197% 7.9143% 9.9717% 8.3315%
random predicts pairwise 27.1846% 14.7906% 12.569% 13.791%

Table A.1: Median percent errors in prediction results

Prediction Mode Base BinScore Statements PerfFilter

allyes predicts featurewise 17.1652% 25.3429% 34.0535% 26.4442%
allyes predicts pairwise 32.8288% 40.8156% 35.4929% 37.9424%
allyes predicts random 32.6553% 40.2931% 36.1894% 40.7844%

featurewise predicts allyes 3.8557% 7.771% 5.7601% 5.5327%
featurewise predicts pairwise 19.7201% 10.5259% 10.1783% 10.1848%
featurewise predicts random 12.3986% 15.3717% 14.3138% 14.6099%

pairwise predicts allyes 0% 0.2026% 0% 0%
pairwise predicts featurewise 10.5188% 0.6315% 0.828 % 0.6772%
pairwise predicts random 11.9474% 2.1916% 1.7537% 1.9615%

random predicts allyes 0% 0% 0% 0%
random predicts featurewise 0.5256% 0.7435% 0.8293% 0.4675%
random predicts pairwise 6.8947% 1.4933% 1.3415% 1.1658%

Table A.2: Median percent errors in prediction results including deviation

47

Bibliography

[1] Florian Garbe. Performance measurement of c software product lines. Mas-
ter’s thesis, University of Passau, Germany, Bavaria, Passau, 2017.

[2] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[3] Norbert Siegmund, Marko Rosenmüller, Christian Kästner, Paolo G. Gia-
rrusso, Sven Apel, and Sergiy S. Kolesnikov. Scalable prediction of non-
functional properties in software product lines. In Proceedings of the 15th
International Software Product Line Conference (SPLC), pages 160–169,
Los Alamitos, CA, 8 2011. IEEE Computer Society. **Best Paper Award**.

[4] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. A classification and survey of analysis strategies for software product
lines. ACM Comput. Surv., 47(1):6:1–6:45, June 2014.

[5] Hendrik Post and Carsten Sinz. Configuration lifting: Verification meets
software configuration. In ASE, pages 347–350. IEEE Computer Society,
2008.

[6] Paul C. Clements and Linda Northrop. Software Product Lines: Practices
and Patterns. SEI Series in Software Engineering. Addison-Wesley, August
2001.

[7] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines - Concepts and Implementation. Springer,
2013.

[8] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. What’s in
a Feature: A Requirements Engineering Perspective, pages 16–30. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[9] Don Batory. Feature models, grammars, and propositional formulas. In
Proceedings of the 9th International Conference on Software Product Lines,
SPLC’05, pages 7–20, Berlin, Heidelberg, 2005. Springer-Verlag.

49

[10] DIMACS challenge. Satisfiability. Suggested format.
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/, 1993.

[11] Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of
preprocessor annotations in 30 million lines of c code. In Proceedings of the
Tenth International Conference on Aspect-oriented Software Development,
AOSD ’11, pages 191–202, New York, NY, USA, 2011. ACM.

[12] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. Type-
chef: Toward type checking #ifdef variability in c. In Proceedings of the
2Nd International Workshop on Feature-Oriented Software Development,
FOSD ’10, pages 25–32, New York, NY, USA, 2010. ACM.

[13] Norbert Siegmund, Alexander von Rhein, and Sven Apel. Family-based
performance measurement. In Proceedings of the 12th International Con-
ference on Generative Programming: Concepts & Experiences, GPCE
’13, pages 95–104, New York, NY, USA, 2013. ACM.

[14] Na Wang, Supriya Goel, Atefe Makhmalbaf, and Nicholas Long. Devel-
opment of building energy asset rating using stock modelling in the usa.
Journal of Building Performance Simulation, 0(0):1–15, 0.

[15] Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun Yang,
Byung-Gon Chun, Ling Huang, Petros Maniatis, Mayur Naik, and Yunhe-
ung Paek. Mantis: Automatic performance prediction for smartphone ap-
plications. In Proceedings of the 2013 USENIX Conference on Annual Tech-
nical Conference, USENIX ATC’13, pages 297–308, Berkeley, CA, USA,
2013. USENIX Association.

50

Eidesstaatliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe,
dass alle Stellen der Arbeit, die wörtliche oder sinngemäß aus anderen Quellen
übernommen wurden, als solche kenntlich gemacht sind und dass die Arbeit in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.

Passau, den 11. August 2017

	Abstract
	Acknowledgements
	Introduction
	Objectives
	Structure

	Background
	Software Product Lines
	Feature and Feature Model
	Variability with C Preprocessor
	TypeChef and Hercules
	Statistic methods

	Approach
	Block Coverage
	Granularity
	General approach
	Special influences on the performance
	Metrics for granularity

	Limitations

	Evaluation
	Test system specifications
	SQLite Case Study
	SQLite TH3 Test Suite Setup
	Adjustments of the test setup
	Calculated score distribution and filter properties

	Comparison between results
	Measurements and overhead
	Prediction results

	Concluding Remarks
	Conclusion
	Future work
	Related work

	Appendix
	Modifiers of each metric
	Selected modifiers for case study
	Additional prediction results data

	Bibliography

