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Chapter 1

Introduction

In this thesis we describe the refactoring of the embedded database engine Berkeley
DB into features using Aspect-Oriented Programming (AOP) techniques and present the
insights gained.

Features are increments in program functionality (Batory et al., 2004). We refactored
Berkeley DB into features to create a configurable database engine where the user can de-
cide which features to use. For example, in a single threaded embedded system the devel-
oper can have a stripped-down version of the database engine without transactions support,
which is smaller and faster than the original version. The benefits of configurable embed-
ded database systems that can be tailored to the users need have been shown in various
publications (e.g., Batory, 1986; Tesanovic et al., 2004; Leich et al., 2005c). Applying this
refactoring, a family of related programs can be configured from a set of features (Prehofer,
1997; Batory et al., 2004; Griss, 2000). Additionally, refactoring a legacy application into
features promises improvements in source code quality, and thus reliability and maintain-
ability, as it separates concerns and encapsulates them in features (Parnas, 1972; Batory
et al., 2003; Tarr et al., 1999).

Features are the primary subject in the research area of Feature-Oriented Program-
ming (FOP) and Software Product Line (SPL) technologies. However, there are various
approaches and languages that can be used to implement features. In recent research, it was
suggested to use AOP. First results appeared promising, for example Godil and Jacobsen
(2005), Tesanovic et al. (2004), and Eibauer (2006) refactored embedded database engines
into optional features, and Colyer et al. (2004), Zhang and Jacobsen (2003), and Hunleth
and Cytron (2002) refactored middleware to improve customizability. Refactoring of a
legacy software into features is also known as feature-oriented refactoring (Liu et al., 2006),
horizontal decomposition (Zhang and Jacobsen, 2003, 2004; Godil and Jacobsen, 2005),
feature-driven product line engineering (Griss, 2000), or simply separation of concerns
based on features (Hunleth and Cytron, 2002; Colyer et al., 2004).

Our goal in this thesis is to evaluate empirically the usability of AOP for feature-oriented
refactoring. We refactor a large real-world application using the aspect-oriented language
AspectJ. We describe the refactorings and analyze the process and the resulting source
code. In our analysis we focus on answering the following questions from both the feature
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perspective and the AOP perspective:

• Feature with AspectJ: AspectJ has already been used in some case studies to refactor
features. However, these case studies have largely ignored the following questions:
Is AspectJ suited to implement (large-scale) features? What kind of infrastructure is
needed and what is provided? Are the language constructs sufficient? Is the resulting
feature code readable and maintainable?

• Solutions to known Problems: With features there are known problems. One of
the most important and most frequently discussed problem is the Feature Optional-
ity Problem when two optional features interact (Prehofer, 1997; Liu et al., 2005,
2006). Do such problems occur in Berkeley DB? How are these problems dealt
with in AspectJ and does the language provide any solutions superior to existing
approaches?

• OOP-to-AOP Refactorings: Recent AOP publications suggested refactorings from
object-oriented code to aspects. For our case study we need such refactorings and can
give further insight on their usability. Are these refactorings useful and sufficient?

• Ordered Weaving: Recent research has reasoned that an ordered weaving in AspectJ
would reduce complexity (Apel and Liu, 2006), resolve logical problems (Forster and
Steimann, 2006), and avoid problems with accidental weaving (Lopez-Herrejon et al.,
2006; McEachen and Alexander, 2005). An open question is: What is the practically
significance of ordered weaving?

• Stability and Evolution: The fragility of AOP with respect to subsequent changes,
especially of pointcuts in AspectJ, is a known problem in the AOP community (e.g.,
Koppen and Störzer, 2004; Stoerzer and Graf, 2005; Gybels and Brichau, 2003). In
this thesis we analyze how this problem affects a real-world project and how it can be
dealt with. By refactoring features one-by-one, we also have a kind of evolution, so
that we can observe such fragility problems directly in this case study. We focus on
the questions: Do fragility problems occur in a real-world project? Do they hinder
the evolution of the project? Which solutions can be used to avoid this problem?

• Expressiveness of AspectJ Language Constructs: AspectJ was designed as a lan-
guage proposal for the empirical assessment of AOP (Kiczales et al., 2001). Based
on this case study we can give further insight to their question: Which language
constructs are used and how? It also indicates which limitations exist and which
language constructs are still needed.

• Scaling AOP: The issue of scale is commonly not dealt with in AOP projects. All
case studies are very small in terms of Lines of Code (LOC), except for some large
projects where the number of features is very small (cf. related work in Chapter 8).
In this case study we have the opportunity to observe how AspectJ scales to describe
small to large features and how understandability and maintainability of an AOP
project scales as many aspects are created.
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1.1 Case Study

In this thesis we conduct a case study in which we refactor the embedded database engine
Berkeley DB into features. To implement features we use the aspect-oriented language
AspectJ.

1.1.1 Scope and Delimitation

For the case study in this thesis we chose to refactor an existing application over writing
a new application. This gives us the chance to experiment on a large scale and eliminates
the possibility to write a case study that is biased by choosing an implementation that suits
or does not suit the needs of AOP. Instead we refactor a well known existing application
that was designed without the use of aspect-oriented techniques. Furthermore, refactoring
an existing application allows to compare results.

We furthermore chose the aspect-oriented language AspectJ over other aspect-oriented
languages. Because aspect-oriented languages differ significantly, some results may not
be transferable to other aspect-oriented languages. However, AspectJ is one of the most
popular and accepted aspect-oriented languages. There is a good tool support for it, and
AspectJ has matured over several releases. Finally, it was also used in all case studies
shown above and in most research on refactoring and evolution, which helps comparing
results.

Finally, the case study must not be understood on the background of feature-oriented
refactoring and not on the background of modularizing homogeneous crosscutting con-
cerns. Most prior work focuses on the improvement of a program by modularizing (small,
homogeneous) crosscutting concerns into technical aspects. This emphasizes the limita-
tions of object-oriented languages that can be addressed with AOP specifically. These tech-
nical aspects are usually not optional and not used to configure a program, though this
might be a side effect in some cases. Instead, in this thesis, we focus on implementing fea-
tures that encapsulate increments in functionality, which is in line with prior work on FOP
and SPLs. Therefore, we do not follow an Aspect Mining approach, that usually is used
to find replicated or cloned code, but instead searches for design decisions and ‘concerns’
implementing increments in functionality given by the domain.

This distinction between typical technical aspects and features is also a difference to
most previous studies which claimed to refactor features or concerns. These studies (e.g.,
Zhang and Jacobsen, 2003; Eibauer, 2006) refactored only selected features (cf. Section 8
for more related case studies). Usually, they still focus on crosscutting concerns and ignore
other features and ideas from FOP and SPLs. Additionally, our focus on scale, readability,
expressiveness and ordering is novel compared to previous studies.

1.1.2 Berkeley DB

As the target application for the refactoring project we have chosen the Java edition of the
open source embedded database engine Berkeley DB.



4 1.1. CASE STUDY

Berkeley DB—since September 2006 also marketed as Oracle Berkeley DB—is a light-
weight database management system (or more precisely ‘storage engine’) implemented
both in C and in Java. It is broadly used in many projects, both commercial and scien-
tific, the vendor describes its popularity in the data sheet as follows:

Berkeley DB is used within a wide variety of open source and proprietary
products for telecommunications, networking, storage, security, enterprise in-
frastructure, financial services and many other markets. There are over 200
million copies of Berkeley DB in deployment. Open source projects that use
Berkeley DB include every version of Linux, BSD UNIX, Sendmail, OpenL-
DAP, Apache, and many other open source projects. Proprietary products that
use Berkeley DB include directory servers from Sun and Hitachi; messaging
servers from Openwave and LogicaCMG; switches, routers and gateways from
Cisco, Motorola, Lucent, and Alcatel; storage products from EMC and HP;
security products from RSA Security and Symantec; and Web applications at
Amazon.com, Google and AOL. (Oracle, 2006a)

The Java edition (JE) was developed after the C version was already established. It is
implemented completely using the Java language and following the object-oriented para-
digm. Because the basic architecture was already known from the C version, we believe that
the Java edition was developed as a final design, contrasting many other legacy applications
that were constantly extended or changed. Important features like transaction management
were not added after the design phase, instead Berkeley DB JE had a clear design with all
features from the very beginning1.

Additionally, Berkeley DB JE is designed and implemented in an object-oriented way,
e.g., it organizes code into classes and uses inheritance for code reuse. We have chosen
Berkeley DB JE because it represents a modern, state of the art application where we can
evaluate the advantages of AOP compared to a clean object-oriented design. Specifically,
we avoid distorted results that arise from effects specific to procedural programming or
weakly designed legacy application.

As an embedded, light-weighted database engine Berkeley DB JE does not support
many features known from conventional relational database management systems, like an
ad-hoc query language. Nevertheless it still contains many features that appear promising to
refactor into optional features. Among them are high concurrency, full ACID transactions,
automatic recovery, a high performance no-rewrite storage system, indexes, an in-memory
cache and various background threads.

Berkeley DB JE2 is a mid-sized application of about 84,000 LOC and 300 classes. As a
broadly used and commercially supported open source application, it is well documented,
especially its usage and interface methods.

1Berkeley DB JE introduces some new concepts that are different from the C version. The most important
is a different persistence layer using a non-rewrite log instead of a traditional combination of one database
file and rotated log files. Also the memory management is very different from the C version. Still the basic
concepts were known at design time and not altered afterwards.

2For the remainder of this thesis we refer only to the Java edition of Berkeley DB and therefore drop the
JE appendix of the name.
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1.2 Structure of this Thesis

The remainder of this thesis is structured as follows:

Chapter 2 In Chapter 2 we give some background on the used technology and terminology.
First we present the architecture of Berkeley DB. Then, we introduce the concept of
Feature-Oriented Programming and Aspect-Oriented Programming and the aspect-
oriented language AspectJ. Finally, we give an overview of AHEAD.

Chapter 3 In Chapter 3 we present our refactorings. We start with a description of the
infrastructure used, and a list of features we identified in Berkeley DB. Then, we
describe the actual refactoring process and which refactorings were applied. Finally,
we analyze the resulting features, their size, and their dependencies, so that we can
show the feature model.

Chapter 4 In the following Chapters 4–7 we discuss results and insights from the case
study. We start by analyzing the expressiveness of the AspectJ language constructs in
Chapter 4 and show which language constructs were used and how. We also discuss
limitations found during the refactorings and how they can be solved.

Chapter 5 Subsequently, in Chapter 5 we discuss the Feature Optionality Problem known
from FOP and its consequences regarding our case study. We compare two ap-
proaches to cope with this problem and analyze whether they are practical and whether
they scale for large feature models.

Chapter 6 In Chapter 6 we focus on a major difference between FOP and AOP: the order-
ing of features. We evaluate recent proposals for an ordered weaving based on our
refactorings. We focus especially on Shared Join Points and Accidental Weaving.

Chapter 7 The last major discussion focuses the understandability and maintainability of
the refactored features in Chapter 7. First, we analyze the features’ source code and
the AspectJ syntax regarding readability and understandability. Then, we discuss
issues of maintainability and evolution based on our experience and review possible
suggestions for improvements.

Chapter 8, 9 Finally, we relate our case study to former work in software engineering in
Chapter 8, before we conclude the thesis in Chapter 9, put our results in perspective,
and list suggestions for further work.
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Chapter 2

Background

2.1 Architecture of Berkeley DB

To refactor Berkeley DB, an understanding of its architecture is necessary. Furthermore,
Berkeley DB uses some terms differently from common literature on (relational) databases.
Therefore, we start with an introduction of the architecture and concepts of Berkeley DB.

We depict the overall architecture of Berkeley DB in Figure 2.11. It consists of five parts:
the access methods, the B+-tree, the concurrency and transaction system, the caching and
buffering system and finally the persistence layer. The remainder of this section describes
this architecture and how the depicted features integrate in this architecture.

Access Methods. The application that integrates Berkeley DB communicates with the
database through various access methods and objects. From the application’s perspective,
the database system consists of the following parts: the environment, multiple databases,
secondary databases, and cursors.

The environment represents an instance of the database system. To use Berkeley DB
the application creates an environment handle for a specific directory and sets its global
settings, e.g., if the whole system is writable. An environment is a container for multiple
databases. A database in Berkeley DB is an entity that can store key-value pairs. Databases
are identified by a name and can be compared to tables in common relational databases
systems. Databases have Application Programming Interface (API) methods to store and
retrieve single entries and maintain various per-database settings, e.g., support for duplicate
keys. Secondary databases are used to access data from a database with a second key.
Therefore, they can be compared to indexes in traditional database systems. Finally, cursors
are a mechanism to iterate over databases. They are usually used to access, store or delete
more than one key-value pair.

An application uses these objects to access the database to read or write data. They
are well documented in manuals and the API documentation of Berkeley DB. Below these

1This figure is an extended and more detailed version of the general architecture shown at the Oracle
Technology Network (http://www.oracle.com/technology/products/berkeley-db/je).

http://www.oracle.com/technology/products/berkeley-db/je
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Figure 2.1: Architecture Overview of Berkeley DB.

public interfaces Berkeley DB uses a completely different data structure to store data in a
B+-tree. The mechanisms described above are the ones the user of the database can access.

B+ Tree. In Berkeley DB all data is stored internally as key-value pairs in one B+-tree.
A B+-tree is a B-tree where each Internal Node (IN) contains only keys, while the Leaf
Nodes (LNs) contain the data, in this case one individual key-value pair (Comer, 1979).
Using this approach a broader tree can be achieved by fitting more keys into one internal
node and record level locking is possible by locking only the leaf nodes.

To increase performance internal nodes are not cleaned or deleted when leaf nodes are
deleted in Berkeley DB, but only marked. The removal of unnecessary entries in the tree,
i.e., checking an underflow condition for INs, is done periodically by a background dae-
mon thread called INCompressor. The INCompressor runs every 5 seconds to perform the
necessary clean up operations. As a consequence of this lazy deletion approach, database
operations that involve deleting nodes are faster because they do not to deal with the re-
moval of keys from INs.

Concurrency and Transactions. Berkeley DB supports high concurrency for both read
and write operations. The application can use any number of threads to access concur-
rently the database. Additionally, it is even possible for two processes, i.e. two different
applications, to share one database, even though only one process can perform write op-
erations. This is uncommon compared to conventional database management systems in
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which applications access the database through one specific database process—the database
server—that exclusively accesses the database files.

To allow multi-threaded access on the database, Berkeley DB synchronizes most inter-
nal operations using a fine-grained self-written synchronization mechanism called latches.
Latches are created by a synchronization manager, that can be implemented with different
techniques, and are used to ensure that only one thread at a time can modify certain internal
data. For example, internal operations on tree nodes inside the B+-tree are usually latched.
Berkeley DB has no deadlock detection for latches, therefore the implementation has to
avoid deadlock itself by holding latches only for a short time and acquiring and releasing
them in a certain sequence.

The transaction system enforces atomicity, consistency, isolation, and durability (ACID)
of operations. The ACID requirements are implemented in different ways in the system.

Atomicity is guaranteed by a part called just ‘Transactions’ in Berkeley DB. In contrast
to common terminology the term Transaction in Berkeley DB only refers to the part respon-
sible for atomicity2. To achieve atomicity the user can request an transaction object from
the database, which he passes to all operations he wants to perform under this transaction,
before he calls commit or abort on this transaction object. Atomic transactions in Berkeley
DB are optional and can be turned off on both, environment and database level.

Consistency and isolation in Berkeley DB are achieved by the locking subsystem, which
locks database entries on record level. As database records are stored only in Leaf Nodes in
a B+-tree, only those need to be locked. For read operations four different isolation levels
are available, the highest being serializable isolation. For performance reasons it is possible
to lower the isolation level for specific operations to ‘repeatable read’, ‘read committed’ or
‘read uncommitted’.

There are different types of locker objects that are responsible for acquiring and releas-
ing locks. The used implementation depends on a variety of factors, including whether
atomic transactions are used and which isolation level is required. Locking is also optional
and can be turned off at environment level. When atomic transactions and locking are
turned off dummy locker objects are instantiated with empty lock and release methods.

Finally, durability is implemented on persistence level. When an operation is committed
all changed LNs are immediately written to the log and can be recovered in the event of a
crash.

To conclude, with a combination of the latching, locking and atomic transaction subsys-
tems an high concurrency system with full ACID compliant transactions was implemented.

Persistence Layer. The persistence layer of Berkeley DB is implemented in an unusual
way compared to most other database management systems. Many database management
systems and also the C version of Berkeley DB use a database file for all data and rotating
log files for emergency recovery. Typically, changes are synchronously written to a log
file and are asynchronously written to the database file. Once the database file is updated

2To distinguish between these different meanings we use the term ‘atomic transactions’ for the atomicity
subsystem called transactions in Berkeley DB and the term ‘transaction system’ to talk about the whole ACID
transaction system including locking.
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the database management system can overwrite or delete the log file unless it is needed for
additional backup purposes.

In contrast, Berkeley DB uses log files only. It attaches only new data to the end of the
log instead of changing it in a database file. This technique is called a no-rewrite log and
has various advantages. First, write operations are faster because they need to be written
only once. Second, the system does not have to deal with situations where it must replace
an entry with a newer, larger one which requires to relocate or to split the entry. Finally,
the no-rewrite log approach simplifies backup and restore, because log files can be copied
sequentially without having to worry about consistency and restore is already part of the
normal operation of the system.

On the other hand, this approach implies two problems that were avoided by traditional
approaches. First, log files grow constantly and add even updated entries to the end of the
log file. To delete or overwrite older log files is not possible because they still can contain
needed entries. Second, a recovery must be run every time the database system is loaded,
not only in the case of a crash. As mentioned above only LNs are written synchronously
to ensure durability and INs are written asynchronously only when they are removed from
the cache to improve performance, because they can be recovered from the LNs. Starting
at the end of the log, the recovery process reconstructs the B+-tree with the latest version of
the entries. Consequently, as the log file grows, also the recovery time increases.

The first problem of deleting old log files is tackled by using a sequence of smaller
log files and a background process simply called Cleaner. The persistence system uses
a sequence number to name and address individual log files. Once the current log file
has reached a size limit, the sequence number is increased and a new log file is created.
Contrasting log files in traditional database systems, Berkeley DB cannot rotate log files,
instead one file is created after another. To free unused disk space, the Cleaner process
cycles through the old log files and searches for files with a high number of entries that
were deleted or updated in a newer log file. If the number of obsolete entries exceeds a
certain limit, by default 50 % of all entries, the Cleaner copies those entries that were not
updated to the newest log file. When all entries are moved it deletes the old log file. This
way the Cleaner can ensure that the overhead costs of disk space inflicted by the non-rewrite
log architecture does not exceed a certain percentage of the database’s size.

The second problem of long recovery times is approached with a checkpoint subsystem.
To shorten this recovery time, a so called Checkpointer background thread is responsible to
write the latest version of all INs to the database in certain intervals, together with check-
point markers. At each completed checkpoint it is ensured that all changes to the INs, up
to the point in time where the checkpoint started, have been saved. Therefore, the Berkeley
DB must recover only potentially lost changes after the last completed checkpoint, thus
reducing the recovery time.

Using this persistence layer Berkeley DB is able to scale, from small databases, that
completely fit into main memory, up to databases that handle hundreds of gigabytes of data
(Oracle, 2006b).
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Caching & Buffering. To increase performance Berkeley DB uses various caches and
buffers. The most important are the in log buffers for read and write operations and the
in-memory cache that holds a part of the B+-tree. Furthermore, there are various minor
caching facilities for different purposes, e.g., caching file handles.

Log buffers are used for all Input/Output (I/O) operations and by default take 7 % of the
overall memory. When a node must be read from the log file, first the buffers are checked
if they contain the entry. A log buffer pool holds all the log buffers and maintains statistics
to calculate the buffer hit ratio.

Berkeley DB keeps an in-memory B+-tree that contains parts of the full B+-tree in the
log files as an cache. Some nodes like the root and the nodes for database names are always
kept in memory, while other nodes are loaded when needed and kept as long as memory is
available. When memory is needed, e.g., to load new parts of the database into memory,
some nodes of the in-memory B+-tree are released and – if changed – written to the log file.
The releasing of memory by removing nodes from the in-memory tree is called eviction
and done by the Evictor subsystem. Berkeley DB runs the Evictor synchronously before
memory is needed for an operation and additionally maintains it as as a background daemon
thread that always keeps memory usage below a certain level3. The eviction is executed by
removing all references to selected nodes, so that the garbage collector of the Java Runtime
Environment (JRE) can free the memory. To select which nodes should be released, the
Evictor uses a Least Recently Used strategy and additionally priorizies LNs on a high level
in the tree.

To determine the necessity for eviction Berkeley DB needs information about the cur-
rent memory usage. However, in the Java environment an application does not have access
to information about available memory or memory size of certain objects. Therefore Berke-
ley DB implements its own memory strategy. It monitors the memory usage by estimating
the size of all cached objects to approximate the overall memory usage using the so called
memory budget subsystem. With this approximated memory usage Berkeley DB can de-
cide when it needs to release memory by running the Evictor. To calculate the estimated
memory usage in the in-memory B+-tree, every node in the tree is given the ability to calcu-
late its own size based on the size of their content, like keys and values, and based on some
constants for the anticipated memory footprint of Java objects. Whenever a node is added,
changed or removed the memory budget is informed about this change. The memory usage
for other subsystems, e.g., locking, is calculated and updated similarly.

Using the in-memory B+-tree together with the memory budget and Evictor Berkeley
DB can efficiently use the assigned memory to cache database operations and increase
performance, even though memory management is not directly supported by the JRE.

3Per default the Evictor daemon thread runs on every change of memory usage and evicts nodes until the
memory usage is below 95 % of the available memory or that at least 512 kbyte of free memory are available.
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2.2 Refactoring

A refactoring is a behavior-preserving program transformation that updates an application’s
design and underlying source code (Tokuda and Batory, 2001). Usually refactorings are
performed to improve the design of an application in some respect, therefore Fowler defines
refactorings as following:

Refactoring (noun): a change made to the internal structure of software
to make it easier to understand and cheaper to modify without changing its
observable behavior. (Fowler, 1999, p. 53)

To refactor an application means to apply a series of refactorings to improve the appli-
cation, again without changing the observable behavior. In Fowler’s definition a refactoring
has the aim of making source code easier to understand and maintain. The need for refac-
torings is usually indicated by ‘code smells’. Code smells are observed effects that are
commonly regarded as bad design or bad coding style, including duplicated code, overlong
methods, large classes, long parameter lists and many more (Fowler, 1999, Chap. 3). For
such code smells there are known transformations that can fix these problems, e.g., move
duplicated code to a method or split large methods. These transformations are described
as refactorings and formalized to assure that they are behavior conserving (Fowler, 1999,
Chap. 5ff).

Refactorings are always named and often collected in catalogs for reference. Typi-
cally they first contain only an informal step-by-step description, but are often formalized
with pre-conditions and exact transformations that ensure their behavior-preserving char-
acter. Many modern Integrated Development Environments (IDEs) have build in support
for refactorings that automate these steps. For example in Eclipse a developer can select
from various refactorings and has to specify only few necessary parameters. The IDE then
performs the refactoring automatically.

In the following we show the Extract Method refactoring which we use frequently in our
case study. The Extract Method refactoring is applied on methods that are too long or hard
to understand. It moves some inner statements to a new method and calls the new method
from the original position in the long method. Thus, the original method is shorter and the
purpose of statement sequence is easier to understand because it is named by the method
name. When the statement sequence requires access to local variables, these must be passed
as parameters to the new method. In Figure 2.2 we show an example of the Extract Method
refactoring. An automated refactoring can do this automatically: after selecting the target
statements, it only requests the name of the new method as shown in Figure 2.3. All other
values are preselected automatically. Furthermore a tool ensures that the transformation is
behavior-preserving, e.g., by ensuring that the new method does not exist already.

Refactorings have several advantages. First, they automate design changes and can thus
significantly speed up the process of changing the source code. While error-prone manual
changes must be tested, automated refactorings can ensure a correct transformation (Tokuda
and Batory, 2001). Second, refactorings avoid the need for overly complex designs, as they
make later design changes easy. They also allow engineers to experiment with different
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1 p u b l i c c l a s s Environment {
2 p u b l i c vo id close(boolean force) {
3 prepareShutdownDaemons();
4 //close all databases
5 boolean success = t rue ;
6 f o r (Database db : openDatabases) {
7 success &= db.close(force);
8 }
9 i f (success || force)

10 shutdownDaemons();
11 }
12 }

(a) Original Code.

1 p u b l i c c l a s s Environment {
2 p u b l i c vo id close(boolean force) {
3 prepareShutdownDaemons();
4 boolean success =

closeDatabases(force);
5 i f (closeDatabases(force) || force)
6 shutdownDaemons();
7 }
8
9 p r i v a t e boolean closeDatabases(boolean

force) {
10 boolean success = t rue ;
11 f o r (Database db : openDatabases) {
12 success &= db.close(force);
13 }
14 re turn success;
15 }
16 }

(b) Refactored Code.

Figure 2.2: Extract Method Refactoring Example.

Figure 2.3: Extract Method Refactoring: Eclipse Dialog.
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designs and ease evolution. Therefore, they are elemental part of development approaches
like Extreme Programming (cf. Beck and Andres, 2004).

Note, in this thesis, we often use the term refactoring independently of immediate im-
provements of the source code. In fact, we will use refactorings in cases where they make
the source code quality worse by common standards, e.g., we will use the Extract Method
refactorings for single statements or even to create empty methods. We usually use the term
as defined by Tokuda and Batory (2001) as a behavior-preserving transformation. We use
refactorings as a tool to change source code without judging source code quality.

Finally, Hannemann et al. (2005) argue to use refactorings for intension-preserving
transformations instead of behavior-preserving . This means that refactorings are allowed
to change the behavior of the application as long as the original intension is maintained. We
do not follow this approach, because it is hard to determine the exact intension of legacy
code. For example, we could implement the synchronization code differently as long as it
still synchronizes the database operations, however such changes would be too dangerous
to perform, because we might miss some intended use cases, e.g., use cases that are not
yet covered by unit tests. Therefore, we perform only behavior-preserving transformations,
because thus we can ensure to also preserve the original intension.

2.3 Feature-Oriented Programming

Feature-Oriented Programming (FOP) is a design and implementation methodology for
programs and families of programs. The basic abstractions of FOP are features, which
are increments in program functionality. In Batory et al. (2004) a feature is defined as a
“product characteristic that is used in distinguishing programs within a family of related
programs.”.

The aim of FOP is to create a Software Product Line (SPL) out of a program family, in
which features are the main building blocks that reflect a structure of interest to stakehold-
ers. Products of an SPL are distinguished by their features. Technically, a software product
is composed from a base that contains the code shared by all members, and code that imple-
ments several features. Features implement program transformations, i.e., when composed
with a program, the feature adds and extends functionality. By selecting which features to
compose, it is possible to synthesize different programs from the same code basis.

Berkeley DB has several such features, for example, transactions, logging, different
I/O operations, or different access methods. There are possible configurations in which
Berkeley DB might be composed without any of these features or with a selection of them.
For example, a configuration without transactions can be much faster in a single-thread
environment.

There are many different ways to implement features, for example, Batory et al. (2004)
list layers, feature modules, metaclasses, collaborations, subjects, concerns and aspects. In
this thesis, we use aspects in collaboration with classes to implement features.

All features of a domain and their relationship are described in a feature model (Kang
et al., 1990; Czarnecki and Eisenecker, 2000; Batory, 2005). For example, certain features
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Figure 2.4: Feature Diagram Notations.
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Figure 2.5: Feature Diagram Example (adapted from Batory, 2005).

in a domain might be required, while others are optional or mutual exclusive. Furthermore,
some features might require other features and can only be used in combination. Tech-
nically, a feature model describes all configurations possible for an SPL of a domain. It
describes which features can be applied to the base code and which constraints are present.

Current methodologies organize feature models as trees, which can be visualized as fea-
ture diagram (Kang et al., 1990; Czarnecki and Eisenecker, 2000). In the frequently used
notation as depicted in Figure 2.4, the relationship between a parent feature and a child fea-
ture is either mandatory or optional. Furthermore, when a feature has multiple child features
there are three different relationship types: (1) and: all child features must be selected, (2)
alternative: one one child feature can be selected, and (3) or: one or more child features can
be selected. Additionally, we introduce an additional notation for constraints that cannot
be described in the tree structure. There are various graphical tools to model these feature
diagrams like AmiEddi4, FeatureIDE (Leich et al., 2005a), FeaturePlugin (Antkiewicz and
Czarnecki, 2004), or XFeature5.

In Figure 2.5 we show an example of a feature diagram with this notation. It consists
of the base code p and two child features r and s, where s is mandatory and r is optional.
The feature r has again two child features, where exactly one must be selected. The feature
s has two child features. Additionally, A must be selected when H is selected, because of a
constraint. One valid configuration for this example is p, s, B, another is p, r, s, H, A, B.

4http://www.generative-programming.org/
5http://www.pnp-software.com/XFeature/

http://www.generative-programming.org/
http://www.pnp-software.com/XFeature/
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1 p: [r] s;
2 r: G | H;
3 s: [A] B;
4 %%
5 H i m p l i e s A;

Figure 2.6: guidsl Grammar Example.

Feature models can also be described with feature grammars (de Jonge and Visser,
2002; Czarnecki et al., 2005; Batory, 2005) or logic programming (e.g., Mannion, 2002).
Feature grammars are especially useful to describe models in a computer readable format
and to specify constraints between features that can not be modeled with the relationships of
feature diagrams. In this thesis we use the guidsl grammar as introduced by Batory (2005).
The guidsl grammar is an iterative tree grammar, where features are defined in the form
‘A: B C; B: D E;’, which means that feature A has the child features B and C, and B itself
has the child features D and E. Optional features are expressed with square brackets (e.g.,
‘A: [B] [C];’), repetitions with an asterisk or a plus sign (e.g., ‘A: B* C+;’) and alternative
features with the pipe symbol (e.g., ‘A: B | C;’). Or relationships can be expressed with a
combination of the above (e.g., ‘A: [B]+; B: C | D | E;’). Additionally, the guidsl gram-
mar can express additional constrains, usually inclusions or exclusions (‘choosing feature
A automatically includes a given feature list’). Such constrains are described as logical
expressions like ‘A implies B or C or D;’ or ‘(A or B) and C implies D;’. For more details
on the guidsl grammar see Batory (2005).

In Figure 2.6 we show the guidsl grammar for the above feature diagram example. It de-
scribes exactly the same model, just with a different representation. In large feature models,
feature diagrams tend to become complex and hard to read. The grammar representation
helps to read such feature models and is easier to handle with a tool like guidsl.

2.4 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming paradigm that specializes on mod-
ularizing crosscutting concerns. It builds on previous technologies including procedural
programming and object-oriented programming, that have already made significant im-
provements in software modularity (Kiczales et al., 2001). It addresses specifically those
concerns that cut across whole systems, which traditional approaches are unable to modu-
larize.

In traditional procedural or object-oriented systems, certain concerns called crosscutting
concerns like logging, caching, synchronization, or policy enforcement are spread through-
out the program. Source code to implement these concerns, e.g., calls to logging methods,
are repeated (‘scattered’) in various methods of the program. It is not possible to encap-
sulate them in one coherent module, instead these calls are mixed (‘tangled’) with other
concerns in other modules.

AOP provides means to encapsulate these crosscutting concerns in so called aspects.
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An aspect is a module that implements a crosscutting concern. Aspects are usually imple-
mented in an aspect-oriented language, although the implementations differ significantly
between different languages.

Central to most aspect-oriented languages is a concept called quantification, that allows
aspects to make extensions in the form “In programs P, whenever condition C arises, per-
form action A” (Filman and Friedman, 2005). The condition is usually based on a pointcut
language that matches well-defined points in the execution of an program, called join points.
Every aspect-oriented language provides its own join point model, but in most languages
possible join points are method executions, class initializations or method calls. Some lan-
guages also provide advanced join points, e.g., throwing an exception. Pointcuts are used
to specify one or more join points. There are many different ways how pointcuts can be de-
fined, most languages support static conditions like “whenever method M is called”, others
support dynamic conditions like “when the call stack has reached a size over 20” or “when
the password was entered incorrectly for 5 times”. When the condition is fulfilled, i.e., the
pointcut matches the current join point, advice is executed to perform the action A.

Another characteristic often associated with AOP is obliviousness which describes that
the program can be developed oblivious of later application of aspects. This means that the
program’s code does not have to be prepared for the later extension by aspects. Filman and
Friedman (2005) describe the goal of obliviousness like this “Just program like you always
do, and we’ll be able to add the aspects later”. Obliviousness is controversial, because it
breaks encapsulation and can lead to incorrect extensions (e.g., Clifton and Leavens, 2003;
Koppen and Störzer, 2004; Aldrich, 2004; Murphy and Schwanninger, 2006).

A concrete and generally accepted definition of AOP is not available. AOP approaches
are diverse and which languages are aspect-oriented languages and which are not is fre-
quently discussed. However, the suggestion “Aspect-Oriented Programming is Quantifica-
tion and Obliviousness” by Filman and Friedman (2005) is often agreed on as definition.
Alternatively, AOP is sometimes defined simply by its aim, “modularizing crosscutting
concerns” (cf. Steimann, 2006).

AOP has gained popularity in both research and industry (cf. Sabbah, 2004; Steimann,
2006). There are many different aspect-oriented languages and aspect-oriented extensions
for almost every popular programming language.

2.5 AspectJ

AspectJ is a prominent representation of an aspect-oriented languages. It is an AOP ex-
tension to the Java programming language and comes with a fully functional compiler and
broad tool support, for example with an advanced plug-in for the Eclipse development en-
vironment (Kiczales et al., 2001; Clement et al., 2003). AspectJ has become very popular
and is the flagship implementation of the AOP community.

AspectJ is an Upward compatible and Platform compatible aspect-oriented language
extension to Java (Kiczales et al., 2001). This means that every Java program is also a valid
AspectJ program, and every AspectJ program can be compiled to standard Java byte-code,
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that is executable in standard Java virtual machines. Furthermore, AspectJ is designed to be
Tool compatible and Programmer compatible, meaning that it should be possible to extend
existing Java tools like IDEs or documentation tools with AspectJ in a natural way. AspectJ
should also “feel like a natural extension of programming with Java” (Kiczales et al., 2001).

The AspectJ language has matured in various releases. There are also different compil-
ers available, with minor differences in language semantics. In this thesis we use AspectJ
in the current version 1.5.3 and with the ajc compiler6.

Dynamic Crosscutting. The AspectJ join point model provides join points at nodes in
the runtime object call graph of the program (Kiczales et al., 2001). Thus, AspectJ can
extend join points at which an object sends or receives a method call, at which a member
variable is accessed, or at which an exception is handled. Further join points in AspectJ 1.5
are constructor calls or execution, static initialization execution, object pre-initialization,
object initialization, and advice execution (cf. AspectJ-Team, 2003).

In AspectJ, a pointcut is an explicit language construct used to select a set of join points
based on different conditions. It can expose also context data of the selected join points.
AspectJ provides various primitive pointcut designators, which a programmer can com-
pose to define anonymous or named pointcuts. A pointcut designator can be thought of
as a condition that is matched dynamically against the join points during execution. For
example the pointcut designator ‘call(void Database.get(Object))’ matches all method call
join points that call the get method on an instance of the Database class. Another pointcut
designator matches join points based on the class where it is defined, so ‘within(ClientA)’
matches all join points inside the ClientA class or its instances, e.g., all method execution,
method call, class instantiation, or constructor call join points. Individual pointcut desig-
nators can be combined with the operators ‘||’, ‘&&’, and ‘!’ like expressions in Java. For
example, ‘call(void Database.get(Object)) && !within(ClientA)’ matches all method call
join points to the specified method except those located in the ClientA class. This way, it is
possible to create complex pointcuts from few primitive pointcut designators.

The definition of a named pointcut is similar to the definition of a member variable or
a method in a class. The syntax is ‘[modifier] pointcut [pointcutname]() : [pointcut des-
ignators];’, so the above pointcut might be defined as ‘public databaseaccess(): call(void
Database.get(Object)) && !within(ClientA);’. Named pointcuts can be used in other point-
cuts, e.g., ‘databaseaccess() && within(ClientB)’.

As mentioned above, a pointcut can also expose data about the context, specifically the
current and the target objects and method parameters if those are available at the matched
join point. The values are then defined as parameters of the pointcut and collected with the
pointcut designators this, target, or args. For example, to expose the parameter from the
get method we extend the pointcut like this: ‘public databaseaccess(Object key): call(void
Database.get(Object)) && !within(ClientA) && args(key);’.

In Table 2.1 we list all available pointcut designators in AspectJ. Most pointcuts are
matched based on lexically comparisons and allow pattern expressions. For example the

6http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/
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call pointcut designator compares the specified method signature with the signature of the
join point. Using pattern expressions it is also possible to match different signatures, e.g.,
‘call(* get*(..))’ matches all calls to methods whose name start with ‘get’.

Although pointcuts to match join points dynamically in the program execution, for most
pointcuts the set of matched join points can be evaluated statically (Kiczales et al., 2001).
Pointcuts that match exactly one join point are called heterogeneous, while pointcuts which
match more than one join point are called homogeneous (Apel et al., 2006c,a).

Advice in AspectJ is a method-like mechanism that describes the action that should be
performed when a join point is matched with a pointcut. The advice statement can be exe-
cuted before, after or around the join point. An advice statement has the following syntax:
‘after() : [pointcut] { [advice body] };’. An advice statement can declare parameters, how-
ever these must be bound with values exposed by the pointcut, for example ‘after (Object
key) : call(void Database.get(Object)) && args(key) { print(key); }’.

The body of advice is similar to a method body. Only values declared in the advice dec-
laration can be used. Additional information about the extended join point can be accessed
through a special thisJoinPoint keyword. Another special case is around advice which im-
plements code around the matched join point. It can either call the original join point with
the proceed keyword, or replace the join point with a different implementation.

Static Crosscutting. An additional way to extend a program in AspectJ is through static
crosscutting. Static crosscutting modifies the structure of a program statically, e.g., intro-
duces new methods or alters the inheritance hierarchy. Static crosscutting is not part of
every aspect-oriented language and not included in the AOP definition of quantification.

The introduction of methods or member variables is done with a language construct
called Inter-Type Member Declaration (ITMD). This allows developers to introduce a
method or a member variable into other types. The syntax for an ITMD is similar to
a method or member variable declaration, but has the name of the target type as a pre-
fix to the name, e.g., ‘public void Database.lock() { [implemenation] }’ or ‘private int
Database.lockCount=0;’.

Static crosscutting in AspectJ furthermore can change the inheritance hierarchy. Thus,
it is for example possible to introduce a new interface and let various existing classes im-
plement this interface, e.g., ‘declare parents: *Node implements Comparable;’). With a
combination of declare parents and an ITMD it is even possible to introduce members
homogeneously into multiple types.

A static crosscutting construct usually used for policy enforcement allows to describe
pointcuts that create a compiler error or warning whenever a join point is matched by
this join point. As this must be calculated at compile time, only pointcuts that can be
matched statically are possible. An example of this construct is ‘declare error: call(void
Database.get(Object)) && within(Database): "do not call the get method internally"’,
which prevents compilation with an error message when any join point exists in Database
that calls the get method.
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Pointcut Designator Matched Join Points

call(MethodPattern) Method call join point whose signature matches
MethodPattern.

execution(MethodPattern) Method execution join point whose signature matches
MethodPattern.

get(FieldPattern) Field reference join point whose signature matches
FieldPattern.

set(FieldPattern) Field set join point whose signature matches
FieldPattern.

call(ConstrPattern) Constructor call join point whose signature matches
ConstrPattern.

execution(ConstrPattern) Constructor execution join point whose signature
matches ConstrPattern.

initialization(ConstrPattern) Object initialization join point whose signature
matches ConstrPattern.

preinitialization(ConstrPattern) Object pre-initialization join point whose signature
matches ConstrPattern.

staticinitialization(TypePattern) Static initializer execution join point whose signature
matches TypePattern.

handler(TypePattern) Exception handler join point whose signature matches
TypePattern.

adviceexecution() All advice execution join points.
within(TypePattern) All join points where the executing code is defined in

a type matched by TypePattern.
withincode(Pattern) All join points where the executing code is defined in

a method or constructor whose signature matches
Pattern.

cflow(Pointcut) All join points in the control flow of any join point P
picked out by Pointcut, including P itself.

cflowbelow(Pointcut) All join points in the control flow of any join point P
picked out by Pointcut, but not P itself.

this(Type) All join points where the currently executing object is
an instance of Type.

target(Type) All join points where the target object is an instance
of Type.

args(Type, ...) All join points where the arguments are instances of
the appropriate type.

if(BooleanExpression) All join points where the boolean expression
evaluates to true.

Table 2.1: AspectJ Pointcut Designators in AspectJ 1.5 (AspectJ-Team, 2003).
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1 p u b l i c a s p e c t Logging {
2 s t a t i c i n t e r f a c e Traceable {
3 String getState();
4 }
5 d e c l a r e parents : (Transaction || Database) implements Traceable;
6 p u b l i c String Transaction .getState () { /*return state for logging.*/ }
7 p u b l i c String Database.getState() { /*return state for logging.*/ }
8
9 p r i v a t e p o i n t c u t loggedMethods(Traceable obj): c a l l (* Database .*(Traceable )) &&

args(obj);
10 a f t e r (Traceable obj): loggedMethods(obj) {
11 trace(thisJoinPoint.getSignature.toString(), obj.getState ());
12 }
13 p r i v a t e vo id trace(String signature, String state) { /*print trace message*/ }
14 }

Figure 2.7: AspectJ Aspect Example.

Aspects. To implement pointcuts, advice or static crosscuts, a developer declares aspect
types. Aspect types are AspectJ’s modules to implement crosscutting concerns. Aspect
declarations are similar to class declarations: they define the type and its implementation.
They are either defined as top-level aspects in own source files or as inner-aspects of classes.
Aspects can contain pointcuts, advice, and the described static crosscuts which allow them
to crosscut other types. Furthermore, aspects can contain all possible class members like
methods or inner interfaces (Kiczales et al., 2001; AspectJ-Team, 2003).

A major difference between aspect and class types in AspectJ is that aspects are not
instantiated directly with an new expression, but are instantiated automatically by the sys-
tem. Aspects are initiated usually as singletons, but special instantiation commands based
on pointcuts are possible (cf. AspectJ-Team, 2003).

As an example we show an aspect that implements the crosscutting concern logging
and uses most language constructs introduced in this section in Figure 2.7. First, this aspect
declares an inner interface (Lines 2–4), then it changes the inheritance hierarchy so that
the Transaction and Database classes implement this interface (Line 5). ITMDs are used
to implement the interface’s method for both target classes (Lines 6, 7). Next, a pointcut
is defined that matches all call join points to methods in the Database class which use an
instance of the Traceable class as parameter (Line 9). Finally, an advice statement uses this
pointcut to call a trace method of the aspect (Lines 10–12), which implements the tracing
logic (Line 13). Thus, the aspect modularizes the crosscutting concern that otherwise would
be scattered over various classes in an object-oriented implementation.

2.6 AHEAD

AHEAD (short for Algebraic Hierarchical Equations for Application Design) is a model of
FOP based on step-wise refinement. An accompanying tool suite supports program devel-
opment in an AHEAD fashion (Batory et al., 2004). Step-wise refinement is a paradigm that
aims at building complex programs from simple programs by adding features incrementally.
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Figure 2.8: AHEAD Feature Modules.

In AHEAD these features are the primary abstractions of software modularity. Feature in
AHEAD can encapsulate different program representations like code, make files, documen-
tations, regression tests or aspects (Batory, 2004). A program is composed by sequentially
applying features to a base code, i.e., features are program transformations (Batory et al.,
2004).

In AHEAD each feature is implemented by a feature module in an distinct directory.
This directory is a “containment hierarchy of artifacts that can include multiple represen-
tations of an application” (Batory et al., 2004). This means that a directory can contain
different types of artifacts. Typical artifacts are source code files like Java files or aspects,
HTML files that contain documentation, and make files. All these artifacts can be refined
in a step-wise manner, i.e., as functions. It is possible to define functions that transform
arbitrarily nested containment hierarchies, down to a primitive artifact. These functions
can modify the containment hierarchy by either adding new nodes, e.g., adding new Java
classes or HTML files, or by modifying existing ones (Batory et al., 2004).

In Figure 2.8 we show an example of two features base and transactions. Both fea-
tures are defined in their own directories and have their own subdirectories to structure
files. The feature base implements a database engine with the two files Environment.java
and Database.java and also provides a documentation in form of an HTML file. The fea-
ture transactions contains the transformation that can be applied to the base feature. It
introduces two new classes in Txn.java and TxnManager.java and a new documentation
TransactionGuide.pdf. It also extends the Database class in a way that it uses the new trans-
actions. This transformation is specified in a AHEAD-specific Jak format7. An application
can be composed of either only the base code for a database engine without transaction
support, or of both features for a transactional database engine. To compose features, all
introductions are combined in a target directory and all transformations are applied. In our
example when both features are composed the hierarchy depicted in Figure 2.9 is created,
where Database.java is a modified version of the original Database.java file.

Most tools of the AHEAD Tool Suite deal with composing features and performing
transformations for different code artifacts. For example, the composer tool is used to man-
age the composition of different features. Tools like mixin, jampack, xak, balicomposer, or

7Jak is a superset of Java, used to describe extensions to Java sources. The Jak language is outside the
scope of this paper, for further information confer Batory et al. (2004).
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Figure 2.9: Composed AHEAD Feature Module.

bcmixin are used to compose specific artifacts like Jak files, XML files, grammar files, or
Java byte code files.

The AHEAD Tool Suite also provides sophisticated tools to integrate the features just
shown with a feature model as introduced in Section 2.3. For example, the guidsl grammar
can be used to specify the feature model including its constraints. The guidsl tool can then
be used to visualize this feature model, to specify a configuration, to check constraints and
design rules, and to debug the model (Batory, 2006). Due to the integration of feature model
and features, the visual selection of features can output a configuration file that is directly
used as input for the composition tools. Thus, the constraints of the feature model can be
enforced. The tool suite also provides an IDE which integrates the feature model to browse
and query features and to compose applications.

2.7 Summary

In this Chapter we described the architecture and the concepts of Berkeley DB, which are
required to understand the features refactored and discussed in this thesis.

Additionally, we introduced FOP and the concepts of features and feature models to
describe a domain. A graphical notation for feature diagrams and a grammar to describe
feature models were introduced. These are used later to describe features and their relations
in Berkeley DB and to reason about the composition.

Afterwards, we presented the concepts of AOP and the aspect-oriented language AspectJ.
In the remainder of this thesis we use AspectJ to implement features. To organize the source
code of features, we use AHEAD, a model with an accompanying tool suite for feature-
oriented programming.
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Chapter 3

Refactoring Berkeley DB with AspectJ

In this chapter we present our results in refactoring Berkeley DB with AspectJ. We first eval-
uate the infrastructure necessary for refactoring, followed by a description of how features
have been identified. Then the refactoring process is described, including some typical
examples. Finally we conclude with the analysis of the refactored features and a feature
model.

3.1 Infrastructure

Before the actual refactoring can be done it is necessary to provide an infrastructure for
composing the application from features. Unfortunately, AspectJ does not provide any
model or infrastructure how to handle optional aspects so that certain features can be re-
moved from the application at compile time. Furthermore it provides no cohesion mech-
anism to group aspects to a feature (cf. Lopez-Herrejon et al., 2005). The straightforward
approach is to encode a feature in one aspect and include or exclude this file from compila-
tion.

While configuration by manipulating the build path seems reasonable, AspectJ does not
provide a mechanism to handle dependencies or other higher level interactions. Addition-
ally, encoding a feature completely in one aspect is possible as shown in Section 2.5, but
often seems counterproductive as also observed by Murphy et al. (2001). We experienced
that refactoring of features is very complex and requires to write many AOP language con-
structs like advice or pointcuts. Therefore it became necessary to split large and complex
aspects into several pieces that are aspects as well that belong all to one feature to keep it
maintainable.

Consequently, the demand for an infrastructure suitable for refactoring features arose, so
that we decided to use the infrastructure of the FOP tool suite AHEAD (Batory et al., 2004).
In AHEAD, features are stored in different directories, also called containment hierarchies,
where each directory can contain multiple artifacts that belong to one feature. We followed
this approach and created a distinct directory for every feature which each contain one or
more aspects and optionally some classes.
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Furthermore, AHEAD provides an infrastructure to create feature models with the abil-
ity to express relationships, constraints, etc. (Batory, 2005), that we could reuse in our
project. To compile a project with a certain configuration AHEAD calls its own compiler
with an equation file listing all included feature directories. Similarly, in our project the
build path for the AspectJ compiler is adjusted for every configuration, so that the accord-
ing directories are included and compiled with their aspects and classes. This way, because
AspectJ does not have an own infrastructure, we impose the AHEAD infrastructure on this
AspectJ project.

3.2 Identification of Features

One of the most important questions in refactoring is the identification and selection of
features. Because the aim of this project is to refactor Berkeley DB into features and not
to refactor technical crosscutting code into aspects, it is necessary to search for conceptual
features instead of using Aspect Mining technologies to search for scattered code (cf. Sec-
tion 2.4). In this section we show how we located features and which potential features we
found by first reading the manual, then analyzing the parameters, and finally browsing the
source code.

We started to search for features using Berkeley DB’s ‘Getting Started Guide’ (Sleep-
ycat, 2006, p. 1f). The manual proudly presents the ‘major features’ of Berkeley DB. We
therefore searched for potential features in this list and tried to find and understand the ac-
cording pieces of code to evaluate a potential refactoring. The following list sums up our
findings for each ‘major feature’ described in the manual.

• Large database support. The support for large databases is a fundamental design
concept and influenced design decisions on almost every part of the application, espe-
cially persistence and caching. It is not possible to refactor a large database support
feature, because the developer could not decide which design decisions and which
code would belong to such a feature.

• Multiple thread and process support. The synchronization code required for this
multi-thread and multi-process support could be refactored in one or more features.
The refactoring into optional features could even increase performance when multi-
thread support is not required.

• Database records. The decision to support arbitrary objects as keys and values in the
database can be refactored to a feature. This feature would contain all the code that
is necessary to support non-trivial keys and large value objects and could potentially
improve code readability and maintainability1.

• Transactions. Similar to multi-threading, transaction management requires lots of
code. Transactions in Berkeley DB are already optional and can be switched off at

1The remaining code could, for example, only support Java’s primitive type long as keys and only values
with a fixed maximum size that always fit into buffers.
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runtime when the database is loaded. Refactoring transaction code into an optional
feature might provide benefits in code size and understandability. Turning transac-
tions off at build time might provide an increase of performance over the design time
switches and dummy objects currently used by Berkeley DB (cf. Section 2.1).

• Indexes. The support for indexes2 can be refactored into an optional feature for code
size reduction and improved understandability.

• In-memory cache. The in-memory cache of Berkeley DB is closely linked to other
parts of the caching and buffering subsystem as described in Section 2.1. The code
might be decomposed into different features for improved maintainability. The cache
or parts of it might also be replaced later by a different implementation in a different
feature, allowing the user to select which caching features and which implementations
he wants to use in his Berkeley DB configuration.

• Log files. As described in Section 2.1, the persistence layer of Berkeley DB uses
no-rewrite log files and thereby differs from most other database systems. The refac-
toring of the whole persistence layer or parts of it might improve understandability
and might even allow to exchange the no-rewrite log file approach with a different
implementation of the persistence layer, for example one using a traditional database
file.

• Background threads. The four background threads INCompressor, Evictor, Cleaner,
and Checkpointer (cf. Sections 2.1, 2.1, and 2.1) represent broader design concepts in
Berkeley DB. A refactoring seems only reasonable concerning their nature as back-
ground daemons. The actual tasks these threads perform belong to concepts of the
B+-tree, the persistence layer and caching. Nevertheless it might be useful to refactor
the concept behind these threads into a certain feature, e.g., the lazy deletion of tree
nodes using the INCompressor or the asynchronous writing of INs using the Check-
pointer. This way these conceptual features are optional or even replaceable.

• Database environments. As described in Section 2.1 the environment object encap-
sulates multiple databases. This is a fundamental architectural decision on which the
persistence system, the access methods, and the concurrency implementation rely.
Additionally, the environment object is used all over the implementation for global
settings and objects. A refactoring might break up these dependencies, but presum-
ably it is very difficult because the environment design is a fundamental design deci-
sion.

• Backup and restore. The restore operation is an elemental part of the environment’s
loading process, required by the no-rewrite log persistence layer. Backups can be
done by copying files without any further tool support for the same reason. Conse-
quently backup and restore are currently not individual features. Nevertheless such

2Indexes are also called secondary databases in the Berkeley DB terminology (cf. Section 2.1).
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features would be necessary if a different persistence layer implementation was cho-
sen.

• JCA and JMX. Both the Java Connector Architecture (JCA) and the Java Manage-
ment Extensions (JMX) are extensions build on top of Berkeley DB to integrate it with
Java and especially Java 2 Platform, Enterprise Edition (J2EE) applications. These
extensions could be easily refactored into different features, but were not considered
in this project to remove dependencies on external libraries and concentrate on the
core system of Berkeley DB.

Overall this list of ‘major features’ from the manual allows to derive many features.
Although it is necessary to keep in mind that the previous analysis of features is already
based on an additional study of the source code, the manual provided a good starting point
for the understanding of Berkeley DB’s architecture.

The features derived from the manual are usually very large, like the whole transaction
or persistence layer, and they are fundamental design decisions, like the environment object
or the no-rewrite log concept. Furthermore they mainly reflect those features that are special
to Berkeley DB. For this case study a more balanced selection of small and large features
is necessary.

An alternative starting point are the configuration parameters of Berkeley DB, because
they sum up a list of variation points, often with the possibility to disable certain features
at runtime. The following list shows some potential features derived by a configuration
parameters analysis.

• Memory settings. The user of Berkeley DB can set various parameters concern-
ing the memory allocation, like maximum overall amount of memory or amount of
memory for caching and for buffering. So, it seems plausible to refactor the memory
management and allocation to one or more features.

• Read only operation. The environment can be created read only. To improve per-
formance and maintainability all operations using write access can be refactored into
a separate optional feature, drastically reducing the code size of the database engine.

• Transaction, locking and latches configuration. It is possible to configure trans-
actions, locking and thread synchronization with latches on a detailed level, e.g., the
user can set a timeout for transactions, the size of lock tables, or the isolation level.
These variation points appear to be a reasonable target for refactoring, enabling the
user to configure the database engine at build time.

• I/O buffers. It is possible to select the individual size of memory and the amount
of buffers used for I/O operations. The I/O buffers appear as reasonable feature for
refactoring, and might be a target for alternative implementation.

• I/O operations. There are five implementations for I/O operations. The user can
chose between different I/O frameworks and synchronized or chunked versions. This
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appeares as a good opportunity for alternative features where only the code of the
required features is compiled.

• Checksum read. Berkeley DB calculates a checksum for every entry it writes into the
log and validates it during reading. Although these checks are fast and the checksums
small, checksum writing and validation can be refactored into optional features to
increase performance and decrease log file size. This way not only the reading but
also the writing of checksums can be switched off.

• Memory-only log. It is possible to configure Berkeley DB to run only in memory,
without writing a log file. Even though this does not scale for large amounts of data,
it indicates that there are applications where the persistence layer is not required.
Therefore refactoring the complete persistence layer to an optional feature seems
desirable, to decrease code size and increase performance.

• File handle cache size. The file handle cache size parameter indicates the existence
of a file handle cache and motivates further code inspection. The file handle cache is
a small cache that can be refactored and is expected to improve code readability.

• Evictor and Cleaner settings. Various settings for the Evictor and the Cleaner (cf.
Section 2.1 and 2.1) indicate that a refactoring of the these subsystems, by having all
related design decisions in one feature might improve overall code readability. Some
parameterizable design decisions like the Evictor’s order or the Cleaner’s internal
look ahead cache might again be refactored into separate features.

• Debug options. Berkeley DB provides some debug options to log data, to check
leaking locks, and to yield threads after ‘strategic points’. These debug options are
usually switched off and provide utilities only for very specific purposes. They seem
like natural optional features, improving readability by freeing the database code from
debug code.

This list illustrates that the configuration parameters are a good source for features as well.
Contrasting the features described in the manual, this time we found features of varying
size and also some general purpose features like logging and I/O operations.

The above two methods to find features often require to read the source code for a better
understanding of the concept behind the described feature or the parameter. Nevertheless
we found some potential features only by carefully studying the source code. Often the
source code reading was initiated by another feature from one of the lists above. The
following list shows some additional features that were found while reading the source
code or refactoring other features3.

3This list includes only conceptual features, not implementation features. We also identified various imple-
mentation features, but we omitted them from the list for a better overview of the more important conceptual
features.
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• Statistics. Berkeley DB collects statistics about various parameters all over the ap-
plication. This includes statistics about almost every major part of the system, in-
cluding the overall memory usage, the number of locks held, or the data to calculate
the cache’s buffer hit ratio. The code to collect these statistics is always executed
independent of whether the statistics are required or not. Consequentially, it is rea-
sonable to refactor them into an optional feature to increase code readability or even
performance.

• Database operations. When analyzing the parameters, we found that refactoring all
write operations into a feature would be possible. When reading the source code,
we observed that it is possible to refactor the individual database operations, because
each operation usually introduces its own code fragments. For example the imple-
mentation of the remove database operation is about 200 LOC and spreads across
multiple classes, although it is only executed for this particular operation and reused
only once for the truncate database operation. To refactor operations like get, put,
remove, truncate or create into individual features might improve readability and
maintainability, and makes dependencies between these operations explicit.

• Disk full handling. Another specific piece of code checks I/O exceptions for a possi-
ble full disk cause. In this case the implementation tries to perform some emergency
operations and writes over existing code in the log file, as a clear exception to the gen-
eral concept of the no-rewrite log. This code can be refactored into a feature because
it injects some specific code for one specific use case in various classes. Thereby
code readability can be improved.

• Critical eviction. Critical eviction is a part of the Evictor subsystem. The Evic-
tor runs usually as background thread but before certain operations it is additionally
called synchronously to ensure enough space is available for the operation. These
synchronous calls are called critical eviction. Critical eviction is another conceptual
feature that can be refactored.

This list shows that it is possible to find additional features by reading the source code.
Overall, we found lots of potential features and have a good selection features of varying

size. We observed that searching for features starting on a high level using the manual and
configuration parameters is efficient to find conceptual features, but on a lower level reading
the source code even more features can be found. We estimate that further analysis will
find more features. The refactoring of the identified features seems promising, because an
improved readability, maintainability and performance is expected.

3.3 The Refactoring Process

The refactoring process followed a simple pattern: after the identification and selection of
a feature, all source code that belongs to this feature is tagged and removed; afterwards it
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is reintroduced again using AspectJ. Formally, it would be possible to use only the refac-
toring Extract Feature into Aspect as described by Monteiro (2004, p. 5ff) and Monteiro
and Fernandes (2005), however this description is vague and informal, and tool support is
not available. Hence we use a manual approach described in this section and illustrated by
examples taken from our refactorings of the memory budget and statistics features.

To tag and remove a feature’s source code we used an interactive and iterative approach.
Starting with the code section found when identifying a feature, e.g., interface methods or
the parameter definition code, we commented the code out, using a special tag inside the
comment. By searching iteratively for code that requires the removed code or is called by
the removed code, we could usually find most parts of a feature’s code basis.

For example, by removing the MemoryBudget class of the memory budget feature, we
were able to find various calls to this class by attempting to compile the code. Based on
these code fragments, we identified member variables used only in this feature. Even though
the variables do not create a compilation error when left inside the code, collecting data for
the memory budget feature is their only purpose, so that we could tag and remove them as
well. In the next iteration we found and removed all code that reference these variables,
usually to update the current memory usage. This way, we found the whole code basis of
the memory budget feature with only few iterations.

After we removed all code belonging to a feature, we tested the application for correct
behavior without this feature as shown below, given that the feature was optional. In a final
step we reintroduced the tagged code with AspectJ. Which AspectJ language constructs
were used for this reintroduction to recreating the old behavior depends largely on the type
of code refactored. In the following sections we show typical refactorings we used in this
project.

Basically there are two different ways how code can be reintroduces using AspectJ, it
can either introduce new classes or methods, or it can modify existing methods. Therefore
we discuss static introductions and method refinements separately. Afterwards we show
AspectJ’s advanced concept of homogeneous extensions and our approach to access local
variables. Finally we conclude by explaining how we verified correctness.

3.3.1 Static introductions

The simplest refactoring is to move whole interfaces, classes, methods or member variables
to a feature, where they are reintroduced statically. In contrast to method refinements, it
is not necessary to extend or modify existing methods, but also not possible to implement
interactions.

The refactoring of a class is simple and can be done without AspectJ constructs because
of the AHEAD infrastructure we imposed on the project (cf. Section 3.1). Consequentially,
a class is simply moved to the feature directory, where it is only included in the build
path if the feature is selected. In case that the package is changed when moving the class,
the object-oriented Move Class refactoring (cf. Pizka, 2004) is applied. Finally, it is also
possible to move the class as an public inner class into an aspect as described by Monteiro
and Fernandes (2005) as the Inline Class within Aspect refactoring. Interfaces are treated
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equally.
Method and member variable refactorings can be achieved by AspectJ’s ITMDs. The

code is removed from the class and reintroduced using an ITMD inside an aspect (cf. Lad-
dad, 2003, p. 95f). This refactoring is also known by the names Move Method from Class
to Inter-type respectively Move Field from Class to Inter-type (Monteiro and Fernandes,
2005) or Extract Introduction (Hanenberg et al., 2003). Figure 3.1 shows an example of a
refactoring with ITMDs.

1 p u b l i c c l a s s IN {
2
3 p r i v a t e long i nMemoryS i ze ;
4
5 vo id i n i tMemory S i z e ( ) {
6 i nMemoryS i ze = computeMemorySize ( ) ;
7 }
8
9 l ong computeMemorySize ( ) {

10 MemoryBudget mb = da t aba s e Imp l .
ge tDbEnv i ronmen t ( ) .
ge tMemoryBudget ( ) ;

11 . . .
12 re turn ca lcMemoryS i ze ;
13 }
14
15 ...
16 }
17
18 p u b l i c c l a s s EnvironmentImpl {
19 ..
20 p u b l i c MemoryBudget getMemoryBudget ( ) {
21 . . .
22 }
23 ...
24 }

(a) Original code.

1 p u b l i c c l a s s IN {
2 ...
3 }
4
5 p u b l i c c l a s s EnvironmentImpl {
6 ...
7 }
8
9 p u b l i c a s p e c t BudgetAsp {

10 p r i v a t e long IN.inMemorySize;
11
12 vo id IN.initMemorySize() {
13 inMemorySize = computeMemorySize();
14 }
15
16 l ong IN.computeMemorySize() {
17 MemoryBudget mb = databaseImpl.

getDbEnvironment().
getMemoryBudget();

18 ...
19 re turn calcMemorySize;
20 }
21
22 p u b l i c MemoryBudget EnvironmentImpl

.getMemoryBudget(){
23 ...
24 }
25 }

(b) Refactored code.

Figure 3.1: Static introductions using AspectJ’s ITMDs.

Monteiro and Fernandes (2005) consider the static introduction of code using ITMDs
as a ‘bad smell’ called Aspect Laziness if the additional code could be shared between
instances or is used only inside the feature. They propose to use aspect methods and a
map instead of ITMDs. For example, the refactoring of the feature STATISTICS introduced
many variables for temporary counters used only internally in the feature. The change
from ITMDs to aspect methods and maps can be achieved by applying the refactorings
Replace Inter-type Method with Aspect Method and Replace Inter-type Field with Aspect
Map described by Monteiro (2004, p. 28ff). It can alternatively also be achieved using
the perthis association of the aspect (cf. Laddad, 2003, p. 122ff) and member variables.
The latter approach is easier to implement because references to to original objects are not
needed in advice statements. On the other hand it is criticized for its weak conceptual
structure (Mezini and Ostermann, 2004), it increases overhead costs, and the method or
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variable can no longer be accessed from outside the aspect. Figure 3.2 compares all three
approaches on an example from the statistics feature.

Altogether we reintroduced 4 interfaces, 58 classes, 365 methods and 213 member vari-
ables during our refactoring of Berkeley DB. We only used the perthis association approach
in 6 cases and ITMDs in all others, because ITMDs are straightforward and the methods
introduced are often called by other features.

3.3.2 Method refinements

Static introductions can only introduce code but cannot implement interactions. Therefore,
it is also necessary to extend existing methods. These extensions are called method refine-
ments. In AspectJ method refinements are implemented using advice (cf. Section 2.5).

Even though many papers simply name the refactorings of these extensions Extract
Advice or Extract Fragment into Advice and do not distinguish between different cases (e.g.,
Monteiro and Fernandes, 2005, 2004; Iwamoto and Zhao, 2003; Hanenberg et al., 2003),
there are various different refactorings that can be applied to move code from a method to
an advice declaration. The selected refactoring depends on the structure and position of the
target code that should be refactored inside the method.

Extract Simple Method Refinement. The easiest refactoring for a method refinement,
which we call Extract Simple Method Refinement (ESMR), is used when the target code is
placed at the beginning and/or the end of a method. It can also be used if it is possible to
move the target code to the beginning or the end of the method without behavior changes.

In these cases the method’s execution join point can be extended with a before or after
advice statement. The target code is then moved from the method to the advice. If the
target code frames the original method, e.g., with a try-finally statement, around advice can
be used. Figure 3.3 shows an example taken from refactoring the memory budget feature,
reintroducing a method call at the beginning of a method.

We used the ESMR refactoring 214 times in the Berkeley DB project. This refactoring
is simple and sound. It is also described as Extract Beginning respectively Extract End
(Binkley et al., 2005, 2006), or Extract Advice refactoring (Hanenberg et al., 2003) and
proven formally by Cole and Borba (2005).

Extract Call Refinement. In cases where the target code is not at the beginning or the
end of the method and cannot be moved there, other refactorings are needed. If the target
code is placed before or after a certain method call in the code, often a refactoring we call
Extract Call Refinement (ECR) can be used. Using this refactoring, the call join point of
a method call next to the target code is advised. Figure 3.4 shows an example of an ECR
refactoring, where the target code is located directly next to the adjustCursorsForInsert
method.

Because of limitations in the pointcut language of AspectJ this join point cannot be
quantified directly, but must be narrowed down with a combination of a call and a with-
incode pointcut. We therefore also use the term statement extension emulation, because
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1 c l a s s LogBufferPool {
2 p r i v a t e long nCacheMiss = 0;
3 LogBuffer getReadBuffer( l ong lsn) throws DatabaseException {
4 ...
5 i f (foundBuffer == n u l l )
6 nCacheMiss ++;
7 re turn foundBuffer ;
8 }
9 ...

10 }

(a) Original code.

1 p u b l i c a s p e c t LogBPoolStats {
2 p r i v a t e long LogBufferPool.nCacheMiss = 0;
3 a f t e r (LogBufferPool lbp) r e t u r n i n g (LogBuffer foundBuffer ) :
4 e x e c u t i o n (LogBuffer LogBufferPool.getReadBuffer( l ong)) && t h i s (lbp) {
5 i f (foundBuffer == n u l l )
6 lbp.nCacheMiss ++;
7 }
8 ...
9 }

(b) Refactored code using ITMDs.

1 p u b l i c a s p e c t LogBPoolStats {
2 p r i v a t e WeakHashMap pool2nCacheMiss = new WeakHashMap ();
3 a f t e r (LogBufferPool lbp) r e t u r n i n g (LogBuffer foundBuffer ) :
4 e x e c u t i o n (LogBuffer LogBufferPool.getReadBuffer( l ong)) && t h i s (lbp) {
5 i f (foundBuffer == n u l l ) {
6 Long nCacheMiss = (Long) pool2nCacheMiss.get(lbp);
7 i f (nCacheMiss == n u l l ) nCacheMiss = new Long(0);
8 pool2nCacheMiss.put(lbp, new Long(nCacheMiss .longValue () + 1));
9 }

10 }
11 ...
12 }

(c) Refactored code using aspect map.

1 p u b l i c a s p e c t LogBPoolStats perthis( e x e c u t i o n (* LogBufferPool.*(..))) {
2 p r i v a t e long nCacheMiss = 0;
3 a f t e r () r e t u r n i n g (LogBuffer foundBuffer ) :
4 e x e c u t i o n (LogBuffer LogBufferPool.getReadBuffer( l ong)) {
5 i f (foundBuffer == n u l l )
6 nCacheMiss ++;
7 }
8 ...
9 }

(d) Refactored code using perthis association.

Figure 3.2: Different Versions of Refactored Introductions.
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1 p u b l i c c l a s s IN {
2 ...
3 vo id rebuildINList(INList inList) throws

DatabaseException {
4 i n i tMemory S i z e ( ) ;
5 inList.add( t h i s );
6 f o r ( i n t i=0; i<nEntries; i++) {
7 Node n = getTarget(i);
8 i f (n != n u l l ) {
9 n.rebuildINList(inList);

10 }
11 }
12 }
13 }

(a) Original code.

1 p u b l i c a s p e c t BudgetAsp {
2 before (IN in) :
3 e x e c u t i o n ( vo id

IN.rebuildINList(INList))) &&
t h i s (in) {

4 in.initMemorySize();
5 }
6 }

(b) Refactored code.

Figure 3.3: Extract Simple Method Refinement Refactoring.

we emulate statement join points—that are not supported by AspectJ—inside a method by
advising call statements inside this method. Due to this approximation the refactoring is
constrained to cases where the method contains only one call to the advised method, or
alternatively to those cases when all calls inside a method can be advised with the same
code.

In refactoring Berkeley DB, ECR refactorings were only used on the condition that
the target code belongs semantically to the advised method call, and therefore really is
an extension to the call. For example, in Figure 3.4 the memory usage must be updated
every time the cursor is adjusted inside the insertEntry1 method, therefore refactoring as
a call extension is reasonable. A semantic connection between the target code and the
advised method as condition is reasonable because otherwise further refactoring can move
the advised call to another potentially optional feature, thus changing the join point or
even creating implementation dependencies (cf. Section 3.5 and 5 for observations and
discussions about dependencies). ECR refactorings are therefore considered fragile, if not
semantically connected to the advised method.

We used this refactoring 121 times in the Berkeley DB project. The ECR refactoring is
also described similarly by Binkley et al. (2005, 2006) as Extract Before Call respectively
Extract After Call refactoring.

Extract Inner Method Refinement. In case the target code is inside a method, yet not
before, after or around a single method call, but before, after or around a whole sequence of
statements, e.g., an inner code block of a while loop, a different refactoring can be chosen,
we call Extract Inner Method Refinement (EIMR). In this case the sequence of statements
can be regarded as an ‘inner method’, i.e., a method nested inside another method as sup-
ported by languages like JavaScript, Ruby, or Pascal. Java does not support inner methods,
instead the object-oriented refactoring Extract Method (cf. Fowler, 1999, p. 110ff) can be
used to create a new method that is not nested but has the semantics of an inner method.
After this refactoring the new method can be advised from an aspect using the ESMR or
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1 p u b l i c c l a s s IN {
2 p u b l i c i n t insertEntry1(CR entry) throws DatabaseException {
3 ...
4 i f (nEntries < entryTargets.length){
5 byte[] key = entry.getKey();
6 i n t index = findEntry(key, true , f a l s e );
7 ...
8 entryStates [index] = entry.getState ();
9 nEntries ++;

10 upda teMemoryS i ze ( 0 , g e tEn t r y I nMemoryS i z e ( i nd e x ) ) ;
11 adjustCursorsForInsert(index);
12 setDirty( t rue );
13 re turn (index | INSERT_SUCCESS);
14 }
15 ...
16 }

(a) Original code.

1 p u b l i c a s p e c t BudgetAsp {
2 before (IN in, i n t index):
3 c a l l ( vo id IN.adjustCursorsForInsert( i n t )) && t h i s (in) && args(index) && with incode ( i n t

IN.insertEntry1(CR)) {
4 in.updateMemorySize(0, in.getEntryInMemorySize(index));
5 }
6 }

(b) Refactored code.

Figure 3.4: Extract Call Refinement Refactoring.

ECR refactoring.
Figure 3.5 shows an example of an EIMR refactoring, taken from the memory budget

feature. The first step is the object-oriented refactoring that extracts the statements between
the target code into a new method, which is simply called extractedMethod in this example.
After this refactoring the extracted method provides a join point for an ESMR refactoring,
that moves the target code to an execution advice inside of the aspect.

Similar to the ECR refactoring, we use this refactoring only if the Extract Method refac-
toring is reasonable semantically, i.e., if a developer can justify the refactoring even without
the subsequent ESMR or ECR refactoring. Additionally, we required that the subsequent
refactoring is semantically connected to the extracted method, too. Equally, as the seman-
tic condition for the ECR refactoring we require these semantic connections for stability
reasons during ongoing refactoring and for code understandability.

We used the EIMR refactoring 15 times in the Berkeley DB project. It can be for-
mally described by a combination of the Extract Method refactoring and the ESMR or ECR
refactoring, thus there is no need for further proof.

Hook methods. In all other cases where neither the ESMR, the ECR, nor the EIMR
refactoring can be applied, the hook method refactoring can be used as a last resort. In this
refactoring an explicit join point is created for the target code, by creating an empty method
and calling it from a position next to the target code. We call this empty method hook
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1 p u b l i c c l a s s IN
2 p u b l i c boolean deleteEntry ( i n t index , boolean maybeValidate)
3 throws DatabaseException {
4 ...
5 i f (index < nEntries) {
6 upda teMemoryS i ze ( g e tEn t r y I nMemoryS i z e ( i nd e x ) , 0 ) ;
7 i n t o l d S i z e = computeLsnOverhead ( ) ;
8 f o r ( i n t i = index; i < nEntries - 1; i++) {
9 setEntryInternal(i + 1, i);

10 }
11 clearEntry (nEntries - 1);
12 upda teMemoryS i ze ( o l d S i z e , computeLsnOverhead ( ) ) ;
13 nEntries --;
14 setDirty( t rue );
15 ..
16 } ...
17 }
18 }

(a) Original code.

1 p u b l i c c l a s s IN
2 p u b l i c boolean deleteEntry ( i n t index , boolean maybeValidate)
3 throws DatabaseException {
4 ...
5 i f (index < nEntries) {
6 extractedMethod(index);
7 nEntries --;
8 setDirty( t rue );
9 ..

10 } ...
11 }
12 p r i v a t e vo id extractedMethod( i n t index) {
13 f o r ( i n t i = index; i < nEntries - 1; i++) {
14 setEntryInternal(i + 1, i);
15 }
16 clearEntry (nEntries - 1);
17 }
18 }
19 p u b l i c a s p e c t BudgetAsp {
20 vo id around(IN in, i n t index) :
21 e x e c u t i o n ( vo id IN.extractedMethod(..))
22 && t h i s (in) && args(index) {
23
24 in.updateMemorySize(in.getEntryInMemorySize(index), 0);
25 i n t oldSize = in.computeLsnOverhead();
26 proceed(in);
27 in.updateMemorySize(oldSize, computeLsnOverhead());
28 }
29 }

(b) Refactored code.

Figure 3.5: Extract Inner Method Refinement Refactoring.
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method because its only purpose is to provide a join point—a hook—for further extension4.
After the creation of the hook method, the ESMR or ECR refactoring can be applied.

The hook method refactoring cannot handle target code that frames statements, e.g.,
synchronization code or a surrounding try-finally block. In some cases such framing can
be resolved with two hook method refactorings, one for the opening code and one for the
closing code. In cases where the code cannot be split it is necessary to use an extract
method refactoring without the semantic connection described above. As this refactoring is
only done to create join points without semantic justification, we count these refactorings
as hook method refactorings as well, opposed to the catalog specified by Monteiro and
Fernandes (2005).

We consider hook methods as bad design, because they are empty or arbitrarily chun-
ked methods in the source code, that are also present even if the refactored feature is not
included. Hook methods do not serve any function except providing join points for aspects.
Murphy et al. (2001) call them “‘unnatural’ methods [...] with no apparent purpose”. They
therefore decrease the readability and maintainability of the source code. Consequently we
tried to avoid hook methods and used the other refactorings wherever possible during our
refactorings. Nevertheless we still had to use the hook method refactoring 164 times.

The hook method refactoring is also informally described as a “Refactoring of a field
access or method call relationship” by Hannemann et al. (2003).

3.3.3 Homogeneous extensions

All previous refactorings focused on moving a single piece of target code to an aspect in-
side a feature. In cases where the same target code appears in multiple classes or multiple
methods, AspectJ’s ability for homogeneous extensions can be used, for both, static intro-
ductions and method refinements.

To introduce the same method or member variable into multiple classes a homogeneous
ITMD can be used (cf. Section 2.5). However in our refactoring of Berkeley DB we never
had to introduce the same method or the same member variable in multiple classes.

Also all method refinements shown in Section 3.3.2 can be done homogeneously using
pattern expressions and the or operator in AspectJ’s pointcut language (cf. AspectJ-Team,
2003; Laddad, 2003, p. 67ff). A pattern can be defined to extend multiple methods with a
same advice created by an ESMR refactoring, or a pattern can be used to advise calls inside
different methods with the same code gained from a ECR refactoring. When using hook
methods, it is even possible to call the same hook method multiple times and then advise
all calls homogeneously.

Formally this can be described as multiple individual refactorings where the duplicated
advice is afterwards combined to a homogeneous one using the Extract Pointcut refactoring
described and proven by Cole and Borba (2005).

4Hook methods are also known as dummy methods (de Alwis et al., 2000; Eaddy and Aho, 2006), though
we prefer the term hook method because it indicates the usage of the method as hook for pointcuts.
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3.3.4 Accessing local variables

A specific problem shared by all method refinements is the access to local variables from
the aspect, also observed by Sullivan et al. (2005). AspectJ allows only to access parameters
and member variables, but does not provide a concept to expose the context to access the
local variables of a join point (Hanenberg et al., 2003). For example, in Figure 3.6 it is not
possible to extract Lines 5–7, because they could not access the local variable errors from
an advice statement. This section shows the workarounds we used in our refactorings.

1 p u b l i c c l a s s Environment {
2 p u b l i c String close() {
3 StringBuffer errors = new StringBuffer();
4 /* long code to check for errors */
5 i f ( e r r o r s . l e ng t h >0) {
6 Tracer . t r a c e E r r o r ( Tracer . ENVCLOSE , e r r o r s ) ;
7 }
8 environmentImpl.close();
9 re turn errors.toString();

10 }
11 ...
12 }

Figure 3.6: Required Access to a Local Variable.

Basically there are three different approaches to access a local variable, the first moves
them to the enclosing class as member variables, the second uses a method object, and the
third creates a hook method.

The first approach is simple: instead of a local variable a member variable of the en-
closing class is used. Unfortunately this breaks common coding conventions and it is only
behavior conserving under certain conditions. For the developer it becomes harder to see if
a member variable is actually a local variable, that has only been defined as member vari-
able for potential extension, or if it is a real member variable that stores object data and
can be used in multiple methods. They are similar to global variables that are avoided in
common programming practice. This coding convention break decreases readability and
hence the overall code quality. Additionally, the member variable approach does only work
when it can be guaranteed that the method is only executed by one thread at a time, i.e.,
in synchronized code or single thread applications. Otherwise the same variable can be
used by two different executions of the same method causing incorrect behavior. Because
Berkeley DB is an application that supports high concurrency, we did not use the member
variable approach in our refactorings.

The second approach uses the object-oriented refactoring Replace Method with Method
Object as described in Fowler (1999, p. 135ff). This creates an object for the method
and moves local variables to members variables of that object. Contrasting the previous
approach each method execution is encapsulated in an own object and therefore the syn-
chronization problems do not occur. However there is no tool support for this refactoring in
Eclipse and we consider method objects as counterintuitive and hard to read, therefore we
have not used them in our refactorings.
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Finally, the third approach to access local variables uses hook methods. The local vari-
ables that the target code requires are passed as parameters. This way AspectJ can advise
the hook method and access the local variables by intercepting the parameters. To change
a single local variable by the target code, it is returned by the hook method. Figure 3.7
shows an example from the ATOMICTRANSACTIONS feature, where an advice changes a
local variable and needs to access another one. The hook method only returns the parame-
ter directly while the aspect can change the return value with an around advice statement.
When multiple local variables are changed, there is a problem because a Java method can
only return one value. This can be solved either by an object that encapsulates multiple
values or by using multiple hook methods instead.

1 p u b l i c c l a s s LN {
2 ...
3 p u b l i c long delete(DatabaseImpl database, ..., Locker locker) throws DatabaseException {
4 ...
5 LogEntryType entryType;
6 i f ( l o c k e r . i s T r a n s a c t i o n a l ( ) ) {
7 en t r yType = LogEnt ryType . LOG_DEL_DUPLN_TRANSACTIONAL;
8 } e l s e {
9 entryType = LogEntryType.LOG_DEL_DUPLN;

10 }
11 ...
12 DeletedDupLNLogEntry logEntry = new DeletedDupLNLogEntry(entryType , ...);
13 ...
14 }
15 }

(a) Original code.

1 p u b l i c c l a s s LN {
2 ...
3 p u b l i c long delete(DatabaseImpl database, ..., Locker locker) throws DatabaseException {
4 ...
5 LogEntryType entryType = LogEntryType.LOG_DEL_DUPLN;
6 entryType = hook_getEntryType(locker , entryType);
7 ...
8 DeletedDupLNLogEntry logEntry = new DeletedDupLNLogEntry(entryType , ...);
9 ...

10 }
11 p r i v a t e LogEntryType hook_getEntryType(Locker locker , LogEntryType entryType) {
12 re turn entryType;
13 }
14 }
15 p u b l i c a s p e c t TransactionalLN {
16 LogEntryType around(Locker locker) :
17 c a l l (LogEntryType LN.hook_getEntryType(Locker , LogEntryType))
18 && args(locker , LogEntryType) {
19 i f (locker.isTransactional())
20 re turn LogEntryType.LOG_DEL_DUPLN_TRANSACTIONAL;
21 e l s e
22 re turn proceed(locker);
23 }
24 }

(b) Refactored code.

Figure 3.7: Hook Method to Access and Change Local Variables.
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Using hook methods to access local variables leads to the same problems as using hook
methods to refine methods: the hook method does not have a semantic justification, but
complicates the source code for solely technical reasons. Nevertheless in refactoring Berke-
ley DB we were frequently forced to used hook methods to access local variables.

The topic of accessing local variables with AspectJ is discussed detail in Section 4.2.4.

3.3.5 Verifying Correctness

The verification of the correctness of a refactored feature is an important and difficult task.
The application must be correct with and without the feature.

The easiest way to demonstrate the correctness of the refactoring is to use proved refac-
torings only and rely on a tool to avoid errors. Unfortunately, there are only two tools
available as a prototype that supports only some refactorings and could therefore not be
used productively for our refactorings5. Furthermore this approach ensures correctness
when the refactored feature is included in the application, but cannot ensure correctness of
the application without the feature.

A common approach to verify an application is the use of a test suite designed for this
application. Berkeley DB has a large test suite covering many parts of the application, in-
cluding many of the refactored features. Theoretically the test suite can be used to test the
composed application. Unfortunately this requires to observe the test suite during refac-
toring and to propagate changes like the renaming of a method to the test suite as well.
Furthermore, when runtime decisions have been changed to build time decisions, it is also
necessary to update the test suite. Additionally, the test suite supports tests only on the com-
plete application where all features are included. To be able to test the application only with
certain features, or even without any features, it is necessary to have an feature-oriented test
suite, where each test is assigned to a feature and special tests are designed for feature in-
teractions. During refactoring, this requires severe changes to the test suite, which again
are hard to verify themself and it makes the whole refactoring process more complicated6.

We therefore decided not to use the test suite, but to use only compiler syntax checks
and simple runtime tests, for a basic verification. We are aware that these tests are not suffi-
cient for a productive use of the refactored Berkeley DB system. However, other problems
discussed later prevent such a productive use anyway, therefore our tests are sufficient to
analyze the basic concept of refactoring Berkeley DB using AspectJ.

The problems of correct aspect weaving with AspectJ and fragile pointcuts are discussed
in detail in Section 7.

5The tool AspectJRB, version 0.10 (Oct. 2003) is available at http://dawis.icb.uni-due.de/?id=
210.

6On the other hand, for new application where the developer knowns why he creates tests and to which
features they belong, feature-oriented tests suites were already used sucessfully (e.g., Hunleth et al., 2001)
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3.4 Refactored Features

Using the approach presented in the previous section, we refactored 38 features. We se-
lected the features based on the lists identified in Section 3.2. In the following list we give
a short overview of the refactored features:

• Logging. The first feature we refactored was the LOGGING subsystem, which con-
tains a Tracer class and various trace calls. Afterwards this feature was split into 10
different smaller features for different logging handlers7 and logging levels.

• Concurrency and transactions. From the concurrency and transactions subsystem
we refactored only some parts: the ATOMICTRANSACTIONS subsystem responsible
for atomicity, the FSYNC feature for file synchronization, and the LEAKCHECKING

that checks if all locks and transactions are released when the database is shut down.
We also tagged and partly refactored the LATCHES feature that implements fine
grained thread synchronization in many parts of the database, and we tagged the
LOCKING feature but did not refactor it.

• Statistics. We refactored the STATISTICS system into a features. This feature col-
lects various statistics from different parts all throughout Berkeley DB and introduces
methods to query these statistics.

• B+-tree. From the B+-tree subsystem, we refactored various features. The EVICTOR

feature encapsulates the basic code to free memory from the cache. It is called by the
EVICTORDAEMON feature implementing its nature as a background thread and the
CRITICALEVICTION feature implementing synchronous Evictor calls before certain
operations. The INCOMPRESSOR and DBVERIFIER features remove deleted nodes
from the tree and verify a valid status. Finally the TREEVISITOR feature provides a
service class to traverse the B+-tree for the STATISTICS and DBVERIFIER features.

• Memory Budget. We refactored the MEMORYBUDGET feature, which assigns mem-
ory to the individual caches and buffers, and observes the memory usage of Berkeley
DB to call the Evictor when memory runs out.

• Database operations. To represent the possible refactoring of all database opera-
tions, we refactored the two operations to delete and truncate a database into the
features DELETEDBOPERATION and TRUNCATEDBOPERATION.

• Persistence layer. All other features belong to the persistence layer. We refactored
the I/O operations into five alternative features IO, NIO, CHUNKEDNIO, SYNCHRO-
NIZEDIO, and DIRECTNIO for different I/O implementations. The Checkpointer

7Following the naming conventions from the Java Logging API, handlers are objects used for dif-
ferent output media. Berkeley DB implements three handlers to print logging messages to the console
(LOGGINGCONSOLEHANDLER), to a file (LOGGINGFILEHANDLER) or to the database log (LOGGINGDB-
LOGHANDLER).
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has a feature for its implementation as a daemon thread (CHECKPOINTERDAEMON)
and two optional configuration parameters CPBYTESCONFIG and CPTIMECONFIG.
The Cleaner is also refactored into a daemon thread CLEANERDAEMON and its
look ahead cache feature LOOKAHEADCACHE. Finally we refactored the small
persistence features checksum validation of all read and write operations (CHECK-
SUMVALIDATION), file handle caching (FILEHANDLECACHE), handling of out of
disk errors (DISKFULLERRORHANDLING), and locking of the database directory
(ENVIRONMENTLOCK).

The 38 refactored features are representative of the much longer list of possible features
identified in Section 3.2 and provide a selection of features with different sizes. We stopped
the refactoring when it became a routine—but still laborious—process, and we did not
expect any further insights from more refactoring.

3.4.1 Feature size

Already during the identification of features in Berkeley DB, we noticed a significant dif-
ference in size between the features. This was confirmed by the refactoring process. To
analyze the influence of the size on the refactoring process and other results discussed later,
it is necessary to categorize the features their size.

To determine the size of a feature, we need metrics. A classification based only on
the commonly used LOC metric is not suited because it does not credit the complexity
of feature interactions. Features with with various small, collaborating extensions can be
very hard to develop and maintain whereas features that are large in terms of LOC but only
implement few long extensions can be simple. Therefore we use the number of introduced
aspects and classes, the number of ITMDs and pieces of advice, and finally the number of
affected types as additional metrics (cf. Table 3.1).

To collect these statistics we build two tools called abcstats and ajdtstats. The first is
build upon the alternative AspectJ compiler abc (cf. Avgustinov et al., 2005). This tool uses
the abstract syntax tree of the compiler to count various static source code statistics used in
this paper. The second tool is build upon the AspectJ Development Tools (AJDT) Eclipse
plug-in (cf. Clement et al., 2003) and collects dynamic statistics about the weaved aspects.
Table 3.2 shows the size we measured for the refactored features.

Based on these metrics, the features can be roughly divided by size into four groups:
small, medium, large and very large. Small features contain only one aspect and few point-
cuts. For example the I/O features, LEAKCHECKING, ENVIRONMENTLOCK and FILE-
HANDLECACHE belong to this group. Medium features typically consist of few aspects,
the number of advice and introductions is between 10 and 40. In contrast to small features
medium features typically affect multiple classes. In these group there are eight features,
among them EVICTORDAEMON, TREEVISITOR, and DELETEDBOPERATION. Large fea-
tures contain many—in our features 70 to 350—advice declarations or ITMDs, usually
distributed in more than 10 aspects. In this groups, there are five features: ATOMICTRANS-
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Metric Definition

LOC Lines of code, excluding comments, empty lines, and lines three
or less non-blank characters.

Aspects (Asp.) Number of aspects that the feature contains, including both, top
level and inner aspects.

Classes (Cla.) Number of classes that the feature introduces, including both, top
level and inner classes.

Advice (Adv.) Number of advice declaration the feature contains, e.g., before,
after, after returning, around.

ITMD Number of methods or member variables introduced by the fea-
ture with Inter-Type Member Declarations.

Affected Types (AT) Number of types (classes, interfaces, aspects) that are extended
by the feature either with advice or with ITMDs.

Table 3.1: Used Metrics

ACTIONS, LATCHES, MEMORYBUDGET, STATISTICS, and LOGGING 8. Very large features
are features with more than 500 advice declarations or ITMD. Such very large features were
not refactored as explained in the next section.

Overall, we refactored several features of very different size, thus we are able to analyze
effects of scale in this project.

3.4.2 Very large features

The above selection of refactored features does not include very large features that were
proposed as possible features in Section 3.2, like the whole transaction system, the whole
persistence layer, or all write operations. This is due to the observed effect that refactorings
were already hard to do and fragile in small or medium-sized features (cf. discussion in
Section 7). The attempt to refactor the transaction system was canceled because of the
enormous effort required and due to the fact that some problems, that already occurred
in smaller features like the Parameter Introduction and Passing Problem in the ATOMIC-
TRANSACTIONS and MEMORYBUDGET features, but that occurred much more frequently
in these very large features.

Because the attempt to refactor the transaction system was stopped, we pursued another
way to validate our assumption that refactoring would be possible and that the small scale
problems also occur in very large features. We did so by tagging all source code that
belonged to the transaction system. This way, it was easy to remove the code while still
having markers to refactor it later once the basic problems are solved or an automatic tool
is available. The tagging of the transaction system was done using a separate branch of the
version control system CVS where all code for the transaction system was commented out.

8Even though the LOGGING feature is divided into 10 features, which are all small or medium sized each,
the whole logging systems can be considered as a large feature.
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No. Feature LOC Asp. Cla. Adv. ITMD AT

1–10 LOGGING 1115 45 1 95 36 24

11 ATOMICTRANSACTIONS 715 13 1 34 49 19
12 LEAKCHECKING 43 1 0 1 3 2
13 FSYNC 130 1 2 1 2 1
14 LATCHES 1835 19 6 104 51 28

15 STATISTICS 1867 28 7 83 262 30

16 EVICTOR 371 1 3 4 13 9
17 EVICTORDAEMON 71 1 0 5 4 3
18 CRITICALEVICTION 63 3 0 7 3 7
19 INCOMPRESSOR 425 2 0 10 11 4
20 TREEVISITOR 138 1 1 7 16 9
21 DBVERIFIER 391 4 2 3 11 10

22 MEMORYBUDGET 958 14 1 64 53 28

23 DELETEDBOPERATION 226 2 1 13 17 13
24 TRUNCATEDBOPERATION 131 1 0 0 5 3

25 CHECKSUMVALIDATION 324 1 1 17 14 8
26 CHECKPOINTERDAEMON 110 2 1 7 6 4
27 CPBYTESCONFIG 41 1 0 3 4 5
28 CPTIMECONFIG 59 1 0 2 4 5
29 CLEANERDAEMON 129 1 0 6 3 2
30 LOOKAHEADCACHE 84 1 2 3 1 2
31 FILEHANDLECACHE 101 1 1 4 1 2
32 DISKFULLERRORHANDLING 41 1 0 1 3 2
33 ENVIRONMENTLOCK 61 1 0 3 2 2
34 IO 38 1 1 1 0 1
35 NIO 26 1 1 1 0 1
36 CHUNKEDNIO 52 1 1 1 0 1
37 SYNCHRONIZEDIO 26 1 1 1 0 1
38 DIRECTNIO 6 1 0 1 0 1

Table 3.2: Feature Size.
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Using the diff tool it is now possible to find all the places where code must be reintroduced
again with an aspect. Using this technique it is possible to estimate the required effort for
the refactoring and to search and measure the transaction system’s code.

After all, the refactoring of very large features is possible but problems already observed
in smaller features make the refactoring of these very large features very time-consuming
while not promising new insights. The experiences from the attempted refactoring and the
marking of all transaction code support this assumption.

3.5 Feature Model

The previous section presented the refactored features independently. However, a simple
feature list is not sufficient to express optional or alternative features or a Software Product
Line. For the flexible usage and save composition it is necessary to describe the dependen-
cies and constraints. As described in Section 3.1 we use a classic feature model and impose
it on our AspectJ project.

Section 2.3 has shown that a feature model captures all these dependencies and allows
to reason about the composition of the application. The feature model can be expressed in
feature diagrams or grammars. A feature diagram for all 38 features is shown in Figure 3.89.
Furthermore a grammar representation using the guidsl format (Batory, 2005), is shown in
Figures 3.9.

The first glance on the feature diagram shows that many dependencies exists and the
overall feature model is quite complex, even though Berkeley DB in still a small Software
Product Line, according to the number of refactored features. To discuss the whole feature
model would exceed the scope of this thesis, therefore we only discuss some characteristics
and analyze the basic types of dependencies.

Our first observation is that almost all features are optional. The high amount of optional
features is caused by our approach to identify features. We explicitly searched the manual
and the applications parameters to search for subsystems and design decisions that could
be removed or replaced (cf. Section 3.2). Small required parts of the application, that
implement a design decision and could be refactored into features, were not found with
this approach. On the other hand large required conceptual features were found, but were
usually part of fundamental design decisions like the B+-tree or the non-rewrite log. These
design decisions would result in very large features that were not refactored as explained in
Section 3.4.2.

A second observation is that alternatives (cf. Section 2.3) are hardly used in the feature
model. In most cases the user can configure Berkeley DB by selecting one or more sub-
features, in some cases even on a very detailed level like the logging subsystem shown in
Figure 3.10, where the user can configure log levels and log handlers. In contrast, alterna-
tives where the user has to select exactly one of multiple features, are only used in the I/O
subsystem. Its alternatives are shown in Figure 3.11. The absence of alternatives, which

9The classic tree representation of the feature diagram would not fit onto a single page, therefore a star-like
layout has been chosen. Still the diagram shows a tree structure with ‘Berkeley DB’ as the tree’s root.
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Figure 3.8: Feature Diagram of Berkeley DB.
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1 BerkeleyDb : [FLogging] Persistency [*@\featureStatistics*@] [MEMORYBUDGET] Concurrency
DbOperation * Btree BASE;

2
3 Concurrency
4 : LATCHES
5 | FSYNC
6 | ATOMICTRANSACTIONS
7 | LOCKING
8 | LEAKCHECKING;
9

10 Logging : [LOGGINGFILEHANDLER] [LOGGINGCONSOLEHANDLER] [LOGGINGDBLOGHANDLER] [LOGGING-
FINEST] [LOGGINGFINER] [LOGGINGFINE] [LOGGINGINFO] [LOGGINGCONFIG] [LOGGINGSEVERE]
LOGGINGBASE;

11
12 Persistency : PersistencyFeatures* IOFeature;
13
14 IOFeature
15 : [DIRECTNIO] NIOType
16 | [SYNCHRONIZEDIO] IO;
17
18 NIOType
19 : NIO :: NotChunked
20 | CHUNKEDNIO;
21
22 PersistencyFeatures
23 : CHECKSUMVALIDATION
24 | FILEHANDLECACHE
25 | DISKFULLERRORHANDLING
26 | ENVIRONMENTLOCK
27 | [CPTIMECONFIG] [CPBYTESCONFIG] [CHECKPOINTERDAEMON]
28 | [LOOKAHEADCACHE] [CLEANERDAEMON];
29
30 Btree : [DBVERIFIER] [TREEVISITOR] [INCOMPRESSOR] [Evictor];
31
32 Evictor : [CRITICALEVICTION] [EVICTORDAEMON] EVICTOR;
33
34 DbOperation
35 : DELETEDBOPERATION
36 | TRUNCATEDBOPERATION;
37
38 %% //constraints
39 EVICTOR or EVICTORDAEMON or LOOKAHEADCACHE or STATISTICS i m p l i e s MEMORYBUDGET;
40 LEAKCHECKING i m p l i e s STATISTICS;
41 CRITICALEVICTION i m p l i e s INCOMPRESSOR;
42 CPTIMECONFIG i m p l i e s CPBYTESCONFIG;
43 DELETEDBOPERATION i m p l i e s LOCKING and EVICTOR and INCOMPRESSOR and MEMORYBUDGET;
44 LATCHES i m p l i e s LOCKING and LEAKCHECKING and DELETEDBOPERATION and EVICTOR and FILEHANDLE-

CACHE and FSYNC and INCOMPRESSOR and MEMORYBUDGET and STATISTICS and TREEVISITOR and
TRUNCATEDBOPERATION and DBVERIFIER;

45 LOGGINGSEVERE i m p l i e s ENVIRONMENTLOCK;
46 LOGGINGFINE i m p l i e s LOCKING and EVICTOR and INCOMPRESSOR;
47 LOGGINGINFO i m p l i e s CHECKSUMVALIDATION and MEMORYBUDGET;
48 LOGGINGBASE or LOGGINGFINEST i m p l i e s ATOMICTRANSACTIONS;
49 MEMORYBUDGET i m p l i e s EVICTOR and LATCHES;
50 STATISTICS i m p l i e s LOCKING and EVICTOR and FSYNC and INCOMPRESSOR and ATOMICTRANSACTIONS

and TREEVISITOR;
51 ATOMICTRANSACTIONS i m p l i e s LOCKING and DELETEDBOPERATION and TRUNCATEDBOPERATION;
52 TRUNCATEDBOPERATION i m p l i e s DELETEDBOPERATION;
53 DBVERIFIER i m p l i e s INCOMPRESSOR and TREEVISITOR;

Figure 3.9: guidsl Grammar of Berkeley DB.
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are otherwise common to SPLs, can be explained with the fact that an existing application
was refactored. Only in those rare cases where the original application already had differ-
ent alternative implementation for the same conceptual feature, alternative features can be
expected in a feature model. In Berkeley DB the I/O access methods were implemented in
three different ways. The user can chose which operation to use with parameters. In the
other cases there was only one implementation for each feature, as expected in a normal
application. Nevertheless, the refactoring into features lays the foundations for developers
to write alternative features to the refactored ones.

Finally, we can see many dependencies in the feature model. All in all, 62 % of the
refactored features require other features, either because they reference them, or because
they extend them. Furthermore these dependencies can be categorized as semantic depen-
dencies or as implementation dependencies. Semantic dependencies occur because certain
features only make sense in combination with other features. For example CRITICAL-
EVICTION can only be executed when the EVICTOR feature is available. In contrast, im-
plementation dependencies only occur because of the feature’s implementation. A simple
example is the TRUNCATEDBOPERATION feature that internally uses the delete operation
from the DELETEDBOPERATION feature for its implementation; it deletes and recreates
the database instead of deleting every entry individually. Another less obvious example is
the STATISTICS feature that requires seven other refactored features including EVICTOR,
MEMORYBUDGET, TREEVISITOR, and LOCKING, because it collects data about all these
other—now optional—features of the system.

Table 3.3 lists all dependencies between in the refactored and marked features, divided
by these categories. It shows that there are far more implementation dependencies than
semantic dependencies, and while semantic dependencies are usually caused by references,
and most of them are already covered by the parent–child relationships in the tree model,
implementation dependencies usually exist because one feature extends others. Further-
more it shows that on the implementation level some features i.e., LATCHES, LOGGING,
MEMORYBUDGET, DELETEDBOPERATION, and STATISTICS, influence many others or
are required by many others.

During the refactoring described in this chapter we made several observations. In the
following four chapters we discuss the most important of those. First we analyze the ex-
pressiveness of the AspectJ language and discuss the possibilities and limitations of refac-
toring features with AspectJ from a technical perspective. Afterwards, we discuss the order
of refactoring and feature composition. Third, we analyze the feature dependencies and
discuss the feature optionality problem, before finally, we focus on readability and main-
tainability of the resulting code.
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Reference Extensions
Semantic CPBYTESCONFIG ⇒ CHECKPOINTER CRITICALEVICTION ⇒ EVICTOR

dependency CPTIMECONFIG ⇒ CHECKPOINTER ATOMICTRANSA. ⇒ LOCKING

DIRECTNIO ⇒ NIO ∨ CHUNKEDNIO DBVERIFIER ⇒ INCOMPRESSOR

EVICTOR ⇒ MEMORYBUDGET

EVICTORDAEMON ⇒ EVICTOR

SYNCHRONIZEDIO ⇒ IO
Implementation CPTIMECONFIG ⇒ CPBYTESCONFIG CHECKPOINTER ⇒ MEMORYBUDGET

dependency DELETEDBO. ⇒ MEMORYBUDGET CRITICALEVICTION ⇒ INCOMPRESSOR

LATCHES ⇒ MEMORYBUDGET DELETEDBOPERATION ⇒ EVICTOR

LEAKCHECKING ⇒ STATISTICS DELETEDBOPERATION ⇒ INCOMPRESSOR

LOGGINGBASE ⇒ ATOMICTRANSA. DELETEDBOPERATION ⇒ LOCKING

LOGGINGFINEST ⇒ ATOMICTRANSA. EVICTORDAEMON ⇒ MEMORYBUDGET

STATISTICS ⇒ MEMORYBUDGET LATCHES ⇒ DELETEDBOPERATION

STATISTICS ⇒ TREEVISITOR LATCHES ⇒ EVICTOR

TRUNCATEDBO. ⇒ DELETEDBO. LATCHES ⇒ FILEHANDLECACHE

DBVERIFIER ⇒ TREEVISITOR LATCHES ⇒ FSYNC

LATCHES ⇒ INCOMPRESSOR

LATCHES ⇒ LEAKCHECKING

LATCHES ⇒ LOCKING

LATCHES ⇒ STATISTICS

LATCHES ⇒ TREEVISITOR

LATCHES ⇒ TRUNCATEDBOPERATION

LATCHES ⇒ DBVERIFIER

LOGGINGINFO ⇒ CHECKSUMVALIDATION

LOGGINGSEVERE ⇒ ENVIRONMENTLOCK

LOGGINGFINE ⇒ EVICTOR

LOGGINGFINE ⇒ INCOMPRESSOR

LOGGINGFINE ⇒ LOCKING

LOGGINGINFO ⇒ MEMORYBUDGET

LOOKAHEADCACHE ⇒ MEMORYBUDGET

MEMORYBUDGET ⇒ EVICTOR

MEMORYBUDGET ⇒ LATCHES

STATISTICS ⇒ EVICTOR

STATISTICS ⇒ FSYNC

STATISTICS ⇒ INCOMPRESSOR

STATISTICS ⇒ LOCKING

STATISTICS ⇒ ATOMICTRANSA.
ATOMICTRANSA. ⇒ DELETEDBO.
ATOMICTRANSA. ⇒ TRUNCATEDBO.

Table 3.3: Feature Dependencies.
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Chapter 4

Expressiveness of AspectJ Language
Constructs

During the refactoring process we reached the limits of AspectJ several times and had to
express refactorings in ways we consider unintuitive or inelegant. While most of the code
could be refactored into features using the refactorings described in Section 3.3, we found
pieces of code that were not so easy to refactor and that required major changes to the
original source code. In this section we describe which language constructs and their limits
and we discuss possible improvements.

4.1 AspectJ Language Constructs

In order to discuss the expressiveness of AspectJ we examine which language constructs
were used. Our evaluation extends the evaluation criteria proposed by Apel et al. (2006a):
(1) We focus on the heterogeneous extensions static introductions and method refinements,
(2) we continue with the advanced concepts of weaving restrictions, call pointcuts, and
conditional extensions that are special to AspectJ, (3) finally, we examine AspectJ’s homo-
geneous extensions.

4.1.1 Static Introductions

Static introductions are simple constructs to introduce new interfaces, classes, methods,
or member variables as shown in Section 3.3.1. We used static introductions frequently
during our refactorings. Overall we introduced 4 interfaces, 58 classes, 365 methods and
213 member variables. Compared to overall 484 dynamic extensions discussed below, the
majority of all extensions are static.

We did not need special statements like declare error, declare soft, or declare parents,
which are unique to AspectJ.
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4.1.2 Method extensions

A basic dynamic extension is a unconditional method extension. As described with the
ESMR refactoring in Section 3.3.2, this extension is done with AspectJ by advising an
execution join point.

During refactoring Berkeley DB, basic dynamic extensions have been used 214 times,
in 44 % of all dynamic extensions. The low percentage already indicates that this basic
extension is not sufficient for all kinds of refactorings. We needed frequently extensions
with a finer granularity than extending whole methods.

4.1.3 Call extensions

Call pointcuts can be used to extend all calls to a target method. This extension is similar
to a method extension of an execution join point described above, but exposes additional
information about the caller.

It is possible to restrict the call pointcut with other pointcut designators like within or
withincode, to extend not all calls, but only calls located in certain classes or methods.
Such restrictions to extend only calls in one method can be used to emulate the extension
of individual statements inside a method. For example, when a call inside a method should
be synchronized it is possible to extend this call, not the entire method, with a call and
withincode pointcut combination. Such statement extension emulations are discussed later.
We used them frequently (54 times) during refactoring.

At the beginning of our refactorings, we often used call and execution interchangeably.
However, we rarely used call pointcuts where they could not be replaced with execution
pointcuts and where they were not used to emulate statement extensions. In these few cases
the additional information about the caller is needed. Call pointcuts are mainly just required
for statement extensions.

4.1.4 Conditional extensions

Using the pointcuts cflow, if, target, this, or args, AspectJ allows users to write conditional
extensions, i.e., extensions that are executed only when a runtime condition holds. Using
cflow pointcuts it is possible to extend a join point only when it occurs in the control flow
of another join point. Using the if pointcut extensions are executed only when a predefined
condition hold, e.g., a value is not null. Finally, the pointcuts target, this, and args can be
used to execute extensions only when an object satisfies a type condition.

All these conditional pointcuts, except the cflow pointcut, can be replaced with condi-
tions inside the advice as shown in Figure 4.1. The if pointcut can be replaced with an if
statement with the same condition inside the advice and the target pointcut can be replaced
with an instanceof condition. We prefer the unconditional version because we find it easier
to read. We therefore never use a conditional if pointcut and only used a conditional target
pointcut in few cases for a special problem explained later in Section 4.2.5.
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1 a s p e c t EvictorDaemon {
2 a f t e r (MemoryBudget mb) :
3 e x e c u t i o n ( vo id MemoryBudget.updateMiscMemoryUsage( l ong)) && t h i s (mb)
4 && i f (mb.getCacheMemoryUsage() > mb.cacheBudget ) {
5 mb.envImpl.alertEvictorDaemon();
6 }
7 ...
8 }
9 a s p e c t TxnBudget {

10 a f t e r (Txn txn):
11 c a l l (boolean Set.add(Object)) && t a r g e t (ReadLocksSet) && t h i s (txn) {
12 txn.updateMemoryUsage(READ_LOCK_OVERHEAD);
13 }
14 }

(a) Conditional extensions with if and target pointcuts.

1 a s p e c t EvictorDaemon {
2 a f t e r (MemoryBudget mb) :
3 e x e c u t i o n ( vo id MemoryBudget.updateMiscMemoryUsage( l ong)) && t h i s (mb) {
4 i f (mb.getCacheMemoryUsage() > mb.cacheBudget ) {
5 mb.envImpl.alertEvictorDaemon();
6 }
7 }
8 ...
9 }

10 a s p e c t TxnBudget {
11 a f t e r (Txn txn, Set set):
12 c a l l (boolean Set.add(Object)) && t a r g e t (set) && t h i s (txn) {
13 i f (set i n s t a n c e o f ReadLocksSet) {
14 txn.updateMemoryUsage(READ_LOCK_OVERHEAD);
15 }
16 }
17 }

(b) Unconditional extension with inner if and instanceof conditions.

Figure 4.1: Comparison of Conditional and Unconditional Crosscuts.

The pointcut cflow was never used to express a conditional extension. We tried to use
it for statement extension emulation but found that the withincode statement could be used
similarly, but without depending on runtime conditions, which is more efficient. Further-
more, the absence of cflow pointcuts can be explained by our refactorings, because there
is no equivalent expression to cflow in the original object-oriented code. Consequently,
while refactoring legacy code, we did not find conditions that depend on the control flow,
because this was already solved differently using an object-oriented design. However, it
might be possible to restructure the refactored code to use cflow pointcuts instead of other
potentially more spacious extensions, although these changes are complex and a thorough
understanding of the source code. We have not found such a case in our refactorings.

In summary, conditional extensions seem not useful for implementing features. This
is remarkable since conditional extensions are unique constructs of AspectJ that are not
supported by most other languages. Hence we expected some benefits.
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4.1.5 Exceptions

The exception handling of an application can be extended by AspectJ. AspectJ provides the
handler pointcut to capture exceptions and the possibility to advise methods only when they
throw an exception, e.g., ‘after() throwing (IOException e) : {. . . }’. Furthermore, advice
statements can catch exceptions or throw new ones.

In our refactorings we only tried to change the exception handling once. In the DISK-
FULLERRORHANDLING feature we catch an exception and execute a special strategy to
save data in case the disk space runs out. On the basis of a single feature we cannot discuss
exception handling with AspectJ. However, we observed a problem when extending join
points with code that can throw exceptions that we discuss later.

4.1.6 Homogeneous extensions

The ability to create homogeneous extensions is one of the key concepts that distinguishes
AOP from other technologies that could be used to implement features. Using AOP it is
possible to quantify over multiple join points to extend them with identical code.

First of all, AspectJ allows homogeneous static introductions, however, we did not need
them. We presume the reason for the absence is that object-oriented concepts like inheri-
tance already avoided repeated member variables or methods in the object-oriented design
of Berkeley DB.

Second, AspectJ allows various homogeneous dynamic extensions. We tried to apply
these homogeneous extensions during refactoring when we observed scattered or replicated
code. For example, the extension taken from the LATCHES feature shown in Figure 4.2 uses
two homogeneous pointcuts (Lines 8–17) to extend multiple methods with the identical
synchronization code.

Because there are different possibilities to define homogeneous extensions which each
have their individual problems we categorize homogeneous extensions into three groups:

• Pattern Expressions. The first group uses lexical pattern expressions to quantify
multiple join points. With these pattern expressions it is possible to extend multiple
methods or even methods from different classes. For example, the advice statement
with the pointcut ‘execution(void MemoryBudget.update*MemoryUsage(..))’ from
the EVICTORDAEMON feature extends the three methods updateTreeMemoryUsage,
updateMiscMemoryUsage, and updateLockMemoryUsage to wake the Evictor dae-
mon after each memory update. However, in Berkeley DB only 7 advice statements
use pattern expressions for homogeneous extensions and mostly only two methods
are extended.

• Explicit Enumeration. The second group are extensions where multiple join points
are advised but they are specified explicitly and connected with the ‘||’ operator, like
the pointcuts latchedWriteMethods and latchedReadMethods in Figure 4.2 (Lines 8–
17). These explicit homogeneous extensions were used 25 times in our refactorings,
however rarely to quantify more than two join points.



CHAPTER 4. EXPRESSIVENESS OF ASPECTJ LANGUAGE CONSTRUCTS 57

1 p u b l i c a s p e c t TriggerLatchExtension {
2 p r i v a t e SharedLatch EnvironmentImpl.triggerLatch;
3
4 a f t e r (EnvironmentImpl envImpl) :

e x e c u t i o n (EnvironmentImpl.new(File , EnvironmentConfig)) && t a r g e t (envImpl) {
5 envImpl.triggerLatch = LatchSupport.makeSharedLatch("TriggerLatch", envImpl);
6 }
7
8 p o i n t c u t latchedWriteMethods(Database db) : (
9 e x e c u t i o n ( vo id Database.addTrigger (DatabaseTrigger , boolean )) ||

10 e x e c u t i o n ( vo id Database.removeTrigger(DatabaseTrigger)) ||
11 e x e c u t i o n ( vo id Database.removeAllTriggers())
12 ) && t a r g e t (db);
13
14 p o i n t c u t latchedReadMethods(Database db) : (
15 e x e c u t i o n (List Database.getSecondaryDatabases()) ||
16 e x e c u t i o n ( vo id Database.notifyTriggers(Locker , DatabaseEntry , DatabaseEntry ,

DatabaseEntry))
17 ) && t a r g e t (db);
18
19 Object around(Database db) throws DatabaseException : latchedWriteMethods(db) {
20 SharedLatch triggerLatch = db.envHandle .getEnvironmentImpl().triggerLatch;
21 triggerLatch.acquireExclusive();
22 t r y {
23 re turn proceed(db);
24 } f i n a l l y {
25 i f (db.triggerList .size() == 0) {
26 db.triggerList = n u l l ;
27 }
28 triggerLatch.release();
29 }
30 }
31
32 Object around(Database db) throws DatabaseException : latchedReadMethods(db) {
33 i f (db.hasTriggers ()) {
34 SharedLatch triggerLatch = db.envHandle.getEnvironmentImpl().tiggerLatch ;
35 triggerLatch.acquireShared();
36 i f (db.triggerList == n u l l ) {
37 db.triggerList = new ArrayList ();
38 }
39 t r y {
40 re turn proceed(db);
41 } f i n a l l y {
42 triggerLatch.release();
43 }
44 } e l s e
45 re turn proceed(db);
46 }
47 }

Figure 4.2: Homogeneous Crosscuts for the Trigger Latch Extension.
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• Homogeneous Statement Extensions. Finally, the third group are call pointcuts that
implement homogeneous statement extensions. There are two typical cases when this
extension is used: (1) A method is extended only when it is called from certain meth-
ods, thus a typical call and within pointcut combination is used to emulate statement
extensions. (2) An method extension needs information about the caller. For exam-
ple, every call to a transactions lock method must be synchronized in the cursor that
calls this lock method. Therefore the advice needs a reference of the cursor object.

# join points

Category 2 3 4 > 4 ∑

Pattern expressions 5 1 1 0 7
Explicit enumeration 15 7 1 2 25
Homog. statement extensions 11 4 2 3 20

Table 4.1: Homogeneous Dynamic Extensions.

In Table 4.1 we show the number of homogeneous expressions by category and by
number of extended join points in Berkeley DB. The total number of homogeneous exten-
sions (52) is surprisingly low compared to 1072 heterogeneous extensions. In some cases
technical problems like the Exception Introduction Problem or the Statement Extension
Problem, prevented the use of homogeneous pointcuts, even for prototypical examples that
are similar to those described in AspectJ literature (e.g., Laddad, 2003). For example, the
LATCHES feature uses very similar code—inside one class often even repeated code—to
synchronize different code fragments. However, we advised whole methods that allow easy
homogeneous extensions only in few cases and frequently faced problems that required
workarounds. Accordingly different pointcuts were needed, including EIMR refactorings
or hook methods to extend the base code, what often prevented a homogeneous extension.
One example where a language problem prevented a homogeneous extension is the latching
code shown later in Figure 4.7 (p. 70), where the Exception Introduction Problem prevents
a call pointcut and the subsequent unsynchronized code prevents an execution pointcut (cf.
Section 4.2.3, p. 68). Therefore, the lexical pattern expressions—described often in AspectJ
literature to capture join points from multiple methods—are rarely used, only in 7 advice
statements. Additionally, code scattering has already been avoided by the object-oriented
design, so that the few cases where pattern expressions could be used never advised more
than 4 join points.

Furthermore, the benefit of homogeneous extensions is questionable. The scattered and
repeated code fragments are usually very small, in most cases it is one single call. Thus
often the code required to reintroduce these calls or match the join points, especially with
explicit enumerated pointcuts, is larger than the code size saved by removing the repetition.

Finally, most homogeneous extensions usually only extend join points inside one class.
Only 7 homogeneous enumerated or statement extensions extended join points in two differ-
ent target classes. This again indicates the low complexity of our homogeneous extensions.
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We have no single extension that crosscuts the whole application.
An interesting side effect we observed is that during the early refactorings we used pat-

tern expressions in almost all pointcuts, even though we did not use them for homogeneous
extensions, but to simplify the writing of pointcuts. For example, instead of the long full
signature ‘execution(void Database.notifyTriggers(Locker, DatabaseEntry, DatabaseEntry,
DatabaseEntry))’ we just used ‘execution(* Database.notifyTriggers(..))’. We often omit-
ted the return type and parameters when we did not face overloaded version of the method
with different return values or parameters that would require the exact specification. How-
ever, as we discuss later, these patterns are potentially dangerous during maintenance and
evolution.

Overall, we suspect that replicated, scattered code is mainly a problem of poorly de-
signed or grown legacy applications and can already be avoided to a large extent. However,
once the statement extension and exception introduction problems are solved homogeneous
expressions might still be a good help in some cases, even though we think that it only
will be used for a small fraction of all extensions as also indicated by recent research (Apel
et al., 2006a; Apel and Batory, 2006).

4.1.7 Other language constructs

Other than the constructs previously discussed, AspectJ provides possibilities to structure
aspects themselfs. Aspects can be abstract and part of an inheritance hierarchy. Also ex-
plicit pointcut definitions can be created to reuse pointcuts.

During our refactorings, we could not reuse any aspect implementations and therefore
did not use aspect inheritance. Similarly most advice declarations use anonymous pointcuts
that are not reused. We started with using only explicit pointcut but soon changed to anony-
mous ones because it reduces code size and is more convenient do develop. Only in 20 of
484 cases explicit pointcuts were used, partly because the anonymous pointcuts became too
complex and partly because pointcuts were used by two advice declarations. Additionally,
all explicit pointcuts were used locally, i.e., no advice referred to a pointcut from a different
aspect. The reused pointcuts usually occur in combination with more advanced statements
to emulate statement extensions.

This shows again that most of the advanced language constructs are not needed for
refactoring, and the basic extension mechanisms are used most.

4.2 Language Limitations

In the previous sections we discussed how existing constructs were used during our refac-
torings. Unfortunately we could not express not all problems with the existing AspectJ
constructs. Sometimes we had to change the source code or use workarounds because of
certain limitations of the AspectJ language. In this section we present the problems ob-
served during refactoring and discuss possible solutions.
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4.2.1 Statement Extension Problem

The problem that occurred most frequently and increased the required effort for refactoring
is AspectJ’s inability to extend individual statements inside a method. As already shown
for the ECR and EIMR refactorings in Section 3.3.2, it is often necessary to extend a pro-
gram at (before, after, around) an individual statement or a sequence of statements inside
a method. AspectJ’s join point model does not provide join points at statement level, but
some advanced pointcuts can be used to emulate statement extensions:

Mostly, we used call join points enable allow to quantify calls to a method, that are
situated inside other methods. Although AspectJ allows only to quantify all calls to a target
method at once, it is possible to narrow it down to all call join points inside a single method
using the withincode pointcut as shown in Figure 3.4 (p. 36). Hence, call join points can be
used to extend statements inside a method, under the condition that the statement is a call
statement and that it is the only call to the target method inside this method.

Similar to call join points, get and set join points are exposed at every access to member
variables and can be used to emulate statement extensions as well. Apart from call, set
and get join points, AspectJ does not provide any language constructs to extend individual
statements. So, only single method calls or access to member variables that are unique
inside a method can be extended. To extend a sequence of statements still workarounds like
the Extract Inner Method Refinement refactoring, or hook methods are necessary.

We used the call and withincode pointcut combination 54 times to emulate statement
extensions and used 172 extensions to hook method where statement extensions could not
be emulated. Compared to this, 214 extensions were simple method refinements, where
whole methods and not individual statements are extended. These numbers emphasize the
importance of statement extensions and explain our impression that the restriction to only
emulate statement extensions with AspectJ was a hindering and time consuming factor in
our refactorings.

Unfortunately, we know of no other approach that could be used to implement fea-
tures that supports statement extensions. On the contrary most alternative languages like
Jak in AHEAD support only simple method refinements, and do not offer any emulation
possibilities. From this perspective the emulation of statement extensions in AspectJ is an
improvement over many other technologies. However, the emulation is not sufficient. On
the one hand, we recognize the problems of statement level pointcuts: They are complex to
define and tend to be very fragile and hard to maintain. On the other hand, we obviously
need a finer grained possibility to extend code.

The problem stems from the concept of obliviousness in AOP (cf. Section 2.4). It as-
sumes that normal programs provide enough join points, so that explicit join points in a
prepared code, like explicit hook methods, are not required (“Just program like you always
do, and we’ll be able to add the aspects later” (Filman and Friedman, 2005)). Our observa-
tions show that this is clearly not the case for Berkeley DB: the existing join points are not
sufficient. We frequently need to provide explicit join points inside a method by creating
hook methods. Thus, it is necessary to design for extensibility.

One possible solution to create explicit join points that avoids hook methods was pro-
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posed by Eaddy and Aho (2006). They suggest to use statement annotations to create
statement level join points. This way, the developer can annotate arbitrary statements for
later extension from a feature. Statement annotations are similar to hook methods—both
create explicit variation points for later extension—but have some advantages: First they
do not add empty method declarations to the source code, what is claimed to affect design
and code quality adversely and to be confusing to the programmer (Murphy et al., 2001).
Second, statement annotations add a join point for one specific statement, not a join point
before or after this statement like hook methods do (Eaddy and Aho, 2006). Therefore,
annotations are less fragile to subsequent source code changes because they expose join
points exactly for the advised statements. Compared to the current approach of emulat-
ing statement extensions with AspectJ, annotations are more stable and easier to use. An
open problem is that statement annotations as proposed by Eaddy and Aho (2006) do not
enable to advise sequences of statements, like the one shown earlier in Figure 3.5 (p. 37).
We therefore propose to additionally add the possibility to annotate statement sequences
or code blocks. Unfortunately, Java currently does not support statement annotations and
there is no AspectJ compiler that supports them or similar concepts.

A different approach to solve the Statement Extension Problem is to search for a new
way applications are proposed, instead of quantifying over join points. A different ap-
proach, our ColoredIDE, is discussed briefly in the further work Section 9.2.

In summary, we encountered frequently the Statement Extension Problem during our
refactorings. Because no other solution exists currently, we emulated statement extensions
with complex AspectJ constructs or hook methods. However, we argue that better solutions
are needed and support the statement annotations approach to solve the statement extension
problem.

4.2.2 Parameter Introduction and Passing Problem

Another problem that occurred during the refactoring of the ATOMICTRANSACTIONS and
MEMORYBUDGET features is the change of method signatures to introduce parameters.
This is also the problem that most hindered us in refactoring the LOCKING feature and it is
expected to occur frequently in further refactoring.

The problem occurs when a parameter of a method belongs to one feature as shown
in Figure 4.3. The atomic transaction code is actually rather small: it only decides which
locker, other than the non-transactional default locker BasicLocker or ThreadLocker, to use.
However, for this extension, the user can specify a transaction parameter, that is declared in
the interface method ‘Database.delete’ and passed along to the getWritableLocker method.
In the shown case the parameter is passed directly through to the second method, in other
cases we found the parameter is passed through multiple methods along the control flow
until it is used in an internal method.

We could easily refactor the transaction code in getWritableLocker with an Extract Sim-
ple Method Refinement refactoring, but this would leave the transaction parameters inside
the code. Thus, even when the ATOMICTRANSACTIONS feature is not included, the pa-
rameter is present for both, interface methods and internal methods, and it is passed along
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1 p u b l i c c l a s s Database {
2 p u b l i c OperationStatus delete( T r a n s a c t i o n txn , DatabaseEntry key)

throws DatabaseException {
3 trace(Level.FINEST , "Database.delete", t xn , key, nul l , n u l l );
4
5 Locker locker = LockerFactory.getWritableLocker(envHandle , t xn , i s T r a n s a c t i o n a l ( ) );
6 re turn deleteInternal(locker , key);
7 }
8 }
9 p u b l i c c l a s s LockerFactory {

10 p u b l i c s t a t i c Locker getWritableLocker(Environment env , T r a n s a c t i o n userTxn , boolean
d b I s T r a n s a c t i o n a l) throws DatabaseException {

11 i f ( d b I s T r a n s a c t i o n a l && userTxn == n u l l ) {
12 re turn new AutoTxn ( env ) ;
13 }
14 i f ( userTxn != n u l l ) {
15 re turn userTxn . g e tLock e r ( ) ;
16 }
17 i f (retainNonTxnLocks) {
18 re turn new BasicLocker (env);
19 } e l s e {
20 re turn new ThreadLocker(env);
21 }
22 }
23 }

Figure 4.3: Example of the Parameter Introduction and Passing Problem.

inside the application. For a full refactoring of the method we also want to remove and
reintroduce the parameters, because it semantically belongs to the feature and not to the
base code1.

AspectJ does not support any changes of method signatures and consequently also does
not allow to introduce new parameters. Thus, refactoring parameters that belong to a feature
are a major problem.

We have experimented with different solutions or workarounds for this parameter pass-
ing problem. First, we discuss to leave the parameters in the code anyway, second, we
show an approach to pass parameters with a cflow pointcut, third, we tried to use general
parameter objects. Finally, we discuss a potential extension to AspectJ.

Leave Parameters in Base Code. The easiest solution is to leave the parameters in the
base code. When objects are passed like the Transaction object, an empty class can be
provided by the base code, that is later extended by the ATOMICTRANSACTIONS when
needed. The base code simply passes instances of the empty Transaction class or null
values.

However we do not consider this as a good approach, because some logic of the feature

1Note: A similar problem occurs with return values of methods. For some methods most code belongs
to the base code, but the return value belongs to a feature. For example, the methods to evict memory of
the EVICTOR feature return the amount of evicted memory. Yet, when the MEMORYBUDGET feature is not
included this information is not necessary and cannot even be calculated, the method therefore currently just
returns an empty value. For a clean decomposition, it should be possible to change the return value as well as
the parameters.



CHAPTER 4. EXPRESSIVENESS OF ASPECTJ LANGUAGE CONSTRUCTS 63

1 p u b l i c a s p e c t AtomicTransaction {
2 p u b l i c OperationStatus Database.delete(Transaction txn, DatabaseEntry key)

throws DatabaseException {
3 delete(key);
4 }
5 p o i n t c u t deleteInterface(Transaction txn) :

e x e c u t i o n (OperationStatus Database.delete(Transaction , DatabaseEntry)) && args(txn,
*);

6 Locker around (Transaction userTxn) :
e x e c u t i o n (Locker LockerFactory.getWritableLocker(Environment )) &&
c f low (deleteInterface(userTxn)) {

7 i f (userTxn != n u l l ) {
8 re turn userTxn.getLocker ();
9 }

10 proceed(userTxn);
11 }
12 }

Figure 4.4: Passing a Parameter with a cflow Pointcut.

must remain in the base code, e.g., the logic which parameter is needed where and must
be passed where. This way, many parameters are left in the base code which are never
needed unless a certain feature is included. This approach produces especially bad code
when alternative features are used with use different parameters, e.g., multiple different
implementations of the ATOMICTRANSACTIONS feature. Now every parameter that is ever
potentially used by any of those features must be included in the source code. This is not
satisfactory for our decomposition into features.

We strongly argue against leaving parameters in base code when refactoring an appli-
cation into features that should be used productively, even though it seems to be commonly
used because no other simple solution is available.

cflow Pointcut. With AspectJ we can pass a value from one method to an advice without
using a parameter, but by using the cflow pointcut. For this we declare a pointcut that
captures a parameter from a method and we declare a second pointcut in the control flow
of the first one. We can now advise the join points of the second pointcut while we can still
access the parameters from the first pointcut from our advice statement. It is even possible
to use this approach with a homogeneous pointcut that captures a parameter from multiple
methods.

Figure 4.4 shows such an implementation for our earlier delete operation example: First,
a new interface method with the transaction parameter is introduced statically (Lines 2–4),
then this interface method is captured by the deleteInterface pointcut (Line 5). Finally,
the getWritableLocker method is advised, with the second anonymous pointcut that uses
the control flow statement to access the transaction parameter from the interface method
(Lines 6–10). This way, the advice body can use the parameter that was previously de-
clared only in the new interface method. Node: The deleteInterface pointcut could also be
specified homogeneously for all interface methods that support a transaction parameter.

This solution seemed promising, but when we implemented the ATOMICTRANSAC-
TIONS feature using the cflow approach, we discovered several problems:
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1. We regard this approach as unintuitive and hard to maintain for developers familiar
with procedural or object-oriented programming. It hides how the parameter is passed
in the application and passes the parameter ‘magically’ along.

2. We cannot prevent that the old interface method is called, except by using a second
advice that throws an exception every time the old interface method is called outside
the control flow of the new interface method. This requires another cflow pointcut
and increase the complexity. Alternatively, a declare error statement could be used to
forbid access to the old method, although this statement becomes similarly complex
because it needs a withincode pointcut to exclude the call from the new interface
method.

3. It is not possible to call the inner method with a different parameter than passed
by the user. For example, the delete method could not request a non-transactional
locker to perform some service operations. This can be especially a problem when
service threads like the Cleaner or Evictor are invoked inside the control flow. In
deeply nested control flows it might even be hard to detect those cases, because the
parameter is no longer visible in method signatures.

4. The aspect becomes very complex, especially when different parameters are involved.
In Figure 4.4 only the transaction parameter was reintroduced to the getWritable-
Locker method. Extra effort would be required to capture the isTransactional param-
eter and to reintroduce the transaction parameter into the trace method to complete
the example from Figure 4.3. The LOCKING feature passes to many parameters that
we did not attempt a refactoring because the resulting code would be to complex,
unreadable, and unmaintainable (also cf. Section 7).

5. Finally, feature interactions (cf. Chapter 5) become very complicated. When more
than one feature introduce parameters to a method every possible combination of
interface methods must be provided. Consider a potential feature that introduces
user authentication with a user permission object to the delete operations. Now there
are four different versions of the delete methods: ‘delete(key)’, ‘delete(transaction,
key)’, ‘delete(permission, key)’ and ‘delete(transaction, permission, key)’. For each
interface method the cflow pointcut must be implemented differently. The number of
necessary interface methods and cflow implementations grows exponentially with the
number of features that extend a method2.

Therefore, we do not consider cflow constructs as a good approach to pass parameters.
It is technically possible but the problems, especially the growing complexity, forbid their
use.

2To be precise, using pattern expressions it is possible to address the first and the last parameter, so
that the cflow implementation can be reused. For example, the following pointcut captures the transaction
parameter in all delete methods that have it as first parameter: e.g., ‘pointcut deleteInterface(Transaction txn)
: execution(OperationStatus Database.delete(Transaction, ..)) && args(txn, ..);’. However, approach does
not scale for more than two features because the AspectJ pattern mechanism forces that the parameter always
occurs at a fixed position from the beginning or the end, e.g., first, second, third, last, second last, etc.
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1 p u b l i c c l a s s OperationContext {}
2 p u b l i c c l a s s Database {
3 p u b l i c OperationStatus delete(OperationContext context, DatabaseEntry key)

throws DatabaseException {
4 trace(Level.FINEST , "Database.delete", context, nul l , n u l l );
5 Locker locker = LockerFactory.getWritableLocker(context, envHandle );
6 re turn deleteInternal(locker , key);
7 }
8 }
9 p u b l i c a s p e c t AtomicTransaction {

10 p u b l i c Transaction OperationContext.txn;
11 Locker around (OperationContext context) :

e x e c u t i o n (Locker LockerFactory.getWritableLocker(OperationContext , Environment )) &&
args(context, *) {

12 i f (context.txn != n u l l ) {
13 re turn context.txn.getLocker ();
14 }
15 proceed(context);
16 }
17 p u b l i c OperationStatus Database.delete(Transaction txn, DatabaseEntry key)

throws DatabaseException {
18 OperationContext context = new OperationContext();
19 context.txn=txn;
20 delete(context, key);
21 }
22 }

Figure 4.5: Passing Parameters with a Parameter Object.

Parameter Objects. A different approach to handle the parameter passing problem is to
use extensible parameter objects. This approach was inspired by the observations made by
Lopez-Herrejon and Batory (2001) that show that most parameters are only used as a form
of optimization while an extensible design would pass objects. Additionally, this approach
was commonly used when extending parameters with AHEAD.

In our example, it is possible to argue that transactions, user permissions, or other values
a user must specify additionally to the key are just context information for the operation and
can therefore be handled by an OperationContext object. When we applied this idea to the
above delete operation example we got the source code shown in Figure 4.5. The base
code (Lines 1–9) contains an empty context parameter, that is extended and used by the
AtomicTransaction aspect (Lines 10–23). This aspect introduces the txn member variable
into the OperationContext class (Line 11) and uses this member variable in an extension
of the getWritableLocker method (Lines 12–17). Note that the new delete method that
reintroduces the old interface (Lines 18–22) is only there for the user’s convenience, it is
possible to use the base function directly when the operation context object has reasonable
default values.

This approach is already used in parts of Berkeley DB where many parameters of a
method can be configured with an object. For example, the Environment.openDatabase
method has a DatabaseConfig parameter that encapsulates 11 parameters. However, for the
ATOMICTRANSACTIONS or LOCKING features we would need parameter objects much
more often.

Compared to the cflow approach, parameter objects have several advantages. First,
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they do not hide parameters and they are easy to understand for developers familiar with
object-oriented programming. The second and more important advantage is that complexity
does not grow when more parameters are added. For example, a potential user permission
feature could extend the same context object. Each feature would implement only its own
extensions, only the number of interface methods, we reintroduced for convenience reasons,
would still grow exponentially. Anyway they just encapsulate the creation of the context
objects while the actual feature implementation, e.g., the advice in Figure 4.5, remains
unchanged.

We implemented a second version of the ATOMICTRANSACTIONS feature with param-
eter objects as well and found several problems:

1. This approach requires larger object-oriented refactorings of the application to use
parameter objects instead of individual parameters. These required enabling refactor-
ings induce a high effort before the refactoring into features can be even started.

2. Not every method can use the same context parameter. In Berkeley DB all interface
methods have the transaction parameter and could support a user permission param-
eter, however some interface methods have additional parameters. For example, the
get method, that retrieves a value from the database, has an additional lockMode pa-
rameter to specify the level of isolation (cf. Section 2.1). The lockMode also belongs
to the ATOMICTRANSACTIONS feature and could be included in the get method’s
context object, however other interface operations, that are not used for retrieval, do
not have this value. This shows that there are different context objects needed for dif-
ferent methods. In theory there could be a different context object for each method.

3. A possibility to avoid different context parameters is to have one OperationContext
class that contains all parameters that are used by any method. Parameters that are
not required for a certain method are simply not read. However, this approach hides
the information which parameters are really needed by a method. Workarounds like
describing used parameters in a comment or checking the required parameter at the
beginning of every method cannot counter the disadvantage.

4. When a parameter is passed through different methods not all parameters might be
used. Consider the context object from the get method with the lockMode parameter.
Also the get method calls the getWritableLocker method to create a locker. However,
for the creation of a locker the additional lockMode parameter is not needed. Thus,
even along the control flow unnecessary parameters are passed and the information
which parameter is required for each method is hidden. Additionally, some informa-
tion are calculated only and passed internally and are not provided by the user, e.g.,
the locker object in the LOCKING feature. A potential solution is to also create an
own context object for every internal method but this would result in creating context
objects and copying required values, e.g., by using the Adapter pattern (cf. Gamma
et al., 1995, p. 139ff), all the time. This would create a huge overhead and would
decrease source code readability and performance.
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5. It is possible to model the different context objects with inheritance or interfaces,
reducing the need to copy parameters from one context objects to another, but the
resulting context object hierarchy would be hard to maintain and difficult to extend
when new features add further parameters to selected methods.

Overall, we found that this generally approach is usable but becomes very complex
because of many different objects or hidden information about required parameters. For a
complex productive system we estimate that it is better than the cflow approach, but it is
still not a desirable solution. We did not refactor the LOCKING feature with this approach
neither, because of the high expected effort for preparatory object-oriented refactoring and
the creation of suitable context parameters.

AspectJ Extension. After showing that the existing possibilities are not sufficient to solve
the parameter passing problem we discuss how AspectJ could be extended. Basically, two
things are needed, it must be possible to introduce a new parameter to a method, i.e., change
the methods signature, and it must be possible to extend calls in this method to pass the
parameter along, and to access the value from advice.

The possibility to change the method signature introduces new problems, because many
pointcut matching mechanisms rely on method signatures. For now we ignore these prob-
lems to show the basic idea. On the other hand, the required extensions to method calls are
possible, but to access the caller’s parameters cflow pointcuts are necessary with many of
the problems described above. We therefore also assume the presence of a possibility to
access the caller’s parameters with a new callerargs pointcut similar to the args pointcut
for the target method.

Figure 4.6 shows a potential solution for our delete operation example. Two add param-
eter statements are added to introduce the parameters and one around advice (Lines 4–6)
is used to pass the parameter along, while the second around advice (Lines 7–12) imple-
ments the actual extension. Note that the ‘..’ pattern in Lines 4, 5, and 7 indicate that other
parameters introduced by other features are possible and do not hinder the extension.

The suggested syntax is far from being user-friendly. Its purpose is to indicate the
kind of extension that is needed to solve the parameter passing problem while it is kept
similar to existing AspectJ constructs for easier explanation. Further research is needed to
investigate side effects, to solve problems with the weaving process, and to simplify the
syntax. Probably a completely new construct is needed to pass parameters and the way join
points are matched must abstract more from the parameters of a method.

In summary, extending AspectJ might solve the parameter passing problem, but it is
unclear if changes of this granularity are ever readable or maintainable. We believe the
complexity will be very high. Hence, we suggest research in other directions as well, that do
not depend on quantifying join points and weaving code. As one approach our ColoredIDE
suggestion presented in Section 9.2 solves this problem in a completely different way.
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1 p u b l i c a s p e c t AtomicTransactions {
2 add parameter (Transaction txn) :

e x e c u t i o n (OperationStatus Database.remove(DatabaseEntry)) ||
e x e c u t i o n (Locker LockerFactory.getWritableLocker(Environment ));

3 add parameter (boolean isTransactional) :
e x e c u t i o n (Locker LockerFactory.getWritableLocker(Environment ));

4 Locker around (Transaction txn, Environment env) :
c a l l (Locker LockerFactory.getWritableLocker(Environment )) &&
with incode (OperationStatus Database.remove(DatabaseEntry)) && c a l l e r a r g s (txn, ..) &&

args(env) {
5 re turn LockerFactory.getWritableLocker(env, txn, database.isTransactional(), ..);
6 }
7 Locker around (Transaction userTxn, boolean isTransactional) :

e x e c u t i o n (Locker LockerFactory.getWritableLocker(Environment , ..)) &&
args (.., userTxn, isTransactional , ..) {

8 i f (userTxn != n u l l ) {
9 re turn userTxn.getLocker ();

10 }
11 proceed(userTxn, isTransactional);
12 }
13 }

Figure 4.6: Passing Parameters with a potential AspectJ Extension.

4.2.3 Exception Introduction Problem

We found another severe problem when we tried to reintroduce code that can throw an ex-
ception. It happened when we attempted to move synchronization code from the base code
to the LATCHES feature. As explained before, AspectJ does not allow to change method
signatures and thus also does not allow to add new throwable exceptions to a method. This
means that advice can throw only exceptions that are declared already in the base code or
runtime exceptions that do not need to be declared. Similar to the Parameter Introduction
Problem this implies that all exceptions ever thrown by any feature must already be de-
clared in the source code. As a workaround AspectJ introduces the possibility to ‘soften’
exceptions, i.e., to encapsulate them in a runtime exception. However, we avoided softened
exceptions because we consider them counterintuitive and hard to handle.

The problem is intensified because of the observed semantics of the call pointcut, that
behaves exactly like an execution pointcut on the target method when it comes to excep-
tions. To be able to throw an exception in advice on a call join point the call’s target method
must already be declared with this exception, even though the exception is declared in the
method that contains the call. Similarly, it is not possible to throw any exception in advice
on get and set join points, even though the exception is declared in the containing method.
This prevents statement extension emulation in many cases when exceptions are involved,
especially for calls to JRE classes.

Figure 4.7 illustrates this problem on an simplified example taken from the LATCHES

feature. The acquire method from the Latch class can throw a LatchException, a subclass of
the declared DatabaseException, if the latch is already held. Because of some subsequent
code that is not synchronized, it is not possible to use an simple method extension, but it
is necessary to advise the statement that clears the list. This statement can be advised by
the call and within pointcut as shown in Figure 4.7b. Unfortunately, it is not possible to
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throw an exception in this case, because the signature of the method clear of the SortedSet
class does not declare this exception and—as an API class of the JRE—cannot be changed.
Therefore, the only consequence is to use a hook method as shown in Figure 4.7c that can
be advised with either an execution or a call pointcut.

To achieve a more intuitive behavior and to enable statement extension emulation and
extensions to API classes, we recommend that the exception should be checked against
the container method on call, set and get join points. Furthermore, it should be possible
to change method signatures to be able to declare exceptions by features, similar to the
proposed add parameter construct for the parameter passing problem.

4.2.4 Local Variables Access Problem

Accessing local variables is another major problem in AspectJ. Already in Section 3.3.4,
we have shown that workarounds are often required to access local variables from advice.
To access these variables either object-oriented refactorings are necessary to expose them
as member variables or parameters, or hook methods have to be introduced. In this Section
we discuss some further advanced approaches and suggest a possible solutions.

All approaches shown in Section 3.3.4 and used during our refactorings have their weak-
nesses. Member variables hide the fact that the variable is only used locally and make the
source code harder to read. The proposed Replace Method with Method Object refactoring
(cf. Section 3.3.4) increases source code complexity, even for the base code, just to achieve
accessibility from AspectJ advice. Finally, we consider hook methods as bad design as
discussed before, because they introduce empty methods in the base code.

There are constructs with which it is possible to counter some of these problems. For
example, the first problem that a member variable hides the fact that it is only used lo-
cally, which could lead to possible implementation errors, can be technically countered with
AspectJ. The AspectJ declare error construct enables access to member variables from cer-
tain targets only, as shown in Figure 4.8. Nevertheless, we still do not consider this as a
reasonable solution for practical refactoring, because it makes the source code even more
complex and requires explicit exceptions in the base code for every aspect that should be
allowed to access it.

Another special case is when local variables are the parameters of the callers method,
as the locker variable earlier in the example in Figure 3.7a (p. 40). In this case, and under
the condition that the value has not been changed before the extension, it is possible to
capture this variable with a cflow pointcut as shown in Figure 4.9. However, even though
this could have been useful in some cases, we have not included this approach in our list of
refactorings, because we consider it too complex and too fragile for productive use. It is not
possible to change the variable before the extension, but this fact is hidden completely from
the developer which makes it error-prone for subsequent changes. Also the cflow problems
shown in Section 4.1.4 apply here as well.

All workarounds we found to access local variables are unsatisfactory. But access to
local variables is an important requirement to support statement extensions. Otherwise
most statement extensions are not possible, even with the proposed solution of statement
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1 p u b l i c c l a s s INList {
2 p r i v a t e SortedSet ins = new TreeSet();
3 p u b l i c vo id clear() throws DatabaseException {
4 l a t c h . a c q u i r e ( ) ;
5 ins.clear();
6 l a t c h . r e l e a s e ( ) ;
7 ...
8 }
9 ...

10 }

(a) Original code.

1 p u b l i c c l a s s INList {
2 p u b l i c vo id clear() throws DatabaseException {
3 ins.clear();
4 ...
5 }
6 ...
7 }
8 p u b l i c a s p e c t INListExtension {
9 vo id around(INList inList) throws DatabaseException : c a l l ( vo id SortedSet.clear()) &&

with incode ( vo id INList.clear()) && t h i s (inList) {
10 inList.latch.acquire();
11 proceed(inList);
12 inList.latch.release();
13 }
14 }

(b) Intended Extension cannot throw exception.

1 p u b l i c c l a s s INList {
2 p u b l i c vo id clear() throws DatabaseException {
3 hook(ins);
4 ...
5 }
6 p r i v a t e vo id hook(SortedSet ins) throws DatabaseException {
7 ins.clear();
8 }
9 ...

10 }
11 p u b l i c a s p e c t INListExtension {
12 vo id around(INList inList) throws DatabaseException :

e x e c u t i o n ( vo id INList.hook(SortedSet)) && t h i s (inList) {
13 inList.latch.acquire();
14 proceed(inList);
15 inList.latch.release();
16 }
17 }

(c) Required implementation with hook method.

Figure 4.7: Exception Introduction Problem at call Pointcuts.
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1 d e c l a r e error :
2 set( i n t TargetClass .localVariable) || get( i n t TargetClass .localVariable)
3 && !with incode ( vo id TargetClass .targetMethod(ParameterTypes))
4 && !with in (targetAspect) :
5 ’’localVariable is a local variable of method targetMethod.’’;

Figure 4.8: Preventing Access to Member Variable.

1 p u b l i c c l a s s LN {
2 ...
3 p u b l i c long delete(DatabaseImpl database ,...,Locker locker) throws DatabaseException {
4 ...
5 entryType = hook_getEntryType(entryType );
6 ...
7 }
8 p r i v a t e LogEntryType hook_getEntryType(LogEntryType entryType ) {
9 re turn entryType;

10 }
11 }
12 p u b l i c a s p e c t TransactionalLN {
13 p o i n t c u t deleteCall (Locker locker) :
14 e x e c u t i o n ( l ong LN.delete(..)) && args (.., locker);
15 LogEntryType around(Locker locker) :
16 c a l l (LogEntryType LN.hook_getEntryType(Locker , LogEntryType))
17 && c f low (deleteCall (locker)) {
18 i f (locker.isTransactional())
19 re turn LogEntryType.LOG_DEL_DUPLN_TRANSACTIONAL;
20 e l s e
21 re turn proceed(locker);
22 }
23 }

Figure 4.9: Capture Local Variable from Caller’s Parameter.
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1 p u b l i c a s p e c t TransactionalLN {
2 before () : c a l l (DeletedDupLNLogEntry.new(LogEntryType , ...)) {
3 i f ( c o n t e x t .locker.isTransactional())
4 c o n t e x t .entryType = LogEntryType.LOG_DEL_DUPLN_TRANSACTIONAL;
5 }
6 }

Figure 4.10: Access to Local Variables with a context Keyword.

annotations. It is hard to determine exact numbers of how often local variable access is
needed, but we can estimate that most of the 49 hook methods that contain parameters or
return values are used to provide access to local variables.

A simple solution that would prevent this problem is to expose local variables at state-
ment join points. Various context information are already available with the thisJoinPoint
construct, access to the local variables could be granted in a similar way. This allows
AspectJ to make very fine grained changes but consequently follows the approach already
started with the privileged flag for aspects, that allows access beyond the normal scope
(also cf. Section 4.2.6). In Figure 4.10 we show a potential syntax with a context key-
word to refactor the example from Figure 3.7a (p. 40). With exposed local variables all
workarounds described above would not be necessary and extensions would be much eas-
ier to develop, and probably even more maintainable than the workarounds.

4.2.5 Advise Objects Problem

A specific problem we observed some times during the refactoring is that only certain ob-
jects should be advised, not all instanced of a class. AspectJ does not provide direct support
for this.

An simple example is extension from the MEMORYBUDGET feature for the ATOMIC-
TRANSACTIONS feature. The former feature observes how many read and write locks are
held by a transaction, so each time a lock is acquired or released the memory size is updated.
The memory budget is informed every time when a lock is added or removed from one of
the lists. However, the extensions for read locks and write locks are different because the
lock types have a different memory overhead. In Berkeley DB’s implementation this results
in scattered code because every single access is extended individually.

AspectJ does not support to extend all call join points for methods of a specific object,
but only for a whole class. It is only possible to use the withincode pointcut to narrow down
the extended join points to certain methods, but in our example this does not work because
there are cases where both lists are used in the same method. Alternatively, also the pointcut
if can be used for a conditional extension.

However, the solution is simple and does not require AspectJ. Berkeley DB could just
implement two different memory observing lists that update the memory changes them-
selves. Now refactoring MEMORYBUDGET code only requires to remove the target code
from the memory observing list classes. Why this approach was not chosen in the first place
is questionable, but as the code is repeated only few times the developers of Berkeley DB
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might not even recognize this as a problem.
When we tried to implement such a solution with AspectJ, we observed a problem with

pointcut semantics, which we already discussed in Kästner et al. (2006). Certain semantic
rules—that are not described formally but only observable with experiments—seem strange
and prevent simple solutions. We used an empty class ReadLocksSet inherited from the
standard Java class HashSet as shown in Figure 4.11. From the four different extensions
only 4.11d and 4.11e are possible with the observed AspectJ semantics, while the more
intuitive solutions 4.11b and 4.11c have no effect, surprisingly for most developers.

The solution from Figure 4.11b, using a call pointcut, does not work because the target
object is only defined as a Set, not as a ReadLocksSet. Even though the effect during
object-oriented development is the same, AspectJ distinguishes between different target
classes. The solution from Figure 4.11c, using an execution pointcut, does not work because
extension pointcuts can only extend methods that are literally defined in the target class,
but does not work on inherited methods3. To use this extensions it would be necessary
to define every extended method in ReadLocksSet in the base code with empty methods
that only call the parent’s implementation. The extension shown in Figure 4.11d with a
ITMD appears promising but has a problem when different features want to extend the same
method, because it can only be introduced once. Finally, the solution shown in Figure 4.11e
was used during our refactorings but is a conditional extension that is only evaluated at
runtime, equivalent to the instanceof implementation shown in Figure 4.1b (p. 55).

As an alternative it is often possible to defer the introduction of the specialized class
to the feature. In our example it would also be possible to create the ReadLocksSet sub-
class inside a feature and use an around advice to create an instance of this class, instead
of the general HashSet class, e.g., ‘HashSet around() : execution(HashSet.new()) && with-
incode(...) { return new ReadLocksSet(); }’. This is similar to mixin based inheritance
(Bracha and Cook, 1990), however like the extension above using ITMDs, this approach
does not scale when multiple features extend one object.

All in all, extensions to objects instead of classes can usually be resolved with sub-
classing, without AspectJ. When refactoring these extensions into features it is necessary to
observe the undocumented, sometimes unexpected semantics of call and execution point-
cuts shown above. These semantics are also observed when emulating mixin inheritance
with AspectJ.

3As explained in Kästner et al. (2006), AspectJ does not have a formal description of its semantics. Thus,
we have to rely on empirically derived semantics from an AspectJ compiler. However, even between different
compiler versions (ajc version 1.2 vs. 1.5) and different vendors (ajc vs. abc), we found minor variations
in the semantics. For example, the call pointcut of Figure 4.11b also requires literally defined methods like
the execution pointcut in ajc version 1.2, but does not in ajc version 1.5. Because of the absence of formal
semantics we cannot distinguish between intended behavior and compiler bugs. For our analysis we refer to
the semantics that can be experimentally determined from the ajc compiler version 1.5, which we used for our
refactorings.
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1 p u b l i c c l a s s ReadLocksSet extends HashSet {}
2
3 p u b l i c c l a s s Txn {
4 p r i v a t e Set readLocks = new ReadLocksSet();
5
6 vo id addLock(Lock lock, LockType type, ...) {
7 ...
8 i f (type.isWriteLock ()) {
9 ...

10 readLocks .remove(lock);
11 } e l s e {
12 readLocks .add(lock);
13 }
14 }
15 ...
16 }

(a) Base code.

1 p u b l i c a s p e c t TransactionMemory {
2 a f t e r (Txn txn) : c a l l (boolean

ReadLocksSet.add(Object)) &&
t h i s (txn) {

3 txn.updateMemoryUsage(
READ_LOCK_OVERHEAD);

4 }
5 }

(b) Extensions with call pointcut.

1 p u b l i c a s p e c t TransactionMemory {
2 a f t e r (Txn txn) : e x e c u t i o n (boolean

ReadLocksSet.add(Object)) &&
t h i s (txn) {

3 txn.updateMemoryUsage(
READ_LOCK_OVERHEAD);

4 }
5 }

(c) Extensions with execution pointcut.

1 p u b l i c a s p e c t TransactionMemory {
2 p u b l i c boolean ReadLocksSet.add(Object

o) {
3 txn.updateMemoryUsage(

READ_LOCK_OVERHEAD);
4 super.add(o);
5 }
6 }

(d) Extension with a ITMD.

1 p u b l i c a s p e c t TransactionMemory {
2 a f t e r (Txn txn) :

c a l l (boolean Set.add(Object)) &&
t a r g e t (ReadLocksSet) && t h i s (txn) {

3 txn.updateMemoryUsage(
READ_LOCK_OVERHEAD);

4 }
5 }

(e) Conditional extension with target pointcut.

Figure 4.11: Different Approaches to Advise an Object.
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4.2.6 Scope Problem

A last problem that frequently occurred during our refactorings was the scope of classes,
methods, and member variables. Advice is not executed in the same scope as the method
it extends, but in the scope of the aspect, similar to a method in a different class. Hence, it
cannot access private methods or member variables of the class it extends.

Berkeley DB uses the Java scope model very carefully to only publish methods publicly
that can be called by the user. Also protected, private, and default4 scope are selected
carefully and appropriately. The selected choice often does not fit to the requirements of
aspects that need public methods.

Developers of AspectJ anticipated this problem and introduced the privileged flag for
aspects. Privileged aspects can access methods and member variables that would otherwise
be hidden by the Java scope system (AspectJ-Team, 2003; Laddad, 2003, p. 139ff). This
ability to bypass Java’s scope system is discussed critically for violating the object-oriented
encapsulation principle (Chiba and Ishikawa, 2005; Aldrich, 2004). Therefore, it is usually
recommended to avoid privileged aspects if possible. For example Laddad (2003) suggests
to use it only when extending implementation details, because otherwise the aspect could
depend on interface methods and be less fragile to implementation changes of the class.
Unfortunately, in our refactoring project we almost only refactor and extend implementation
details, therefore we constantly need privileged aspects. Of all 151 Aspects used for our
refactorings 127 were declared privileged.

Where the default scope was used in Berkeley DB the aspect had to be declared in the
same package. This prevents extensions from one aspect to methods in different classes in
different packages, which was used in multiple cases. Instead one aspect must be created
per package, which breaks the locality and encapsulation of semantically similar extension,
which was just achieved with this aspect.

Even though aspects can bypass the scope system when declared privileged, we still had
to change scope modifiers frequently for three reasons:

1. Declaring an aspect privileged does not help when a class with private or default
scope must be imported from a different package. The import statement still checks
the scope constraints and forces us to make the target class public. The same problem
exists with inner classes that typically not declared public and therefore not in the
scope of the aspect.

2. In some cases we reintroduced large pieces of code as subclasses, emulating mixin
inheritance. For these classes we again had to change scope modifiers because the
privileged modifier is not available for classes. Hence, aspects and class extensions
are treated differently when using AspectJ to implement features.

3. For no apparent reason, AspectJ does not allow protected ITMD. When we reintro-
duced protected methods or fields that can be overwritten by subclasses we had to

4Also known as package or friendly visibility. Only classes or aspects from the same Java package can
access the method.
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declare them with public or when possible default scope. Not even abstract methods
can be introduced with a protected scope.

Finding a solution for this problem is difficult because it is a fundamental problem
of the way AspectJ weaves extensions from a third person perspective. Changes like in-
troducing the privileged flag for classes, allowing protected ITMDs, or changing the im-
port mechanism only fix the symptoms but do not improve the basic problem of extending
source code from a different perspective. With a different approach like preprocessor state-
ments, AHEAD’s jampack composition (cf. Batory et al., 2004), or our ColoredIDE (cf.
Section 9.2) this problem can be avoided.

To sum up, when decomposing an application with AspectJ scope problems are very
likely. Some can be worked around with the privileged modifier while others require
changes to the base code to declare the classes, methods or member variables public. After
all these changes do not prevent the refactoring into features, just have unpleasant effects
and can destroy a thoughtfully designed scope concept.

4.3 Summary

The analysis of the AspectJ languages constructs shows that for the refactoring of Berkeley
DB most language features are not needed. Only static introductions, simple method refine-
ments, and statement extensions were needed, while more advanced and specific constructs
like call extensions, conditional crosscuts, or homogeneous crosscuts are used only in rare
cases. Table 4.2 sums up the our collected statistics and shows the number of occurrences
for each type as well as the proportion of all extensions.

Metric NOO PAE

Static extensions 640 56.9
Interface Introductions 4 0.4
Class Introductions 58 5.2
Method Introductions 365 32.5
Member Variable Introductions 213 19.0

Dynamic Extensions 484 43.1
Method refinements 214 19.0
Statement extension emulations 121 10.8
Extensions with hook methods 164 14.6
Conditional extensions 5 0.4

NOO: Number of occurrences; PAE: Percentage of all extensions

Table 4.2: Extensions used in Refactoring Berkeley DB.

These statistics are a hint which features are needed for a language that could be used to
implement features. Possibilities to express statement extensions are more important than



highly complex constructs to extend the control flow or to quantify over join points for
homogeneous extensions.

Furthermore, the existing statements often were not sufficient. We reached limits of the
AspectJ language during our refactorings multiple times. Statement extensions are missing
from AspectJ and can only be emulated in some cases with more complex constructs. The
access to local variables is not intended and only possible with workarounds that increase
the complexity of the source code, even though it is often needed. Furthermore, the com-
monly needed introduction of new parameters or exceptions is not possible, and AspectJ has
problems with advising objects and the scope of classes, methods, and member variables.

Even though we suggested problems to every of these problems, our results raise the
serious question if, even with all fixes, AspectJ can be considered as a reasonable language
to implement features.



78



CHAPTER 5. THE FEATURE OPTIONALITY PROBLEM 79

Chapter 5

The Feature Optionality Problem

During the refactoring of Berkeley DB, we observed frequently the Feature Optionality
Problem. The Feature Optionality Problem is a well known problem when dealing with
optional features in a Software Product Line (Prehofer, 1997; Liu et al., 2005, 2006). It
occurs when multiple optional features interact with each other, e.g., feature A refers to
feature B or feature A extends feature B. When the interaction code is included in feature A
then this feature depends on the presence of feature B. Feature A can no longer be composed
individually but only together with all features it refers to or extends. As stated in Liu
et al. (2005) this “is an undesirable effect that undermines feature reusability, as feature
optionality can no longer be achieved”.

In Figure 5.1 we show a simplified example of this problem. The Environment class
from the base code of Berkeley DB is extended by two aspects from the features MEMORY-
BUDGET and STATISTICS. The latter collects statistics from the base code (Lines 14–15)
and from the MEMORYBUDGET feature (Lines 16–18). The STATISTICS feature cannot
be woven if the MEMORYBUDGET feature is not present, because it requires the member
variables maxMemory and usedMemory introduced by that feature.

During our refactorings we observed many such dependencies that cause the Feature
Optionality Problem. All in all, we found 43 implementation dependencies in our feature
model, as depicted in Table 3.3 (p. 51). Just the original statistics feature requires 7 more
features, which again interact with other features. Thus, the feature STATISTICS requires—
directly or indirectly—a total of 15 other features1. Similarly, other features like LATCHES

or MEMORYBUDGET also have many direct and indirect dependencies. There is even a
bidirectional dependency, i.e., MEMORYBUDGET extends LATCHES while LATCHES ref-
erences MEMORYBUDGET, therefore neither can be included without the other. With all
these implementation dependencies Berkeley DB cannot be considered decomposed, be-
cause virtually all refactored core features are required in almost all possible configurations.
Even if a user wants to configure a small version with only few features, e.g., statistics but
not transactions, he is forced to include many other features.

1STATISTICS implies ATOMICTRANSACTIONS, CHECKPOINTER, DBVERIFIER, DELETEDB-
OPERATION, EVICTOR, FILEHANDLECACHE, FSYNC, INCOMPRESSOR, LATCHES, LEAKCHECKING,
LOCKING, MEMORYBUDGET, TREEVISITOR, and TRUNCATEDBOPERATION.
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1 c l a s s Environment {
2 vo id openDb(String name) { ... }
3 byte [] readData() { ... }
4 }

5 a s p e c t MemoryBudget {
6 l ong Environment .maxMemory;
7 l ong Environment .usedMemory =0;
8 a f t e r (Environment env) : e x e c u t i o n ( vo id openDb(String)) && t h i s (env) {
9 env.usedMemory ++;

10 }
11 ...
12 }

13 a s p e c t Statistics {
14 a f t e r () : e x e c u t i o n (byte [] readData()) { ... }
15 i n t Environment .getBufferHitRatio() { ... }
16 l ong Environment .getFreeMemory() {
17 re turn maxMemory -usedMemory ;
18 }
19 }

Figure 5.1: Feature Optionality Example.

A B
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(b) Derivative Feature Approach.
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(c) Optional Weaving Approach.

Figure 5.2: Resolving Feature Interactions

We found two different approaches to tackle this problem, the Derivative Feature Ap-
proach and the Optional Weaving Approach.

5.1 Derivative Feature Approach

A basic idea to break up these dependencies is to encapsulate the code that implements in-
teractions in separate modules (Prehofer, 1997). In our infrastructure that requires to create
a new feature for every interaction. Because these features for interactions are derived from
the features they connect, we call them derivative features. We use the naming convention
A/B for a derivative feature that is derived from the features A and B. In Figure 5.2b we
show a visual representation of this approach: the overlapping code, i.e., code that imple-
ments interactions, is moved to a separate derivative feature.

In the above example from Figure 5.1, we would create one feature that contains all
changes made by MEMORYBUDGET to the base code, a second feature that contains all
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1 a s p e c t Statistics {
2 a f t e r () : e x e c u t i o n (byte [] readData()) { ... }
3 i n t Environment .getBufferHitRatio() { ... }
4 }

5 a s p e c t StatisticsMemoryBudgetDerivative {
6 l ong Environment .getFreeMemory() {
7 re turn maxMemory -usedMemory ;
8 }
9 }

Figure 5.3: Derivative for the Example.

changes made by STATISTICS to the base code, and a derivative feature STATISTICS/
MEMORYBUDGET that contains all changes that are applied only when both features are
included in a target configuration. Thus, the second feature implements only the changes
made to the base code that are independent of feature MEMORYBUDGET, in this case the
buffer hit ratio calculations (Lines 14–15). In contrast, the derivative feature implements
the STATISTICS’s extension for MEMORYBUDGET, i.e., the getFreeMemory method that
depends on the member variables introduced by MEMORYBUDGET (Lines 16–17). In Fig-
ure 5.3 we show the resulting new Statistics aspect and the new derivative feature.

This approach was formalized with a mathematical model by Liu et al. (2006, 2005).
It enables to resolve dependencies into derivatives features completely and to reason alge-
braically about their composition. The model is more detailed than our derivative features
above, because it separates between code introduction and code transformation and between
different types of derivatives that need to be applied when two features are selected. Fol-
lowing this formal approach strictly, a very fine granularity of derivatives is possible, which
also results in a very high number of derivative modules. For the practical decomposition
the ‘informal’ Derivative Feature Approach shown above is sufficient, though it still can be
mapped to the mathematical model if required.

We used the Derivative Feature Approach exemplary on the STATISTICS feature in
Berkeley DB. We refactored all code to collect statistics into derivative features like STATIS-
TICS/DATABASE or STATISTICS/TRANSACTIONS, because it interacts with other features
and thus depends on them. Only a basic infrastructure for statistic calls remains in the final
STATISTICS feature. So, if the optional ATOMICTRANSACTIONS feature is not included,
the feature STATISTICS/TRANSACTIONS cannot be included either, but other parts of the
statistic system are not affected and can be composed independently. Overall, we created
12 derivative features for the original STATISTICS feature, to resolve all dependencies2.

The resulting feature model of the statistics system is shown in Figure 5.4. The figure
shows the 12 individual derivative features that each have one or two specific semantic

2To be precise, some of these derivative features currently do not have dependencies, because their target
features have not been refactored, yet. A refactoring is anticipated though. For example, the STATISTICS/LOG

feature has no dependencies yet, because the required code of the persistence layer is still in the base code.
Once the persistence layer is also refactored there will be a dependency to this feature.
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Figure 5.4: Resolved Statistics Subsystem Feature Diagram.

dependencies3, instead of the original STATISTICS feature in Figure 3.8 (p. 47) with its
many implementation dependencies.

After applying the Derivative Feature Approach, the statistics system in Berkeley DB
can be used independently of the presence of other features.

5.1.1 Semantic vs. Implementation Dependencies

Already in Section 3.5 we have introduced the difference between semantic and imple-
mentation dependencies. Semantic dependencies are dependencies where one feature re-
quires the other feature because it does not make sense otherwise. For example the feature
CRITICALEVICTION calls the Evictor before critical operations to ensure enough available
memory . When the EVICTOR feature that contains the code to free memory is not included,
CRITICALEVICTION cannot perform anything. On the other hand implementation depen-
dencies occur because the implementation of one feature depends on another feature, while
a different implementation could work without this dependency. For example, the feature
STATISTICS also requires EVICTOR, however most statistics can also be collected without
the EVICTOR feature.

3Note, the ENVIRONMENTSTATISTICS feature is only introduced for technical reasons to provide a com-
mon infrastructure for some of the derivative features.
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The derivative features approach splits features into smaller features, e.g., STATISTICS

in a newer, smaller STATISTICS feature and the STATISTICS/EVICTOR derivative feature.
This way, the implementation dependencies are resolved and replaced with semantic de-
pendencies. The STATISTICS feature not longer depends on EVICTOR, but STATISTICS/
EVICTOR does. However, the dependency between STATISTICS/EVICTOR and EVICTOR

is a semantic dependency. To collect statistics about the Evictor does not make sense when
the Evictor is not present in the system.

This way, it is possible to replace all implementation dependencies with semantic de-
pendencies of smaller features. A feature model without any implementation dependencies
is possible, which allows a much more flexible composition.

5.1.2 Implementing Derivatives

In Berkeley DB, we implemented derivative features like normal features with AspectJ.
Hence, a derivative feature can introduce code or extend the base code or required features,
i.e., the features is is derived from. For example, the STATISTICS/EVICTOR derivative
feature implements the interactions between the two features STATISTICS and EVICTOR.
It extends the Evictor class and code that the EVICTOR feature introduces into the B+-tree.
Furthermore, the derivative feature extends the statistics infrastructure introduced by the
STATISTICS feature.

Technically, such derivative modules are possible because classes introduced by other
features are available in the build path due to the infrastructure we imposed on our project
(cf. Section 3.1). Furthermore, AspectJ allows to quantify over join points introduced
by other aspects, e.g., methods introduced using ITMDs. Our implementations of deriva-
tive features generally do not extend aspects but the code introduced by aspects, because
extending advice is hard in AspectJ. The extension of advice from other aspects is possi-
ble only implicitly by advising the same join points and using a declare precedence state-
ment. In AspectJ, aspects provide join points, too, therefore it is possible to advise member
functions—but not individual advice statements4—of aspects. Nevertheless, during the
refactoring, we hardly used member methods of aspects, but usually introduced code into
classes from the base code5. Thus, in our experience, extensions to code from other features
are almost always pieces of advice extending methods introduced by these features.

A different implementation technique we considered was aspect inheritance. Even
though inheriting from other aspects is technically possible, it could not be used for deriva-
tive features because of two problems. The first problem is that advice cannot be refined.
Aspect inheritance can only be used (1) to extend the aspect’s member methods, (2) to use
abstract pointcuts that are implemented in a child aspect, or (3) to reuse pointcuts from
parent aspects (AspectJ-Team, 2003; Apel et al., 2006b). This limits the usability of aspect

4In theory it is also possible to use the adviceexecution pointcut designator to advise advice statements.
However, because advice is unnamed and not a first class entity, it is not possible to extend a specific piece of
advice, but only all advice statement in an aspect at once. This makes it unusable for practical refactoring.

5In all 38 features with overall 151 aspects we only used 6 methods inside aspects compared to 365 ITMDs
to introduce methods.
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inheritance for derivative features drastically. The second problem is that aspects cannot
inherit from concrete aspects, i.e., aspects that are not declared abstract (AspectJ-Team,
2003; Laddad, 2003; Apel et al., 2006b). When dealing with optional features this prevents
the use of aspect inheritance, because aspects are extended only when a certain feature is
selected. Which feature provides the last and thus concrete aspect in the hierarchy is not
known at design time, but only at compilation after a configuration is selected. These prob-
lems and a possible solution based on mixin based aspect inheritance are discussed in detail
by Apel et al. (2006b). The ability to use aspect inheritance for derivative features to refine
advice would be useful in some (currently rare) cases where in our current solution both
aspects extend the same join point. On the other hand, the ability to refine pointcuts is not
needed in Berkeley DB because hardly any homogeneous pointcuts were used that could be
modified with such refinements.

The AspectJ limitations discussed in Section 4.2, like the Parameter Introduction and
Passing Problem, the Exception Introduction Problem, or the Local Variables Access Prob-
lem, also affects derivative features. For example, in some cases a new parameter or a new
exception is the only thing introduced by the derivative features, e.g., the derivative feature
for ATOMICTRANSACTIONS and TRUNCATEDBOPERATION only introduces a transaction
parameter into the interface method. This emphasizes the urgency to solve these problems
before a serious refactoring of Berkeley DB is reasonable.

Nevertheless, the major problem of implementing derivative features was a practical
one: insufficient tool support. For example, AJDT fails to correctly show advice on meth-
ods introduced by ITMDs and even mark calls to methods introduced by other aspects as
an error. Such problems make development harder and more error-prone because the de-
veloper must rely on runtime tests to determine if the features were correctly refactored.
Nevertheless, this is just a tool problem, not a general problem of AspectJ.

To summarize, it is possible to implement derivative features in AspectJ, although the
language requires some workarounds. The language limitations discussed earlier also occur
in derivatives features, and insufficient tool support is a major practical problem.

5.1.3 Scale

When the number of features in a system increases, also the number of derivative features
grows, thus raising the overall complexity of the system.

Higher Order Derivatives. The concept of derivative features becomes more complex
when more than two features interact. In this case the developer must create higher order
derivatives, that encapsulate their interaction. For example, the second order derivative
STATISTICS/MEMORYBUDGET/EVICTOR contains interaction code that is only included
when the three features STATISTICS, MEMORYBUDGET, and EVICTOR are selected in a
configuration. As shown by Liu et al. (2005) this concept scales for arbitrary high ordered
derivatives, but the number of possible derivatives grows exponentially with the number of
features in the project.
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Figure 5.5: Scale of Derivative Features.

However, in Berkeley DB we could express all interactions we found with first order
derivatives, i.e., all interactions can be broken down to mutual interactions between two
features. This corresponds to observations made by Liu et al. (2005) and suggests that the
maximum number of derivative features grows quadratically with the number of features6.

Number of Derivative Features. The number of derivative features affects how a system
with many features is manageable or maintainable. The above considerations show that the-
oretically any pair of features can have a derivative. So, in a small system with 5 features 10
derivative features are possible, which seems manageable. In Berkeley DB with currently
38 features, 703 derivatives features are possible. And in a system refactored into 250 fine
grained features already 31125 features are possible, which appears unmanageable. This
shows that it is important to predict how many derivative features are to be expected. If the
actual number of derivative features is close to the maximum only small projects with few
features are manageable at all.

To approximate the effect of scale further, we have observed the number of derivative
features during our refactorings. In Figure 5.5 we show how many derivative features were
required for each number of refactored features. This Figure shows that the first features
refactored do not interact at all, and the following features require only few derivatives.
However, the more features there are, the more derivatives occur with refactoring a further
feature. The most derivatives were added by the 33rd feature (MEMORYBUDGET) which
interacts with 8 previous features.

This observation shows that there are much less derivative features than possible. Most
refactored features do not interact, or interact only with few other features. However, the

6To be precise,
(n

2

)
= n2−n

2 derivative features are possible for n features. These are all pairs while the
order does not matter.
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observation also shows that the number of derivatives grows with the number of features
and the growth rate increases with the number of features. Overall, this again points to a
quadratic growth, but the growth is much slower than the maximum number. A quadratic
approximation to the observed derivative feature growth is 0.025 ·n2 derivative features for
n features as shown as ‘Approximation’ in Figure 5.5.

To predict further growth empirically our sample size is too small. Therefore, we tried to
predict further growth with a dimension model that groups the features into four dimensions
and makes assumptions about the interactions of these dimensions. Inside one dimension,
like database operations or memory and caching, only few semantic dependencies occur,
while features from a dimension typically interact with all other dimensions. We quanti-
fied this model and created simple equations to calculate the number of derivative features
approximately. This model confirms our theory that the number of derivative features in-
creases quadratically but slower than the maximum number. The full dimension model is
explained in Appendix A.

Both empirical observations and dimension model point to a quadratic grows similar
to k · n2 with k � 1. Such a growth inflicts various problems on scaling feature models.
When a feature model grows there will always be a point at which the number of derivative
features becomes very high. For example, in a project with 250 features and a growth of
0.025 · n2 we would still need 1562 derivative features. This shows that the approach can
either be used for small to medium sized feature models only, or there must be some means
to hide or inline derivative feature to reduce complexity.

Hiding Complexity. The derivative features are solely necessary for technical reasons.
The user who configures his version of Berkeley DB does not need them7. Thus, hiding
them might decrease the perceived complexity.

In fact, the derivative features can be selected automatically, thereby hiding a certain
level of complexity from the end-user. With a tool it is possible to select the derivative
features based on the user’s selection of features in Berkeley DB. In Figure 5.6 we show
one possibility to implement such an automated selection with a guidsl grammar. The user
only selects the original features and the derivative features are selected automatically with
the conditions in Lines 11–18. Unfortunately the guidsl tool cannot hide the derivatives
completely, yet. Alternatively, also the concept of origami can be used to hide derivatives
using the AHEAD infrastructure (Batory et al., 2003), or new tools might be developed.

Such tools do not remove the complexity. A developer still must create derivative fea-
tures and maintain the feature model and the grammar for automated selection. However,
it is at least possible to hide the additional complexity caused by the Feature Optionality
Problem from the end-user.

7While a user might still chose which statistics he wants to collect, other derivatives like the one that
implements the interaction between the MEMORYBUDGET and the EVICTOR features are purely technical.
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1 BerkeleyDb : Derivatives * [STATISTICS] [MEMORYBUDGET] [EVICTOR] [ATOMICTRANSACTIONS];
2
3 Derivatives
4 : STATISTICS/TRANSACTIONS
5 | STATISTICS/EVICTOR
6 | STATISTICS/MEMORYBUDGET
7 | MEMORYBUDGET/EVICTOR;
8 ...
9 %%

10 //automatic derivative selection
11 STATISTICS and EVICTOR i m p l i e s STATISTICS/EVICTOR;
12 STATISTICS and MEMORYBUDGET i m p l i e s STATISTICS/MEMORYBUDGET;
13 STATISTICS and ATOMICTRANSACTIONS i m p l i e s STATISTICS/TRANSACTIONS;
14 MEMORYBUDGET and EVICTOR i m p l i e s MEMORYBUDGET/EVICTOR;
15 not STATISTICS or not EVICTOR i m p l i e s not STATISTICS/EVICTOR;
16 not STATISTICS or not MEMORYBUDGET i m p l i e s not STATISTICS/MEMORYBUDGET;
17 not STATISTICS or not ATOMICTRANSACTIONS i m p l i e s not STATISTICS/TRANSACTIONS;
18 not MEMORYBUDGET or not EVICTOR i m p l i e s not MEMORYBUDGET/EVICTOR;
19 //semantic dependencies
20 ...

Figure 5.6: Automatic Derivative Selection using a guidsl Grammar.

5.2 Optional Weaving Approach

A different approach to solve the Feature Optionality Problem stems from the fact that ad-
vice which does not match any join points neither is woven nor does it create a compilation
error. Leich et al. (2005b) suggest to implement optional interactions in features themselves,
but with language constructs as advice statements that are ignored when the second feature
is not selected. We call this approach the Optional Weaving Approach. In Figure 5.2c we
show a visual representation: the interaction code still remains in one feature, but is now
optional.

The implementation of our previous example with this approach is shown in Figure 5.7:
The aspect Statistics no longer references the MemoryBudget aspect directly. Instead, it ad-
vises the incUsedMemory method introduced by MemoryBudget. When the MemoryBudget
aspect is not included for compilation this advice statement is not woven, and the variable
statsUsedMemory is therefore always zero. With this approach we are able to resolve the
implementation dependency and to compose both features individually.

The advantage of the Optional Weaving Approach compared to the Derivative Feature
Approach is that it is not necessary to create derivative features to resolve dependencies.
Dependencies can be implemented as optional extensions inside the original feature defi-
nition and can be maintained locally, similar to the way it was maintained in the original
code. This means that the Optional Weaving Approach does not have problem with scale
and does not need any tool to hide complexity. The interactions are woven automatically
by the AspectJ compiler when the depending feature is selected.

Although this approach has these advantages, it has several disadvantages, which make
it unusable for practical refactoring with the current AspectJ language:

• First, it is not possible to reference optional classes, methods or member variables in
an optional advice statement. For example, the advice statement in Figure 5.7 cannot
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20 c l a s s Environment {
21 vo id openDb(String name) { ... }
22 byte [] readData() { ... }
23 }

24 a s p e c t MemoryBudget {
25 l ong Environment .maxMemory;
26 l ong Environment .usedMemory =0;
27 vo id Environment .incUsedMemory(){
28 usedMemory ++;
29 }
30 a f t e r (Environment env) : e x e c u t i o n ( vo id openDb(String)) && t h i s (env) {
31 env.incUsedMemory();
32 }
33 ...
34 }

35 a s p e c t Statistics {
36 a f t e r () : e x e c u t i o n (byte [] readData()) { ... }
37 i n t Environment .getBufferHitRatio() { ... }
38
39 l ong Environment .statsUsedMemory;
40 a f t e r (Environment env) : e x e c u t i o n ( vo id Environment .incUsedMemory()) && t h i s (env) {
41 env.statsUsedMemory++;
42 }
43 l ong Environment .getUsedMemory() {
44 re turn statsUsedMemory;
45 }
46 }

Figure 5.7: Optional Advice Example.
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access the member variables maxMemory or usedMemory which were introduced by
the MemoryBudget aspect. Therefore, Statistics mirrors the logic and values, i.e., it
monitors the memory usage in its own variable instead of using the existing one from
MemoryBudget. Thus, the optional advice approach introduces code replication.

• Second, optional weaving is possible only for advice statements, not for ITMDs. This
means that the target for ITMDs must exist and cannot be optional. Additionally,
all extensions that belong to this interaction, but are not implemented with optional
advice are woven anyway. In our example the member variable statsUsedMemory
and the method getUsedMemory are introduced in any case, even when the advice
statement is not woven. As a consequence, getUsedMemory is always present but
returns an empty value when compiled without the MemoryBudget aspect. Thus, the
Optional Weaving Approach can introduce unnecessary variables and methods, that
have no runtime semantics without the interactions.

• Finally, the scope problems shown above also hinder advising methods in optional
classes. To define the advice the target class must be in the scope of the aspect, i.e.,
imported with the Java import statement. If the class is excluded from compilation
this import statement will issue an error. Similarly, optional classes can never be ref-
erenced in any advice declaration, e.g., it cannot be used as a parameter and captured
with a this or args pointcut.

In general, avoiding the complexity of derivative features is a promising aim, however
language restrictions make it hard or even impossible to implement optional interactions
with this approach. With the current AspectJ language, this approach leads to code replica-
tion and the weaving of unnecessary code without runtime semantics.

A possible solution would be to define groups of statements—advice and ITMDs—as an
optional extension, where the whole group has transactional semantics, i.e., it is either wo-
ven with all advice and introductions, or no statement is woven. When one advice statement
in this group cannot be woven, all other group members are also excluded from compila-
tion. Furthermore, references to unavailable classes in not woven code must not produce
a compilation error, so that access to classes, methods, and member variables introduced
by other features is possible inside an optional extension group. Such optional extension
groups are similar to derivative features, but they are defined inside a feature and are com-
piled automatically. Hence, they do not create huge and complex feature models. A simple
way to implement such groups as an extension to AspectJ is to tag all members of this
group with an annotation and to extend the AspectJ compiler to weave all annotated mem-
bers with transactional semantics. However, as long as such language improvements are
not available, the Optional Weaving Approach cannot be used as a solution for the Feature
Optionality Problem.



5.3 Summary

While refactoring Berkeley DB, we observed the Feature Optionality Problem, that hin-
ders independent composition of optional features. We tried to solve the problem with the
Derivative Feature Approach, based on existing research on derivatives and origami (Pre-
hofer, 1997; Liu et al., 2006; Batory et al., 2003). First refactorings were promising, but
we observed limitations in the AspectJ language again, as well as an increasing complexity
of the feature model. The number of derivative features is expected to grow quadratically
with the number of features in the project, which hinders scaling feature models.

On the other hand, the alternative Optional Weaving Approach (Leich et al., 2005b)
tackles the problem with extensions inside the feature that are only woven when the de-
pending feature is included. This avoids the complexity of the Derivative Feature Approach,
however it is limited by the AspectJ language that does not support optional weaving well.
Therefore this approach cannot be used practically.

These results show that the Feature Optionality Problem is a major problem, especially
for scaling feature modeling to models with many features. For our refactorings so far,
the Derivative Feature Approach is manageable, but as soon as the number of features
increases, e.g., as soon as we refactor further database operations, this becomes too complex
for practical use. The optional weaving problem could not be tested, due to insufficient
language support. The Feature Optionality Problem is an important field of research, and
further work that goes beyond theoretical models is needed. A solution to solve the Feature
Optionality Problem must be stable, less complex, and convenient for the developer and the
end-user.
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Chapter 6

Feature Order

A premise in FOP is that the order in which features can be composed is fixed and features
are applied sequentially as functions. In contrast, AspectJ applies all aspects ‘at once’, i.e.,
aspects can advise the full source code including changes made by other aspects. When two
or more advice statements extend the same join point, the order in which they are applied
is calculated by precedence rules or the order is simply undefined (Kiczales et al., 2001;
Lopez-Herrejon et al., 2006).

There are several reasons why a fixed weaving order should be considered also for AOP:

1. Shared Join Points. In cases where a join point is extended multiple times the order
in which extensions are applied can make a difference. For example, if a synchro-
nization and a logging extension is applied to an interface method the order decides
whether the logging code is synchronized or not. An explicit weaving order can pin-
point the precedence.

2. Accidental Weaving. As argued by Lopez-Herrejon et al. (2006) and McEachen
and Alexander (2005), the ‘at once’ weaving of all advice is potentially dangerous
because pattern expressions can match code that was not intended. This can lead to
serious consequences like deadlocks. To avoid these problems, Lopez-Herrejon et al.
(2006) have suggested to weave aspects like functions in a fixed order and thus to
bound aspect quantification.

3. Aspect Extensions. Similarly, Forster and Steimann (2006) have shown that the
global ‘at once’ weaving approach can produce logical problems, resulting in infinite
loops in AspectJ. They suggest an ordered weaving similar to the one proposed by
Lopez-Herrejon et al. (2006), but with different language constructs.

4. Reduced Complexity. The ‘at once’ weaving inflicts that each aspect can interact
with any other aspect, for n aspects there are n2 possible interactions. Using the
bounded quantification approach every feature can interact only with previous fea-
tures, not with later ones. The number of interactions is thus decreased by 50 %
(Apel and Liu, 2006).
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5. Integration of AOP and FOP. When aspects are integrated in an FOP approach,
e.g., AML (Apel et al., 2006c), a bounded quantification is crucial to get a consis-
tent behavior of FOP artifacts like mixins (Batory et al., 2004; Bracha and Cook,
1990) and aspects. In Apel et al. (2006b) and Kästner et al. (2006), we have already
proposed and partly implemented a compiler to integrate aspects to AHEAD and to
bounded aspect quantification. This compiler needs an ordered list of features and
compiles them sequentially.

In the remainder of this section we discuss the first three points, how AspectJ deals with
shared join points, if and how accidental weaving occurred, and if problems based on aspect
extensions were relevant. The integration of AOP and FOP is outside the scope of this paper
and discussed elsewhere (e.g., Apel et al., 2005, 2006c,b; Mezini and Ostermann, 2004).

6.1 Observations on Shared Join Points

During our refactorings, almost all extensions were done in disjoint points in Berkeley DB.
We found that only 28 of overall 528 extended join points (5 %) were extended with more
than one advice statement. These join points are called Shared Join Points (SJPs).

Furthermore, we made the following observations about SJPs in Berkeley DB:

• In 7 cases the affected SJP is a constructor or an init method, where different features
initialize variables in their extensions. In all these cases the weaving order does not
matter.

• In 6 cases a SJP is extended twice but with different advice that automatically speci-
fies the feature order: One feature uses before advice and the other feature uses after
advice. Even though both advice statements extend the same join point the order is
defined already by the used advice independent of aspect precedence.

• The other SJPs can be classified as following: 2 join points are extended seven times
by different statistic features. Every static feature extends the clear and toString
method to reset and print statistics. Especially for the latter the order matters. 4 join
points are extended four times by each daemon thread to initialize, run, pre-shutdown,
and shutdown these daemon threads in the correct order. The remaining 9 SJPs are all
extended twice only and involve the features STATISTICS, LATCHES, and MEMORY-
BUDGET. In many of these cases it is not obvious whether the order is important or
not, therefore we enforced the original order in every case.

• We found 12 additional join points which the compiler marked as extended multiple
times. However, in these cases conditional pointcuts were used due to the Statement
Extension or Advise Objects Problem. These join points are never actually extended
multiple times at runtime, but the compiler is not able to determine this statically.

One simplified example of a SJP where the order matters is given in Figure 6.1. The
original code to remove a transaction contains extensions from two features: (1) the whole
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1 p u b l i c c l a s s TxnManager {
2 vo id unRegisterTxn(Txn txn) throws DatabaseException {
3 a l l T x n L a t c h . a c q u i r e ( ) ;
4 allTxns.remove(txn);
5 getMemoryBudget ( ) . updateMiscMemoryUsage ( t x n . ge t InMemoryS i ze ( ) ) ;
6 a l l T x n L a t c h . r e l e a s e ( ) ;
7 }
8 }

(a) Original code.

1 a s p e c t p r i v i l e g e d MemoryBudgetExt {
2 a f t e r (Txn txn, TxnManager mgr) : e x e c u t i o n ( vo id TxnManager .unRegisterTxn(Txn)) &&

args(txn) && t h i s (mgr) {
3 mgr.getMemoryBudget().updateMiscMemoryUsage(txn.getInMemorySize());
4 }
5 }
6 a s p e c t p r i v i l e g e d LatchExt {
7 around(TxnManager mgr) : e x e c u t i o n ( vo id TxnManager .unRegisterTxn(Txn)) && t h i s (mgr) {
8 mgr.allTxnLatch .acquire();
9 proceed(mgr);

10 mgr.allTxnLatch .release();
11 }
12 d e c l a r e precedence : LatchExt, MemoryBudgetExt;
13 }

(b) Refactored aspects.

Figure 6.1: Feature Order Example with SJP.

method is synchronized with latches in Lines 3 and 6, and (2) the memory budget is in-
formed about each change in Line 5. We refactored this example with two ESMR refactor-
ings into the two aspects MemoryBudgetExt and LatchExt as shown in Figure 6.1b. In this
case the order in which the aspects are weaved decides whether the memory budget code is
synchronized or not. Because we do not know if the synchronization is really necessary, we
decided to enforce the stricter synchronized version of the original source code and added
a declare precedence statement (Line 13)1.

The only more complex example is the order in which the four daemon threads are
created and shut down. As shown in Figure 6.2, the Evictor is created first, than the Check-
pointer, than the INCompressor, and finally the Cleaner. However, the order in which these
threads are shut down is different, almost reverse: first the INCompressor, than the Cleaner,
than the Checkpointer, and finally the Evictor. To reimplement this order we declared the
aspects precedence in their shutdown order and implemented all shutdown extensions with
after advice. Thus, the shutdown method is extended in the correct order. To achieve
the correct creation order we used other advice. The first two features INCompressor and
Cleaner add the creation code with after advice while the last two features add their code

1Note: The mathematical concept of precedence has the opposite meaning of precedence in AspectJ.
Higher precedence in AspectJ means apply later, whereas mathematical precedence means apply earlier
(Lopez-Herrejon et al., 2006). Therefore, the precedence is defined in the order LatchExt, then Memory-
BudgetExt.
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1 p u b l i c c l a s s EnvironmentImpl {
2 p r i v a t e vo id createDaemons() throws DatabaseException {
3 evictor = new Evictor( t h i s , "Evictor");
4 checkpointer = new Checkpointer( t h i s , cpWakeupTime , "Checkpointer");
5 inCompressor = new INCompressor( t h i s , wakeupInterval , "INCompressor");
6 cleaner = new Cleaner( t h i s , "Cleaner");
7 }
8 p r i v a t e vo id shutdownDaemons() throws InterruptedException {
9 shutdownINCompressor();

10 shutdownCleaner();
11 shutdownCheckpointer();
12 shutdownEvictor();
13 }
14 ...
15 }

Figure 6.2: Daemon Threads Creation and Shutdown Order.

with before advice. This strategy reproduces the correct creation order without the need for
a different aspect precedence.

As seen in the previous examples, we used the declare precedence statement to specify
the weaving order for aspects. However, we observed that it is sufficient to order features
instead of aspects. In few cases only, a SJP is extended by two advice statements from the
same feature, and in these cases the order does not matter. All other SJPs are extended by
different features. Even in more complicated cases like the daemon creation and shutdown
order shown above, we could express the necessary order with features. We did not need
the ability to order individual aspects or even advice declarations.

Because we cannot directly declare feature precedence with AspectJ, we used the de-
clare precedence construct as shown above to define an order for aspects where needed.
This was convenient enough for our refactorings, however in larger projects these state-
ments could easily be generated with a tool that transforms feature precedence into aspect
precedence statements between all aspects in these features.

During implementation, we observed that the placing of these precedence statements is
a problem. When this statement is placed in an optional feature it has an effect only when
the feature is included. The placement of declare precedence statements is a special case of
the Feature Optionality Problem (cf. Chapter 5). For a clean solution we would need to cre-
ate derivative features for all possible dual feature combinations, i.e., the maximum number
of derivative features as discussed above. Just to express the precedence for the 7 statistics
features we would need 21 derivatives. Higher order derivatives are not needed because
precedence declarations are transitive, thus dual feature combinations are sufficient.

For our refactorings, we used a trick to avoid derivatives and exploited the fact that
it is possible to specify a declare precedence statement with non-existing aspects. The
used AspectJ compiler generates only a warning, which we ignore. So, we created one
declare precedence statement only for all statistic features inside the STATISTICS code,
that is required by every statistics feature: ‘declare precedence : INCompressorStats, Evic-
torStats, CheckpointerStats, CleanerStats, CachingStats, FSyncStats, LogStats;’. Similarly,
we placed one declare precedence statement for the daemon thread features in the base
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code. However, this trick has two major disadvantages. First, because of scope limitations
(cf. Section 4.2.6), it works only when all aspects are declared in the same package. Sec-
ond, we added a declare precedence statement to the STATISTICS feature and the base code
that otherwise would not need to know about the presence of other features. Thus, as also
observed by Murphy et al. (2001), the declaration of precedence inside a feature breaks
encapsulation.

For a clean and manageable solution, we suggest an approach similar to FOP: the fea-
ture order should be managed outside of the source code. A tool then creates all needed
declare precedence statements based on the feature order before compilation. Thus, this
tool would simplify this process and abandon the need to create a high number of deriva-
tives.

To summarize, we observed some shared join points, although the percentage is very
small. In all cases the AspectJ declare precedence statement could be used to specify
the feature order. However, due to the Feature Optionality Problem the placing of these
statements is a major problem.

6.2 Observations on Accidental Weaving

Several studies have shown potential problems of extensions with pattern expressions.
These pattern expressions can accidentally extend join points introduced in subsequent de-
velopment steps and thereby inflict unanticipated composition and unpredictable behavior
in evolving aspect-oriented software (e.g., Lopez-Herrejon et al., 2006; McEachen and
Alexander, 2005). Especially critical are call pointcuts that can extend call join points
introduced by later development steps.

During our refactorings we did not observe any problem with accidental weaving, even
though we sequentially refactored one feature after the other. We recognized several reasons
for this:

• As described earlier we hardly used any homogeneous extensions that rely on pattern
expressions. Those were simply not needed during our refactorings, so that the main
potential cause of the accidental weaving problem is rarely present in our application.

• During early development phases we used pattern expressions instead of method sig-
natures to simplify the writing of pointcuts (cf. Section 4.1.6). However, these pattern
expressions usually specify the target class and the full method name and use patterns
only for return type and parameters. This seemed to be sufficiently accurate to avoid
accidental weaving because we rarely faced overloaded methods.

• We used call pointcuts mainly to emulate statement extensions (cf. Section 4.1.3 and
4.2.1). In these cases we usually restricted the pointcut with the within and withincode
pointcut designators. This again reduced the chance for accidental weaving.

• Finally, we usually did not rename methods or changed there signature during refac-
toring. Thus, we did not really introduce new join points, but just moved existing join



96 6.3. OBSERVATIONS ON ASPECT EXTENSIONS

1 p u b l i c c l a s s Innocent {
2 p u b l i c vo id someMethod () {
3 ...
4 }
5 }
6 p u b l i c a s p e c t Naughty {
7 before (Innocent a) : c a l l ( vo id Innocent.someMethod ()) && t a r g e t (a) {
8 a.someMethod ();
9 }

10 }

Figure 6.3: Aspect Recursion (adapted from Forster and Steimann, 2006).

points in most cases. The accidental weaving problem was consequently avoided, be-
cause we were able to exclude unwanted join points when we created the pointcut
in the first place. We assume that the accidental weaving problem is an evolution
problem, not a refactoring problem.

This shows that, at least in our refactorings, accidental weaving is not an issue. How-
ever, during further evolution or maintenance we may still encounter these problems as
described in the studies mentioned above. Nonetheless, the low amount of homogeneous
pointcuts indicate that even than the accidental weaving problem will not occur frequently.

6.3 Observations on Aspect Extensions

Forster and Steimann (2006) discussed the problem that the unbounded ‘at once’ weaving
can create logical problems and infinite loops when aspects extend code introduced by other
aspects or itself. A simple example of such a problem is shown in Figure 6.3, where the
Naughty aspect advises a call it introduced itself (Line 8). A similar problem can occur
with cyclic extensions of two or more aspects, for example, if aspect Foo extends code
introduced by aspect Bar and aspect Bar extends code introduced by aspect Foo. Forster
and Steimann (2006) argues that an ordered bounded weaving prevents such problems.

In our refactorings we have not observed any of these problems. There are many cases
where one aspect extends code introduced by other aspects as already shown in our de-
pendency analysis in Section 3.5 (cf. Table 3.3, p. 51). However, in this analysis we have
detected only one mutual dependency, where the MEMORYBUDGET feature extends the
LATCHES feature and the LATCHES feature references the MEMORYBUDGET feature. Still,
this mutual extension does not create any cyclic extensions and could easily resolved for an
ordered weaving with bounded quantification, e.g., with the idea of sandwiching (Parnas,
1978; Apel and Liu, 2006).

In all other cases where aspect code is extended, the extension is unidirectional. Fur-
thermore, no aspect extends join points created by itself. We could even generate an aspect
order from the feature model and its dependencies. This observation shows that the possi-
bility for logical problems and infinite loops due to the unbounded ‘at once’ weaving has
no practical relevance, but on the other hand an bounded ordered weaving would not hinder
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1 p u b l i c c l a s s Base {
2 vo id main() {
3 ...
4 }
5 }

1 p u b l i c a s p e c t Foo {
2 vo id Base.lock() {
3 ...
4 }
5 vo id Base.unlock() {
6 ...
7 }
8 }

1 p u b l i c a s p e c t Bar {
2 vo id around(Base base) :

e x e c u t i o n ( vo id Base.main()) &&
t h i s (base) {

3 base.lock();
4 proceed (base);
5 base.unlock();
6 }
7 }

Figure 6.4: Error Propagation.

refactorings, either.

6.4 Other Problems of AspectJ’s Weaver

We observed two other problems that arise due to the ‘at once’ weaving approach: error
propagation and restricted IDE support on projects with errors. The Error Propagation
Problem occurs when the source code contains errors. Usually the compiler can output
the position of the problem to help the developer fixing it. However, AspectJ weaves all
aspects ‘at once’, thus an error can create many subsequent errors that make it hard to find
the original one. The compiler cannot distinguish between original errors and subsequent
errors which are caused only by other errors.

Consider the example of base code and two features in Figure 6.4. The aspect Foo
introduces two methods into the base code while the second aspect Bar uses these methods
to extend the base code. When there is a compilation error in the Foo aspect, e.g., a syntax
error like a missing return type, not only this error is shown but also two subsequent error
messages in Bar like “The method lock() is undefined for the type Base, Bar.aj”. Thus, a
simple error in one aspect can cascade to a whole list of errors that are hard to trace and
where the initial error is hard to find. During our refactorings we had situations where a
single error resulted in over 100 reported errors!

In a system with an ordered bounded weaving process this error propagation is no longer
possible. The compiler can stop after a feature that could not be compiled correctly. Even if
the compiler continues it is easier to detect the cause, because the first error, in our case the
syntax error in Foo, is usually responsible for the ones from subsequently weaved aspects.

Similarly, IDE support like the AJDT Eclipse plug-in requires full compilation without
errors to be able to use any tools like showing pointcut matches. This means that during
development, when we refactored a new feature we had to resolve all errors in this feature
first, before we could use the IDE support again to see extensions by previous features.



Among other problems, this makes it hard to detect SJPs already during development. With
an ordered weaving the IDE could still show all extensions made from previous features
and thus ease development.

6.5 Summary

The ordering of features and aspects inflicted fewer problems than expected. Almost all
features extend disjoint pieces of code, and potentially dangerous logical errors or infinite
loops have no practical relevance. Due to the nature of our refactorings and the low number
of homogeneous pointcuts, accidental weaving is not a problem either. In those few places
where a join point is extended multiple times—only in 5 % of all extended join points—a
simple rule of precedence for features is sufficient. Solely the definition of this rule with
AspectJ constructs poses a problem.

Therefore, we conclude that the proposed extensions, like bounded aspect quantification
or ordered weaving, are not necessary. On the other hand, these extensions are not hindering
either, so their aim to gain a cleaner language and to avoid potential problems, even though
not observed during our refactorings, should be sufficient to integrate them into the AspectJ
language.
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Chapter 7

Understandably and Maintainability of
Refactored Features

During our refactorings we got the impression that the resulting features are unreadable and
unmaintainable. Especially we observed the following five points:

• The AspectJ syntax is hard to read; it is hard to understand existing code and tool
support is crucial.

• The AspectJ syntax is hard to write; it is a long and repetitive process to write a
pointcut.

• The complexity of aspects implementing a feature grows quickly, making it hard to
understand large features.

• A feature cannot be understood independently. It is coupled strongly with the base
code and other features.

• Pointcuts are fragile. It is very hard to evolve and maintain a refactored application.

Even though our impression is hard to quantify and may be dismissed by some as a
personal view, in this chapter we try to illustrate our perception.

7.1 AspectJ Syntax

First, we focus on the syntax of AspectJ. We feel that compared to other extension mech-
anism the syntax of AspectJ is very complicated. In this section we try to illustrate our
impression, point out some specific problems of advanced pointcuts and scale, and propose
metrics to measure complexity.
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7.1.1 General Problems

Increased Code Size. An obvious observation is that AspectJ statements are usually very
long in terms of code size. As illustration, consider this simple example: we want to extend
the delete method in the Database class and introduce a trace call. In an object-oriented
framework we would create a subclass of Database and override the delete method as shown
in Figure 7.1a. However, in AspectJ we need at least three pointcut designators for the
same behavior as shown in Figure 7.1b. First, we need an execution pointcut to capture the
method’s execution join point. For this pointcut designator we have to specify the method
signature with the return type and all parameter types1, unless we are willing to use pat-
tern expressions for heterogeneous pointcuts, even though accidental weaving can occur
(cf. Section 6.2). Second, we need an args pointcut designator to capture the needed argu-
ments. Finally, we need a within pointcut designator to restrict this extension from affecting
subclasses2. This extension is 94.5 % larger than the object-oriented implementation: the
AspectJ version has 389 characters, while the object-oriented version has 200 characters,
each not counting line breaks and unnecessary blanks. In our perception the AspectJ ver-
sion is additionally much harder to read. Even when we use an anonymous pointcut as
shown in Figure 7.1c, we still have an increase in code size of 39.5 %.

AspectJ advocates usually argue that the increased overhead by the AspectJ language
constructs is outweighed by the code savings of homogeneous pointcuts that remove re-
peated code. Our experience has shown that this does not hold. As discussed earlier, only
a small percentage of all extensions were homogeneous, and the homogeneous ones extend
only few join points each with small code fragments. Furthermore, some of the homo-
geneous extensions use enumerations, thus resulting in especially large pointcuts. Exact
figures are hard to collect, but we estimate that even the homogeneous extensions do not
save much code size compared to the overhead they introduce. If the massive amount of
heterogeneous extensions are taken into account as well, the balance is far negative: the
overall code size grew by the usage of aspects.

Repetitive Parameter Lists. The AspectJ versions are not only larger, but also highly
repetitive. While the object-oriented extension only declares the parameter list once and
then uses it for a super call a second time, the AspectJ version with the explicit pointcut in
Figure 7.1b repeats the parameter list 5 times: in the pointcut declaration (Line 2), in the
execution and args pointcut designators (Lines 3–4), in the advice declaration (Line 6), and
finally in the pointcut reference (Line 7). The AspectJ version with the anonymous pointcut
in Figure 7.1c still repeats them 3 times. This repetition is laborious and error-prone and
usually done with copy and paste.

1It is possible to specify thrown exceptions and also modifiers, e.g., protected, static, or final, in a pointcut.
However, in Java it is not possible to overload methods with different exceptions or modifiers, thus we did not
use them in pointcut declarations.

2Surprisingly, but described as intended behavior in the AspectJ manual, an execution pointcut affects
the specified class and all subclasses unless it is restricted explicitly with a within pointcut explicitly. The
pointcuts ‘execution(void Database.put(..))’ and ‘execution(void Database+.put(..))’ are equivalent.
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1 p u b l i c c l a s s TracedDatabase extends Database {
2 p u b l i c vo id put(Transaction txn, DatabaseEntry key, DatabaseEntry data) {
3 super.put(txn, key, data);
4 Tracer.trace(Level.FINEST , "Database.put", t h i s , txn, key, data);
5 }
6 }

(a) Object-oriented Extension

1 p u b l i c a s p e c t TracedDatabase {
2 p o i n t c u t tracePut(Database db, Transaction txn, DatabaseEntry key, DatabaseEntry data) :

3 e x e c u t i o n ( vo id Database.put(Transaction , DatabaseEntry , DatabaseEntry))
4 && args(txn, key, data) && with in (Database) && t h i s (db);
5
6 a f t e r (Database db, Transaction txn, DatabaseEntry key, DatabaseEntry data):
7 tracePut(db, txn, key, data) {
8 Tracer.trace(Level.FINEST , "Database.put", db, txn, key, data);
9 }

10 }

(b) AspectJ Extension with Explicit Pointcut

1 p u b l i c a s p e c t TracedDatabase {
2 a f t e r (Database db, Transaction txn, DatabaseEntry key, DatabaseEntry data):
3 e x e c u t i o n ( vo id Database.put(Transaction , DatabaseEntry , DatabaseEntry))
4 && args(txn, key, data) && with in (Database) && t h i s (db) {
5 Tracer.trace(Level.FINEST , "Database.put", db, txn, key, data);
6 }
7 }

(c) AspectJ Extension with Anonymous Pointcut

Figure 7.1: Syntax Comparison.
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Programming in a Third-Person Perspective. What makes the AspectJ version addi-
tionally complicated is what we call the third-person perspective: The advice statement
does not directly extend the target class, but is described as an external entity. It does not
have direct access to the extended object and cannot use the this keyword to describe exten-
sions like a first-person narrator would. Instead, extensions have to refer to the target class
through an explicit object, captured with a pointcut.

In the object-oriented implementation of our example (Figure 7.1a) we simply use
the this keyword to pass the extended database object to the trace method. Instead, the
AspectJ variants have to add the database object to the pointcut’s parameter list and in-
tercept it with the this or target pointcut designators (Line 4 in Figures 7.1b and Fig-
ure 7.1c). Alternatively, the extended object can be accessed using the thisJoinPoint API,
e.g., ‘Tracer.trace(..., (Database) thisJoinPoint.getThis(), ...)’, although because of the re-
quired dynamic typecast we did not use this version. It is necessary to emphasize that this
access to the extended object is not a constructed biased example. In our refactorings 400
advice declarations—83 % of all—required a this or target pointcut designator to access the
extended object. Examples can be seen throughout this thesis, e.g., in Figures 3.2–3.5, 4.1,
4.2, 4.7, 4.11, 6.1, and 7.1.

The necessity to capture the extended object with a pointcut makes not only the advice
declaration larger, it also makes it harder to read the extension. In Java the this keyword
is optional and it is common not to use it, unless it is required. It is common to expect
that all calls or variables are members of the current class if no explicit target is specified.
This is not possible in AspectJ. There the extended object must always be intercepted with
a pointcut and specified explicitly.

We perceive this third-person programming perspective as unfamiliar, unusual, and—
except for some homogeneous crosscuts—unnecessary. We much more often refer to the
extended object than to the aspect’s instance. The confusion is even increases because meth-
ods introduced with ITMDs are written in a first-person perspective, thus both perspectives
are frequently mixed in one aspect.

7.1.2 Advanced Pointcuts are Hard to Understand

Even though the pointcuts shown in the above example are already fairly complex, their
object-oriented equivalent is just a simple method refinement. Earlier in this thesis we
have shown that AspectJ allows advanced crosscuts like conditional extensions, statement
extension emulation, and homogeneous extensions. In this section we try to show why these
extensions—in our perception—are even worse to understand.

Conditional Extensions. First, let us revise conditional extensions. In contrast to the
simple method refinement above, conditional extensions are executed only depending on
a runtime condition. This makes it harder to predict and understand their behavior. The
developer must not only understand at which join points the extension applies, but also
when the enabling condition can arise in the source code. Usually tools cannot support
developers in this task.
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We experienced that those extensions are often weaved into join points where they never
occur. Recall the Advise Objects Problem (Section 4.2.5) where we used a runtime condi-
tion to extend only certain subclasses of the standard Set class (Figure 4.11e). Even though
the actual extension occurs only in few join points where the subclass can ever be used,
many other join points are also matched. When the developer tries to understand this exten-
sion he first has to visit all potential join points and then learn by reading the code, that only
few of the potential join points will ever execute this extension. This might be obvious in
some cases, but hidden as implementation detail in others. Here again, tool support is not
possible, because a tool cannot statically decide which extensions are executed at runtime.

Control flow based extensions. As shown earlier, AspectJ allows special conditional ex-
tensions that depend on the dynamic control flow of the application. We have experimented
with the cflow pointcut designator to work around some problems like the Statement Exten-
sion, Parameter Passing, or the Local Variables Access Problem. Already in Figures 4.4 and
4.9 we have shown two cflow solutions. We have argued in both cases that these solutions
are hard to understand, but why is this?

A first reason that makes the cflow statement hard to understand is, that there is no
equivalent known from object-oriented programming. Thus, developers do not only need
to learn a new syntax but a completely new concept.

Another reason is—we assume—that a cflow statement increases the complexity from
one pointcut to a combination of two pointcuts, and potentially even more, as arbitrary com-
plex solutions with combined or nested cflow statements are possible. To understand what
happens, the developer has to identify two independent sets of join points and try to under-
stand their connection. This means he must not only find the right place in the source code,
but must really comprehend the control flow of the base code. This might be fairly simple in
some cases like the examples in this thesis, but when dealing with homogeneous pointcuts
or control flows over several calls, we found it very hard to understand the constructs.

To be fair, there might be situations where the cflow solution is easier to understand than
an object-oriented approach that solves the same problem. One is the frequently quoted ob-
server example to avoid triggering an update inside another observed method: ‘after(): dis-
playStateChange() && !cflowbelow(displayStateChange()) { Display.refresh(); }’ (Kicza-
les and Mezini, 2005). However, we assume that these situations are delimitable problems
with a small underlying code base. Furthermore, if they existed in Berkeley DB, they were
already solved differently and thus did not occur during refactoring. More importantly,
the potential to abuse the cflow pointcut as a workaround for other problems like passing
parameters makes it dangerous to use at all.

Homogeneous Extensions. Also homogeneous extensions make it harder to understand
an AspectJ program. Enumerated pointcuts are easiest to understand, they just make the
pointcut definition larger. However, pattern expressions must either be very simple or re-
quire tool support to find all affected join points.

Additionally the developer needs to understand the intension of the pointcut. For ex-
ample, we used the pointcut ‘execution(void MemoryBudget.update*MemoryUsage(..))’ to
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match the methods updateTreeMemoryUsage, updateMiscMemoryUsage, and updateLock-
MemoryUsage. However, the pointcut alone does not describe the intention, e.g., whether
an new method updateFormerMemoryUsage should be extended or not. Instead the devel-
oper has to gasp the intention from the context: the operation of the advice declaration, the
affected join points, or if available, the name of the pointcut. It is especially hard to tell if a
homogeneous pointcut matches the correct join points, or too many or too few.

As explained before, the long syntax to specify a full method signature for call and
execution pointcuts tempted us to use pattern expressions to simplify the writing of hetero-
geneous extensions at the beginning of our refactoring. Furthermore, we have observed this
effect in other AspectJ projects as well (e.g., Apel, 2007). Pattern expressions for hetero-
geneous extensions reduce the overall code quality: A new developer trying to understand
existing source code has to check for every single extension if it is homogeneous or if the
pattern was just used for convenience. This might result also in mistakenly interpreting
homogeneous extensions as simplified heterogeneous ones.

7.1.3 Complexity and Scale

Measuring Complexity. Previously, we have expressed our perception that pointcut def-
initions are complex. In this section, we try to support this view by providing metrics and
measuring the complexity.

First, as a basic metric, we suggest to count the number of pointcut designators used
for each advice after resolving named explicit pointcuts. So the lowest complexity is an
advice statement that uses only one pointcut designator. The simple method extension
example above in Figure 7.1 has a pointcut complexity of 4, because it uses the designators
execution, args, within and this.

For further work, we suggest to use an extended metric that uses different weights
for different pointcut designators and different combination of pointcut designators based
on the empirical perception of their complexity. For example, we—again subjectively—
perceive a pointcut with a cflow statement, or a call and withincode combination as much
more complex than a simple execution pointcut. For the same reason, explicit pointcuts
might be measured as more complex than anonymous ones. However, due to the lack em-
pirical data we use the basic metric as approximation in this thesis.

In Figure 7.2 we show the measured pointcut complexity of Berkeley DB based on the
basic metric. The simplest case with just one pointcut designator was only used 5 times,
in all other cases multiple designators were connected with && or || operators. Most fre-
quently pointcuts with three or four designators were used. Especially frequent are com-
binations of execution or call with args, this and within/withincode designators, typically
for method extensions. Pointcuts with more than 4 designators are less frequent and usu-
ally occur only for enumerated pointcuts. At average, 3.45 pointcut designators were used
per advice statement. This again shows the high complexity of the necessary AspectJ con-
structs. Pointcut designators are rarely used isolated but usually in combination.
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Figure 7.2: Pointcut Complexity Diagram.

Scaling Aspects. The examples used in common AspectJ books or papers are usually very
small. Even the more complex examples like Transactions in Laddad (2003, p. 356ff) use
only very few pointcuts and advice statements. In contrast, in Berkeley DB we refactored
many medium sized and large features as shown earlier in our size analysis in Table 3.2
(p. 45). Many features have over 100 LOC and over 10 advice or ITMD statements. For
example the LATCHES feature, one of the large features, has 104 pieces of advice and
51 ITMDs in 1835 LOC.

We observed that the small AspectJ examples and our small features are usually easy
to understand. However, to read and understand a feature with 104 pieces of advice much
harder. All refactored features implement only one design decision, e.g., synchronizing the
implementation for multi-threaded operations, but the code size required to implement this
design decision makes a huge difference in understandability.

Furthermore, we observed that in large features the advice statements are often similar.
For example to implement the LATCHES feature, most of the 104 pieces of advice are
around advice which first acquire a latch, than call proceed and finally release the latch. But
even though many advice statements are similar, they vary in their concrete implementation
depending on the context and the target class. Similarly, we observed that pointcuts in
large features do not become significantly more complex, there are just more pointcuts (cf.
Figure 7.3). Thus again, refactoring large features like LATCHES is a highly repetitive tasks.

Whether this complexity is inherent feature complexity or caused by the language used
for the implementation is disputable and must be deferred to further work. Our perception
is that AspectJ as language make it harder to understand features.

It seems to us, that the drawback of the hard to read AspectJ language can be justified
only when a small aspect is used homogeneously. The larger aspects become, the harder
they are to understand and maintain. To understand a small aspect it is possible to read the
whole source code and try to figure out how the advice statements work together, step by
step. Our small features are also fairly easy to understand. However, to do the same in a
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Figure 7.3: Feature Size vs. Pointcut Complexity.

large aspect is challenging.

Experience in Related Work. The complexity of advice and pointcuts is a well known
problem. Some researchers avoid using AspectJ constructs wherever possible and just use
aspects only to ‘glue’ objects together. For example, Murphy et al. (2001) use classes
instead of ITMDs and manipulate the inheritance hierarchy or advise only few join points
to call these classes:

“Since in the AspectJ case, we separated most of the code into classes rather
than aspects, the end result may also be more straightforward to understand.
Maintenance may be easier [...] because the aspect, which contains the code
connecting the base and separated structures, is short and straightforward.”
(Murphy et al., 2001, p. 280f)

Thus, they use AspectJ to emulate mixin-based inheritance (cf. Bracha and Cook, 1990)
to avoid the complexity of pointcut definitions. Similarly, Monteiro and Fernandes (2005)
argue for the use of normal methods and member variables inside aspects instead of ITMDs
to introduce an equivalent behavior.

7.2 Coupling of Base Code and Aspects

We observed a strong coupling of the aspects with base code and other aspects. We assume
this is because of a fine granularity of our extensions.

Most common AspectJ examples implement non-critical concerns like tracing, caching
or policy enforcement and they often use very general pattern based pointcuts like “ad-
vise all non-static methods with tracing code”. Furthermore, many authors, e.g., Laddad
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(2003), Sullivan et al. (2005) or Filman and Friedman (2005), suggest to extend only pub-
lic interface methods where possible, because these methods are stable to changes and the
implementation of the class remains hidden.

Our aim was to refactor design decisions into optional features. When we identified
features, we did not specifically search for features that fulfill the above criteria. During
refactoring we did not observe any of these highly repetitive homogeneous crosscuts that
depend on existing interfaces only. Quite contrary, the design decisions we refactored were
typically encapsulated in classes or existing collaborations of classes. Consequently, our
extensions use a very fine granularity: we frequently extended internal methods or even
statements and heavily depend on implementation details.

This reliance on implementation details creates a tight coupling between the base code
and the aspect (or between two aspects if one aspect extends join points of the other). A
special problem with AspectJ is that this coupling is implicit and invisible for the developer.
In contrast to a class refinement, which has a limited scope and can only affect protected
or public methods in super-classes, an aspect can extend any join point in the application,
even in private and internal methods. The base code contains no hint that it is extended
by aspects—it is oblivious to the aspects—and changing it without adapting the aspects
may break the application. One can no longer change the base code or the aspect without
risking to break the code. All changes to the base code, even local changes in private
methods, require an understanding of all aspects (currently 151 in Berkeley DB) that may
extend the code.

To evolve and maintain source code developers therefore usually depend on tool sup-
port, like an IDE that highlights extended join points. Such tool support is already used in
Java development to navigate complex class hierarchies, however with AspectJ tool support
becomes crucial to understand all the source code. The AJDT Eclipse plug-in is such a tool.
However, its usage is limited to code without errors, what is not always given during de-
velopment (cf. Section 6.4). Additionally, it requires explicit reweaving frequently during
source code editing to indicate extensions to newly added join points. Finally, the AJDT
plug-in is unable to correctly show extensions to join points introduced by other aspects,
which we frequently used. It even shows errors when calling a method introduced with an
ITMD by an aspect, even though the code is correct and compilable. As development with
AspectJ heavily depends on tool support, such problems are not acceptable. Requirements
must be higher for AspectJ IDEs than for Java IDEs, because in the latter the developer can
still manually navigate and overview the effect of his changes himself.

We conjecture that mechanisms that ensure an encapsulation and allow aspect exten-
sions only through certain interfaces of the base code, like Open Modules (Aldrich, 2004)
or Design Rules (Sullivan et al., 2005), could improve the maintainability in our case. They
do not reduce the coupling, but at least make it explicit and thus easier to understand.
Nonetheless, such approach would force us to publish the former encapsulated and internal
code as interfaces. The advantage of the original object-oriented encapsulation, namely
to be able to change implementation detail, is given up for external extensions by aspects.
This also means that the base code has to be prepared for the extensions, again giving up
obliviousness.
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To summarize, the tight implicit coupling between the base code and aspects is a serious
problem. Neither base code nor aspects can change without an understanding of the full
source code. The main approach to solve this problem seems to be tool support in AspectJ
IDEs. However current tools are not sufficient for the high demands and cannot guarantee
a safe evolution.

7.3 Fragile Pointcuts

In the previous section we have shown the tight coupling of aspects with the base code.
Aside from making the source code harder to understand, it also makes the source code
very fragile. In this section we focus on the well known Fragile Pointcut Problem (Kop-
pen and Störzer, 2004; Stoerzer and Graf, 2005) which we frequently observed during our
refactorings.

7.3.1 Problem Definition

The Fragile Pointcut Problem is a software evolution problem, that occurs when an aspect-
oriented application is changed, but the pointcuts are not updated accordingly. If this hap-
pens, the behavior of the application can silently change, because aspects advise different
join points than before. In some cases the change is obvious, in others it may be subtle and
go undetected. Stoerzer and Graf (2005) have identified four source code changes that are
common during maintenance and evolution which modify join points and are thus poten-
tially dangerous: (1) renaming a class or method, (2) moving a class or method, (3) adding
or removing a class or method, and (4) changing a method’s signature, e.g., by introducing
a new parameter. Any of these changes modify the system’s join points and may require
updates to aspects.

The problem lies in the fact, that the developer often is not aware of aspects. As men-
tioned above, he either needs a tool that warns him or must understand all aspects in the
system. Contrasting changes in object-oriented systems, where the compiler issues a se-
mantic error when only the methods definition has changed but not the calls, in AOP those
changes can go undetected, the compiler silently does not weave the join point.

The Pointcut Fragility Problem is especially dangerous for homogeneous pointcuts
and pattern expressions3. We expect heterogeneous extensions to extend exactly one join
point, it is therefore easy to check correct weaving. The AspectJ compiler even issues a
warning when advice is not woven anywhere. In contrast, homogeneous extensions are
woven at multiple join points, where the expected number is never specified. The com-
piler can therefore not issue a warning on changes. Pattern expressions like ‘execution(*
Database.put*(..))’ might also create an illusion of stability against changes, however this
makes it even harder to detect exceptions and fosters accidental weaving (cf. Section 6.2).

3Concerning pattern expressions the Fragile Pointcut Problem is also known as Arranged Patterns Problem
(Gybels and Brichau, 2003).
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During our refactorings we observed frequently that pointcuts written for previous fea-
tures did no longer apply anywhere. We often only found the problem because of the com-
piler warning when we edited the aspect in a later development step or when we reviewed
it for this thesis. In these cases we had to search for the cause of the change and fix the
pointcut. Some changes in the few homogeneous pointcuts might even have happened un-
detected, although we tried to check all homogeneous pointcuts once more in a final step.
The most frequent causes for the Fragile Pointcut Problem we observed in Berkeley DB
were (1) signature changes, e.g., when we added another parameter to a hook method to
grant access to a local variable, (2) object-oriented refactorings we made to create new join
points, e.g., for the EIMR refactoring, and (3) moving code from a method to advice and
thus either moving or removing join points.

7.3.2 Solutions

There are various proposals to avoid the Pointcut Fragility Problem. They tackle the prob-
lem with different approaches which reach from external test mechanisms, over aspect-
aware refactorings, to new pointcut languages. In the following we give a very brief
overview and evaluate the solutions on the background of our experience.

First, it is possible to use test suites to ensure a correct weaving as discussed earlier in
Section 3.3.5. Unfortunately, this implies that there must be a unit test for every pointcut
and creating and maintaining such test suite requires a high effort.

A common solution is to raise the developer’s awareness of extended join points. This
can either be done by tool support or by placing pointcuts locally. For example, an aspect-
aware IDE can mark code that is extended by aspects. The Eclipse plug-in AJDT (Clement
et al., 2003) is such an IDE for AspectJ. However, existing IDEs we know of are not robust
enough for practical usage. For example, AJDT shows only pointcuts in fully compilable
code, and it always needs to rebuild the application to update any markers. During our
refactorings this has turned out to be unreliable and slow. One approach that places point-
cuts locally is Open Modules (Aldrich, 2004, 2005). In Open Modules pointcuts are located
in the module they extend. Both approaches just raise the developer’s awareness, they treat
the symptoms but they do not solve the problem. The matched join point set of pointcuts
can still change silently.

Another tool driven approach to avoid the Pointcut Fragility Problem is to use automatic
aspect-aware refactorings for all changes to the source code (Hanenberg et al., 2003). Un-
fortunately, there is no such refactoring tool that can be used productively yet. Furthermore,
many aspect-oriented refactorings cannot be automated because they cannot gather the in-
tension of aspects, e.g., whether they should match new join points. Such a tool could
also not decide automatically, just based on the static structure of the program, whether a
conditional extensions like a cflow pointcut must be updated after a change.

Finally, the main objection against using aspect-aware refactorings is, that changes a
refactoring tool must apply to a pointcut can be quite complex and can render a pointcut
completely unreadable. Consider the example in Figure 7.4 where a simple Extract Method
refactoring renders a simple pointcut completely unreadable. The mechanics of this refac-
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1 c l a s s C {
2 vo id foo( i n t a, i n t b){
3 goo();
4 System.out.println(a + b);
5 t h i s .x = a;
6 }
7 }

8 p o i n t c u t x():
9 with incode ( vo id *.foo(..));

(a) Base Code and Aspect before Refactoring.

1 c l a s s C {
2 vo id foo( i n t a, i n t b){
3 goo();
4 bar(a, b);
5 }
6 vo id bar( i n t a, i n t b){
7 System.out.println(a+b);
8 t h i s .x = a;
9 }

10 }

11 p o i n t c u t x():
12 (with incode ( vo id *.foo(..)) &&
13 ! c a l l ( vo id C.bar( in t , i n t ))) ||
14 (with incode ( vo id C.bar( in t , i n t )) &&
15 ! e x e c u t i o n ( vo id C.bar( in t , i n t )) &&
16 c f low (with incode ( vo id C.foo(..))));

(b) Base Code and Aspect after Automated Extract
Method Refactoring.

Figure 7.4: Aspect-aware Extract Method Refactoring (Hanenberg et al., 2003).

toring are described in detail by Hanenberg et al. (2003). In a nutshell, to be behavior-
preserving, the refactoring must exclude the two newly created join points, i.e., the call and
the execution join point for the bar method, from the pointcut, and it must prevent to match
external calls to the bar method by restricting the pointcut with a cflow pointcut designator.
This example illustrates that, even though automated refactorings might be possible, the
refactorings make the resulting code more complex. A pointcut definition in the already
hard to understand AspectJ pointcut language can become completely unreadable.

All in all, we estimate that aspect-aware refactorings can be used in some cases. Espe-
cially for the creation of hook methods and Extract Method refactorings, such refactoring
tool could have been a good help during our refactorings. However, it is not a general
solution for the Fragile Pointcut Problem.

Another group of tools has been suggested to compare the pointcuts between two devel-
opment steps (Koppen and Störzer, 2004; Stoerzer and Graf, 2005; Clement et al., 2003).
Such pointcut delta analysis can show which pointcuts match a different set of join points
than in the previous steps and thus might show pointcuts that were not updated correctly.
Such tools can drastically reduce the danger of fragile pointcuts when applied accurately
and attentively. However, it has some practical disadvantages, because it reports many
‘false positives’ and requires the attention and diciplin of the developer to check the deltas
frequently and carefully. It is probably more helpful during normal program maintenance
than during refactoring, when it does not report so many ‘false positives’.

All approaches so far only treat the symptoms of the Fragile Pointcut Problems, they do
not tackle the problem: the fragile pointcut language. The creation of a less fragile pointcut
language that avoids the problems is an important research topic today (Stoerzer and Graf,
2005). There are several suggestions for new pointcut languages. For example, Masuhara
and Kawauchi (2003) introduce a data flow pointcut to AspectJ, and various researchers
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(e.g., Gybels and Brichau, 2003; Rho and Kniesel, 2004; Ostermann et al., 2005) suggest
to use logical programming and to reason over the static or runtime structure of the appli-
cation to match join points. All these approaches have in common that they introduce new
statements or a new language to reduce the necessity to lexically match names or source
locations. These approaches differ a lot from the AspectJ pointcut language used in our
refactorings. Evaluating these language on refactoring Berkeley DB would require to redo
the refactoring. Therefore, we defer the evaluation of new pointcut languages to further
work.

7.3.3 Summary

To summarize, the Pointcut Fragility Problem is a serious maintenance and evolution prob-
lem, we observed during our refactorings. There are various potential solutions, reaching
from disciplined programming, over tool support, to new programming languages. How-
ever, none of the approaches is satisfying for our work on Berkeley DB. This shows that
aspect-oriented applications with AspectJ in its current version are potentially dangerous to
maintain. Special caution has to be taken to not break existing behavior while evolving the
application.

7.4 Readability of the Base Code

A final question is whether the quality of the base code improves. Due to the feature-
oriented refactoring the base code should get smaller and contain only general code that
does not belong to any feature. This should improve the readability and maintainability of
the base code.

In fact, the base code size got smaller and in some parts—for example where logging
and synchronization code has been removed—easier to read. However, during our refac-
torings we frequently introduced hook methods or used the Extract Method refactoring to
create artificial join points. Additionally, unused parameters are left in the base code or
empty parameter context objects were introduced. The resulting base code therefore partly
looks ‘strange’, it contains many constructs a developer would not use otherwise. Hence,
we cannot claim an obvious result whether the readability of base code has improved, but
must defer this to an empirical study in further work.

Again, it has to be kept in mind that the base code can no longer be changed without
understanding all existing aspects, or an aspect-aware refactoring tool. So, the readability
of the base code might have been improved, the maintainability and evolvablility have not.

7.5 Summary

In this chapter we have shown why we experienced the refactored features as hard to un-
derstand and hard to maintain. The AspectJ language is very complex and requires long,
repetitive statements that are hard to read. Especially advanced pointcuts and large features
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are hard to understand. Additionally, the source code is coupled strongly with the aspects
and makes it hard to evolve them independently. Furthermore, because this coupling is
implicit and hidden, the AspectJ pointcut language is very fragile, so that evolution and
maintenance changes can accidentally change the applications behavior undetectedly.

In this chapter, we could show only our subjective perception, however in further work
we plan to empirically analyze the understandability and maintainability of AspectJ, other
AOP languages and other approaches to implement features.
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Chapter 8

Related Work

The case study presented in this thesis relates to work from several fields of software en-
gineering. In this chapter, we give a brief overview over related languages, studies, and
concepts.

Implementing Features. There are various proposals and languages how to implement
features. Using an aspect-oriented language as in this thesis is only one possible implemen-
tation of features.

Batory et al. (2004) advocate the use of mixins (Bracha and Cook, 1990) to implement
features. Mixin-based inheritance is implemented for the Java language in the AHEAD Tool
Suite as the Jak language. Similarly, FeatureC++ also uses mixins to implement features
(Apel et al., 2005).

Furthermore, Batory et al. (2004) and Apel (2007, pp. 61) list many more concepts
to implement features, for example layers (Batory and O’Malley, 1992), feature modules
(Kang et al., 1990; Prehofer, 1997), subjects (Harrison and Ossher, 1993), virtual classes
(Madsen and Moller-Pedersen, 1989; Ernst et al., 2006), nested inheritance (Nystrom et al.,
2004), and classboxes (Bergel et al., 2005).

Moreover, there are some approaches that integrate aspects with a different approach
like collaborations to implement features. This aims at still being able to use aspects for
homogeneous crosscutting concerns but to use other language constructs to define other
extensions. Examples are aspectual mixin layers or aspectual feature modules (Apel et al.,
2006c; Apel, 2007), aspectual components and aspectual collaborations (Lieberherr et al.,
1999, 2003), caesar (Aracic et al., 2006), and object teams (Herrmann, 2002).

Finally, it is possible to use object-oriented frameworks or component infrastructures.
Frameworks usually provide explicit extension points that can be used by features. They
also frequently use design patterns (Gamma et al., 1995) like the Observer Pattern, the
Adapter Pattern, or the Strategy Pattern for an extensible and configurable interface. A
popular example is the Eclipse IDE, that is highly extensible and supports a flexible con-
figuration. Different IDEs with different features can be composed by different plug-in
selections.
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Features with AOP. There are various related publications that deal with features imple-
mented in an aspect-oriented language, although they are often named differently.

Griss (2000) first suggested to use aspects to implement features, even though there was
no practically usable aspect-oriented language back then. An early study on decomposing
features with aspect-oriented languages including AspectJ was performed by Murphy et al.
(2001). This study focuses on expressibility of language constructs and has already found
some of the limitations we observed in our refactorings, i.e., the need for hook methods and
the hard to read aspects. Similarly, Lopez-Herrejon et al. (2005) noticed problems in using
aspects to implement features because of a lack of infrastructure and means to describe
coherent features containing multiple aspects.

Colyer et al. (2004) discussed how features could be separated with AspectJ to cre-
ate program families. The discussion is held on a theoretical level, how FOP can help in
separating concerns. They defined orthogonal aspects, i.e., features that can be composed
independently and do not have any interactions. However, their definition of orthogonal fea-
tures is very strict and avoids the Feature Optionality Problem and therefore seems hardly
usable for practical refactoring.

A brief discussion about the quality of the resulting features with AspectJ was already
initiated by Nyssen et al. (2005), based on the obliviousness and the implicit extensions
of aspects. Based on a very small case study, the authors found that novel aspect-oriented
mechanisms are not required for feature implementation and suggest tool-driven composi-
tion of object-oriented feature modules as better alternative.

Case Studies. There are also some empirical case studies on refactoring existing applica-
tions, mainly from the areas of embedded database engines and middleware systems.

1. The work closest to ours is the aspect-oriented refactoring of the embedded database
engine HSQLDB, done as case study by Eibauer (2006). In this case study nine fea-
tures are refactored into aspects. The main difference is that the feature selection
was based on a catalog of typical crosscutting concerns that are supposed to be en-
capsulateable with AspectJ easily. Even though it focused especially on crosscutting
concerns the results are similar disappointing: hardly any homogeneous crosscuts
were used, most the advanced language constructs were not needed. Furthermore
they observed a reduced readability, a strong coupling, and some similar language
limitations like the Local Variable Access Problem.

2. Tesanovic et al. (2004) have refactored the C version of Berkeley DB into four fea-
tures with an aspect-oriented language. This study shows the general possibility and
the advantages of having a configurable version of Berkeley DB from a database
perspective. They do not describe their refactorings further and do not focus on the
feature implementations and their quality.

3. Another refactoring of an embedded database engine into features implemented with
AspectJ was performed by Godil and Jacobsen (2005). The target was the very small
embedded in-memory database engine Prevayler. They created six small features
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and observed an improvement in code size and readability of the base code, but they
actually increased overall code size and used almost only heterogeneous extensions.
They analyzed the quality of the resulting features by source code size and explicit
coupling.

4. Zhang and Jacobsen (2003, 2004) discuss the refactoring of five selected features of a
large middleware platform into aspects. They call this process horizontal decomposi-
tion, and their aim is to configure the middleware platform by including or excluding
features. However, they focus only on some selected crosscutting concerns found
with Aspect Mining tools.

5. Similarly, Hunleth and Cytron (2002) extracted 21 features from a small middleware
platform to make it configurable. They use an own infrastructure with distinct feature
directories build on ant, which is similar to our solution (Hunleth et al., 2001). They
focus on the differences in footprint and performance compared to optional feature
implemented with object-oriented design patterns and observe improvements.

6. Coady and Kiczales (2003) refactored four small crosscutting concerns in FreeBSD
into features, three of which are optional and can be used to configure FreeBSD.

All these case studies are smaller than our refactorings of Berkeley DB: Even though
some case studies (e.g., 1, 2, 6) have a large code base in terms of LOC, only few features
(usually 4–9) were refactored. These features affect only a small part of the applications,
and feature models are very simple. No case study analyzed the effects of scale. Further-
more, all case studies except 2 and 3 focused on refactoring (homogeneous) crosscutting
concerns. They only refactored features that are expected to perform well with AOP and
made no comment about how to implement other features. The quality of the resulting
feature implementations is usually evaluated only based on code size or explicit coupling.
Readability, fragility, or implicit coupling are not considered.

The evolution of features implemented with aspects was studied only by case study 6.
The study focused on software evolution by comparing three major releases of FreeBSD
and has observed an improvement of the evolution with aspects instead of the original
implementation. Compared to the whole source base, the features are very specific and
small, i.e., only affected few files and have only one or two pointcuts each. Furthermore,
they do not interact. The Pointcut Fragility Problem or Accidental Weaving Problem were
not likely to occur, because all 4 small aspects have been carefully adapted in only two large
explicit steps instead of a constant evolution by oblivious developers.

Aspect Mining. Aspect Mining is the field of research that focuses on finding crosscutting
concerns automatically, especially scattered code in existing applications (Hannemann and
Kiczales, 2001; Loughran and Rashid, 2002; Griswold et al., 2001; Bruntink et al., 2005).
It was used in some related case studies to identify features (Eibauer, 2006; Zhang and
Jacobsen, 2003). However, Aspect Mining is usually performed with the aim to improve
the quality of an application by replacing scattered code with aspects. This is different from



the refactoring into features, because scattered code must not represent a feature and, as we
have seen, most features do not use homogeneous crosscuts and thus do not create scattered,
but only tangled code. For an overview of Aspect Mining approaches see Bruntink et al.
(2005), for an evaluation on finding features in an embedded database see Eibauer (2006).

Constructor Problem in C++. The Parameter Introduction and Passing Problem ana-
lyzed in Section 4.2.2 is similar to the to the Constructor Problem of mixin-based program-
ming in C++ as described by Smaragdakis and Batory (2001) and Eisenecker et al. (2000).
They describe the problem that some mixins introduce new parameters to the constructor
of a class. The Parameter Introduction and Passing Problem is more general and includes
the Constructor Problem. Eisenecker et al. (2000) suggest a solution that requires complex
C++ templates not available in Java or AspectJ.

Criticism of Object-Oriented Programming. When object-oriented programming per-
vaded software engineering about twenty years ago, there were publications that claimed
that object-oriented programming is harder to read and to understand than traditional proce-
dural approaches. For example, Carter (1994) reflects about the design of the ADA language
and argues that subclasses are harder to read and to understand than procedural implementa-
tions that do the same, because the developer needs to look up the superclass to understand
it. Object-oriented programming thus breaks locality. Another example is Snyder (1986),
who argued that a weak encapsulation in some language implementations of inheritance
could lead to a decreased understandability.

This sounds familiar to our criticism of AOP in Section 7.1. The suggested solution by
Carter (1994) is to use subclassing only when the superclass can be found easily, similar to
the Open Modules approach by Aldrich (2004), which suggests that the pointcuts should
be located locally inside the target module. Furthermore, tools and IDEs are used in both
cases to overcome these problems. Most modern IDEs support easy navigation between
classes in a hierarchy. Similarly, AJDT allows navigations between advice declarations and
advised join points.

History has shown that most developers do not mind the acclaimed ‘reduced readabil-
ity’ for the improvements gained by object-oriented languages. Nevertheless, we still think
that there is a big difference between having to look up a superclass and searching the
whole source code for affected join points, but such old criticisms might provide an alter-
native perspective. This can be especially useful for further work on measuring complexity.
Moreover, another difference to the introduction of object-oriented programming is that we
have various proposals how features can be implemented, it is not a choice ‘AOP or no
features at all’.

Furthermore, it took a while to develop guidelines on how to write procedural programs
(e.g., Parnas, 1972). The same process took place for object-oriented systems, e.g., the
Law of Demeter (Lieberherr et al., 1988). Similar work is currently discussed in the AOP
community (e.g., Kiczales and Mezini, 2005) and might also resolve some of the readability
and understandability issues in the long run.
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Chapter 9

Conclusion

In this thesis, we have presented a case study for refactoring a legacy application into
features with AspectJ. We created a feature model for the embedded database engine Berke-
ley DB and refactored 38 features. We are able to compose different sets of features to cre-
ate over 12 million different tailored versions1. Although we were able to implement and
compose features with AspectJ, our observations suggest that AspectJ is not an appropriate
language for this task.

A closer look at the used language constructs revealed that only a small portion was
used, mainly static introductions and method extensions. Advanced language constructs
like conditional extensions or homogeneous extensions were hardly needed. On the other
hand, we found several serious limitations that hindered a straightforward implementation
of feature models, so that our refactorings had to use various workarounds like hook meth-
ods or hacks based on complex pointcut expressions.

A major problem of using AspectJ to implement features is the readability and main-
tainability of the resulting code. We found features implemented as aspects hard to read and
hard to understand, especially as the size of the feature grows. It seems that feature imple-
mentations in AspectJ scale poorly. We could not even reveal a clear improvement of the
base code which the aspects were detached from. Additionally, we have shown that the re-
sulting code is extremely fragile and a verification of correctness is very hard. Approaches
to avoid or control the fragility require usually an immense overhead or tool support in a de-
gree that is not available or practical, yet. Finally, a strong implicit coupling between base
code and aspects and between aspects themselves also reduce apparently maintainability
and require strong tool support, that is not available sufficiently, yet.

Furthermore, AspectJ does not provide any of its own infrastructure to implement and
manage features. We had to impose the AHEAD infrastructure. Known problems like the
Feature Optionality Problem occur also when features are implemented in AspectJ, but the
language does not provide new solutions, even though one approach seemed promising at
first. Various refactorings have been published, usually as informal descriptions, there is no
tool that could be used for (semi-)automated refactoring in our project so that we had to do

1After removing all implementation dependencies with derivative modules, it is possible to create over
16 billion different tailored versions.
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all refactorings manually anyway.
The ordered weaving of aspects repeatedly suggested in recent research can be applied

in our case study surprisingly easily. We did not observe any of the problems ordered
weaving tackles though. Thus the proposed extensions, like bounded aspect quantification
or ordered weaving, were neither necessary nor hindering in our case study. Consequen-
tially, this supports these extensions in creating a cleaner language which avoids potential
problems in the first place.

Overall, AspectJ does not seem to have any unique advantage except the rarely used
mechanisms to define homogeneous or conditional extensions. At the same time, it creates
source code that is hard to read, fragile, and hard to maintain or evolve. We strongly suggest
to evaluate other approaches to implement features.

Perspective. At first, our results seem contradictory to the ones of previous studies which
reported positively about refactoring legacy applications into features with AOP. To align
our work with them, we need to distinguish two separate topics, often mixed in these discus-
sions and evaluations: modularizing (homogeneous) crosscuts and implementing (optional)
features.

The positive results in prior work usually focus on improvements of the encapsulation
of, usually small and homogeneous, crosscuts, i.e., encoding scattered and tangled code in
one aspect. That some of these crosscuts can be used as optional features to configure an
application is a byproduct, not a goal. However, when focusing on implementing (large-
scale) features to create a configurable application in general, it is frequently observed that
most features make heterogeneous extensions. While it is still possible to implement such
features with AspectJ as shown in this thesis, the question is whether carrying forward
the positive results from modularizing crosscuts to a general feature-oriented refactoring is
possible. Discussions about implementing features must focus on expressiveness, under-
standability, and maintainability or evolution.

In this thesis, we could not evaluate if AspectJ is suited to encapsulate homogeneous
crosscuts, because we rarely found any (probably because we did not specifically search for
them with Aspect Mining tools). However our results for refactoring Berkeley DB show
problems in regard to expressiveness, understandability, and maintainability which let us
doubt its suitability to implement features in general.

This strongly emphasizes that the discussion about aspect-oriented refactoring of legacy
applications must be split into separate discussions about modularizing (homogeneous)
crosscuts and implementing optional features. If aspects are really required to modularize
crosscuts as frequently claimed, than an integration of aspects for crosscuts and collabora-
tions or other approaches to implement features seems favorable. Several recent publica-
tions propose such integrations (e.g., Apel et al., 2006c; Apel, 2007; Aracic et al., 2006).
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9.1 Further Work

In this thesis we have opened and suggested various research topics for further work. First,
there are various smaller open points in this thesis that could be examined in further work.

• The exception handling in AspectJ was not analyzed further in this thesis because the
sample size was too small. We encourage further research to evaluate the possibilities
to handle exceptions in aspect-oriented applications.

• The Parameter Introduction and Passing Problem we observed is a general problem of
feature-oriented refactoring and not solved in any language we are aware of. Further
research is required to evaluate the different proposals and—if necessary—to design
appropriate language support to solve this problem.

• The analysis of the Feature Optionality Problem has shown that there is no satisfying
solution, yet. The current approaches are either very complex, especially on large
feature models, or they are inconvenient to use for the developer or end-user. Further
work might include the evaluation of different languages, the design of a language
for the Optional Weaving Approach, or means to avoid and hide complexity in the
Derivative Feature Approach.

• In this thesis, we did not aim at measuring code footprint or performance. Further
work might concentrate on such measurements and evaluate the advantage or penalty
of AspectJ over the original object-oriented version. Similarly, the advantage of be-
ing able to build customized versions of Berkeley DB can be measured to give further
insights whether a configurable database system is worth the effort required for refac-
toring and maintaining separate features.

Furthermore, we have found some larger topics that may provide valuable insights in
further work:

Comparison of Pointcut Languages. In this thesis we have shown that the pointcut lan-
guage of AspectJ is fragile, and that—even though various tools exist to cope with this
fragility—a new pointcut language is necessary to not only treat symptoms but to solve the
Fragile Pointcut Problem. There are various suggestions for new or extended pointcut lan-
guages (e.g., Masuhara and Kawauchi, 2003; Gybels and Brichau, 2003; Rho and Kniesel,
2004; Ostermann et al., 2005) that do not rely on lexical comparisons. Further research is
necessary to evaluate their usability and fragility for practical refactoring and evolution.

We recommend to refactor some features of Berkeley DB once more with each proposed
language to compare the results. Such a study can give further insights toward a solution
for the Fragile Pointcut Problem and can help in selecting the best language for a given
problem.
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Comparison of Feature Implementation Approaches. As shown above, there are var-
ious proposals and languages to implement features. In this thesis we have evaluated only
aspects as one approach, with AspectJ as one possible language. The results show that
AspectJ is not a good choice, because its advanced capabilities are hardly used and because
of various problems, many of which are specific to the AspectJ language. The question
whether other AOP languages or different approaches like collaborations are better suited
must be analyzed in further work (cf. Murphy et al., 2001; Lopez-Herrejon et al., 2005;
Mezini and Ostermann, 2004).

The most important language constructs we have found were static introductions, method
refinements and statement extensions. Static introductions and method refinements are ele-
mentary constructs supported by all of the approaches listed as related work in Chapter 8,
while statement extensions are not yet common. A broader comparison can give further
insights on which language constructs are required in a language and which is the best way
to express them.

Empirical Study on the Cognitive Distance of the AspectJ Syntax. In Section 7.1 we
illustrated why we felt that the AspectJ syntax is hard to read and understand. We could
not underline it with an empirical proof. We therefore suggest to analyze empirically the
cognitive distance of AspectJ to find causes and suggest improvements. Furthermore, such
an empirical study can also give valuable insight when compared with to other approaches
for the implementation of features.

Similarly, such a study should also consider the readability of the resulting base code.
The AspectJ solution introduced some hook methods and other constructs which gave a
‘strange’ look to the base code. Other languages might provide a solution or have the
same problem. An empirical study can analyze the benefits of the refactorings in terms of
readability and maintainability of both, features and base code.

Finally, as proposed above, a comparison to the perception of the readability and com-
plexity of object-oriented programming when it was proposed twenty years ago may help
to adjust perspective and metrics.

Scaling of Feature Models. We analyzed the effects of scale on feature models in this
thesis. We have shown that the current approaches dramatically increase complexity. The
number of derivatives rises fast, quadratically to the number of features. This shows that
research is needed on how to deal with feature models with a large number of features, e.g.,
to find suitable tools, languages, or infrastructures.

Furthermore, support is required for the end-user who composes the application. Our
refactorings created 38 features (not counting derivatives). Already for these 38 features it
can be hard to decide which features to include for a specific use case. Hence, important
questions for further research are: How can a user select from 100 or 1000 features with
thousands of dependencies? What kind of tools are needed to support the user?
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9.2 ColoredIDE

During the refactoring of Berkeley DB we frequently reached the limits of AspectJ as de-
scribed in this thesis. Discussions about other technologies to decompose Berkeley DB into
features showed that also those would have similar problems. Therefore, we searched for a
completely new approach to refactor a legacy application and implemented a prototype of
a tool called ColoredIDE, which we intend to pursue in further work.

This tool follows the approach used in this thesis and other publications to illustrate
how features are located legacy code with different colors. For example, in Figure 9.1 (cf.
Figure 6.1a) we use two colors to show how two features affect the original unRegisterTxn
method. Similarly, in ColoredIDE a developer can just color segments of the source code
to assign them to a feature. Depending on the needed granularity, he can color classes,
methods, statements, or even even any element in the source’s Abstract Syntax Tree (AST)
representation like a single parameter.

1 p u b l i c c l a s s TxnManager {
2 vo id unRegisterTxn(Txn txn) throws DatabaseException {
3 a l l T x n L a t c h . a c q u i r e ( ) ;
4 allTxns.remove(txn);
5 getMemoryBudget ( ) . updateMiscMemoryUsage ( t x n . ge t InMemoryS i ze ( ) ) ;
6 a l l T x n L a t c h . r e l e a s e ( ) ;
7 }
8 }

Figure 9.1: Colored Source Code.

Contrasting conventional approaches with feature modules, the developer does not re-
move the feature code from the base code and adds it to a feature, but the IDE itself provides
means to handle and compose the source. The IDE can hide certain features, or hide all code
but certain features and thus allows multiple views on the project and its features. For ex-
ample, a developer can decide to see only the code for feature X, or he can decide to see
the full source code except features X, Y and Z. To create a configuration the user selects
the features from a feature model and the IDE creates the resulting source code with the
selected features.

The approach has some disadvantages, e.g., it does not support homogeneous exten-
sions, or a feature is no longer coherently encapsulated by a single code artifact but an IDE
is required to create a view. On the other hand, it solves almost every problem found in this
thesis:

• Laborious and error-prone Refactoring. There is no need for refactoring in Col-
oredIDE, the developer directly colors the original code to assign it to features. To
mark a code segment and assign it to a color has the same effect as the refactorings
in this thesis. The back-end of ColoredIDE can be extended to still create AspectJ-
or AHEAD-like features if certain restriction are introduced, but we consider this as
an unnecessary step only needed for backward compatibility or easier transition for
existing FOP or AOP projects.
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Figure 9.2: ColoredIDE Screenshot.
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• Finding Feature Code. In our refactorings we removed feature code until all com-
pilation errors were resolved to find all code that belongs to a feature. The process to
find the full code base of a feature is similar in ColoredIDE: once a method is colored,
the IDE reports errors for every call to this method that is not colored as well. There
are various further tests that mimic the compilation process and thus helps in finding
connected code quickly. Additionally, ColoredIDE can offer tool support to color all
calls or find methods that are only called from a certain feature to move them to the
feature as well. Early tests have shown that this works fast and conveniently.

• Verifying Correctness. ColoredIDE only allows to color elements of the AST, there-
fore the removing of colored code is safe because it only renders the AST without the
colored nodes. To ensure compilable code without missing references or methods,
dual tests check for the same colors of method definition and method call, types and
their references, variable definition and variable reference, etc. Thus, ColoredIDE
can ensure syntactic correctness for all configurations when the original code is com-
pilable and all color checks are fulfilled.

• Refactoring Limitations. The Statement Extensions Problem, the Parameter Passing
Problem, the Exception Introduction Problem, the Local Variables Access Problem
and Scope Problems as observed in this thesis do not occur in ColoredIDE. The col-
ored code remains at its original position, therefore it has full access to parameters,
local variables and all methods in scope. Furthermore, arbitrary nodes of the AST
can be colored, including statements inside a method, declared exceptions, or even
parameters in method definitions or calls. There is no need for preliminary introduc-
tions of context objects or the like.

• Understandability. The developer does not need to learn a new language. He always
can see the fully composed source code, or just a view with the features he is inter-
ested in. The coloring of code is as easy as selecting the target code and selecting the
color it should have. An understanding of the AST below might help but will not be
necessary in most cases. The selection of views and the creation of configurations is
done with few IDE commands and simple toggle buttons.

• Maintainability. ColoredIDE avoids the error-prone constructs that modify or extend
existing code. The developer can always see the fully composed source code, which
makes maintenance easier than different code artifacts he has to compose in his head
when he makes changes. Still the developer can hide features which are not affected
from the maintenance work and thus reduces complexity.

• Feature Optionality Problem. The color model of ColoredIDE can be formally
mapped to the derivative model of Liu et al. (2006). However the developer does not
need to create derivative modules, he justs colors derivative code with the colors of
both features and the IDE internally calculates the correct composition.
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• Feature Order. An ordering of features is not required for ColoredIDE, because
features are not applied as functions but have their fixed position in the source code.
Because ColoredIDE has no own mechanism to quantify over join points the logical
problems and accidental weaving cannot occur.

The key strength of ColoredIDE lies in the fact that it hides complexity. It frees the
developer from the need to create feature directories, to describe complex transformations,
or to create derivatives. On the other hand it gives him the most flexibility possible by
allowing to color individual nodes of the AST.

Further research is required to analyze the limits and advantages of ColoredIDE on a
larger projects. The ColoredIDE approach can furthermore be extended as a frontend to ex-
isting languages like AspectJ or AHEAD. Finally, it is possible to try to adapt ColoredIDE
which is developed to decompose legacy applications as a general purpose SPL tool that
can also be used to develop new projects.



APPENDIX A. THE DIMENSION MODEL 125

Appendix A

The Dimension Model

To approximate the number of necessary derivatives features for further refactoring in
Berkeley DB, we introduce a dimension model. Dimensions are groups of features that
have simple semantic dependencies but that frequently crosscut the whole application and
create technical dependencies by interacting with features from other dimensions. When
a new feature is added to a dimension it is likely to interact with features from the other
dimensions.

In Berkeley DB we have identified four dimensions: (1) synchronization and transac-
tions, (2) memory and caching, (3) external information, and (4) database operations. Each
of these dimensions forms a closed subsystem but cuts across the whole application:

• The synchronization and transaction dimension (features ATOMICTRANSACTIONS,
LOCKING, LATCHES) inserts synchronization code almost in all parts of the applica-
tion. It affects every database operation, most parts of internal memory management
and caching, and statistics are collected about it.

• The memory and caching subsystem (incl. features MEMORYBUDGET, EVICTOR,
LOOKAHEADCACHE, FILEHANDLECACHE) collects the overall memory usage all
over the application, including the memory usage off transactions and individual op-
erations. It is synchronized, logged and statistics are collected about it. Though indi-
vidual caches do not interact with each other, they are applied all over the application
in disjoint places.

• The external information dimension covers the logging and statistics features that
collect information about the application’s state and operations. For example, statis-
tics are collected about many aspects of the memory and caching system and the
transaction system. The logging system traces information about method execution
from almost all parts of the application, including database operations, locking, and
memory management.

• Database operations—although this dimension is currently represented only by the
two features DELETEDBOPERATION and TRUNCATEDBOPERATION—also cross-
cut all other parts of the application. All database operations in Berkeley DB are
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Figure A.1: Quantified Interaction between Dimensions.

thread safe and support transactions. Their memory consumption is carefully mon-
itored and the “critical eviction” is called before certain operations. Finally, most
database operations are logged. Consequently a new database operation feature will
interact with most dimensions.

Some refactored features like CHECKSUMVALIDATION or SYNCHRONIZEDIO do not be-
long to any of these four dimensions. They are sometimes extended by one or more dimen-
sions, but they do not extend any of them.

We can use these dimensions to approximate the number of interactions for further
refactorings, based on the number of features in each dimension as defined in Figure A.2:
Every new database operation feature approximately introduces new code that must be mon-
itored by the memory dimension. Furthermore, each operation feature is presumably ex-
tended by most features from the synchronization dimension and at least by the logging
feature from the external information dimension. Every cache in the memory and caching
dimension will approximately synchronize at least one operation, but will be monitored
by the external information dimension and synchronized by at least one feature from the
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Name Number of Features in Dimension

s Synchronization and Transactions
c Memory and Caching
i External Information
o Database Operations

Figure A.2: Variables of the Derivative Model.

synchronization dimension. Each feature from the external information dimension collects
information about all dimensions usually on a very detailed level. Finally, the synchroniza-
tion dimension synchronizes all other dimensions where necessary. The most important
synchronization is done for the database operations, but also caches and external informa-
tion collectors are synchronized where necessary.

We illustrate these interactions and the number of required derivative features in Fig-
ure A.1. Note, when two features mutually extend each other, both extensions can be im-
plemented in one derivative feature. Therefore, the overall amount of features F is

F(s,c, i,o) = i ·o+ i · s+o · s+ i · c+ c+o

Using our current refactorings as values with s = 3,c = 5, i = 2,o = 2 we should expect
33 derivatives, relatively close to the actual amount of derivatives (42) we found .

When only one dimension is extended, the number of derivative features grows linearly
because the derivative of F is constant:

∂F(s,c, i,o)
∂s

= i+o

∂F(s,c, i,o)
∂c

= i+1

∂F(s,c, i,o)
∂i

= s+ c+o

∂F(s,c, i,o)
∂o

= s+ i+1

With our current features we can thus, predict that each new synchronization feature will
create 4 new derivatives, each caching feature 3, each external information feature 10, and
each new database operation will create 6 new derivatives.

If n features are distributed over all dimensions the number of derivatives grows quadrat-
ically with n. The fastest growth is reached when the features are distributed equally over
all four dimensions with s = c = i = o = 1

4 ·n:

F(
n
4
,
n
4
,
n
4
,
n
4
) =

1
4
·n2 +

1
2
·n
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It is necessary to emphasize that not all features belong to one of the dimensions. In
Berkeley DB, only 12 of 38 features are part of any dimension. The features that are not in
any dimension typically require no or only very few derivatives and are therefore not con-
sidered in this model. If we roughly estimate that one third of all features are in dimensions
and these are equally distributed over all dimensions (s = c = i = o = 1

4 · n
3 ), we get

F(
n
12

,
n

12
,

n
12

,
n

12
) =

1
36

·n2 +
1
6
·n ≈ 0.028 ·n2 +0.17 ·n

which is close to our empirical observations.
Note, the aim of this model is not to predict exact numbers but to give further insight

on how the number of derivative features grows with larger feature models. This model
confirms that the number grows quadratically but much slower than the maximum number
of derivative features.
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