
Master’s Thesis

Cognitive Modeling in Code
Comprehension: An Empirical Study of

Short-Term Memory Retrievals
Christian Closheim

August 27, 2024

Advisor:
Dr. Marvin Wyrich Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Vera Demberg Chair of Computer Science and Computational Linguistics

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Christian Closheim: Cognitive Modeling in Code Comprehension: An Empirical Study of Short-
Term Memory Retrievals, © August 2024

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

Abstract

There are many theoretical models of how code comprehension cognition works. But these
are all more or less abstract and difficult to apply for someone who has not dealt with them
intensively. For this reason, the idea of a simulatable model in which code can be entered
and then analyzed for complexity came up in the academic literature. Such a model could
help, for example, to either reduce the complexity of the code or offer help to comprehend
it better where necessary. But although there were many calls and announcements for such
a cognitive model, there still exists no concrete implementation of one.

In this work, we addressed this task by developing an ACT-R model capable of predicting
line processing time and the probability of comprehension errors.

We evaluated this model using eight different pairs of code snippets, for which we
expected a difference in time or error rate, to test if the model is able to replicate these
differences. To obtain data to test the model against and to evaluate possible differences
in comprehension of differently formatted code, the code snippets were completed by 63

participants in an online study using a randomized cross-subject design. Based on the
empirical data, we found no significant differences between the respective formatting of the
code snippets, neither in terms of processing time nor error rate.

Despite the lack of significant differences, we were able to evaluate the model using the
empirical data. Using Bayesian Optimization, the model’s hyperparameters were optimized.
Through successive expansion of the hyperparameter space, we ultimately identified three
hyperparameters that influence the model. The model with optimized hyperparameters
was able to largely replicate the empirical results, performing better in predicting time than
in predicting errors.

This work aims to serve as a foundation for advancing the topic of a simulative model
for code comprehension. We have demonstrated that it is feasible to represent simple tasks
in ACT-R. The next steps should involve extending the model. Potential improvements
include expanding the range of errors the model can produce or integrating a model for eye
movement. This work highlights much potential for improvements in both the model itself
and the evaluation methodology.

v

Contents
1 Introduction 1

1.1 Goal of this Thesis . 1

1.2 Overview . 2

2 Background 3

3 Methodology 7

3.1 Cognitive Model for Code Comprehension . 8

3.1.1 Framework . 8

3.1.2 ACT-R Model . 9

3.2 Testing Tasks . 10

3.2.1 Repeated Code . 11

3.2.2 Declaration near Usage . 11

3.2.3 Interactions . 12

3.3 Research Questions . 13

3.3.1 Artefacts Effects . 13

3.3.2 Cognitive Model Explanation . 14

3.4 Study Material . 14

3.4.1 Code Snippets . 15

3.4.2 Intermediate Tasks . 19

3.4.3 Socio-Demographic Survey . 19

3.5 Design and Testing Phase . 21

3.6 Data Mining . 21

3.6.1 Collection . 21

3.6.2 Exclusion Criteria . 22

3.6.3 Preparation . 22

3.6.4 Simulation . 23

3.7 Evaluation . 23

3.7.1 Artefacts . 23

3.7.2 Cognitive Model Fitting . 25

3.7.3 Model Evaluation . 27

3.8 Integration in the Conceptual Model . 28

4 Evaluation 29

4.1 Results . 29

4.1.1 Data Collection . 29

4.1.2 Participant Characteristics . 30

4.1.3 Effects in Empirical Data . 35

4.1.4 Model Fitting . 42

4.1.5 Model Evaluation . 54

vii

viii contents

4.2 Discussion . 63

4.2.1 Artefacts . 63

4.2.2 Socio-Demographic Data . 66

4.2.3 Model Fitting . 66

4.2.4 Model Evaluation . 67

4.2.5 Why Should We Care? Analysing the Relevance of Our Findings . . . 70

4.3 Threats to Validity . 71

5 Related Work 75

6 Concluding Remarks 81

6.1 Conclusion . 81

6.2 Future Work . 81

6.2.1 Model Extension . 82

6.2.2 Snippet Modification . 82

6.2.3 Replication Studies . 83

6.2.4 Modularity . 83

A Empirical Results Single Snippets 85

B Accuracy Parameter Tuning activation noise s for Single Snippets 91

C Accuracy Parameter Tuning retrieval threshold, activation noise s and
latency factor for Single Snippets 99

D Comparison of Simulated Data and Empirical Data for Single Snippets 107

Bibliography 117

List of Figures

Figure 2.1 ACT-R 6.0 modules [28]. 4

Figure 3.1 Schematic representation of the research methology. 7

Figure 3.2 Conceptual model for code comprehension experiments [56]. 28

Figure 4.1 Distribution of participant numbers during the survey phase. 29

Figure 4.2 Distribution of the age of the participants. 31

Figure 4.3 Distribution of the countries of origin of the participants. 31

Figure 4.4 Distribution of educational attainment of the participants. 32

Figure 4.5 Distribution of gender identification of the participants. 32

Figure 4.6 Distribution of self-assessment of programming experience compared
to classmates or colleagues of the participants. 33

Figure 4.7 Distribution of self-assessment of programming experience with
logical programming of the participants. 34

Figure 4.8 Distribution of self-assessment of programming experience with
functional programming of the participants. 34

Figure 4.9 Distribution of self-assessment of programming experience with
object oriented programming of the participants. 35

Figure 4.10 Results for the combined data of both CD snippets for treatment and
control group for empirical data. 36

Figure 4.11 Distribution of the answers for the CD snippets for empirical data. . 37

Figure 4.12 Results for the combined data of both CR snippets for treatment and
control group for empirical data. 38

Figure 4.13 Distribution of the answers for the CR snippets for empirical data. . 38

Figure 4.14 Results for the combined data of both DR snippets for treatment and
control group for empirical data. 39

Figure 4.15 Distribution of the answers for the DR snippets for empirical data. . 40

Figure 4.16 Results for the combined data of both RP snippets for treatment and
control group for empirical data. 41

Figure 4.17 Distribution of the answers for the RP snippets for empirical data. . . 41

Figure 4.18 Evolution of the BO algorithm with 50 start points for the tuning ans

for time data. 43

Figure 4.19 Heatmaps for the tuning ans for time data. 43

Figure 4.20 QQ-Plot for CR1 with optimized ans for time data. 44

Figure 4.21 Evolution of the BO algorithm with 50 start points for the tuning ans

for error rate data. 45

Figure 4.22 Heatmaps for the tuning ans for error rate data. 46

Figure 4.23 Evolution of the BO algorithm with 50 start points for the tuning ans

for combined data. 47

ix

x list of figures

Figure 4.24 Heatmaps for the tuning ans for combined data. 47

Figure 4.25 QQ-Plot for CR1 time data with optimized ans for combined data. . . 48

Figure 4.26 Evolution of the BO algorithm with 50 start points for the tuning rt,
ans and lf for time data. 49

Figure 4.27 Heatmaps for the tuning rt, ans and lf for time data. 50

Figure 4.28 QQ-Plot for CR1 with optimized rt, ans and lf for time data. 50

Figure 4.29 Evolution of the BO algorithm with 50 start points for the tuning rt,
ans and lf for error rate data. 51

Figure 4.30 Heatmaps for the tuning rt, ans and lf for error rate data. 51

Figure 4.31 Evolution of the BO algorithm with 50 start points for the tuning rt,
ans and lf for combined data. 52

Figure 4.32 Heatmaps for the tuning rt, ans and lf for combined data. 53

Figure 4.33 QQ-Plot for CR1 with optimized rt, ans and lf for combined data. . . . 53

Figure 4.34 Results for the combined data of both CD snippets for treatment and
control group compared between empirical data and simulated data. 55

Figure 4.35 Distribution of the answers for the CD snippets for simulated data. . 56

Figure 4.36 Results for the combined data of both CR snippets for treatment and
control group compared between empirical data and simulated data. 57

Figure 4.37 Distribution of the answers for the CR snippets for simulated data. . 58

Figure 4.38 Results for the combined data of both DR snippets for treatment and
control group compared between empirical data and simulated data. 59

Figure 4.39 Distribution of the answers for the DR snippets for simulated data. . 60

Figure 4.40 Results for the combined data of both RP snippets for treatment and
control group compared between empirical data and simulated data. 61

Figure 4.41 Distribution of the answers for the RP snippets for simulated data. . 62

Figure 5.1 Brooks top down model [52]. 76

Figure 5.2 Schneiderman and Mayer bottom up model [52]. 77

Figure 5.3 Von Mayerhauser and Vans integrated metamodel [52]. 78

Figure A.1 Empirical results for the CD1. 85

Figure A.2 Empirical results for the CD2. 86

Figure A.3 Empirical results for the CR1. 86

Figure A.4 Empirical results for the CR2. 87

Figure A.5 Empirical results for the DR1. 87

Figure A.6 Empirical results for the DR2. 88

Figure A.7 Empirical results for the RP1. 88

Figure A.8 Empirical results for the RP2. 89

Figure B.1 QQ-Plot for optimizing ans on time data. 93

Figure B.2 QQ-Plot for optimizing ans on error rate data. 94

Figure B.3 QQ-Plot for optimizing ans on combined data. 96

Figure C.1 QQ-Plot for optimizing rt, ans and lf on time data. 101

Figure C.2 QQ-Plot for optimizing rt, ans and lf on error rate data 102

Figure C.3 QQ-Plot for optimizing rt, ans and lf on combined data 104

Figure D.1 Comparison of simulation and empirical data for CD1. 107

Figure D.2 Comparison of simulation and empirical data for CD2. 108

Figure D.3 Comparison of simulation and empirical data for CR1. 109

Figure D.4 Comparison of simulation and empirical data for CR2. 110

Figure D.5 Comparison of simulation and empirical data for DR1. 111

Figure D.6 Comparison of simulation and empirical data for DR2. 112

Figure D.7 Comparison of simulation and empirical data for RP1. 113

Figure D.8 Comparison of simulation and empirical data for RP2. 114

List of Tables

Table 3.1 Default values for hyperparameters [26]. 10

Table 3.2 Order of the tasks for the groups. 17

Table 4.1 Final number of participants per group. 30

Table 4.2 Crosstables to compare simulated and empirical data for CR1 with
optimized ans for error rate data. 46

Table 4.3 Crosstables to compare simulated and empirical data for DR2 with
optimized ans for error rate data. 46

Table 4.4 Crosstables to compare simulated and empirical data for CR1 with
optimized ans for combined data. 48

Table 4.5 Crosstables to compare simulated and empirical data for DR2 with
optimized ans for combined data. 48

Table 4.6 Crosstables to compare simulated and empirical data for CR1 with
optimized rt, ans and lf for error rate data. 52

Table 4.7 Crosstables to compare simulated and empirical data for DR2 with
optimized rt, ans and lf for error rate data. 52

Table 4.8 Crosstables to compare simulated and empirical data for CR1 with
optimized rt, ans and lf for combined data. 54

Table 4.9 Crosstables to compare simulated and empirical data for DR2 with
optimized rt, ans and lf for combined data. 54

Table 5.1 Overview of Related Work . 80

Table B.1 Error rates for optimizing ans on time data. 92

Table B.2 Error rates for optimizing ans on error rate data. 95

Table B.3 Error rates for optimizing ans on combined data. 97

Table C.1 Error rates for optimizing rt, ans and lf on time data. 100

Table C.2 Error rates for optimizing rt, ans and lf on error rate data 103

Table C.3 Error rates for optimizing rt, ans and lf on combined data 105

xi

Listings

Listing 3.1 Example for repeated code adapted from Gopstein et al. [25]. 11

Listing 3.2 Example for declaration near usage. 12

Listing 3.3 Example for the interaction of distance between the declaration and
redeclaration. 13

Listing 3.4 Example for the interaction of repeated code near usage. 13

Listing 3.5 Training code snippets. 16

Listing 3.6 Code snippet CD1. 17

Listing 3.7 Code snippet CD2. 17

Listing 3.8 Code snippet CR1. 17

Listing 3.9 Code snippet CR2. 18

Listing 3.10 Code snippet DR1. 18

Listing 3.11 Code snippet DR2. 18

Listing 3.12 Code snippet RP1. 19

Listing 3.13 Code snippet RP2. 19

Acronyms

ACT-R Adaptive Control of Thought-Rational

ans activation noise s

BH Bonferoni-Holm

BOLD Blood-oxygenation-level dependent

BO Bayes Optimization

CCM Cognitive Complexity Metric

CD Code Distance

CR Repeated Code

DR Declaration Redeclaration Distance

KS Kolmogorov-Smirnov

xii

acronyms xiii

lf latency factor

LLM Large Language Model

RP Repeated Distance

rt retrieval threshold

UI User Interface

1
Introduction

1.1 Goal of this Thesis

A common introduction to the topic of code comprehension is to emphasize that this
practice makes up a large part of developers’ daily routines and should therefore be the
focus of research. But let us take a step back and look at the developer as a production
unit that produces code. As with all production processes, there are quality requirements,
specified standards and resources. It is not economical to waste unnecessary resources and
time. If resources are scarce, quality and quantity are usually the first to suffer. Therefore
they should be used efficiently and purposefully.

A fundamental resource that every developer brings with them is their mental ability. It
is therefore important not to burden their mental ability with unnecessary cognitive work
and to use it effectively. But the question remains what exactly burdens cognitive processes
the most and what could be changed most easily. The topic of mental models deals with
this question.

Since near the beginning of researching code comprehension, the idea of mental models
goes along with this topic [6]. While most mental models use a more theoretical approach to
support think-aloud experiments [7, 37, 44, 46], at the end of the 80s and beginning 90s the
idea came up to build a calculable mental model [8, 50]. The advantage of such a calculable
model is that not only the sequence of different mental processes could be simulated,
but also the time they take, which would create a measurable variable. Depending on its
complexity, such a model would allow various mental processes of the programmer to be
simulated in advance and the mental load to be measured. Although this would not replace
experiments on human subjects, research resources could be used more efficiently and the
model could be continuously improved and evaluated at the same time.

Unfortunately, there have only been several announcements about developing a simu-
latable mental model until now. The most concrete proposal was made by Hansen et al.
[28] in 2012, in which they proposed an implementation in Adaptive Control of Thought-
Rational (ACT-R) based on the Cognitive Complexity Metric (CCM) [8] and showed how the
various parameters of the CCM could be implemented by the modules in ACT-R. However, a
concrete model has not been published since then.

1

2 Introduction

This situation with many theories and ideas for a cognitive model of code comprehension
forms the basis of our work. A fundamental problem common to all proposed models is their
overly general approach, attempting to cover the entire complex area of code comprehension
and produce a generalist model. Instead of developing an entire model, which would go
beyond the scope of this thesis in every respect, the aim is to evaluate whether the mental
processes during a simple bottom-up code comprehension can be simulated by ACT-R and
whether it might prove worthwhile to pursue this approach further. Therefore, the focus of
this work lies on the mental execution of code.

1.2 Overview

In Chapter 2, we explain and elucidate the key terms and concepts necessary to understand
this thesis. Chapter 3 follows with a description of the entire workflow of this thesis, encom-
passing the development of the model, the execution of experiments, and the evaluation of
results.

These results are presented, contextualized, and discussed in Chapter 4. Chapter 5

provides an overview of the most significant related works that address similar topics.
Finally, Chapter 6 offers a summary of all findings and provides an outlook on how future
research can build upon this work.

2
Background

In this section, all relevant core information that is needed to understand this thesis will be
explained. First, there is an introduction to the cognitive architecture ACT-R. This is followed
by an explanation of what Source Code Comprehension is.

ACT-R

ACT-R is a cognitive architecture built on top of LISP [26]. The theory and later the ex-
ecutable architecture were developed in the 1990s with a large contribution by John R.
Anderson. A cognitive architecture is an abstraction of human cognition from the real-
world low-level details, like neuronal activation, to higher-level functions of the mind [2].
In contrast to neural networks, a cognitive architecture is based on a collection of defined
if-then rules [28], which makes interpretation easier compared to neural networks, which
are based on complicated activation functions between the individual layers and neurons.
A cognitive architecture is also capable of learning [26], but the path from an input to
the result always remains traceable, which makes this form particularly interesting for the
analysis of behaviour if not only the results, but also the reasoning behind them is of interest.

ACT-R is a widely used architecture developed by cognitive scientists [26]. It has some
additional benefits over other cognitive architectures. For example, it contains perception
and motor modules that can be used to simulate interaction with the environment, which
makes the setup more realistic. Blood-oxygenation-level dependent (BOLD) measurements
can also be simulated, which makes this architecture particularly interesting for cognitive
research in the context of fMRI studies.

The ACT-R architecture is divided into eight modules, visualized in Figure 2.1 [28]. Each
module represents a specific cognitive function, which are also physically separated in the
brain. The outer modules cannot communicate directly with each other but only via the
procedural module.

The information unit for communicating between the individual modules is a chunk. A
chunk essentially consists of a collection of variables with values called slots. Chunks can be
declared in advance and structured hierarchically. Each module contains a buffer that can
store a chunk, regardless of the complexity of the chunk. In addition, the buffer itself can be
in different states, such as failure, empty or full. The current state of the overall system is

3

4 Background

Figure 2.1: ACT-R 6.0 modules [28].

described by the current states and chunk assignment of all buffers.

This is an implemented analogy to human cognition. In human memory, we essentially
distinguish between short-term and long-term memory, with a fluid transition between
them, and between declarative memory and procedural memory. Declarative memory
represents all the information we have about the world, while procedural memory is a
collection of procedures, both physical and mental, for interacting with the environment [54].

The concept of a chunk as a unit of information is also derived from this analogy, as our
units of knowledge are not always uniformly structured and can become more complex
with practice. For instance, chess masters can quickly memorize the positions of all pieces
in a game if they follow a logical flow of play, whereas beginners cannot. However, both
groups perform equally poorly with random arrangements. This illustrates that chunks can
process a lot of information in the right context and very little in others [4].
The same applies to procedures. A skilled juggler no longer focuses on the position of their
hands or each ball individually; the movement flows smoothly. A beginner, however, must
concentrate on many processes simultaneously before these movements can be integrated
into a higher-level overall concept.

These characteristics—the separation of short-term and long-term memory, the distinc-
tion between declarative and procedural knowledge, and the hierarchical organization of
knowledge into chunks—are reflected in ACT-R [1, 3]. The following will contain a closer
look at the individual modules that are relevant for the following work.

The current state of the overall system is changed via productions held in the procedural
module. These are pattern-matching rules that check the current state of the system and fire
if matching. As declared in the production rule, new chunks are written into the buffers
and the state is thus changed. If multiple productions match, the one with the highest
utility is chosen. If there are still multiple matchings, the selection is random. The utility is
predefined and can be changed if one enables utility learning. However, since the execution
logic in the cognitive model used for this proposal itself is deterministic, there is no need
for this. Therefore, there are no tie-breaks between multiple productions. This process runs

Background 5

either until no more production rules match and the simulation is terminated or until a
timeout expires.

The visual module includes both the control of the visual focus and the processing of the
content. In the created cognitive model, the visual module is used for the control of the
visual focus to read a line element by element and to process the read characters. At this
point, it should be noted that the implementation automatically bundles characters into
words and numbers so that a number can be read as a whole.

The manual module includes the output of keystrokes on the keyboard or movements
with the mouse. These are transmitted as a command and executed by the manual module.
The time required for certain movements is also taken into account here. In the created
cognitive model, only keyboard actions are incorporated.

The declarative module is the access to long-term memory of the cognitive architecture. It
works via the retrieval buffer, which can request chunks from the declarative memory using
pattern matching of requested slots. This is where the subsymbolic level comes into play:
Several chunks from the declarative memory can correspond to the requested pattern, but
only one can be loaded.

Ai = Bi + ϵi (2.1)

To decide which one to load, the activation of each chunk is first calculated as shown in
Equation 2.1. This consists of the base level activation Bi and noise ϵi. There is an additional
context component, but since it is not used, it is not needed to understand the following
outlines.

Bi = ln
(

n
1 − d

)
− d ∗ ln(L) (2.2)

The base level of each chunk is calculated as shown in Equation 2.2. This takes into
account how often the chunk has already been presented (n), how long the chunk has
already been in memory (L) and what the decay parameter is (d).
The noise is calculated as a logistic distribution and has an additional parameter (s) of its
own.

pi = 1 + e
1

τ−Ai
s (2.3)

Ti = Fe−A (2.4)

This activation can now be used to calculate both the probability pi and the time Ti that
the declarative module needs to provide a certain chunk. These calculations are shown in
Equation 2.3 and 2.4 and use the retrieval threshold τ. This value is a limit that the activation
must at least exceed to have a chance to be retrieved. The latency factor F serves as the basis
for calculating the time.

Tf = Fe−τ (2.5)

6 Background

One should choose the retrieval threshold carefully because if no chunk fulfils the re-
quired conditions, the time the declarative module needs to report back is calculated from
the threshold hyperparameter, as shown in Equation 2.5. If the threshold is set too low, the
module also needs a very long time to report failed accesses.

The imaginal module in turn is used to create new chunks, store them in the working
memory and, when you have finished using them, store them in the declarative memory.
All chunks that are stored in the imaginal buffer are automatically written to the declarative
memory when the buffer is cleared.

The goal module is used to control the work process by using chunks to determine which
work step is to be carried out and defining and controling sequences of certain actions.

Source Code Comprehension

Wyrich [56] defines:

"Source code comprehension describes a person’s intentional act and degree of
accomplishment in inferring the meaning of source code." [56]

It should be noted that the degree of accomplishment is a continuous spectrum, so one
cannot simply define if someone has understood code with a yes or no. In addition, the
degree of accomplishment is always dependent on the use case and the underlying goals
of why the source code should be understood. It differs depending on whether one is
debugging, trying to improve, or aiming to expand the code.

The meaning of the source code can be divided into three dimensions, namely the
functional level, what the code does exactly, the specification level, what the code should
do, and the context level, what the idea for the code was originally. These three dimensions
may overlap, but might also be very different from each other, precisely because code
development is a dynamic process. In this thesis we utilized time and error rate as a
measurement for source code comprehension.

3
Methodology

This chapter describes the methodology of the thesis core evaluation.

Figure 3.1: Schematic representation of the research methology.

In Figure 3.1 the methodological workflow of this study is visualized. We began with
the parallel development of our model and a corresponding framework for conducting
our experiments. Special attention was given to ensuring that both the model and human
participants could use the framework similarly.

Next, we identified intriguing effects that could be investigated using the available frame-
work. These effects led to the formulation of the seven research questions addressed in this

7

8 Methodology

study.

With these research questions we developed the research materials. We created a set of
eight code snippet pairs, each with a treatment and a control format. These pairs were used
to set up both the online survey for participants and the simulation. Additionally, human
participants received intermediate tasks (as their memory cannot be reset between tasks like
a cognitive model) and completed a socio-demographic questionnaire. The development
phase concluded with test runs of the simulation and online questionnaire to identify and
correct any errors.

During the experimentation phase, we released the online survey and recruited partici-
pants through various channels. Data were collected and subsequently cleaned, resulting in
the empirical dataset for further analysis.

This dataset was used to tune the model’s hyperparameters using Bayes Optimization (BO).
Multiple datasets were simulated and evaluated, and the hyperparameters were iteratively
refined, yielding a final simulated dataset for the final evaluation.

In the evaluation phase, we first examined the empirical dataset for significant differences
in processing time and error rate between the treatment and control groups of the code
snippets. We then assessed how well the simulated dataset matched the empirical dataset,
in terms of both time and error rate, as well as the observed effects and their replication
with similar effect sizes.

All these steps are detailed in the following sections, following the temporal order
described here. The chapter concludes by positioning this study design within the conceptual
framework of Wyrich [56].

3.1 Cognitive Model for Code Comprehension

In this section, we first explain the experimental framework with which the ACT-R model
can operate. Subsequently, we describe how the model functions and was developed.

3.1.1 Framework

The interface used for this study was the ACT-R User Interface (UI) framework, facilitat-
ing graphic output display and recognizing diverse inputs, including presenting text and
recognizing key pressures. This allowed us to use almost the same framework for the
model simulation as well as for the participants. The code snippets were presented line
by line, navigated with the space bar, and mimicked a line-by-line execution to enforce a
simplified reading behaviour. While this framework deviates from real-world programming
practices, it allows for a detailed analysis of time spent per line. At the end, a print state-
ment was shown and the result had to be typed in and the space bar had to be pressed finally.

3.1 Cognitive Model for Code Comprehension 9

The code snippets comprised only variables and simple arithmetic operations, which
means adding, subtracting, multiplying and dividing on integers in the range from minus
20 to plus 20 for all operands and results. The result of arithmetic operations could also be
applied to variables.

Variables could be assigned new values several times. Several operations were also possi-
ble in one line, although point-before-dash calculations were not taken into account, since a
simple left-to-right reading behaviour was used.

This framework focused on the purely mechanical execution of code and did not corre-
spond to the real behaviour of a developer outside this setting, but it allowed us to control
and track the reading order and speed. In addition, the test subjects were forced to remem-
ber the values of the variables because jumping back to a previous line was impossible for
them.

Having to remember the variables could cost the participants some time. In a real-world
setting, they might tend to look up the variables in previous lines instead, but this would also
cost them time. Quick recall from memory is therefore more advantageous. This framework
was a strong simplification of reality, but observable effects should also be relevant outside
this setting.

3.1.2 ACT-R Model

The model created for this thesis is inspired by Danker and Anderson [16] and Lebiere [35],
who studied simple arithmetic performance. Similar to their model, mathematical facts were
stored directly in declarative memory. The range was set at minus 20 to plus 20. Included
were the mathematical facts for all four basic arithmetic operations, for which all operands
and results lie within this range. This allowed us to focus on the code execution process and
we did not have to deal with all the arithmetic mental processes. Since the aim of this work
is to investigate code comprehension and not mental arithmetic speed, this is a justifiable
simplification. As Marewski and Mehlhorn [40] noted, every model is wrong in its own way
because it is a simplification of reality.

In addition, only integers were taken into account for division and decimal signs were
cut of. Where this model went beyond other models is that longer terms could also be
calculated here, with the restriction that no point before dash calculation was taken into
account. The formula was only evaluated from left to right. In addition, the model could
also handle variables, calculate with them, and assign and overwrite values. Variables were
stored as entries in the declarative memory.

Differing from models that only focus on arithmetic tasks, this model also integrated the
reading of a line of code and the typing of results on the keyboard to closely mimic human
behaviour. The model processed the string independently without any external parser and
pressed the space bar at the end of each line, whereupon a new line could be presented. If

10 Methodology

Parameter Name Default

rt retrieval threshold 0

ans activation noise s 0.2-0.8

lf latency factor 1

le latency exponent 1

bll base level learning 0.5

Table 3.1: Default values for hyperparameters [26].

the model recognized a print command, it evaluated the expression in the print command
to a value and pressed the corresponding keys for the result followed by the space bar.
The key sequence for all numbers was stored in the declarative memory. For the sake of
simplicity, it was assumed that the sequence of keys for the numbers between minus 20 and
plus 20 was known as a single fact and did not need to be broken down into individual
components.

If values of variables were overwritten, a new entry was created in the memory, between
which a distinction must be made when retrieving. At the same time, people also need
different amounts of time to remember the value of variables. To account for this, a feature
was activated that returns chunks from the declarative memory based on activation, which
is a stochastic procedure. Therefore, in experiments, several runs were necessary to obtain
stable mean values.

The model had several hyperparameters, listed in Table 3.1, with which it can be fine-tuned
to the results found from the experiments with human subjects. These hyperparameters
included retrieval threshold (rt), activation noise s (ans) and latency factor (lf) which were rel-
evant for calculating the recall probability in equation 2.3 and the recall time in equation 2.4.

3.2 Testing Tasks

To test the accuracy of the cognitive model, it required stimulus material that could be
processed by both the cognitive model and the participants. Using only time as a criterium
for evaluating the cognitive model falls short. For example, Gopstein et al. [25] were able
to show that different syntax forms, although they were semantically identical, can lead
to errors in interpretation by humans. They called the list of these code snippets that
significantly lead to a higher error rate "atoms of confusion". Unfortunately, the 15 "atoms of
confusion" which demonstrated a statistically significant effect, are not compatible with our
reduced framework. But we were inspired by the atoms of confusion and constructed four
forms of artefacts that also take up effects from linguistics and deal more specifically with
the cognitive processes and can be described with ACT-R. This allowed the two dimensions
of time and error rate to be examined simultaneously, forming a better overall picture. These

3.2 Testing Tasks 11

four artefacts are explained below regarding their origin and possible influence on code
understanding.

3.2.1 Repeated Code

Gopstein et al. [25] analysed repeated code as a candidate for atoms of confusion, focusing
on scenarios where recently declared variables are reassigned with new values.

a = 1

a = 3

a = 2

print(a)

(a) Original.

a = 1

a = 2

print(a)

(b) Refactoring.

Listing 3.1: Example for repeated code adapted from Gopstein et al. [25].

The original study did exclude the effects of repeated, unreachable, and dead code in
the list of "atoms of confusion" with a significance level of 0.059. This effect should be
re-examined since the original paper only deals with error rate, but not the time required
for comprehension or cognitive load introduced by repeated code. An example of how a
repeated code example could look is shown in Listing 3.1. This is an original example from
the study by Gopstein et al. [25].

In his report, Dörzapf [18] examined 31 GitHub repositories for the use of double
declarations without a usage in between. He came up with a total number of over 60

thousand cases with an average distance of over six lines. While it should be noted that
this also includes various conditionals and loops, this number nevertheless illustrates the
frequency of these code patterns. A simple example is a first declaration of a variable
with null, which later gets overwritten with other assignments. These examples once again
illustrate the relevance of this topic in practice.

3.2.2 Declaration near Usage

So far, no one in literature has analysed the concept of declaring variables near their first
usage in the context of source code comprehension. While refactoring tools for different
languages include this refactoring technique [17], there are discussions about the potential
benefits and risks of this refactoring, particularly in some edge cases [32]. But while the
risks of refactoring can be well described, such as the changed code behaviour, there exists
no study of its benefits, making it difficult to weigh up the pros and cons.

Dörzapf [18] also examined the distance between declaration and first usage in the 31

GitHub repositories. For a total number of over one million declarations, the average dis-
tance from declaration to usage was 3.7 lines, with a median of one. It should be noted
that the number of lines is not the same as the number of statements, as longer statements
can also span several lines. However, the report also lists some examples where it would

12 Methodology

have been possible to change the order so that the declaration would be closer to the first
usage. These examples show that the topic of declaring close to the usage also has practical
relevance.

In research on language comprehension, there is a long-known related effect: The speed
at which pronouns can be assigned depends on the distance between the pronoun and
its antecedent, which is the word the pronoun refers to [11, 15, 20, 23]. In addition, Li
et al. [39] have recently investigated this effect, using an ACT-R model among other things,
which describes the strength of the bond between a pronoun and its antecedent through the
temporal distance in spoken language. It could therefore be possible that this effect is also
transferable to the pairing of value and variable names. Therefore, this will be exploratory
investigated in this thesis.

a = 1

b = 2

c = b + 2

d = c + a

print(d)

(a) Original.

b = 2

c = b + 2

a = 1

d = c + a

print(d)

(b) Refactoring.

Listing 3.2: Example for declaration near usage.

Listing 3.2 shows examples of what code snippets could look like for this effect specifically.
Given the existing knowledge gap regarding whether this refactoring introduces more risk
or provides added value for code comprehension, the investigation was aimed at addressing
this uncertainty.

3.2.3 Interactions

Interactions may arise between the effects of repeated code and declaration near usage,
presenting additional considerations. As the literature on the main effects is already very
limited, this situation is naturally exacerbated when it comes to interactions. A search on
interactions for code understanding of repeated code and declaration near usage was not
successful.

The possible combinations of interactions might be bigger, but at this point, the focus will
be limited to two possible interactions that could be relevant.

3.2.3.1 Declaration Redeclaration Distance

The first type of interaction is the variation of the distance between a declaration and its
redeclaration. A possible code snippet is visualized in Listing 3.3. While increasing the
distance, it must be noted that there are two possibilities concerning the first usage. If you
keep the distance to the first usage immediately after the redeclaration, the first declaration
must be moved further up. If, on the other hand, you want to keep the total length the same,

3.3 Research Questions 13

a = 1

a = 3

b = 2

c = b + 2

d = c + a

print(d)

(a) Original.

a = 1

b = 2

c = b + 2

a = 3

d = c + a

print(d)

(b) Refactoring.

Listing 3.3: Example for the interaction of distance between the declaration and redeclaration.

you will inevitably have to reduce the distance between the redeclaration and the first usage.
For our very tightly controlled framework, we have opted for the second variant, so that the
code snippets are no longer than absolutely necessary.

3.2.3.2 Repeated Distance

a = 1

a = 3

b = 2

c = b + 2

d = c + a

print(d)

(a) Original.

b = 2

c = b + 2

a = 1

a = 3

d = c + a

print(d)

(b) Refactoring.

Listing 3.4: Example for the interaction of repeated code near usage.

The second type of interaction we have dealt with is the distance between a double
declaration and the first usage. This is shown in Listing 3.4. The position of the double
declaration is of interest as to whether the effect of repeated code is greater or smaller due
to the closeness to the first usage.

3.3 Research Questions

This thesis aims to answer two groups of research questions. The first group deals with
the question of whether effects can be found with the artefacts for human participants.
The second group is concerned with whether the data collected can be explained by the
cognitive model. Both groups are discussed below.

3.3.1 Artefacts Effects

As we could only find one single artefact compatible with our framework in the literature,
we constructed others ourselves. First, we must therefore ask what effects these artefacts
have and whether they are significant. In doing so, we must distinguish between the two

14 Methodology

dimensions of time and error rate. The following questions therefore arise for the two main
effects:

RQ1: Does Repeated Code increase the time needed to understand the code?

RQ2: Does Repeated Code lead to a higher probability of misunderstanding the code?

RQ3: Does an increased distance between declaration and usage result in a longer time
required for understanding the code?

RQ4: Does an increased distance between declaration and usage lead to a higher
probability of misunderstanding the code?

In addition, we want to look at the interactions to see whether they have a moderating
effect on the two main effects, both in terms of time and the probabilities of mistakes. Hence
the two additional questions:

RQ5: Does an increased distance between repeated code and usage amplify the effect of
repeated code?

RQ6: Does an increased distance between declaration and redeclaration mitigate the
effect of repeated code?

3.3.2 Cognitive Model Explanation

The main goal of this thesis is to develop and evaluate a cognitive model for code compre-
hension. Therefore, all previous research questions serve mostly as a tool to answer this last
research question, ideally with more methodological means:

RQ7: How accurately does the ACT-R model reflect subject’s behaviour in terms of
processing time and error rate?

The effects found can be used to analyze whether they are simulated by the cognitive
model. But even if no significant effects can be found, which may also be due to reasons
such as insufficient test power, the model should be able to generate no significant difference
for the same number of simulated data, but still produce data that is as similar as possible.

3.4 Study Material

To answer the research questions, we developed research material that could be processed
equally by the cognitive model and human subjects. For this purpose, eight pairs of code
snippets were constructed, ensuring compatibility with both ACT-R and human processing.

Each participant was required to complete eight tasks, with each task consisting of a
code snippet. Participants received either a treatment or control snippet depending on their

3.4 Study Material 15

assigned group. Since the memory of human subjects cannot be reset like in ACT-R, an
intermediate task was included between each primary task to mitigate the influence of the
previous task on the subsequent one. The creation of the individual tasks is explained in
detail below.

Additionally, to identify individual differences in the strength of the effects among
different groups of people, further metadata was collected from the human subjects. A
questionnaire was constructed to capture the most relevant socio-demographic data that
could influence code comprehension ability.

To facilitate access to the tasks, we opted for an online questionnaire. The question-
naire was generated using SoSci Survey [36] and made available to participants via
www.soscisurvey.de.

3.4.1 Code Snippets

The research questions proposed above were examined using code snippets. We tried to
reuse some from previous studies or collected from GitHub, but the framework restrictions
were to tight to use real-world code snippets. Therefore, we created the code snippets
artificially. We set ourselves several goals and requirements for the creation of the code
snippets. The snippets should not have more than four different variables in order not to be
too difficult but also not too easy [13, 14]. The variables themselves should have random
names to avoid any sequence effects [21]. The code snippets were created with variables,
which were later replaced by random letters, thus ensuring purely random naming. Only
whole numbers should occur during the calculation. If someone made a mistake and a
decimal number appeared, they were instructed to cut off the decimal places. The code
snippets were created by hand according to the criteria of the artefacts, which are explained
below. To generate control snippets, the treatment snippets were refactored such that they
will have the same result while using different code.

The number of code snippets used for the experiment depends on the execution time. An
average execution time of 15 minutes was planned for the test subjects. The time should be
distributed equally for all effects. After some pilot experiments, we ended up with three
training and eight experiment code snippets with an expected execution time of 15 up to 20

minutes for the whole experiment, including intermediate tasks and the socio-demographic
survey.

For the ACT-R simulation we used the integrated UI to present the code line by line inside
the virtual window and register the key pressures for the print statements. We had to variate
the task a bit for the online survey and used Lab.js by Henninger et al. [30] for it, since
there is a predefined plugin to use it inside SoSci. The main difference was the integration
of an input field after the last line to enter the result of the print statement of the page
before. This change was neccessary due to difficulties in reacting directly to keyboard input

16 Methodology

within Lab.js. However, as nothing had changed in terms of the relevant times on the lines
beforehand, we have accepted this change.

3.4.1.1 Training Tasks

z = 5

j = 3

a = z * j

print(a)

(a) Training 1.

q = 6

e = 3

e = 2

m = q / e

u = m + e

print(u)

(b) Training 2.

q = 8

r = 1

b = 5

d = q - b + r

print(d)

(c) Training 3.

Listing 3.5: Training code snippets.

The code snippets for the training tasks are visualized in Listing 3.5. They were presented
in this order for each subject. Listing 3.5a was deliberately constructed easier to facilitate a
quick understanding of the concept of the tasks. After the first test runs, a double declaration
was added to Listing 3.5b, as the double declaration used in the experimental task sometimes
caused irritation because it was not part of the training tasks. After each training task, the
test subjects received feedback on whether their answer was correct and were presented
with the entire code snippet including the expected answer.

3.4.1.2 Experiment Tasks

The experimental tasks were divided in four blocks, one per artefact. This resulted in two
tasks per block. Each tasks consisted of one treatment code snippet and one control code
snippet.

The test subjects were divided into two groups with a mixed subject design. One group
performed the treatment code snippet for one task and the control code for the other. The
other group had to perform the reverse of this.

Since the number of tasks in succession could lead to both training effects and fatigue
effects, the order would actually have to be controlled by randomization. However, since
there are 8! = 40320 possible sequences for the eight tasks and we would not even have cov-
ered half a percent of the possible combinations with our expected number of participants
of less than 100 subjects, so we decided to proceed differently and determined one random
order. We then split the two groups in half and had them perform these sequences either in
the forward direction or in the backward direction. This way we expect that fatigue effects
and training effects should balance each other out.

In total, this experimental setup comprised four groups of test subjects, divided into
treatment and control tasks and forward or backward direction. The exact order of the
experimental tasks is visualized in Table 3.2. In the following, the task related code snippets
are explained.

3.4 Study Material 17

Table 3.2: Order of the tasks for the groups.

Order 1T/2C 1C/2T

CD2, RP2, CD1, DR1, DR2, RP1, CR2, CR1 1 2

CR1, CR2, RP1, DR2, DR1, CD1, RP2, CD2 3 4

Annotation: 1T: First Snippet as Treatment, 1C: First Snippet as Control, 2T: Second Snippet
as Treatment, 2C: Second Snippet as Control

i = 4

k = 8

h = k * 2

y = i * 4 - h

print(y)

(a) Treatment.

k = 8

h = k * 2

i = 4

y = i * 4 - h

print(y)

(b) Control.

Listing 3.6: Code snippet CD1.

x = 1

v = 5

c = 6

i = x * 4

print(i)

(a) Treatment.

v = 5

c = 6

x = 1

i = x * 4

print(i)

(b) Control.

Listing 3.7: Code snippet CD2.

Code Distance For the Code Distance (CD) snippets we used the following schema:
Declaration of a variable, two variable declarations in between, a variable declaration that
included the first variable followed by the output of the last variable declaration. The control
group was created by swapping the first variable with the two other variables. The two code
snippets are shown in Listing 3.6 and Listing 3.7.
Since the CD effect might be reduced by the inclusion of several variables, a special difference
between the two groups was introduced. As Listing 3.7 shows, we have omitted the use of
the variables v and c in the declaration of i.

y = 5

y = 3

t = 2

k = y * t

print(k)

(a) Treatment.

y = 3

t = 2

k = y * t

print(k)

(b) Control.

Listing 3.8: Code snippet CR1.

18 Methodology

m = 5

m = 8

b = 4

a = m / b

print(a)

(a) Treatment.

m = 8

b = 4

a = m / b

print(a)

(b) Control.

Listing 3.9: Code snippet CR2.

Repeated Code When creating the Repeated Code (CR) snippets, we used the following
pattern: A double declaration at the beginning was followed by another variable declaration
and then both variables were calculated in a third variable which was then output. The
control snippet was then created by omitting the first declaration. The results can be seen in
Listing 3.8 and Listing 3.9.

c = 2

c = 5

q = 8

w = q / 4

k = w * c

print(k)

(a) Treatment.

c = 2

q = 8

w = q / 4

c = 5

k = w * c

print(k)

(b) Control.

Listing 3.10: Code snippet DR1.

f = 6

f = 2

q = 4

u = 5

x = u - q + f

print(x)

(a) Treatment.

f = 6

q = 4

u = 5

f = 2

x = u - q + f

print(x)

(b) Control.

Listing 3.11: Code snippet DR2.

Declaration Redeclaration Distance The Declaration Redeclaration Distance (DR) snip-
pets were created using this schema: Double declaration, two other variable declarations and
a fourth declaration using the first variable declared. The control was created by changing
the order and bringing the redeclaration of the first variable between the declarations of the
two other variables and the usage. The used code snippets are visualized in Listing 3.10 and
Listing 3.11.

Repeated Distance For the Repeated Distance (RP) snippets we followed the same schema
as for DR: Double declaration, two other variable declarations and a fourth declaration using
the first variable declared. The difference laid in the control snippet, which was created by
changing the order, the declaration, and the redeclaration of the first variable between the

3.4 Study Material 19

t = 5

t = 3

q = 2

h = q * 4

y = h - t

print(y)

(a) Treatment.

q = 2

h = q * 4

t = 5

t = 3

y = h - t

print(y)

(b) Control.

Listing 3.12: Code snippet RP1.

q = 1

q = 2

w = 5

y = w - 4

x = y * q

print(x)

(a) Treatment.

w = 5

y = w - 4

q = 1

q = 2

x = y * q

print(x)

(b) Control.

Listing 3.13: Code snippet RP2.

declarations of the two other variables and the usage. The used code snippets are visualized
in Listing 3.12 and Listing 3.13.

3.4.2 Intermediate Tasks

To reduce the influence of the tasks on the subsequent tasks, we played ten-second video
clips of fish in an aquarium as an intermediate task. This approach was informed by Gee
et al. [24], who demonstrated that observing fish has a relaxing effect. The order of the video
clips was the same for all participants and it was impossible to skip them. Several forms of
intermediate tasks were considered, ranging from attention tests to tic-tac-toe. We decided
to use video clips because we did not want to prime the subjects on letters or numbers, and
we did not want to further challenge them cognitively to avoid accelerating fatigue. Videos
from Pexels [22], which are freely available for non-commercial use, were utilized in our
experiments.

3.4.3 Socio-Demographic Survey

For the socio-demographic data, we asked the following questions in the survey after the
code comprehension tasks:

3.4.3.1 Distraction

To assess the value of the answers given, the subjects were asked whether they could
complete the tasks in one go without distractions. This is relevant concerning the cognitively
demanding task because distractions could significantly distort the result [19].

20 Methodology

3.4.3.2 Gender Identification

The primary purpose of the gender identification question was to report the distribution
in the data set to evaluate whether the distribution is representative. The question was
based on the proposed guidelines for gender-inclusive language in research questions
from Northeastern University [51]. In addition to five fixed answer options (man, woman,
transman, transwoman, non-binary), there was also an open answer option and a no-answer
field.

3.4.3.3 Age

We asked for the age in an open question to report the distribution. In addition, age could
influence reaction times and processing speeds, making documentation useful for possible
posthoc analyses.

3.4.3.4 Country

We asked for the current country for demographic data, to be able to report the distribution
over different countries.

3.4.3.5 Education

The educational level can be a hint and correlate of intelligence, which influences the code
comprehension skills [53]. Therefore, we asked for the highest educational level in a multiple
choice format, starting from still in school to university degrees.

3.4.3.6 Job Title

The effects of the different artefacts could vary between professionals and novices. Therefore
we asked for the current job title in an open question.

3.4.3.7 Programming Experience

The experience of the subjects can influence the performance of a subject. Therefore, based
on the work of Siegmund et al. [45], we surveyed the programming experience. A key facet
is the subject’s own estimation of their own experience compared to classmates or colleagues.
This was assessed using a five-point Likert scale ranging from very inexperienced to very
experienced.

3.4.3.8 Experience with Programming Paradigms

Another aspect that emerges from the work of Siegmund et al. [45] is the self-assessment
of personal experience with logical programming. This is particularly relevant because the
code snippets used also belong to this paradigm. In order to not consider the individual
paradigm in isolation, the Functional Programming and Object-Oriented Programming
paradigms were also surveyed, although these do not discriminate well between the groups
of experienced and inexperienced users according to the results of Siegmund et al. [45].

3.5 Design and Testing Phase 21

We have nevertheless included these paradigms so as to not to give the impression of
incompleteness to the participants by only asking questions about one programming
paradigm. These questions were also asked using a five-point Likert scale.

3.5 Design and Testing Phase

During the development of the online test, several reviews were conducted in accordance
with the 4-eyes principle to identify potential errors. In a second phase, three testers were
asked to complete the questionnaire and identify any comprehension issues. Subsequently,
the instructions were revised once more prior to the commencement of the experiments,
and the training tasks were modified to incorporate the use of variable redeclaration. Finally,
the complete test was subjected to a comprehensive review by the Ethics Council of the
Faculty of Mathematics and Computer Science at Saarland University. As a modification, it
was recommended that all questions in the socio-demographic questionnaire should permit
an explicit choice to refuse to answer. We added this option to all questions. Subsequently,
the online test was approved.

3.6 Data Mining

To answer the research questions we collected data from human participants as well as from
simulations with our ACT-R model. In the following the data collection process, the data
preparation, and the simulation process is described in detail.

3.6.1 Collection

For sampling participants for the online study, we used a referral-chain sampling strategy [5].
We acknowledge that this method does not lead to a representative sample and thus limits
the generalizability of the results. Nonetheless, we chose this method for its simplicity and
to quickly gather a sufficient number of participants, as the primary focus of this work lay
on the feasibility study rather than the generalizability of the results. To obtain a diverse
group, we used multiple recruitment channels.
Participants were recruited through personal connections, online forums like Arduino-
Forum, Code-Forum, Python-Forum, Java-Forum, using survey exchange platforms like
survey swap and pollpool, and finally recruiting students on the campus of Saarland Uni-
versity.

The data to answer the first six research questions was collected using SoSci Survey [36].
The link to the online survey was distributed using the channels described above. In order
to control as many independent variables as possible, the aim was to use a mixed-subject
design. This is a combination of an inter-subject design and a between-subject design.
As explained in Section 3.4.1, the code snippets appeared in pairs. Each group received
either the treatment or the control snippet for the between-subjects part. This process guar-

22 Methodology

anteed that both groups processed all effects without having directly replicated code, which
prevents a learning effect.
The inter-subject part was implemented by looking at multiple code snippets for each effect,
so that each subject saw a treatment and a control snippet for each artefact, but not from
the same snippet. This enables us to better recognize individual differences and reduces the
probability that the observed effects only occurred due to group membership.

How the experimental tasks were assigned to the groups was explained in detail in
Section 3.4.1.2 with a detailed overview in Table 3.2. To ensure that all four groups were
approximately the same size, SoSci was pre-set to randomize but balance the assignment
based on the completed questionnaires so that the groups were as equal in size as possible
for evaluation.

3.6.2 Exclusion Criteria

All participants who did not complete the questionnaire fully or who answered "no" to
the question of whether they completed the questionnaire with full concentration were
excluded from the analysis. Additionally, participants who completed the questionnaire
very quickly were excluded, as this suggests inadequate engagement. For this, we used
the definition of an outlier as 1.5 times the interquartile range below the first quartile. All
participants faster than this threshold were excluded. We did not exclude those who took
longer, as different strategies might result in varying completion times.

3.6.3 Preparation

The data collected with SoSci must be prepared for analysis. Due to the way the questions
are created in SoSci, the results of the treatment and control snippets were stored in dif-
ferent variables, while the given answers were stored in the same variable. Since group
membership was sufficient as a marker to distinguish whether the collected times belong to
the treatment or the control snippet, the two variables are combined.

The results of the Lab.js experiments were saved as a JSON file that stored various meta-
data, including the time per frame, in our case per line. Since the relevant time was the
time spent on the target line, which was the penultimate line in all of our selected code
snippets, this time was extracted from the JSON file and saved as a pure numeric variable.
Additionally, we also collected the total time per snippet.

The answers given by the respondents were evaluated as correct or incorrect, and this
boolean result was stored as a separate new variable. We ended up with a dataset that
contained the group number, for each task the time on the target line, the time for the total
snippet, the given answer and whether that answer is correct or incorrect, and the answers
for the socio-demographic survey.

3.7 Evaluation 23

3.6.4 Simulation

To answer the seventh research question, a simulation process using python and lisp was
used. For the simulation an experiment script was created in lisp, which takes hyperpa-
rameters and the number of simulation runs as input and produces a dataset in the same
style as the prepared data set, explained in Section 3.6.3. To have the same dataset, we also
split the code snippets in two blocks. Since the order did not matter for the ACT-R model,
we only distinguished between two groups and only focused on the difference between
the treatment and the control tasks. To better fit the data, both groups could have different
sizes.

A simulation started by setting a new random seed. Then each task was executed and
the results were stored. This reflects the same behaviour human participants would use to
create a dataset. In the stored data we collected in a line a group number for each simulation
run, and for each task the time on the target line, the given result for the print statement
and a boolean if the given answer is right or wrong. This format is nearly the same as for
the human participants.

3.7 Evaluation

The evaluation was done in three steps. The first step was to examine the empirical data for
the artefacts. In the second step, a strategy was developed for fitting the cognitive model to
reproduce the empirical data as well as possible. Then, a final assessment was made of how
well the cognitive model reproduced the individual effects found. Each step is described in
more detail below.

3.7.1 Artefacts

The empirical data was examined to answer the first six research questions. First, the data
were prepared. This was followed by an evaluation of the time or error rate effects for each
artefact. The procedure described below is identical for all artefacts considered, and we
always considered both tasks for the same artefact with treatment and control snippets.

3.7.1.1 Preparation

First, we had to create a variable from the group variable that allowed us to differentiate
between treatment and control. Which code snippets were processed by which groups is
shown in Table 3.2. Therefore, the treatment and control distinction variable was created as
follows: For groups 1 and 3, the variable is set to 1 for the first tasks, which were marked
with 1, and to 2 for the second tasks, which were marked with 2. The labelling for groups
2 and 4 was exactly the opposite. Here, the distinguishing variable was set to 2 for the
first tasks and to 1 for the second tasks. This meant that all snippets marked with 1 were

24 Methodology

treatment snippets and those marked with 2 were control snippets.

To combine the data of both tasks, the time data was normalized per task. To prevent a
possible effect the normalization was calculated for the combined mean and deviation of
treatment and control snippet. If we had normalized treatment and control individually, we
would have had no effect because the means of both groups would have been zero.

After normalizing the time data, we were able to combine both tasks. This resulted
in three data columns for each artefact. These were the treatment control discrimination
variable, the normalized time data, and whether the given response is True or False.

3.7.1.2 Time Effects

A t-test was used to test whether the artefact had a time effect. The t-test was chosen because
it allows us to examine whether there is a difference and how large it is. For this purpose,
the time variables were divided into two groups, the treatment and control tasks, and
compared with an independent t-test.

The prerequisites for computing an independent t-test are data independence, at least
one interval scale level of the data, normal distribution within the groups, and homogeneity
of variance between the two groups.
We ensured the data’s independence by ensuring that each data point came from either a
different participant or different snippets of code.
The interval scale level is natural for time data.
We tested for normal distribution using the Shapiro-Wilk test. The t-test is quite robust to
a violation of this assumption [43, 55]. Therefore, the results of the Shapiro-Wilk test are
reported, but the judgment has no effect on the way the results are calculated.
We tested for homogeneity of variance with the Levene test. If this assumption was violated,
the Welch test was used as an alternative. The Welch test explicitly calculates its test statistic
with both variances.

Since the investigation of artefacts was of a more exploratory nature, and we also wanted
to investigate whether the time data found in the simulation show the same effect with the
same magnitude. For this, we needed a metric to measure the size of the effect. In the case
of the time data, we use Cohen’s d [12].

3.7.1.3 Error Rate Effects

The summarized data set from both tasks was also used to evaluate the error rate. For this
purpose, it was assessed whether the results of the test subjects were correct or incorrect.
This could then be used in a χ2 test to compare whether there was a significant difference
between the target and the control task. The dimensions of the contingency table were
treatment and control snippet respectively correct and incorrect results.

The prerequisites for the χ2 test are a nominal scale level, independent measurements
and at least five observations per category.

3.7 Evaluation 25

As explained for time effects, the independence of the data is ensured by the study design.
The nominal scale level is the lowest level the data can reach and is ensured because we
have clear categories.
Whether there will be at least five entries per group could not be guaranteed in advance,
because it might also happen that a task is too easy or too difficult, contrary to expectations,
so that there are no right or wrong answers. Alternatively, Fisher’s exact test was used,
which has no requirement for the number of observations.

The effect of the artifacts on the error rate also required a measure of the effect size. Since
this is a two-by-two crosstabulation, we could use ϕ as such a measure.

3.7.1.4 Correcting Significance Levels

Since we applied this procedure a total of four times for all artefacts together, we performed
a total of eight tests. Since we were doing the analysis post hoc and had not formulated any
specific hypotheses in advance, we had to correct the significance level for our eight tests,
otherwise we would have had alpha error accumulation.
As a measure for correcting the significance level of the tests, we used the Bonferoni-
Holm (BH) correction, which is slightly more liberal than the pure Bonferoni correction [29].
This gave us bounds of 0.05

8 , 0.05
7 , . . . , 0.05

2 , 0.05
1 for the significance levels in ascending order

of size.

3.7.2 Cognitive Model Fitting

To answer the seventh research question, we needed a method to tune the cognitive
model based on the observed empirical data. This method had two main components.
The first component was a distance metric that allowed us to assess how different a
simulated data set is from the empirical data set. The second component was a strategy for
generating the combinations of hyperparameters to be tested, in order to search for the set
of hyperparameters that minimizes the distance to the empirical data set. Both components
will be described below.

3.7.2.1 Distance Metric

To measure the distance between two data sets, we needed to encounter the time data and
the error rate. Both had to be integrated into the metric, since our goal was to simulate the
time and error rate as closely as possible. The goal was to have a metric that starts at zero
for identical data and increases as the data sets become more dissimilar. This allowed us to
search for a minimum or by negating it to search for a maximum. To do this, we first had to
consider the two cases separately.

Time Data The times on the target line may have had different means as well as different
distributions. Both should be taken into account in a distance metric. A statistic that
considers both and meets our requirements for a distance metric is the Kolmogorov-

26 Methodology

Smirnov (KS) statistic, which gave us both a distance measure and optionally a significance
level at which the two distributions differ [33].

Error Rate Data For the answers, we were only interested in whether the probabilities of
correct and incorrect answers are identical. Since this measure only has a nominal scale, we
could not use the KS statistic at this point, but we could use the χ2 test to check whether the
distributions of correct and incorrect answers in both groups were similar or not. Again, χ2

gave us a measure that we could use as a distance metric and also a p-value that we could
use to assess the fit of our data [9].

Combination The initial plan was to optimize both time and error rate simultaneously.
However, following the initial experiments, it became evident that the KS statistic is con-
strained to a range between zero and one, whereas the χ2 distribution could take on any
positive value. Consequently, the optimization of error rate has become the dominant factor,
eclipsing that of time. We used the trick of using the significant values to combine the
two metrics, since the significant values for both are in the same range. However, since
there were still issues with interpretation, as the χ2 test is less likely to become significant
compared to the KS test, we decided to perform both combined optimization as well as
separate optimizations for time and error rate.
To prevent the accumulation of distance values, the individual summands were squared.
This increased the weight of individual large deviations while keeping smaller deviations
relatively small. This helped to find a hyperparameter set that generalizes better.

3.7.2.2 Searching Strategies

To find the set of hyperparameters that best describes the data, we needed a search strategy.
From testing, we knew that three parameters have the most influence on the result. These
were the rt, ans and lf.

The majority of parameters possessed a fixed default value, which is listed in Table 3.1.
As Taatgen and Rijn [49] emphasize in their work, the default values serve as a suitable
starting point for the model, as they are based on decades of experience. With regard to the
rt parameter, we deviated from the default value of 0 and instead employed a value of -10,
derived from a example project presented in the unit five code description in the ACT-R
tutorials provided by the ACT-R Research Group [27]. This approach ensured that a value
was always returned. Consequently, an initial search space was established within which
we could fine-tune the ans parameter.

To optimize the search process, we employed the BO algorithm, which has demonstrated
superior efficiency compared to a basic Grid Search when tuning ACT-R models [31]. Follow-
ing the initial optimization, we expanded the degrees of freedom and the search space to
identify the optimal parameter combination. We aimed to minimize the number of parame-
ters that deviate from their default values, because a well-constructed model should have a
minimal number of parameters and be defined by its underlying rules [47]. Additionally, an

3.7 Evaluation 27

excessive number of parameters and degrees of freedom can lead to overfitting, increasing
the noise in the model and ultimately reducing its generalizability [48].

3.7.3 Model Evaluation

Finally, to answer the seventh research question, it was necessary to look at each task
individually. Since we used an aggregated measure to optimize the hyperparameters, it is
possible that the model makes better or worse predictions in some tasks than in others. Since
we already simulated a dataset with the same number of individuals as in our empirical
dataset in the last search cycle, we could now look at the tasks separately.

3.7.3.1 Time Data

To evaluate the time data, we considered the KS statistic described in the Section 3.7.2.1 for
the task and all groups, which allowed us to consider whether the time data are significantly
different. We reported both the F-value and the significance level provided by the KS test for
all tasks an groups.
We could then analyze whether the time data were less consistent for certain groups or
tasks than for others.

3.7.3.2 Error Rate Data

For the error rate data, we followed a procedure analogue to the one described before in
Section 3.7.2.1. We used the χ2 measure and reported both the χ2 value and the significance
level provided by the χ2 test. After this, we could analyse how well the simulated data fits
the empirical data.

3.7.3.3 Artefacts Effects

Finally, we wanted to examine whether the simulated data replicated the observed effects of
the artefacts. For this we followed the same procedure as described in Section 3.7.1.
Finally, we could compare whether the prediction of the model fits the empirical data well.
To do this, we compared whether the effects that were present in the empirical data were
also present in the simulation data. To do this, we could compare whether the differences in
time or error rate were significant and whether the effect sizes were of the same order of
magnitude.

In addition, we needed to consider whether effects that the model might have predicted do
not occur in the empirical data. This would then be the starting point for further discussion
of why empirical effects may not be predicted or why predicted effects are not found
empirically.

28 Methodology

3.8 Integration in the Conceptual Model

To make this approach comparable with other experiments, the following describes how
it fits into the conceptual model proposed by Wyrich [56]. The model is visualized in
Figure 3.2.

Figure 3.2: Conceptual model for code comprehension experiments [56].

Link (b) contains all variables that probably influence the comprehension task. In our case,
these are the different code snippets and refactorings that differ between the test subjects.
As a result, the mental states are expected to develop differently. However, since the test
subjects have different mental states at the beginning at time t, an attempt is made to control
this effect by random assignment to the test groups.

In the model, link (c) is used to get an impression of the unobservable mental model. In
this case, the correctness of the answer to the question about what the code snippet prints
at the end is used. Although this only gives a limited impression of the final mental model,
it is simple and can be simulated.

Link (d) depicts the observation of cognitive processes, transforming the mental state into
the next. In our operationalization, this is the time spent per line. This is only a correlate of
the cognitive processes, but a simple method that can easily be applied to many subjects.
The granularity in this case is row-wise.

Link (a) is a special case in this approach. This link describes the transition from the
mental state at the beginning to the one at the end of the experiment. This process can
potentially have many mental states in between. So far, however, there is no adequate
description of this process [56].

With the ACT-R model, the mental model, mental state and the transition process are
imitated. However, this is a simulation based on ACT-R that provides the same observable
variables as the test subjects. By tracking the error rate of the answers as well as the time
per line, i.e. observing the result and the process, it can be determined how accurately the
ACT-R model simulates the real observable behaviour.

4
Evaluation

In this chapter, we will present, contextualize, and critically reflect on the results of the
previously described methodology.

4.1 Results

For the results, we first address data collection and data preparation. We then focus on
the socio-demographic metadata of the participants before discussing the analysis of the
artefacts and the model evaluation.

4.1.1 Data Collection

Data collection occurred in three phases. First came the design and testing phase of the
questionnaire, described in Section 3.5. This was followed by the actual data collection
phase. Subsequently, the data needed to be cleaned and processed. Each of these phases is
explained in detail.

4.1.1.1 Collection

Figure 4.1: Distribution of participant numbers during the survey phase.

29

30 Evaluation

The survey period ran from 05/14/2024 to 06/08/2024. During this time, the link to
the online test was clicked a total of 480 times. Of these, 168 questionnaires were started.
Of these, 84 were completed. The distribution of the number of started and completed
questionnaires is shown in Figure 4.1.

4.1.1.2 Data Cleaning Phase

Of the 84 participants who completed the questionnaire, 21 indicated that they did not
complete it without interruption. These participants were therefore excluded from further
analysis. No additional participants were excluded due to excessively fast completion times.
Therefore, 63 participants remained in the data set and will be used for all further analyses
and evaluations. The distribution among the 4 groups is shown in the following Table 4.1.

Table 4.1: Final number of participants per group.

Group Count

1 18

2 13

3 16

4 16

Since groups 1 and 3 and groups 2 and 4 differed only in the order of their snippet
presentation, groups 1 and 3 were combined into group 1 and groups 2 and 4 were
combined into group 2 for the following evaluations. This resulted in a number of 34

participants for Group 1 and 29 for Group 2. All simulations of the ACT-R model used in the
following were executed with these two group sizes.

4.1.2 Participant Characteristics

The following section takes a closer look at the remaining 63 participants in terms of their
socio-demographic characteristics and programming experience.

4.1.2.1 Socio-Demographic Characteristics

The 63 participants were on average 31.8 years old with a standard deviation of 11.8 years.
The oldest participant was 67 years old, while the youngest participant was 18 years old. A
distribution of age groups can be seen in Figure 4.2. It is clear that the majority of partici-
pants were in their 20s and 30s, but there are a few older participants, indicating a broader
range of subjects in the data set.

Germany clearly dominated the distribution of countries of origin. However, there were a
few participants from other countries, mainly from English-speaking countries. A detailed
overview of the number of participants from all countries can be seen in Figure 4.3.

4.1 Results 31

Figure 4.2: Distribution of the age of the participants.

Figure 4.3: Distribution of the countries of origin of the participants.

The educational background of the respondents is clearly university based. 84.1 percent
of all respondents have at least a bachelor’s degree and 71.4 percent have a higher univer-
sity degree. There are a few participants with other types of school diplomas and even
some respondents without a high school diploma. The distribution of highest educational
attainment is visualized in the Figure 4.4.

In terms of the distribution of gender identity, respondents identifying as male were by
far the most common, with a share of 71.4 percent. Far fewer identified as women, with 22.2
percent. The rest either identified as a gender not included in our selection or preferred not

32 Evaluation

Figure 4.4: Distribution of educational attainment of the participants.

Figure 4.5: Distribution of gender identification of the participants.

to answer this question. The distribution is visualized in the Figure 4.5.

The current work situation of the participants was queried in an open question. A total of
23 participants indicated that they are currently engaged in academic studies. The remaining
participants were distributed as follows: seven work in research, ten work with software, and
a further ten work in business as analysts or in management. The remaining participants
represent a variety of other fields or did not provide any information.

4.1 Results 33

4.1.2.2 Coding Skills

The four questions on programming ability are evaluated in more detail below. All questions
are presented on a 5-point Likert scale, which is assumed to be an interval scale in the
following. It ranged from very inexperienced to very experienced.

Figure 4.6: Distribution of self-assessment of programming experience compared to classmates or
colleagues of the participants.

On average, participants considered themselves to be just as experienced or slightly
more experienced than their colleagues or classmates, with a mean of 3.365 and a standard
deviation of 1.222. The distribution of the exact answers is shown in Figure 4.6.

In the case of logical programming, the distribution is split. Here the participants tended
to rate their experience as neutral, although there is a larger spread with one group that
tends to be more experienced and another that tends to be less experienced. On average,
participants rated their experience with logic programming as 2.841 with a standard devia-
tion of 1.358.

The pattern for functional programming is similar to the comparison with colleagues and
classmates. Again, participants rated themselves as more experienced with a mean of 3.19

and a standard deviation of 1.148.

Object-oriented programming is one of the most common programming paradigms, and
this is reflected in the participants’ answers [34]. Here the participants tended to rate them-
selves from experienced to very experienced with a mean of 3.65 and a standard deviation
of 1.259.

34 Evaluation

Figure 4.7: Distribution of self-assessment of programming experience with logical programming of
the participants.

Figure 4.8: Distribution of self-assessment of programming experience with functional programming
of the participants.

The detailed distribution of the self-assessments for all three programming paradigms is
shown in the Figures 4.7 to 4.9. The participants were more familiar with object-oriented
programming than with logical programming. However, the code snippets were purly
examples of logic programming. This must be taken into account in the further analysis.

4.1 Results 35

Figure 4.9: Distribution of self-assessment of programming experience with object oriented program-
ming of the participants.

Based on the work of Siegmund et al. [45], who extracted comparison with classmates
and experience in logical programming as the main factors for programming experience, it
can be concluded that the dataset contains a rather mixed group.

4.1.3 Effects in Empirical Data

The following chapter presents and analyzes the empirical data to answer research questions
one to six. For the sake of clarity, only the summarized data from both snippets per effect
are presented here. A graphical representation of the results for the individual snippets can
be found in the Appendix A.

The assumption of normality was not met in any of the distributions. For the sake of
completeness, the results of the Shapiro-Wilk normality test are presented. However, given
that the t-test is considered to be stable for such group sizes, it was employed in this instance
[43, 55].

Each section provides a concise overview of the characteristics of the code snippets within
each category, allowing for a more straightforward classification of the observed effects.

4.1.3.1 Code Distance

The CD class exhibited variability in the proximity of variable declaration relative to their
initial utilization. In the treatment group, there were two intervening lines, whereas in the
control group, the declaration and use of the variable occurred in immediate succession. The
results for the CD snippets are presented in Figure 4.10. On the left, the times on the target

36 Evaluation

(a) Time on target line.

False True Sum

Control 7 56 63

Treatment 8 55 63

Sum 15 111 126

(b) Error rate.

Figure 4.10: Results for the combined data of both CD snippets for treatment and control group for
empirical data.

line are presented in comparison between the two groups. On the right, the comparison of
the error rate between the two groups is displayed. This kind of presentation will be used
for all subsequent effects presentation.

Time Data The Shapiro-Wilk test yielded a value of W = 0.845 with p = 1.31e-06 for the
treatment group and a value of W = 0.932 with p = 1.813e-03 for the control group. This
indicates that both groups are not normally distributed. The results of the Levene test
yielded an value of F = 5.969 with p = 0.01597, indicating the presence of heteroscedasticity.
Consequently, the findings from the Welch-test will be employed in the subsequent analysis.
The mean value for the treatment group is 0.19, with a standard deviation of 1.22. The
control group exhibited a mean value of -0.19 and a standard deviation of 0.66. With a
group size of 63 per group, this yields a t-value of t = 2.125 with p = 0.03617. The effect size
of Cohen’s D is d = 0.379, which can be regarded as indicative of a small to medium effect.

Error Rate Data As illustrated in Table 4.10b, the number of incorrect responses was
approximately equivalent in both groups. Consequently, the χ2-test yielded a value of χ2 = 0

with p = 1, indicating that there is no statistically significant difference between the two
datasets. The effect size is Φ = -0.025, which is negligible.

If one looks at the type of errors made in Figure 4.11, one can see that the latitude of
possible answers in the treatment group of CD1, visualized in Listing 3.6, was slightly larger.
The correct results were "0" for CD1 and "4" for CD2.

4.1 Results 37

(a) CD1. (b) CD2.

Figure 4.11: Distribution of the answers for the CD snippets for empirical data.

4.1.3.2 Repeated Code

The class of CR snippets varied in the number of variable declarations, either single for the
control group or double for the treatment group. The declaration was followed by another
line of code, after which the variable was used. The results for the CR snippets are presented
in Figure 4.12.

Time Data The Shapiro-Wilk test yielded a value of W = 0.668 with p = 1.158e-10 for the
treatment group and a value of W = 0.681 with p = 2.062e-10 for the control group. This
indicates that both groups are not normally distributed. The results of the Levene test
yielded an value of F = 0.124 with p = 0.725, indicating the absence of heteroscedasticity.
Consequently, the findings from the t-test will be employed in the subsequent analysis. The
mean value for the treatment group is 0, with a standard deviation of 1.05. The control
group exhibited a mean value of 0 and a standard deviation of 0.95. With a group size of 63

per group, this yields a t-value of t = -0.021 with p = 0.983. The effect size of Cohen’s D is
d = 0.00374, which is negligible.

It is worth noting, however, that the non-existent mean value difference shown here is
the result of a positive and a negative difference between the mean values in both code
snippets. This phenomenon is illustrated in Figure A.3 and A.4. The reason for the reversal
of the effect between the two snippets could not be determined in this work.

Error Rate Data As illustrated in Table 4.12b, mistakes only occurred in the treatment
group. Nevertheless, the discrepancy is not statistically significant, as indicated by χ2 = 1.366

with p = 0.242. Since the condition of at least 5 observations per field is violated at this point,
we use Fisher’s Exact test as an alternative which gives us p = 0.244. As one can see, the two

38 Evaluation

(a) Time on target line.

False True Sum

Control 0 63 63

Treatment 3 60 63

Sum 3 123 126

(b) Error rate.

Figure 4.12: Results for the combined data of both CR snippets for treatment and control group for
empirical data.

(a) CR1. (b) CR2.

Figure 4.13: Distribution of the answers for the CR snippets for empirical data.

tests differ only minimally in their result. Consequently, it is plausible to conclude that the
observed difference is merely a coincidence. The effect size is Φ = -0.156, which is small effect.

If we again look at the type of errors made in Figure 4.13, it is noticeable for CR1, visualized
in Listing 3.8, that at least the expected error of not remembering the overwriting occurred

4.1 Results 39

once in the treatment group. The "10.6" could be interpreted as a uncertainty about the
functionality of variable overwriting. The correct results were "6 "for CR1 and "2" for CR2.

4.1.3.3 Declaration Redeclaration Distance

The DR Snippets class represents an interaction between the two previously described
snippets. It serves to vary the distance between the declaration and the redeclaration of
a variable. In the case of the treatment group, a double declaration was created at the
beginning, followed by two lines of filler code, after which the usage is presented. For the
control group, the filler lines were inserted between the declaration and redeclaration of the
variable. The results for the DR snippets are presented in Figure 4.14.

(a) Time on target line.

False True Sum

Control 22 41 63

Treatment 15 48 63

Sum 37 89 126

(b) Error rate.

Figure 4.14: Results for the combined data of both DR snippets for treatment and control group for
empirical data.

Time Data The Shapiro-Wilk test yielded a value of W = 0.883 with p = 2.226e-05 for
the treatment group and a value of W = 0.89 with p = 3.821e-05 for the control group. This
indicates that both groups are not normally distributed. The results of the Levene test
yielded an value of F = 0.5398 with p = 0.464, indicating the absence of heteroscedasticity.
Consequently, the findings from the t-test will be employed in the subsequent analysis. The
mean value for the treatment group is 0.09, with a standard deviation of 1.07. The control
group exhibited a mean value of -0.09 and a standard deviation of 0.92. With a group size
of 63 per group, this yields a t-value of t = -0.96 with p = 0.339. The effect size of Cohen’s D
is d = 0.171, which is small effect.

Error Rate Data As illustrated in Table 4.14b, there occurred more mistakes in the control
group than in the treatment group, and there were more mistakes overall. Nevertheless, the

40 Evaluation

(a) DR1. (b) DR2.

Figure 4.15: Distribution of the answers for the DR snippets for empirical data.

discrepancy is not statistically significant, as indicated by χ2 = 1.378 with p = 0.24. Conse-
quently, it is plausible to conclude that the observed difference is merely a coincidence. The
effect size is Φ = 0.122, which is small effect. It is not possible to ascertain the reason for the
accumulation of errors in this form of code snippets.

If we look at the errors made in Figure 4.15, we see in DR1 an accumulation of "4" for
the treatment group and "40" for the control group. "4.10" could again be interpreted as
inconclusiveness. If we look into the snippet in Listing 3.10, "4" would be the expected error
if the overwriting was forgotten. The answer "40" could be explained by forgetting to divide
"q" by "4". For DR2, visualized in Listing 3.11, there is an accumulation at "1" for the control
group. This error could occur if the order of the subtraction is reversed, as these were not
queried in the initialized order. The correct results were "10" for DR1 and "3" for DR2.

4.1.3.4 Repeated Distance

The class of RP snippets varied the distance between a double declaration and its usage.
In the treatment group, there were two fill code lines between the double declaration and
the usage, which were drawn in front of the double declaration for the control group. The
results of RP snippets are presented in Figure 4.16.

Time Data The Shapiro-Wilk test yielded a value of W = 0.734 with p = 2.404e-09 for the
treatment group and a value of W = 0.759 with p = 8.328e-09 for the control group. This
indicates that both groups are not normally distributed. The results of the Levene test
yielded an value of F = 0.045 with p = 0.8323, indicating the absence of heteroscedasticity.
Consequently, the findings from the t-test will be employed in the subsequent analysis. The
mean value for the treatment group is -0.03, with a standard deviation of 0.98. The control

4.1 Results 41

(a) Time on target line.

False True Sum

Control 9 54 63

Treatment 21 42 63

Sum 30 96 126

(b) Error rate.

Figure 4.16: Results for the combined data of both RP snippets for treatment and control group for
empirical data.

group exhibited a mean value of 0.03 and a standard deviation of 1.01. With a group size of
63 per group, this yields a t-value of t = -0.3697 with p = 0.712. The effect size of Cohen’s D
is d = 0.0659, which is negligible.

(a) RP1. (b) RP2.

Figure 4.17: Distribution of the answers for the RP snippets for empirical data.

42 Evaluation

Error Rate Data As illustrated in Table 4.16b, there occurred more mistakes in the treat-
ment group. This discrepancy has a lower probability of occurring by chance than the other
test values in this analysis, with a test value of χ2 = 5.294 with p = 0.0214. The effect size is
Φ = -0.224, which is small effect.

Let’s take a final look at the distribution of the errors made in Figure 4.17. For the
treatment group, there is a concentration of "6" and "3" for RP1. If we inspect RP1, visualized
in Listing 3.12, "3" would be the expected error if the test subjects forgot to overwrite
the variable with the new declaration. The answer "3.5" can again be interpreted as an
ambivalent answer. The answer "6" could arise if one remembers "t" with "2" instead of "3".
For RP2, visualized in Listing 3.13, an accumulation at "1", which is the expected error if the
subjects forgot to overwrite, and at "5" and "10", where "10" could be explained by the fact
that in the control group one was supposed to subtract "4" from "w" at the beginning and
forgot to do so. The correct results were "5" for RP1 and "2" for RP2.

4.1.3.5 Bonferoni-Holm Correction

Now that we have considered all eight tests on the empirical data, they must be examined for
statistical significance. Of all the eight results presented, only two fall below the threshold
of p = 0.05. Since all test statistics greater than this cannot be made significant even with the
correction, we exclude them from further consideration here. The two remaining values are
the difference in times for CD with p = 0.0362 and the difference in the probability of errors
in the answers for RP with p = 0.0214. As a remainder, the BH correction gives us bounds of
0.05

8 , 0.05
7 , . . . , 0.05

2 , 0.05
1 for the significance levels in ascending order of size. So the limits for

the first two are p < 0.00625 and p < 0.00714. Therefore both values exceed the bounds and
the test statistics are not large enough to consider a chance finding unlikely.

In conclusion, although there are trends in the data that support our initial hypotheses,
the differences found were too small to rule out chance at this level of variability and sample
size.

4.1.4 Model Fitting

The outcomes of the individual optimizations are presented in the following section. We
started tuning the ans parameter for time and error rate as well as the combination of both.
After that, we used the findings to extend the experiments and tune rt, ans and lf. The BO ran
for long time, but only the best parameter combination results per experiment are described
in detail.

4.1.4.1 Tuning only ans in Recommended Default Range

The first experiments started by optimizing the default range of ans. We used the recom-
mended range from 0.2 up to 0.8 for the ans parameter. Therefore the search space was
small and we only needed 100 steps to converge stably for time and error rate optimizations

4.1 Results 43

and only 300 for the combined one. The results on the single snippet level for the best ans

parameter are visualised in Appendix B.

Figure 4.18: Evolution of the BO algorithm with 50 start points for the tuning ans for time data.

Time For the time data, the best reachable target value for the negated sum of squared
KS statistics was -3.367. This value was reached for the first time in the 50 initial points,
specifically point 34. As one can see in Figure 4.18, this value was quite stable at the end.
The value for the ans parameter is 0.5366.

(a) Heatmap for matching the time distribution using
KS statistics.

(b) Heatmap for matching the error rate distribution
using χ2 statistics.

Figure 4.19: Heatmaps for the tuning ans for time data.

Figure 4.19 shows how accurate this approximation was in terms of time data and error
rate. In the following we will use this form of representation for the quality of the approxi-

44 Evaluation

mation.

The KS statistics and their significance for the individual code snippets are shown on the
left side in Figure 4.19a. Notice that only two snippets are not significantly different from
each other, even though we have optimized for time.

On the right side of the Figure 4.19b are the χ2 values and the significances for each
snippet. Note that in some marginal cases, namely when the column sums were zero, we
skipped the χ2 test and assumed a value of 0 and a significance of 1 directly. This is neces-
sary because the χ2 test is not defined for 0 sums. The reason this shortcut is possible is that
the row sums are always the same due to the same number of simulations as the empirical
data. Consequently, if the row sums are equal and one column sum is 0, the distribution in
the other column must be identical. Notice that the fit is more spread out here. Thus, we
have a good fit for samples where there were hardly any errors in the empirical data, such
as CD2 and the control groups CR1 and CR2, but for groups where the number of errors in
the empirical data was higher, such as DR2 and RP1.

The question following from this is in which direction the time data do not fit and whether
there is a systematic error.

Figure 4.20: QQ-Plot for CR1 with optimized ans for time data.

To gain insight into this phenomenon, a detailed examination of the distribution is essen-
tial. The code snippet CR1 is used here as an illustrative example, although the observation
is equally applicable to the other code snippets. These can be found in the Appendix in
Figure B.1 The empirical and simulated data distributions have been plotted in a QQ-plot
(see Figure 4.20). Given that the group sizes are identical, each data point represents a single
measurement. The dashed diagonal represents the ideal line, indicating that if all points lie

4.1 Results 45

on this line, the distributions are identical.

A noteworthy observation at this stage is that all points lie above the diagonal. This
indicates that the simulated times are systematically slower than the empirical times.
Consequently, the times for the simulations must be accelerated. Given the linear nature of
the shift, it is reasonable to suggest that the lf parameter should be incorporated into the
optimization process.

Figure 4.21: Evolution of the BO algorithm with 50 start points for the tuning ans for error rate data.

Error Rate For the error rate data, the best reachable target value for the negated sum of
squared χ2 values was -202.3575. This value was reached for the first time in the last execu-
tion in the 50 initial points. As one can see in Figure 4.21 this value was stable. The value for
the ans parameter was 0.2084, which is different from the results for time optimization. At
this moment, it becomes evident why it is challenging to offset the values against one another.
The KS statistic and χ2 statistics have different ranges and χ2 would dominate the KS statistic.

Figure 4.22 shows again the accuracy of matching. Since we optimized for the error rate
data now, the heatmap in Figure 4.22b contains smaller χ2 values compared to the results
optimizing for time presented in Figure 4.19b.
As expected, the fit of the time data is worse than if one optimize for time. This can be seen
from the colouration of Figure 4.22a, which shows more blue, compared to Figure 4.19a

Now we needed to investigate why some data don’t match. To do this, we looked at the
snippets with the worst fit, specifically CR1 and DR2. The empirical and simulated results
comparisons are shown in Table 4.2 and Table 4.3.

46 Evaluation

(a) Heatmap for matching the time distribution using
KS statistics.

(b) Heatmap for matching the error rate distribution
using χ2 statistics.

Figure 4.22: Heatmaps for the tuning ans for error rate data.

Table 4.2: Crosstables to compare simulated and empirical data for CR1 with optimized ans for error
rate data.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 13 (2) 21 (32) 34 (34)

Total 13 (2) 50 (61) 63 (63)
Annotation: Empirical data in brackets.

Table 4.3: Crosstables to compare simulated and empirical data for DR2 with optimized ans for error
rate data.

False True Total

Control 10 (18) 24 (16) 34 (34)

Treatment 16 (9) 13 (20) 29 (29)

Total 26 (27) 37 (36) 63 (63)
Annotation: Empirical data in brackets.

It is particularly noticeable that for CR1 the number of errors for the simulations was
significantly higher for the treatment snippet. This indicates that the retrieval threshold
was too low and the ans was causing the wrong chunk to be retrieved. The same is true
for the DR2 treatment group. Interestingly, this effect was reversed in the control group
of DR2, where there were more errors in the empirical data. However, as mentioned in
Chapter 4.1.3.3, these errors are not the expected ones resulting from incorrect retrieval.
Accordingly, the model cannot simulate these guessed values. In our model, a failed retrieval
would most likely simulate this. The rt had to be changed for this as well.

Given all these observations, it is reasonable to suggest that the rt parameter should be
incorporated into the optimization process.

4.1 Results 47

Figure 4.23: Evolution of the BO algorithm with 50 start points for the tuning ans for combined data.

Combined For the combined time and error rate optimization, the best reachable target
value for the sum of squared significance values was 6.262. This value was reached for the
first time in the 50 initial points, specifically point 30. As one can see in Figure 4.23 this
value was quite stable at the end. The value for the ans parameter was 0.6523. This shows
once again how important the focus of the optimization is. The parameters were different
depending on what is being optimized for. However, this shows how important a good
underlying model is, because a model with parameters can be drastically adapted to the data.

(a) Heatmap for matching the time distribution using
KS statistics.

(b) Heatmap for matching the error rate distribution
using χ2 statistics.

Figure 4.24: Heatmaps for the tuning ans for combined data.

Figure 4.24 illustrates that the combined optimization results in a split fit. The time data
in Figure 4.24a fits better than tuning only for results (see Figure 4.22a) but worser than

48 Evaluation

tuning only for time (see Figure 4.19a). Interestingly, the results for the fit of the result data
are even similar to optimizing on time data only, but worse than optimizing on the result
data.

Figure 4.25: QQ-Plot for CR1 time data with optimized ans for combined data.

Table 4.4: Crosstables to compare simulated and empirical data for CR1 with optimized ans for
combined data.

False True Total

Control 0 (6) 29 (23) 29 (29)

Treatment 0 (7) 34 (27) 34 (34)

Total 0 (13) 63 (50) 63 (63)
Annotation: Empirical data in brackets.

Table 4.5: Crosstables to compare simulated and empirical data for DR2 with optimized ans for
combined data.

False True Total

Control 17 (18) 17 (16) 34 (34)

Treatment 18 (9) 11 (20) 29 (29)

Total 35 (27) 28 (36) 63 (63)
Annotation: Empirical data in brackets.

In Figure 4.25 one can see the linear shift to the top, which enforced the decision to
incorporate the lf in the next optimization step.

4.1 Results 49

The matching of the result data visualized in Table 4.4 and Table 4.5 shows that there is
potential. The simulation yields more errors than the empirical data shows, specially in the
treatment conditions. This enforced tuning the rt parameter.

4.1.4.2 Tuning rt, ans and lf

For tuning the three parameters together we enlarged the space for the ans parameter.
Therefore for the three subsequent optimizations we used the search space from -10 to 10

for rt, 0.01 to 2 for ans and 0.1 to 5 for lf. We let the BO algorithm run for one thousand
simulations. Like before, we present the results for the best case for all three optimization
processes. The results on the single snippet level for the best rt, ans and lf parameter
combination are visualised in Appendix C.

Figure 4.26: Evolution of the BO algorithm with 50 start points for the tuning rt, ans and lf for time
data.

Time For the time data, the best reachable target value for the negated sum of squared KS

statistics was -0.638 and therefore only one fifth of the result tuning only ans. This value
was reached at point 778 and the parameters are: rt = -5.2685, ans = =0.8307 and lf = 0.4473.
As one can see in the evolution of the BO algorithm in Figure 4.26 this result may be not
optimal, since there is no clear convergence so far. However, due to time constraints, the
simulation was ended after 1000 episodes, which took about 4 days.

The fit of the time has improved significantly with the addition of the two parameters, as
can be seen in Figure 4.27a. All KS values are below 0.4 and all significance values are above
0.05, which means that the probability that the simulated and empirical data have the same
distribution is correspondingly high. Expanding the parameter space did not change the
results for error rate much. Most of the results stayed the same, some areas got worse or

50 Evaluation

(a) Heatmap for matching the time distribution using
KS statistics.

(b) Heatmap for matching the error rate distribution
using χ2 statistics.

Figure 4.27: Heatmaps for the tuning rt, ans and lf for time data.

even better.

Figure 4.28: QQ-Plot for CR1 with optimized rt, ans and lf for time data.

The fact that the addition of the parameters has improved the fit of the time can be seen in
the QQ plots. While the points were still clearly above the diagonal in the pure optimization
of ans (see Figure 4.20) One can see in Figure 4.28 and that they have moved closer to the
line, in some cases even lying on the line. The lf of 0.4473 is less than half the default value.

Error Rate For the error rate data, the best reachable target value for the negated sum of
squared χ2 values was -115.7197, nearly half of only tuning ans. This value was reached at
point 832 and the parameters are: rt = -1.5124, ans = 0.2073 and lf = 1.442. This parameter set

4.1 Results 51

Figure 4.29: Evolution of the BO algorithm with 50 start points for the tuning rt, ans and lf for error
rate data.

is very different compared to optimising time. The increased latency factor in particular
stands out compared to the default value. As one can see in Figure 4.29 the high range for
the hyperparameters leads to a high range for the χ2 values.

(a) Heatmap for matching the time distribution using
KS statistics.

(b) Heatmap for matching the error rate distribution
using χ2 statistics.

Figure 4.30: Heatmaps for the tuning rt, ans and lf for error rate data.

As can be seen in Figure 4.30b, the matching of the result data is the best so far. Only
two fields have a significance value of less than 0.05. The drawback is that the time data do
not match at all, and all 16 time distributions differ significantly between simulations and
empirical data.

52 Evaluation

Table 4.6: Crosstables to compare simulated and empirical data for CR1 with optimized rt, ans and lf

for error rate data.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 12 (2) 22 (32) 34 (34)

Total 12 (2) 51 (61) 63 (63)
Annotation: Empirical data in brackets.

Table 4.7: Crosstables to compare simulated and empirical data for DR2 with optimized rt, ans and lf

for error rate data.

False True Total

Control 20 (18) 14 (16) 34 (34)

Treatment 17 (9) 12 (20) 29 (29)

Total 37 (27) 26 (36) 63 (63)
Annotation: Empirical data in brackets.

It is worth noting that although the fit has improved significantly, not much has changed
in our example snippets. Both in CR1 (see Table 4.6) and for DR2 (see Table 4.7), the simulation
predicts more errors in the treatment group than were actually observed.

Figure 4.31: Evolution of the BO algorithm with 50 start points for the tuning rt, ans and lf for
combined data.

Combined For the combined time and error rate optimization, the best reachable target
value for the sum of squared significance values was 13.84. This value was reached at

4.1 Results 53

point 975 and the parameters are: rt = -4.968, ans = =0.7984 and lf = 0.4622. This parameter
set is similar to the one obtained by the optimization only on time. And as one can see in
Figure 4.31, there is possible potential for improvement, since there is no convergence so far.

(a) Heatmap for matching the Time Distribution using
KS statistics.

(b) Heatmap for matching the Error Rate Distribution
using χ2 statistics.

Figure 4.32: Heatmaps for the tuning rt, ans and lf for combined data.

Figure 4.33: QQ-Plot for CR1 with optimized rt, ans and lf for combined data.

As one can see in Figure 4.32 the results are nearly the same compared to the pure time
optimization. There is no significant value below 0.05 for the time data and only five for the
outcome data, which is even slightly worse than the results for pure time optimization. In
the QQ Plot in Figure 4.33 we can see the shift to the diagonal again, which illustrates the
similarity of the data.

54 Evaluation

Table 4.8: Crosstables to compare simulated and empirical data for CR1 with optimized rt, ans and lf

for combined data.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 14 (2) 20 (32) 34 (34)

Total 14 (2) 49 (61) 63 (63)
Annotation: Empirical data in brackets.

Table 4.9: Crosstables to compare simulated and empirical data for DR2 with optimized rt, ans and lf

for combined data.

False True Total

Control 17 (18) 17 (16) 34 (34)

Treatment 18 (9) 11 (20) 29 (29)

Total 35 (27) 28 (36) 63 (63)
Annotation: Empirical data in brackets.

For the result data, the same observation as before can be made: the simulation predicts a
higher error rate than was observed for the treatment group in CR1 (see Table 4.8) and DR2

(see Figure 4.9).

4.1.5 Model Evaluation

Finally, we have to evaluate the model. Therefore, we performed the same evaluation for
the artefact effects as for the empirical data. For the evaluation we used the results from the
combined optimization in Section 4.1.4.2. The results are compared to the empirical findings.
For this we used the z standardization and combined both snippets of a class. For single
snippets the comparision is visualized in Appendix D. For all values given in this section,
the corresponding values from the empirical analysis are written again in brackets to allow
a direct and simple comparison.

4.1.5.1 Code Distance

For the CD class the control group matches near perfectly. The comparison of the results
for the CD snippets is shown in Figure 4.34. The distribution of the time values is shown
above. The dashed lines and striped bars are the simulated data, while the solid lines and
full-colored bars again reflect the empirical values we examined in Section 4.1.3. The bottom
part shows the evaluation of the results. The empirical data is shown in brackets. As one
can see, the row sums and the total sum are identical, which was the goal of our simulation
with the same amount of data. This type of presentation will be used for all subsequent
presentations of effects.

4.1 Results 55

(a) Time on target line.

(b) Error rate.

False True Total

Control 5 (7) 58 (56) 63 (63)

Treatment 1 (8) 62 (55) 63 (63)

Total 6 (15) 120 (111) 126 (126)
Annotation: Empirical data in brackets.

Figure 4.34: Results for the combined data of both CD snippets for treatment and control group
compared between empirical data and simulated data.

Time Data As illustrated in Figure 4.34a, the distribution curves of the treatment group
exhibit minimal variation, whereas the distributions of the control group demonstrate a
more pronounced peak compared to the empirical data.

The Shapiro-Wilk test yielded a value of W = 0.585 (0.845) with p = 4.615e-12 (1.31e-06) for
the treatment group and a value of W = 0.784 (0.932) with p = 3.294e-08 (1.813e-03) for the
control group. This indicates that both groups are not normally distributed. The results of
the Levene test yielded an value of F = 4.2081 (5.969) with p = 0.04234 (0.01597), indicating
the presence of heteroscedasticity. Consequently, the findings from the Welch-test will be
employed in the subsequent analysis. The mean value for the treatment group is 0.23 (0.19),
with a standard deviation of 1.28 (1.22). The control group exhibited a mean value of -0.23 (-
0.19) and a standard deviation of 0.51 (0.66). With a group size of 63 (63) per group, this
yields a t-value of t = 2.6383 (2.125) with p = 0.009991 (0.03617). The effect size of Cohen’s D
is d = 0.470 (0.379), which can be regarded as indicative of a small to medium effect.

56 Evaluation

A comparison of the empirical data with the simulated data indicates that the primary
conclusions derived from the artefact analysis remain broadly consistent. Both datasets
exhibit non-normal distributions and heteroscedasticity. The mean values of the groups
are somewhat further apart, with both standard deviations corresponding well with the
empirical values. As a result of the slightly larger discrepancy, the t-value increases slightly,
and the p-value decreases. Nevertheless, the statistical significance of the difference will only
become apparent after the BH correction. The effect increases slightly, but is still classified
as a medium effect.

(a) CD1. (b) CD2.

Figure 4.35: Distribution of the answers for the CD snippets for simulated data.

Error Rate Data In contrast to the time data, there has been a change in the error rate
data. As illustrated in Table 4.34b, while the empirical data indicates that the number of
errors between the control and treatment groups is nearly identical, the simulated data
indicates that the control group makes more errors.

Consequently, the χ2 test yielded a value of χ2 = 1.575 (0) with p = 0.2095 (1). Since the
assumption of at least five observations per field is again violated here, Fisher’s Exact
test provides p = 0.2074 as an alternative. Although the difference between treatment and
control is not statistically significant, it differs from the empirical data found. The effect size
is ϕ = 0.149 (-0.025), which indicates a small effect, and the direction of the effect is even
reversed.
The results remain unchanged by the changes, but the change in the treatment group should
be taken into account in the further interpretation, even if the difference has not changed
the statistical significance.

If we now look at the distribution of the answers in Figure 4.35 for the simulated data,
it is noticeable that the ACT-R model made fewer different errors. The "False" class has

4.1 Results 57

been added and includes all those cases in which a retrival failure resulted in no chunk
being retrieved from memory, which is why no further calculation was possible. For the
CD snippets, either the correct answers or "False" are output. The correct answers remain
unchanged, of course.

4.1.5.2 Repeated Code

While the distributions of times in the class of CR snippets exhibited only slight differences
between empirical and simulated data, the result data exhibited a substantial change.

(a) Time on target line.

(b) Error rate.

False True Total

Control 1 (0) 62 (63) 63 (63)

Treatment 25 (3) 38 (60) 63 (63)

Total 26 (3) 100 (123) 126 (126)
Annotation: Empirical data in brackets.

Figure 4.36: Results for the combined data of both CR snippets for treatment and control group
compared between empirical data and simulated data.

The comparison of the results for the CR snippets is shown in Figure 4.36.

Time Data As illustrated in Figure 4.36a, both distributions exhibited a similar mean
value, yet the distribution of the treatment group exhibited less variation than the distribu-
tion of the control group in the simulated data.

58 Evaluation

The Shapiro-Wilk test yielded a value of W = 0.683 (0.668) with p = 2.175e-10 (1.158e-10)
for the treatment group and a value of W = 0.585 (0.681) with p = 4.564e-12 (2.062e-10) for
the control group. This indicates that both groups are not normally distributed. The results
of the Levene test yielded an value of F = 0.0028 (0.124) with p = 0.958 (0.725), indicating the
absence of heteroscedasticity. Consequently, the findings from the t-test will be employed
in the subsequent analysis. The mean value for the treatment group is -0.06 (0), with a
standard deviation of 0.92 (1.05). The control group exhibited a mean value of 0.06 (0) and a
standard deviation of 1.07 (0.95). With a group size of 63 (63) per group, this yields a t-value
of t = -0.682 (-0.021) with p = 0.497 (0.983). The effect size of Cohen’s D is d = 0.121 (0.00374),
which is a small effect.

The observations from the empirical data can be transferred as far as possible. The effect
size increases due to the higher mean difference, but the difference is not significant. All
conclusions from the empirical data apply to the simulated data.

(a) CR1. (b) CR2.

Figure 4.37: Distribution of the answers for the CR snippets for simulated data.

Error Rate Data As illustrated in Table 4.36b, there was a clear change in the frequency
of errors in the treatment group. This difference is even highly significant, as indicated by
the value of the χ2 = 25.636 (1.366), with a p = 4.122e-07 (0.242). For comparison, the Fisher’s
Exact test returns p = 4.999e-08 (0.244). This value is smaller than the smallest value of the
BH correction, which is 0.00625. Consequently, the discrepancy observed in the simulated
data is statistically significant, representing a clear divergence from the empirical data. The
effect size is -0.471 (-0.156), which is classified as a medium effect.

This discrepancy represents a clear divergence between the model’s predictions and the
empirical findings. If one looks at the distribution of responses in Figure 4.37, one can
see the difference between the empirical and simulated data. The treatment group in the

4.1 Results 59

simulated data has an increased probability of emitting the response that occurs when the
redeclaration was forgotten than was actually observed in the empirical data. This can be
seen in the increased values of "10" for CR1 and "1" for CR2.

4.1.5.3 Declaration Redeclaration Distance

The times for the DR snippets agree well between the empirical data and the simulation,
although the simulated error rate is higher than the empirical error rate.

(a) Time on target line.

(b) Error rate.

False True Total

Control 25 (22) 38 (41) 63 (63)

Treatment 37 (15) 26 (48) 63 (63)

Total 62 (37) 64 (89) 126 (126)
Annotation: Empirical data in brackets.

Figure 4.38: Results for the combined data of both DR snippets for treatment and control group
compared between empirical data and simulated data.

The results for the DR snippets are presented in Figure 4.38.

Time Data As illustrated in Figure 4.38a, both distributions have swapped their position
from empirical to simulated data. Thus, the time on the treatment snippets for the simula-
tions lies more on the distribution of the control snippets for the empirical data and vice
versa.

60 Evaluation

The Shapiro-Wilk test yielded a value of W = 0.672 (0.883) with p = 1.398e-10 (2.226e-05)
for the treatment group and a value of W = 0.573 (0.89) with p = 2.991e-12 (3.821e-05) for the
control group. This indicates that both groups are not normally distributed. The results of
the Levene test yielded an value of F = 0.0047 (0.5398) with p = 0.946 (0.464), indicating the
absence of heteroscedasticity. Consequently, the findings from the t-test will be employed
in the subsequent analysis. The mean value for the treatment group is -0.01 (0.09), with a
standard deviation of 0.92 (1.07). The control group exhibited a mean value of 0.01 (-0.09) and
a standard deviation of 1.07 (0.92). With a group size of 63 per group, this yields a t-value of
t = -0.084029 (-0.96) with p = 0.9332 (0.339). The effect size of Cohen’s D is d = 0.015 (0.171),
which is negligible.

Interestingly, both distributions have actually swapped their distributions and moved
closer together. The effect on time, which was already barely present in the empirical data,
became even smaller and statistically less significant.

(a) DR1. (b) DR2.

Figure 4.39: Distribution of the answers for the DR snippets for simulated data.

Error Rate Data As illustrated in Table 4.38b, there were even more errors in the simula-
tions than in the empirical data and the direction of the effect was reversed. If the control
group was more prone to errors in the empirical data, the treatment group was more prone
to errors in the simulations. This effect is a candidate for statistical significance, as indicated
by χ2 = 3.8422 (1.378) with p = 0.04998 (0.24). Whether this effect is statistically significant
can only be concluded with the BH correction. The effect size is Φ = -0.191 (0.122), which is
small effect. The changed sign illustrates once again the reversal of the effect direction.

However, the model predicted the high error rate in this snippet class, which should be
taken as an insight from these results. But, it is noticeable in the distribution of the answers,
shown in Figure 4.39, that the possible answers in the empirical data are much more widely

4.1 Results 61

scattered than in the simulated data. The errors in the simulated data are either due to a
retrieval failure or an incorrect retrieval of the already overwritten variable.

4.1.5.4 Repeated Distance

For RP snippets, we observe an amplification of the temporal effect and a mitigation of the
effect on the error rate. Simultaneously, the error rate itself increases.

(a) Time on target line.

(b) Error rate.

False True Total

Control 26 (9) 37 (54) 63 (63)

Treatment 29 (21) 34 (42) 63 (63)

Total 55 (30) 71 (96) 126 (126)
Annotation: Empirical data in brackets.

Figure 4.40: Results for the combined data of both RP snippets for treatment and control group
compared between empirical data and simulated data.

The results of RP snippets are presented in Figure 4.40.

Time Data As illustrated in Figure 4.40a, the distributions in the empirical data were
quite close to and overlapping with each other. In the simulated data, the means have moved
slightly further apart, but the most standout difference lies in the variance between the two
groups. The treatment group has less variance than the control group.

The Shapiro-Wilk test yielded a value of W = 0.86456 (0.734) with p = 5.417e-06 (2.404e-09)
for the treatment group and a value of W = 0.65564 (0.759) with p = 6.954e-11 (8.328e-09) for

62 Evaluation

the control group. This indicates that both groups are not normally distributed. The results
of the Levene test yielded an value of F = 1.4051 (0.045) with p = 0.2381 (0.8323), indicating
the absence of heteroscedasticity. Consequently, the findings from the t-test will be employed
in the subsequent analysis. The mean value for the treatment group is -0.12 (-0.03), with a
standard deviation of 0.68 (0.98). The control group exhibited a mean value of 0.12 (0.03) and
a standard deviation of 1.23 (1.01). With a group size of 63 (63) per group, this yields a t-value
of t = -1.3266 (-0.3697) with p = 0.1871 (0.712). The effect size of Cohen’s D is d = 0.236 (0.0659),
which is a small effect.

The interpretation of the effect changes very little. The effect remains statistically insignif-
icant and has only gained slightly in strength.

(a) RP1. (b) RP2.

Figure 4.41: Distribution of the answers for the RP snippets for simulated data.

Error Rate Data As illustrated in Table 4.40b, the error rate increased in both groups
in the simulated data, with a stronger increase in the control group, resulting in signif-
icantly smaller differences between the two groups.This is reflected in the changed test
statistics. With a test value of χ2 = 0.12907(5.294) and p = 0.7194 (0.0214), this effect has
lost statistical significance and is no longer a candidate for being considered significant
after the BH correction. The effect size is Φ = -0.048 (-0.224), indicating a now negligible effect.

This change demonstrates that an effect observed in the empirical data can disappear
in the simulated data. As one can see in the distribution of answers in Figure 4.41, one of
the biggest changes is that the control groups in both snippets make an error due to an
incorrect retrieval more often. This accumulation seems to cancel out the difference between
treatment and control in the simulations.

4.2 Discussion 63

4.1.5.5 Bonferoni-Holm Correction

Now that we have considered all eight tests on the simulated data, they must be examined
for statistical significance. For the simulated data, three of the eight tests fall below the
threshold of p = 0.05. As with the empirical data, we do not consider the other tests further.
The three remaining values are the difference in times for CD with p = 0.009991 and the
differences in the error rate for CR with p = 4.122e-07 and DR with p = 0.04998.

As a reminder, the BH correction gives us bounds of 0.05
8 , 0.05

7 , . . . , 0.05
2 , 0.05

1 for the
significance levels in ascending order of size. So the limits for the first three are p <0.00625,
p<0.00714, and p< 0.00833. 4.122e-07 is smaller than 0.00625. Therefore, the error rate effect
for the CR snippets is significant. 0.009991 is greater than 0.00714, and 0.04998 is greater than
0.00833. Thus, these two effects are no longer considered significant after the BH correction.
In conclusion, one highly significant effect remains in the simulated data, which was not
found in the empirical data.

4.2 Discussion

We will now critically reflect on, categorise and discuss the obtained results.

4.2.1 Artefacts

First, we will discuss the artefacts. Unfortunately, none of the effects were significant, so
for research questions one to six, we must initially conclude that there is no statistically
significant effect, neither for time nor for error rate. Nevertheless, it would be short-sighted
to stop our analysis here.

We observed two effects with a very low probability of occurring purely due to chance.
One is the longer time for the treatment group with the CD snippets, and the other is the
higher error rate for the treatment group with the RP snippets. These two effects did not
reach significance because we explored a variety of different effects. Had these been the
only two effects examined, they would have been significant even under the BH correction.
Furthermore, the sample size was smaller than our targeted 100 participants, which would
have increased the test power.

In the following sections, we will examine each artefact individually and discuss the
insights we can draw from the results.

4.2.1.1 Code Distance

What stood out with the CD snippets was the longer time participants needed for the
treatment snippets. This difference was more pronounced for CD2, in which the filler lines
were not used in the target line. Although there were fewer errors in this task, the difference

64 Evaluation

in time was quite prominent.

This could indicate that the use of variables far from their declaration involves greater
cognitive load, as it takes more time to retrieve the variable’s value from memory. When
multiple variables are used, this effect seems to be mitigated. This could be because in
working with multiple variables at least one variable declaration will always be farther away,
making their order less impactful. Future research could investigate whether there are more
or less advantageous declaration orders when using multiple variables.

However, it is evident that the presence of multiple variables increases the range of
possible errors, and the overall error rate is higher in the CD1 snippet. Since this increase
was observed in both the treatment and control groups between CD1 and CD2, it suggests
that the distance to the single variable is not the cause, as this pattern was used in both
snippets. Instead, it is likely due to the fact that CD1 uses multiple variables on the target line.

Therefore, we can conclude that using multiple variables in a single line may increase
error susceptibility during comprehension, and the distance from a declaration to its use
may increase the time required for understanding. The interaction of both factors could
increase the workload on working memory, thereby overall hindering code comprehension.

4.2.1.2 Repeated Code

For the CR snippets, the time data for the two snippets canceled each other out. While the
treatment group was faster than the control group for CR1, the control group was faster for
CR2. Unfortunately, no explanation for this could be found. Both snippets differ only in the
variable names and values, and in the calculation on the target line: Multiplication in one
case and division in the other. For both snippets, the errors made occurred exclusively in
the treatment group, reflecting the effect observed by Gopstein et al. [25].

In summary, there are slight indications that repeated code might increase the likelihood
of making errors during code comprehension. However, this effect was so weak that it
lacked statistical significance and could just as easily be attributed to chance.

4.2.1.3 Declaration Redeclaration Distance

For the DR snippets, the treatment group took slightly longer than the control group. The
temporal proximity seems to influence how easily the declaration can be distinguished from
the redeclaration.

In general, it can be said that both snippets have an increased error probability and that
the expected error (incorrectly recalling the outdated value) occurred more frequently in
the treatment group than in the control group. In DR2, however, a different source of error
dominates in the control group: the order of variable declarations seems to make a difference.
While in the treatment group the variables are accessed in the reverse order of their usage
in the term, this changes in the control group because we had moved the redeclaration
directly before the target line. This seems to encourage the error of swapping the other two

4.2 Discussion 65

variables during the subtraction. This extends the discussion begun in Section 4.2.1.1 that
there could be order effects in variable declaration, which positively or negatively affect
comprehensibility and error probability.

In summary, the findings from this type of snippet indicate that the proximity of a
redeclaration to the original declaration could negatively impact code comprehension
by increasing the time needed to comprehend. Additionally, it could increase the error
probability. However, caution should be exercised during refactoring, as there could be a
dominant effect due to the order of the variables.

4.2.1.4 Repeated Distance

The observations for the DR snippets are further supported by the observations for the RP

snippets. The lack of a difference in time might be due to the double declaration being
shifted as a block, while the other variables are used on the target line in both snippets.

Moreover, it is evident that a double declaration farther from the target line increases the
error rate more than when it occurrs closer to the target line. This is particularly noticeable
in RP1, where the expected error due to the forgotten redeclaration appears, but the number
of different errors is higher in the treatment group. Since this effect only narrowly missed
statistical significance, we believe it would be worthwhile to investigate this effect again
with greater test power.

4.2.1.5 Insights from All Artefacts

The results of our empirical study across all artefacts suggest several insights regarding
code comprehension time and error rates.

Effects That Increase Time Several factors were observed which increase the time re-
quired for code comprehension. First, variables that are declared far from their usage might
involve greater cognitive load, increasing the time needed to retrieve the variable’s value
from memory. Additionally, the proximity of a redeclaration to the original declaration
could increase the time needed to understand the code.

Effects That Increase Error Rates Several factors were observed to increase the error
rates during code comprehension. The presence of multiple variables might increase the
range of possible errors, as reflected in the higher error rate. Double declarations could
increase the likelihood of errors during code comprehension. Although this effect was weak
and lacked statistical significance, it was consistently observed across different snippets. A
double declaration farther from the target line increased the error rate more than when it
was closer. Additionally, the order in which variables are declared might influence error
rates.

Conclusions on What to Consider Based on these insights, several recommendations
can be made to reduce code comprehension time and error rates. It is important to consider
the distance between variable declarations and their usage to reduce cognitive load and the

66 Evaluation

required time for understanding them. Caution should be exercised with double declarations,
as they might increase error rates, particularly when occurring far from the target line.
Furthermore, attention should be paid to the order of variable declarations, as it might
impact error rates and comprehensibility. During refactoring, the proximity of redeclaration
and the order of variable declarations should be carefully considered to minimize cognitive
load and error susceptibility.

4.2.2 Socio-Demographic Data

In addition to the data on the code snippets, we collected a substantial amount of metadata
to better analyze the composition of our study participants. Due to the extensive analysis of
artefacts and model predictions, analyses exploring the interaction between this metadata
and our investigations were somewhat neglected. These could be part of a deeper analysis
of the dataset.

For example, there are tendencies indicating that participants with more programming
experience are less prone to errors caused by double declarations compared to others. This
can be observed when programming experience is measured as the average self-assessment
compared to peers and logical programming skills, and then split the group at value three.
Those with higher self-assessments make these errors less frequently.

Such and other effects might still be hidden within the dataset, awaiting discovery. Conse-
quently, it might be necessary to extend the model to include these parameters to account
for these effects, potentially through different sets of hyperparameters for experienced and
inexperienced programmers. However, a larger dataset should be used for this exploration,
as splitting the data further reduces the sample size, making model fitting more challenging
due to the dominance of noise.

Therefore, while the collected socio-demographic and other metadata can serve as a basis
for additional meta-analyses, the limited time frame and scope of this work prevents us
from delving further insights into this aspect. We hope others may feel called to undertake
this task.

4.2.3 Model Fitting

Tuning the model fitting exclusively with the parameter ans demonstrated that the tuning
results vary depending on the target value, making it challenging to simultaneously opti-
mize for both time and error rate. Consequently, it is evident that the optimal parameter set
might differ based on the optimization objective, and achieving a balanced optimization for
both metrics remains a challenge.

For all optimizations, the treatment groups CR1, CR2, and DR1 proved difficult to optimize
effectively. This difficulty arises because the empirical data for these groups exhibited fewer
errors than the model simulations predicted with its current rules. This suggests that the

4.2 Discussion 67

model may require further refinement to more accurately represent these cases.

Using the significance level as a combined measure warrants critical evaluation, as the
resulting interpretations can differ substantially. For instance, a p-value of 1 for the KS

statistic is almost never observed, whereas it frequently appears for the χ2 statistic related
to the error rate. Consequently, an improved score does not necessarily indicate a better fit
between the model and the data.

Optimizing with a reduced parameter set proved worthwhile, as we were able to simulate
time data with high precision using only three parameters. This underscores the suitability
of the underlying rule set for the given task. Since we did not modify many parameters, it
must be the rules themselves that enable this fit.

Exclusive optimization for the error rate compromised the time metric, suggesting po-
tential loopholes between parameters and rules that allow the model to produce outputs
better fitting the data at the expense of time. Conversely, this does not seem to apply, as the
final results of pure time optimization and combined optimization on the significance level
differed minimally in terms of resulting parameters and data fit.

4.2.4 Model Evaluation

In this section, we will discuss the extent to which the final tuned model simulates the
indicated effects in the empirical data and what insights we can derive from this.

4.2.4.1 Code Distance

In the CD snippets, the effect of the treatment group taking slightly longer on the target
line than the control group was even more pronounced. This could be partially due to
the smaller variance of the control group in the simulated data and the larger difference
between the groups. This might indicate that the model effectively captures the impact of
greater distance between declaration and usage.

However, the model seems to poorly represent the error probability in these snippets. Not
only is the error rate lower than in the empirical data, but the types of errors are obviously
more limited. While many different errors appeared empirically in CD1, the model can only
produce the correct answer or a "false" answer due to retrieval failure in this type of snippet.
This reveals an area for potential improvement. By using similarity matrices, the retrieved
values could be made more probabilistic, allowing for unexpected outliers and answers
without a retrieval failure, which, due to the architecture, affects the time.

The fact that more errors occurred in the control group could be because the failures can
only be caused by a retrieval failure. Since the noise component is significantly involved in
the calculation of chunk activation, it might be simply by chance that the control group had
more retrieval failures than the treatment group.

68 Evaluation

In summary, for this type of snippet, the model seems to overestimate the effect of distance
on time and underestimate its impact on the error rate.

4.2.4.2 Repeated Code

For the CR snippets, the model’s predictions deviate from the empirical findings. While the
temporal effects of the two snippets offset each other in the empirical data, the simulated
data shows that the treatment group is faster than the control group. This is initially counter
intuitive, as the treatment group should be confused by the double declaration. This effect
can be explained by the fact that chunks that are triggered more frequently have higher
activation and are thus retrieved faster. Therefore, the treatment group may have shorter
retrieval times than the control group.

However, this effect of shorter retrieval time comes with a downside: a significantly
increased error rate, which is statistically highly significant. This prediction of the model
deviates considerably from the empirical data, where only a slight trend was observed,
which could just as well be due to chance. This discrepancy clearly indicates that the
model still requires optimization to accurately predict error probability, as it significantly
overestimates it in this case.

In summary, for this type of snippet, the model significantly overestimates the error
probability and slightly overestimates the temporal effect.

4.2.4.3 Declaration Redeclaration Distance

For the DR snippets, the model seems to slightly underestimate the effects on time. The
difference between the groups in the simulation is smaller than in the empirical data. How-
ever, both the effect in the empirical data and the effect in the simulated data are negligible.
Overall, the fit of the temporal data could be described as good. It appears that in the model,
the timing of the redeclaration makes little difference.

The error rate, however, presents a different picture. There is a significantly higher proba-
bility that the treatment group will make an error compared to the control group. This is
because the model cannot capture the potential sequence effect between declaration and
usage in snippet DR2, as evidenced by the fact that the simulation never provides response
"1". The model’s errors are limited to retrieval failures and incorrect retrievals of the old
variable value.
This reveals a weakness in the model: It cannot represent such effects. One possible enhance-
ment could involve using a similarity matrix to assign similarity scores to variable names.
For instance, "q" and "u" sound relatively similar, and "q" and "p" look quite similar, which
might explain the effect. Therefore, this could be a meaningful extension.

In summary, for this type of snippet, the model accurately represents the timing but
overestimates the error probability associated with redeclaration while failing to capture
errors caused by sequence effects.

4.2 Discussion 69

4.2.4.4 Repeated Distance

For the RP snippets, the model predicts a larger temporal effect than what was actually
observed in the empirical data. Interestingly, the treatment group is faster than the control
group, even though in the treatment group the double declaration was further from the
target line than in the control group. This could be because the other variables used in the
target line were moved further away due to refactoring, and the double declaration was
even further away in the treatment group. This might explain the temporal effect in the
simulation. However, this effect was not observed in the empirical data, indicating that the
model overestimates the impact here.

Conversely, the model underestimates the influence on the error rate when a double
declaration is further from or closer to the target line. While there is a slight effect in the
empirical data, it is almost entirely absent in the simulation. Moreover, the types of errors
differ. Notably, the model is unable to generate the response "6" for snippet RP1, which may
be attributed to the misassignment of values to variables, and predominantly predicts errors
due to incorrect retrieval processes.
Again, applying a similarity matrix would likely be beneficial here, making the possible
responses more probabilistic.

In summary, for this type of snippet, the model overestimates the temporal effect and
underestimates the effect on the error rate. This discrepancy is partly due to the types of
errors observed in the empirical data, which the model cannot represent due to its rules.

4.2.4.5 Insights from Model Evaluation

The evaluation of our ACT-R model provides several important insights into its performance
and areas for improvement. The model shows varying degrees of accuracy in predicting the
temporal effects and error rates associated with different types of code snippets. Below, we
summarize these insights, highlighting where the model performs well and where further
refinement is needed.

Temporal Effects The model demonstrates a reasonable capability to simulate the tempo-
ral effects observed in code comprehension tasks. It effectively captures the general trend
that increased cognitive load, such as when variable declarations are far from their usage,
leads to longer comprehension times.

Furthermore, it predicts where code rearrangements do not cause a difference because
other variables take longer to be retrieved, suggesting a balanced effect. However, the model
often tends to overestimate these temporal effects. Specifically, it seems to overestimate the
effect that variables which are declared more frequently are quicker to remember.

Error Rates The model’s ability to predict error rates is less accurate. It frequently
overestimates or underestimates the likelihood of errors. The model generally captures
the idea that certain coding patterns, such as double declarations or complex variable
interactions, increase the probability of errors. However, it tends to simplify the types of

70 Evaluation

errors and does not fully capture the diversity and nuance of errors observed in empirical
data.

Model Improvements To address the identified shortcomings, several improvements can
be made to enhance the model’s accuracy. Enhanced error prediction could be achieved
by incorporating similarity matrices, allowing the model to generate a broader range of
errors that better reflect empirical observations. This would make error predictions more
probabilistic and realistic.

Temporal adjustments, refining the model’s parameters and rules, can help to better bal-
ance the time predictions. Adding rules to account for more complex interactions between
variable declarations and usage could improve temporal accuracy. Developing mechanisms
to capture sequence effects, particularly in the order of variable declarations, can help the
model more accurately simulate error patterns seen in the empirical data. Continuously
aligning model predictions with empirical data through iterative refinement and validation
can ensure the model remains robust and accurate across different code snippets and
scenarios.

In conclusion, while the ACT-R model shows potential in predicting certain temporal
effects and error rates, significant room for improvement remains. By addressing these
areas, the model can become a more powerful tool for understanding and optimizing code
comprehension.

4.2.5 Why Should We Care? Analysing the Relevance of Our
Findings

We have extensively discussed the potential causes of certain effects and the capabilities and
limitations of our ACT-R model. But what can be done with all these insights?

Returning to the analogy of the software developer as a production unit, overburdening
resources such as cognitive workload can impair productivity or even lead to errors. There-
fore, unnecessary workload should be avoided. One challenge is to identify unnecessary
workload, and an even greater challenge is to potentially predict it.
This is where the ACT-R model comes into play. In this work, we found indications that
different code formats producing the same output might take varying amounts of time to
comprehend and might differ in their susceptibility to comprehension errors.

Our ACT-R model was able to accurately predict parts of these effects, and despite there
being significant room for improvement, the potential is evident.
In the domain of cognitive modeling, we tread well-worn paths, as the effects identified here
are more or less known and based on simple foundational structures of ACT-R. This work
does not provide new insights in the field of cognitive modeling. Why, then, are these results
still interesting? It is the practical implication that accompanies these fundamental insights.
We have shifted the focus. For instance, while models by Danker and Anderson [16] and

4.3 Threats to Validity 71

Lebiere [35] deal with the mathematical understanding and development of humans, where
the stimulus material is merely a means to an end to gain insights into brain function, we
take it a step further and also bring the stimulus material into focus.

Of course, it is in our interest to understand how the human mind processes code. How-
ever, we are equally concerned with making statements about the interaction between the
stimulus material and the brain to make specific assertions about the stimulus material
itself, such as whether it is difficult or easy to understand.

The model could now be used to predict which formatting of new, unseen code would
require the least time to understand or have the lowest probability of being misunderstood.
In the context of modern Large Language Models (LLMs) that can quickly generate large
amounts of code, such an evaluation metric could facilitate the writing of more human-
readable code.

One might argue that any of the many LLM versions available today could just as well be
trained to produce more readable code. This is where the strength of cognitive models lies.
While LLMs operates purely probabilistically, cognitive models are rule-based, meaning we
can directly derive experiences from the models and gain insights into why something is the
way it is. This offers the advantage of a precise understanding of the problem, simplifying
the search for solutions and being able to explain it.

Of course, the model presented in this work is not sufficient to evaluate complex code,
as it is only applicable to our highly reduced framework. However, we believe that the
principle can be easily extended to incorporate more functionality, offering the possibility of
developing an objective evaluation method from such a cognitive model.

Furthermore, a precise model that encompasses complex semantics could deepen our
understanding of how code comprehension works. ACT-R offers considerable potential to
predict eye movements and even brain activity such as the BOLD effect. This could provide
a more nuanced understanding of code comprehension and open the door to associating
the complexity of code directly with the necessary cognitive effort.

4.3 Threats to Validity

In the following, the most critical points of the methodology are reflected once again. This
critical reflection of the experimental design is guided by Feitelson [21], who summarized
the usual pitfalls in code comprehension studies.

Internal Validity

The stimulus material consists of short and very simple code snippets to ensure that both
the test subjects and the ACT-R model can process them. The reasons for this include the
reduced framework, line-by-line presentation, and limited working memory capacity.

72 Evaluation

Additionally, the selected snippets were artificially created by the authors. Although inspired
by real examples, these effects may have been inadvertently induced by the design. These
include effects based on the similarity of variable names and numbers, as well as sequence
effects related to declaration and usage. We addressed these issues by using predefined
schemas for generating the snippets and by randomizing variable names. The code snippets
were tested in a pilot study after randomization, and no potential difficulties were identified
during that phase.

The sample was not a purely random collection of participants, as recruitment was
conducted through personal networks, on campus, and via survey pools. Consequently,
there may be confounding factors in participant characteristics that could influence the
results. We tried to minimize the influence of potential confounding variables by employing
a mixed-subject design and randomly assigning participants to groups.

One problem that stood out in the results is the model’s inability to produce errors other
than incorrect retrievals. Furthermore, the model may contain bugs that were not identified
in the pilot study, in addition to its lack of functionality. To test the model, we observed par-
ticipants during the pilot study but did not detect a wide variation in errors, which limited
our ability to further analyze these observations. We chose not to modify the model post
hoc, as we could not rule out the possibility of being influenced by the already known results.

Regarding the optimization of hyperparameters, it should be noted that we worked with
a limited set of possible hyperparameters, which was due to the constrained scope of this
thesis. It is possible that other algorithms, aside from BO, might find better parameters more
efficiently. Additionally, integrating different parameters could reveal other interactions and
lead to different results. Our decision to use the BO algorithm was informed by findings
from the literature, as was our choice to work with as few hyperparameters as possible.

In pursuit of reproducibility, a random seed key is used. This feature diverges from the
standard ACT-R model, where each run is either identical or entirely random. In this variant,
while the experiments themselves exhibit variability, the resultant data remains consistent.
Furthermore, the ACT-R model operates through the same interfaces as humans, utilizing
visual input and manual output, thereby enhancing comparability with human test subjects.
Only a minor adjustment was necessary for the input of the results.

A critical consideration at this point is whether the simplified code in the experiments
aligns too closely with the comprehensibility parameters of ACT-R. Given that both the
model and the code style were developed in parallel, it is plausible that the model interprets
different lines of code differently than a human would.
We tried to minimize the influence by adapting models originally designed for mental
arithmetic and modifying them for code processing.
This may explain why the latency factor was smaller than its default value: the way the
process was modelled was so inefficient that, despite using math facts as a simplification,
the retrieval of chunks had to be accelerated to match the empirical data.

4.3 Threats to Validity 73

This potential discrepancy, however, falls beyond the scope of this thesis and remains an
open question for subsequent studies.

Construct Validity

Within the framework of the ACT-R model, it is crucial to acknowledge that the compre-
hension of code processing in the human brain may not precisely align with the model’s
assumptions. The model functions as a simplification of reality designed for analytical
purposes, necessitating further refinement and validation through subsequent experimental
investigations. Notably, many issues associated with human subjects, such as learning
effects and diverse knowledge backgrounds, are absent in the model. Since there was no
existing model for code comprehension, we used a model for simulating mental arithmetic
as a starting point and source of inspiration, as it seemed most appropriate given the
similarity of the tasks. These types of models have a long history and are well-validated,
so our modifications for handling variables are likely the only aspect warranting further
investigation in future studies.

External Validity

To create snippets that are suitable for both the model and human participants, we had to
rely on many assumptions and simplifications. These include a greatly simplified syntax,
a line-by-line reading order, and the use of random letters as variables. Therefore, it is
questionable whether the observations found here can be generalized to more complex
programs or if they were merely favoured by the specific context.
To best meet these stringent requirements, we based our code on Python and drew inspi-
ration from real-world code examples. We sought to minimize the influence of variable
naming by employing randomization techniques to the greatest extent possible.

As mentioned in Section 3.6.1, referral-chain sampling does not provide a representative
sample. Consequently, the findings may only apply to this selected sample, and different
effects might be observed in a replication study. Various confounding variables, such as the
participants’ expertise, could influence the outcomes and act as confounders. Our sample is
not representative, as the socio-demographic data indicates that we primarily studied men
from Germany, aged 25 to 30, with a university degree and relatively high programming
expertise.
To ensure that the sample was as heterogeneous as possible, we utilized a variety of starting
points and channels to broaden the pool of potential participants. This approach was par-
tially successful, as evidenced by the diversity in age distribution and nationalities.

The parameters of the model were tuned retrospectively based on the data collected in
this study. Consequently, we cannot determine how well these parameters would generalize
to other datasets or different contexts. The influence of the hyperparameters on the model’s
accuracy can be seen in the significantly lower accuracy of time predictions when optimizing
for error rate. Thus, it can be concluded that these production rules, combined with the
post hoc determined hyperparameters for these empirical data, allow for high accuracy in
timing and moderate accuracy in error rate.

74 Evaluation

However, the production rules of the ACT-R model were implemented and established prior
to any knowledge of the data and have proven to be quite accurate, at least in predicting
time. This ensured that the data had no influence on the development of the model’s
production rules.
Whether these findings can be generalized to other datasets remains an open question.

5
Related Work

The purpose of this work was to implement a first simulatable cognitive model for source
code comprehension based on ACT-R. Therefore, the literature research focussed on three
different types of publications.
Firstly, we searched for publications that have developed theoretical models of how code
comprehension is performed cognitively. These served as a basis for how code comprehen-
sion works and which specific domains it covers.
Publications that have created theoretical algorithms or concrete implementations based
on the theoretical models were the second focus. These served as a starting point for an
implementation. In addition, problems or limitations encountered by the authors could
provide indications of what to look out for in a concrete implementation.
The last part included a search for topics in the field of software engineering that dealt with
ACT-R. This showed the relevance of the work in the context of this work, which is why
concrete and validated models can be helpful for further research.
In the following, the nine most relevant papers on which this thesis is based are briefly
described, discussed and categorized.

The theoretical basics form the starting point of the literature research. The first step for
mental models was laid by Brooks [6] in 1978. In his essay, he proposed that understanding a
program is a successive refinement of the hypothesis about what the program does. Various
parts of the program serve as cues to substantiate the hypotheses.
Half a decade later, he formulated his model, now known as the ’top-down model’ [7] which
is schematically visualized in Figure 5.1. Top-down means that in the process of program
comprehension, from the first moment the process starts, hypotheses are generated as to
what the program or individual parts of it do. These hypotheses are tested and refined.
The testing is done on indicators or patterns that Brooks called ’beacons’. This is a highly
complex and individual process. Therefore, it would go beyond the scope of this paper and
was not be included in our model.

At the same time, Shneiderman [44] came up with his ’bottom-up model’. He followed
an open approach and from his explorative studies, he put together his model. A graphical
representation can be seen in Figure 5.2. The term ’chunk’ was used for the first time in this
context. In his model, chunks are information units that summarize the functional units
of the program in a hierarchically structured way. His findings also show that programs
are not memorized line by line but functionally in the form of an internal semantic repre-
sentation. He also emphasized the difference between semantic knowledge and syntactic
knowledge. Semantic means programming concepts that are independent of the language,

75

76 Related Work

Figure 5.1: Brooks top down model [52].

while syntactic represents specific knowledge in the language. Our model was partly build
on these bottom-up processes. It is limited to low-level details, in particular to concrete
values of variables. These must be extracted from the available source code and remembered
in short-term memory.

Some years later, Letovsky [37] came up with the first mixed model. According to his
research, three components are involved in the process of code comprehension.
The first is the knowledge base, which differs between individuals and represents the entire
knowledge of the developer.
The second is the internal model that is created based on previous recognitions. This con-
tains information about the specification of the program, a precise understanding of the
implementation, and also specific annotations about how the implementation achieves the
specification.
The third component is the assimilation process by which the internal model is further
developed based on the stimulus material. This is a kind of question-and-answer game
between the developer and the stimulus material. If there is a discrepancy between the
internal model and the material, an attempt is made to clarify how this can be resolved. The
assimilation process makes use of both bottom-up and top-down processes.
Of particular interest in this work is the fact that Letovsky [37] mentions at the very end of
his notes how valuable a computer-based model of human understanding of source code
would be for the development of new tools that can assist developers in programming.
Unfortunately, he did not continue this work himself.

Related Work 77

Figure 5.2: Schneiderman and Mayer bottom up model [52].

Tiemens [50] has also formulated a mixed model which he calls the ’Comprehension
Support Tool’, which aims to support developers in their work by supporting the process of
comprehension and thus reducing cognitive workload. In contrast to Letovsky [37], Tiemens
[50] also goes into more detail at this point about the design of a possible implementation
and precisely describes how possible use cases could look like and how they might provide
support. Similar to Letovsky [37], he also assumes that an implementation requires a knowl-
edge base, a mental model and an assimilation process. On closer inspection, the proposed
implementation turns out to be a large collection of many complicated sub-problems, such
as the representation of knowledge or mental processes, how they interact with each other
or how they change over time. This is perhaps the reason for the lack of concrete implemen-
tations to date.

The next major milestone was set by Von Mayrhauser and Vans [52] by combining numer-
ous models [7, 37, 42, 44, 46] into one metamodel. A representation of the metamodel can
be seen in Figure 5.3. The knowledge base, which bundles knowledge about the different
classes, is also at the centre here. This model also contains both top-down and bottom-up
processes, in this case, called the program model process. In contrast to the previous mixed
models, it also contains a situation model, which takes into account the context in which
the processes take place. Familiar elements from the previous models such as chunks and
beacons can be found again. Von Mayrhauser and Vans [52] also emphasized that it is
rarely one process alone that dominates the comprehension of the program, but that it is a
constant interaction and progression of processes that leads to the overall comprehension of
a program. This model shows the three major areas, top-down model, bottom-up model,
situation model and their interaction for the first time in one single model. As we did not

78 Related Work

Figure 5.3: Von Mayerhauser and Vans integrated metamodel [52].

believe it makes sense to tackle such a complex model all at once, we limited ourselves to
the bottom-up process, which in this model is called the program model process, and only
to a small part of the code execution. This means that the chunks that have to be formed
only included the value of variables and the knowledge base only covered basic arithmetic
knowledge. The aim of further work, however, could be to extend the model to include the
other processes.

In the same year, Cant et al. [8] also published their CCM. This serves to quantify the
cognitive processes involved in the code, in particular chunking and tracing. In this case,
tracing means being able to resolve the local dependencies of variables.

Ci = Ri + ∑
j∈N

Cj + ∑
j∈N

Tj (5.1)

In terms of the CCM, the complexity of a chunk i, as can be seen in equation 5.1, is made
up of the direct complexity of the chunk Ri, the complexity of the sub-chunks Cj and the
complexity of the tracing dependencies Tj. Each of these complexities is once again made
up of individual components that relate to different components of visual perception and
complexity during processing. This form of the model is interesting in that it seems easy to
implement due to its formulaic structure. However, on closer inspection, it is not clear how
exactly a chunk breaks down into its sub-chunks. Nevertheless, our model integrated this
approach in that a formula evaluation has a certain runtime which could be understood
as complexity Ri and depended on other variables used in the equation which could be
understood as sub-chunks Cj. The exact temporal calculators, however, were taken from
ACT-R. Tracing was not used by our model because we only considered a purely linear

Related Work 79

execution.

Hansen et al. [28] took up this approach almost two decades later and developed an
approach for implementing an ACT-R model for program comprehension using the CCM.
They also emphasize that the advantages of ACT-R lie in the availability of perception and
motor modules and the fact that BOLD can later also be simulated using ACT-R, which further
expands the field of potential experiments. They see a use case for their approach above
all in directly quantifying how complicated code is and making more efficient use of test
subjects through this pre-quantification. Although the work describes concrete plans on
how an implementation can be carried out successively, the process described is extremely
complex, which is why a concrete ACT-R model is still a work in progress. We have taken
this as a warning and have limited ourselves to the small part of the mental execution of
code in our model.

An implemented ACT-R model was used by Chiarelli [10] to investigate how self-explanation
is used when learning Python concepts. In particular, simulations were used to examine
how novices behave in comparison to experts. However, this work has some methodological
weaknesses. For example, the simulated data was not compared with experimental data
from real test subjects. Furthermore, the description is also slightly misleading, as the core
of the model is based on simple label matching to make queries to declarative memory
using labelled stimulus material. However, the work shows that it is possible to gain insights
into code comprehension with ACT-R.

A recent contribution to ACT-R in the field of software engineering is provided by Leung
and Murphy [38]. They presented the potential of LLMs that can be adapted to human
needs and designed based on ACT-R to create developer tools. The advantages of both sides
could be combined. LLMs can summarize effective knowledge and also create code, while
cognitive models describe what generates a high cognitive load when dealing with code.
The possible assistance systems should provide support at the points that require a high
cognitive load, namely the declarative memory, the production memory and the working
memory. The potential applications range from explaining code to writing and automatic
test creation. This work is again of a more theoretical and hypothetical nature but shows
that even in times of breakthroughs in the field of artificial intelligence, cognitive models
allow a different perspective on modern software development.

Table 5.1 summarizes the publications discussed before and shows how these works have
influenced our work.

80 Related Work

Table 5.1: Overview of Related Work

Reference Contribution Our Adaptation

Brooks [7] First developed the theoretical
functional principle of a top-
down model, based on a suc-
cessive refinement of hypothe-
ses about the program.

Used as the theoretical foun-
dation for understanding code
comprehension.

Shneiderman [44] Built on exploratory studies to
develop the bottom-up model,
which involves progressively
summarizing the model.

The process we refer to in this
work is essentially a bottom-
up process.

Letovsky [37] Combined top-down and
bottom-up models into a
mixed model, noting influ-
ences from both processes in
his studies. Also considered
a model that could be simu-
lated.

Used as the theoretical basis
for understanding code com-
prehension.

Tiemens [50] Also integrated top-down and
bottom-up approaches into a
mixed model, with a focus on
practical implications.

Used as the theoretical basis
for understanding code com-
prehension.

Von Mayrhauser and Vans [52] Synthesized multiple models
into a meta-model.

Used as the theoretical basis
for understanding code com-
prehension.

Cant et al. [8] Developed the Cognitive Com-
plexity Metric (CCM), a for-
mula for describing code com-
plexity.

Used implicitly as a measure
of time complexity for produc-
tions and retrievals.

Hansen et al. [28] Theorized how to implement
CCM within ACT-R.

Served as a starting point for
our work due to their exten-
sive considerations and identi-
fied issues.

Chiarelli [10] Developed an ACT-R model for
self-explanation of Python.

Demonstrated that ACT-R is al-
ready part of software engi-
neering research.

Leung and Murphy [38] Theoretically assessed the po-
tential of cognitive models in
the era of LLMs, showing how
to implement a functioning
ACT-R model.

Provided insight into how a
functioning model can still
contribute new knowledge in
the age of AI.

6
Concluding Remarks

6.1 Conclusion

Understanding code is a daily task for developers, and it is crucial to make this process
as simple and efficient as possible. Research on code comprehension is ongoing, as the
distinctions between easily comprehensible and difficult code are not yet fully understood.
Furthermore, the exact definition and measurement of these differences remain ambiguous.

In this study, we have revisited a old concept of mental models for code comprehension
and explored the extent to which a practical model can be realized in ACT-R. To this end, we
developed a reduced framework that is compatible with both the ACT-R model and human
participants. Using this framework, we designed a series of code snippets expected to elicit
specific effects in the participants, and the model was tasked with making predictions for
these snippets.

The data collected from the participants were used to adjust the model’s hyperparameters.
Although the effects were not statistically significant, the model demonstrated a high degree
of precision in predicting the timing data. However, the model revealed some weaknesses
in predicting error rates.

In summary, this study has shown that a cognitive model has the potential to serve
as a metric for code complexity. With further refinement, such a model could accurately
predict the likely time and error susceptibility of code, providing an objective criterion for
differentiating various inputs. Therefore, it is essential to continue pursuing this approach
in future research.

6.2 Future Work

As emphasized at the beginning of this work, the concept of a cognitive model for studying
code comprehension is not new. However, this work presents the analysis of the first simple
executable model within the ACT-R framework, aiming to open a new field of methodological
approaches. Consequently, there are numerous opportunities for building upon this work.
In this concluding section, we will outline several potential directions for future research.

81

82 Concluding Remarks

6.2.1 Model Extension

6.2.1.1 Multi Line Reading

A possible extension of the model is to incorporate the capability to process multiple lines
of code. This would require integrating a logic that directs eye movements to switch from
line to line. However, it is possible that text is not read strictly from left to right and top
to bottom [41]. Therefore, analyzing eye-tracking data could be useful to identify specific
reading patterns. The advantage is that ACT-R can also simulate eye-tracking data, which
allows the model to be validated against eye-tracking experiments.

Extending the model to handle multiple lines could present both opportunities and chal-
lenges. One challenge is how to manage retrieval failures when multiple lines are displayed.
If a person forgets the value of a variable, they will likely perform a kind of recovery process,
meaning they scan the code again and, upon finding a trigger point that jogs their memory,
return to the previous point. Modelling peripheral vision and quick saccades to accurately
represent movements between lines can be problematic.

On the other hand, this extension opens up many possibilities, such as integrating more
complex constructs like loops or conditional expressions that span multiple lines. Multi-
line reading is a prerequisite for these integrations. Additionally, classes, functions, and
comments could be incorporated into the model. Therefore, we see that an essential future
step is to extend the model to handle multi-line reading.

6.2.1.2 Similarity Matrices

As discussed in this work, the error space in the empirical data is larger than that in the
model. Therefore, it is essential to extend the model to simulate the errors observed in the
empirical data.

One potential approach is to utilize similarity matrices. This function in ACT-R allows for
the description of the similarity between chunks, enabling the activation of a chunk not
only for an exact match but also proportionally for similar chunks. This addition makes the
activation calculation more complex, as it now includes a similarity component.

Both variable names and numbers can be similar to each other, leading to potential
confusion. Based on the errors observed here, this extension could be necessary to better
encompass the range of human errors and more accurately predict potential issues in code
comprehension.

6.2.2 Snippet Modification

As described in the results, trends for effects are noticeable in the data, but no statistically
significant differences were found. This could be due to the sample size as well as the

6.2 Future Work 83

nature of the snippets used. Different snippets of the same type yielded varying results, and
unintended effects were detected in the data.

To address these issues in future studies, one approach is to expand the snippet portfolio
based on the insights gained from this work. For instance, to enhance the effects of distance,
additional filler lines could be introduced to amplify the effect. Additionally, one could
more precisely differentiate whether other variables appear in the target line or not. It may
also be worthwhile to consider directly incorporating and investigating unexpected effects,
such as order effects, into the snippet samples.

Overall, there are numerous opportunities to improve snippet selection to better highlight
the effects under investigation. A limiting factor in this context is the line-by-line presen-
tation. Since humans have limited memory capacity, we can only introduce and utilize a
limited number of variables and present a certain length of code before attention wanes.
However, exploring these boundaries more thoroughly could enable more comprehensive
experiments even with the line-by-line presentation.

6.2.3 Replication Studies

Since this work aims to revive a novel method for studying code comprehension, one of the
most crucial steps for the future is replication. With a larger sample size, some of the effects
suggested here might achieve statistical significance. Additionally, other models could be
developed to identify potential design flaws.

Investigating different snippets and data collection methods could help control for
confounding variables more effectively. Moreover, a reanalysis of the hyperparameter opti-
mization process with the current dataset could lead to a more robust model that optimizes
both time and error rate. Other effects that might be hidden in the collected dataset could
also be analyzed and replicated.

It is essential to continue this line of research to prevent it from meeting the same fate as
its predecessors, where the topic fades into obscurity for the next several years.

6.2.4 Modularity

A crucial step to prevent this topic from fading into obscurity once again could be em-
bracing modularity. In the context of a large research community, a framework could be
established, and multiple submodels could be developed to model various aspects of code
comprehension. For instance, the capabilities for conditional expressions, loops, lambda
expressions, and so on could be divided into different submodules, allowing parallel and
independent development of the ACT-R model.

84 Concluding Remarks

The challenge lies in developing a main module that integrates and coordinates all the
other submodules. It is essential to ensure that the model does not drift too far from
modelling human cognitive processes and acts more like a compiler due to excessive opti-
mization. The balance between cognitive psychology and computer science must be carefully
maintained.

One approach we propose is the modularization of the maths module by separating
different arithmetic operations and adding new ones. This would be a good starting point
to explore the feasibility of modularization within a manageable scope that does not require
as many interactions with other submodules as, for example, a loop. Additionally, unlike
other proposed modules, it can be applied within the line-by-line reading behaviour.

A
Empirical Results Single Snippets

(a) Time effect.

(b) Error rate effect.

False True Sum

Control 6 23 29

Treatment 7 27 34

Sum 13 50 63

Figure A.1: Empirical results for the CD1.

85

86 Empirical Results Single Snippets

(a) Time effect.

(b) Error rate effect.

False True Sum

Control 1 33 34

Treatment 1 28 29

Sum 2 61 63

Figure A.2: Empirical results for the CD2.

(a) Time effect.

(b) Error rate effect.

False True Sum

Control 0 29 29

Treatment 2 32 34

Sum 2 61 63

Figure A.3: Empirical results for the CR1.

Empirical Results Single Snippets 87

(a) Time effect.

(b) Error rate effect.

False True Sum

Control 0 34 34

Treatment 1 28 29

Sum 1 62 63

Figure A.4: Empirical results for the CR2.

(a) Time effect.

(b) Error rate effect.

False True Sum

Control 4 25 29

Treatment 6 28 34

Sum 10 53 63

Figure A.5: Empirical results for the DR1.

88 Empirical Results Single Snippets

(a) Time effect.

(b) Error rate effect.

False True Sum

Control 18 16 34

Treatment 9 20 29

Sum 27 36 63

Figure A.6: Empirical results for the DR2.

(a) Time effect.

(b) Error rate effect.

False True Sum

Control 3 26 29

Treatment 15 19 34

Sum 18 45 63

Figure A.7: Empirical results for the RP1.

Empirical Results Single Snippets 89

(a) Time effect.

(b) Error rate effect.

False True Sum

Control 6 28 34

Treatment 6 23 29

Sum 12 51 63

Figure A.8: Empirical results for the RP2.

B
Accuracy Parameter Tuning activation
noise s for Single Snippets

91

92 Accuracy Parameter Tuning activation noise s for Single Snippets

Table B.1: Error rates for optimizing ans on time data.

(a) CD1.

False True Total

Control 0 (6) 29 (23) 29 (29)

Treatment 0 (7) 34 (27) 34 (34)

Total 0 (13) 63 (50) 63 (63)
Annotation: Empirical data in brackets.

(b) CD2.

False True Total

Control 0 (1) 34 (33) 34 (34)

Treatment 0 (1) 29 (28) 29 (29)

Total 0 (2) 63 (61) 63 (63)
Annotation: Empirical data in brackets.

(c) CR1.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 15 (2) 19 (32) 34 (34)

Total 15 (2) 48 (61) 63 (63)
Annotation: Empirical data in brackets.

(d) CR2.

False True Total

Control 0 (0) 34 (34) 34 (34)

Treatment 11 (1) 18 (28) 29 (29)

Total 11 (1) 52 (62) 63 (63)
Annotation: Empirical data in brackets.

(e) DR1.

False True Total

Control 9 (4) 20 (25) 29 (29)

Treatment 19 (6) 15 (28) 34 (34)

Total 28 (10) 35 (53) 63 (63)
Annotation: Empirical data in brackets.

(f) DR2.

False True Total

Control 17 (18) 17 (16) 34 (34)

Treatment 18 (9) 11 (20) 29 (29)

Total 35 (27) 28 (36) 63 (63)
Annotation: Empirical data in brackets.

(g) RP1.

False True Total

Control 9 (3) 20 (26) 29 (29)

Treatment 16 (15) 18 (19) 34 (34)

Total 25 (18) 38 (45) 63 (63)
Annotation: Empirical data in brackets.

(h) RP2.

False True Total

Control 15 (6) 19 (28) 34 (34)

Treatment 11 (6) 18 (23) 29 (29)

Total 26 (12) 37 (51) 63 (63)
Annotation: Empirical data in brackets.

Accuracy Parameter Tuning activation noise s for Single Snippets 93

(a) CD1. (b) CD2.

(c) CR1. (d) CR2.

(e) DR1. (f) DR2.

(g) RP1. (h) RP2.

Figure B.1: QQ-Plot for optimizing ans on time data.

94 Accuracy Parameter Tuning activation noise s for Single Snippets

(a) CD1. (b) CD2.

(c) CR1. (d) CR2.

(e) DR1. (f) DR2.

(g) RP1. (h) RP2.

Figure B.2: QQ-Plot for optimizing ans on error rate data.

Accuracy Parameter Tuning activation noise s for Single Snippets 95

Table B.2: Error rates for optimizing ans on error rate data.

(a) CD1.

False True Total

Control 0 (6) 29 (23) 29 (29)

Treatment 0 (7) 34 (27) 34 (34)

Total 0 (13) 63 (50) 63 (63)
Annotation: Empirical data in brackets.

(b) CD2.

False True Total

Control 0 (1) 34 (33) 34 (34)

Treatment 0 (1) 29 (28) 29 (29)

Total 0 (2) 63 (61) 63 (63)
Annotation: Empirical data in brackets.

(c) CR1.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 13 (2) 21 (32) 34 (34)

Total 13 (2) 50 (61) 63 (63)
Annotation: Empirical data in brackets.

(d) CR2.

False True Total

Control 0 (0) 34 (34) 34 (34)

Treatment 7 (1) 22 (28) 29 (29)

Total 7 (1) 56 (62) 63 (63)
Annotation: Empirical data in brackets.

(e) DR1.

False True Total

Control 2 (4) 27 (25) 29 (29)

Treatment 17 (6) 17 (28) 34 (34)

Total 19 (10) 44 (53) 63 (63)
Annotation: Empirical data in brackets.

(f) DR2.

False True Total

Control 10 (18) 24 (16) 34 (34)

Treatment 16 (9) 13 (20) 29 (29)

Total 26 (27) 37 (36) 63 (63)
Annotation: Empirical data in brackets.

(g) RP1.

False True Total

Control 7 (3) 22 (26) 29 (29)

Treatment 12 (15) 22 (19) 34 (34)

Total 19 (18) 44 (45) 63 (63)
Annotation: Empirical data in brackets.

(h) RP2.

False True Total

Control 9 (6) 25 (28) 34 (34)

Treatment 11 (6) 18 (23) 29 (29)

Total 20 (12) 43 (51) 63 (63)
Annotation: Empirical data in brackets.

96 Accuracy Parameter Tuning activation noise s for Single Snippets

(a) CD1. (b) CD2.

(c) CR1. (d) CR2.

(e) DR1. (f) DR2.

(g) RP1. (h) RP2.

Figure B.3: QQ-Plot for optimizing ans on combined data.

Accuracy Parameter Tuning activation noise s for Single Snippets 97

Table B.3: Error rates for optimizing ans on combined data.

(a) CD1.

False True Total

Control 0 (6) 29 (23) 29 (29)

Treatment 0 (7) 34 (27) 34 (34)

Total 0 (13) 63 (50) 63 (63)
Annotation: Empirical data in brackets.

(b) CD2.

False True Total

Control 0 (1) 34 (33) 34 (34)

Treatment 0 (1) 29 (28) 29 (29)

Total 0 (2) 63 (61) 63 (63)
Annotation: Empirical data in brackets.

(c) CR1.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 15 (2) 19 (32) 34 (34)

Total 15 (2) 48 (61) 63 (63)
Annotation: Empirical data in brackets.

(d) CR2.

False True Total

Control 0 (0) 34 (34) 34 (34)

Treatment 11 (1) 18 (28) 29 (29)

Total 11 (1) 52 (62) 63 (63)
Annotation: Empirical data in brackets.

(e) DR1.

False True Total

Control 9 (4) 20 (25) 29 (29)

Treatment 19 (6) 15 (28) 34 (34)

Total 28 (10) 35 (53) 63 (63)
Annotation: Empirical data in brackets.

(f) DR2.

False True Total

Control 17 (18) 17 (16) 34 (34)

Treatment 18 (9) 11 (20) 29 (29)

Total 35 (27) 28 (36) 63 (63)
Annotation: Empirical data in brackets.

(g) RP1.

False True Total

Control 9 (3) 20 (26) 29 (29)

Treatment 16 (15) 18 (19) 34 (34)

Total 25 (18) 38 (45) 63 (63)
Annotation: Empirical data in brackets.

(h) RP2.

False True Total

Control 17 (6) 17 (28) 34 (34)

Treatment 11 (6) 18 (23) 29 (29)

Total 28 (12) 35 (51) 63 (63)
Annotation: Empirical data in brackets.

C
Accuracy Parameter Tuning retrieval
threshold, activation noise s and
latency factor for Single Snippets

99

100 Accuracy Parameter Tuning retrieval threshold, activation noise s and latency factor for Single Snippets

Table C.1: Error rates for optimizing rt, ans and lf on time data.

(a) CD1.

False True Total

Control 3 (6) 26 (23) 29 (29)

Treatment 1 (7) 33 (27) 34 (34)

Total 4 (13) 59 (50) 63 (63)
Annotation: Empirical data in brackets.

(b) CD2.

False True Total

Control 2 (1) 32 (33) 34 (34)

Treatment 0 (1) 29 (28) 29 (29)

Total 2 (2) 61 (61) 63 (63)
Annotation: Empirical data in brackets.

(c) CR1.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 15 (2) 19 (32) 34 (34)

Total 15 (2) 48 (61) 63 (63)
Annotation: Empirical data in brackets.

(d) CR2.

False True Total

Control 1 (0) 33 (34) 34 (34)

Treatment 11 (1) 18 (28) 29 (29)

Total 12 (1) 51 (62) 63 (63)
Annotation: Empirical data in brackets.

(e) DR1.

False True Total

Control 8 (4) 21 (25) 29 (29)

Treatment 18 (6) 16 (28) 34 (34)

Total 26 (10) 37 (53) 63 (63)
Annotation: Empirical data in brackets.

(f) DR2.

False True Total

Control 16 (18) 18 (16) 34 (34)

Treatment 17 (9) 12 (20) 29 (29)

Total 33 (27) 30 (36) 63 (63)
Annotation: Empirical data in brackets.

(g) RP1.

False True Total

Control 10 (3) 19 (26) 29 (29)

Treatment 16 (15) 18 (19) 34 (34)

Total 26 (18) 37 (45) 63 (63)
Annotation: Empirical data in brackets.

(h) RP2.

False True Total

Control 17 (6) 17 (28) 34 (34)

Treatment 12 (6) 17 (23) 29 (29)

Total 29 (12) 34 (51) 63 (63)
Annotation: Empirical data in brackets.

Accuracy Parameter Tuning retrieval threshold, activation noise s and latency factor for Single Snippets 101

(a) CD1. (b) CD2.

(c) CR1. (d) CR2.

(e) DR1. (f) DR2.

(g) RP1. (h) RP2.

Figure C.1: QQ-Plot for optimizing rt, ans and lf on time data.

102 Accuracy Parameter Tuning retrieval threshold, activation noise s and latency factor for Single Snippets

(a) CD1. (b) CD2.

(c) CR1. (d) CR2.

(e) DR1. (f) DR2.

(g) RP1. (h) RP2.

Figure C.2: QQ-Plot for optimizing rt, ans and lf on error rate data

Accuracy Parameter Tuning retrieval threshold, activation noise s and latency factor for Single Snippets 103

Table C.2: Error rates for optimizing rt, ans and lf on error rate data

(a) CD1.

False True Total

Control 5 (6) 24 (23) 29 (29)

Treatment 5 (7) 29 (27) 34 (34)

Total 10 (13) 53 (50) 63 (63)
Annotation: Empirical data in brackets.

(b) CD2.

False True Total

Control 1 (1) 33 (33) 34 (34)

Treatment 1 (1) 28 (28) 29 (29)

Total 2 (2) 61 (61) 63 (63)
Annotation: Empirical data in brackets.

(c) CR1.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 12 (2) 22 (32) 34 (34)

Total 12 (2) 51 (61) 63 (63)
Annotation: Empirical data in brackets.

(d) CR2.

False True Total

Control 1 (0) 33 (34) 34 (34)

Treatment 7 (1) 22 (28) 29 (29)

Total 8 (1) 55 (62) 63 (63)
Annotation: Empirical data in brackets.

(e) DR1.

False True Total

Control 3 (4) 26 (25) 29 (29)

Treatment 15 (6) 19 (28) 34 (34)

Total 18 (10) 45 (53) 63 (63)
Annotation: Empirical data in brackets.

(f) DR2.

False True Total

Control 20 (18) 14 (16) 34 (34)

Treatment 17 (9) 12 (20) 29 (29)

Total 37 (27) 26 (36) 63 (63)
Annotation: Empirical data in brackets.

(g) RP1.

False True Total

Control 10 (3) 19 (26) 29 (29)

Treatment 17 (15) 17 (19) 34 (34)

Total 27 (18) 36 (45) 63 (63)
Annotation: Empirical data in brackets.

(h) RP2.

False True Total

Control 11 (6) 23 (28) 34 (34)

Treatment 12 (6) 17 (23) 29 (29)

Total 23 (12) 40 (51) 63 (63)
Annotation: Empirical data in brackets.

104 Accuracy Parameter Tuning retrieval threshold, activation noise s and latency factor for Single Snippets

(a) CD1. (b) CD2.

(c) CR1. (d) CR2.

(e) DR1. (f) DR2.

(g) RP1. (h) RP2.

Figure C.3: QQ-Plot for optimizing rt, ans and lf on combined data

Accuracy Parameter Tuning retrieval threshold, activation noise s and latency factor for Single Snippets 105

Table C.3: Error rates for optimizing rt, ans and lf on combined data

(a) CD1.

False True Total

Control 3 (6) 26 (23) 29 (29)

Treatment 1 (7) 33 (27) 34 (34)

Total 4 (13) 59 (50) 63 (63)
Annotation: Empirical data in brackets.

(b) CD2.

False True Total

Control 2 (1) 32 (33) 34 (34)

Treatment 0 (1) 29 (28) 29 (29)

Total 2 (2) 61 (61) 63 (63)
Annotation: Empirical data in brackets.

(c) CR1.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 14 (2) 20 (32) 34 (34)

Total 14 (2) 49 (61) 63 (63)
Annotation: Empirical data in brackets.

(d) CR2.

False True Total

Control 1 (0) 33 (34) 34 (34)

Treatment 11 (1) 18 (28) 29 (29)

Total 12 (1) 51 (62) 63 (63)
Annotation: Empirical data in brackets.

(e) DR1.

False True Total

Control 8 (4) 21 (25) 29 (29)

Treatment 19 (6) 15 (28) 34 (34)

Total 27 (10) 36 (53) 63 (63)
Annotation: Empirical data in brackets.

(f) DR2.

False True Total

Control 17 (18) 17 (16) 34 (34)

Treatment 18 (9) 11 (20) 29 (29)

Total 35 (27) 28 (36) 63 (63)
Annotation: Empirical data in brackets.

(g) RP1.

False True Total

Control 10 (3) 19 (26) 29 (29)

Treatment 17 (15) 17 (19) 34 (34)

Total 27 (18) 36 (45) 63 (63)
Annotation: Empirical data in brackets.

(h) RP2.

False True Total

Control 16 (6) 18 (28) 34 (34)

Treatment 12 (6) 17 (23) 29 (29)

Total 28 (12) 35 (51) 63 (63)
Annotation: Empirical data in brackets.

D
Comparison of Simulated Data and
Empirical Data for Single Snippets

(a) Time effect.

(b) Error rate effect.

False True Total

Control 3 (6) 26 (23) 29 (29)

Treatment 1 (7) 33 (27) 34 (34)

Total 4 (13) 59 (50) 63 (63)
Annotation: Empirical data in brackets.

Figure D.1: Comparison of simulation and empirical data for CD1.

107

108 Comparison of Simulated Data and Empirical Data for Single Snippets

(a) Time effect.

(b) Error rate effect.

False True Total

Control 2 (1) 32 (33) 34 (34)

Treatment 0 (1) 29 (28) 29 (29)

Total 2 (2) 61 (61) 63 (63)
Annotation: Empirical data in brackets.

Figure D.2: Comparison of simulation and empirical data for CD2.

Comparison of Simulated Data and Empirical Data for Single Snippets 109

(a) Time effect.

(b) Error rate effect.

False True Total

Control 0 (0) 29 (29) 29 (29)

Treatment 14 (2) 20 (32) 34 (34)

Total 14 (2) 49 (61) 63 (63)
Annotation: Empirical data in brackets.

Figure D.3: Comparison of simulation and empirical data for CR1.

110 Comparison of Simulated Data and Empirical Data for Single Snippets

(a) Time effect.

(b) Error rate effect.

False True Total

Control 1 (0) 33 (34) 34 (34)

Treatment 11 (1) 18 (28) 29 (29)

Total 12 (1) 51 (62) 63 (63)
Annotation: Empirical data in brackets.

Figure D.4: Comparison of simulation and empirical data for CR2.

Comparison of Simulated Data and Empirical Data for Single Snippets 111

(a) Time effect.

(b) Error rate effect.

False True Total

Control 8 (4) 21 (25) 29 (29)

Treatment 19 (6) 15 (28) 34 (34)

Total 27 (10) 36 (53) 63 (63)
Annotation: Empirical data in brackets.

Figure D.5: Comparison of simulation and empirical data for DR1.

112 Comparison of Simulated Data and Empirical Data for Single Snippets

(a) Time effect.

(b) Error rate effect.

False True Total

Control 17 (18) 17 (16) 34 (34)

Treatment 18 (9) 11 (20) 29 (29)

Total 35 (27) 28 (36) 63 (63)
Annotation: Empirical data in brackets.

Figure D.6: Comparison of simulation and empirical data for DR2.

Comparison of Simulated Data and Empirical Data for Single Snippets 113

(a) Time effect.

(b) Error rate effect.

False True Total

Control 10 (3) 19 (26) 29 (29)

Treatment 17 (15) 17 (19) 34 (34)

Total 27 (18) 36 (45) 63 (63)
Annotation: Empirical data in brackets.

Figure D.7: Comparison of simulation and empirical data for RP1.

114 Comparison of Simulated Data and Empirical Data for Single Snippets

(a) Time effect.

(b) Error rate effect.

False True Total

Control 16 (6) 18 (28) 34 (34)

Treatment 12 (6) 17 (23) 29 (29)

Total 28 (12) 35 (51) 63 (63)
Annotation: Empirical data in brackets.

Figure D.8: Comparison of simulation and empirical data for RP2.

Statement on the Usage of Generative
Digital Assistants

This work was created with the assistance of Generative Digital Assistants, specifically
ChatGPT, DeepL, and Grammarly.

The Generative Digital Assistants were utilized for the following tasks:

• Translating text

• Optimizing text structure

• Generating R code for structuring diagrams and outputs

• Generating Python code for data processing structures

• Generating LaTeX code for graphic structures

• Conducting source research

The Generative Digital Assistants were explicitly not used for the following tasks:

• Generating entire text sections from brief instructions

• Automatic source integration

• Generating experimental materials

• Analyzing data

• Interpreting results

The authors are aware of the risk of erroneous information from the Generative Digital
Assistants. Therefore, all generated text and code were meticulously reviewed for accuracy.
No source suggestions were included in the literature of this work without verification of
the original texts.

115

Bibliography

[1] John R. Anderson. “ACT: A simple theory of complex cognition.” In: American Psycholo-
gist 51.4 (Apr. 1996), pp. 355–365. issn: 0003-066X. doi: 10.1037/0003-066x.51.4.355.

[2] John R. Anderson. How Can the Human Mind Occur in the Physical Universe? Ox-
ford University Press, Oct. 2007. isbn: 9780195324259. doi: 10.1093/acprof:oso/
9780195324259.001.0001.

[3] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass, Christian Lebiere,
and Yulin Qin. “An integrated theory of the mind.” In: Psychological review 111.4 (2004),
p. 1036.

[4] John Robert Anderson, Joachim Funke, Katharina Neuser-von Oettingen, and Guido
Plata. Kognitive Psychologie. Springer Vieweg. in Springer Fachmedien Wiesbaden
GmbH, 2013. isbn: 9783642373916.

[5] Sebastian Baltes and Paul Ralph. Sampling in Software Engineering Research: A Critical
Review and Guidelines. 2021. arXiv: 2002.07764 [cs.SE]. url: https://arxiv.org/
abs/2002.07764.

[6] Ruven Brooks. “Using a Behavioral Theory of Program Comprehension in Software
Engineering.” In: Proceedings of the 3rd International Conference on Software Engineering.
ICSE ’78. Atlanta, Georgia, USA: IEEE Press, 1978, 196–201.

[7] Ruven Brooks. “Towards a theory of the comprehension of computer programs.”
In: International Journal of Man-Machine Studies 18.6 (June 1983), pp. 543–554. issn:
0020-7373. doi: 10.1016/s0020-7373(83)80031-5.

[8] SN Cant, DR Jeffery, and B Henderson-Sellers. “A conceptual model of cognitive
complexity of elements of the programming process.” In: Information and Software
Technology 37.7 (1995), pp. 351–362. issn: 0950-5849. doi: https://doi.org/10.1016/
0950-5849(95)91491-H. url: https://www.sciencedirect.com/science/article/
pii/095058499591491H.

[9] “Chi-square Goodness of Fit Test.” In: The Concise Encyclopedia of Statistics. New York,
NY: Springer New York, 2008, pp. 72–76. isbn: 978-0-387-32833-1. doi: 10.1007/978-
0-387-32833-1_55. url: https://doi.org/10.1007/978-0-387-32833-1_55.

[10] V. S. Chiarelli. “Learning basic Python concepts via self-explanation: A preliminary
python ACT-R model.” In: Virtual MathPsych/ICCM 2021 (July 2021). url: mathpsych.
org/presentation/623..

[11] Herbert H. Clark and C. J. Sengul. “In search of referents for nouns and pronouns.”
In: Memory & Cognition 7.1 (Jan. 1979), pp. 35–41. issn: 1532-5946. doi: 10.3758/
bf03196932.

117

https://doi.org/10.1037/0003-066x.51.4.355
https://doi.org/10.1093/acprof:oso/9780195324259.001.0001
https://doi.org/10.1093/acprof:oso/9780195324259.001.0001
https://arxiv.org/abs/2002.07764
https://arxiv.org/abs/2002.07764
https://arxiv.org/abs/2002.07764
https://doi.org/10.1016/s0020-7373(83)80031-5
https://doi.org/https://doi.org/10.1016/0950-5849(95)91491-H
https://doi.org/https://doi.org/10.1016/0950-5849(95)91491-H
https://www.sciencedirect.com/science/article/pii/095058499591491H
https://www.sciencedirect.com/science/article/pii/095058499591491H
https://doi.org/10.1007/978-0-387-32833-1_55
https://doi.org/10.1007/978-0-387-32833-1_55
https://doi.org/10.1007/978-0-387-32833-1_55
mathpsych.org/presentation/623.
mathpsych.org/presentation/623.
https://doi.org/10.3758/bf03196932
https://doi.org/10.3758/bf03196932

118 bibliography

[12] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge, May 2013.
isbn: 9781134742707. doi: 10.4324/9780203771587.

[13] Nelson Cowan. “The magical number 4 in short-term memory: A reconsideration of
mental storage capacity.” In: Behavioral and Brain Sciences 24.1 (Feb. 2001), pp. 87–114.
issn: 1469-1825. doi: 10.1017/s0140525x01003922.

[14] Nelson Cowan. “The Magical Mystery Four: How Is Working Memory Capacity
Limited, and Why?” In: Current Directions in Psychological Science 19.1 (Feb. 2010),
pp. 51–57. issn: 1467-8721. doi: 10.1177/0963721409359277.

[15] Meredyth Daneman and Patricia A. Carpenter. “Individual differences in working
memory and reading.” In: Journal of Verbal Learning and Verbal Behavior 19.4 (Aug.
1980), pp. 450–466. issn: 0022-5371. doi: 10.1016/s0022-5371(80)90312-6.

[16] Jared F. Danker and John R. Anderson. “The roles of prefrontal and posterior parietal
cortex in algebra problem solving: A case of using cognitive modeling to inform
neuroimaging data.” In: NeuroImage 35.3 (Apr. 2007), pp. 1365–1377. issn: 1053-8119.
doi: 10.1016/j.neuroimage.2007.01.032.

[17] Mika Dumont, Gordon Hogenson, Saisang Cai, John Parente, Mike Jacobs, and
Genevieve Warren. Move variable declaration near reference. 2023. url: https://learn.
microsoft.com/en- us/visualstudio/ide/reference/move- declaration- near-

reference?view=vs-2022 (visited on 01/11/2024).

[18] Timon Dörzapf. var-distance. 2024. url: https : / / github . com / Monti1811 / var -

distances (visited on 01/25/2024).

[19] Pamela D’Addario and Birsen Donmez. “The effect of cognitive distraction on
perception-response time to unexpected abrupt and gradually onset roadway haz-
ards.” In: Accident Analysis & Prevention 127 (2019), pp. 177–185.

[20] Kate Ehrlich and Keith Rayner. “Pronoun assignment and semantic integration during
reading: eye movements and immediacy of processing.” In: Journal of Verbal Learning
and Verbal Behavior 22.1 (Feb. 1983), pp. 75–87. issn: 0022-5371. doi: 10.1016/s0022-
5371(83)80007-3.

[21] Dror G. Feitelson. Considerations and Pitfalls in Controlled Experiments on Code Compre-
hension. 2021. arXiv: 2103.08769 [cs.SE].

[22] Free Fish Tank Videos. url: https://www.pexels.com/search/videos/fish%20tank/
(visited on 03/10/2024).

[23] Simon Garrod and Anthony Sanford. “Interpreting anaphoric relations: The inte-
gration of semantic information while reading.” In: Journal of Verbal Learning and
Verbal Behavior 16.1 (Feb. 1977), pp. 77–90. issn: 0022-5371. doi: 10.1016/s0022-
5371(77)80009-1.

[24] Nancy R. Gee, Taylor Reed, April Whiting, Erika Friedmann, Donna Snellgrove, and
Katherine A. Sloman. “Observing Live Fish Improves Perceptions of Mood, Relaxation
and Anxiety, But Does Not Consistently Alter Heart Rate or Heart Rate Variability.”
In: International Journal of Environmental Research and Public Health 16.17 (Aug. 2019),
p. 3113. issn: 1660-4601. doi: 10.3390/ijerph16173113.

https://doi.org/10.4324/9780203771587
https://doi.org/10.1017/s0140525x01003922
https://doi.org/10.1177/0963721409359277
https://doi.org/10.1016/s0022-5371(80)90312-6
https://doi.org/10.1016/j.neuroimage.2007.01.032
https://learn.microsoft.com/en-us/visualstudio/ide/reference/move-declaration-near-reference?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/reference/move-declaration-near-reference?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/reference/move-declaration-near-reference?view=vs-2022
https://github.com/Monti1811/var-distances
https://github.com/Monti1811/var-distances
https://doi.org/10.1016/s0022-5371(83)80007-3
https://doi.org/10.1016/s0022-5371(83)80007-3
https://arxiv.org/abs/2103.08769
https://www.pexels.com/search/videos/fish%20tank/
https://doi.org/10.1016/s0022-5371(77)80009-1
https://doi.org/10.1016/s0022-5371(77)80009-1
https://doi.org/10.3390/ijerph16173113

bibliography 119

[25] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K.-
C. Yeh, and Justin Cappos. “Understanding misunderstandings in source code.”
In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE’17. ACM, Aug. 2017. doi: 10.1145/3106237.3106264.

[26] ACT-R Research Group. About ACT-R. 2012. url: http://act-r.psy.cmu.edu/about/
,mar2012.

[27] ACT-R Research Group. ACT-R Tutorial. 2024. url: /web/20240811152346/http:
//act-r.psy.cmu.edu/software/ (visited on 08/11/2024).

[28] Michael Hansen, Andrew Lumsdaine, and Robert Goldstone. “Cognitive architectures:
A way forward for the psychology of programming.” In: Oct. 2012, pp. 27–38. doi:
10.1145/2384592.2384596.

[29] Wanja A. Hemmerich. StatistikGuru. Bonferroni–Holm Korrektur. 2020. url: https:
/ / statistikguru . de / lexikon / bonferroni - holm - korrektur . html (visited on
05/10/2024).

[30] Felix Henninger, Yury Shevchenko, Ulf Mertens, Pascal J. Kieslich, and Benjamin E.
Hilbig. lab.js: A free, open, online experiment builder. 2024. doi: 10.5281/ZENODO.597045.

[31] Antti Kangasrääsiö, Jussi P. P. Jokinen, Antti Oulasvirta, Andrew Howes, and Samuel
Kaski. “Parameter Inference for Computational Cognitive Models with Approximate
Bayesian Computation.” In: Cognitive Science 43.6 (June 2019). issn: 1551-6709. doi:
10.1111/cogs.12738.

[32] David Kean. Move declaration near reference" can change behavior of a program for captured
variables. 2018. url: https://github.com/dotnet/roslyn/issues/25741 (visited on
01/11/2024).

[33] “Kolmogorov–Smirnov Test.” In: The Concise Encyclopedia of Statistics. New York, NY:
Springer New York, 2008, pp. 283–287. isbn: 978-0-387-32833-1. doi: 10.1007/978-0-
387-32833-1_214. url: https://doi.org/10.1007/978-0-387-32833-1_214.

[34] Jan-Peter Krämer, Jan Oliver Borchers, Horst Lichter, and Joel Brandt. Interacting
with code: Observations, models, and tools for usable software development environments.
Tech. rep. Fachgruppe Informatik, 2017.

[35] Christian Lebiere. “The dynamics of cognition: An ACT-R model of cognitive arith-
metic.” In: Kognitionswissenschaft 8.1 (Mar. 1999), pp. 5–19. issn: 1432-1483. doi:
10.1007/bf03354932.

[36] D. J. Leiner. SoSci Survey (Version 3.5.06) [Computer software]. 2024. url: https://www.
soscisurvey.de (visited on 05/04/2024).

[37] Stanley Letovsky. “Cognitive Processes in Program Comprehension.” In: Papers Pre-
sented at the First Workshop on Empirical Studies of Programmers on Empirical Studies
of Programmers. Washington, D.C., USA: Ablex Publishing Corp., 1986, 58–79. isbn:
089391388X.

[38] Mira Leung and Gail Murphy. “On Automated Assistants for Software Development:
The Role of LLMs.” In: 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, Sept. 2023. doi: 10.1109/ase56229.2023.00035.

https://doi.org/10.1145/3106237.3106264
http://act-r.psy.cmu.edu/about/,mar2012
http://act-r.psy.cmu.edu/about/,mar2012
/web/20240811152346/http://act-r.psy.cmu.edu/software/
/web/20240811152346/http://act-r.psy.cmu.edu/software/
https://doi.org/10.1145/2384592.2384596
https://statistikguru.de/lexikon/bonferroni-holm-korrektur.html
https://statistikguru.de/lexikon/bonferroni-holm-korrektur.html
https://doi.org/10.5281/ZENODO.597045
https://doi.org/10.1111/cogs.12738
https://github.com/dotnet/roslyn/issues/25741
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/bf03354932
https://www.soscisurvey.de
https://www.soscisurvey.de
https://doi.org/10.1109/ase56229.2023.00035

120 bibliography

[39] Jixing Li, Shaonan Wang, Wen-Ming Luh, Liina Pylkkänen, Yiming Yang, and John
Hale. “Cortical processing of reference in language revealed by computational mod-
els.” In: (Nov. 2020). doi: 10.1101/2020.11.24.396598.

[40] Julian N. Marewski and Katja Mehlhorn. “Using the ACT-R architecture to specify 39

quantitative process models of decision making.” In: Judgment and Decision Making 6.6
(2011), 439–519. doi: 10.1017/S1930297500002473.

[41] Norman Peitek, Janet Siegmund, and Sven Apel. “What Drives the Reading Order
of Programmers?: An Eye Tracking Study.” In: Proceedings of the 28th International
Conference on Program Comprehension. ICPC ’20. ACM, July 2020. doi: 10.1145/3387904.
3389279.

[42] Nancy Pennington. “Stimulus structures and mental representations in expert compre-
hension of computer programs.” In: Cognitive Psychology 19.3 (July 1987), pp. 295–341.
issn: 0010-0285. doi: 10.1016/0010-0285(87)90007-7.

[43] Dieter Rasch and Volker Guiard. “The robustness of parametric statistical methods.”
In: Psychology Science 46 (2004), pp. 175–208.

[44] Ben Shneiderman. “Measuring computer program quality and comprehension.” In:
International Journal of Man-Machine Studies 9.4 (1977), pp. 465–478.

[45] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.
“Measuring and modeling programming experience.” In: Empirical Software Engineering
19.5 (Dec. 2013), pp. 1299–1334. issn: 1573-7616. doi: 10.1007/s10664-013-9286-4.

[46] Elliot Soloway and Kate Ehrlich. “Empirical Studies of Programming Knowledge.”
In: IEEE Transactions on Software Engineering SE-10.5 (Sept. 1984), pp. 595–609. issn:
0098-5589. doi: 10.1109/tse.1984.5010283.

[47] Niels A Taatgen and John R Anderson. “Constraints in cognitive architectures.” In:
Cambridge handbook of computational psychology (2008), pp. 170–185.

[48] Niels Taatgen and Hedderik van Rijn. “Nice graphs, good R2, but still a poor fit? how
to be more sure your model explains your data.” In: Proceedings of the 2010 International
Conference on Cognitive Modeling. Citeseer. 2010, pp. 247–252.

[49] Niels Taatgen and Hedderik van Rijn. “Traces of times past: Representations of
temporal intervals in memory.” In: Memory & Cognition 39.8 (May 2011), pp. 1546–
1560. issn: 1532-5946. doi: 10.3758/s13421-011-0113-0.

[50] Tim Tiemens. “Cognitive Model of Program Comprehension.” In: Software Engineering
Research Center Technical Report (1989).

[51] Northeastern University. Gender Inclusive Language in Research. 2023. url: https:
//research.northeastern.edu/app/uploads/sites/2/2023/03/Gender-Inclusive-

Language-02.08.2023.pdf (visited on 04/26/2024).

[52] A. Von Mayrhauser and A.M. Vans. “Program comprehension during software main-
tenance and evolution.” In: Computer 28.8 (1995), pp. 44–55. doi: 10.1109/2.402076.

[53] Stefan Wagner and Marvin Wyrich. “Code Comprehension Confounders: A Study
of Intelligence and Personality.” In: IEEE Transactions on Software Engineering (2021),
pp. 1–1. issn: 2326-3881. doi: 10.1109/tse.2021.3127131.

https://doi.org/10.1101/2020.11.24.396598
https://doi.org/10.1017/S1930297500002473
https://doi.org/10.1145/3387904.3389279
https://doi.org/10.1145/3387904.3389279
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1109/tse.1984.5010283
https://doi.org/10.3758/s13421-011-0113-0
https://research.northeastern.edu/app/uploads/sites/2/2023/03/Gender-Inclusive-Language-02.08.2023.pdf
https://research.northeastern.edu/app/uploads/sites/2/2023/03/Gender-Inclusive-Language-02.08.2023.pdf
https://research.northeastern.edu/app/uploads/sites/2/2023/03/Gender-Inclusive-Language-02.08.2023.pdf
https://doi.org/10.1109/2.402076
https://doi.org/10.1109/tse.2021.3127131

bibliography 121

[54] Dirk Wentura, Christian Frings, and Bernd Dirksmöller. Kognitive Psychologie. Springer
Fachmedien Wiesbaden GmbH, 2012. isbn: 9783531166971.

[55] Rand R Wilcox. Introduction to robust estimation and hypothesis testing. Academic press,
2012.

[56] Marvin Wyrich. Source Code Comprehension: A Contemporary Definition and Conceptual
Model for Empirical Investigation. 2023. arXiv: 2310.11301 [cs.SE].

https://arxiv.org/abs/2310.11301

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Overview

	2 Background
	3 Methodology
	3.1 Cognitive Model for Code Comprehension
	3.1.1 Framework
	3.1.2 ACT-R Model

	3.2 Testing Tasks
	3.2.1 Repeated Code
	3.2.2 Declaration near Usage
	3.2.3 Interactions

	3.3 Research Questions
	3.3.1 Artefacts Effects
	3.3.2 Cognitive Model Explanation

	3.4 Study Material
	3.4.1 Code Snippets
	3.4.2 Intermediate Tasks
	3.4.3 Socio-Demographic Survey

	3.5 Design and Testing Phase
	3.6 Data Mining
	3.6.1 Collection
	3.6.2 Exclusion Criteria
	3.6.3 Preparation
	3.6.4 Simulation

	3.7 Evaluation
	3.7.1 Artefacts
	3.7.2 Cognitive Model Fitting
	3.7.3 Model Evaluation

	3.8 Integration in the Conceptual Model

	4 Evaluation
	4.1 Results
	4.1.1 Data Collection
	4.1.2 Participant Characteristics
	4.1.3 Effects in Empirical Data
	4.1.4 Model Fitting
	4.1.5 Model Evaluation

	4.2 Discussion
	4.2.1 Artefacts
	4.2.2 Socio-Demographic Data
	4.2.3 Model Fitting
	4.2.4 Model Evaluation
	4.2.5 Why Should We Care? Analysing the Relevance of Our Findings

	4.3 Threats to Validity

	5 Related Work
	6 Concluding Remarks
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Model Extension
	6.2.2 Snippet Modification
	6.2.3 Replication Studies
	6.2.4 Modularity

	A Empirical Results Single Snippets
	B Accuracy Parameter Tuning activation noise s for Single Snippets
	C Accuracy Parameter Tuning retrieval threshold, activation noise s and latency factor for Single Snippets
	D Comparison of Simulated Data and Empirical Data for Single Snippets
	 Bibliography

