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Abstract

Research on program comprehension has increased drastically over the years, and more
and more studies are choosing recursive code as a subject of interest. Arbitrary input
sizes endanger the validity of those experiments since the effect of specific input sizes on
performance has not been explored yet. A systematic investigation is needed to analyze the
impact of input size on program comprehension. Our experiment fills that gap by providing
insight into how and to what extent the input size of a recursive function affects the
correctness, response time, and eye movements of participants. We conducted a controlled
laboratory experiment involving twelve computer science undergraduates with comparable
programming experience. Each participant was asked to calculate the output of 15 recursive
Java code snippets, which varied in recursion type and input size. During the experiment, we
measured correctness, response time, and visual attention. The results revealed significant
effects correlating with cognitive load. Our analysis indicates that larger input sizes can
significantly reduce correctness and increase response times. Furthermore, tree recursive
functions were shown to strengthen these effects, especially at higher input sizes. Apart
from the number of fixations, we detected no significant differences in visual attention.
Our results can serve as a basis for determining suitable input sizes for recursive functions
in upcoming program comprehension experiments, potentially enhancing their validity,
methodology, and comparability.
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1
Introduction

Program comprehension is a crucial cognitive process that involves understanding and
interpreting code. Today, there is more research on the topic than ever. The number of papers
published on the subject increased drastically over the last few years [48]. By understanding
the cognitive process, researchers aim to provide suitable tools, programming languages,
and coding conventions to support developers in their everyday work [37]. Moreover, un-
derstanding the cognitive process of program comprehension is essential to improve the
teaching of programming concepts [37].
One key programming concept is recursion. A recursive function is specified as a function
that calls itself in its body [32]. At many universities, it is comprehensively taught early on
in the first few computer science lectures and is widely spread among advanced software
development [32]. Due to its importance, several software engineering studies use recursion
with specific inputs as a material in their code snippet selection [1, 20, 28]. However, none
of them consider the effect of different input sizes on their results since this has not been
systematically analyzed in research yet.

To fill this research gap and gather information about the subject, we conducted an
experiment to evaluate the effect of different input sizes of recursive functions on program
comprehension. We conducted a controlled lab experiment involving twelve computer
science undergraduates with similar programming experience. Specifically, we consider
correctness, response time, and visual attention during the program comprehension process
to understand how and to what extent different input size affects those variables. In former
times, software engineering research was forced to rely on surveys and think-aloud protocols
to measure task performance [35]. Today, in the neuroage, a variety of measuring tools
are available, among which eye-tracking stands out as a valuable resource [3, 27]. Today,
eye-tracking has been widely recognized as a standard tool for the examination of program
comprehension [36]. By utilizing eye-tracking technology, we can effectively monitor visual
attention and analyze cognitive effort through the collection of eye movement data [30].
Measuring correctness, response time, and visual attention enables us to assess the cognitive
demands novice programmers face when understanding recursive functions with various
input sizes.

Our results indicate that larger input sizes in recursive functions significantly increase
response times and the number of fixations and reduce correctness among novice program-
mers. Although eye-tracking data showed trends of longer fixation durations and a rising
number of fixations per second with larger inputs, these changes were not statistically
significant. Furthermore, we found that the type of recursion affects the effect of input
size on the correctness of novice programmers. Especially for tasks with tree recursive
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2 Introduction

functions, correctness declined sharply as input size grew compared to other types of
recursive functions.

Multiple studies use an unspecific input n for their recursive code snippets [23, 46]. With
research about specific inputs, we aim to improve the comparability of future program
comprehension studies using recursive code by supporting the determination of a suit-
able input size for their applied recursive functions. While there is an increase in papers
discussing threats to validity in program comprehension regarding threats [34] such as
identifier naming, experience, and eye tracking [48], none of those mention the specific
choice of input size. By gathering more information on the topic, our experiment allows for
better isolation of results, which enhances the validity and methodology of future program
comprehension studies. In addition to improving general experiments on program compre-
hension, our research offers valuable insights for future investigations into the impact of
input size on program comprehension. A more in-depth analysis could benefit from the
inclusion of additional eye-tracking metrics, such as linearity and reading order, to gain a
more comprehensive understanding of visual attention patterns. Furthermore, expanding
the participant pool beyond the scope of this study would enhance the statistical power
of results, enabling the detection of more subtle effects that may have been overlooked in
our current investigation. These extensions will contribute to a deeper and more nuanced
understanding of how input size and type of recursion collectively influence program
comprehension among novice programmers.



2
Background and Related Work

This chapter outlines fundamental concepts that are essential for understanding the re-
lationship between input size and program comprehension in novice programmers. It
addresses types of recursion and the cognitive load theory and gives an introduction to the
fundamentals of eye-tracking.

2.1 Recursion

Recursion is an important mathematical concept widely spread in software development [31].
A recursive function is specified as a function that calls itself in their body [14].

2.1.1 Types of Recursion

Recursive code can utilize different types of recursion. One major distinction is made be-
tween direct recursion and indirect recursion. Indirect recursion requires at least two functions
that call themselves mutually, whereas direct recursion needs only one function that directly
calls itself within its own body [14]. In this study, we exclusively consider direct recursion
since it is mostly used in simple code snippets and introductory computer science courses.
Direct recursion can further be split into the following subgroups [14]:

• Linear Recursion
A linear recursive function is a recursive function that calls itself no more than once
in its body [39]. A particular case of linear recursion is tail recursion. A tail recursive
function is a recursive function in which the last action of a method is a recursive
call [39]. Listing 2.1 shows a linear recursive function that is not tail recursive, while
Listing 2.2 shows a linear recursive function that is also tail recursive.

Listing 2.1: Linear Recursive Function, Which Is Not Tail Recursive

static int a(int n) {

if (n <= 1)

return 1;

return n * a(n - 1);

}

Listing 2.2: Linear Recursive Function, Which Is Also Tail Recursive

3



4 Background and Related Work

static int b(int n, int result) {

if (n <= 1)

return result *1;

return b(n - 1, result * n);

}

• Tree Recursion
A tree recursive function is a function that calls itself at least twice [39].

Listing 2.3: A Tree Recursive Function

static int c(int n) {

if (n <= 1)

return 1;

return c(n-1) + c(n-1);

}

• Nested Recursion
A nested recursive function is a function where one of the arguments to the recursive
function is the function itself.

Listing 2.4: A Nested Recursive Function

static int d(int n) {

if (n <= 1)

return 1;

return n * d(d(n-1));

}

Given the varying degrees of performance and simplicity, it is plausible that different types
of recursion distinctly impact comprehension processes [18]. Consequently, categorizing
and comparing results based on recursion type is essential to identify and analyze potential
differences.

2.2 Cognitive Load Theory

Cognitive Load Theory (CLT) is a psychological theory established by educational psychologist
John Sweller in the late 1980s [41]. Based on this foundational work, further research
examined the constraints of human working memory and how instructional design can be
refined to improve learning by addressing these limitations [7].

The cognitive load measures are an important developer-centric indicator in software
engineering [13]. Whereas in software engineering, there is no specific definition, cognitive
load generally refers to the mental effort users spend while reading software artifacts or
cognitive processing tasks [13]. Previous research examines the difficulties encountered
by programmers in managing complex programming jobs, emphasizing that heightened
complexity in recursion adds to cognitive load [13].
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2.3 Program Comprehension

Currently, there are so many studies on program comprehension that it can be easily overlooked
what those studies measure when they speak about the process of comprehension. This
confusion is especially relevant since we cannot directly observe how well somebody
understands code. In 2023, Wyrich provided a contemporary definition for the term program
comprehension. In our study, we will follow his definition and, therefore, refer to program
comprehension as "a person’s intentional act and degree of accomplishment in inferring the
meaning of source code."

2.3.1 Top-Down vs. Bottom-Up Comprehension

Program comprehension uses a mixture of two comprehension processes: top-down com-
prehension and bottom-up comprehension. Top-down processes typically happen when the
programmer has knowledge about the domain of a program. Bottom-up processes happen
when the programmer has insufficient domain knowledge and lead to comprehension — as
indicated by the name — from the bottom up. That means processing the code character-by-
character until the developer can integrate them into higher-level abstractions [22].

For this experiment, we aimed to prevent mainly taking advantage of knowledge about
the domain of a program. Therefore, we enforced bottom-up comprehension within the
code snippets.

2.4 Threats to Validity in Program Comprehension
Studies

In Chapter 1, we already mentioned that our experiment offers the option to improve the
validity of future program comprehension experiments. Thus, we clarify the term threats to
validity. We use the classification from Marvin Wyrich, Justus Bogner, and Stefan Wagner [48].
According to their research, threats to validity can be split into four subgroups:

1. Internal validity
refers to the extent to which the treatment or independent variable(s) were actually
responsible for the effects seen on the dependent variable, e.g., threatened by technical
issues

2. External validity
refers to the degree to which the findings of the study can be generalized to other
participant populations or settings, e.g., threatened the knowledge of participants,
such as programming experience

3. Construct validity
refers to the degree to which the operationalization of the measures in a study actually
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represents the constructs in the real world, e.g., threatened by an experiment-specific
task description

4. Conclusion validity
refers to whether the conclusions reached in a study are correct, e.g. threatened by
data inconsistency

In Chapter 5, we will discuss threats to internal, external, construct, and conclusion validity
regarding our experiment.

2.5 Eye-Tracking Fundamentals

Eye-tracking is referred to as the collection of eye movement data. It is an effective tool to
collect evidence regarding the cognitive processes and visual attention of participants [36].
This section gives an overview of the fundamentals of eye-tracking.

2.5.1 History

Traditionally, eye tracking has been used in cognitive psychology to study information
processing tasks [30]. The first study in software engineering history using eye-tracking
as a measuring tool was published in 1990 by Crosby et al. [36]. They studied program
comprehension of procedural code and used the eye-tracker to discover the reading strategies
of participants. While eye-tracking was expensive and complicated to use back then, over the
years, eye trackers became more versatile, easy to use, and cheaper devices with satisfying
software support, which led to increased recognition in software engineering since 2006 [35].
From that year on, it was established as a standard tool to study comprehension, debugging,
collaborative interaction, and traceability [36]. Figure 2.1 overviews important dates in
eye-tracking history.

2.5.2 Assumptions

Eye-tracking is based on two assumptions [17]: the immediacy assumption and the eye-mind
assumption. The immediacy assumption implies that as soon as a participant sees a stimulus,
they try to interpret it. A stimulus can be any object; in our case, it is the particularly
presented source code snippet. The eye-mind assumption implies that a participant fixates
their attention on a stimulus until they understand it.

With the help of those two assumptions, we can conclude that cognitive processes guide
the visual attention of a participant to specific locations. Therefore, eye-tracking gives us
the possibility to study those cognitive processes and effort while performing tasks such as
comprehending code [35]. According to research by Obaidellah et al. and Sharafi et al. it
helps researchers determine (1) why participants have problems finishing a task, (2) where
participants expect to find specific elements, (3) whether elements are distracting, (4) how
efficiently a design, layout, or artifact guides participants through a task, (5) whether there
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Figure 2.1 Important Years for Eye-Tracking Research in the Field of Software Engineering[35]

1898 • First eye-tracker by Edmund
Huey

1937 • First recording of eye
movements by Buswell

1979–89s • Eye-tracking research in the
field of psychology
flourished

1990 • First eye-tracking paper in
software engineering

2006–now • Increasing number of
eye-tracking studies in
software engineering

are differences in the efficiency of a participant, based on their demographics or expertise,
and (6) whether participants focus on details or briefly scanned the stimuli [35].

2.5.3 Eye-movement Classification

Eye movements are classified with the following terms, based on prior research [10, 15, 30,
36]:

• Fixation:
A fixation is the stabilization of the eye on a part of the stimulus for a period of
time for a longer [36]. The fixation data is provided by a time stamp and x and y
coordinates. Research in the field of psychology shows that during fixation, the most
cognitive processes and information acquisitions occur [10][15]. Readers primarily
extract detailed information from the word they are directly fixating on and their
following word. [30].

• Saccade:
A saccade is the fast movement between fixations, usually for a period of time between
40-50 milliseconds [36]. According to research in the field of psychology, during
saccades, information acquisition, and cognitive processing are very limited [10, 15].

• Scan-path:
A scan path is a series of fixations on specific areas in chronological order [36].

This classification focuses on fixation, saccade, and scan-path as they are most relevant to the
current context. Other types of eye movements, such as smooth pursuit or vestibulo-ocular
movements, exist but are beyond the scope of this experiment.



8 Background and Related Work

Over the last decades, research in the field of psychology has proposed a distinction
between two visual processing systems [15]:

• Ambient Mode
The ambient mode is characterized by short fixations and long saccades and typically
occurs during the initial stages of viewing. During ambient mode, individuals rapidly
scan the environment to identify key areas of interest to efficiently navigate and focus
on specific elements in subsequent viewing phases.

• Focal Mode
The focal mode is classified as a period of time in which longer fixations and shorter
saccades take place. It is capable of object identification and semantic categorization.
This period usually appears during later viewing periods.

2.6 Eye-Tracking Data Analysis

Interpreting eye-tracking data in domains such as software engineering, specifically in
program comprehension, is a challenging undertaking because of the large volume of raw
data and various levels of abstraction required for helpful analysis. In order to simplify this
issue, eye-tracking data can be classified into four distinct levels: first, second, third, and
fourth-order data [35].

First-Order Data First-order data refers to the raw, unfiltered Eye-Tracking data, e.g.,
the x and y coordinates of each gaze point mapped to a location on the stimulus with their
corresponding timestamp. Various studies also measure Pupil diameter and eye blinks as
first-order data [35]. Since this type of data is inherently noisy and prone to environmental
factors (such as lighting conditions) and therefore contains invalid data, it requires cleaning
and preprocessing before analysis [40]. Common techniques include removing outliers and
recalibrating erroneous fixations.

Second-Order Data Second-order data is derived from first-order data with the help of
event detection algorithms. It involves the classification of eye movements into fixations
and saccades based on spatial and temporal criteria, which is crucial to investigating the
cognitive processes during visual tasks [35].

Third- and Fourth-Order Data Third- and fourth-order data is obtained by analyzing
second-order data. From the classification of eye movements into fixations and saccades,
various quantitative metrics can be derived to assess visual attention and cognitive process-
ing during tasks [35, 36, 49]. These metrics are classified as third-order data if they concern
quantifying fixations or saccades, or fourth-order data if they describe the sequence of these
events [43]. Key third-order metrics include:

• Fixation Count This metric represents the total number of fixations on the stimulus
recorded during the task. In the context of program comprehension, a higher fixation
count on certain code segments may indicate areas where participants allocate more
attention, possibly due to complexity or difficulty [35].
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• Mean Fixation Duration The mean fixation duration refers to the length of time,
typically measured in milliseconds, that the eye remains stationary during a fixation.
Longer mean fixation durations can be associated with deeper cognitive processing
or difficulty in interpreting the information being viewed. In software engineering,
prolonged fixation durations on code elements may reflect the cognitive effort required
to understand complex logic or unfamiliar syntax [35].

• Fixations per Second Also known as fixation frequency, this metric is calculated by
dividing the total number of fixations by the total time spent on the task, yielding an
average rate of fixations per second. A higher fixation rate per second may indicate a
more active search strategy or increased effort in processing visual information [49].

Fourth-order data represents the highest level of abstraction in eye-tracking analysis. It
describes the general reading order and search strategy and is also known as scan paths [43].
One way to visualize a scan path is shown in Figure 2.2.

Figure 2.2: Example Scan Path for a Short Code Snippet





3
Methodology

This chapter describes the methodology of the thesis core evaluation, outlining the analysis
goal, research questions, and experiment design.

3.1 Research Questions

RQ1: How does the input size affect students’ response times and correctness when under-
standing recursive functions?

RQ2: How does input size affect students’ visual attention when understanding recursive
functions?

RQ3: Do different types of recursion affect the effect of input size on students’ response
times and correctness when understanding recursive functions?

RQ4: Do different types of recursion affect the effect of input size on students’ visual
attention when understanding recursive functions?

By proposing those research questions, we investigate to what extent input size affects the
results of a program comprehension study and, therefore, aim to support the determination
of a suitable input size for future code snippets. Moreover, the analysis of aspects other than
input size in following program comprehension studies can be isolated better by abstracting
input size as a source of irritation.

As elaborated in Section 2.5, eye tracking is an additional tool to give us insight into the
cognitive processes of participants since those guide visual attention to specific locations.
It allows us to study effort while performing the given task and to gather information
about the intentions of participants. Furthermore, it can tell us why participants have
problems executing a task, where to find specific elements, and whether they are distracting
factors [35].

3.2 Independent Variables

Our measurements depend on multiple factors:

1. Type of recursion:
The snippets were categorized by their applied recursion type since we expected
different results for each group. We differentiated between linear recursion, tail

11
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recursion, binary tree recursion, and nested recursion. Their differences were included
in our evaluation, and the results are compared among and between each group.

2. Input Size:
Each snippet was evaluated across four distinct input sizes to assess performance
systematically under varying computational complexities. Specifically, for each snippet,
we selected four input sizes to ensure that the recursive tree of the methods exhibited
the following depths:

• Input Size 1: Recursive tree depth of 3

• Input Size 2: Recursive tree depth of 4

• Input Size 3: Recursive tree depth of 5

• Input Size 4: Recursive tree depth of 6

Additionally, regarding tree recursion, one particular snippet (Snippet B.15) was
designed to start with a recursive tree depth of 2 for input size 1, incrementing to a
depth of 3 for input size 2, and so on. This adjustment was made to keep the snippet
sufficiently simple, facilitating easier problem-solving while still providing meaningful
data.

We determined a recursive tree depth of three as a minimum so that participants spent
at least some time on comprehension and a recursive tree depth of six as a maximum
so that the task was still solvable without pen and paper. In Section 3.5, we discuss
more snippet details.

3.3 Setup

Figure 3.1: Tobii Eyex Tracker1

Using an eye tracker to answer our research questions required an in-person lab experiment.
Participants were presented with 15 different code snippets that varied in terms of recur-
sion type and input size. The study involved within-subject factors, as each participant
experienced all levels of recursion types and input sizes across the snippets. However,
although the same snippets were shown to all participants, the input size for each snippet
varied. This variation makes the combination of input size and snippets a between-subject
factor. Therefore, the study employs a mixed design that combines both within-subject and
between-subject comparisons.

Since the participants could recognize what a snippet does in advance, we chose not
to show the code with unspecific input beforehand. Instead, the input was provided by
directly assigning a value to a variable in the code line.
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For our experiment, we used the Tobii Eyex1 eye tracking device pictured in 3.1. The choice
of eye tracker can make a crucial difference in the resulting data [9]. Given that over half of
the research conducted between 1990 and 2023 included a Tobii eye tracker, our selection is
both comparable and facilitates simpler replication. The Tobii Eyex belongs to the newer
generation of non-intrusive eye trackers. Compared to an intrusive eye tracker, it is video-
based and works with Backlight Assisted Near Infrared Technology. The computer tracks
eye movements by evaluating the positions of the participant’s head using eyebrows, noses
and lips, corneal reflection, and pupil center [36].

With a tracking population of 95%, frequency of 70 Hz, and 0.5-degree accuracy, the Tobii
EyeX delivers reliable results. Before the experiment, the eye tracker was calibrated for each
participant using the software provided by the manufacturer. We placed the participants
at an ideal distance of 50-60 cm in front of a 2560x1440 screen. Visual distractions were
limited to avoid participants looking at other stimuli and consequently contaminating
eye-movement data. A custom C# program previously used for several other experiments [2,
29] guided the participants through the calibration process, demographic questions, task,
and code snippets while capturing response time, answers and eye movements.

3.4 Execution

3.4.1 Pre-Study

To gain a sense of how long the provided task takes to solve for each snippet and to find
out how many snippets are needed for our experiment, we conducted a pre-study in which
we presented several example snippets to three computer science undergrad students. On
average, it took them roughly 90-120 s to solve a single task.

According to previous research in the field of psychology, an eye-tracking session should
last no longer than 90 minutes due to changes in physiology, e.g., dryness caused by
fatigue [35]. The general rule is that if a session is longer than 30 minutes, participants
should be given time to relax their eyes between successive stimuli [35]. This will prevent
the overexhaustion of participants, which will lead to unreliable results. Considering our
pre-study with about 90-120 seconds of processing time, we were able to present fifteen
code snippets per person in the given time frame.

3.4.2 Task

The participants were tasked with determining the output of their print statements for a
total of 15 different code snippets.

1 https://help.tobii.com/hc/en-us/articles/212818309-Specifications-for-EyeX
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Presentation and Distribution of Snippets After an initial warm-up task (see B.16,
participants reviewed the 15 code snippets consecutively. Each snippet was presented with
one of the four distinct input sizes (ranging from 1 to 4), ensuring that every participant
received an input size from 1 to 4 for each snippet. This method guaranteed that each
participant encountered a mix of simple and challenging inputs, balancing the cognitive
load throughout the session. The detailed order in which each code snippet was presented
is listed in the Appendix (see Table B.17).

Data Collection The snippets were distributed in such a way that, after 12 participants,
we accumulated three data points for each snippet-input combination. This distribution
strategy provided robust and reliable data for each scenario, facilitating a thorough analysis
of how input size influences the cognitive processes involved in mentally executing recursive
calls.

During the presentation, participants were prohibited from writing down or altering
their initial answers, as the study aimed to investigate the cognitive processes involved in
mentally executing recursive calls without external aids. The entire process is visualized in
Figure 3.2.

Figure 3.2: Visualization of the Task with N Code Snippets

3.4.3 Participants

To provide an initial insight into our topic, a small amount of twelve participants were
gathered to take part in our main experiment. Recruiting more participants meant there
would be more gathered data, but the study would also be challenging in the constrained
time frame of a bachelor’s thesis.
Every participant needed to have a similar level of programming expertise, as varying levels
of experience can result in differences in accuracy, response times, and eye movements
when comprehending recursive programs [28]. Hence, variation in experience makes results
between subjects less comparable. Furthermore, participants needed to be able to under-
stand simple code snippets and algorithms. An appropriate sample consisted of students
who were actively enrolled in the Bachelor of Computer Science or an equivalent program
throughout the duration of the study. Students, in general, are relatively easy to recruit for
research purposes and possess sufficient knowledge to participate in the experiment. In
addition, the criteria were validated by exclusively selecting individuals for our study who
had successfully completed the "Programming 2" course.

To check that the participants were suited for the study and to add supplementary
data to put the results into perspective, they completed a pre-experimental questionnaire on
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demographics and programming experience. Summarized, eight out of twelve participants
were male, and four were female. Since the male/female ratio in computer science programs
at our university is roughly 75/25, our participant rate is close to representing this gender
distribution. All of the participants had achieved a High School Diploma and were between
21 and 23 years old. Regarding Java knowledge, most of them have reported project
experience (7), followed by basic knowledge (3) and regular knowledge (2), with an average
of 1.5 years of Java experience and an average of four years of total programming experience.
Figure 3.3 visualizes the age distribution, java experience, and total programming experience.
Beyond two participants wearing glasses, no further eye problems were classified.
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17

18

19

20

21

22

23

24

Ag
e

Java Experience

1

2

3

4

5

6

7

8

Ye
ar

s

Total Programming Experience

2

3

4

5

6

7

8

Ye
ar

s

Figure 3.3: Visualization of Participants’ Age and Programming Experience

3.4.4 Post-Questionnaire

Following the primary experiment, the participants were required to answer a post-questionnaire
during an interview. It was conducted to obtain further insights and observations to aid
in answering the proposed research questions. We aimed to gather information on the
perceived difficulties of participants’ problem-solving tactics and gaze strategies while
considering the recursive depth of the snippets. The questions are listed in Table 3.1.

3.4.5 Deviations

During the course of the study, we encountered technical issues that resulted in the loss of
two eye-tracking data points. This affects one out of three planned data points of Snippet B.1
with input size 4 and one out of three planned data points Snippet B.5 with input size 4.

Furthermore, during the evaluation process, code snippet B.14 was excluded to maintain
the integrity and consistency of our study. This exclusion was necessary because the versions
of the task corresponding to input sizes 2, 3, and 4 inadvertently included an additional line
of code that was absent in the input size 1 version.
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Table 3.1: Questions Asked In the Post-questionnaire of the Primary Experiment

Main Question Subquestions

How did you find the study? Please describe your experience with the code snip-
pets. Which snippets felt hard and which felt easy
to you? What other difficulties did you experience?

Our main goal is to study the effect
of input sizes and depth on visual
attention, correctness, and response
time while understanding recursive
functions. Did the input size or re-
cursive depth alter the difficulty of
your output calculation for the task?

How did the input size or recursive depth of
the functions affect response time and correctness
while solving the task?

Regarding input size and recursive
depth, describe your thought process
to find the output.

Did you try to understand the general functionality
of the code first, or did you go through the code
step by step? Did that differ with input size or
recursive depth?

How did the input size or recursive
depth affect gaze strategies and the
line reading order?

Did you adopt a specific gaze strategy while navi-
gating through the code snippets? Did that differ
with the input size or recursive depth?

Share your general impressions. Do you have any additional observations, insights,
or thoughts regarding the input size or depth of re-
cursive functions in program comprehension that
could be relevant to our findings?
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3.5 Code Snippets

Using code snippets from existing studies is powerful to compare results and prove their
validity [48]. Marvin Wyrich, Justus Bogner, and Stefan Wagner delivered eligible code
snippets already used in one of their program comprehension experiments. In addition
to adapting those, we expanded the collection with our snippets, respecting homogeneity
concerning potential confounders. Table 3.2 lists all collected snippets.

3.5.1 Criteria

We propose the following criteria for consistency oriented on the collection of criteria from
Marvyn Wyrich, Justus Bogner, and Stefan Wagner [48]:

• Written in Java
Java is an ideal language for our experiment since it is widely spread and the most
used programming language in program comprehension studies with or without eye
tracking [36, 48].

• Simple number as input
Simple numbers given as integer or string input are the plainest inputs for answering
our research questions. Reducing the inputs to only one type makes the code snippets
simple and consistent.

• Novice friendliness
Most of our ideas came from everyday beginner programming tasks, typical textbook
problems, or algorithms known to novice programmers.

• Simplicity
The snippets needed to be small enough to be understood in under two minutes but
large enough to require some effort. Furthermore, they must fit on a single screen to
avoid scrolling, which our eye-tracking evaluation strategy does not support.

• Minimization of unrelated factors
The influence of unrelated factors, such as naming styles or formatting, had to be
minimized. Consequently, those factors were made consistent.

3.5.2 Enforcing Bottom-Up Comprehension

As Section 2.3.1 explained, the snippets were adjusted for bottom-up comprehension. Hence,
it was important to force participants to comprehend the code statement by statement.
One confirmed way to do this is by obscuring identifier names [29]. Rather than selecting
meaningful names that indicate their intended usage, the code snippets use alphabetically
sorted meaningless character names for variables and method names.
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The Following snippets are examples that fulfill the snippet criteria:

Listing 3.1: Example Code Fragment Tree Recursion: Calculation of the nth Fibonacci Number

public static void main(String[] args) {

int n = 3;

System.out.println(method(n));

}

static int method(int n) {

if (n <= 1)

return n;

return method(n-1) + method(n-2);

}

Listing 3.2: Example code fragment Linear Recursion: Calculation of the faculty of n

public static void main(String[] args) {

int n = 3;

System.out.println(method(n));

}

static int method(int n) {

if (n == 0)

return 1;

return n * method(n-1);

}

3.6 Dependent Variables

The dependent variables are:

1. Response correctness:
Since the research focus of the experiment, which answers the research questions in
Section 3.1, is the effect of input size on program comprehension, it is essential to
focus on semantic correctness to determine if comprehension took place. Following
this, the answers of participants were evaluated manually.

2. Response time:
The period considered as response time begins with the participant seeing the re-
spected source code snippet for the first time and ends with the participant entering
the result.

3. Eye movements:
Based on the immediacy and eye-mind assumptions, as explained in Section 2.5.2,
participants fixate their attention on a stimulus until they understand it. Therefore,
eye tracking is a great tool to measure cognitive load and visual attention to answer
the proposed research questions in Section 3.1.
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Table 3.2: Snippet Overview Grouped by Type of Recursion and Their Subject

Type of recursion Subject LoC

Linear Recursion Factorial 10

Decimal to binary 11

Triangular number 10

Sum of digits 10

Logarithm 11

Linear Recursion: Tail Recursion Prime factors 13

Reverse Numbers 11

Is number a Palindrome? 17

Countdown 10

Test if 2 digits sum up to 5 18

Tree Recursion Fibonacci 10

Modified towers of Hanoi 12

Sequence 1 12

Biggest Number 20

Sequence 2 14

Nested Recursion (warm-up snippet) Calculation 10
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3.7 Evaluation

This chapter presents our data analysis methodology.

Eye Tracking Data Analysis Our custom C# program gathers the raw and unfiltered
eye-tracking data. This so-called first-order data (see Section 2.6), in our case, contains the
x and y coordinates of each gaze point mapped to a location on the stimulus with their
corresponding time stamp. After preprocessing the data to remove invalid data points and
noise, fixation and saccade data are derived from the cleaned dataset (so-called second-order
data). To evaluate visual attention and cognitive processes, we analyze the data using several
key third-order metrics. These include Fixation Count, Mean Fixation Duration, and Fixation
Count per Second. We chose Fixation Count as a relevant metric since a higher number of
fixations on a stimulus indicates that more attention is required to process the stimulus and,
therefore, gives us insight into the task’s complexity and difficulty [35]. The same applies
to the Mean Fixation Duration since fixation durations reflect the cognitive effort needed
to comprehend logical problems [35]. Furthermore, we analyzed the Fixation Count per
Second because a higher fixation rate per second can indicate a more active search strategy
and increased effort in processing visual information [49]. The metrics are detailed in the
Background (see Section 2.6).

Statistics To determine the significance of our results, we applied several statistical tests
based on our data. We employed a standard significance level of 0.05 for the tests to balance
the risk of false positives while ensuring that the findings are statistically meaningful and
not due to random chance.

Shapiro-Wilk: The Shapiro-Wilk test is a statistical test used to assess the normality
of our data [33]. We employed the Shapiro-Wilk test, due to its high power and effec-
tiveness for the analysis of small sample sizes, to verify that our data is not normally
distributed, thereby ensuring that our subsequent statistical analyses are appropriately
chosen based on the underlying data characteristics. A standard significance level of
0.05 was used to reject the null hypothesis of normality. The results were calculated
using the scipy python package [45].

Kruskal-Wallis: The Kruskal-Wallis test is a non-parametric statistical test used to
determine if there are statistically significant differences between two or more groups
on a particular metric when the data is not normally distributed and ordinal [19]. We
chose this test for our first and second research questions since we have four groups
of input sizes to compare, and our data is not normally distributed but ordinal. The
results were calculated with the scipy python package [45].

Dunns: The Dunn’s test is suitable as a bi-directional post-hoc test after the Kruskal-
Wallis test to discover which groups are significantly different from one other [11].
The Dunn’s test compares each pair of groups and returns p-values for the differences
between them. We applied the False Discovery Rate (FDR) correction to adjust for
multiple comparisons, controlling the expected proportion of false discoveries [4]. The
results were calculated with the scikit_posthocs python package [42].
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Two-way ANOVA: The two-way ANOVA is used to evaluate the effect of two in-
dependent categorical variables on a continuous dependent variable [25]. It helps
determine whether each independent variable significantly influences the dependent
variable on its own and whether there is a significant interaction between the two
independent variables. We chose this test for our third and fourth research questions
to find interaction effects between the type of recursion and input size on the collected
gaze data. The results were calculated with the statsmodels python package [38].

Tukey HSD: In the context of a two-way ANOVA, if significant main effects or
interactions are detected, the Tukey HSD test can be employed as a post-hoc analysis
to identify which specific pairs of group means are significantly different from each
other [44]. The results were calculated with the statsmodels python package [38].

Cliff’s Delta: The Cliff’s Delta test is a non-parametric effect size measure that quanti-
fies the magnitude of difference between two groups. It represents the probability that
a randomly selected value from one group is higher than a randomly selected value
from the other, minus the reverse probability [6]. This measure is particularly useful
for ordinal or non-normally distributed data, providing an intuitive interpretation
of the practical significance of the results. We employed Cliff’s Delta to complement
the p-values obtained from the Dunns and Tukey HSD tests, thereby assessing the
statistical significance and the effect size of the differences observed. The results were
calculated using the cliffsDelta Python package [12].





4
Results

This chapter reveals the results of the thesis and addresses the research questions outlined in
Section 3.1. To answer these research questions, we collected data on response time, accuracy,
and the x and y coordinates of eye movements, accompanied by their corresponding
timestamps. The sections in this chapter are organized according to the four research
questions:

Section 4.1: The first section presents data addressing RQ1, focusing on the effect of
input size on response times and correctness.

Section 4.2: The second section addresses RQ2, investigating how input size affects
the visual attention of novice programmers using eye-tracking data.

Section 4.3: The third section combines input size and recursion type to explore their
joint effect on response times and correctness (RQ3).

Section 4.4: The final section examines the interaction of input size and recursion type
on the visual attention of novice programmers (RQ4) based on eye-tracking metrics.

While we focus on the research questions specifically in those sections, the complete
results on task performance and gaze data can be found in the Appendix (see Table A.1 and
Table A.2).

When discussing snippets with an input size of 1, we refer to those with a recursive tree
depth of three. For snippets with an input size of 2, the recursive tree depth is four. For an
input size of 3, the recursive tree depth increases to five, and for an input size of 4, it reaches
a depth of six. For more details on the selected input sizes and exceptions, visit Section 3.4.

4.1 Effect of Input Size on Correctness and Response
Time

This section presents the results based on the behavioral data gathered during the experi-
ment to answer how the input size affects the response times and correctness of novice
programmers when understanding recursive functions, hence addressing our first research
question.

23
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4.1.1 Descriptive Statistics

The descriptive statistics provide an overview of general trends in our behavioral data grouped
by the task input size. We collected data from a total of 180 task instances, with an average
of 45 data points for each input size.

Correctness The proportion of accurate responses diminished as the input size expanded,
indicating a consistent trend of lower performance with bigger inputs. For the minimal
input size (1), participants responded accurately 81% of the time. Nonetheless, as the input
size increased, accuracy diminished to 66.7% for an input size of 2 and further declined to
52.4% for an input size of 3. Notably, at an input size of 4, accuracy increased marginally to
57.1%. However, it continued to be considerably lower than the accuracy for the smallest
input size. We show the detailed results in Table 4.1 and visualize them in Figure 4.1.

1 2 3 4
Input Size

0

20

40

60

80

100

Co
rre

ct
ne

ss
 (%

)

Figure 4.1: Correctness by Input Size

Response Time As input size increased, participants took longer to respond, with a
noticeable increase in the variability of response times. At input size 1, the mean response
time was 49.2 seconds, with a standard deviation of 26.0 seconds, indicating relatively
consistent performance. However, as input size increased, response times grew to 62.7
seconds for input size 2 and further to 76.0 and 99.9 seconds for input sizes 3 and 4,
respectively. The variability in response times measured by the standard deviation also
increased with input size, suggesting that the strategies of participants and their ability to
cope with the complexity of the recursive functions became more varied as the problem
grew more complicated. Interestingly, the mean correct-only response times were generally
lower than the overall response times, particularly for smaller input sizes. Correct responses
were achieved more quickly for input sizes 1 and 2, with mean times of 36.8 seconds and
34.4 seconds, respectively. However, for input sizes 3 and 4, the mean correct-only response
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times showed greater variability, with input size 4 showing a higher time of 44.8 seconds
and the greatest standard deviation (57.4 seconds). We show the mean response times, the
mean response times for correctly answered tasks, and standard deviations in Table 4.1.
Furthermore, we visualize the response times in Figure 4.2 and the response times for
correctly answered tasks only in Figure 4.3.

Table 4.1: Correctness Percentages and Statistics Related to Response Times for Different Input Sizes

Input Correctness Time (s) Correct Only Time (s)

(%) ± SD ± SD

1 81.0 49.2 ± 26.0 36.8 ± 28.9

2 66.7 62.7 ± 42.2 34.4 ± 34.6

3 52.4 76.0 ± 60.2 27.9 ± 32.9

4 57.1 99.9 ± 84.7 44.8 ± 57.4
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Figure 4.2: Response Time for each Input
Size
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Figure 4.3: Correct Only Response Time for each
Input Size

4.1.2 Statistical Tests

Kruskal-Wallis The Kruskal-Wallis test shows whether there are statistically significant
differences in correctness and response time between the different input sizes [19]. The
p-value for correctness (0.034) is below the chosen significance threshold of 0.05, indicating
a statistically significant difference in correctness among the groups based on input size.
Likewise, the p-value for response time (0.009) is below 0.05, indicating a significant
difference in response time among the groups. Table 4.2 outlines the statistical test results
for correctness and response time.

Dunn’s Since the Kruskal-Wallis test indicated significant differences, we used the Dunn’s
test with False Discovery Rate (FDR) correction as a post-hoc test to determine which in-
put sizes lead to significantly different results from each other. The pairwise comparison
between functions with input size 1 and size 3 shows a difference close to significance
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Table 4.2: Kruskal-Wallis Test Results for Behavioral Data

Metric Statistic P-Value

Correctness 8.659 0.034

Response Time 11.467 0.009

in correctness with a p-value of 0.094; however, the difference remains insignificant. The
other comparisons indicate non-significant differences (p-values > 0.05), implying that the
correctness between these groups is not statistically different. We list the complete results
for correctness in Table 4.3.

Dunn’s test for response time provides the p-values between the different input sizes
listed in Table 4.4. The comparison between functions with input size 1 and input size 4

shows a significant difference in time with a p-value of 0.018. Regarding the descriptive
statistics, we can guess that this indicates that participants took significantly longer for
input size 4 compared to input size 1. Additionally, Cliff’s delta analysis for this comparison
yielded a medium effect size of -0.402, suggesting a moderate practical significance of this
difference. Other comparisons show no significant differences. We list the complete results
for response time in Table 4.4.

Table 4.3: Dunn’s Pairwise Comparison P-
values for Correctness

Input 1 2 3 4

1 1.000

2 0.636 1.000

3 0.095 0.636 1.000

4 0.170 1.000 1.000 1.000

Table 4.4: Dunn’s Pairwise Comparison P-
values for Response Time

Input 1 2 3 4

1 1.000

2 0.793 1.000

3 0.179 0.793 1.000

4 0.018 0.179 0.793 1.000

4.1.3 Discussion

Our analysis reveals a clear impact of input size on the correctness and response times of
novice programmers when understanding recursive functions.

Correctness The descriptive statistics show a decline in correctness as the input size rises.
This decline could be attributed to the increased cognitive load associated with processing
more complex recursive calls and deeper recursion levels. The Kruskal-Wallis test confirmed
a statistically significant difference in correctness among different input sizes. However,
the Dunn’s post-hoc test did not identify significant differences between specific input size
pairs. Therefore, we did not calculate effect sizes. This suggests that while the overall effect
of input size on correctness is significant, the differences between individual input sizes may
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be subtle or inconsistent, potentially requiring further investigation with a larger sample
size or more detailed analytical methods.

Response Time Response times consistently increased with input size, and significant
differences with a medium effect size were found between sizes 1 and 4. The combination
of statistical significance and a medium effect size underscores that the increase in response
time is not only statistically detectable but also practically meaningful. Furthermore, in-
creasing standard deviations with larger inputs suggest greater variability in how novice
programmers cope with complexity, potentially reflecting differences in individual problem-
solving strategies or levels of understanding.

The observed decline in correctness and increase in response time with larger input sizes
align with the cognitive load theory (see Section 2.2), which posits that as the amount of
information to be processed increases, so does the associated cognitive load. Recursive
functions with larger inputs likely require participants to maintain more information in
their working memory, leading to increased processing time and a higher likelihood of
errors.

Our post-questionnaire results further support this observation. More than half of the
participants reported that tasks became increasingly difficult as input sizes grew. Nearly
all participants noted that with larger input sizes, they frequently jumped between lines of
code, indicating a greater cognitive effort needed to trace recursive calls.

Furthermore, several participants mentioned that remembering the output and order of
recursive calls posed significant challenges. Hence, this increased cognitive load with larger
input sizes may be attributed to the restriction on note-taking, which led to participants
depending more heavily on their memory.

We did not find a significant difference in difficulty between input sizes 1, 2, and 3.
However, the medium effect size in response time between input sizes 1 and 4 indicates
that the function having a recursive tree depth of 6 has a substantial practical impact on the
performance of novice programmers. This presumably applies to larger input sizes as well
when considering the trend in our descriptive statistics.

Speed-Accuracy Tradeoff Interestingly, the patterns observed in correctness and response
time do not fully align. While both measures are influenced by cognitive load, the discrep-
ancies suggest the presence of a speed-accuracy tradeoff. The speed-accuracy tradeoff (SAT)
is a recognized principle in cognitive experimental studies and states that as the efficiency
of information processing increases, response times will tend to decrease while accuracy
increases [8]. Following this principle, prioritizing correctness can increase accuracy at
the expense of longer response times, which may explain the variations observed in our
participants’ performance. However, there are additional possible explanations for these
discrepancies. Discontinuities in cognitive processes, such as switching problem-solving
strategies, can impact performance metrics differently [5]. For instance, participants may
shift from line-by-line code tracing to attempting a holistic understanding of the recursive
function as tasks become more complex, affecting correctness and response time in uneven
ways. Furthermore, a decline in cognitive efficiency and increasing cognitive depletion
over time—especially when working on problems that require high effort—could lead
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to variations in accuracy and speed [5]. Prolonged engagement with complex tasks may
exhaust cognitive resources, resulting in slower responses or increased errors independent
of the speed-accuracy tradeoff.

Implications Previous research showed that teaching recursion is difficult [24]. This
thesis demonstrates that the level of difficulty experienced by novice programmers is related
to the size of the input they receive. The results emphasize the need for educators to scaffold
learning experiences when teaching recursion. One idea is to gradually increase input sizes
to build the confidence and understanding of novice programmers. Educators should be
mindful of the challenges posed by larger input sizes in recursive functions, especially
considering the jump in difficulty from input sizes 3 to 4. Introducing recursion with smaller
inputs could help novice programmers grasp the fundamental concepts before progressing
to more complex problems. Encouraging collaborative problem-solving and providing
practice with incremental increases in input size can also support novice programmers in
developing more effective strategies for understanding recursion.

Furthermore, future program comprehension experiments that use specific input sizes
for recursive functions, as several experiments have done before (e.g. [1, 20, 28]), must
take into account how the selected input size influences the results for correctness and
response time. There are several studies that use an unspecific input n for recursive functions
(e.g. [23, 46]). Researchers could improve control over their results and limit ambiguous
interpretations by choosing a specific and sensible input size. This holds relevance for
multiple reasons. Knowing the exact input sizes helps in optimizing recursive functions for
particular scenarios. Furthermore, by standardizing the input size, researchers can isolate
the effects of the recursive function itself without the variability introduced by changing
input sizes and thereby enhance the conclusion validity of the study. It allows for more
controlled experiments, meaningful comparisons, and results that are both reliable and
relevant.

4.2 Effect of Input Size on Visual Attention

This section presents the results based on the eye-tracking data gathered during the ex-
periment to answer how the input size affects the visual attention of participants when
understanding recursive functions, hence addressing our second research question.

4.2.1 Descriptive Statistics

The descriptive statistics provide an overview of general trends in our eye-tracking data. As
for correctness and response time, we gathered an average of 45 data points per input size,
resulting in a total of 180 eye-tracking records. The following paragraphs focus on the mean
results grouped by input size shown in Table 4.5.

Fixation Count and Saccade Count The mean fixation count and mean saccade count
both show an upward trend as the input size progresses from 1 to 4. Specifically, the fixation
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Table 4.5: Descriptive Statistics of Eye-Tracking Metrics by Input Size

Input Mean Fixation Mean Saccade Mean Fixation Mean Fixations

Count ± SD Count ± SD Duration (s) ± SD per Second ± SD

1 182 ± 83.8 182 ± 83.9 0.206 ± 0.04 3.76 ± 0.62

2 219 ± 113.8 219 ± 113.7 0.216 ± 0.05 3.61 ± 0.58

3 266 ± 167.3 266 ± 167.3 0.230 ± 0.06 3.47 ± 0.59

4 293 ± 202.8 293 ± 202.7 0.238 ± 0.06 3.27 ± 0.57

and saccade count both increase from a mean of 182 for input size 1 to 293 for input size 4.
They are identical because each fixation is directly associated with a corresponding saccade.
This indicates that more complex tasks may require more visual exploration and cognitive
processing. We visualize the trend in Figure 4.4.

Mean Fixation Duration The mean fixation time demonstrates an increasing trend, with
a minimum duration of 0.206 seconds recorded in input size 1 and a maximum duration of
0.238 seconds in input size 4. This rise may suggest that participants require longer fixations
to understand increasingly complicated tasks as they advance. The trend is visualized in
Figure 4.5.
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Figure 4.5: Mean Fixation Duration for each
Input Size

Mean Fixation Count per Second The mean fixations per second exhibit a declining trend
throughout input sizes, beginning at 3.76 for input size 1 and reducing to 3.27 for input size
4. This small reduction could imply that as tasks become more demanding, participants take
longer fixations and produce fewer fixations per second, presumably representing higher
cognitive load or processing time. Figure 4.6 visualizes the decline.
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Table 4.6: Kruskal-Wallis Test Results for Visual Attention Metrics

Metric Statistic P-Value

Fixation Count 3.526 0.317

Mean Fixation Duration 2.918 0.404

Fixation Count Per Second 3.135 0.371

4.2.2 Statistical Tests

Kruskal-Wallis We performed the Kruskal-Wallis test to show us the statistical signifi-
cance of visual attention data between our four input sizes [19]. It showed no significant
differences in the comparisons. Therefore, we did not perform a post-hoc test or calculate
the effect sizes. The test results are outlined in Table 4.6.

4.2.3 Discussion

The descriptive statistics reveal observable trends that provide insights into the cognitive
processes of novice programmers when dealing with recursive functions of varying com-
plexity. As for correctness and response time, the observed trends in eye-tracking data
align with the cognitive load theory (see Section 2.2). The increase in fixation count and
mean fixation duration suggests that larger input sizes may impose a greater cognitive load
on novice programmers as they attempt to simulate the recursive processes mentally. The
decrease in fixations per second further supports the notion that novice programmers slow
down their visual scanning to accommodate the increased processing requirements.

However, we must not draw firm conclusions from these results since the statistical
analysis did not confirm any significant differences. Even if trends are present, they may not
be large enough between our input sizes to reach statistical significance. But there is more
than this potential reason for our result. A small sample size, as in our study, diminishes the
power of a statistical test, making it less likely to detect a true effect even if one exists. This
occurs since each data point has a higher impact on the overall statistics, and consequently,
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their variability raises uncertainty. Furthermore, the occurrence of statistically significant
results might be contingent upon the testing of inputs of a greater magnitude. In conclusion,
even though our results for the second research question are not statistically relevant, does
not mean that there is no relevant answer to the research question overall.

4.3 Effect of Type of Recursion on the Effect of Input
Size on Response Time and Correctness

This section presents the results derived from the behavioral data collected throughout the
experiment, exploring how the type of recursion influences the effect of input size on the
accuracy and response time of novice programmers in comprehending recursive functions,
thereby addressing our third research question.

4.3.1 Descriptive Statistics

The descriptive statistics offer an overview of general trends in our behavioral data grouped
by the task input size and recursion type. For each combination of recursion type and input
size, we collected data from an average of 15 answers, resulting in a total of 180 data points
for this analysis. Table 4.7 lists the collected data.

Table 4.7: Mean Correctness and Response Time by Recursion Type and Input Size

Recursion Input Mean Mean Response

Correctness (%) Time (s) ± SD

Linear

1 80.0 42.0 ± 16.6

2 86.7 49.6 ± 25.8

3 66.7 47.3 ± 18.8

4 66.7 87.5 ± 61.3

Tail

1 83.3 69.0 ± 30.4

2 66.7 73.5 ± 41.7

3 83.4 61.1 ± 17.9

4 83.4 104.0 ± 35.8

Tree

1 80.0 40.6 ± 17.6

2 46.7 67.1 ± 33.6

3 13.3 116.7 ± 60.7

4 26.7 108.9 ± 92.4
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Correctness

• Linear Recursion: The correctness in linear recursion tasks begins at 80.0% for input
size 1 and reaches a maximum of 86.7% for input size 2. Nonetheless, it diminishes
for input sizes 3 and 4, both at 66.7%, suggesting that as the complexity of linear
recursion rises, the correctness of participants tends to decline.

• Linear Recursion - Tail Recursion: Tail recursion shows a somewhat consistent
performance. Correctness begins at 83.3% for input size 1, drops to 66.7% for input
size 2, but increases to 83.4% for input size 3 and 4. Those results indicate that while
some tasks (like those with input size 2) may challenge participants, tail recursion
overall maintains a relatively stable level of correctness, even for more complex tasks.

• Tree Recursion: Tree recursion shows the most substantial decrease in correctness.
It starts at 80.0% for input size 1 but drops rapidly to 46.7% for input size 2 and
continues to fall to 13.3% and 26.7% for input sizes 3 and 4, respectively. Those results
suggest that tree recursion is the most challenging for participants, leading to a sharp
decline in accuracy as task complexity increases.

Figure 4.7 visualizes the progressions for correctness.

Response Time

• Linear Recursion: Response times gradually increase as the input size increases. The
mean response time for recursive functions begins at 42.0 seconds with an input size
of 1 and escalates to 87.5 seconds with an input size of 4. This suggests linear recursion
may scale moderately in response time as task complexity grows.

• Linear Recursion - Tail Recursion: Tail recursion tasks exhibit higher response times
than linear recursion tasks, starting at 69.0 seconds for input size 1. The mean response
time peaks at 104.0 seconds for input size 4, indicating that tail recursion becomes
more time-consuming with increasing task complexity.

• Tree Recursion: Tree recursion shows the most significant increase in response time,
with a relatively quick response input size 1 (40.6 seconds). However, by input size 3,
the mean response time jumps sharply to 116.7 seconds; for input size 4, it slightly
decreases to 108.9 seconds. This pattern indicates that tree recursion tasks may pose
the highest cognitive load, resulting in longer response times, especially for more
complex tasks.

The progressions for response time are visualized in Figure 4.8.

Overall, the data indicates that both response time and correctness are affected by the
type of recursion and task complexity, with tree recursion being particularly challenging in
terms of both time and accuracy.
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Figure 4.8: Response Time for each Input Size and Recursion Type

4.3.2 Statistical Tests

Two-Way ANOVA The two-way ANOVA test can show whether there is a significant
interaction between input size and correctness and input size and response time.

• Correctness The two-way ANOVA shows that the input size has a statistically signif-
icant impact on the correctness of participants’ responses (p = 0.016). The effect of
recursion type on correctness is even highly statistically significant (p < 0.001). The
interaction between input size and recursion type is also statistically significant (p =
0.045). Those results indicate that the effect of Input Size on correctness depends on
the recursion type of the task and vice versa. Table 4.8 provides the detailed ANOVA
results for correctness.

• Response Time The effect of input size on response time is highly statistically signifi-
cant (p = 0.001). This indicates that the size of the input has a significant impact on
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how long it takes participants to complete the task. Furthermore, the different recur-
sion types significantly impact response times (p = 0.027). However, the interaction
between input size and recursion type does not reach statistical significance for the
response time (p = 0.133), suggesting that the effect of input size on response time
is consistent across different recursion types. Table 4.9 outlines the comprehensive
results for response time.

As a summary, recursion type solely significantly influences the impact of input size on
response time, without affecting correctness.

Table 4.8: Two-way ANOVA Results for Correctness

Source Sum of Squares df F P-value

Input Size 2.0 3 3.6 0.016

Recursion Type 4.8 2 12.9 < 0.001

Input Size × Recursion Type 2.5 6 2.2 0.045

Residual 29.3 156 — —

Table 4.9: Two-way ANOVA Results for Response Time

Source Sum of Squares df F P-value

Input Size 58721.3 3 6.2 < 0.001

Recursion Type 23090.4 2 3.7 0.027

Input Size × Recursion Type 31323.8 6 1.7 0.133

Residual 489177.6 156 — —

Tukey HSD To further understand which specific groups differ significantly in terms of
correctness and response time, we rely on the Tukey HSD as post-hoc test. To determine
practical significance, we performed the Cliff’s Delta test to calculate effect sizes for every
group that showed statistical significance in the Tukey HSD results.

• Correctness We primarily observed significant differences in correctness between tasks
involving tree recursive functions with input sizes 3 and 4 compared to functions
with other types of recursion and input sizes. These differences were characterized
by large effect sizes, indicating substantial practical significance. Table 4.10 lists the
results for every two groups that led to significantly different results with their corre-
sponding effect size. The Appendix lists the Tukey HSD results for all combinations
(see Table A.3).

• Response Time The Tukey HSD results for response time reflect a similar pattern to
those observed in correctness. However, the number of significant group differences is
notably smaller for response time. Tasks involving tree recursive with input sizes 3
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and 4 resulted in significantly longer response times compared to other groups, with
large effect sizes, indicating that these conditions were notably more time-consuming
for participants. Furthermore, within the same input size, tree recursive functions
led to significantly longer response times in contrast to linear recursive functions.
Table 4.11 lists the results for every two groups that led to significantly different results
with their corresponding effect size. The Appendix lists the Tukey HSD results for all
combinations (see Table A.4).

Table 4.10: Significant Tukey HSD Results for Correctness with Effect Sizes

Group 1 Group 2 Mean P-value Lower Upper Effect Size

Difference (Cliff’s Delta)

1_Linear 3_Tree -0.6667 0.0024 -1.1915 -0.1418 0.67 (large)

1_Linear 4_Tree -0.5333 0.0427 -1.0582 -0.0085 0.53 (large)

1_Tail 3_Tree -0.7000 0.0028 -1.2567 -0.1433 0.70 (large)

1_Tail 4_Tree -0.5667 0.0420 -1.1233 -0.0100 0.57 (large)

1_Tree 3_Tree -0.6667 0.0024 -1.1915 -0.1418 0.67 (large)

1_Tree 4_Tree -0.5333 0.0427 -1.0582 -0.0085 0.53 (large)

2_Linear 3_Tree -0.7333 0.0005 -1.2582 -0.2085 0.73 (large)

2_Linear 4_Tree -0.6000 0.0111 -1.1248 -0.0752 0.60 (large)

3_Linear 3_Tree -0.5333 0.0427 -1.0582 -0.0085 0.53 (large)

3_Tail 3_Tree -0.7000 0.0028 -1.2567 -0.1433 0.70 (large)

3_Tail 4_Tree -0.5667 0.0420 -1.1233 -0.0100 0.57 (large)

3_Tree 4_Linear 0.5333 0.0427 0.0085 1.0582 -0.53 (large)

3_Tree 4_Tail 0.7000 0.0028 0.1433 1.2567 -0.70 (large)

4_Tail 4_Tree -0.5667 0.0420 -1.1233 -0.0100 0.57 (large)

Table 4.11: Significant Tukey HSD Results for Response Time with Effect Sizes

Group 1 Group 2 Mean P-value Lower Upper Effect Size

Difference (Cliff’s Delta)

1_Linear 3_Tree 74.7007 0.0177 6.8484 142.5530 -0.62 (large)

1_Tree 3_Tree 76.0697 0.0142 8.2174 143.9220 -0.62 (large)

1_Tree 4_Tree 68.3094 0.0468 0.4571 136.1617 -0.52 (large)

3_Linear 3_Tree 69.3456 0.0403 1.4933 137.1979 -0.56 (large)
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4.3.3 Discussion

Our analysis demonstrates a significant impact of recursion type and input size on the
correctness and response times of novice programmers when comprehending recursive
functions. The data indicates that tree recursion, in particular, poses substantial challenges
compared to linear and tail recursion, especially with increasing input size.

Correctness Correctness in tasks with tree recursive functions declines sharply with larger
input sizes. The two-way ANOVA test indicates that input size and the type of recursion
independently and their interaction have a highly significant effect on response time. The
Tukey HSD test identifies significant differences primarily between tree-recursive tasks with
inputs 3 and 4 and other recursion types, all with large effect sizes. These results suggest
that the complexity inherent in tree recursion significantly hampers the ability of novice
programmers to comprehend and solve these problems accurately.

Response Time The response time for tasks with tree recursive methods also increases
markedly with input size. The two-way ANOVA test indicates that input size and the type
of recursion independently have a highly significant effect on response time. However, the
interaction between input size and type of recursion is not statistically significant, suggesting
that the influence of input size on response time is consistent across recursion types. The
Tukey HSD test identifies significant differences in response times between tree recursion
tasks at higher input sizes and other groups with large effect sizes, indicating that tree
recursion substantially increases the time required to complete tasks.

Implications The overall effect of input size on correctness and response time while
comprehending recursive functions is discussed in Section 4.1.3. Our third research question
specifically examines the interaction effect between recursion type and input size.

The significant interaction between recursion type and input size on correctness highlights
the combined challenges when dealing with more complex recursion types and larger input
sizes. Specifically, tree recursion with larger inputs poses substantial difficulties, likely due
to the increased cognitive load required to process multiple recursive paths and deeper
recursion levels. This result aligns with the cognitive load theory, suggesting that the simulta-
neous increase in recursion complexity and input size can overwhelm the working memory
capacity of participants (see Section 2.2). This theory is supported by our post-questionnaire.
Several participants noted in the post-questionnaire that they encountered the greatest
difficulties with comprehending tree recursive functions, especially with higher input sizes.
They reported the need to remember two values simultaneously within the same recursive
call and the challenge of preserving the correct order of calls as primary reasons for this
difficulty. Furthermore, some participants described comprehending tail recursive functions
as simpler than linear recursive functions that were not tail recursive. However, while our
statistical analysis supports the heightened difficulty associated with tree recursion, it does
not confirm that tail recursion is inherently simpler than non-tail linear recursion.

Contrary to the plausible assumption that an input size of 4 would impose the highest
challenge, the significant results from the Tukey HSD analysis for both correctness and



4.3 Effect of Type of Recursion on the Effect of Input Size on Response Time and Correctness 37

response time predominantly involve groups with input size 3. One possible explanation
for this observation emerges from the post-questionnaire responses. Several participants
reported that as the tasks became more complex, they changed their problem-solving
strategies. Specifically, when faced with an input size of 4, which involved the highest
number of recursive calls, they described shifting from step-by-step tracing each line of
code to trying to grasp the general functionality of the recursive function and calculating
the output directly. This possible strategic adjustment may have reduced the cognitive
load associated with input size 4, as participants avoided the exhaustive mental effort of
line-by-line tracing.

Hence, tasks with input size 3 may have represented a threshold where the complexity
was high enough to strain working memory but not sufficient to prompt a change in
strategy. Participants continued to trace the recursive calls line by line, leading to increased
cognitive load and, consequently, more significant impacts on accuracy and response time.
This suggests that the heightened cognitive demands of comprehending and processing the
recursive calls at input size 3 were more taxing than the alternative strategies employed
at input size 4. This theory presents an interesting opportunity for further research and
exploration. As previously discussed in Section 4.1.3, the discrepancies observed between
correctness and response time may be attributed to the speed-accuracy tradeoff. This
phenomenon suggests that participants might prioritize accuracy over speed or vice versa
when faced with complex tasks. The strategic adjustments reported by participants—such
as shifting from step-by-step tracing to grasping the general functionality—could influence
this tradeoff, leading to variations in correctness and response time that do not perfectly
align.

For educators, these results emphasize the need to adopt targeted instructional strategies
when teaching tree recursion. Introducing complex recursion types like tree recursion
should be paired with smaller input sizes initially to manage cognitive load effectively. The
thesis suggests that increasing input sizes as participants become more comfortable with the
recursion type could facilitate comprehension. Additionally, understanding these challenges
can inform the design of programming curricula that improve the preparation of novice
programmers to handle complex recursive functions.

From a research perspective, when designing studies on program comprehension with
specific input size, as multiple researchers did before (e.g. [1, 20, 28]), acknowledging the
interaction effect of input size and type of recursion is crucial. Researchers should consider
both recursion type and input size as interrelated factors that jointly influence learning
outcomes. Future research on program comprehension with recursive functions that use an
unspecific input size n (as several studies did before, e.g. [23, 46]), could improve control
over their results and limit ambiguous interpretations not only by choosing a specific and
sensible input size but also by taking the type of recursion into account. This awareness
can lead to more nuanced experimental designs and more accurate interpretations of data,
ultimately contributing to the development of more effective educational strategies and
tools for comprehending recursion.
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4.4 Effect of Type of Recursion on the Effect of Input
Size on Visual Attention

This section explores the results obtained from the eye-tracking data collected throughout
the experiment, examining the impact of recursion type on the relationship between input
size and visual attention of novice programmers in understanding recursive functions, thus
addressing our fourth research question.

4.4.1 Descriptive Statistics

The descriptive statistics provide an overview of general trends in our eye-tracking data
grouped by the task input size and recursion type, providing initial insight into our fourth
research question. We analyzed eye-tracking data from an average of 15 answers for each
combination of recursion type and input size, totaling 180 records. Table 4.12 shows the
data we gathered.

Table 4.12: Eye-Tracking Metrics by Recursion Type and Input Size

Recursion Input Mean Fixation Mean Saccade Mean Fixation Mean Fixation

Type Count ± SD Count ± SD Duration (s) ± SD Count/s ± SD

Linear

1 151 ± 52 151 ± 52 0.207 ± 0.02 3.63 ± 0.37

2 158 ± 63 157 ± 63 0.217 ± 0.05 3.46 ± 0.48

3 159 ± 70 159 ± 70 0.226 ± 0.04 3.38 ± 0.44

4 161 ± 51 161 ± 51 0.261 ± 0.07 3.05 ± 0.62

Tail

1 261 ± 104 261 ± 104 0.200 ± 0.03 3.81 ± 0.41

2 239 ± 110 239 ± 110 0.230 ± 0.07 3.55 ± 0.84

3 228 ± 111 228 ± 111 0.243 ± 0.11 3.58 ± 0.95

4 366 ± 165 366 ± 165 0.229 ± 0.05 3.31 ± 0.60

Tree

1 149 ± 55 149 ± 55 0.209 ± 0.06 3.85 ± 0.99

2 263 ± 146 263 ± 146 0.203 ± 0.03 3.81 ± 0.49

3 403 ± 193 403 ± 193 0.224 ± 0.05 3.47 ± 0.47

4 367 ± 277 367 ± 277 0.223 ± 0.05 3.48 ± 0.53

Mean Fixation Count

• Linear Recursion: The mean fixation count for linear recursive functions shows a
modest increase as the input size grows. Starting at 151 fixations for input size 1, it
slightly rises to 158 for input size 2, 159 for input size 3, and reaches 161 for input
size 4. This gradual increase suggests that as the complexity of linear recursion tasks
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increases, participants require more fixations to process the information, indicating a
moderate escalation in visual attention and cognitive effort.

• Linear Recursion - Tail Recursion: Tail recursive functions exhibit a varied pattern in
mean fixation count. Beginning with a high of 261 fixations for input size 1, the count
decreases to 239 for input size 2 and further to 228 for input size 3. However, there is
a substantial jump to 366 fixations at input size 4. The sharp increase at input size 4

might suggest a significant rise in visual processing demands due to increased task
complexity.

• Tree Recursion: Tree recursive functions show the most pronounced increase in mean
fixation count with task complexity. Starting at 149 fixations for input size 1, it nearly
doubles to 263 for input size 2 and peaks at 403 for input size 3. Although there
is a slight decrease to 367 fixations at input size 4, the overall trend indicates that
tree recursion tasks become substantially more demanding visually as the input size
increases, reflecting heightened cognitive load and processing requirements.

Figure 4.9 visualizes the progressions for the mean fixation count for each input size and
type of recursion.

Mean Fixation Duration

• Linear Recursion: The mean fixation duration in linear recursive functions increases
steadily with their input size. It starts at 0.207 seconds for input size 1 and rises to
0.217 seconds for input size 2, 0.226 seconds for input size 3, reaching 0.261 seconds
for input size 4. This upward trend suggests that participants spend more time per
fixation as task complexity grows, likely due to the need for deeper processing and
information integration in more complex tasks.

• Linear Recursion - Tail Recursion: Tail recursive functions display slight fluctuations
in mean fixation duration without a clear linear trend. Starting at 0.200 seconds
for input size 1, it increases to 0.230 seconds for input size 2 and peaks at 0.243

seconds for input size 3, then slightly decreases to 0.229 seconds for input size 4.
This pattern indicates that while there is some variation, the time spent per fixation
remains relatively consistent. Those results suggest that participants maintain a stable
processing rate per fixation across different task complexities.

• Tree Recursion: the mean fixation duration remains relatively stable regarding tree
recursive functions. It begins at 0.209 seconds for input size 1, slightly decreases
to 0.203 seconds for input size 2, and then increases to 0.224 seconds and 0.223

seconds for input sizes 3 and 4, respectively. The minimal changes imply that despite
the increased number of fixations, the time spent on each fixation does not vary
substantially, possibly reflecting consistent processing strategies even as tasks become
more complex.

Figure 4.10 visualizes the progressions for the mean fixation duration for each input size
and recursion type.
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Mean Fixation Count Per Second

• Linear Recursion: The mean fixations per second for linear recursive functions show
a decreasing trend with increasing input size. Starting at 3.631 fixations per second
for input size 1, it decreases to 3.461 for input size 2, 3.384 for input size 3, and
further to 3.046 for input size 4. This decline suggests that participants slow their
visual scanning rate as the task becomes more complex, potentially due to increased
cognitive processing demands.

• Linear Recursion - Tail Recursion: Tail recursive functions exhibit a slight decrease
in mean fixations per second with increasing input size. Beginning at 3.808 for input
size 1, it decreases to 3.554 for input size 2, remains relatively stable at 3.578 for input
size 3, and drops to 3.305 for input size 4. The relatively minor changes indicate
that participants maintain a reasonably consistent visual scanning rate, even as task
complexity increases.

• Tree Recursion: For tree recursive functions, the mean fixations per second decrease
from 3.849 at input size 1 to 3.812 for input size 2 and further to 3.467 for input size 3,
with a slight increase to 3.475 at input size 4. This overall decrease suggests that as the
complexity of tree recursion tasks grows, participants reduce their fixation rate, likely
due to the higher cognitive load requiring more deliberate processing.

Figure 4.11 visualizes the progressions for the mean fixations per second for each input size
and type of recursion.
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Figure 4.9: Fixation Count for each Input Size and Recursion Type

4.4.2 Statistical Tests

Two-Way ANOVA The two-way ANOVA test can show us whether there is a significant
interaction between input size and the eye-tracking metrics we calculated.
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Figure 4.10: Mean Fixation Duration for each Input Size and Recursion Type
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Figure 4.11: Fixation Count per Second for each Input Size and Recursion Type

• Fixation Count The mean number of fixations differs significantly across the different
input sizes (p = 0.04). Furthermore, the effect of recursion type on fixations is highly
statistically significant (p < 0.01). The interaction between input size and recursion
type is close to significance (p = 0.06) but still > 0.05. Those results suggest a trend
where the effect of input size on fixations may depend on the recursion type, but
the evidence is not strong enough to conclusively state that an interaction exists. In
conclusion, both input size and recursion type independently influence fixation counts,
but the interaction between those variables is insignificant. Table 4.13 presents the
detailed ANOVA results for fixation count.

• Fixation Duration The p-value of 0.216 is greater than 0.05, indicating that the effect of
the input size of our recursive functions on mean fixation duration is not statistically
significant. This suggests that the different input sizes do not lead to significant
differences in the mean duration of participants’ fixations. With a p-value of 0.630, the
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effect of recursion type is also not statistically significant, so the type of recursion does
not significantly impact the mean fixation duration. The interaction between input
size and recursion type is not statistically significant (p = 0.887). This indicates that the
effect of input size on mean fixation duration does not depend on the recursion type
and vice versa. Since fixation duration is often associated with cognitive processing
load, the lack of significant differences implies that the cognitive effort per fixation does
not vary substantially with different tasks or recursion types in this study. Table 4.14

presents the detailed ANOVA results for fixation duration.

• Fixation Count Per Second The p-value for the effect of the input size on the functions
is greater than 0.05 (0.152), indicating that the impact of input size on fixations per
second is not statistically significant. With a p-value of 0.331, the effect of recursion
type on the fixations per second is also not statistically significant. Furthermore, the
interaction between input size and recursion type has no statistically significant impact
on the fixations per second (p = 0.993). Those results suggest that the visual scanning
rate of participants is consistent across tasks and recursion complexities. The results
imply that, in this context, fixations per second may not be sensitive to changes in
input size or recursion complexity, and other eye-tracking measures may be more
informative in understanding the cognitive processing of participants during these
tasks. Table 4.15 presents the detailed ANOVA results for fixations per second.

Overall, the type of recursion only significantly affects the fixation count. It is crucial to
notice that the number of fixations correlates with the response time, which we discussed in
Section 4.3. Since we found no significant interaction effect between input size and recursion
type, we can conclude that the effect of recursion type does not significantly affect the effect
of input size on our eye-tracking metrics.

Table 4.13: Two-Way ANOVA Results for Fixation Count

Source Sum of Squares df F P-value

Input Size 299991 3 2.846 0.040

Recursion Type 639984 2 9.106 < 0.001

Input Size × Recursion Type 429642 6 2.038 0.064

Residual 5411800 154 — —

Table 4.14: Two-Way ANOVA Results for Mean Fixation Duration

Source Sum of Squares df F P-value

Task Type 0.024 3 1.501 0.216

Recursion Type 0.005 2 0.463 0.630

Task Type × Recursion Type 0.012 6 0.386 0.887

Residual 0.829 154 — —
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Table 4.15: Two-Way ANOVA Results for Fixation Count Per Second

Source Sum of Squares df F P-value

Input Size 5.189 3 1.786 0.152

Recursion Type 2.157 2 1.113 0.331

Input Size × Recursion Type 0.745 6 0.128 0.993

Residual 149.151 154 — —

Tukey HSD For the completeness of our results, we performed the Tukey HSD test as
post-hoc test to understand which specific group means differ significantly in terms of fixation
count. To determine practical significance, we performed the Cliff’s Delta test to calculate
effect sizes for every group that showed statistical significance in the Tukey HSD results.

The Tukey HSD test reveals that understanding tree recursive functions takes significantly
more fixations than linear and tail recursive functions, especially at higher input sizes. This
suggests that tree recursion tasks are more complex and require more visual attention. The
significant differences mainly involve tree recursive functions with input size 3, highlighting
it as the most demanding in terms of fixation count. Notably, the results show that tree
recursion at input size 3 is even more demanding in terms of fixation count than linear
recursion at input size 4. Large effect sizes characterized these differences, indicating
substantial practical significance. Table 4.16 lists the results for every two groups that led to
significantly different results with their corresponding effect sizes. The Appendix contains
the Tukey HSD test results of all combinations (see Table A.5).

Table 4.16: Significant Tukey HSD Results for Fixation Count with Effect Sizes

Group 1 Group 2 Mean P-value Lower Upper Effect Size

Difference (Cliff’s Delta)

1_Linear 3_Tree 252.07 0.0162 24.88 479.26 -0.57 (large)

1_Tree 3_Tree 253.80 0.0149 26.61 480.99 -0.59 (large)

2_Linear 3_Tree 245.60 0.0220 18.41 472.79 -0.55 (large)

3_Linear 3_Tree 244.60 0.0230 17.41 471.79 -0.57 (large)

3_Tree 4_Linear -250.13 0.0271 -485.90 -14.37 0.55 (large)

4.4.3 Discussion

Our analysis reveals that the type of recursion significantly impacts the visual attention
of participants when comprehending recursive functions, as evidenced by differences in
fixation counts across recursion types and input sizes. Specifically, tree recursive functions
demand substantially more visual attention, indicated by a higher mean fixation count,
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compared to linear and tail recursive functions. This effect becomes more pronounced with
larger input sizes.

Fixation Count The fixation count serves as a measurement for the amount of visual
attention and cognitive effort required to process information [35]. The significant increase in
fixation count for tasks with tree recursive functions, especially at input size 3, suggests that
these tasks impose a higher cognitive load on participants. The two-way ANOVA confirmed
that both input size and recursion type independently influence fixation counts. However,
the interaction between input size and recursion type was not statistically significant,
indicating that the effect of recursion type on fixation count might not significantly depend
on input size within the tested range. Nevertheless, we must note that a small sample size,
as in our study, diminishes the power of a statistical test, making it less likely to detect a
true effect even if one exists.

The Tukey HSD post-hoc test revealed that significant differences in fixation count mainly
occur between tasks with tree recursive functions at larger input sizes and those involving
other types of recursion. The significant effect sizes underscore the practical significance of
these results. This indicates that tree recursion is inherently more complex, possibly due to
its non-linear structure and the exponential growth of recursive calls with input size.

The observed increase in fixation count for tasks with tree recursive functions can be
interpreted through the lens of the cognitive load theory (see 2.2). Tree recursion, with
its branching structure and multiple recursive calls, imposes a higher cognitive load due
to the complexity inherent in the task. As the input size increases, the cognitive load
intensifies, requiring participants to hold and process more information simultaneously
in working memory. The increased fixation count reflects the additional visual attention
and cognitive resources needed to process these complex structures. This is supported
by the post-questionnaire, in which participants reported that the comprehension of tree
recursive functions posed the greatest challenge for them. In Section 4.3.3, we provide
further interpretation of this feedback.

Fixation Duration and Fixation Count Per Second Interestingly, mean fixation duration
and fixations per second did not show significant differences across recursion types or
input sizes. The two-way ANOVA results for fixation duration and fixations per second
suggest that participants maintain a consistent processing rate per fixation regardless of task
complexity. This stability may indicate that, while the number of fixations increases with
task complexity, the cognitive effort per fixation does not vary significantly. Furthermore,
the lack of a significant increase in fixation duration hints that even as the complexity of
the tasks rises, participants’ eyes continue to move around the code rather than fixating
on a single point. This observation contrasts with reports from some participants in the
post-questionnaire, where they mentioned fixating on a single point to think through the
problem. Our eye-tracking data suggests that, despite their subjective experience of fixating,
participants’ visual attention remained active and distributed across different areas of the
code. Determining which specific areas of the code are involved during these periods of
cognitive processing remains an open question for future analysis.
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Implications The overall effect of input size on eye movements while comprehending
recursive functions is discussed in Section 4.2.3. Our fourth research question explicitly
examines the interaction effect on gaze data between recursion type and input size. The
results of our statistical analysis reveal that the interaction effect between these two groups
is insignificant. Even if trends are present, they may not be large enough between our types
of recursion to reach statistical significance. As explained in detail in Section 4.2.3, since
our study involved a limited number of participants, the statistical power of our tests is
reduced, making it less likely to detect a true effect even if one exists. Therefore, expanding
the participant pool could enhance statistical power and allow for more thorough analyses
of interaction effects.

Notably, similar to the significant Tukey HSD results observed in our third research
question (see Tables 4.10 and 4.11), the significant differences in the Tukey HSD analysis for
this research question also predominantly involve groups with input size 3 rather than the
expected input size 4. This phenomenon was discussed earlier in Section 4.3.3, where we
proposed that participants might change their problem-solving strategy when faced with
the most complex tasks. Specifically, as the task reached a certain number of recursive calls
(at input size 4 in our case), in the post-questionnaire, participants reported shifting from
line-by-line code tracing to inferring the general functionality of the recursive function and
calculating the output directly. This strategic shift may have reduced the cognitive load
for input size 4 tasks. In contrast, tasks with input size 3 may have led to detailed tracing,
resulting in a higher cognitive load reflected in the significant differences we observed.

In conclusion, while our results on the interaction effect of gaze data between recursion
type and input size are not statistically significant, this does not imply that there is no
meaningful answer to our research question. The insights from our post-questionnaire
propose that cognitive load and eye movement patterns are influenced not just by task
complexity but also by the problem-solving approaches employed by participants at different
levels of difficulty.





5
Threats to Validity

While the study provides valuable insights into the effect of input size on the performance
of students while comprehending recursive functions, it has limitations that are discussed in
this section.

5.1 Internal Validity

Eye-tracking comes with its inevitable difficulties regarding threats to validity. During an
experiment, the eye-tracking accuracy decreases gradually over time. This so-called drift
indicates a deterioration of calibration [36]. It is caused by changes in the physiology of the
eye, e.g., changes in wetness, or changing environmental conditions, e.g., light conditions.
To diminish the effect of drift, we manually corrected the eye-tracking data by modifying
the x and y values accordingly.

To increase the homogeneity of our code snippets, some of them are modified textbook ex-
amples. Thus, students might be familiar with the selected snippets, as many are commonly
used in introductory computer science courses. This familiarity can result in top-down
comprehension, as students may take shortcuts and provide answers without genuinely
understanding the code. In the post-questionnaire, some students confirmed recognizing
particular snippets and, in conclusion, taking shortcuts. Textbook example snippets pose
another possible threat, as participants might expect its unaltered functionality, which
means the modifications could be misleading. Nevertheless, as discussed in Section 3.5,
using code from existing, similar studies and typical textbook examples makes the code
comparable, student-friendly, and less prone to error [48].

The design introduces the possibility of individual differences affecting the results, as
participants in each group may differ in ways unrelated to the experimental manipulation.
For instance, variations in prior programming experience, familiarity with recursion, or
cognitive abilities among participants could influence their performance and comprehension
independent of the input size or recursion type. Those individual differences are inevitable,
but we tried to minimize them by posing necessary requirements for the participation
of a participant, e.g., being actively enrolled in the Bachelor of Computer Science or an
equivalent program throughout the duration of the study. Additionally, we mitigated the
threat by showing each participant code snippets with different input sizes and all types of
recursion. The full requirements participants had to fulfill are listed in Section 3.4.3.

Furthermore, we define input size based on the depth of the recursion tree of the function
rather than the length of the input data (see Section 3.2). While the depth of the recursion tree
remains consistent across different tasks, the length of the input data varies between them.
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This indicates that, although participants understood functions with the same recursion
depths, they processed inputs of varying lengths. The variation in input length can impact
the cognitive load and comprehension difficulty experienced by participants, independent
of the recursion depth. Longer inputs may require more mental resources to interpret and
may introduce additional complexity unrelated to the recursive structure itself. However,
varying input lengths made it possible to choose a more diverse sample of snippets while
keeping the number of recursive calls the same.

Another potential threat to the internal validity of our study arises from the difference in
the number of recursive calls between linear (including tail recursion) and tree recursive
functions, even when the recursion tree depth is consistent. This difference was inevitable
in our design since, in our tree recursive functions, each function call generates exactly
two further recursive calls, leading to an exponential increase in the total number of
recursive calls. In contrast, linear recursion produces only one recursive call at each level.
Consequently, the next smallest input size for a tree recursive function leads to more
recursive calls than the next smallest size for a linear recursive function. While the depth
of the recursion tree offers a valuable variable for comparing different types of recursion,
this discrepancy also introduces a confounding variable that may independently influence
the cognitive load and performance of participants: the number of recursive calls. The
observed variations among linear and tree recursive functions may be attributed not only to
the specific type of recursion employed but also to the varying number of recursive calls.
Although this presents a challenge in evaluating linear versus tree recursion, it does not
affect research questions one and two, nor does it impede the assessment of how input size
influences the understanding of functions of a single type of recursion.

5.2 External Validity

A crucial point is that those simple code snippets do not represent real-world programs. The
snippets are recursive, short, and simple, using numbers exclusively as input to support the
analysis of our research questions specifically. Therefore, transferring our results to more
complex snippets with different input types or iterative code should be considered carefully.

Further, our findings can not be easily compared to other hardware and software tools
since there may be significant differences in their results for the same data set [9].

Moreover, some previous studies show that students tend to have a harder time un-
derstanding recursive code compared to iterative code [16, 21]. According to a study by
Núñez-Varela et al., students ranked recursion as the hardest code category among condi-
tional, instruction sequence, or iterative control structure categories [26]. Consequently, as
our sample predominantly consists of novice programmers, introducing a selection bias that
limits the generalizability of our results to experienced programmers, who might process
recursive code differently than their less experienced counterparts.

Several participants mentioned in the post-questionnaire that one of the main challenges
they faced during the task was remembering the output. This difficulty may have contributed
to an increase in cognitive load as the size of the input grew. However, outside of a research
setting, it is generally feasible to take notes while engaging in program comprehension.
Allowing participants to write things down could produce different results, as they would
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not be solely dependent on their memory for calculations. However, we chose not to permit
note-taking to prevent distractions that might divert their gaze from the screen, which could
potentially alter the eye-tracking data.

5.3 Construct Validity

A potential threat to construct validity in this study is the limited range of input sizes
evaluated due to the constrained time frame of conducting a bachelor’s thesis. This narrow
spectrum may not have been sufficient to capture significant impacts of increasing input
sizes on certain measurements, such as fixation count per second, mean fixation duration,
or response times. It is plausible that more substantial effects on cognitive load and compre-
hension would emerge with larger input sizes, which could more intensely challenge the
participants’ mental processing capabilities.

Furthermore, other eye-tracking metrics, which were not included in our analysis due to
time constraints, might reveal significant differences when comparing input sizes. While
we focused on simple metrics such as fixation count, mean fixation duration, and fixation
count per second, there are additional eye-tracking measures – such as pupil dilation or
scanpath patterns – , that could provide further insights into cognitive load and processing
strategies. Thus, the study does not fully capture the complexity of how input size affects
program comprehension, potentially overlooking significant effects that other eye-tracking
metrics might reveal.

5.4 Conclusion Validity

Furthermore, a striking feature in our evaluation is the lack of significant differences in
correctness and eye-tracking metrics between specific input sizes. However, even though
our results for certain metrics are not statistically relevant, does not mean that there is
no relevant answer regarding the effect of input size on the comprehension of recursive
functions on those metrics overall. Several threats can lead to these results.

One plausible explanation for this is that the sample size may not have been sufficient
to detect more subtle effects. As explained in Section 4.2.3, a small sample size, as in our
study, diminishes the power of a statistical test, making it less likely to detect a true effect
even if one exists.

Another threat is that the code snippets might have been too simple to elicit measurable
differences in correctness and certain eye-tracking metrics. The directness of the snippets
may not have adequately challenged participants’ cognitive processing abilities, potentially
hiding differences that could arise with more complex or demanding code.
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Concluding Remarks

6.1 Conclusion

To close the research gap on how different input sizes affect the ability of novice pro-
grammers to comprehend recursive functions, we conducted a controlled lab experiment
with twelve computer science undergraduates with similar programming experience. Each
participant was asked to determine the output of 15 Java code snippets varying in recursion
type and input size, evaluated across four input sizes. We recorded their response times
and accuracy and used an eye-tracking device to assess visual attention and cognitive load.
In the following subsections, we summarize the results of each research question.

6.1.1 Research Question 1 & 2

RQ1: How does the input size affect students’ response times and correctness when
understanding recursive functions?

RQ2: How does input size affect students’ visual attention when understanding recursive
functions?

Our study found that increasing the input size in recursive functions significantly affected
novice programmers’ comprehension. As input sizes grew, participants had significantly
longer response times and significantly reduced correctness. Although eye-tracking data
showed trends of increased fixation counts and durations with larger inputs, these changes
were not statistically significant. The results support the cognitive load theory, which states
that processing more information increases learners’ cognitive load. In recursive functions,
larger inputs lead to greater complexity, placing higher demands on working memory.
Consequently, participants may have longer response times and a greater likelihood of
errors.

Notably, there is a significant jump in difficulty between input sizes 3 and 4, indicating that
recursion complexity may exponentially increase beyond a certain threshold, overwhelming
cognitive capacities. Participants may have changed their problem-solving strategies, moving
from detailed line-by-line tracing to a more holistic understanding. This shift could explain
the variations in response times and correctness.

Educators should consider this jump and possible change of strategies when designing
instructional materials and exercises, ensuring that input sizes are scaled appropriately
to match the developing comprehension skills of novice programmers. For researchers,
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this emphasizes the importance of carefully selecting input sizes in experimental designs.
Multiple studies use an unspecific input n for their recursive code snippets [23] [46]. This
unspecific input size can introduce undue complexity, which may confound results or mask
the effects of other variables under investigation. By carefully selecting and standardizing
input sizes in recursive functions, researchers can improve the validity and reliability of
their studies. Furthermore, this control enhances the comparability of results across different
experiments.

6.1.2 Research Question 3 & 4

RQ1: How does the input size affect students’ response times and correctness when
understanding recursive functions?

RQ2: How does input size affect students’ visual attention when understanding recursive
functions?

Our study further explored how the type of recursion (linear, tail, and tree) interacts with
input size to affect novice programmers’ correctness, response time, and visual attention
during program comprehension. We found that tree recursion significantly challenges
participants more than linear and tail recursion, especially at higher input sizes. Notably, the
interaction effect between input size and type of recursion was significant for correctness,
indicating that the combined impact of recursion type and input size specifically affects
novice programmers’ accuracy in understanding recursive functions. Significant differences
were particularly evident in tasks involving input sizes of 3 and 4, indicating a potential
shift in problem-solving strategies as complexity increases. Participants may shift from
detailed code tracing to attempting to understand the overall function behavior, which
could affect their performance.

For educators, our results highlight the importance of carefully introducing recursion
types in programming curricula. Since tree recursion poses significantly greater challenges,
it may be beneficial to first build a strong foundation with linear and tail recursion before
introducing tree recursion. For researchers, our results emphasize the need to consider both
recursion type and input size as critical variables in program comprehension studies. We
provide an opportunity to improve the comparability of future studies using recursive code
by supporting the determination of a suitable input size with a fitting type of recursion for
their applied functions by controlling the difficulty of tasks. Furthermore, understanding
the thresholds at which novice programmers encounter challenges and might change
their problem-solving strategies can improve the design of experiments and educational
interventions.

6.2 Future Work

While our study provides valuable insights into how input size and recursion type affect
novice programmers’ comprehension of recursive functions, several avenues for future
research remain to deepen our understanding and address the limitations identified.
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6.2.1 Further Analysis of Gathered Data

The restricted time frame of a bachelor’s thesis also imposed limitations on our analysis.
Beyond increasing the sample size, a deeper analysis of the existing data could yield
additional insights. Specifically, by examining fourth-order eye-tracking data (see 2.6), such
as scan paths and linearity metrics, we can explore the sequential patterns of visual attention
during code comprehension. By defining areas of interest within the code snippets, we can
quantify how participants navigated between different code elements and whether certain
recursion types or input sizes led to more erratic or systematic viewing patterns.

Additionally, the reports generated from the post-questionnaire provide valuable insights
that may add to the scope of our analysis. Participants indicated that they jumped more
frequently between code lines as the number of recursive calls increased. Some participants
also mentioned fixating on a single point while thinking through the problem. By examining
the scan paths and fixation distributions, we can corroborate these self-reported strategies
with empirical eye-tracking data, providing a more comprehensive understanding of the
cognitive processes involved.

6.2.2 Replication and Future Studies

This subsection outlines key areas for replication and suggests directions for future studies
that could enhance the robustness and applicability of our results. It explores additional
dimensions that influence the comprehension of recursive functions.

Larger Sample Size One immediate direction for future work is to replicate this study
with a larger participant pool. As noted in our evaluation (see Chapter 4), the limited
number of participants reduces the statistical power of our analyses, making it challenging
to detect smaller effect sizes and potentially obscuring true effects. A larger sample size
would enhance the robustness of the statistical tests, increase the generalizability of the
results, and allow for more detailed subgroup analyses. This expansion could provide more
conclusive evidence regarding the effect of input size on both behavioral and eye-tracking
metrics, thereby strengthening the validity of our conclusions.

Exploration with More Complex Code Snippets Another avenue for future research
involves extending the study to include more complex code snippets. The current study
focused on relatively straightforward recursive functions to isolate the effects of input size
and recursion type. Incorporating more complex programming constructs, such as nested
recursion, mutual recursion, or tasks with additional control structures (e.g., loops and
conditional statements), could provide insights into how participants handle increased
cognitive demands. This exploration could help determine whether the observed effects
persist with greater code complexity and how instructional strategies might need to adapt
accordingly.

Incorporating Individual Differences Future research should also consider individual
differences among learners, such as prior programming experience, cognitive abilities,



54 Concluding Remarks

and learning styles. These factors may influence how participants interact with recursive
functions and respond to varying input sizes and recursion types. By collecting data on
these variables, we can perform more sophisticated analyses to identify patterns and tailor
instructional approaches to meet diverse learner needs.

In summary, future work should focus on expanding the participant base, delving deeper
into the collected data, exploring more complex programming tasks, and considering
individual learner differences. These efforts will enhance our understanding of recursion
comprehension and inform the development of effective teaching strategies to address the
challenges identified in this study.
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Appendix: Data

a.1 Descriptive Statistics

Table A.1: Summary of Task Performance Based on Recursion Type, Correctness, and Response
Times

Task Recursion Correctness Mean Time Mean Correct

Type (%) (s) Only Time (s)

A1 Tree 3/3 (100) 38.7 (± 12.8) 38.7 (± 12.8)

A2 Tree 3/3 (100) 53.2 (± 15.5) 53.2 (± 15.5)

A3 Tree 1/3 (33.3) 179.0 (± 74.8) 36.0 (± 62.3)

A4 Tree 1/3 (33.3) 153.3 (± 121.6) 37.1 (± 64.3)

B1 Linear 3/3 (100) 25.1 (± 3.6) 25.1 (± 3.6)

B2 Linear 3/3 (100) 25.6 (± 6.8) 25.6 (± 6.8)

B3 Linear 3/3 (100) 25.9 (± 8.1) 25.9 (± 8.1)

B4 Linear 2/3 (66.7) 135.8 (± 152.2) 32.9 (± 39.1)

C1 Linear 2/3 (66.7) 59.9 (± 14.9) 44.3 (± 39.6)

C2 Linear 2/3 (66.7) 91.0 (± 10.1) 58.8 (± 51.7)

C3 Linear 0/3 (0) 55.0 (± 29.7) 0.0 (± 0.0)

C4 Linear 1/3 (33.3) 59.5 (± 12.2) 24.0 (± 41.5)

D1 Tail 1/3 (33.3) 98.4 (± 10.6) 36.9 (± 63.8)

D2 Tail 1/3 (33.3) 96.7 (± 44.6) 32.9 (± 56.9)

D3 Tail 2/3 (66.7) 76.4 (± 26.0) 53.1 (± 52.5)

D4 Tail 2/3 (66.7) 146.1 (± 55.6) 113.8 (± 104.8)

G1 Tail 3/3 (100) 32.9 (± 10.0) 32.9 (± 10.0)

G2 Tail 3/3 (100) 23.9 (± 1.6) 23.9 (± 1.6)

G3 Tail 3/3 (100) 36.3 (± 9.8) 36.3 (± 9.8)

G4 Tail 3/3 (100) 58.6 (± 21.7) 58.6 (± 21.7)

Continued on next page
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Table A.1: (Continued) Summary of Task Performance Based on Recursion Type, Correctness, and
Response Times

Task Recursion Correctness Mean Time Mean Correct

Type (%) (s) Only Time (s)

H1 Tail 3/3 (100) 55.3 (± 14.2) 55.3 (± 14.2)

H2 Tail 2/3 (66.7) 56.0 (± 32.9) 47.5 (± 45.6)

H3 Tail 3/3 (100) 60.2 (± 7.4) 60.2 (± 7.4)

H4 Tail 3/3 (100) 105.6 (± 54.9) 105.6 (± 54.9)

I1 Linear 3/3 (100) 25.2 (± 17.9) 25.2 (± 17.9)

I2 Linear 3/3 (100) 36.5 (± 2.7) 36.5 (± 2.7)

I3 Linear 3/3 (100) 40.6 (± 10.9) 40.6 (± 10.9)

I4 Linear 3/3 (100) 38.3 (± 5.9) 38.3 (± 5.9)

J1 Tree 2/3 (66.7) 30.8 (± 7.4) 23.1 (± 20.2)

J2 Tree 3/3 (100) 29.7 (± 2.2) 29.7 (± 2.2)

J3 Tree 1/3 (33.3) 35.2 (± 23.9) 6.7 (± 11.5)

J4 Tree 2/3 (66.7) 36.6 (± 6.0) 23.6 (± 21.2)

L1 Tree 1/3 (33.3) 71.2 (± 18.2) 24.4 (± 42.3)

L2 Tree 0/3 (0) 109.2 (± 77.0) 0.0 (± 0.0)

L3 Tree 0/3 (0) 73.4 (± 18.7) 0.0 (± 0.0)

L4 Tree 1/3 (33.3) 251.3 (± 46.6) 75.7 (± 131.1)

N1 Tree 3/3 (100) 27.9 (± 11.4) 27.9 (± 11.4)

N2 Tree 0/3 (0) 48.4 (± 25.4) 0.0 (± 0.0)

N3 Tree 0/3 (0) 133.4 (± 138.2) 0.0 (± 0.0)

N4 Tree 0/3 (0) 43.2 (± 18.4) 0.0 (± 0.0)

O1 Linear 2/3 (66.7) 43.0 (± 16.9) 22.7 (± 20.7)

O2 Linear 3/3 (100) 37.7 (± 19.5) 37.7 (± 19.5)

O3 Linear 2/3 (66.7) 39.8 (± 15.3) 31.9 (± 28.3)

O4 Linear 3/3 (100) 34.5 (± 18.3) 34.5 (± 18.3)

Q1 Tail 3/3 (100) 89.6 (± 11.4) 89.6 (± 11.4)

Q2 Tail 2/3 (66.7) 117.3 (± 39.3) 63.9 (± 56.8)

Q3 Tail 2/3 (66.7) 71.5 (± 6.7) 47.1 (± 41.3)

Q4 Tail 2/3 (66.7) 105.8 (± 58.1) 48.3 (± 42.0)

R1 Linear 2/3 (66.7) 56.6 (± 27.5) 34.9 (± 40.2)

R2 Linear 2/3 (66.7) 57.3 (± 50.7) 48.3 (± 60.3)

R3 Linear 2/3 (66.7) 75.4 (± 26.3) 52.7 (± 52.3)
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Table A.1: (Continued) Summary of Task Performance Based on Recursion Type, Correctness, and
Response Times

Task Recursion Correctness Mean Time Mean Correct

Type (%) (s) Only Time (s)

R4 Linear 1/3 (33.3) 169.2 (± 117.6) 34.5 (± 59.7)

S1 Tree 3/3 (100) 34.4 (± 5.3) 34.4 (± 5.3)

S2 Tree 1/3 (33.3) 95.2 (± 36.1) 23.0 (± 39.9)

S3 Tree 0/3 (0) 162.3 (± 14.2) 0.0 (± 0.0)

S4 Tree 0/3 (0) 60.1 (± 29.8) 0.0 (± 0.0)

Table A.2: Summary of Eye-Tracking Metrics Based on Task and Recursion Type

Task Recursion Mean Fixation Mean Fixation Mean

Type Count Duration Fixations/s

A1 Tree 149.0 (± 48.5) 0.188 3.86

A2 Tree 192.7 (± 59.8) 0.205 3.679

A3 Tree 574.0 (± 237.4) 0.231 3.222

A4 Tree 672.7 (± 613.7) 0.175 4.049

B1 Linear 87.3 (± 3.1) 0.212 3.517

B2 Linear 88.7 (± 26.1) 0.220 3.463

B3 Linear 96.3 (± 41.0) 0.192 3.710

B4 Linear 181.0 (± 138.6) 0.192 3.679

C1 Linear 210.0 (± 74.5) 0.221 3.443

C2 Linear 257.0 (± 21.9) 0.280 2.855

C3 Linear 166.3 (± 88.1) 0.255 3.090

C4 Linear 134.0 (± 92.5) 0.286 2.458

D1 Tail 353.3 (± 148.0) 0.225 3.517

D2 Tail 335.0 (± 251.7) 0.250 3.222

D3 Tail 374.3 (± 296.7) 0.174 4.465

D4 Tail 562.7 (± 222.8) 0.188 3.846

G1 Tail 119.3 (± 41.8) 0.208 3.648

G2 Tail 91.3 (± 54.1) 0.198 3.834

G3 Tail 119.0 (± 31.4) 0.237 3.329

G4 Tail 166.3 (± 74.5) 0.289 2.793

H1 Tail 249.0 (± 106.1) 0.161 4.414
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Table A.2: (Continued) Summary of Eye-Tracking Metrics Based on Task and Recursion Type

Task Recursion Mean Fixation Mean Fixation Mean

Type Count Duration Fixations/s

H2 Tail 218.7 (± 57.7) 0.154 4.560

H3 Tail 248.7 (± 9.0) 0.168 4.171

H4 Tail 405.3 (± 226.2) 0.192 3.796

I1 Linear 110.7 (± 94.7) 0.170 4.258

I2 Linear 150.7 (± 14.8) 0.168 4.128

I3 Linear 146.7 (± 29.2) 0.201 3.671

I4 Linear 117.3 (± 10.1) 0.237 3.110

J1 Tree 88.0 (± 30.5) 0.289 2.826

J2 Tree 123.7 (± 67.5) 0.208 4.072

J3 Tree 123.0 (± 68.1) 0.203 3.667

J4 Tree 123.0 (± 13.0) 0.226 3.398

L1 Tree 225.7 (± 56.5) 0.251 3.218

L2 Tree 409.0 (± 398.0) 0.223 3.365

L3 Tree 298.3 (± 71.1) 0.176 4.091

L4 Tree 661.7 (± 148.3) 0.312 2.624

N1 Tree 106.0 (± 29.9) 0.185 3.935

N2 Tree 159.0 (± 79.7) 0.230 3.409

N3 Tree 446.7 (± 545.3) 0.301 2.844

N4 Tree 148.3 (± 44.9) 0.204 3.565

O1 Linear 154.3 (± 53.8) 0.198 3.633

O2 Linear 123.3 (± 68.0) 0.242 3.213

O3 Linear 109.7 (± 43.9) 0.282 2.745

O4 Linear 130.3 (± 99.4) 0.214 3.616

Q1 Tail 324.3 (± 56.6) 0.206 3.655

Q2 Tail 311.0 (± 131.6) 0.316 2.601

Q3 Tail 170.0 (± 79.5) 0.394 2.349

Q4 Tail 328.0 (± 280.0) 0.248 2.786

R1 Linear 193.0 (± 114.0) 0.233 3.303

R2 Linear 168.0 (± 84.9) 0.176 3.648

R3 Linear 273.7 (± 81.1) 0.202 3.703

R4 Linear 241.0 (± 94.8) 0.378 2.365

S1 Tree 178.0 (± 57.3) 0.132 5.408

Continued on next page



A.2 Statistical Tests 59

Table A.2: (Continued) Summary of Eye-Tracking Metrics Based on Task and Recursion Type

Task Recursion Mean Fixation Mean Fixation Mean

Type Count Duration Fixations/s

S2 Tree 433.0 (± 175.0) 0.147 4.536

S3 Tree 573.7 (± 123.9) 0.211 3.509

S4 Tree 229.7 (± 132.3) 0.196 3.741

a.2 Statistical Tests

Table A.3: Tukey HSD Results for Correctness

Group 1 Group 2 Mean Difference P-value Lower Upper

1_Linear 1_Tail 0.0333 1.0000 -0.5233 0.5900

1_Linear 1_Tree 0.0000 1.0000 -0.5248 0.5248

1_Linear 2_Linear 0.0667 1.0000 -0.4582 0.5915

1_Linear 2_Tail -0.1333 0.9997 -0.6900 0.4233

1_Linear 2_Tree -0.3333 0.6182 -0.8582 0.1915

1_Linear 3_Linear -0.1333 0.9995 -0.6582 0.3915

1_Linear 3_Tail 0.0333 1.0000 -0.5233 0.5900

1_Linear 3_Tree -0.6667 0.0024 -1.1915 -0.1418

1_Linear 4_Linear -0.1333 0.9995 -0.6582 0.3915

1_Linear 4_Tail 0.0333 1.0000 -0.5233 0.5900

1_Linear 4_Tree -0.5333 0.0427 -1.0582 -0.0085

1_Tail 1_Tree -0.0333 1.0000 -0.5900 0.5233

1_Tail 2_Linear 0.0333 1.0000 -0.5233 0.5900

1_Tail 2_Tail -0.1667 0.9985 -0.7534 0.4201

1_Tail 2_Tree -0.3667 0.5624 -0.9233 0.1900

1_Tail 3_Linear -0.1667 0.9977 -0.7233 0.3900

1_Tail 3_Tail 0.0000 1.0000 -0.5868 0.5868

1_Tail 3_Tree -0.7000 0.0028 -1.2567 -0.1433

1_Tail 4_Linear -0.1667 0.9977 -0.7233 0.3900

1_Tail 4_Tail 0.0000 1.0000 -0.5868 0.5868

1_Tail 4_Tree -0.5667 0.0420 -1.1233 -0.0100
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Table A.3: (Continued) Tukey HSD Results for Correctness

Group 1 Group 2 Mean Difference P-value Lower Upper

1_Tree 2_Linear 0.0667 1.0000 -0.4582 0.5915

1_Tree 2_Tail -0.1333 0.9997 -0.6900 0.4233

1_Tree 2_Tree -0.3333 0.6182 -0.8582 0.1915

1_Tree 3_Linear -0.1333 0.9995 -0.6582 0.3915

1_Tree 3_Tail 0.0333 1.0000 -0.5233 0.5900

1_Tree 3_Tree -0.6667 0.0024 -1.1915 -0.1418

1_Tree 4_Linear -0.1333 0.9995 -0.6582 0.3915

1_Tree 4_Tail 0.0333 1.0000 -0.5233 0.5900

1_Tree 4_Tree -0.5333 0.0427 -1.0582 -0.0085

2_Linear 2_Tail -0.2000 0.9889 -0.7567 0.3567

2_Linear 2_Tree -0.4000 0.3301 -0.9248 0.1248

2_Linear 3_Linear -0.2000 0.9823 -0.7248 0.3248

2_Linear 3_Tail -0.0333 1.0000 -0.5900 0.5233

2_Linear 3_Tree -0.7333 0.0005 -1.2582 -0.2085

2_Linear 4_Linear -0.2000 0.9823 -0.7248 0.3248

2_Linear 4_Tail -0.0333 1.0000 -0.5900 0.5233

2_Linear 4_Tree -0.6000 0.0111 -1.1248 -0.0752

2_Tail 2_Tree -0.2000 0.9889 -0.7567 0.3567

2_Tail 3_Linear 0.0000 1.0000 -0.5567 0.5567

2_Tail 3_Tail 0.1667 0.9985 -0.4201 0.7534

2_Tail 3_Tree -0.5333 0.0740 -1.0900 0.0233

2_Tail 4_Linear 0.0000 1.0000 -0.5567 0.5567

2_Tail 4_Tail 0.1667 0.9985 -0.4201 0.7534

2_Tail 4_Tree -0.4000 0.4228 -0.9567 0.1567

2_Tree 3_Linear 0.2000 0.9823 -0.3248 0.7248

2_Tree 3_Tail 0.3667 0.5624 -0.1900 0.9233

2_Tree 3_Tree -0.3333 0.6182 -0.8582 0.1915

2_Tree 4_Linear 0.2000 0.9823 -0.3248 0.7248

2_Tree 4_Tail 0.3667 0.5624 -0.1900 0.9233

2_Tree 4_Tree -0.2000 0.9823 -0.7248 0.3248

3_Linear 3_Tail 0.1667 0.9977 -0.3900 0.7233

3_Linear 3_Tree -0.5333 0.0427 -1.0582 -0.0085
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Table A.3: (Continued) Tukey HSD Results for Correctness

Group 1 Group 2 Mean Difference P-value Lower Upper

3_Linear 4_Linear 0.0000 1.0000 -0.5248 0.5248

3_Linear 4_Tail 0.1667 0.9977 -0.3900 0.7233

3_Linear 4_Tree -0.4000 0.3301 -0.9248 0.1248

3_Tail 3_Tree -0.7000 0.0028 -1.2567 -0.1433

3_Tail 4_Linear -0.1667 0.9977 -0.7233 0.3900

3_Tail 4_Tail 0.0000 1.0000 -0.5868 0.5868

3_Tail 4_Tree -0.5667 0.0420 -1.1233 -0.0100

3_Tree 4_Linear 0.5333 0.0427 0.0085 1.0582

3_Tree 4_Tail 0.7000 0.0028 0.1433 1.2567

3_Tree 4_Tree 0.1333 0.9995 -0.3915 0.6582

4_Linear 4_Tail 0.1667 0.9977 -0.3900 0.7233

4_Linear 4_Tree -0.4000 0.3301 -0.9248 0.1248

4_Tail 4_Tree -0.5667 0.0420 -1.1233 -0.0100

Table A.4: Tukey HSD Results for Response Time

Group 1 Group 2 Mean Difference P-value Lower Upper

1_Linear 1_Tail 27.0681 0.9840 -44.9002 99.0363

1_Linear 1_Tree -1.3691 1.0000 -69.2214 66.4832

1_Linear 2_Linear 7.6627 1.0000 -60.1896 75.5150

1_Linear 2_Tail 31.5161 0.9505 -40.4522 103.4843

1_Linear 2_Tree 25.1915 0.9855 -42.6608 93.0438

1_Linear 3_Linear 5.3551 1.0000 -62.4972 73.2074

1_Linear 3_Tail 19.1298 0.9992 -52.8384 91.0980

1_Linear 3_Tree 74.7007 0.0177 6.8484 142.5530

1_Linear 4_Linear 45.5182 0.5335 -22.3341 113.3705

1_Linear 4_Tail 62.0566 0.1656 -9.9116 134.0249

1_Linear 4_Tree 66.9403 0.0569 -0.9120 134.7926

1_Tail 1_Tree -28.4371 0.9766 -100.4054 43.5311

1_Tail 2_Linear -19.4053 0.9991 -91.3736 52.5629

1_Tail 2_Tail 4.4480 1.0000 -71.4132 80.3092

Continued on next page



62 Appendix: Data

Table A.4: (Continued) Tukey HSD Results for Response Time

Group 1 Group 2 Mean Difference P-value Lower Upper

1_Tail 2_Tree -1.8766 1.0000 -73.8448 70.0916

1_Tail 3_Linear -21.7130 0.9975 -93.6812 50.2552

1_Tail 3_Tail -7.9382 1.0000 -83.7994 67.9229

1_Tail 3_Tree 47.6326 0.5549 -24.3356 119.6008

1_Tail 4_Linear 18.4501 0.9994 -53.5181 90.4184

1_Tail 4_Tail 34.9886 0.9298 -40.8726 110.8497

1_Tail 4_Tree 39.8723 0.7942 -32.0960 111.8405

1_Tree 2_Linear 9.0318 1.0000 -58.8205 76.8841

1_Tree 2_Tail 32.8851 0.9340 -39.0831 104.8534

1_Tree 2_Tree 26.5605 0.9782 -41.2918 94.4128

1_Tree 3_Linear 6.7241 1.0000 -61.1282 74.5764

1_Tree 3_Tail 20.4989 0.9985 -51.4693 92.4671

1_Tree 3_Tree 76.0697 0.0142 8.2174 143.9220

1_Tree 4_Linear 46.8873 0.4860 -20.9650 114.7396

1_Tree 4_Tail 63.4257 0.1427 -8.5425 135.3939

1_Tree 4_Tree 68.3094 0.0468 0.4571 136.1617

2_Linear 2_Tail 23.8533 0.9943 -48.1149 95.8216

2_Linear 2_Tree 17.5287 0.9994 -50.3236 85.3810

2_Linear 3_Linear -2.3077 1.0000 -70.1600 65.5446

2_Linear 3_Tail 11.4671 1.0000 -60.5011 83.4353

2_Linear 3_Tree 67.0379 0.0561 -0.8144 134.8902

2_Linear 4_Linear 37.8555 0.7867 -29.9968 105.7078

2_Linear 4_Tail 54.3939 0.3429 -17.5743 126.3621

2_Linear 4_Tree 59.2776 0.1516 -8.5747 127.1299

2_Tail 2_Tree -6.3246 1.0000 -78.2928 65.6436

2_Tail 3_Linear -26.1610 0.9878 -98.1292 45.8072

2_Tail 3_Tail -12.3863 1.0000 -88.2474 63.4749

2_Tail 3_Tree 43.1846 0.6987 -28.7836 115.1528

2_Tail 4_Linear 14.0021 1.0000 -57.9661 85.9704

2_Tail 4_Tail 30.5406 0.9730 -45.3206 106.4017

2_Tail 4_Tree 35.4243 0.8940 -36.5440 107.3925

2_Tree 3_Linear -19.8364 0.9981 -87.6887 48.0159
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Table A.4: (Continued) Tukey HSD Results for Response Time

Group 1 Group 2 Mean Difference P-value Lower Upper

2_Tree 3_Tail -6.0617 1.0000 -78.0299 65.9066

2_Tree 3_Tree 49.5092 0.3983 -18.3431 117.3615

2_Tree 4_Linear 20.3267 0.9976 -47.5256 88.1790

2_Tree 4_Tail 36.8652 0.8658 -35.1030 108.8334

2_Tree 4_Tree 41.7489 0.6643 -26.1034 109.6012

3_Linear 3_Tail 13.7747 1.0000 -58.1935 85.7430

3_Linear 3_Tree 69.3456 0.0403 1.4933 137.1979

3_Linear 4_Linear 40.1631 0.7165 -27.6892 108.0154

3_Linear 4_Tail 56.7016 0.2809 -15.2666 128.6698

3_Linear 4_Tree 61.5853 0.1150 -6.2670 129.4376

3_Tail 3_Tree 55.5708 0.3104 -16.3974 127.5391

3_Tail 4_Linear 26.3884 0.9869 -45.5798 98.3566

3_Tail 4_Tail 42.9268 0.7711 -32.9343 118.7880

3_Tail 4_Tree 47.8105 0.5490 -24.1577 119.7787

3_Tree 4_Linear -29.1825 0.9564 -97.0348 38.6698

3_Tree 4_Tail -12.6440 1.0000 -84.6122 59.3242

3_Tree 4_Tree -7.7603 1.0000 -75.6126 60.0920

4_Linear 4_Tail 16.5384 0.9998 -55.4298 88.5067

4_Linear 4_Tree 21.4221 0.9963 -46.4302 89.2744

4_Tail 4_Tree 4.8837 1.0000 -67.0845 76.8519

Table A.5: Tukey HSD Results for Fixation Count

Group 1 Group 2 Mean Difference P-value Lower Upper

1_Linear 1_Tail 110.4333 0.9326 -130.5385 351.4052

1_Linear 1_Tree -1.7333 1.0000 -228.9238 225.4571

1_Linear 2_Linear 6.4667 1.0000 -220.7238 233.6571

1_Linear 2_Tail 87.9333 0.9874 -153.0385 328.9052

1_Linear 2_Tree 112.4000 0.8905 -114.7905 339.5905

1_Linear 3_Linear 7.4667 1.0000 -219.7238 234.6571

1_Linear 3_Tail 76.9333 0.9959 -164.0385 317.9052
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Table A.5: (Continued) Tukey HSD Results for Fixation Count

Group 1 Group 2 Mean Difference P-value Lower Upper

1_Linear 3_Tree 252.0667 0.0162 24.8762 479.2571

1_Linear 4_Linear 1.9333 1.0000 -233.8333 237.7000

1_Linear 4_Tail 214.5167 0.1327 -26.4552 455.4885

1_Linear 4_Tree 216.0000 0.0791 -11.1905 443.1905

1_Tail 1_Tree -112.1667 0.9253 -353.1385 128.8052

1_Tail 2_Linear -103.9667 0.9553 -344.9385 137.0052

1_Tail 2_Tail -22.5000 1.0000 -276.5067 231.5067

1_Tail 2_Tree 1.9667 1.0000 -239.0052 242.9385

1_Tail 3_Linear -102.9667 0.9583 -343.9385 138.0052

1_Tail 3_Tail -33.5000 1.0000 -287.5067 220.5067

1_Tail 3_Tree 141.6333 0.7253 -99.3385 382.6052

1_Tail 4_Linear -108.5000 0.9522 -357.5740 140.5740

1_Tail 4_Tail 104.0833 0.9692 -149.9233 358.0900

1_Tail 4_Tree 105.5667 0.9503 -135.4052 346.5385

1_Tree 2_Linear 8.2000 1.0000 -218.9905 235.3905

1_Tree 2_Tail 89.6667 0.9852 -151.3052 330.6385

1_Tree 2_Tree 114.1333 0.8800 -113.0571 341.3238

1_Tree 3_Linear 9.2000 1.0000 -217.9905 236.3905

1_Tree 3_Tail 78.6667 0.9950 -162.3052 319.6385

1_Tree 3_Tree 253.8000 0.0149 26.6095 480.9905

1_Tree 4_Linear 3.6667 1.0000 -232.1000 239.4333

1_Tree 4_Tail 216.2500 0.1252 -24.7219 457.2219

1_Tree 4_Tree 217.7333 0.0738 -9.4571 444.9238

2_Linear 2_Tail 81.4667 0.9933 -159.5052 322.4385

2_Linear 2_Tree 105.9333 0.9245 -121.2571 333.1238

2_Linear 3_Linear 1.0000 1.0000 -226.1905 228.1905

2_Linear 3_Tail 70.4667 0.9981 -170.5052 311.4385

2_Linear 3_Tree 245.6000 0.0220 18.4095 472.7905

2_Linear 4_Linear -4.5333 1.0000 -240.3000 231.2333

2_Linear 4_Tail 208.0500 0.1641 -32.9219 449.0219

2_Linear 4_Tree 209.5333 0.1016 -17.6571 436.7238
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Table A.5: (Continued) Tukey HSD Results for Fixation Count

Group 1 Group 2 Mean Difference P-value Lower Upper

2_Tail 2_Tree 24.4667 1.0000 -216.5052 265.4385

2_Tail 3_Linear -80.4667 0.9939 -321.4385 160.5052

2_Tail 3_Tail -11.0000 1.0000 -265.0067 243.0067

2_Tail 3_Tree 164.1333 0.5089 -76.8385 405.1052

2_Tail 4_Linear -86.0000 0.9920 -335.0740 163.0740

2_Tail 4_Tail 126.5833 0.8856 -127.4233 380.5900

2_Tail 4_Tree 128.0667 0.8346 -112.9052 369.0385

2_Tree 3_Linear -104.9333 0.9290 -332.1238 122.2571

2_Tree 3_Tail -35.4667 1.0000 -276.4385 205.5052

2_Tree 3_Tree 139.6667 0.6652 -87.5238 366.8571

2_Tree 4_Linear -110.4667 0.9221 -346.2333 125.3000

2_Tree 4_Tail 102.1167 0.9607 -138.8552 343.0885

2_Tree 4_Tree 103.6000 0.9348 -123.5905 330.7905

3_Linear 3_Tail 69.4667 0.9983 -171.5052 310.4385

3_Linear 3_Tree 244.6000 0.0230 17.4095 471.7905

3_Linear 4_Linear -5.5333 1.0000 -241.3000 230.2333

3_Linear 4_Tail 207.0500 0.1695 -33.9219 448.0219

3_Linear 4_Tree 208.5333 0.1055 -18.6571 435.7238

3_Tail 3_Tree 175.1333 0.4044 -65.8385 416.1052

3_Tail 4_Linear -75.0000 0.9975 -324.0740 174.0740

3_Tail 4_Tail 137.5833 0.8168 -116.4233 391.5900

3_Tail 4_Tree 139.0667 0.7478 -101.9052 380.0385

3_Tree 4_Linear -250.1333 0.0271 -485.9000 -14.3667

3_Tree 4_Tail -37.5500 1.0000 -278.5219 203.4219

3_Tree 4_Tree -36.0667 1.0000 -263.2571 191.1238

4_Linear 4_Tail 212.5833 0.1770 -36.4907 461.6573

4_Linear 4_Tree 214.0667 0.1147 -21.7000 449.8333

4_Tail 4_Tree 1.4833 1.0000 -239.4885 242.4552





B
Appendix: Code Snippets

The following sections list the code snippets we showed to participants with each possible
input size marked as a comment next to the declaration of the input variable.

b.1 Linear Recursion

Listing B.1: Calculation of the Factorial, Source:
https://www.tu-chemnitz.de/informatik/ST/publications/papers/PPIG_2021.pdf

public static void main(String[] args) {

int n = 2; // 3, 4, 5

System.out.println(method(n));

}

static int method(int n) {

if (n == 0)

return 1;

return n * method(n - 1);

}

Listing B.2: Conversion of a Decimal Number to Its Binary Representation, Source:
https://www.tu-chemnitz.de/informatik/ST/publications/papers/PPIG_2021.pdf

public static void main(String[] args) {

int n = 3; // 5, 8, 17

method(n);

}

static void method(int n){

if (n == 0)

return;

method(n / 2);

System.out.print(n % 2);

}

67

https://www.tu-chemnitz.de/informatik/ST/publications/papers/PPIG_2021.pdf
https://www.tu-chemnitz.de/informatik/ST/publications/papers/PPIG_2021.pdf


68 Appendix: Code Snippets

Listing B.3: Calculation of the Triangular Number, Source: Self-Written

public static void main(String[] args) {

int n = 3; // 4, 5, 6

System.out.println(method(n));

}

static int method(int n) {

if (n == 1)

return 1;

return n + method(n - 1);

}

Listing B.4: Summary of the Digits of a Number, Source: Self-Written

public static void main(String[] args) {

int n = 523; // 1523, 41523, 341523

System.out.print(method(n));

}

static int method(int n) {

if (n == 0)

return 0;

return n % 10 + method(n / 10);

}

Listing B.5: Calculation of the Logarithm Ignoring Float-Numbers, Source: Self-Written

public static void main(String[] args){

int n = 5; // 9, 17, 33

System.out.println(method(n));

}

static int method(int n){

if (n == 1)

return 0;

else

return 1 + method(n / 2);

}
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b.2 Linear Recursion: Tail Recursion

Listing B.6: Calculation of the Prime Factors, Source:
https://www.tu-chemnitz.de/informatik/ST/publications/papers/PPIG_2021.pdf

public static void main(String[] args) {

int n = 4; // 8, 16, 32

method(n);

}

static void method(int n){

int i = 2;

if (n == 1)

return;

while (n % i != 0)

i++;

System.out.print(i + " ");
method(n / i);

}

Listing B.7: Reversing a Number, Source: Self-Written

public static void main(String[] args) {

int n = 125; // 1253, 12538, 125386

method(n);

}

static void method(int n) {

if (n == 0)

return;

System.out.print(n % 10);

method(n / 10);

}

https://www.tu-chemnitz.de/informatik/ST/publications/papers/PPIG_2021.pdf
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Listing B.8: Test If a Number Is a Palindrome, Source: Self-Written

public static void main(String[] args) {

String n = "765421245367"; // 765421243567, 765421234567, 765421324567

System.out.println(method(n));

}

static boolean method(String n) {

if (n.length() == 1) {

return true;

}

if (n.charAt(0) == n.charAt(n.length() - 1)) {

return method(n.substring(1, n.length() - 1));

} else {

return false;

}

}

Listing B.9: Countdown, Source: Self-Written

public static void main(String[] args) {

int n = 2; // 3, 4, 5

method(n);

}

static void method(int n) {

System.out.println(n);

if (n > 0)

method(n - 1);

}
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Listing B.10: Test If 2 Adjacent Numbers Sum Up to 5, Source: Self-Written

public static void main(String[] args){

int n = 2344; // 23442, 234425, 2344251

method(n);

}

static void method(int n) {

int a = n % 10;

int b = (n % 100) / 10;

if (b == 0)

return;

if (a + b == 5){

System.out.print(b);

System.out.print(a);

return;

}

method(n / 10);

}

b.3 Tree Recursion

Listing B.11: Calculation of the Fibonacci Sequence, Source:
https://www.tu-chemnitz.de/informatik/ST/publications/papers/PPIG_2021.pdf

public static void main(String[] args) {

int n = 2; // 3, 4, 5

System.out.println(method(n));

}

static int method(int n) {

if (n <= 1)

return n;

return method(n - 1) + method(n - 2);

}

https://www.tu-chemnitz.de/informatik/ST/publications/papers/PPIG_2021.pdf
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Listing B.12: Sequence Inspired by the Towers of Hanoi Problem, Source: Self-Written

public static void main(String[] args) {

int n = 2; // 3, 4, 5

method(n, ’A’, ’B’, ’C’);
}

static void method(int n, char a, char b, char c) {

if (n > 0) {

method(n - 1, a, c, b);

System.out.print(n);

method(n - 1, c, b, a);

}

}

Listing B.13: Sequence, Inspired By: https://www.scholarhat.com/tutorial/c/recursion-in-c

public static void main(String[] args) {

int n = 2; // 3, 4, 5

method(n);

}

static void method(int n) {

if (n > 0) {

System.out.println(n);

method(n - 1);

method(n - 1);

}

}

https://www.scholarhat.com/tutorial/c/recursion-in-c
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Listing B.14: Calculation of the Largest Digit, Source: Self-Written

public static void main(String[] args){

String n = "7984"; // 49874, 7498746, 37498746

System.out.println(method(n));

}

static int method(String n){

int a, b;

switch (n.length()) {

case 1:

return Integer.parseInt(n);

case 2:

a = Character.getNumericValue(n.charAt(0));

b = Character.getNumericValue(n.charAt(1));

break;

default:

a = method(n.substring(0, n.length() / 2));

b = method(n.substring(n.length() / 2, n.length()));

}

return a > b ? a : b;

}

Listing B.15: Sequence, Source:
https://www.geeksforgeeks.org/practice-questions-for-recursion-set-6/

public static void main(String[] args) {

String n = "1"; // 12, 123, 1234

method(n);

}

static void method(String n)

{

if(n.length() == 0)

return;

method(n.substring(1));

method(n.substring(1));

System.out.print(n.charAt(0));

}

https://www.geeksforgeeks.org/practice-questions-for-recursion-set-6/
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b.4 Nested Recursion

Listing B.16: Simple Calculation for the Participants to Warm-Up, Source: Self-Written

public static void main(String[] args) {

int n = 16;

System.out.print(fun(n));

}

static int fun(int n) {

if (n > 20)

return n - 3;

return fun(fun(n + 5));

}

b.5 List of Presented Snippets

The table below illustrates the sequence in which each code snippet was presented, along
with their respective input sizes. Each row corresponds to the order of snippets assigned to
an individual participant.

Listing B.17: Code Sequence Assigned to Participants

D4,O1,N1,G3,C1,B4,P4,I2,Q1,A4,S2,R3,H3,L3,J3,

L4,R4,J4,I3,N2,B1,G4,O2,Q2,P1,D1,S3,A1,C2,H4,

D2,A2,O3,B2,G1,L1,H1,S4,I4,P2,C3,J1,R1,N3,Q3,

I1,G2,H2,J2,C4,B3,D3,L2,Q4,S1,P3,O4,N4,R2,A3,

C1,A4,J3,R3,S2,H3,D4,Q1,G3,I2,N1,O1,L3,P4,B4,

I3,H4,O2,D1,Q2,G4,A1,P1,N2,J4,C2,S3,B1,R4,L4,

P2,O3,R1,C3,J1,A2,L1,S4,Q3,N3,H1,I4,G1,B2,D2,

C4,B3,A3,L2,N4,I1,P3,Q4,G2,J2,D3,H2,O4,R2,S1,

D4,A4,G3,B4,J3,R3,P4,L3,H3,S2,N1,Q1,C1,I2,O1,

H4,P1,N2,S3,A1,L4,G4,B1,Q2,D1,J4,O2,R4,I3,C2,

O3,I4,R1,N3,L1,A2,H1,Q3,P2,S4,C3,D2,J1,B2,G1,

A3,P3,N4,D3,R2,H2,J2,O4,C4,G2,L2,B3,I1,Q4,S1,



Statement on the Usage of Generative
Digital Assistants

For this thesis, the following generative digital assistants have been used: We have used
OpenAI’s ChatGPT1 for ideation, rephrasing, and code completion and refactoring in our
evaluation scripts. Grammarly2 was employed to ensure grammatical accuracy and improve
overall readability. Additionally, Quillbot3 was used for text rephrasing and paraphrasing
specific sections to enhance linguistic variety.

We are fully aware of the potential risks associated with relying on such tools. Therefore,
these tools were applied thoughtfully, with critical evaluation of their outputs to maintain
the academic integrity and originality of the work. We are aware of the potential dangers of
using these tools and have used them sensibly with caution and with critical thinking.

1 OpenAI, ChatGPT (2024 version), accessed November 28, 2024, https://chat.openai.com
2 Grammarly Inc., Grammarly Writing Assistant (2024 version), accessed November 28, 2024, https://www.

grammarly.com.
3 Quillbot Inc., Quillbot AI Paraphrasing Tool (2024 version), accessed November 28, 2024, https://www.quillbot.
com.
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