
University of Passau

Department of Informatics and Mathematics

Bachelor Thesis

Meta-Learning for Performance
Prediction on Configurable

Software Systems

Author:

Bastian Fleischmann

July 24, 2018

Advisors:

Dr.-Ing. Sven Apel

Chair of Software Engineering I

Alexander Grebhahn

Chair of Software Engineering I

Fleischmann, Bastian:
Meta-Learning for Performance Prediction on Configurable Software Systems
Bachelor Thesis, University of Passau, 2018.

Abstract

Finding the performance-optimal configuration for configurable software systems is
an omnipresent problem in both development and usage of software systems.
In order to identify the optimal configuration, machine-learning techniques can be
used. But machine-learning techniques theirselves also provide a large set of options,
each having a significant influence on the prediction accuracy and learning effort.
Here, we analyze the influence of machine-learning parameters on the prediction
accuracy and learning effort.
To this end, we performed experiments on several configurable real-world case studies
using four different machine-learning approaches. Using these results, performance
models are created and compared in order to analyze the influence of parameters.
We could identify the distinct influences of machine-learning parameters and ob-
serve a relationship between increasing accuracy and effort. Further, we find that
only a small subset of machine-learning parameters has the strongest impact on the
accuracy and effort, while the remaining parameters are less relevant.

v

vi

Contents

List of Figures x

List of Tables xi

List of Code Listings xiii

1 Introduction 1
1.1 Goal of this Thesis . 2
1.2 Structure of the Thesis . 3

2 Background 5
2.1 Configurable Software Systems . 5
2.2 Metalearning . 6
2.3 Performance-Influence Models . 7
2.4 Forward Feature Selection in Combination with Stepwise Regression . 8
2.5 CART . 9
2.6 Random Forest . 11
2.7 K-Nearest Neighbors . 12

3 Methodology 15
3.1 Metalearning Approach . 15
3.2 Metrics . 16
3.3 Visualization . 16

4 Experiment Setup 21
4.1 Hardware Setup . 21
4.2 Machine-learning software . 21
4.3 Configurable Software Data Sets . 22
4.4 Machine-learning Parameters . 23

5 Evaluation 27
5.1 Results . 27

5.1.1 Results: Forward Feature Selection in Combination with Step-
wise Regression . 27

5.1.2 Results: CART . 29
5.1.3 Results: Random Forest . 31
5.1.4 Results: K-Nearest Neighbor Regression 32

5.2 Influence of Machine-Learning Parameters 34

viii Contents

5.2.1 Discussion: Stepwise Regression 34
5.2.2 Discussion: CART . 35
5.2.3 Discussion: Random Forest 35
5.2.4 Discussion: K-Nearest Neighbors 36

5.3 Relevancy of Machine-learning Parameters 37
5.3.1 Discussion: Stepwise Regression 37
5.3.2 Discussion: CART . 37
5.3.3 Discussion: Random Forest 38
5.3.4 Discussion: K-Nearest Neighbors 38

5.4 Across Case Study Comparison . 39
5.4.1 Discussion: Stepwise Regression 39
5.4.2 Discussion: CART . 39
5.4.3 Discussion: Random Forest 40
5.4.4 Discussion: K-Nearest Neighbors 40

6 Validity 41
6.1 Internal Validity . 41
6.2 External Validity . 42

7 Related Work 43

8 Conclusion and Future Work 45
8.1 Conclusion . 45
8.2 Future Work . 46

A Appendix 49
A.1 Content of DVD . 49
A.2 Additional Star Plots . 49

Bibliography 61

List of Figures

2.1 Visualization of the configuration space and the tree at a split. 10

2.2 Example regression tree. 11

2.3 Nearest neighbors of a new configuration with the configuration op-
tions max features and min samples leaf. 13

3.1 Concept of our metalearning approach. 15

3.2 Description of the configuration options. 17

3.3 Star plot for the performance-influence model presented in this section. 17

3.4 Figure 3.3 with boxplot for alternative groups. 18

3.5 Figure 3.4 with violin plots for polynomials and numeric options. . . . 18

5.1 Average plots for Stepwise Regression 28

5.2 Plots with influences across all data sets for Stepwise Regression . . . 29

5.3 Average plots for CART . 30

5.4 Plots with influences across all data sets for CART 30

5.5 Average plots for Random Forest . 32

5.6 Plots with influences across all data sets for Random Forest 32

5.7 Average plots for K-Nearest Neighbors Regression 33

5.8 Plots with influences across all data sets for K-Nearest Neighbors
Regression . 33

8.1 Influences of parameter on the CART technique using sampling. . . . 47

A.1 Stepwise Regression and Ajstats . 50

A.2 Stepwise Regression and Dune . 50

A.3 Stepwise Regression and Trimesh . 51

A.4 Stepwise Regression and VP9 . 51

x List of Figures

A.5 Stepwise Regression and x264 . 52

A.6 CART and Ajstats . 52

A.7 CART and Dune . 53

A.8 CART and Trimesh . 53

A.9 CART and VP9 . 54

A.10 CART and x264 . 54

A.11 Random Forest and Ajstats . 55

A.12 Random Forest and Dune . 55

A.13 Random Forest and Trimesh . 56

A.14 Random Forest and VP9 . 56

A.15 Random Forest and x264 . 57

A.16 K-Nearest Neighbors and Ajstats . 57

A.17 K-Nearest Neighbors and Dune . 58

A.18 K-Nearest Neighbors and Trimesh . 58

A.19 K-Nearest Neighbors and VP9 . 59

A.20 K-Nearest Neighbors and x264 . 59

List of Tables

4.1 Configurable software system data sets used for machine-learning. . . 23

4.2 Considered parameters for Stepwise Regression. 25

4.3 Considered parameters for CART. 25

4.4 Considered parameters for Random Forest. 26

4.5 Considered parameters for K-Nearest Neighbors Regression. 26

xii List of Tables

List of Algorithms

2.1 Algorithm for the feature forward selection in combination with step-
wise regression to create performance-influence models 9

xiv List of Algorithms

1. Introduction

Many modern software systems are designed in a configurable way to provide a
flexible solution that can be used in multiple domains and for a large number of
application scenarios. In those systems the user or developer can decide which func-
tionality has to be included and used in a configuration. One of the most well-known
representative of those configurable software systems is the Linux Kernel with over
10000 configuration options [LSB+10]. Therefore, a vast amount of decisions can
be made to meet specific functionality requirements. Besides of having an influence
on the functionality of the system, these configuration options also have an influ-
ence on non-functional properties, such as memory consumption or performance. As
a consequence, configuring such software systems is not only a matter of fulfilling
functional requirements, both, the functionality and non-functional properties, have
to be considered.
Optimizing software to maximize its performance is a challenging task for develop-
ers and users alike [XJF+15] as the default configurations often only provides an
unsatisfactory performance for a large number of use cases. A naive solution for this
problem could be measuring all possible configurations. However, for many systems
the possible configurations, that can be chosen, in such software systems is often
very large. For instance the prominent Linux Kernel theoretically provides more
than 210000 combinatorial possibilities. With such an enormous number of possible
configurations, an exhaustive search for the best performing configuration is often
not achievable due to time and resource limitations. Another possible solution for
this problem would be using domain knowledge provided by the developer. However,
using domain knowledge about the influences of configuration options to find the
performance-optimal configuration is not always possible either, because it might
not be available or the number of configuration options and complexity might be so
big that there are unknown interactions affecting the performance. A third possi-
bility would be only measuring a small subset of the configuration space and using
these to predict the performance of the configurations that were not measured.
Many techniques have been developed such as Classification and Regression Trees
(CART) [BFSO84], Random Forests [Bre01], Support Vector Machines [HDO+98]
and Stepwise Regression [SGAK15]. However, a new problem arises when using ma-

2 1. Introduction

chine learning. Many machine-learning techniques and libraries are designed to be
applicable in many domains and scenarios. Therefore, they are also configurable by
providing an extensive set of parameters, which can have influence on the prediction
accuracy [FMS16]. This brings us back to the original problem as insight on the
influence of the parameters is required in order to choose the optimal performing
configuration.
Previous research indicates that using the optimal parameters can increase the pre-
diction accuracy significantly, but is rarely done [FMS16]. As machine-learning
techniques are also configurable systems, finding their optimal parameter setting
might not be feasible when performing an exhaustive search. Further, while more
refined search methods like Random Search [BB12], that approximate the optimal
setting, are provided by these techniques, they only provide a compromise between
search effort and improvement with no acquired knowledge. However, when well-
tuned, the prediction accuracy of techniques can be vastly different compared to
their performance with bad parameters [FMS16]. This leads to the accuracy of
performance prediction also being dependent on how well the technique was tuned.
Therefore, machine-learning techniques have to be treated as configurable systems
and analyzed to achieve optimal results in performance prediction. To this end, we
perform an empirical study to identify the influences of machine-learning parameters
on prediction accuracy and learning effort.

1.1 Goal of this Thesis

The main goal of this thesis is to understand the influence and relevancy of machine-
learning parameters on the prediction accuracy and learning effort to be able to make
sophisticated judgments about the parameter and algorithm selection. As a result
we analyze the importance of parameter-tuning. To this end, we want to answer the
following research questions.

For the first research question we want to investigate how the machine-learning pa-
rameters impact the accuracy and effort, to understand how the performance of the
machine-learning techniques can be increased.
RQ1: What is the influence of the different machine-learning parameters on predic-
tion accuracy and effort?

Since machine-learning techniques provide extensive sets of machine-learning pa-
rameters, optimizing all parameters can be connected to high costs. To this end,
we examine if subsets of parameters with higher priority for optimization exist to
enable more efficient parameter-tuning and formulate the second research question
as:
RQ2: Are some parameters more relevant for accuracy of performance predictions
and learning effort than other parameters?

Since performance prediction can be performed on a multitude of configurable sys-
tems we want to explore similarities and differences in the relevancy of machine-
learning parameters across multiple configurable systems. This is done to examine

1.2. Structure of the Thesis 3

if the results of our experiments can be applied to reduce the effort connected to
finding the performance-optimal machine-learning parameters for performance pre-
dictions on different configurable systems.
RQ3: Does the relevance of the parameters depend on the case study?

1.2 Structure of the Thesis

In Chapter 2, we provide the basic knowledge and definitions required to under-
stand this thesis. First, we start with introducing definitions of configurable software
systems, metalearning and performance-influence models. After that, we provide an
overview of four machine-learning techniques we consider in this thesis.
Our general approach for metalearning and the metrics we use are presented in
Chapter 3. Additionally, Star Plots, the main method of visualizing our results, are
explained in this chapter.
Afterwards, we describe our experimental setup in Chapter 4. Here, we also present
the parameters we consider for metalearning and the case studies we use for learning.
We present the results of our experiments and evaluate them in Chapter 5. Here,
we also discuss the results and answer our research questions.
In Chapter 6, we discuss threats to the validity of our results. We consider both
internal threats that could stem from our experiments and external threats that
could occur when applying our results.
After that, we examine work related to this thesis in the fields of performance pre-
diction and metalearning in Chapter 7. Further, we compare them to our work and
lay out differences.
We summarize this thesis and our findings and discuss the possibilities for future
work that could be done on this topic with our results a basis in Chapter 8.

4 1. Introduction

2. Background

In this chapter, we provide basic knowledge and describe the terms we use in this
thesis.

First, we lay out a definitions and vocabulary for configurable software systems
in Section 2.1. In Section 2.2, we provide an rough overview of metalearning.
Performance-influence models are presented in Section 2.3. Stepwise regression - a
machine-learning technique that produces performance-influence models - is shown
in Section 2.4. The other machine-learning techniques Classification and Regression
Tress(CARTs), Random Forest and K-Nearest Neighbors Regression are presented
in Section 2.5, Section 2.6 and Section 2.7, respectively.

2.1 Configurable Software Systems

This section is based on the overview of configurable software systems provided by
Apel et al. [ABKS16].
One of the most well known representative of configurable software systems is the
Linux Kernel. When using configurable software systems such as the Linux Kernel,
certain choices can be made either at compile or run time to customize the behavior
of the software to customer needs. These choices are called configuration options.
We differentiate between binary options Obin and numeric options Onum. While
only values of either 0 or 1 can be assigned to binary options, the values for numeric
options can be chosen from a larger set of numbers. We define the set of all config-
uration options of a system as O = Obin ∪Onum.
Binary options can either be optional or mandatory. Mandatory options always
have to be enabled, while optional options can also be disabled.
Besides, configurable software systems can have further constraints for the config-
uration process. Such constraints can be groups of required options or groups of
alternative options, where only a single option can be selected. But constraints can
also be any form of boolean expressions.
A valid assignment of each configuration option that fulfills all constraints, is called
configuration. We refer to the set of all configurations as C.

6 2. Background

Further, a configuration X in this set will be denoted as the vector of values assigned
to each configuration option xi ∈ O:

X = (x1, . . . , xn). (2.1)

Such configurations can be used to run or compile the software system by setting
the values of the configuration options, depending on the time of the configuration
process. Those options then determine the functional behavior of the configurable
software system.
Different configurations can also have different performance traits. An example for
this could be enabling or disabling multithreading. Traits of configurations, that are
not directly linked to the functionality of the software system and a metric for the
performance or quality, are called non-functional properties or nfp’s. Examples of
such non-functional properties are memory consumption, execution time or energy
consumption.

A set of performance measurements conducted on a configurable software system
to measure the values of non-functional properties will be further referred to asM.
This set is mathematically defined as:

M = {(X , y)|X ∈ C , y ∈ R}, (2.2)

where y is the measured non-functional property value for the configuration X .

2.2 Metalearning

Metalearning, in the context of machine learning, is a very ambiguous term, that
includes multiple areas and definitions. Studying several definitions of metalearning,
Lemke et al. [LBG15] defined metalearning on ground of those definitions as:
”‘A metalearning system must include a learning subsystem, which adapts with
experience. Experience is gained by exploiting metaknowledge extracted in a pre-
vious learning episode on single dataset, and/or from different domains or prob-
lems.”’(Lemke et al. [LBG15])
So metalearning includes analyzing and learning on previous machine-learning re-
sults to improve the learning process.
Main areas of metalearning are combining or cascading multiple machine-learning
techniques such as Bagging and Boosting, algorithm and parameter recommenda-
tion - often based on specific characteristics of the data set - and transferring learned
knowledge [LBG15].
In the context of meta- and machine-learning, hyperparameters of the learning tech-
niques - are free variables of the algorithm that have to be set by the user before
performing the learning. These parameters can directly influence the behavior and
prediction accuracy of the machine-learning technique.
Here, we focus on the aspect of parameter recommendation. In this context, met-
alearning is about learning and analyzing the influence and relevancy of machine-
learning parameters for a machine-learning technique and different data sets by using

2.3. Performance-Influence Models 7

previous machine-learning results. As metrics to measure the quality of the previous
learning results for a certain parameter setting the accuracy and learning effort can
be used. This usage of metalearning aligns with how Vanschoren et al. [VBPH12]
and Soares et al. [SBK04] approach metalearning.

2.3 Performance-Influence Models

We present the performance-influence models proposed by Siegmund et al. [SGAK15]
as a way to represent the influence of configuration options on the values of non-
functional properties in configurable software systems in this section.

Performance-influence models represent the influence of configuration options on
non-functional properties in the form of a mathematical function. Such descriptive
models open the possibility to infer the relevancy of each configuration option, the
impact of the configuration options on the non-functional property and interactions
between configuration options. With this knowledge, a developer or user can then
make sophisticated decision during the configuration process with regard to the goal
of optimizing a certain non-functional property or validate existing domain knowl-
edge [GRS+17].
A performance-influence model takes a configuration c ∈ C as input. This config-
uration also serves as a function that maps configuration options to real numbers
depending on the value, that was selected in the configuration. In case of binary
options, the option f ∈ Obin results in c(f) = 1, if the option is enabled in this con-
figuration, and otherwise in c(f) = 0. For a numeric option n ∈ Onum, the selected
numeric value will be returned.
Mathematically, a performance-influence model Π is defined as:

Π(c) = β0 +
∑
i∈O

φi(c(i)) +
∑
i...j∈O

Φi...j(c(i) . . . c(j)). (2.3)

In this performance-influence model, β0 is the base influence that is present in every
configuration. The individual influence of a single configuration option i on the non-
functional property is φi(c(i)). The φi function is a function, such as the identity
function, a linear function, a logarithmic function or the square function, applied to
the value of the option i. Logarithmic and quadratic influences are only useful for
the set of numeric options Onum due to the value range of binary options.
An interaction between the options i . . . j is denoted as Φi...j(c(i) . . . c(j)).
The value of an option of the configuration c is simply computed by inserting the
configuration into the performance-influence model.

8 2. Background

For example, a performance-influence model for a systems with the numeric config-
uration options max features and min samples leaf and the alternative group of the
two binary options best and random can look like this:

Π(c) =

β0︷︸︸︷
5 +

φmax features︷ ︸︸ ︷
3 ∗ c(max features) +

φmin samples leaf︷ ︸︸ ︷
−10 ∗ c(min samples leaf)

+ 2 ∗ c(best)︸ ︷︷ ︸
φbest

+−1 ∗ c(max features2)︸ ︷︷ ︸
Φmax features,max features

+−1 ∗ c(random)︸ ︷︷ ︸
φrandom

.

In this model, the base influence β0 is 5, the influence of the option max features
φmax features is 3, −10 for φmin samples leaf and 2 for φbest. Additionally, φrandom and
the square of max features Φmax features,max features have a negative influence. The
result of this performance-influence model is 8.9, when the model is evaluated for a
configuration
X = (max features,min samples leaf, best, random) = (1, 0.01, 1, 0).

2.4 Forward Feature Selection in Combination with

Stepwise Regression

Stepwise regression can be used to create a mathematical model that describes the
influences of independent variables on a dependent variable. In this section, we de-
scribe the stepwise regression approach by Siegmund et al. [SGAK15], which is used
to create performance-influence models for configurable software systems.

The algorithm for this techniques is provided in Algorithm 2.1. The technique
starts with taking a set of measurementsM, obtained by measuring a non-functional
property, of a configurable software system, as input. The configurations and the
respective non-functional property values of this set are used for learning, while the
configuration options of the configurable software system are used as independent
variables for the performance-influence model that will be derived.
Due to the number of possible interactions growing exponentially with the number
of configuration options, this technique uses forward feature selection to derive the
performance-influence model in an iterative way. With forward feature selection,
the technique iteratively generates a set of candidates, as shown in line 7 of the
algorithm, that might be added to the model, fits model(line 9) with with each
candidate and selects the candidate that decreases the error rate most(line 11-13).
If there is no candidate that decreases the error, no candidate will be added to the
model as seen in line 16-19 of the algorithm.
Initially, candidates are generated from the set of configuration options O with
functions applied to them. Those functions can, for example, be the linear function,
the square function or a logarithmic function. If the model already contains elements,
combinations of elements in the model and the initial candidates are also generated to
produce interaction between configurations. This combination is done by multiplying
both terms as shown in the performance-influence model in Section 2.3, where
max features is multiplied with itself.

2.5. CART 9

The models are then fitted by using linear regression. To compute the error, the
model is evaluated for every measurement in the learning set and the selected error
metric is computed. The model with the best error is used as base for the next
round.
This procedure continues until certain thresholds are reached. Such thresholds are
a small improvement compared to the previous round or the error falling below a
certain threshold. In this case the model is returned as the result. The thresholds
are checked in line 20 of the algorithm.

Algorithm 2.1: Algorithm for the feature forward selection in combination with
stepwise regression to create performance-influence models

Data: measurements, configuration options
Result: performance-influence model

1 modelError <- ∞;
2 model <- ∅;
3 repeat
4 bestCandidate <- NIL;
5 bestRound <- ∞;
6 previousError <- modelError;
7 candidates <- generateCandidates(model, configurationOptions);
8 forall candidate ∈ candidates do
9 fittedModel <- fitModel(model ∪ candidate, measurements);

10 currentError <- computeError(fittedModel, measurements);
11 if currentError < bestRound then
12 bestRound <- currentError;
13 bestCandidate <- candidate;

14 end

15 end
16 if bestCandidate 6= NIL then
17 model <- model ∪ bestCandidate;
18 modelError <- bestRound;

19 end

20 until abortCondition(modelError, previousError, model);

2.5 CART

In this section, we provide an rough overview of Classification and Regression Trees
(CARTs). This overview follows the initial definition of CARTs provided by Breiman
et al. [BFSO84].

At their core, CARTs are binary (decision) trees, meaning that they are trees where
every node either has two children nodes or is a leaf. Each non-terminal node splits
the set of measurements at this node Mnode ⊆M by applying a split function that
separates the data set into two parts by using a configuration option and one value
of the value domain as splitting criterion. Such a split at a node and the corre-
sponding configuration space is visualized in Figure 2.1. The splitting is performed
recursively on each child until no more splits can be performed and a leaf node is
reached. A leaf has a constant value, which is the predicted non-functional property

10 2. Background

Figure 2.1: Visualization of the configuration space and the tree at a split.

value of the configuration, that fulfills the conditions to reach the leaf.

The construction of a tree starts with a measurement set M. At the start, all
elements of M are included in the root node. The predicted value ŷ(t) of a leaf t
with Nt measurements - in this case the root node with |M| = Nt measurements -
is defined as the average the non-functional properties values of the measurements:

ŷ(t) =
1

Nt

∑
(X ,y)∈t

y. (2.4)

The error of a node t is the average squared difference between the measured and
predicted values of all elements within this node:

R(t) =
1

Nt

∑
(X ,y)∈t

(y − ŷ(t))2.

The optimal split s∗ at node t, that divides the elements at node t into two subsets
with minimal error, is computed by

∆R(s∗, t) = max
s∈S

∆R(s, t), (2.5)

where S is the set of possible splits at the node t. As a split criterion, a value z
for the configuration option xi ∈ O and a less or less than condition is used. All
measurements contained in the node where the value of the configuration option xi
fulfills the condition will be associated with the subtree tL and otherwise they will be
associated with the other subtree tR. This split mechanism is then recursively done
at the nodes tL and tR. For example, the criterion for the first split in Figure 2.2 is
max features < 0.88.
This splitting of a node is performed until a stop criterion is reached. This stopping
criterion is minimal improvement in learning error after a split. Additionally, the
splitting stops if the number of elements N(t) at the node t falls below a certain
threshold. If a node fulfills one of these criteria, it will become a leaf and the average
ŷ(t) will become the predictive value of this node.
Once the tree is completely built, pruning can be performed by combining two nodes
at a time to reduce overfitting. This is done until a subtree is found that is minimal
respective to the both size and error of the tree.

2.6. Random Forest 11

Figure 2.2: Example regression tree.

The value ynew of the configuration xnew is then predicted by traversing the tree
according to the split criteria it fulfills.

For example, in Figure 2.2 a tree created by learning on the accuracy of the CART
technique for different machine-learning parameters can be found. In this tree, a
configuration with a value of 0.62 for the max features numeric option, 0.025 for the
min samples leaf numeric option and the best binary option disabled would fulfill
all split criteria and reach the most left leaf. Then the predicted non-functional
property would be 9.7.

2.6 Random Forest

In this section, we provide an overview of the Random Forest technique. As pro-
posed by Breiman [Bre01], a Random Forest is an enhancement to Classification
and Regression Trees. Instead of building one tree, a Random Forest creates mul-
tiple trees. For this a random influence on the selection of the learning set and the
split criterion is included. To determine the final predicted value of the forest the
predicted values of all trees are used.

When building a Random Forest with N trees from the measurement setM, for each

12 2. Background

tree τn, with n ∈ [1, . . . , N], a learning subset Mn is created by randomly selecting
elements from M. In this selection process, duplicate elements are not eliminated,
therefore it is possible that a subset contains the same element multiple times.
An individual tree τn with the corresponding learning set Mn is then built in a way
similar to Classification and Regression Trees. The function used to evaluate the
accuracy is the mean squared error and the predicted value of a leaf in this tree is
the average value of all elements in this node.
One of the differences to CART lies in which configuration options are available for a
split. For each split, a subset of configuration options On ⊂ O is randomly selected.
Only configuration options in On are available as split criteria for the respective split.
The trees are then built until they reach the same stop criteria as Classification and
Regression Trees, but there is no additional pruning of the finished tree.
To predict the non-functional property value of the configuration xnew, the value
ŷtn(xnew) has to be predicted by every tree τn. This is done by traversing the re-
spective tree and returning the value of the leaf that was reached. The predicted
value

ŷForest(xnew) =
1

N

N∑
n=1

ŷtn(xnew) (2.6)

of the Random Forest is then computed as the average of predicted values of the
trees within the forest.

2.7 K-Nearest Neighbors

K-Nearest Neighbors(KNN) Regression is a technique that uses spatial information
to predict new configurations and as a consequence uses similarity between config-
urations as a way for prediction. In contrast to the other techniques presented in
this chapter, no model is created by this technique. Here, we follow the overview
provided by Imandoust et al. [IB13].

Like in previous sections, the measurements set is denoted as M. In K-Nearest
Neighbors Regression, the position of the configurations, represented as points in
the configurations space, relatively to each other is used to predict the performance.
For this, distance metrics such as Euclidean, Manhattan or Chebychev distance can
be used.
For prediction, a value for K has to be selected, which denotes the number of
neighboring configurations that will be considered for the prediction process. In
Figure 2.3, the K = 3 nearest - by Euclidean distance - neighbors of a new con-
figuration(red) are indicated by green lines. The higher the K value is the more
configurations will influence the prediction. The value ynew for a new configuration
xnew is then calculated as:

ynew =
1

K

K∑
i=1

yi, (2.7)

y1, . . . , yK are the non-functional property values of the K nearest configurations to
the configuration xnew that has to be predicted.
This prediction does not take the distance to the nearest neighboring configuration

2.7. K-Nearest Neighbors 13

Figure 2.3: Nearest neighbors of a new configuration with the configuration options
max features and min samples leaf.

into consideration. Additionally, the distance to the neighboring configurations can
be used as weight in order to distinguish between close and distant neighbors so
that more similar configurations have more influence on the prediction of a new
configuration. Such a distance metric can be any metric such as the examples given
above. To this end, the prediction of ynew for xnew, when using a weight function
W (Xi, Xj), is

ynew =
K∑
i=1

W (xnew, Xi)yi. (2.8)

14 2. Background

3. Methodology

In this chapter, we introduce the general approach used to answer our research
questions. In Section 3.1, we provide a comprehensive description of the steps we
perform to conduct our metalearning experiments. We lay out the metrics used for
the actual metalearning process in Section 3.2 and introduce the visualizations in
Section 3.3.

3.1 Metalearning Approach

Figure 3.1: Concept of our metalearning approach.

For our metalearning approach we perform two levels of machine learning. The first
level is performance prediction using performance data sets of configurable software,
whereas the second level is the actual metalearning.

In the first step, we interpret the machine-learning technique as a configurable soft-
ware system using a certain workload. The goal of this step is to measure the
performance of a machine-learning technique for different machine-learning param-
eter settings. At this point, the different machine-learning parameter settings are
the configurations of the machine-learning technique. For these configurations we
measure the respective prediction accuracy and learning effort as the non-functional

16 3. Methodology

properties of the technique. This is achieved by using data sets, retrieved from per-
formance measurements on various configurable software systems, as workload. At
this step, we measure every possible parameter setting by using the complete data
set for learning and error calculation without any sampling.
We repeat this process for each combination of data set and machine-learning tech-
nique.

The second level of learning is the actual metalearning process. Here, we only ap-
ply the Stepwise Regression technique to create performance-influence models for
the combinations of machine-learning techniques and workloads. The configuration
options in these performance-influence models are then the machine-learning param-
eters of the respective technique. To achieve this, we use the measurement results
produced in the previous step to generate models for the influence of parameters
on the (1) accuracy and (2) learning effort. Those two models are constructed for
every measurement set we obtained with the first level of learning. Just like during
the previous step, the Stepwise Regression is applied without any sampling, but -
unlike previously - we do not differentiate between the results of different parameter
settings for the Stepwise Regression technique as we only use one fixed parameter
setting.
After this stage we use the performance-influence models to deduce the influence of
parameters on the on accuracy and effort and answer our research questions.

3.2 Metrics

Here, we describe the two main dependent variables we consider in the first part of
our learning procedure.

As a metric for learning effort we use the clock time the machine-learning technique
takes to derive a model from the learning set. This takes only time between beginning
and the end of the model training process into account. To this end, the effort does
not include any additional time required for prediction, initial setup of the technique
and transformation of the learning set.
To measure the error as an indicator for accuracy, we compute the average relative
error of the produced model. For this, we use the machine-learning technique to
predict the respective non-functional property for all configurations in the data set
that was used for learning. The error is then defined as:

Error =
100

|M|
∑
C∈M

ŷC − yC
yC

(3.1)

3.3 Visualization

In this section, we introduce the method of visualization we use to show our results
and answer our research questions.

3.3. Visualization 17

To visualize performance-influence models, we use so called Star Plots. As an exam-
ple performance-influence model to explain the visualization, we use the performance-
influence model:

Π(c) = 5 + 3 ∗ c(max features) +−10 ∗ c(min samples leaf)

+2 ∗ c(best) +−1 ∗ c(max features2) +−1 ∗ c(random).

A description of the domain of the configuration options and the constraints between
them can be found in Figure 3.2.

Figure 3.2: Description of the configuration options.

The base influence and influences of mandatory configuration options are neglected
in this method of visualization as they can not be altered by the user.
All influences are displayed relatively to the highest absolute influence in the performance-
influence model. For numeric configuration options the influence is also weighted
by the value domain of the configuration option before determining the highest in-
fluence. In our example performance-influence model, max features has the highest
influences as the influence of min samples leaf is weighted by a factor of 0.031.
A simplified Star Plot for the performance-influence model shown in this section can

best

random

min Samples Leafmax Features

max Features2

Figure 3.3: Star plot for the performance-influence model presented in this section.

be found in Figure 3.3. Star plots consist of three circles with the inner most circle
denoting a relative influence on the performance metric of −1 and the outer most
circle denoting a relative influence of 1. The middle circle stands for no influence.

18 3. Methodology

Subsequently, the green area between the outer and the middle circle represents a
relative influences between 1 and 0, while the red area represents a relative influences
of 0 to −1.
For our metrics for effort and accuracy this means that influences in the green area
degrade performance while influences in the red area indicate a performance im-
provement as error or time decreases.
All circles of the star plots are divided into several axis, where each axis denotes a
influence of a configuration option or an interaction among multiple configuration
options on the performance. The configuration or interaction is stated by the label
of that axis, while the extent of the influence is presented by a dot in within the
circles.

For visualization purpose, the axes of configuration options in alternative groups

best-random

min Samples Leaf

max Features

max Features2

Figure 3.4: Figure 3.3 with boxplot for alternative groups.

- such as random and best in Figure 3.4- are combined to one single axis and the
dot is replaced by a box plot showing the different influences within the group.
The label for such a group shows the names of the configuration options ordered
by the magnitude of their individual influence - starting with the highest. In case
of numeric configuration options - additionally to the dot, which denotes the mean
influence when taking all possible value assignments into account - a violin plot is
displayed showing the values of the influence weighted by the different assignments
of the numeric option. To understand how the assignment of the options changes
the influence, the point where the options have their minimum value is indicated by
a cross. Likewise, the point with the maximum value is indicated by a circle.
To better comprehend the influence of options, the performance models is displayed

best

min Samples Leafmax Features

Figure 3.5: Figure 3.4 with violin plots for polynomials and numeric options.

3.3. Visualization 19

in a more coarse granular way. Therefore, polynomials of single options and inter-
actions are combined to a single axis if they appear multiple times in the model.
All possible values that a polynomial can have are then shown in the same way as
influences of numeric options. In Figure 3.5, a example for this is the combination
of max features and max features2 to max features.

Further, Star Plots can be used to display the average of multiple performance-
influence models. The meaning for the plot stays the same, however each influence
is the average across all performance-influence models that are included in that plot.

20 3. Methodology

4. Experiment Setup

In this chapter, we provide the specifications of the experiments we conducted.
The hardware we use to run experiments is listed in Section 4.1. Additionally, the
software environment, including the machine-learning software we apply, is presented
in Section 4.2. We lay out the data sets used for creating models and prediction
in Section 4.3. In Section 4.4, we present the parameters we consider in the
metalearning on each machine-learning technique.

4.1 Hardware Setup

We performed our experiments on two different clusters depending on the mem-
ory consumption of the machine-learning technique. The experiments on CART,
Random Forest and K-Nearest Neighbors regression were performed on a cluster,
which consists of nodes with Intel Core i7-4790 processors and nodes with Intel Core
i5-4590 processors. For our experiments, only the nodes of this cluster with Intel
Core i7-4790 processors and 16GB of available RAM were used to assure consistent
results. Due to memory restrictions, the experiments for Stepwise regression were
executed on a different cluster, which consists of a single node with two Intel Xeon
E5-2609v2 processors and 128GB of available RAM.

To ensure consistent and replicable results, the dynamic hardware performance en-
hancements Intel Turbo Boost and Intel Hyper-Threading were disabled on both
clusters. Additionally, all experiments on measuring the learning effort at the first
level of metalearning were repeated three times.

4.2 Machine-learning software

In this section, we provide information about the machine-learning software and the
software environment we used in our experiments.
For our experiments on machine-learning techniques we used the machine-learning

22 4. Experiment Setup

software SPLConqueror1. This software was executed on a Mono 4.2.1 environment
using the Ubuntu 16.04 operating system.
SPLConqueror was used as a stand-alone machine-learning software for our experi-
ments on the Stepwise Regression technique, while the interface to the scikit-learn2

machine-learning API provided by SPLConqueror was used for the experiments on
the Classification and Regression Trees, Random Forest and K-Nearest Neighbors
techniques. For the experiments on scikit-learn a modified version SPLConqueror
was used as we encountered bugs in the Mono environment. In this modified ver-
sion, some default data structures that were not required for these particular exper-
iments were removed or replaced as a underlying implementation caused segmenta-
tion faults.
Version 0.19.0 of scikit-learn was used for these experiments. Since scikit-learn is a
API written for python, we utilized a python 3.5 virtual environment to execute all
python code and learn with scikit-learn.
To perform metalearning on the results we obtain from using previous machine-
learning, we also used the SPLConqueror system to train models and extract infor-
mation about learning time and prediction accuracy.

4.3 Configurable Software Data Sets

For our experiments we use five data sets obtained from measuring non-functional
properties of real world configurable software systems for various configurations.
Data sets described in this section are used to fit the machine-learning software
presented in Section 4.2 and for prediction and error calculation, while for both
procedures all configurations in the data set are used.

The data sets of the AJStats3, Trimesh, Dune4, VP9 5 and x264 6 configurable soft-
ware systems are used for learning.
AJStats is a tool for statistical analysis of aspect oriented code written with As-
pectJ. Configuration options configure which statistics are collected. For example,
statistics about the occurrences of Classes, Interfaces, Methods and Aspects can be
collected. The non-functional property, that was measured for the data set of this
tool, is the time the analysis needed.
Trimesh and Dune are multigrid methods. Dune provides algorithms to solve Pois-
son equations. The exact algorithms and parameters that are used to solve the equa-
tions can be configured for this software. Similar to Dune, Trimesh solves partial
differential equations using triangular grids. It can be configured in how smoothing
is performed and which algorithm is used to solve the equations. For Trimesh the
average time per iteration of the solving process was measured, while the time to
solution was measured for Dune.
x264 is a video encoding software that encodes videos with the H264 codec. For

1https://github.com/se-passau/SPLConqueror - last visited on 2018-07-22
2http://scikit-learn.org/stable/index.html - last visited on 2018-07-22
3http://wwwiti.cs.uni-magdeburg.de/iti db/forschung/ajstats/ - last visited on 2018-07-22
4https://dune-project.org/ - last visited on 2018-07-22
5https://www.webmproject.org/vp9/ - last visited on 2018-07-22
6http://www.videolan.org/developers/x264.html - last visited on 2018-07-22

4.4. Machine-learning Parameters 23

this software the CPU utilization, the output quality and size of the encoded video
and the methods used for encoding can be configured. As performance metric, the
energy consumption of the encoding process was measured.
VP9 is also video encoding software. It encodes video with the VP9 encoding for-
mat. Similar to x264, quality constraints such as bitrate, overall quality, target size
of the encoded video and CPU utilization can be configured. The non-functional
property measured for VP9 was the CPU time required to encode a video.
Furthermore, the AJstats and x264 data sets only contain binary configuration op-
tions. The other data sets consist of both binary and numeric configuration options.
Detailed characteristics of the data sets - such as the number of configurations mea-
sured - are shown in Table 4.1.

Table 4.1: Configurable software system data sets used for machine-learning.

Name Non-functional property #Binary #Numeric #Configurations
Dune Performance 19 3 2304
x264 Benchmark-energy 32 0 4608
Ajstats AnalysisTime 40 0 65536
Trimesh TimePerIteration 22 4 239360
VP9 UserTime 37 5 216000

4.4 Machine-learning Parameters

In this section, we provide an overview of the machine-learning parameters con-
sidered for our metalearning experiments. Further, we state the values used for
machine-learning parameters that we did not consider for metalearning, but still
required an assignment. However, these are only a subset of all parameters provided
by the techniques and therefore all other parameters not listed here are set to their
default value. Detailed information on the parameters of each technique is provided
in Table 4.2, Table 4.3, Table 4.4 and Table 4.5. Additionally, the abbreviations
of the parameter names, we use later on, is underlined in those tables.

For the SPLConqueror case study at the first level of our metalearning process, we
considered the error metric, support for logarithmic and quadratic functions, ignor-
ing configurations that only provide marginal improvements as well as limiting the
size of interactions in the performance-influence models as configuration options of
the software system. A detailed list of the parameters considered for metalearning
with a short description and the values used can be seen in Table 4.2.
When using SPLConqueror to generate performance-influence models at the second
level of our learning process, we use the default parameter setting provided by the
software to create all different models.

For metalearning on the CART technique, we consider parameters that have an in-
fluence on how the data set is split and other properties of the tree. The parameters
affecting splits consist of the number of configuration options that can be used for

24 4. Experiment Setup

a split, splitting the data set using a random configuration option or the configu-
ration option with the highest accuracy improvement, the number of configurations
required to perform splits and the minimal improvement needed to continue the
process. As properties of the tree we alter the maximum depth of the tree and the
maximum number of leafs. Additionally the random seed was set to a fixed value
of 1 to ensure consistent results. An overview of the parameters and the values we
used is shown in Table 4.3.

The parameter set of the Random Forest technique is very similar to the CART
technique. Compared to CART there is no longer a distinction between random and
best split, because for every split the best is used. Furthermore, a parameter for
the amount of trees in the forest is added. Like before, we set the random seed to a
fixed value of 1. Additionally, the of parallel jobs is set to one. Detailed information
on the parameters are listed in Table 4.4.

In the case study on K-Nearest Neighbors Regression we vary the algorithm used
to calculated neighboring configurations, the weighting depending on the similarity
between configurations and the number of neighboring configurations that influence
the prediction. Due to time limitations, the number of parallel jobs for this experi-
ment is set to the number of threads available on the executing hardware. Detailed
information of the parameter set used for metalearning is compiled in Table 4.5.

4.4. Machine-learning Parameters 25

Table 4.2: Considered parameters for Stepwise Regression.
Name Domain Step size Description

quadraticFunctionSupport Binary - Sets whether square
functions can be ap-
plied to configuration
options when creating
performance-influence
models.

learn-logFunction Binary - Sets whether logarithmic
functions can be used
for the creation
performance-influence
models.

limitFeatureSize Binary - Limits the number of
configuration options that
can partake in an interac-
tion, when it is enabled.

ignoreBadFeatures Binary - Ignore candidate for ad-
dition to performance-
influence models
, if they led to marginal
improvements in previous
rounds.

LossFunction [leastsquares,relative] - Use the mean relative or
squared error as a mean
to calculate the error of
performance-influence
models.

featureSizeTreshold [3. . . 5] 1 Sets the maximum num-
ber of configuration op-
tions that should partake
in a interaction.

Table 4.3: Considered parameters for CART.
Name Domain Step size Description

splitter [best,random] - Perform the best or a random split to
divide a measurement set into two parts.

min samples split [0.01. . . 0.04] 0.01 The minimum percentage of the whole
measurement set required at a node to
perform a split.

min samples leaf [0.01. . . 0.04] 0.01 The minimum percentage of the whole
measurement set required to be at a leaf
node.

max features [0.25. . . 1] 0.25 The maximum percentage of all configura-
tion options considered as split criterion.

max leaf nodes [50. . . 350] 100 The maximum amount of leaf nodes in the
tree.

max depth [10. . . 85] 25 The maximum depth of the tree.
min impurity decrease [0. . . 0.01] 0.005 The minimum percentage decrease of

learning error required to perform a split.

26 4. Experiment Setup

Table 4.4: Considered parameters for Random Forest.
Name Domain Step size Description

n estimators [1. . . 25] 4 The number of trees in the forest.
min samples split [0.01. . . 0.04] 0.01 See Table 4.3.
min samples leaf [0.01. . . 0.04] 0.01 See Table 4.3.

max features [0.25. . . 1] 0.25 See Table 4.3.
max leaf nodes [50. . . 350] 100 See Table 4.3.

max depth [10. . . 85] 25 See Table 4.3.
min impurity decrease [0. . . 0.01] 0.005 See Table 4.3.

Table 4.5: Considered parameters for K-Nearest Neighbors Regression.
Name Domain Step size Description

algorithm [brute,kd tree,ball tree] - The algorithm that com-
putes neighboring configu-
rations.

weights [uniform,distance] - Weight assigned to neigh-
boring configurations
based on a distance met-
ric.

n neighbors [3. . . 15] 2 The number of neighbors
used to calculate the nfp
of a configuration.

p [1. . . 5] 1 The p value of the
Minkowski distance met-
ric.

leaf size [20. . . 60] 10 The size of the leafs when
a tree based algorithm
is used to compute the
neighbors.

5. Evaluation

In this chapter, we present our metalearning results, discuss the influence of the
machine-learning parameters and answer our research questions. First, we present
the results to answer our research questions in Section 5.1. Then, we examine
which parameters affect the effort and accuracy to answer RQ1 in Section 5.2. In
Section 5.3, we investigate how relevant parameters are compared to each other to
answer RQ2. In Section 5.4, we discuss the transferability of our results by com-
paring the influence of machine-learning parameters across multiple case studies to
answer RQ3.

5.1 Results

In this section, we provide the results of our experiments. The Star Plots in this
section use the abbreviations we introduced in Section 4.4 to ensure better read-
ability.
As already noted in Section 3.3, the axis labels of the Star Plots denote the machine-
learning parameters that have an influence. The corresponding point or plot within
the circles denotes how the parameter influences the accuracy or effort. Further, for
both the effort and error rate the inner circle expresses an improvement in effort and
accuracy.
To ensure comprehensibility, we present the Star Plots that display the average influ-
ences across all workloads in this section. Further, we show Star Plots that contain
the influences across all workloads. All individual Star Plots that are not included
in this section can be found in Section A.2.

5.1.1 Results: Forward Feature Selection in Combination
with Stepwise Regression

For the Stepwise Regression technique we present the average influences on the ac-
curacy of the performance prediction in 5.1(a). The average influences on the effort

28 5. Evaluation

required to build the respective model is displayed in 5.1(b). The comparisons for
the influences across all data sets are shown in 5.2(a) and 5.2(b).

Influences from nearly all parameters can be observed for this machine-learning

leastsq-rel

leastsq-rel
×iBF

leastsq
×iBF
×llF

leastsq
×llF

iBF
iBF×
llF

iBF×
qFS

llF

rel×
fST×
llF

Legend

Relevant influence

No relevant influence

Average

(a) Average influences on the accuracy for Step-
wise Regression

leastsq
leastsq

×llF leastsq
×llF
×qFS

leastsq
×qFS

rel
×iBF

rel
×iBF
×llF

rel
×iBF
×llF
×lFSrel

×iBF
×llF
×qFSrel

×iBF
×lFSrel

×iBF
×qFS

iBF

iBF×
llF

iBF×
qFS

llF

llF×
qFS

qFS

rel×
fST×
iBF

rel×
fST×
iBF×
llF

rel×
fST×
iBF×
qFS

fST×
iBF

Legend

Relevant influence

No relevant influence

Average

(b) Average influences on the effort for Stepwise
Regression

Figure 5.1: Average plots for Stepwise Regression

technique. The only parameter that has no influence on accuracy or effort is limit-
FeatureSize.
The leastsquares and relative alternative group has the highest influence on the ac-
curacy. When the leastsquares error function is used, the learned model becomes
more inaccurate, while the the relative error function leads to more accurate mod-
els. However, models are created faster with the leastsquares error function. In
combination with learn-logFunction and ignoreBadFeatures the negative impact of
leastsquares on the accuracy slightly decreases.
The support for logarithmic functions, ignoreBadFeatures and support for quadratic
functions can also lead to a positive impact on the accuracy, even without least-
squares. However, their influences are less relevant. Further, ignoring bad features
can also lead to a negative impact on the accuracy if other parameters such as learn-
logFunction are enabled.
Another weak influence on the accuracy of the machine-learning technique is the
interaction between relative, featureSizeThreshold and learn-logFunction. When rel-
ative and learn-logFunction are enabled, the accuracy slightly increases according
to the value of featureSizeThreshold.
The strongest influence on the effort also stems from the leastsquares parameter.
This parameter decreases the time required to build models. However, it also de-
creases the accuracy. Further, most parameters that increase the accuracy of the

5.1. Results 29

leastsq-rel

leastsq-rel
×iBF

leastsq
×iBF
×llF

leastsq
×llF

iBF
iBF×
llF

iBF×
qFS

llF

rel×
fST×
llF

Legend

Relevant influence

No relevant influence

Dune

Ajstats

VP9

Trimesh

x264

(a) Influences on the accuracy for Stepwise Re-
gression across all data sets

leastsq
leastsq

×llF leastsq
×llF
×qFS

leastsq
×qFS

rel
×iBF

rel
×iBF
×llF

rel
×iBF
×llF
×lFSrel

×iBF
×llF
×qFSrel

×iBF
×lFSrel

×iBF
×qFS

iBF

iBF×
llF

iBF×
qFS

llF

llF×
qFS

qFS

rel×
fST×
iBF

rel×
fST×
iBF×
llF

rel×
fST×
iBF×
qFS

fST×
iBF

Legend

Relevant influence

No relevant influence

Ajstats

Dune

Trimesh

VP9

x264

(b) Influences on the effort for Stepwise Regres-
sion across all data sets

Figure 5.2: Plots with influences across all data sets for Stepwise Regression

model also increase the learning effort required to do so. Examples for such parame-
ters are logarithmic and quadratic functions. However, their negative impact is also
considerably weakened when combined with leastsquares. The ignoreBadFeatures
parameter can both increase accuracy and decrease the effort depending on what
other parameters are enabled.
Influences containing the featureSizeThreshold parameter generally lead to a small
increase in the required learning effort as the threshold for interactions is increased.
When considering the influences across all data sets some changes can be observed
for the quadraticFunctionSupport and learn-logFunction parameters as the impact
changes with the case study. This is most noticeable when examining the effort
across all data sets.

5.1.2 Results: CART

In 5.3(a) and 5.3(b), we illustrate the results of the experiments on the Classifi-
cation and Regression Trees technique on the basis of the the average model. To
be able to compare influences over multiple learning workloads, the Star Plots that
contain all workloads in 5.4(a) and 5.4(b).

For CART, most parameters generally have an influences on the accuracy or effort.
Only the stopping criteria min impurity decrease, max depth and max leaf nodes

30 5. Evaluation

rand

best
×mfeat

mfeat

mfeat
×msleaf

mfeat×
rand

msleaf

mssplit

Legend

Relevant influence

No relevant influence

Average

(a) Average influences on the accuracy
for CART

best-rand

best
×mfeat

mfeat

mfeat×msleaf

mfeat×
rand

msleaf

Legend

Relevant influence

No relevant influence

Average

(b) Average influences on the effort for
CART

Figure 5.3: Average plots for CART

rand

best
×mfeat

mfeat

mfeat
×msleaf

mfeat×
rand

msleaf

mssplit

Legend

Relevant influence

No relevant influence

Ajstats

Dune

Trimesh

VP9

x264

(a) Influences on the accuracy for
CART across all data sets

best-rand

best
×mfeat

mfeat

mfeat×msleaf

mfeat×
rand

msleaf

Legend

Relevant influence

No relevant influence

Ajstats

Dune

Trimesh

VP9

x264

(b) Influences on the effort for CART
across all data sets

Figure 5.4: Plots with influences across all data sets for CART

have no influence.
The max features parameter has the highest influence on the accuracy of the machine-
learning technique. The min samples leaf and random parameters have the second

5.1. Results 31

highest influence on the accuracy, while min samples split has a weaker influence
on the accuracy. A similar order can be observed when looking at the impact on
the effort. The difference is that the min samples split stopping criterion has no
influence on the effort.
The number of configuration options available for a split, max features, increases the
accuracy of the machine-learning technique. However the accuracy also decreases
when considering all configuration options. When looking at the influence of this
parameter on the effort, similar behavior can be observed as the highest value does
not result in higher effort.
Accuracy also decreases when using random splits compared to the best splits. But
this also results in less learning effort.
Another strong influence arises from the min samples leaf parameter. As the thresh-
old for the abort is decreased the accuracy increases and the effort required to build
the model increases.
Interactions between max features and the splitting method generally only have
small impact. The same applies to min samples split, with min samples split de-
creasing the error. The interactions increase the accuracy if best used and decrease
it if random is used.
For the VP9 and x264 data sets, a decrease in the relevancy of the random parameter
can be observed as seen in A.9(a) and A.10(a).

5.1.3 Results: Random Forest

The average influences on the accuracy of the Random Forest machine-learning tech-
nique are shown in 5.5(a). The corresponding Star Plot for the average influences
on the effort is displayed in 5.5(b). Additionally, the plots showing all data sets are
displayed in 5.6(a) and 5.6(b).

For the Random Forest technique, influences similar to the CART technique can
be found. The influence of the max features parameter remains strong and the
impact of this parameter on the accuracy and effort stays similar. One difference
is a stronger influence from the stopping criterion min samples leaf. However, the
way this parameter influences the accuracy and effort stays the same. Further, the
min impurity decrease, max depth and max leaf nodes parameters also have no in-
fluence in this technique.
As a parameter specific to this technique, the number of trees in the forest, n estimators,
has both influence on the accuracy and effort. As the number of trees is increased
the accuracy also increases. Furthermore, this parameter also has a strong influence
on the effort. Therefore, the effort required to build a model also increases with the
number of trees.
There are also interactions with n estimators. A higher value for max features and
n estimators results in more effort required to create a model. Further, this param-
eter also interacts with the min samples leaf stopping criterion. This interaction
reduces the effort, but also decreases the accuracy.
One difference, that can be observed when comparing all data sets, is that for the
Ajstats and Dune data sets the stopping criteria have no influence on the accuracy,
as found in A.11(a), A.12(a).

32 5. Evaluation

mfeat

mfeat
×msleaf
×nest

mfeat
×msleaf

mfeat
×nest

msleaf
msleaf×

mssplit

msleaf×
nest

mssplit

nest

Legend

Relevant influence

No relevant influence

Average

(a) Average influences on the accuracy
for Random Forest

mfeat

mfeat
×msleaf
×nest

mfeat×
nest

msleaf×
nest

nest

Legend

Relevant influence

No relevant influence

Average

(b) Average influences on the effort for
Random Forest

Figure 5.5: Average plots for Random Forest

mfeat

mfeat
×msleaf
×nest

mfeat
×msleaf

mfeat
×nest

msleaf
msleaf×

mssplit

msleaf×
nest

mssplit

nest

Legend

Relevant influence

No relevant influence

Ajstats

Dune

Trimesh

VP9

x264

(a) Influences on the accuracy for Ran-
dom Forest across all data sets

mfeat

mfeat
×msleaf
×nest

mfeat×
nest

msleaf×
nest

nest

Legend

Relevant influence

No relevant influence

Ajstats

Dune

Trimesh

VP9

x264

(b) Influences on the effort for Random
Forest across all data sets

Figure 5.6: Plots with influences across all data sets for Random Forest

5.1.4 Results: K-Nearest Neighbor Regression

The average influences of the K-Nearest Neighbors technique are displayed in 5.7(a)
and 5.7(b). In 5.8(a) and 5.8(b), the corresponding Star Plots with the influences
on accuracy and effort for all workloads are shown.

5.1. Results 33

dist

uni

dist
×nneigh

dist
×nneigh
×p

lsize

nneigh

nneigh×
p×

uni

nneigh×
uni

p

p×
uni

Legend

Relevant influence

No relevant influence

Average

(a) Average influences on the accuracy
for K-Nearest Neighbors

btree

btree
×p

btree×
lsize

btree×
lsize×

p

p

Legend

Relevant influence

No relevant influence

Average

(b) Average influences on the effort for
K-Nearest Neighbors

Figure 5.7: Average plots for K-Nearest Neighbors Regression

dist

uni

dist
×nneigh

dist
×nneigh
×p

lsize

nneigh

nneigh×
p×

uni

nneigh×
uni

p

p×
uni

Legend

Relevant influence

No relevant influence

Ajstats

Dune

Trimesh

VP9

x264

(a) Influences on the accuracy for K-
Nearest Neighbors across all data sets

btree

btree
×p

btree×
lsize

btree×
lsize×

p

p

Legend

Relevant influence

No relevant influence

Ajstats

Dune

Trimesh

VP9

x264

(b) Influences on the effort for K-
Nearest Neighbors across all data sets

Figure 5.8: Plots with influences across all data sets for K-Nearest Neighbors Re-
gression

34 5. Evaluation

For the K-Nearest Neighbors technique, most parameters except for brute and kd tree
have an influence on accuracy or effort.
The highest influences on the accuracy are caused by the number of neighbors used
for prediction, n neighbors, and the weighting metric that is used. As the neighbor-
hood grows, the accuracy of the technique decreases.
The uniform weighting metric generally results in less accurate predictions com-
pared to the distance metric. Further, the distance metric also has lower error rate
for a higher number of neighbors compared to uniform. The p value of the distance
metric also increases the accuracy.
The parameters that influence the effort are ball tree, p and leaf size. The ball tree
algorithm leads to lower effort for low p values. This interaction accounts for the
strongest influence on the effort. The leaf size decreases the effort in combination
the ball tree. The p value of the distance metric slightly increases the effort. For
this case study, differences in the impact of the n neighbors can be found. However,
in A.16(a) the number of neighbors has very small influence on the accuracy.

5.2 Influence of Machine-Learning Parameters

In this section we discuss how machine-learning parameter influence the learning
effort and accuracy by using the results presented in Section 5.1. To answer our
research question, we examine in which way the parameters influence the accuracy
and effort.

5.2.1 Discussion: Stepwise Regression

The relative parameter decreasing the error indicates that the squared error is not
as well suited for the error calculation performed in the feature subset selection.
As the relative and leastsquares parameters determine which candidates are added
to the model during the feature subset selection, they interact with parameters that
add or remove possible candidates. Such parameters are learn-logFunction, ignore-
BadFeatures and featureSizeThreshold. Generally, those interactions increase the
accuracy of the resulting model.
Support for logarithmic functions allows for more possibilities when building models
and therefore also for more accurate models. The quadraticFunctionSupport param-
eter can also increase the accuracy for the same reason.
The increase in accuracy from ignoreBadFeatures might be due to the greediness of
the feature subset selection, because it always adds the candidate to the performance-
influence model that leads to the lowest error at the current iteration. However, this
influence is not necessarily a good addition for future iterations. This parameter de-
creases the accuracy in combination with learn-logFunction, so logarithmic influences
block other possibly good candidates from being added to the performance-influence
model.
Because the featureSizeThreshold parameter can add new candidates during the fea-
ture subset selection, it leads to an increase in accuracy.
When looking at the influences on the effort required to build models, all parameters
that have influences on the accuracy also have influences on the effort.
The learn-logFunction, featureSizeThreshold and quadraticFunctionSupport param-
eters increase the effort as they increase the number of candidates that have to be

5.2. Influence of Machine-Learning Parameters 35

evaluated in the feature subset selection process. Further, the increase in effort us-
ing these parameters is higher than the accuracy improvement, since they add all
possible candidates they can generate to the feature subset selection. However, not
all of these candidates lead to an improvement in accuracy.
Because the ignoreBadFeatures parameter removes candidates that would have to
be evaluated in the feature subset selection, it decreases the effort.
As leastsquares produces inaccurate models, the algorithm also aborts earlier. There-
fore, less effort is required to create a model. The interactions of leastsquares with
quadraticFunctionSupport and learn-logFunction that have a positive influence on
the effort only balance out the base influences of quadraticFunctionSupport and
learn-logFunction. This is done, because in those interactions the algorithm aborts
so early that quadraticFunctionSupport and learn-logFunction have no noticeable
impact on the effort.

5.2.2 Discussion: CART

The max features parameter leads to higher accuracy as the value of this parameter
increases, because a bigger pool of split candidates is more likely to contain good
candidates. However, the highest value does not lead to the most accurate models.
This might be due to the greediness of the technique leading to an earlier satisfaction
of a stopping criteria. That this parameter expresses similar impact on the effort is
a further indication for that.
The max features parameter also interacts with the two alternatives best and ran-
dom, because it is the parameter that influences which configuration options are
available for a split. Generally, the accuracy increases as both split methods benefit
from having more possibilities. However, the combination with random splits can
lead to a higher effort, because splits are just randomly selected and a higher number
of splits with little increase in accuracy might be performed to reach an accurate
model.
In addition to this, the random parameter also has an individual influence on the
accuracy and effort. As the configuration option used for a split is randomly selected
from the set of available options, the machine-learning technique also becomes less
accurate when it is enabled. On the other hand, it also decreases the effort since the
search for the best split is omitted.
From the set of parameters that determine the stopping criteria only influences
from min samples leaf, min samples split and min samples split could be identi-
fied. They decrease the accuracy as more stricter stopping criteria generally result
in an earlier abort. Therefore, the technique becomes more inaccurate but also re-
quires less learning effort.

5.2.3 Discussion: Random Forest

The machine-learning parameters that influence the accuracy and effort of the Ran-
dom Forest techniques are similar to the CART technique. The n estimators param-
eter, that is added in this technique, determines how many trees are built, increases
the accuracy of the technique as more trees are created. Since this is also connected

36 5. Evaluation

to higher computational costs, n estimators also increases the effort.
The max features parameter now also interacts with n estimators, but otherwise
the impact stays the same compared to the CART technique. The stopping criteria
min samples split and min samples leaf decrease the accuracy of the model, while
the strength depends on how they interact with each other and n estimators. Both
parameters also lead to less effort required to build a model. Like before, the other
stopping criteria have no influence on the accuracy and effort of the technique.

5.2.4 Discussion: K-Nearest Neighbors

Increasing the size of the neighborhood results in less accurate results, because less
similar configurations are included in the prediction. These configurations can have
more different values for their configuration options compared to the configuration
that has to be predicted and therefore more different values for the non-functional
property. This decrease in accuracy is lessened by using distance based weighting,
because takes the similarity between configuration into account and assigns a higher
weight to more similar configurations.
The uniform weighting parameter decreases the accuracy, because it does not take
the similarity between configurations into account.
Compared to that, the distance parameter increases the accuracy, because all pre-
dictions with weighting have an relative error of 0% since the learning and validation
sets are equal. The p parameter of the Minkowski distance metric decreases the accu-
racy, because it influences which configurations are considered the nearest neighbors
and for a higher p value configurations with more changes to the configuration op-
tions can have a smaller distance than other configurations with less changes to the
configuration options.
Further, the leaf size has close to no influence on the accuracy, because the parame-
ter only influences the size limitations of the algorithms that compute the neighbors.
Most parameters of this machine-learning technique that influence the accuracy have
no influence on the effort, because no model is created and the effort is only influ-
enced by the computation of the neighborhood and the distance to neighbors.
Using the ball tree algorithm decreases the time required to calculate neighbors com-
pared to the brute force method brute as is just the brute force computation of the
neighbors. However, as the p parameter increases, the performance improvement
from using ball tree decreases, as it also computes distances. The effort increases
with the p value of the Minkowski distance metric, as this results in more calculations
that have to be performed.

Generally, influences of most machine-learning parameters can be found. The accu-
racy of the machine-learning techniques is mostly affected by the parameters that
determine possible splits, candidates or neighbors and the parameters that evaluate
those. These parameters can increase the accuracy of the machine-learning tech-
niques depending on the right setting. Further, most parameters that increase the
accuracy also lead to an increase in effort.

5.3. Relevancy of Machine-learning Parameters 37

5.3 Relevancy of Machine-learning Parameters

In the previous section we discussed how the machine-learning parameters affect the
accuracy and effort of machine-learning techniques. Here, we discuss the relevancy of
parameters by comparing their relative impact on the performance of the machine-
learning technique.

5.3.1 Discussion: Stepwise Regression

In the Stepwise Regression case study, we can identify very distinct levels of rele-
vancy, while only few parameters have a strong influence. The relative-leastsquares
alternative group has the biggest impact on the accuracy of the technique, as it deter-
mines how the error of performance models is calculated. Therefore, it is responsible
for the decision which influences are added to a performance-influence model and
when the machine-learning process stops. As a consequence of leastquares leading
to an early abort, the individual influence of this parameter accounts for more than
two times the influence on accuracy of any other parameter.
The next set of parameters only has a slight influence on the accuracy. These pa-
rameters are learn-logFunction and ignoreBadFeatures. However, as they add and
remove candidates that need to be evaluated in the feature subset selection they
have an high influence on the learning effort. Logarithmic behavior can be approx-
imated to a certain extent with linear functions or polynomials and can only be
applied to numeric options. Therefore, learn-logFunction is not as relevant for the
accuracy. For ignoreBadFeatures, the number of candidates that will get ignored
is also only the subset that performed bad in the previous feature subset selection
round. Therefore, those two parameters are less relevant than leastsquares.
The quadraticFunctionSupport parameter also has a high impact on the effort. How-
ever, it only has a weak influence on the accuracy as square functions can also be
expressed with interactions in later iterations of the feature subset selection. How-
ever, it can still have an impact as it allows square functions without the requirement
of adding linear influences.
The impact of featureSizeThreshold being low could be an indicator that high order
have a weaker influence on the performance or do not occur commonly. This aligns
with findings by Liebig et al. [LAL+10], who found that the most common interac-
tions in configurable software are of low order.

5.3.2 Discussion: CART

The most influential parameter in the CART case study is max features. Both the
accuracy and effort are mostly affected by this parameter as it determines which
splits are possible. As splitting the learning set is the core mechanic of the CART
technique, this parameter also has a very high influence.
The next group of parameters only has a weak influence on the accuracy and effort.
This group contains the best and random alternative group and min samples leaf.
Each individual parameter in this group has less than 1

3
of the influence of max features.

Both the best and the random split directly and indirectly depend on which con-
figuration options are available so they are less important than max features. The

38 5. Evaluation

importance of the stopping criterion min samples leaf is restricted to the domain
we used for our experiments, as the maximum value for this parameter was 4%. All
other parameters have no influence on the effort.
The min samples split parameter has close to no influence on the accuracy. So this
stopping criterion was rarely reached for the values we assigned to it. Like for the
previous machine-learning technique, the max depth option having no influence in-
dicates that mostly low order interactions influence the performance of configurable
software systems. Further, min samples split having no or close to no influence could
be an indication that configurable software systems are less prone to the problem of
unbalanced splits.

5.3.3 Discussion: Random Forest

Since Random Forest is a derivation of the CART technique, the parameters also
display similar relevancy. This is also displayed by the relevancy of the machine-
learning parameters, as the relevancy of parameters in CART and Random Forest
both depend on the same factors. Further, as creating trees is the most computa-
tional intensive task for this technique, the n estimators is highly relevant for the
effort. Additionally, the number of estimators is relevant for the accuracy, because
more trees in the forest results in less accurate trees, produced due to the randomness
of this techniques, having less impact on the overall prediction.

5.3.4 Discussion: K-Nearest Neighbors

The two most important parameters on the accuracy of the K-Nearest Neighbors
technique are the distance weightings uniform and distance and the size of the neigh-
borhood n neighbors. The distance weighting leading to such high accuracy is due
to the prediction error being 0% when using the distance based metric as for both
learning was performed on all configuration was performed on all configurations in
the data set. However, these parameters have no influence on the effort.
All other parameters have marginal or no influence on the effort. The p parameter
only has a small impact on the accuracy, because the effect of configurations having
lower distance despite displaying more changes in their configuration options than
other configurations is only limited to few neighbors that still display similarities.
Further, the other parameters only affect the computation of the neighbors.
As these parameters influence the computation they have high impact on the ef-
fort. The ball tree parameter in combination with the p parameter has the highest
influence on the effort. While not displayed in our results, the kd tree and brute pa-
rameter have high influence on the accuracy as they are the alternatives to ball tree.
Additionally, the leaf size parameter can have a weak impact on the effort.

Only a few parameters like max features and leastquares are very relevant for the
accuracy or effort. Further, most parameters with strong impact are very relevant
for both accuracy and effort. Other parameter are considerably less influential than
those parameters with some parameters even having close to no influence. Only a
few parameters have no influence whatsoever.

5.4. Across Case Study Comparison 39

5.4 Across Case Study Comparison

In this section, we explore whether the relevancy on machine-learning parameters
depends on the configurable software system that was used for metalearning to
answer RQ3. For this research question we mainly focus on the Star Plots that
show results for all subject systems. Additionally, we refer to individual Star Plots
displayed in Section A.2 to point out differences.
To answer the research question, we compare the impact of the machine-learning
parameters for all case study.

5.4.1 Discussion: Stepwise Regression

Generally, we can observe that the overall picture stays the same for all subject
systems. Evaluation of candidates is the core part in this technique. Therefore, as
the leastsquares error function does not perform good when evaluating candidates,
the leastquares and relative alternative group has the strongest influence on accuracy
in all five workloads. This group also retains its strong influence when looking at the
effort, because an earlier abort of the feature subset selection caused by leastquares
leads to a big decrease of time consumption, independent of the workload used for
learning. For accuracy, changes in the relevancy can only be observed for parameters
with weaker influences.
The influences of logarithmic and quadratic support depend on the data set that
was used for learning. As mentioned before, these parameters are only useful when
the data set contains numeric configuration options and also rely on the traits of the
learning set. Therefore, the relevancy of this machine-learning parameter depends on
the workload. For workloads with no numeric configuration options these parameters
have no influence on the accuracy and effort. Such behavior can be observed when
learning with the Ajstats and x264 data sets as seen in A.1(a), A.1(b), A.5(a) and
A.5(b). However, all other influences retain a similar level of relevancy.

5.4.2 Discussion: CART

When looking at the results for the CART technique, the order of the parameters
mostly stays the same. The max features parameter is the most influential parameter
in all data sets as with a higher number of configuration options available for a split
more influences can be modeled. The splitting criteria and min samples leaf sustain
moderate influence. However, there can be small changes in their relative impact
on the effort. A example for this is found when comparing the Dune data set in
A.7(b) to the results of Ajstats in A.6(b). Further, for the VP9 and x264 data sets a
decrease in the relevancy of the random parameter can be found, as seen in A.10(a)
and A.9(a). This could be a result of the randomness. However, both data sets
share the similarity that they were obtained by measuring video encoding software.
So, a possible explanation is the high number of alternative groups in these data
sets as the influences of alternatives can be modeled in multiple ways using different
configuration options. In this case, it is more likely that a suitable configuration will
be randomly selected that compared to optional configuration options.

40 5. Evaluation

5.4.3 Discussion: Random Forest

The parameters with the strongest influence on the accuracy and effort of the Ran-
dom Forest technique mostly also have the strongest influence across all case studies.
For those parameters one change that can be observed, appears in the results of the
Dune case study in A.12(b) as the impact of the max features on the effort becomes
very low. This is due to the specific traits of this case study, as it has less configu-
rations options than any other case study.
When it comes to the parameters with weaker influences, the influence of the
min samples split is only above zero for the Trimesh and the x264 data sets. This
can be seen A.13(a) and A.15(a). For Trimesh, this is due to a higher influence
from numeric configurations options, which results in unbalanced splits. Similar to
this x264 is not split up evenly as it has a high number of alternative groups.
The relevancy for all other other parameters generally stays the same or similar.

5.4.4 Discussion: K-Nearest Neighbors

The only difference in the influence of significant parameters can be found in the
Ajstats data set. In A.16(a), the n neighbors parameter has very low influence on
the accuracy. The reason for this is that in this particular data set all configura-
tions have relatively similar non-functional property values. Therefore, the accuracy
barely decreases when less similar configurations are used for the prediction. How-
ever, the n neighbors has a strong influence on the accuracy in all other data sets.
In these data sets a high spacial dissimilarity leads to a high difference in the values
of the non-functional property.
Otherwise, no differences in the relevancy of parameters can be observed. This is
due to the low number of parameters that influence the accuracy and effort, as
seen in 5.7(a) and 5.7(b). Furthermore, the high influence of the distance pa-
rameter is independent from the data set as it always leads to an error of 0%.
The most relevant parameters are mostly consistent across all data sets. However,
there exist specific data sets where certain parameters are less relevant. For example,
logarithmic support has no influence on the effort when creating models for data sets
that contain no numeric configuration options.

6. Validity

In this chapter, we discuss possible threats to the validity that could affect our ex-
periments and lead to invalid results. Further, we describe how we tried to minimize
those threats. The threats that arise when measuring performance such as execu-
tion time and our ways to deal with them are discussed in Section 6.1. In section
Section 6.2, we examine the transferability of our results.

6.1 Internal Validity

When measuring performance, there can be multiple factors not tied to the ex-
periments that influence the performance and lead to inaccurate results. Since we
measure the execution time of the machine-learning techniques as one metric for
performance, these factors have to be addressed.
One major group of factors includes dynamic properties of the hardware the experi-
ments are executed on. Such properties include manufacturer specific techniques to
dynamically scale the frequency of processor cores and increasing the number the
number of parallel threads depending on the workload, but also more common tech-
niques caching. To prevent potential error produced due to manufacturer specific
performance enhancements we disabled Turbo Boost and Multithreading for our ex-
periments. Other factors such as caching are either essential or could not be disabled
and, therefore, are included in the means we use to deal with unknown factors.
The other major factor we consider is other software being executed in parallel to
our experiments. To prevent other experiments from running on the same node at
the same time, we blocked the node when our experiments were performed. So, not
more than one single experiment could be executed on the same node at the same
time. However, other background software like the operating system could not be
prevented and could not be dealt with directly.
To mitigate the error produced by unknown factors or factors that we could not
deal with directly, we repeated each measurement three times and used the aver-
age of those runs. Additionally, to prevent outliers from influencing our results we
computed the relative standard deviation of the three runs. If the relative standard

42 6. Validity

deviation of the effort was higher than 10%, we assumed that the error in that par-
ticular measurement was too high, discarded it and repeated the measurement until
we obtained stable results. For accuracy we apply a more stricter rule and only
consider measurements with constant accuracy across all runs.

6.2 External Validity

Despite using five different workloads, obtained from measuring the performance of
configurable software from different domains, for our experiments, they were only
limited to the domain of configurable software systems. Other data sets from do-
mains that are not linked to configurable software might display completely different
behavior and therefore produce different results. Additionally, there could be config-
urable software systems with performance traits not present in our data sets. This
could lead to our results not being representative for those systems. As we examined
four specific machine-learning techniques for our experiments, our results might also
not be suited for machine-learning techniques we did not consider. The only mean
to deal with this problem would be using more workloads and machine-learning
techniques, which was not possible due to time restrictions.
Another problem that might arise is the lack of sampling. The usage of sampling
could alter the representation of the data set and change the influences of machine-
learning parameters. However, we did not consider sampling for our experiments,
because of time limitations and the steep increase in time required to perform all
experiments. So our results might not be applicable when using sampling.
The last issue is the influence of randomness in specific machine-learning tech-
niques. For example, influences from randomness can appear in the CART tech-
nique(Section 2.5) when using random splits with the random parameter(Table 4.3)
or in the Random Forest technique(Section 2.6) when the learning set for a tree is
generated. For our experiments, we used a hard coded random seed to ensure con-
sistent and replicable results. Nonetheless, different seeds lead to different results, so
the influence of parameters dependent on the randomness also depend on the value
of the random seed. Albeit this, we can assume that a random approach can never
be better than the exhaustive approach as seen in 5.4(a). So in cases where both
approaches exist, only the magnitude of their difference will vary.
Since we also use machine-learning to create performance-influence models, the result
we present in our results might also differ depending on the parameter setting of the
Stepwise Regression technique. To ensure consistent results within our experiments,
we always used the default parameter selection to create performance-influence mod-
els at the second level of our metalearning approach.

7. Related Work

Several work has been done using machine-learning to predict the performance of
configurable software systems.
Westermann et al. [WHKF12] used CART among others to build models and pre-
dict the performance of configurations. They predicted the performance of the Java
Virtual Machine and an SAP ERP system. In their results, they found that de-
spite being fast the CART technique was very inaccurate and unreliable when used
for performance prediction. However, they did not take the influences of machine-
learning parameters on the prediction accuracy into account.
Guo et al. [GYS+18] also used a machine-learning technique based on CART to
predict the performance of an extensive set of configurable software systems. In ad-
dition to the normal CART technique, their approach included performing parame-
ter tuning on the machine-learning parameters to find the optimal configuration of
the machine-learning technique. However, their parameter tuning approach was only
based on search strategies and no knowledge on the influence of the machine-learning
parameters was used or extracted. Predicting the performance of an extensive set of
configurable software systems including AJStats, x264, the LLVM compiler, Berkeley
DB and others, their approach with parameter tuning outperformed the traditional
CART in 8 out of 10 cases in terms of prediction accuracy. In the other two cases
both approaches performed very similar.
Another work in this area was performed by Siegmund et al. [SGAK15]. They
created expressive performance-influence models to describe and predict the perfor-
mance of configurable software by using their machine-learning software SPLCon-
queror. With these models they could predict the performance of configurable soft-
ware systems such as x264 and Dune with an error mostly between 10% and 19%.
However, they could also observe higher error for certain case studies and sampling
techniques.

In the area of using machine-learning to find the performance-optimal parameters
for machine-learning techniques, one of the earliest work was executed by Soares et
al. [SBK04]. They used information from previous machine learning, such as traits
of the learning set and accuracy of the different parameter settings, to try to predict

44 7. Related Work

the optimal parameters for Support Vector Machines using the K-Nearest Neighbors
technique. In their experiments they found that this approach is both more robust
and accurate than using a heuristic to compute the optimal parameters.
Gomes et al. [GPS+12] and Reif et al. [RSD12] both proposed similar approaches
to enhance the prediction of machine-learning parameters for Support Vector Ma-
chines. Both approaches initially try to predict the optimal configuration similar to
Soares et al., but instead of using the result of the prediction as the final setting,
they use it as basis for an search strategy and try to find better parameter settings.
Gomes et al. and Reif et al. both found that such approaches finds good parameters
faster than traditional search strategies, while the resulting error remained similar.
Reif et al. could also achieve the same accuracy as an extensive Grid Search, while
requiring less time compared to the extensive search.
However, none of these approaches extracts information about the influence of the
machine-learning parameters on the accuracy and their tendency. The biggest limi-
tation of the approach proposed by Soares et al. is that they had to limit the values
of machine-learning parameters to a discrete value range. Therefore, they could only
find parameters within that range, even if the accuracy increases for values they did
not consider as they did not explore how the parameters influence the accuracy.
Gomes et al. and Reif et al. aim at overcoming this limitation by additionally
using search strategies to find better parameters. However, this search can also be
quite cost intensive as machine-learning has to be performed for each candidate.
Additionally, the search has to be performed for each new data set that is used for
learning as they do not extract any previous knowledge about the influence of the
parameters.
Vanschoren et al. [VBPH12] investigated how the parameters of SVM and Random
Forest influence the accuracy by comparing the accuracy of different parameter set-
tings across a database of data sets for machine-learning. In their experiments on
SVM they could observe two different behaviors depending on the number of features
in the data set that was used learning. For Random Forest they could observe an
increase in accuracy as the size of the forest grows for most data sets. However, for
a single data set with only binary features they could observe a decrease in accuracy
as the size of the forest grows.

8. Conclusion and Future Work

8.1 Conclusion

In this thesis, we examined the influence of machine-learning parameters on the pre-
diction accuracy and learning effort for four different machine-learning techniques.
For this, we performed machine learning with the Stepwise Regression, CART, Ran-
dom Forest and K-Nearest Neighbors and measured the accuracy and effort for dif-
ferent parameter setting. To investigate the influence of the parameters and answer
our research question, we performed machine-learning again to create performance-
influence models describing the influences of machine-learning parameters. This
procedure was performed by learning on five different configurable software systems.

In the first research question, we investigated which machine-learning parameters
influence the accuracy and effort and their effect on those metrics. We found that
most machine-learning parameters have an influence on accuracy or effort. Further,
we found that most parameters that increase the accuracy also increase the effort
required to learn.
For the second research question, we investigated if some machine-learning parame-
ters have stronger impact on the accuracy and effort than others. We observed that
a small set of parameters has the strongest influence on those metrics, while the rest
is noticeable less relevant compared to those.
Last, we compared the relevancy of the machine-learning parameters across several
data sets used for learning. We found that the most relevant parameters generally
were the same for all data sets. However, some differences could occur in the rele-
vancy of some relevant parameters depending on the case study. Those parameters
mostly depended on specific characteristics of the data set that was used for learning
such as the absence of numeric configurations options when supporting logarithmic
influences.

46 8. Conclusion and Future Work

8.2 Future Work

Here, we discuss possibilities for future work based on this thesis.

In Section 3.1, we mentioned that we used no sampling for our approach. However,
sampling is used to decrease the effort required to measure a configurable software
system for performance prediction. Therefore, a study on how sampling affects the
results of the metalearning could be conducted in the future. For this, sampling
strategies such as Pair-Wise, Option-Wise, Random and Plackett-Burman, which
have been used by Siegmund et al. [SGAK15] on configurable software systems,
could be used. In early experiment results on CART - found in 8.1(a) and 8.1(b) -
using sampling strategies we could find indications that there exist dependencies be-
tween the sampling strategy that is used and the optimal parameters. For example,
differences in the influences of the parameters could be observed when using a full
random sampling compared to the influences found when learning with the whole
population. For this sampling set, parameters that introduce some randomness to
the CART technique could provide higher accuracy, because the best parameter de-
creases the accuracy. This might indicate that for some sampling strategies such
as random sampling, which preserve less of the structure of the data set used for
learning, overfitting is a problem that influences the impact of machine-learning pa-
rameters. On the other hand, we could observe that for the more strategic sampling
,using the combination of the Plackett-Burman and Pair-Wise sampling strategies,
the number of configuration options max features used for learning does not influ-
ence the accuracy. On the other hand, the stopping criterion min samples leaf, that
determines the minimum percentage of the total configurations a node can have
before it has to be a leaf, increases in relevancy. Further, the accuracy increases
the stricter this stopping criterion is. This could be another indicator for possible
dependencies between the structure of the sampling and the influence of parameters,
because pairwise sampling creates a sample set where each possible combination of
two binary options is present. With such a sample set, splitting it might be pos-
sible even with a low number of options available, yet it might be very prone to
overfitting due to the structure. However, further experiments are required to give
tangible answers to research questions as we currently can not distinguish if some of
these influences are specific to certain case studies, are due to randomness and are
caused by the sampling strategies.

As multiple non-functional properties were measured for the data sets we used, fu-
ture work could also investigate if there is a connection between the influence of the
machine-learning parameters and the non-functional properties that were used. This
could open the possibility to find further criteria for the transferability of our re-
sults, since the correlation between the non-functional properties could be measured.

8.2. Future Work 47

best

best
×mfeat

mfeat

best×msleaf

msleaf

msleaf×
rand

Legend

Relevant influence

No relevant influence

Dune - strategic

(a) Strategic sampling

best

best
×mfeat

mfeat

best×msleaf

msleaf

msleaf×
rand

Legend

Relevant influence

No relevant influence

Dune - random subset

(b) Random samping

Figure 8.1: Influences of parameter on the CART technique using sampling.

Another issue we mentioned in Chapter 6, was the randomness of some machine-
learning techniques. To ensure consistent results we used a single fixed random
seed for all of our experiments. However, we could not examine to which extent our
results were influence by the random value we used. To solve this issue in the future,
the experiments could be repeated several times with a set of different random seeds
to eliminate the influence of the randomness.

48 8. Conclusion and Future Work

A. Appendix

A.1 Content of DVD

A DVD with the scripts and tools used for this thesis and the results of our mea-
surements and metalearning is added to this thesis. The DVD includes:

• thesis.pdf - A digital version of this thesis

• SPLConqueror.7z - The SPLConqueror machine-learning software

• SPLConquerorProfiler.7z - A modified version of SPLConqueror with a profiler

• scripts - The folder containing all the scripts that were used. Additionally, a
README is added explaining the scripts

• results - Contains the results of our measurements and metalearning. Also
contains a README.

• misc - Contains Feature Models of the machine-learning techniques.

• workload.7z - Contains the workloads used for learning.

• ViPe - Contains the visualization tool.

A.2 Additional Star Plots

50 A. Appendix

leastsq-rel

leastsq-rel
×iBF

leastsq
×iBF
×llF

leastsq
×llF

iBF
iBF×
llF

iBF×
qFS

llF

rel×
fST×
llF

Legend

Relevant influence

No relevant influence

Ajstats

(a) Influences on the accuracy for Step-
wise Regression and Ajstats.

leastsq

leastsq
×llF

leastsq
×llF
×qFS

leastsq
×qFS

rel
×iBF

rel
×iBF
×llF

rel
×iBF
×llF
×lFS

rel
×iBF
×llF
×qFS

rel
×iBF
×lFS

rel
×iBF
×qFS

iBF

iBF×
llF

iBF×
qFS

llF

llF×
qFS

qFS

rel×
fST×
iBF

rel×
fST×
iBF×
llF

rel×
fST×
iBF×
qFS

fST×
iBF

Legend

Relevant influence

No relevant influence

Ajstats

(b) Influences on the effort for Stepwise
Regression and Ajstats.

Figure A.1: Stepwise Regression and Ajstats

leastsq-rel

leastsq-rel
×iBF

leastsq
×iBF
×llF

leastsq
×llF

iBF
iBF×
llF

iBF×
qFS

llF

rel×
fST×
llF

Legend

Relevant influence

No relevant influence

Dune

(a) Influences on the accuracy for Step-
wise Regression and Dune.

leastsq

leastsq
×llF

leastsq
×llF
×qFS

leastsq
×qFS

rel
×iBF

rel
×iBF
×llF

rel
×iBF
×llF
×lFS

rel
×iBF
×llF
×qFS

rel
×iBF
×lFS

rel
×iBF
×qFS

iBF

iBF×
llF

iBF×
qFS

llF

llF×
qFS

qFS

rel×
fST×
iBF

rel×
fST×
iBF×
llF

rel×
fST×
iBF×
qFS

fST×
iBF

Legend

Relevant influence

No relevant influence

Dune

(b) Influences on the effort for Stepwise
Regression and Dune.

Figure A.2: Stepwise Regression and Dune

A.2. Additional Star Plots 51

leastsq-rel

leastsq-rel
×iBF

leastsq
×iBF
×llF

leastsq
×llF

iBF
iBF×
llF

iBF×
qFS

llF

rel×
fST×
llF

Legend

Relevant influence

No relevant influence

Trimesh

(a) Influences on the accuracy for Step-
wise Regression and Trimesh.

leastsq

leastsq
×llF

leastsq
×llF
×qFS

leastsq
×qFS

rel
×iBF

rel
×iBF
×llF

rel
×iBF
×llF
×lFS

rel
×iBF
×llF
×qFS

rel
×iBF
×lFS

rel
×iBF
×qFS

iBF

iBF×
llF

iBF×
qFS

llF

llF×
qFS

qFS

rel×
fST×
iBF

rel×
fST×
iBF×
llF

rel×
fST×
iBF×
qFS

fST×
iBF

Legend

Relevant influence

No relevant influence

Trimesh

(b) Influences on the effort for Stepwise
Regression and Trimesh.

Figure A.3: Stepwise Regression and Trimesh

leastsq-rel

leastsq-rel
×iBF

leastsq
×iBF
×llF

leastsq
×llF

iBF
iBF×
llF

iBF×
qFS

llF

rel×
fST×
llF

Legend

Relevant influence

No relevant influence

VP9

(a) Influences on the accuracy for Step-
wise Regression and VP9.

leastsq

leastsq
×llF

leastsq
×llF
×qFS

leastsq
×qFS

rel
×iBF

rel
×iBF
×llF

rel
×iBF
×llF
×lFS

rel
×iBF
×llF
×qFS

rel
×iBF
×lFS

rel
×iBF
×qFS

iBF

iBF×
llF

iBF×
qFS

llF

llF×
qFS

qFS

rel×
fST×
iBF

rel×
fST×
iBF×
llF

rel×
fST×
iBF×
qFS

fST×
iBF

Legend

Relevant influence

No relevant influence

VP9

(b) Influences on the effort for Stepwise
Regression and VP9.

Figure A.4: Stepwise Regression and VP9

52 A. Appendix

leastsq-rel

leastsq-rel
×iBF

leastsq
×iBF
×llF

leastsq
×llF

iBF
iBF×
llF

iBF×
qFS

llF

rel×
fST×
llF

Legend

Relevant influence

No relevant influence

x264

(a) Influences on the accuracy for Step-
wise Regression and x264.

leastsq

leastsq
×llF

leastsq
×llF
×qFS

leastsq
×qFS

rel
×iBF

rel
×iBF
×llF

rel
×iBF
×llF
×lFS

rel
×iBF
×llF
×qFS

rel
×iBF
×lFS

rel
×iBF
×qFS

iBF

iBF×
llF

iBF×
qFS

llF

llF×
qFS

qFS

rel×
fST×
iBF

rel×
fST×
iBF×
llF

rel×
fST×
iBF×
qFS

fST×
iBF

Legend

Relevant influence

No relevant influence

x264

(b) Influences on the effort for Stepwise
Regression and x264.

Figure A.5: Stepwise Regression and x264

rand

best
×mfeat

mfeat

mfeat
×msleaf

mfeat×
rand

msleaf

mssplit

Legend

Relevant influence

No relevant influence

Ajstats

(a) Influences on the accuracy for
CART and Ajstats.

best

best
×mfeat

mfeat

mfeat×msleaf

mfeat×
rand

msleaf

Legend

Relevant influence

No relevant influence

Ajstats

(b) Influences on the effort for CART
and Ajstats.

Figure A.6: CART and Ajstats

A.2. Additional Star Plots 53

rand

best
×mfeat

mfeat

mfeat
×msleaf

mfeat×
rand

msleaf

mssplit

Legend

Relevant influence

No relevant influence

Dune

(a) Influences on the accuracy for
CART and Dune.

best-rand

best
×mfeat

mfeat

mfeat×msleaf

mfeat×
rand

msleaf

Legend

Relevant influence

No relevant influence

Dune

(b) Influences on the effort for CART
and Dune.

Figure A.7: CART and Dune

rand

best
×mfeat

mfeat

mfeat
×msleaf

mfeat×
rand

msleaf

mssplit

Legend

Relevant influence

No relevant influence

Trimesh

(a) Influences on the accuracy for
CART and Trimesh.

best-rand

best
×mfeat

mfeat

mfeat×msleaf

mfeat×
rand

msleaf

Legend

Relevant influence

No relevant influence

Trimesh

(b) Influences on the effort for CART
and Trimesh.

Figure A.8: CART and Trimesh

54 A. Appendix

rand

best
×mfeat

mfeat

mfeat
×msleaf

mfeat×
rand

msleaf

mssplit

Legend

Relevant influence

No relevant influence

VP9

(a) Influences on the accuracy for
CART and VP9.

best-rand

best
×mfeat

mfeat

mfeat×msleaf

mfeat×
rand

msleaf

Legend

Relevant influence

No relevant influence

VP9

(b) Influences on the effort for CART
and VP9.

Figure A.9: CART and VP9

rand

best
×mfeat

mfeat

mfeat
×msleaf

mfeat×
rand

msleaf

mssplit

Legend

Relevant influence

No relevant influence

x264

(a) Influences on the accuracy for
CART and x264.

best-rand

best
×mfeat

mfeat

mfeat×msleaf

mfeat×
rand

msleaf

Legend

Relevant influence

No relevant influence

x264

(b) Influences on the effort for CART
and x264.

Figure A.10: CART and x264

A.2. Additional Star Plots 55

mfeat

mfeat
×msleaf
×nest

mfeat
×msleaf

mfeat
×nest

msleaf
msleaf×

mssplit

msleaf×
nest

mssplit

nest

Legend

Relevant influence

No relevant influence

Ajstats

(a) Influences on the accuracy for Ran-
dom Forest and Ajstats.

mfeat

mfeat
×msleaf
×nest

mfeat×
nest

msleaf×
nest

nest

Legend

Relevant influence

No relevant influence

Ajstats

(b) Influences on the effort for Random
Forest and Ajstats.

Figure A.11: Random Forest and Ajstats

mfeat

mfeat
×msleaf
×nest

mfeat
×msleaf

mfeat
×nest

msleaf
msleaf×

mssplit

msleaf×
nest

mssplit

nest

Legend

Relevant influence

No relevant influence

Dune

(a) Influences on the accuracy for Ran-
dom Forest and Dune.

mfeat

mfeat
×msleaf
×nest

mfeat×
nest

msleaf×
nest

nest

Legend

Relevant influence

No relevant influence

Dune

(b) Influences on the effort for Random
Forest and Dune.

Figure A.12: Random Forest and Dune

56 A. Appendix

mfeat

mfeat
×msleaf
×nest

mfeat
×msleaf

mfeat
×nest

msleaf
msleaf×

mssplit

msleaf×
nest

mssplit

nest

Legend

Relevant influence

No relevant influence

Trimesh

(a) Influences on the accuracy for Ran-
dom Forest and Trimesh.

mfeat

mfeat
×msleaf
×nest

mfeat×
nest

msleaf×
nest

nest

Legend

Relevant influence

No relevant influence

Trimesh

(b) Influences on the effort for Random
Forest and Trimesh.

Figure A.13: Random Forest and Trimesh

mfeat

mfeat
×msleaf
×nest

mfeat
×msleaf

mfeat
×nest

msleaf
msleaf×

mssplit

msleaf×
nest

mssplit

nest

Legend

Relevant influence

No relevant influence

VP9

(a) Influences on the accuracy for Ran-
dom Forest and VP9.

mfeat

mfeat
×msleaf
×nest

mfeat×
nest

msleaf×
nest

nest

Legend

Relevant influence

No relevant influence

VP9

(b) Influences on the effort for Random
Forest and VP9.

Figure A.14: Random Forest and VP9

A.2. Additional Star Plots 57

mfeat

mfeat
×msleaf
×nest

mfeat
×msleaf

mfeat
×nest

msleaf
msleaf×

mssplit

msleaf×
nest

mssplit

nest

Legend

Relevant influence

No relevant influence

x264

(a) Influences on the accuracy for Ran-
dom Forest and x264.

mfeat

mfeat
×msleaf
×nest

mfeat×
nest

msleaf×
nest

nest

Legend

Relevant influence

No relevant influence

x264

(b) Influences on the effort for Random
Forest and x264.

Figure A.15: Random Forest and x264

dist

uni

dist
×nneigh

dist
×nneigh
×p

lsize

nneigh

nneigh×
p×

uni

nneigh×
uni

p

p×
uni

Legend

Relevant influence

No relevant influence

Ajstats

(a) Influences on the accuracy for K-
Nearest Neighbors and Ajstats.

btree

btree
×p

btree×
lsize

btree×
lsize×

p

p

Legend

Relevant influence

No relevant influence

Ajstats

(b) Influences on the effort for K-
Nearest Neighbors and Ajstats.

Figure A.16: K-Nearest Neighbors and Ajstats

58 A. Appendix

dist

uni

dist
×nneigh

dist
×nneigh
×p

lsize

nneigh

nneigh×
p×

uni

nneigh×
uni

p

p×
uni

Legend

Relevant influence

No relevant influence

VP9

(a) Influences on the accuracy for K-
Nearest Neighbors and Dune.

btree

btree
×p

btree×
lsize

btree×
lsize×

p

p

Legend

Relevant influence

No relevant influence

Dune

(b) Influences on the effort for K-
Nearest Neighbors and Dune.

Figure A.17: K-Nearest Neighbors and Dune

dist

uni

dist
×nneigh

dist
×nneigh
×p

lsize

nneigh

nneigh×
p×

uni

nneigh×
uni

p

p×
uni

Legend

Relevant influence

No relevant influence

Trimesh

(a) Influences on the accuracy for K-
Nearest Neighbors and Trimesh.

btree

btree
×p

btree×
lsize

btree×
lsize×

p

p

Legend

Relevant influence

No relevant influence

Trimesh

(b) Influences on the effort for K-
Nearest Neighbors and Trimesh.

Figure A.18: K-Nearest Neighbors and Trimesh

A.2. Additional Star Plots 59

dist

uni

dist
×nneigh

dist
×nneigh
×p

lsize

nneigh

nneigh×
p×

uni

nneigh×
uni

p

p×
uni

Legend

Relevant influence

No relevant influence

VP9

(a) Influences on the accuracy for K-
Nearest Neighbors and VP9.

btree

btree
×p

btree×
lsize

btree×
lsize×

p

p

Legend

Relevant influence

No relevant influence

VP9

(b) Influences on the effort for K-
Nearest Neighbors and VP9.

Figure A.19: K-Nearest Neighbors and VP9

dist

uni

dist
×nneigh

dist
×nneigh
×p

lsize

nneigh

nneigh×
p×

uni

nneigh×
uni

p

p×
uni

Legend

Relevant influence

No relevant influence

x264

(a) Influences on the accuracy for K-
Nearest Neighbors and x264.

btree

btree
×p

btree×
lsize

btree×
lsize×

p

p

Legend

Relevant influence

No relevant influence

x264

(b) Influences on the effort for K-
Nearest Neighbors and x264.

Figure A.20: K-Nearest Neighbors and x264

60 A. Appendix

Bibliography

[ABKS16] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
oriented software product lines. Springer, 2016. (cited on Page 5)

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(Feb):281–305,
2012. (cited on Page 2)

[BFSO84] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. CRC press, 1984. (cited on Page 1

and 9)

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
(cited on Page 1 and 11)

[FMS16] Wei Fu, Tim Menzies, and Xipeng Shen. Tuning for software analytics:
Is it really necessary? Information and Software Technology, 76:135–
146, 2016. (cited on Page 2)

[GPS+12] Taciana AF Gomes, Ricardo BC Prudêncio, Carlos Soares, André LD
Rossi, and André Carvalho. Combining meta-learning and search tech-
niques to select parameters for support vector machines. Neurocomput-
ing, 75(1):3–13, 2012. (cited on Page 44)

[GRS+17] Alexander Grebhahn, Carmen Rodrigo, Norbert Siegmund, Francisco J
Gaspar, and Sven Apel. Performance-influence models of multigrid
methods: A case study on triangular grids. Concurrency and Com-
putation: Practice and Experience, 29(17):e4057, 2017. (cited on Page 7)

[GYS+18] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha
Sarkar, Pavel Valov, Krzysztof Czarnecki, Andrzej Wasowski, and
Huiqun Yu. Data-efficient performance learning for configurable sys-
tems. Empirical Software Engineering, 23(3):1826–1867, 2018. (cited

on Page 43)

[HDO+98] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bern-
hard Scholkopf. Support vector machines. IEEE Intelligent Systems and
their applications, 13(4):18–28, 1998. (cited on Page 1)

62 Bibliography

[IB13] Sadegh Bafandeh Imandoust and Mohammad Bolandraftar. Application
of k-nearest neighbor (knn) approach for predicting economic events:
Theoretical background. International Journal of Engineering Research
and Applications, 3(5):605–610, 2013. (cited on Page 12)

[LAL+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and
Michael Schulze. An analysis of the variability in forty preprocessor-
based software product lines. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 105–
114. ACM, 2010. (cited on Page 37)

[LBG15] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearn-
ing: a survey of trends and technologies. Artificial intelligence review,
44(1):117–130, 2015. (cited on Page 6)

[LSB+10] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and
Andrzej W ↪asowski. Evolution of the linux kernel variability model. Soft-
ware Product Lines: Going Beyond, pages 136–150, 2010. (cited on

Page 1)

[RSD12] Matthias Reif, Faisal Shafait, and Andreas Dengel. Meta-learning for
evolutionary parameter optimization of classifiers. Machine learning,
87(3):357–380, 2012. (cited on Page 44)

[SBK04] Carlos Soares, Pavel B Brazdil, and Petr Kuba. A meta-learning method
to select the kernel width in support vector regression. Machine learning,
54(3):195–209, 2004. (cited on Page 7 and 43)

[SGAK15] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian
Kästner. Performance-influence models for highly configurable systems.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, pages 284–294. ACM, 2015. (cited on Page 1, 7, 8, 43,

and 46)

[VBPH12] Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, and Geof-
frey Holmes. Experiment databases. Machine Learning, 87(2):127–158,
2012. (cited on Page 7 and 44)

[WHKF12] Dennis Westermann, Jens Happe, Rouven Krebs, and Roozbeh Farah-
bod. Automated inference of goal-oriented performance prediction func-
tions. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 190–199. ACM, 2012. (cited

on Page 43)

[XJF+15] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupa-
thy, and Rukma Talwadker. Hey, you have given me too many knobs!:
understanding and dealing with over-designed configuration in system
software. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pages 307–319. ACM, 2015. (cited on Page 1)

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Bachelorarbeit selbständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
als solche gekennzeichnet sind, sowie dass ich die Bachelorarbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Fleischmann Bastian

Passau, den 24. Juli 2018

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Structure of the Thesis

	2 Background
	2.1 Configurable Software Systems
	2.2 Metalearning
	2.3 Performance-Influence Models
	2.4 Forward Feature Selection in Combination with Stepwise Regression
	2.5 CART
	2.6 Random Forest
	2.7 K-Nearest Neighbors

	3 Methodology
	3.1 Metalearning Approach
	3.2 Metrics
	3.3 Visualization

	4 Experiment Setup
	4.1 Hardware Setup
	4.2 Machine-learning software
	4.3 Configurable Software Data Sets
	4.4 Machine-learning Parameters

	5 Evaluation
	5.1 Results
	5.1.1 Results: Forward Feature Selection in Combination with Stepwise Regression
	5.1.2 Results: CART
	5.1.3 Results: Random Forest
	5.1.4 Results: K-Nearest Neighbor Regression

	5.2 Influence of Machine-Learning Parameters
	5.2.1 Discussion: Stepwise Regression
	5.2.2 Discussion: CART
	5.2.3 Discussion: Random Forest
	5.2.4 Discussion: K-Nearest Neighbors

	5.3 Relevancy of Machine-learning Parameters
	5.3.1 Discussion: Stepwise Regression
	5.3.2 Discussion: CART
	5.3.3 Discussion: Random Forest
	5.3.4 Discussion: K-Nearest Neighbors

	5.4 Across Case Study Comparison
	5.4.1 Discussion: Stepwise Regression
	5.4.2 Discussion: CART
	5.4.3 Discussion: Random Forest
	5.4.4 Discussion: K-Nearest Neighbors

	6 Validity
	6.1 Internal Validity
	6.2 External Validity

	7 Related Work
	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	A Appendix
	A.1 Content of DVD
	A.2 Additional Star Plots

	Bibliography

