
Bachelor’s Thesis

F I N D I N G F E AT U R E - D E P E N D E N T C O D E : A
S T U D Y O N D I F F E R E N T F E AT U R E - R E G I O N

D E T E C T I O N A P P R O A C H E S

tom zahlbach

February 2, 2023

Advisor:
Florian Sattler Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Sebastian Hack Compiler Design Lab

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Tom Zahlbach: Finding feature-dependent code: A study on different feature-region detection
approaches, c© February 2023

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

02.02.2023

A B S T R A C T

Today’s complex software projects are almost always configurable and allow users to cus-
tomize their configuration to their liking. However, these highly-configurable software
projects put a burden on developers, as every feature contributes exponentially to the com-
plexity of configuration options, and interactions between features can lead to unexpected
behavior and bugs.

Hence, developers require specialized analysis tools with configuration-aware methods
that analyze these software projects and help developers reason about a project. Many of
these methods require a mapping between a configuration option and the code sections it
influences to reason about the software project. These code sections, called feature regions,
are usually detected with algorithms designed to isolate them.

Considerable time and effort go into evaluating a feature-region detection algorithm’s
performance, strengths, and weaknesses. Most of which is spent on evaluating whether
results generated on test code or projects match desired results. Automatically discovering
disagreements between detection results and a fixed ground truth would alleviate a big part
of the manual labor involved in evaluating a detection strategy.

We present a straightforward framework to compare feature-region detection algorithms
with ground-truth data or alternative detection strategies and evaluate the results. Our
framework highlights code locations where the approaches disagree. Highlighting these
code patterns in real-world software projects then enables a detailed comparison of each
strategy’s strengths and weaknesses and helps developers to tune and improve these detec-
tion strategies. Additionally, we showcase a comparison between two different detection
strategies and present the strengths and weaknesses we uncovered using our framework.
Our evaluation is split into two parts. Firstly, we compared the two strategies on small
code samples to test for specific edge cases and feature encodings. Secondly, we compared
the two strategies on real-world software projects to highlight previously undiscovered
disagreements between the strategies.

Our work demonstrates that analysis developers can gain valuable information about their
detection strategy by comparing them with alternative strategies on real-world software
projects or against a handcrafted ground truth.

iv

C O N T E N T S

1 introduction 1

1.1 Thesis Goal . 1

1.2 Overview . 2

2 background 3

2.1 Configurable Systems . 3

2.1.1 Configuration Option . 3

2.1.2 Feature . 3

2.1.3 Feature Variable . 4

2.1.4 Feature Model . 5

2.2 Interprocedural Control Flow Graphs . 5

2.3 Dominator Tree . 6

2.4 Taint Analysis . 7

2.5 LLVM Project . 7

2.5.1 LLVM Intermediate Representation . 8

2.5.2 LLVM Metadata . 9

2.5.3 LLVM pass pipeline . 9

2.6 VaRA . 10

2.6.1 Feature Region . 10

2.6.2 Clang adaption . 11

2.6.3 Detection Approaches . 11

2.6.4 Taint Analysis vs Feature Region detection 12

3 comparing detection approaches 13

3.1 Overview . 13

3.2 Implementation of the verifier pipeline . 13

3.2.1 Preparation . 13

3.2.2 Verifier Pipeline . 15

4 evaluation 19

4.1 Qualitative Evaluation . 19

4.1.1 Operationalization . 19

4.1.2 Results . 19

4.2 Quantitative Evaluation . 21

4.2.1 Operationalization . 21

4.2.2 Results . 22

4.2.3 Observations . 24

4.2.4 Implicit Else Cases . 25

4.2.5 Not dominated, but feature dependent 28

5 conclusion 30

5.1 Summary . 30

5.2 Related Work . 31

5.3 Future Work . 32

v

contents vi

bibliography 33

L I S T O F F I G U R E S

Figure 2.1 ICFG of a main function calling the function func 6

Figure 2.2 Dominator tree of the ICFG from Figure 2.1 7

Figure 3.1 The LLVM pass pipeline we setup for our evaluation 15

Figure 4.1 Control flow of the if statement in Listing 4.6 26

Figure 4.2 Control flow of the while loop in Listing 4.7 27

Figure 4.3 Control flow of the if statements from Listing 4.8 29

L I S T O F TA B L E S

Table 4.1 Aggregate Statistics . 22

L I S T I N G S

Listing 2.1 Example: Feature Model XML describing taint sources for Listing 3.1 4

Listing 2.2 Example: Showcasing taint propagation on example instructions . . 8

Listing 2.3 Example: Metadata annotations . 9

Listing 2.4 Example: Feature regions as . 10

Listing 2.5 Example detection results of the If approach 11

Listing 3.1 Our running example for this chapter 14

Listing 3.2 Example: instruction marked with GT metadata 15

Listing 3.3 Example verifier-pipeline output for our running example in Listing 3.1 18

Listing 4.1 Comparison results of an If-Then-Else statement. 20

Listing 4.2 Comparison results of a switch statement. 21

Listing 4.3 Example: The if approach falsely detects an isolated feature region . 23

Listing 4.4 Example: The if approach detects no_time out of nowhere 23

Listing 4.5 Comparison results of boolean statements used in an if condition. . 25

Listing 4.6 Example for an implicit else case . 26

Listing 4.7 Example for implicit dependencies using break and continue 27

Listing 4.8 Example for a feature dependency without a domination relationship 28

vii

acronyms viii

A C R O N Y M S

ICFG interprocedural control-flow graph

DT dominator tree

LLVM IR LLVM intermediate representation

1
I N T R O D U C T I O N

When working with modern software, it is almost inevitable that one comes across con-
figuration options in the form of command line parameters, environment variables, or
configuration files that control sections of the code and enable them only in specific cases.
Configuration options can add functionality, leave out optional parts, alter the program’s
behavior, or influence the program’s execution in another way. They generally control and
affect the features or functionality built into a program. On Linux systems, for example, the
find command has the command line parameter -exec, which prompts the find program to
run a command on all files found. Every configuration option contributes to the complexity
of the software, which makes it harder for developers to test their software for bugs or
unexpected behavior [13]. So to help out developers, configuration-aware analysis tools
have been developed which analyze or reason about a program while being aware of its
configuration options to help developers maintain highly configurable software by making
them aware of unexpected interactions between configuration options [16, 18, 20]. We can,
for example, isolate what code is executed when the find command is used with the -exec

parameter, watch the performance impact it has [18], or monitor how -exec interacts with
other parameters, such as -d, which deletes all files the command finds [7, 20]. These
analysis tools require a precise mapping from features, or the functionality of a program,
onto the sections of code that perform the functionality. These code regions are called
feature regions and are detected by specially-designed detection algorithms.

Evaluating a feature-region detection algorithm usually requires ground-truth information
to compare with the detection results. Creating ground-truth information is a human task
ranging from very labor-intensive to unfeasible, depending on the size of the code base.
Another huge timesink is checking whether the results generated on test code match desired
results. By comparing one detection approach with a different approach, we can run the
approaches on larger code bases and evaluate them relative to each other without creating
ground-truth data for the entire code base. With such a comparison, we can then detect
strengths and weaknesses in the detection approaches.

1.1 thesis goal

To address the problem of comparing detection approaches mentioned above, we propose
a framework that runs feature-region detection approaches on code and compares their
results. In the following thesis, we lay out the structure for such a framework. Then, utilizing
this framework, we evaluate two detection approaches to show how the framework can be
used. Finally, we showcase the approaches’ strengths, weaknesses, and other insights we
discovered while analyzing their disagreements on real-world projects. We also showcase
the framework’s ability to compare the results of detection approaches with ground-truth
information. We utilize this feature to isolate interesting code patterns into small test cases to
showcase each detection approach’s results compared to the desired results in one example.

1

1.2 overview 2

In the following paragraphs, we introduce the two detection approaches we compare in
our evaluation.

The first approach we use for our evaluation we call i f approach. It identifies code as
feature-dependent if wrapped in the if or else case of an if statement that uses feature
variables (Section 2.1.3) in its condition statement.

We refer to the second approach as dominator approach. It uses dominator trees and
domination relationships (Section 2.3) to help identify feature-dependent code. However,
before we get started, let us quickly summarize the structure of this thesis.

1.2 overview

This thesis is comprised of three different parts. In the beginning, we provide background
information about the basic functionality of the detection approaches and the LLVM
environment we use to run the approaches. Next, we describe the setup of our verifier
pipeline, which is the framework we propose. It encompasses preparing code for the
analysis, running the approaches, and comparing their results instruction by instruction.
Then we present our two-part evaluation of two detection approaches. Firstly, we perform a
qualitative analysis where we compare the results of both approaches on small code samples
with ground-truth information to test our framework. Secondly, we run both detection
approaches on larger real-world projects to measure their precision relative to each other
and observe their results. Finally, we isolate patterns we find interesting to small code
examples, run the detection approaches on them, and compare their results.

2
B A C K G R O U N D

In this chapter, we explain control flow graphs and dominator trees, which are important
concepts used by the dominator-based detection approach. Additionally, we introduce the
compiler framework LLVM, which we use to create a pipeline to handle the comparison of
detection approaches.

2.1 configurable systems

A configurable system is a software system that can be configured or modified in predefined
ways by developers or the end user to change the software’s functionality or appearance. A
concrete example is the chrome web browser, allowing the user to configure things like its
appearance, autofill options, and default search engine.

2.1.1 Configuration Option

A configuration option represents a predefined modification that can be made to a software
system. Configurations can be made in many different ways. A program might accept
configuration options via the command line, a specific configuration file, or environment
variables. Every configuration option modifies a software system’s functionality or appear-
ance by, for example, setting the compression level in the zip command. The zip command,
for example, accepts the configuration option -0 to -9 when used in a terminal to set the
compression level.

2.1.2 Feature

Many definitions have been proposed to describe a feature[2]. What most of them have in
common is that a feature represents some quality or aspect of a software system that is
visible to the user and provides a solution to a problem.

A feature is an abstract concept or quality of a software system that has been purposefully
designed and implemented in a software system. Features could be anything. Some examples
are a login form on a website that allows oneself to authenticate to the website’s backend
servers or a scrollbar on a web browser that allows scrolling overflowing content into
view. How about deciding whether a compression program should compress some files or
decompresses an already compressed bundle? That would be a feature too. Features can
even be made up of other features. For example, the feature of a login form is a combination
of features such as making HTTP requests and listening to responses, accepting user input
through the UI, and more.

To keep it simple, think of features as the tools built into a piece of software to solve a
problem, no matter how small it may seem.

3

2.1 configurable systems 4

2.1.3 Feature Variable

A feature variable represents the state of a program’s feature in its code. It is a variable that,
for instance, can indicate what mode of operation a program takes or whether or not an
optional feature is enabled.

A feature variable might, for example, represent the compression level in a compression
algorithm as an integer and whether or not the algorithm is compressing or decompress-
ing data as an enum with the values COMPRESS and DECOMPRESS indicating the
algorithm’s mode. In that way, both of these features of the compression algorithm are
represented by their respective feature variable. Categorizing a variable as a feature variable
is a somewhat arbitrary decision we make from the outside. A link between a variable and
a feature might be explicitly encoded in the program by naming the variable in a way that
helps identify its purpose. However, what ultimately counts is what the variable represents.

Listing 2.1: Example: Feature Model XML describing taint sources for Listing 3.1

1 <?xml version=" 1.0 " encoding="UTF−8"?>
2 <!DOCTYPE vm SYSTEM "vm.dtd">
3 <vm name="abc" root=" test/path/to/root/" commit="dabadfh">
4 <binaryOptions>

5 A: <configurationOption>

6 B: <name>fv</name>

7 <parent></parent>

8 <children></children>

9 C: <locations>

10 <sourceRange>

11 D: <path>main.c</path>

12 E: <start>

13 <line>3</line>

14 <column>8</column>

15 </start>

16 F: <end>

17 <line>3</line>

18 <column>25</column>

19 </end>

20 </sourceRange>

21 </locations>

22 <optional>False</optional>

23 </configurationOption>

24 </binaryOptions>

25 <numericOptions></numericOptions>

26 <booleanConstraints/>

27 </vm>

2.2 interprocedural control flow graphs 5

2.1.4 Feature Model

A feature model describes the features of a software system and their relationships with
each other. In Listing 2.1, we can see a feature model written in XML. Each feature we
want to track is capsuled in a configurationOption (A:) tag. They are nested within the
<binaryOptions> tag or the <numericOptions> tag, depending on the type of the feature.
The name of the feature is in the <name> tag (B:), and we use it as an identifier to track its
influence through the code. The <locations> and <sourceRange> tags (C:) are additions to
the feature model, which provide information on where to find feature variables associated
with a feature in a project. A <locations> can hold multiple <sourceRange> tags, and every
<sourceRange> represents one feature variable associated with the feature. Part of each
<sourceRange> is the path to the source file in the <path> tag (D:), as well as the starting
and ending line and column of the variable name used in the declaration of the variable we
want to track. These line and column values can be found in the <start> (E:) and <end>

(F:) tags, respectively.

2.2 interprocedural control flow graphs

An interprocedural control-flow graph (ICFG) is a directed graph representing all possible
program execution paths [5]. It shows groups of instructions called basic blocks as nodes,
and the graph’s edges represent the control flow between these basic blocks. A basic block
is a sequence of instructions with an entry label at the top and only one control-flow-
changing instruction at the end, which we refer to as terminator. The terminator determines
a node’s outgoing edges, and the entry label acts as the entry point into a basic block [14].
It is important to note that a node can have multiple incoming and outgoing edges. Thus
branches, loops, function calls, and other jumps in the control flow can be represented in an
ICFG by adding multiple outgoing or incoming edges. We handle function calls differently
from regular instructions. For each function call, we add an edge from the calling node to
the start of the function’s first basic block, and from every returning node of the function,
we add an edge to the instruction after the function call.

Figure 2.1 shows an example of anICFG representing a function call. The ICFG begins with
the first instruction in basic block A, calling the function f unc. Note that the dotted lines
correspond to edges added by function call and return instructions. At B inside f unc, we
define the variable v1 and then check whether or not v1 > 25. Depending on the result, we
jump to basic block C or D. In the body of the if statement C, we add 5 to the variable v1
and jump to basic block E, while in the else case D, we subtract 5 from the variable v1 and
then jump to basic block E. Next, the return statement gets called in basic block E, we jump
out of f unc back to the instruction after the call F, and the ICFG ends. 1 2

1 https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/resources/interprocedural.pdf

2 http://cs.rpi.edu/~milanova/csci4450/Lecture12.pdf

https://www.cs.cmu.edu/~aldrich/courses/15-819O-13sp/resources/interprocedural.pdf
http://cs.rpi.edu/~milanova/csci4450/Lecture12.pdf

2.3 dominator tree 6

A :
f unc();

main : f unc :

B :
v1 = 25;
i f (v1 > 25)

C :
v1 = v1 + 5;
while(true)

true

E :
v1 = v1 + 1;

D :
v1 = v1− 5;

false

F :
return v1;

G :
return f rom f unc;

Figure 2.1: ICFG of a main function calling the function func

2.3 dominator tree

A dominator tree (DT) of a program is a directed graph with the same nodes as the ICFG

of the program. The DT is constructed such that every node d dominates its child nodes
n1, . . . , nk. A node d dominates node n if, in the corresponding ICFG of the program, every
path from the entry node to node n has to pass through node d [1, 4].

Figure 2.2 depicts the DT of the ICFG from Figure 2.1 shows that the entry node A is
dominating every other node. Node B dominates nodes C, D, and F. In particular, node F
is neither dominated by C nor D because there is always a path to F over the other node. So
C does not dominate F because we can reach F by going over D (A → B → D → F), and
D does not dominate F because we can reach F by going over C (A → B → C → F). E is
dominated by C, and G is dominated by F in this example. 3

3 https://en.wikipedia.org/wiki/Dominator’_(graph_theory)

https://en.wikipedia.org/wiki/Dominator'_(graph_theory)

2.4 taint analysis 7

A

B

C
D

E

F

G

Figure 2.2: Dominator tree of the ICFG from Figure 2.1

2.4 taint analysis

The idea behind a taint analysis is to track the influence of a variable throughout a program
by tainting or marking every instruction that uses an already tainted variable.

In order to get the process started, we define taint sources in our code, which are the
seeds for the taint analysis. Taint sources are instructions we mark by hand to start the taint
propagation from there. Next up, an algorithm analyses the code instruction by instruction
and instructions that use a tainted variable. This step is called taint propagation, and it
results in all instructions that depend on a taint source being tainted as well.

We now run through a small example to demonstrate how taint analysis works. In
Listing 2.2, you can see some LLVM instructions. The taint source for our analysis is the
variable %feature_variable marked with A. Marked with B - K are instructions that are
tainted by taint propagation because our taint source %feature_variable influences them.
For example, the instruction at C is tainted because the variable %2 was previously tainted
in B. C is an excellent example of taints propagating to other variables through variable
assignment. Since %2 is dependent on %feature_variable from this point on, instructions
dependent on %2 are also dependent on %feature_variable and are therefore tainted. E
and F are tainted because the branch instruction at D is tainted. With that, every instruction
that is part of the if.then: or the if.else: sections is influenced by a tainted variable. G -
K are tainted again, similarly to B and C. Multiple variables like %3, %4, and %5 are directly
assigned to a tainted variable, and the other instructions make use of one of these variables,
so they are tainted as well.

2.5 llvm project

The LLVM project is a collection of libraries, compilers, and toolchain technologies. In
general, there are three categories of tools in the LLVM architecture, frontends, optimizers,
and backends [10].

Frontend tools can convert code of various languages into a universal representation
used by the other two categories. The Clang compiler, for example, can compile C or C++
code into this universal representation called LLVM intermediate representation (LLVM IR).
The optimizer is a tool that runs on the LLVM IR and performs a specific task like replacing
instructions to optimize code or performing analysis like detecting feature regions.

2.5 llvm project 8

Listing 2.2: Example: Showcasing taint propagation on example instructions

entry:

%feature_variable = alloca i8, align 1 ; A: Taint Source

%sum = alloca i32, align 4

store i32 4, i32* %sum, align 4

%2 = load i8, i8* %feature_variable, align 1 ; B:

%tobool = trunc i8 %2 to i1 ; C:

br i1 %tobool, label %if.then, label %if.else ; D:

if.then:

store i32 0, i32* %sum, align 4, !tbaa !2 ; E:

br label %if.end ; E:

if.else:

store i32 2, i32* %sum, align 4, !tbaa !2 ; F:

br label %if.end ; F:

if.end:

%3 = load i32, i32* %sum, align 4 ; G:

store i32 %3, i32* %retval, align 4 ; H:

%4 = bitcast i32* %sum to i8* ; I:

call void llvm.lifetime.end.p0i8(i64 4, i8* call void

llvm.lifetime.end.p0i8(i64 1, i8* %feature_variable) #2

%5 = load i32, i32* %retval, align 4 ; J:

ret i32 %5 ; K:

The tasks the optimizer can run are represented as LLVM passes or short modules
describing what to do with the LLVM IR. Lastly, backend tools convert LLVM IR into machine
code that can be executed on a CPU. Then there are library implementations like libc++ or
libclc, which implement standard libraries.

2.5.1 LLVM Intermediate Representation

LLVM IR is a low-level universal code representation. In LLVM IR, variables are assigned
precisely once and are always defined before they are used. This property is called Static
Single Assignment and is part of most intermediate representations. Thus, when a variable
is reassigned, it usually gets redefined with a subscript describing its current version.
Any programming language can theoretically be translated into LLVM IR as it provides
basic building blocks like global variables, linking, aliases, functions, structure types, and
visibility styles.4 Tools that translate code of a specific language into LLVM IR are part of
the frontend tools. However, since LLVM IR is a universal representation, it cannot handle
most language-specific optimizations, and some information is lost here. However, having a
low-level intermediate representation comes with two advantages.

4 https://llvm.org/docs/LangRef.html#introduction

https://llvm.org/docs/LangRef.html#introduction

2.5 llvm project 9

First, a low-level representation allows optimization tools to have a high impact before
the intermediate representation is changed into executable bytecode. Secondly, creating
optimization tools for an intermediate representation comes with the significant advantage
of reusability. Optimizations or tools utilizing LLVM IR are language agnostic and can be
used on LLVM IR created from any language [11].

2.5.2 LLVM Metadata

LLVM metadata represents extra information in LLVM IR that can be attached to instructions
and global objects. LLVM metadata provides more information about the code to tools that
work on LLVM IR.5

Listing 2.3: Example: Metadata annotations

1 store i8 0, i8* %feature_variable, align 1, !1

2 !llvm.module.flags = !{!2}

3

4 !1 = !{!"metadata", !" further metadata"}
5 !2 = !{i32 4, !"Metadata added to module object 32−bit integer and a string "}

In Listing 2.3, we can see some example annotations being added to an instruction in Line
1 and to the module using the llvm.module.flags object in Line 2. The metadata annotated
in each case is defined in Lines 4 and 5, respectively. The main driver for introducing
metadata was creating a channel for debugging information or additional optimization
information that would not influence the code structure. Not influencing the code structure
is vital to prevent debugging outputs or additional information added to instructions
from obscuring a bug that occurred without the debug output being enabled previously
or introducing bugs when the program works fine without the added information. With
LLVM Metadata, we can annotate instructions with strings or integers or reference any
LLVM IR values and other metadata, which makes it very flexible.6 To access the metadata
information, we can use the NamedMDNode class in an LLVM Module. 7

2.5.3 LLVM pass pipeline

The LLVM pass pipeline is flexible and consists of different analysis- and transformation
passes. Each pass performs a task on a unit of LLVM IR, so on modules, functions, basic
blocks, or instructions. A pass can be used to manipulate the LLVM IR, analyze the LLVM IR

without changing it, produce some output, or perform any other task. Common passes
are optimization passes that run over the instructions and look for patterns that can be
reordered or replaced by semantically equivalent but faster/fewer instructions. 8

5 https://llvm.org/docs/LangRef.html#metadata

6 https://llvm.org/docs/LangRef.html#metadata-nodes-and-metadata-strings

7 http://blog.llvm.org/2010/04/extensible-metadata-in-llvm-ir.html

8 https://www.llvm.org/devmtg/2014-04/PDFs/Talks/Passes.pdf

https://llvm.org/docs/LangRef.html#metadata
https://llvm.org/docs/LangRef.html#metadata-nodes-and-metadata-strings
http://blog.llvm.org/2010/04/extensible-metadata-in-llvm-ir.html
https://www.llvm.org/devmtg/2014-04/PDFs/Talks/Passes.pdf

2.6 vara 10

Passes can be run one after the other in any order in the pipeline. It is important to
note that a pass later in the pipeline can use of the changes to the LLVM IR made by
previous passes. This allows for complex tasks to be performed in a modular way by highly
specialized passes that are ordered in the right way.

2.6 vara

VaRA, or Variability-aware Region Analyzer, is an analysis framework sitting on top of the
LLVM project [6]. It helps with the creation of high-level static and dynamic analyses.

2.6.1 Feature Region

A feature region is a code section dependent on one or more feature variables. "Dependent
on feature variables" means whether or not the code section is executed depends on the
value of the feature variables it is associated with. Looking at the example Listing 2.4, we
can see the %feature_variable marked with ; Feature Variable and the associated Feature
Regions marked with ; Feature Region. We want to detect these feature regions with feature-
region detection algorithms and compare them with the results of a different detection
approach.

Listing 2.4: Example: Feature regions as

entry:

%feature_variable = alloca i8, align 1 ; Feature Variable

%sum = alloca i32, align 4

store i32 4, i32* %sum, align 4

%2 = load i8, i8* %feature_variable, align 1

%tobool = trunc i8 %2 to i1

br i1 %tobool, label %if.then, label %if.else

if.then:

store i32 0, i32* %sum, align 4, !tbaa !2 ; Feature Region

br label %if.end ; Feature Region

if.else:

store i32 2, i32* %sum, align 4, !tbaa !2 ; Feature Region

br label %if.end ; Feature Region

if.end:

%3 = load i32, i32* %sum, align 4

store i32 %3, i32* %retval, align 4

%4 = bitcast i32* %sum to i8*
call void llvm.lifetime.end.p0i8(i64 4, i8* call void

llvm.lifetime.end.p0i8(i64 1, i8* %feature_variable)

%5 = load i32, i32* %retval, align 4

ret i32 %5

2.6 vara 11

Listing 2.5: Example detection results of the If approach

1 void main() {

2 int fvar = 0; // Marked Feature Variable

3 int sum = 8;

4 if (fvar > 0) { // Feature Region: fvar

5 sum += 5; // Feature Region: fvar

6 } else {

7 sum += 2; // Feature Region: fvar

8 }

9 return sum;

10 }

2.6.2 Clang adaption

VaRA utilizes a modified version of Clang [6]. The modifications allow Clang to read a
feature model in XML format and add additional information to feature variable declarations
outlined with the <sourceRange> tags of the feature model as taint sources.

2.6.3 Detection Approaches

Here we give a quick outline of the detection approaches we evaluate using our comparison
framework. Both detection approaches use taint propagation to find instructions that depend
on one or more feature variables. For that purpose, the detection approaches both require
taint sources as input. Furthermore, these taint sources must be the declarations of feature
variables for which the algorithms are supposed to find feature regions.

2.6.3.1 If Approach

The first approach we call i f approach. It identifies code as feature-dependent if it is wrapped
in the if case or else case of an if statement that uses feature variables (Section 2.1.3) in its
condition statement. Listing 2.5 shows the feature regions the approach finds on a small
example. We can see that the two statements inside the if/else cases are identified as feature
dependent just as the if statement’s condition.

2.6.3.2 Dominator Approach

The dominator approach uses domination relationships to identify feature regions. It looks
out for the occurrence of feature variables in terminator instructions with the help of taint
analysis. From there, it checks which basic block dominates other basic blocks with the
dependent terminator instruction. Suppose a basic block BB1, for example, is dominated
by BB2, and a feature variable is involved in determining whether or not BB1 is executed.
In that case, all the instructions in BB1 depend on that feature variable. The code is never
executed should the feature variable prevent a jump to the beginning of BB1.

2.6 vara 12

2.6.4 Taint Analysis vs Feature Region detection

It is important to notice that taints generated by taint analysis do not correspond one-to-one
to feature regions returned by the detection algorithms. A feature region is a code region
whose execution depends on a feature variable’s value. Taint analysis follows the usage of
a variable through the code and shows us where the variable was used. However, it does
not aim to identify which code regions can only be executed when the feature variable
has a specific value. Detection algorithms can use taint analysis and additional logic and
algorithms to determine what should be considered a feature region.

3
C O M PA R I N G D E T E C T I O N A P P R O A C H E S

Feature-region detection algorithms are a vital component in determining feature-specific
code. Furthermore, they provide the information base for a deeper analysis of a program’s
behavior. Therefore, choosing a detection algorithm that provides accurate information
about a program’s feature regions is essential. This chapter presents a framework to compare
feature-region detection algorithms to find weaknesses and strengths in their approaches
and improve upon them.

3.1 overview

We use the LLVM architecture to create our comparison framework. As our frontend, we
use a modified version of Clang to provide the required information for the detection
approaches. A pipeline of LLVM passes handles the comparison process. The detection
approaches are part of this pipeline, and each one is implemented as a separate LLVM
pass. After the two detection approaches analyzed the instructions, our comparison pass
compares their results and presents them to us.

In summary, our tasks consist of preparing the program for the detection approaches
by marking feature variables as taint sources, annotating instructions with ground-truth
values to compare to, later on, running the detection approaches on the program and then
comparing the results to each other and ground-truth information added in the preparation
phase. Lastly, we want to return valuable information for a qualitative and a quantitative
evaluation of the detection approaches.

3.2 implementation of the verifier pipeline

This section is comprised of two parts. First, we describe how to preprocess C/C++ programs
to prepare them for the comparison process. Next, we go through our implementation of
the individual parts of our verifier pipeline. Finally, we explain the utilized LLVM passes,
introduce the detection approaches, and show how we set up our verifier pipeline to run
the detection approaches and compare their results.

3.2.1 Preparation

The first step for any new program, before we run it through the verification pipeline, is to
prepare it for the detection approaches. Since the detection approaches require taint sources
from which we can propagate the taints to other instructions, we need to define these taint
sources before running the algorithms. Another manual job we perform in the preparation
stage is adding ground-truth information to the instructions. We use this ground truth for
the comparisons later in the comparison pass.

13

3.2 implementation of the verifier pipeline 14

Listing 3.1: Our running example for this chapter

1 include <stdbool.h>

2 int main() {

3 bool feature_variable = true;

4 if (feature_variable) {

5 return 1;

6 } else {

7 return 0;

8 }

9 }

marking feature variables To be able to run the detection approaches on a program,
we first have to define the seeds for their taint analysis, i.e., provide a mapping from features
to the feature variable to specify which features should be tracked by the approach. In
our case, we provide these taint sources by creating a f eature_model.xml file and reading
it with a modified Clang version when compiling the C/C++ code. Clang was modified
to annotate the appropriate instructions when transforming the C/C++ code into LLVM IR

after reading the f eature_model.xml file. The basic structure of a feature-model file and its
meaning is explained in Section 2.1.4. In addition, it provides a feature variable location for
Listing 3.1, which is our running example for this chapter.

In each feature-model file, we describe all the relevant variable definitions whose influence
we want to trace through the program and relate them to the software feature they represent.
When compiling the source code with Clang, we pass the feature-model file as an additional
input, which enables Clang to mark the instructions tied to the declaration of these variables
as taint sources for the detection approaches. Clang does this by using LLVM metadata,
which allows us to define key-value pairs and add them as additional information to an
object in the LLVM IR. Using this information, we can use Clang to add our LLVM metadata
to the instruction that represents this variable declaration in the LLVM IR. An example of
what this looks like can be seen in Listing 2.3.

ground truth To verify the results of both detection approaches, we need to compare
them to ground-truth values. Otherwise, we would only be able to find differences in the
approaches, but we would not be able to verify correctness. Therefore, for every instruction,
we need to be able to tell the comparison pass which features affect the instruction. The
comparison pass can then compare the ground truth against the results of the detection
approaches.

We provide the ground-truth information via LLVM metadata attached to every instruc-
tion that should be part of a feature region. We construct the ground-truth values as an
LLVM metadata key-value object and use !GT as the key. As the value, we use a list of all
the names of feature variables that should affect the instruction. For example, in Listing 3.2,
we see an example instruction marked with the ground-truth value taint_source_name.

3.2 implementation of the verifier pipeline 15

It is important to note that we use llvm.module.flags to add a flag to the LLVM IR that
lets us identify whether or not ground-truth values are available for a program.

Listing 3.2: Example: instruction marked with GT metadata

1 %feature_variable = alloca i8, align 1, !FVar !1

2 store i8 0, i8* %feature_variable, align 1, !GT !1

3

4 !llvm.module.flags = !{!2}

5

6 !1 = !{!"taint_source_name", !"another_taint_source_name"}
7 !2 = !{i32 4, !"withGT", i8 1}

Having added both taint sources and ground-truth information to a program, it is ready
for the detection approaches. The approaches can now run on the LLVM IR of the program
and access taint sources to identify feature regions. Additionally, we have another point of
comparison with optionally added ground-truth values we can use to verify the results of
the detection approaches later on.

3.2.2 Verifier Pipeline

After a program is prepared, i.e., feature variables are marked, and optionally ground-truth
values have been added, we can feed the prepared .ll file into our verifier pipeline for
analysis. Figure 3.1 shows the general setup of the verifier pipeline, which includes the
detection approaches we look at in our evaluation later on. Apart from the exchangeable
detection approaches, there is the comparison pass, which compares the feature regions
generated by the detection approaches with each other and ground-truth values.

.ll Input
If

Approach
Dominator
Approach

Comparison
Pass

Results

Exchangeable detection approaches

Figure 3.1: The LLVM pass pipeline we setup for our evaluation

3.2 implementation of the verifier pipeline 16

3.2.2.1 The detection approaches

The first step in our pipeline is running the detection approaches. In our case, each detection
approach is implemented as an LLVM pass so we can concatenate them in an LLVM pass
pipeline. They make up the beginning of the pipeline, and their order is irrelevant as long
as they do not change the program’s instructions.

Each detection approach analyzes the program based on the feature variables marked
during the preparation phase. Each detection approach maps each instruction in the LLVM IR

to the feature variables detected to influence the instruction. Every detection approach
creates its separate mapping, allowing us to compare these mappings later in the pipeline.
The mappings are stored in an LLVM context, which acts closely to a global scope and
allows us to access this mapping anywhere in our pipeline.

In the following, we explain the two approaches we compare in our evaluation.

if approach The first detection approach is called if approach. It utilizes taint analysis
with feature variables as taint sources to identify tainted branching instructions created by
if and else statements. Should it detect such a tainted branching instruction, the approach
will return the taints on the branching instruction as the feature regions of the instructions
that are part of the if and else statement associated with the branching instruction. In
Listing 3.1, both return calls in Lines 5 and 7 are part of an if-then-else statement. Thus,
if feature_variable in Line 3 is a feature variable we marked as a taint source, the if
approach would mark Lines 5 and 7 as dependent on feature_variable and return it as
the feature region for these lines.

dominator approach The second detection approach is called dominator approach.
The idea of this approach is to combine taint analysis with domination relationships. The
approach starts by finding a basic block with tainted branch instructions and then tries to
determine if it dominates another basic block. Should the basic block containing the tainted
branching instruction dominate another basic block, the dominator approach will return the
taints of the branching instruction as feature regions for the instructions in the dominated
basic block. For example, in Listing 3.1, if we marked feature_variable as a taint source,
the dominator approach would find that the if statement in Line 4 branches the code into
an if and else case. Since it is also dependent on feature_variable and thus tainted by it,
the approach determines dominated basic blocks next. Instructions associated with Lines 5

and 7 constitute such dominated basic blocks since they can only be reached after going
through Line 4. Hence, the dominator approach would return feature_region as a result
for the instructions associated with Lines 5 and 7.

After all detection approaches ran on the LLVM IR of the program, we now have a mapping
from every instruction to the detected feature regions for every detection approach. Next,
we compare these mappings using the comparison pass. We discuss the comparison pass in
detail in the next section.

3.2 implementation of the verifier pipeline 17

3.2.2.2 The comparison pass

The last step in the verifier pipeline is the comparison pass. After both the detection
approaches have run and created their results as a mapping from instruction to feature
regions in the LLVM context, the comparison pass compares their results and prints the
comparison out on the console.

The comparison pass works by iterating over every instruction in the LLVM module.
In each iteration, the pass fetches the corresponding feature region information from the
LLVM context and ground truth from the instructions LLVM metadata. It then compares
both taint lists against each other and the ground truth. Next, it prints out the comparison
results and the feature regions assigned to the instruction by each detection approach.
Additionally, it adds some debugging information, consisting of the path to the file and the
line number from where the instruction originated. With this information, we can evaluate
the performance of the two detection approaches. For example, we can track down missed
taints in the analysis and find out why these taints are not set. The debug information is
only available if the -g flag is used when compiling the code using Clang. In the end, the
comparison pass also prints out a summary of the comparison. This summary includes the
absolute and the relative number of instructions placed into the same feature regions by
both detection algorithms and the absolute and relative number of instructions for which
the detection results match the ground truth broken down for each detection approach. All
three numbers allow us to quantify how similar both approaches are and how well they
perform. Finally, in Listing 3.3, we can see some exemplary output from the comparison
pass.

We have seen how we generate comparison results for two detection approaches on any
C/C++ program. From the preparation phase to the verifier pipeline. Adding ground-truth
information, seeding the program with taint sources, running the detection approaches,
and comparing their results. A big advantage of this pipeline setup is its modularity. The
detection approaches can be swapped out for implementations of new or adapted algorithms,
and the pipeline can easily evaluate their performance. Similarly, the comparison pass can
be adapted to represent data differently or perform other or more evaluations in the future.

3.2 implementation of the verifier pipeline 18

Listing 3.3: Example verifier-pipeline output for our running example in Listing 3.1

1 Instruction Index: 8 test.c:4

2 Ground-Truth: ---

3 IF: var IF vs GT: Fail

4 Dominator: var Dom vs GT: Fail Dom vs If: Ok

5 Instruction Index: 9 test.c:4

6 Ground-Truth: ---

7 IF: var IF vs GT: Fail

8 Dominator: var Dom vs GT: Fail Dom vs If: Ok

9 Instruction Index: 10 test.c:4

10 Ground-Truth: ---

11 IF: var IF vs GT: Fail

12 Dominator: var Dom vs GT: Fail Dom vs If: Ok

13 Instruction Index: 11 test.c:5

14 Ground-Truth: ---

15 IF: var IF vs GT: Fail

16 Dominator: var Dom vs GT: Fail Dom vs If: Ok

17 Instruction Index: 12 :0

18 Ground-Truth: ---

19 IF: var IF vs GT: Fail

20 Dominator: var Dom vs GT: Fail Dom vs If: Ok

21 Instruction Index: 13 test.c:5

22 Ground-Truth: ---

23 IF: var IF vs GT: Fail

24 Dominator: var Dom vs GT: Fail Dom vs If: Ok

25 Instruction Index: 14 test.c:7

26 Ground-Truth: ---

27 IF: var IF vs GT: Fail

28 Dominator: var Dom vs GT: Fail Dom vs If: Ok

29 Instruction Index: 15 :0

30 Ground-Truth: ---

31 IF: var IF vs GT: Fail

32 Dominator: var Dom vs GT: Fail Dom vs If: Ok

33 Instruction Index: 16 test.c:7

34 Ground-Truth: ---

35 IF: var IF vs GT: Fail

36 Dominator: var Dom vs GT: Fail Dom vs If: Ok

37 ===

38 ANALYSIS SUMMARY

39 Comparison between Dominator and If

40 100.000% (19/19) where classified the same way

41 0.000% (0/19) where classified differently

42

43 0.000% (0/19) where assigned a feature region by DOM but not by IF

44

45 0.000% (0/19) where assigned a feature region by IF but not by DOM

46

47 ===

4
E VA L UAT I O N

In our evaluation, we test the verifier pipeline by comparing the if, and dominator ap-
proaches outlined earlier on different code samples. Our evaluation is split into a qualitative
and a quantitative part. The qualitative evaluation aims to test the verifier pipeline with a
couple of code samples to see if it works as intended. In the quantitative evaluation, we
run real-world projects through the verifier pipeline and compare the performance of both
approaches. By isolating noteworthy findings from the comparison results into test cases, we
showcase the strengths and weaknesses of the detection approaches that were highlighted
by our framework.

4.1 qualitative evaluation

In this section, we test our verifier pipeline with small code samples and see if it works
as expected. Thenm, we run code samples annotated with ground-truth values through
the verifier pipeline and look at the generated results to determine if the pipeline works as
expected and if the feature regions for each instruction are correctly compared between the
detection approaches and the ground truth.

4.1.1 Operationalization

Each small code sample is designed to encode a specific way feature variables can be
used in real-world projects and has been annotated with ground-truth information, as
discussed in Section 3.2.1. Using our verifier pipeline described in Chapter 3, we analyze
each code sample with the if and the dominator-based detection approaches and then
compare their results with each other and the annotated ground-truth values. We then go
through the results generated by the verifier pipeline and check whether or not agreements
and disagreements between the detection approaches and the ground truth have been
marked correctly. Additionally, we check if the detection approaches’ displayed results
match what we expect them to produce for the given instructions. That way, we can test if
the verifier pipeline works as intended.

4.1.2 Results

introducatry example We start with a very simple example to test the verifier
pipeline. It consists of an if and an else statement. We expect both detection approaches
to deliver the same results and match the ground truth for our verifier pipeline to work
correctly.

19

4.1 qualitative evaluation 20

The source code with information on what we marked as ground truth can be seen in
Listing 4.1 under CODE and GT, respectively. Under IF (if approach) and DOM (dominator
approach) to the right of the ground truth are the results of the approaches, with each row
being dedicated to a different line of code. Taint sources given to the detection approaches
are marked with _source above the results for every source given to the approach. In this
case, the feature’s name is fv, and the variable given as the taint source is also named fv.
Lines marked with fv indicate that the approach marked this line of code as part of the
feature region associated with the feature variable fv_source. Going through the results
from the comparison, we can see that both approaches correctly identify every feature
region and perfectly match the ground truth. So in a simple example, the verifier pipeline
worked as intended, and both approaches deliver the same results and match the ground
truth.

CODE

1: #include <stdbool.h>

2:

3: int main(int argc, char *argv[]) {

4: bool fv = argc > 5;

5: int sum = 4;

6: if (fv) {

7: sum = 0;

8: } else {

9: sum = 2;

10: }

11: return sum;

12: }

GT

fv_source

fv

fv

fv

fv

IF

fv_source

fv

fv

fv

fv

DOM

fv_source

fv

fv

fv

fv

Listing 4.1: Comparison results of an If-Then-Else statement.

other control-flow changes Our next example uses a switch statement to avoid
detection by the if approach. This allows us to test disagreements between the detection
approaches. For the verifier pipeline to work, we expect the if and the dominator approach
to disagree for the entire switch statement, where the code depends on our feature variable.

The source code of the second example, the taint sources, and the detection results can be
seen in Listing 4.2. The taint source given to the detection approaches can be seen in Line 2,
and we use its feature variable fv once in Line 5 to make the switch statement dependent
on it. As we can see in the DOM and IF columns to the right of the code, the if approach does
not identify any feature regions, while the dominator approach discovers all of them as
expected. Since the if approach only considers code regions to be feature regions if they are
inside an if or else block, alternative control-flow statements avoid detection altogether. This
apparent weakness would make the if approach very situational and, in this case, allowed
us to test our verifier pipeline for disagreements between detection approaches.

4.2 quantitative evaluation 21

CODE

1: int main() {

2: int fv = 44;

3:

4: int inst;

5: switch (fv) {

6: case 32:

7: inst = 0;

8: break;

9:

10: default:

11: inst = 1;

12: break;

13: }

14: return inst;

15: }

GT

fv_source

fv

fv

fv

fv

fv

IF

fv_source

DOM

fv_source

fv

fv

fv

fv

fv

Listing 4.2: Comparison results of a switch statement.

Now we have seen both agreements and disagreements between the detection approaches.
The verifier pipeline has been tested and works as expected, given the results of these tests.
The next step is using the verifier pipeline to learn more about the detection approaches.
The following section explores real-world projects using the verifier pipeline and outlines
what we find in the results.

4.2 quantitative evaluation

In this chapter, we take a closer look at the detection approaches. By running real-world
projects through the verifier pipeline, we generate detection results for hundreds of lines
of code we analyze and evaluate. We aim to get an idea of how close the results of both
detection approaches are to each other and analyze cases in which they disagree to find
possible weak points in the detection approaches. Later on, we isolate interesting findings
into small code samples and annotate them with ground-truth information to find out what
causes these weak points if they are, in fact, weak points.

4.2.1 Operationalization

For the quantitative evaluation, we marked feature variables for the projects: xz, bzip2, lz4

and gzip. Then we ran each project through our verifier pipeline (Figure 3.1). Because of the
size of the projects, we have not added any ground-truth values to them. Thus, we focus our
quantitative evaluation on the comparison between the results of the detection approaches.

4.2 quantitative evaluation 22

Disagreements with results from one approach but without results from the other ap-
proach are of particular interest. These instructions may reveal a possible blind spot in the
detection approach without results.

4.2.2 Results

This section presents the disagreements we found when running the projects xz, gzip, lz4

and bzip2 through the verifier pipeline. First, we briefly describe general findings. Then we
analyze significant disagreements in isolated test cases.

Table 4.1: Aggregate Statistics

Project Both Agree Both Disagree Only Dom Only If Total Number of instructions

xz 68.322% 31.678% 12.068% 8.526% 10872

gzip 58.564% 41.436% 28.211% 4.150% 18216

lz4 99.539% 0.461% 0.025% 0.437% 36412

bzip2 92.241% 7.759% 5.232% 0.403% 29797

In Table 4.1, we present some data about our results. In particular, we see the percentage
of instructions where both approaches agree with their detected feature regions. The higher
this percentage, the closer the detection approaches are to detecting the same feature regions
for an entire project. Two more percentages are written in the Only Dom and Only If
columns. They represent the percentage of instructions only one of the detection approaches
assigned feature regions to, while the other one assigned none. Our first intuition when
introducing these statistics was that the Only If percentage would be 0%, and the Only
Dom percentage would be greater than 0%. The idea is that the dominator approach should
also be able to detect everything the if approach detects. However, the dominator approach
should also detect much more feature regions than the if approach since it can find feature
regions in switch statements and loops, for example. Seeing that the If Only percentage
is greater than 0%, we looked at most of these cases in detail to find out whether or
not the if approach found something the dominator could not detect. However, in most
cases, we find the if approach assigning feature regions without visible dependencies. For
example, in Listing 4.3, we can see a code snipped from the bzip2 project where the if
approach assigns the feature region verbosity to the instructions generated from Line 230 in
decompressed.c. From Line 224 to 235, it is the only line either approach assigns a feature
region. The only difference between Line 230 and other almost identical function calls
is the previously defined constant value BZ_X_BLKHDR_4. It makes no sense why only
instructions associated with this function call are assigned a feature region but not those
in Lines 226, 228, 232, or 234. In general, we could not find any link between one of the
supposedly detected feature regions and the instructions marked by the if approach as
dependent on these features.

4.2 quantitative evaluation 23

CODE
...

224: if (uc == 0x17) goto endhdr_2;

225: if (uc != 0x31) RETURN(

BZ_DATA_ERROR);

226: GET_UCHAR(BZ_X_BLKHDR_2, uc);

227: if (uc != 0x41) RETURN(

BZ_DATA_ERROR);

228: GET_UCHAR(BZ_X_BLKHDR_3, uc);

229: if (uc != 0x59) RETURN(

BZ_DATA_ERROR);

230: GET_UCHAR(BZ_X_BLKHDR_4, uc);

231: if (uc != 0x26) RETURN(

BZ_DATA_ERROR);

232: GET_UCHAR(BZ_X_BLKHDR_5, uc);

233: if (uc != 0x53) RETURN(

BZ_DATA_ERROR);

234: GET_UCHAR(BZ_X_BLKHDR_6, uc);

234: if (uc != 0x59) RETURN(

BZ_DATA_ERROR);
...

IF
...

verbosity

...

Listing 4.3: Example: The if approach falsely detects an isolated feature region

CODE
...

119: if (zfile != NO_FILE) {

120: read_buf = file_read;

121: }
...

IF
...

decompress, no_name, force

decompress, no_time, no_name, force

decompress, no_time, no_name, force
...

Listing 4.4: Example: The if approach detects no_time out of nowhere

Additionally, sometimes the if approach detected one or more feature regions than the
dominator approach on the same instruction. While in these cases, it is mainly effortless to
identify the instruction’s dependency on the feature regions both approaches detect, we
again fail to detect any dependency on the additional feature regions the if approach claims
to detect.

4.2 quantitative evaluation 24

In the example given in Listing 4.4, the dominator approach detects decompress, no_name,
and force for all three lines of code, but the if approach also adds no_time halfway in. Thus
we conclude that the if approach is subject to one or more bugs that cause feature regions
to be associated with instructions that are not dependent on them.

As expected, the Dom Only percentage is greater than 0%, and a deeper analysis shows
that switch cases and loops are being detected by the dominator approach and contribute to
this percentage. Even more interesting is what we should have expected at first glance but
did not. Contributing to this Dom Only percentage are code patterns we call implicit else case,
and we break them and other interesting findings down in isolated test cases shown in
Section 4.2.3.

4.2.3 Observations

This section presents interesting discoveries we made while analyzing the results generated
from the real-world projects in Section 4.2. The discoveries were made while looking for
disagreements between the two detection approaches, which leaves out a large chunk of data
where both approaches agree on their results. For example, in theory, the two approaches
can agree on the feature regions they assign to instructions but be wrong in their analysis.
Unfortunately, we only combed through some of these cases and only if both approaches
assigned any feature regions in the first place. Focusing on the disagreements So, instead,
we focused on both approaches’ disagreements when detecting feature regions. They have
the advantage of being apparent sections of code in which at least one approach fails to
detect what it should.

4.2.3.1 Boolean Statements

We start with a code pattern that makes a repeated appearance in the XZ project where
we first discovered it. It shows a, at first, unexpected impact of boolean statements on the
dominator approach and detection failure for the if approach.

In the example code shown in Listing 4.5, we introduce two feature variables, fv1, and
fv2, and use them in the condition of an if statement coupled with a boolean or. Because
the if statements condition depends on both feature variables, we expect both features to
influence the code region inside the if statement, creating a feature region for both features.
However, the if approach only returns the last feature in the boolean statement for Lines 4

and 5. On the other hand, the dominator approach only returns the first feature for some
instructions associated with Line 4 but correctly assigns both to the rest of the instructions
associated with Lines 4 and 5. We expressed this behavior using the braces fv1 (, fv2)

to denote that fv2 was assigned additionally to fv1 on other instructions associated with
this line of code. The dominator approach’s peculiar behavior towards the if condition can
be explained by a lazy evaluation method used for boolean statements called short-circuit
evaluation. It only evaluates the second parameter of the boolean statement when the first
parameter has been evaluated as false. As such, the LLVM IR contains one instruction only
dependent on the first feature variable in the boolean statement.

4.2 quantitative evaluation 25

For the if approach, not detecting the influence of feature variables when boolean oper-
ations are involved is a significant problem that could lead to many of wrong detections
simply because it is common to use boolean operations in the conditions of if statements.
Since if statements are the only control flow detectable by the if approach in the first
place, this problem further lowers the usability and robustness of the if approach. For the
dominator approach, on the other hand, we have found an example of a correct analysis,
which seemed wrong to us as observers at first.

CODE

1: int main(int argc, char *argv[]) {

2: int fv1 = 1;

3: int fv2 = 2;

4: if (fv1 == 3 || fv2 == 3) {

5: return 0;

6: }

7: }

GT

fv1_source

fv2_source

fv1, fv2

fv1, fv2

IF

fv1_source

fv2_source

fv2

fv2

DOM

fv1_source

fv2_source

fv1 (, fv2)

fv1, fv2

Listing 4.5: Comparison results of boolean statements used in an if condition.

4.2.4 Implicit Else Cases

Implicit else cases are another huge problem for the if approach that greatly reduces its
robustness. The dominator approach, on the other hand, handles implicit else cases very
well. Moreover, it presents many unique ways of implicitly creating feature dependencies in
code to us in the data from Section 4.2. We start by presenting the most obvious case of an
implicit else case by using if statements and later describe a couple more exotic variations
we have found in the data.

In the example shown in Listing 4.6, we introduce a feature variable fv1 in Line 2, use it in
the if condition in Line 6 to create a feature region, and return inside the if statement in Line
7. After the if statement, we return in Line 9 to create some code after the if statement. If we
analyze the program now, we can see that the man function has two execution branches.
The first branch is executed when the if condition in Line 6 is true, and we return the sum

variable after the if statement. The second branch is executed when the if condition is false,
and we return directly after the if statement. If we look at the control flow of this program,
we have, in effect, created an else case for the if statement in Line 6. That is because we can
only reach the code after the if statement if the if condition is false. So we have created an
implicit else statement with our arrangement of return statements. However, implicit else
statements are not detected by the if approach even though they fulfill a similar job since
the if approach looks for constructs created in the LLVM IR by the else or i f keywords to find
possible feature regions. So all the code after the if statement is not seen as viable to be a
feature region. Nevertheless, we achieved the same control flow as if we had used an else
statement and created feature-dependent code.

4.2 quantitative evaluation 26

CODE

1: #include <stdbool.h>

2:

3: int main(int argc, char *argv[]) {

4: int sum = argc;

5: bool fv1 = true;

6: if (fv1) {

7: return argc;

8: }

9: return sum;

10: }

GT

fv1_source

fv1

fv1

fv1

IF

fv1_source

fv1

fv1

DOM

fv1_source

fv1

fv1

fv1

Listing 4.6: Example for an implicit else case

A :
int sum = argc;

bool fv1 = true;

if (fv1)

B :
return argc;

true

C :
return sum;

false

Figure 4.1: Control flow of the if statement in Listing 4.6

Another way of creating implicit feature dependencies we found in the data generated
from real-world projects is using the break and continue keywords. Using break, as shown
in Listing 4.7 on Line 7, for example, makes break dependent on the feature fv1. Addition-
ally, we create an implicit dependency on fv1 for the nodes E, F, and A, which correspond
to Lines 8 and 6. Their execution depends on the value of fv1 because if fv1 is true, we
break out of the while loop, never revisiting Lines 8 and 6.

Similarly, using continue, as shown in Listing 4.7 on Line 8, creates a dependency on fv2

for Line 6, which is now implicitly dependent on fv2 because of the continue statement
and fv1 because of the break statement.

To summarize, the if approach struggles with code structures that mimic else statements
without invoking the else keyword. That is because it relies on structures generated in the
LLVM IR when the else keyword is invoked to detect feature regions. Creating these implicit
else cases can be achieved with statements that invoke jump instructions in LLVM IR, such
as return, break, continue, and goto. The dominator does a good job of identifying these
implicit else cases but has its limits. In our next example, we explore these limits using
simple if and cleverly placed return statements.

4.2 quantitative evaluation 27

CODE

1: #include <stdbool.h>

2:

3: int main(int argc, char *argv[]) {

4: bool fv1 = true;

5: bool fv2 = true;

6: while (true) {

7: if (fv1) break;

8: if (fv2) continue;

9: }

10: return argc;

11: }

GT

fv1_source

fv2_source

fv1, fv2

fv1

fv1, fv2

DOM

fv1_source

fv2_source

fv1, fv2

fv1

fv1, fv2

Listing 4.7: Example for implicit dependencies using break and continue

A :
6: while (true)

B :
7: if (fv1)

true

D :
7: break;

E :
8: if (fv2)

truefalse

false

F :
8: continue;

true

C :
10: return argc;

false

Figure 4.2: Control flow of the while loop in Listing 4.7

4.2 quantitative evaluation 28

4.2.5 Not dominated, but feature dependent

We discovered the following problem in the last example utilizing the while loop and the
break/continue statements. However, it is much simpler to understand what is happening
using the following example instead. In essence, we create feature-dependent code using
an implicit else case but in a way that avoids detection by the dominator approach. To
accomplish this, we nest an if statement with a feature variable in its condition in another
if statement. Then all we have to do is return in the nested if statement. The code and the
corresponding CFG can be seen in Listing 4.8 and Figure 4.3. Because of how we constructed
the program, the dominator approach does not identify the code after the if cases as feature
dependent. However, its execution depends on whether or not we executed the return in
Line 8, thanks to the feature variable utilized in Line 7. In the CFG, we can see that node
D is not dominated by B since we now have a direct path from A to D. Something similar
happened in the last example with the while loop. Although the while condition is still
correctly identified as feature-dependent, regular code that runs inside the while loop before
we create our implicit else case will not be identified as feature dependent because it is not
being dominated.

CODE

1: #include <stdbool.h>

2:

3: int main(int argc, char *argv[]) {

4: bool fv1 = argv[0];

5: bool no_feature = argv[2];

6: if (no_feature) {

7: if (fv1) {

8: return 1;

9: }

10: }

11: return 0;

12: }

GT

fv1_source

fv1

fv1

fv1

fv1

DOM

fv1_source

fv1

fv1

fv1

Listing 4.8: Example for a feature dependency without a domination relationship

4.2 quantitative evaluation 29

A :
4: bool fv1 = argv[0];

5: bool no_feature = argv[2];

6: if (no_feature)

B :
7: if (fv1)

C :
8: return 1;

D :
11: return 0;

true

false

true false

Figure 4.3: Control flow of the if statements from Listing 4.8

We conclude our evaluation of the comparison data generated from real-world projects.
All in all, we learned quite a bit about the detection approaches. We identified and learned
something about their weaknesses, such as implicit else cases and boolean statements,
as well as their strengths, such as identifying feature dependencies independent of the
control-flow statement used or handling most implicit feature dependencies correctly.

5
C O N C L U S I O N

In the following, we conclude our thesis by summarizing our work, putting it into the
current research context, and advising how future work could further improve on our work.

5.1 summary

This thesis proposed a framework for comparing feature-region detection approaches
with each other and ground-truth information. In our evaluation, we demonstrated that
our framework helps to identify strengths and weaknesses in detection approaches by
highlighting disagreements in their results and thus drawing attention to code patterns.
These code patterns exploit a weakness in a detection approach or expose a bug in its
implementation. An evaluation of the framework on real-world projects with two detection
approaches allowed us to identify several code patterns that caused at least one of the
approaches to be unable to detect the correct feature regions. The framework can only detect
false detection results when a ground truth has been established. Otherwise, the framework
can only show the differences between the two detection results and cannot verify their
correctness. Nevertheless, we have showcased that the ability to run and compare detection
approaches on even large real-world projects opens up the possibility to test a detection
approach on various configurable systems using different feature encodings.

if approach Starting with the if approach, we have shown in our evaluation that the
detection approach lacks general robustness. Its only strength is simplicity. We cannot
recommend this approach for general use, as it cannot detect the wide variety of ways
feature variables can be encoded in real programs. Only finding feature regions when they
are part of an if or else statement is insufficient. A feature-region detection approach needs
to cover more implementation patterns to be considered helpful in a general sense. In
addition, we have shown that the approach cannot detect implicit else cases (Section 4.2.4).
This flaw makes it an unreliable pick, even if the only control flow structures used are if
and else statements.

dominator approach For the dominator approach, our evaluation shows much more
promise. Since its ability to detect feature regions is not limited by a control-flow statement
but is instead based on general control-flow data, the dominator approach is much more
robust than the if approach. That makes the dominator approach a better pick for use on real-
world projects where the encoding of features is unknown. However, the implementation of
the detection approach has its challenges. During our evaluation, we discovered a way to
bypass the dominator’s analysis utilizing nested control-flow statements to prevent direct
domination relationships from forming. This structure type is relatively easy to create and
did occur a couple of times in the real-world projects we analyzed.

30

5.2 related work 31

Looking at the summary of the evaluation results, we can confidently conclude that the
dominator approach is the more robust detection approach of the two. Its strategy makes it a
fundamentally better choice than the if approach on any project that is not known to encode
every feature region with if and else statements. However, even if it does, we have shown
that the if approach cannot handle implicit else statements created by returning inside an if
statement (Section 4.2.4). Our comparison framework made it feasible and straight forward
to sift through disagreements between the two detection approaches and directly reference
the instructions and lines of code the results are generated for.

5.2 related work

Feature-region detection approaches are utilized in many previously proposed tools and
techniques for analyzing configurable systems [7, 8, 12, 15–20]. Our work can help find
weaknesses in their detection approaches, which in turn can help improve the underlying
feature region data for their analyses. For example, white-box performance modeling
tools utilize static [17] and dynamic [18] feature-region detection approaches. Performance
modeling of configurable systems aims to create performance-influence models explaining
the impact of configuration options and their interactions on the performance of a system.
To build these performance-influence models, they track configuration options in a system
through feature-region detection and analyze the impact of different configurations on the
program’s performance given the same workload and environment. A static taint-analysis
tool by Lillack, Kästner, and Bodden [12] automatically tracks load-time configuration
options in Android applications. Their approach stands out because their tool detects
feature regions and the configurations necessary to execute a feature region. In essence,
they have developed a detection approach similar to the if approach or dominator approach
used in this thesis. Garvin and Cohen [7] propose white-box criteria for an interaction
fault and explore how often feature interactions are responsible for reported real-world
faults. They seek to understand what constitutes an interaction fault between configuration
options and develop a working definition based on a known mapping from feature to
code. Their detection accuracy of interaction faults is directly dependent on the quality of
the accuracy of the mapping from feature to code the utilized. Toman and Grossman [16]
introduced a tool to detect errors introduced by dynamically updating configuration options.
They utilized dynamic analysis to detect stale data computed from older configurations
or inconsistent data to detect errors from reconfigurations. Finally, Jin et al. [9] found that
bigger applications consist of multiple languages, which implies that static analysis must
work regardless of the programming language barrier that might exist. Their findings relate
to Bodden [3], who argues that the performance of static-analysis tools are held back by the
general-purpose languages they are implemented in, in that both push future static analysis
away from general language implementations and towards more specialized solutions that
are ideally implemented in an intermediate representation supported by many languages.
Our framework uses these findings by running on LLVM IR.

5.3 future work 32

5.3 future work

This thesis uses ground-truth data added to small code examples by hand. However, that is
very tedious and unrealistic to do on a real-world project with multiple hundreds of feature
variables. That means we are limited to comparing detection approaches to each other
on these larger projects. An interesting idea for future work is automatically generating
ground-truth values based on code-coverage reports. The difference between a coverage
report generated without a specific feature enabled and a report with that feature enabled
should arguably result in a rough outline of the associated code region. Developing a way
to create these code-coverage-based ground-truth values, evaluating their viability, and
comparing the differences between this approach and handcrafted ground truth might
provide valuable insights to improve feature region detection further.

Secondly, using the comparison approach presented in this thesis, future work that focuses
on tuning existing algorithms to match ground-truth data better could provide insights into
how specific tuning parameters affect the general results of a detection approach. On the
one hand, a tuning parameter can enable a user to tune the algorithm to his or her needs.
On the other hand, it can improve the general detection approach of an algorithm. A tuning
parameter could, for example, be a boolean value deciding how the approach handles lazily
evaluated statements, either including the lazy evaluated part in the feature mapping or
excluding it. Secondly, tuning parameters can also describe how the approach handles
feature-region detection in general. For example, tuning the if approach might involve
making the algorithm aware of implicit else statements that are currently not detected by
the algorithm.

B I B L I O G R A P H Y

[1] Alfred Aho, Ravi Sethi, and J Ullman. Compilers, Principles, Techniques, and Tools.
Addison-Wesley 2nd edition, 2007.

[2] Sven Apel and Christian Kästner. “An overview of feature-oriented software develop-
ment.” In: J. Object Technol. 8.5 (2009), pp. 49–84.

[3] Eric Bodden. “Self-adaptive static analysis.” In: Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results. 2018, pp. 45–48.
url: https://arxiv.org/pdf/1710.07430.pdf.

[4] Martin D Carroll and Barbara G Ryder. “Incremental data flow analysis via dominator
and attribute update.” In: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. 1988, pp. 274–284. url: https://dl.acm.org/
doi/pdf/10.1145/73560.73584.

[5] Saumya K Debray and Todd A Proebsting. “Interprocedural control flow analysis of
first-order programs with tail-call optimization.” In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 19.4 (1997), pp. 568–585. url: https://dl.acm.org/
doi/pdf/10.1145/262004.262006.

[6] Florian Sattler, Sebastian Böhm, Philipp Schubert, Norbert Siegmund, and Sven Apel.
“SEAL: Integrating Program Analysis and Repository Mining.” In: ACM Transactions
on Software Engineering and Methodology (TOSEM) (2023, To appear).

[7] Brady J Garvin and Myra B Cohen. “Feature interaction faults revisited: An ex-
ploratory study.” In: 2011 IEEE 22nd International Symposium on Software Reliability
Engineering. IEEE. 2011, pp. 90–99.

[8] Sten Grüner, Andreas Burger, Hadil Abukwaik, Sascha El-Sharkawy, Klaus Schmid,
Tewfik Ziadi, Anton Paule, Felix Suda, and Alexander Viehl. “Demonstration of
a toolchain for feature extraction, analysis and visualization on an industrial case
study.” In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN).
Vol. 1. IEEE. 2019, pp. 459–465.

[9] Dongpu Jin, Xiao Qu, Myra B Cohen, and Brian Robinson. “Configurations every-
where: Implications for testing and debugging in practice.” In: Companion Proceedings
of the 36th International Conference on Software Engineering. 2014, pp. 215–224. url:
https://dl.acm.org/doi/abs/10.1145/2591062.2591191.

[10] Chris Lattner. “Introduction to the llvm compiler infrastructure.” In: Itanium conference
and expo. 2006.

[11] Chris Lattner and Vikram Adve. “The llvm compiler framework and infrastructure
tutorial.” In: Languages and Compilers for High Performance Computing: 17th International
Workshop, LCPC 2004, West Lafayette, IN, USA, September 22-24, 2004, Revised Selected
Papers 17. Springer. 2005, pp. 15–16. url: http://nozdr.ru/data/media/biblio/
kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%

33

https://arxiv.org/pdf/1710.07430.pdf
https://dl.acm.org/doi/pdf/10.1145/73560.73584
https://dl.acm.org/doi/pdf/10.1145/73560.73584
https://dl.acm.org/doi/pdf/10.1145/262004.262006
https://dl.acm.org/doi/pdf/10.1145/262004.262006
https://dl.acm.org/doi/abs/10.1145/2591062.2591191
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602,%20Springer,%202005)(ISBN%20354028009X)(494s).pdf#page=23
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602,%20Springer,%202005)(ISBN%20354028009X)(494s).pdf#page=23
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602,%20Springer,%202005)(ISBN%20354028009X)(494s).pdf#page=23
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602,%20Springer,%202005)(ISBN%20354028009X)(494s).pdf#page=23

bibliography 34

20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602, %20Springer,%202005)

(ISBN%20354028009X)(494s).pdf#page=23.

[12] Max Lillack, Christian Kästner, and Eric Bodden. “Tracking load-time configuration op-
tions.” In: Proceedings of the 29th ACM/IEEE international conference on Automated software
engineering. 2014, pp. 445–456. url: https://www.bodden.de/pubs/lkb14tracking.
pdf.

[13] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter Saake.
“On essential configuration complexity: Measuring interactions in highly-configurable
systems.” In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. 2016, pp. 483–494.

[14] Sandra Rapps and Elaine J. Weyuker. “Data Flow Analysis Techniques for Test Data
Selection.” In: Proceedings, 6th International Conference on Software Engineering, Tokyo,
Japan, September 13-16, 1982. IEEE Computer Society, 1982, pp. 272–278. url: http:
//dl.acm.org/citation.cfm?id=807769.

[15] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. “A
classification and survey of analysis strategies for software product lines.” In: ACM
Computing Surveys (CSUR) 47.1 (2014), pp. 1–45.

[16] John Toman and Dan Grossman. “Staccato: A bug finder for dynamic configuration
updates.” In: 30th European Conference on Object-Oriented Programming (ECOOP 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016.

[17] Miguel Velez, Pooyan Jamshidi, Florian Sattler, Norbert Siegmund, Sven Apel, and
Christian Kästner. “Configcrusher: Towards white-box performance analysis for con-
figurable systems.” In: Automated Software Engineering 27 (2020), pp. 265–300.

[18] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Kästner.
“White-box analysis over machine learning: Modeling performance of configurable
systems.” In: 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE. 2021, pp. 1072–1084.

[19] Junyong Wang, Thar Baker, Yingnan Zhou, Ali Ismail Awad, Bin Wang, and Yongsheng
Zhu. “Automatic mapping of configuration options in software using static analysis.”
In: Journal of King Saud University-Computer and Information Sciences 34.10 (2022),
pp. 10044–10055.

[20] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and Shankar
Pasupathy. “Early Detection of Configuration Errors to Reduce Failure Damage.” In:
OSDI. Vol. 10. 2016, pp. 3026877–3026925.

http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602,%20Springer,%202005)(ISBN%20354028009X)(494s).pdf#page=23
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602,%20Springer,%202005)(ISBN%20354028009X)(494s).pdf#page=23
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602,%20Springer,%202005)(ISBN%20354028009X)(494s).pdf#page=23
http://nozdr.ru/data/media/biblio/kolxoz/Cs/CsLn/Languages%20and%20Compilers%20for%20High%20Performance%20Computing,%2017%20conf.,%20LCPC%202004(LNCS3602,%20Springer,%202005)(ISBN%20354028009X)(494s).pdf#page=23
https://www.bodden.de/pubs/lkb14tracking.pdf
https://www.bodden.de/pubs/lkb14tracking.pdf
http://dl.acm.org/citation.cfm?id=807769
http://dl.acm.org/citation.cfm?id=807769

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Thesis Goal
	1.2 Overview

	2 Background
	2.1 Configurable Systems
	2.1.1 Configuration Option
	2.1.2 Feature
	2.1.3 Feature Variable
	2.1.4 Feature Model

	2.2 Interprocedural Control Flow Graphs
	2.3 Dominator Tree
	2.4 Taint Analysis
	2.5 LLVM Project
	2.5.1 LLVM Intermediate Representation
	2.5.2 LLVM Metadata
	2.5.3 LLVM pass pipeline

	2.6 VaRA
	2.6.1 Feature Region
	2.6.2 Clang adaption
	2.6.3 Detection Approaches
	2.6.4 Taint Analysis vs Feature Region detection

	3 Comparing Detection Approaches
	3.1 Overview
	3.2 Implementation of the verifier pipeline
	3.2.1 Preparation
	3.2.2 Verifier Pipeline

	4 Evaluation
	4.1 Qualitative Evaluation
	4.1.1 Operationalization
	4.1.2 Results

	4.2 Quantitative Evaluation
	4.2.1 Operationalization
	4.2.2 Results
	4.2.3 Observations
	4.2.4 Implicit Else Cases
	4.2.5 Not dominated, but feature dependent

	5 Conclusion
	5.1 Summary
	5.2 Related Work
	5.3 Future Work

	 Bibliography

