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A B S T R A C T

The configuration options of features in modern software systems are often implemented
with the help of runtime parameters and representative variables in the source code. Accesses
to the data of these variables are referred to as feature taints. The feature taints of a program
expose valuable information about the code regions that implement the functionalities of
features.

The analysis framework VaRA provides a static detection of the feature-related code that
can be of great use for developers when it comes to debugging and optimisation. An integral
part of this detection is the feature taint analysis (FTA), which has not been thoroughly
evaluated to this day. Our evaluation on 4 real-world software projects found that the
feature taint analysis (FTA) detects correct feature taints with a high certainty, but still
leaves room for improvement. The current version of the analysis probably provides VaRA’s
feature-region detection with the information that are necessary in order to determine the
correct feature-regions. However, inaccuracies are still possible and need to be addressed in
future revisions of the feature taint analysis (FTA).

v
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1
I N T R O D U C T I O N

Most modern software systems are configurable in order to fit the individual needs of
different users with varying use cases and application scenarios. To offer this flexibility,
software has a set of configuration options among which the users can choose to enable
certain functionalities. A feature provides these configuration options and extends or
modifies the program to implement the respective functionalities. By selecting or deselecting
configuration options, users are able to create tailor-made configurations of the software.
For example, a user of the workplace messaging service Slack

1 may want to send photos
without compression. The software allows him or her to do so by deselecting the respective
option in the menu.

In case a feature does not work according to the wishes of the users, the developers need
to adapt the software code. For the developers, it is then interesting to know what code
regions implement which feature. This supports them in optimization and debugging of the
feature-related code. In case there is some problem with the image compression of Slack,
we can find the relevant regions of the source code by analysing the data-flow. We identify
some variable in the code that represents the configuration option of the feature and search
for statements where the data of the variable is accessed. This process is called feature taint
analysis (FTA) and is described in detail in Section 2.4.2. In a next step, we can identify the
conditional control flow statements that were identified by the feature taint analysis (FTA).
With these, we can draw conclusions about the feature-dependent control flow decisions
and detect the feature-regions.

The analysis framework VaRA2 implements such a feature-region detection. The feature
taint analysis (FTA) is given the source code to analyse and a mapping from features to the
code locations of the representative variables. The tool performs a static analysis to generate
modified LLVM intermediate representation (IR)3 code containing the feature information.
With this, VaRA can detect the regions of code that implement the features’ functionalities.

A correct feature-region detection needs a properly working feature taint analysis (FTA).
If wrong statements are tainted, wrong feature-regions will be detected. VaRA’s FTA has
not yet been thoroughly evaluated on real-world software, only on small test cases. But as
real-world programs are way more complex, running the analysis on these gives us better
information about how well the feature taint analysis (FTA) performs. Furthermore, we can
determine shortcomings of the employed analysis and identify bugs to fix in future versions
of VaRA.

1 https://slack.com/ (visited on 03/07/2023)
2 https://github.com/se-sic/VaRA (visited on 03/07/2023)
3 https://llvm.org/docs/LangRef.html (visited on 03/07/2023)
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2 introduction

1.1 goal of this thesis

In this thesis, we evaluate VaRA’s feature taint analysis (FTA). We investigate the source code
of real-world programs in an integrated development environment (IDE), and determine
manually the relevant statements that should be tainted by tracing the feature variables.
Then, we run the analysis on these programs and compare the detected feature taints with
the previously determined ground truth. Doing this with a number of real-world projects
gives us quantitative data that we use to reason about the overall quality of VaRA’s feature
taint analysis (FTA). Furthermore, we use the data to mine problematic corner cases, which
we then convert into small code examples that can be reasoned about.

1.2 overview

This thesis is divided into six parts. In Chapter 2, we provide the theoretical foundation
that we need for our work. We introduce the core concepts of feature-oriented software
development (FOSD), the compiler infrastructure LLVM, different forms of data-flow and
data-access, and the variability-aware region analyser VaRA. In Chapter 3, we explain
how we can conveniently run VaRA’s feature taint analysis (FTA) in order to to generate
a structured output that contains all the information that we need for our evaluation.
Chapter 4 introduces the operationalisation of the evaluation. Here, we talk about the data
that we collect and how we use it in order to reason about the precision of VaRA’s feature
taint analysis (FTA). The results of our research are presented and discussed in Chapter 5. In
Chapter 6, we contextualise our work in the research field. Last, we summarise our results
in Chapter 7 and provide an outlook on future work.



2
B A C K G R O U N D

This chapter introduces the core concepts on which we build upon. We explain central
concepts of software product lines (SPL), such as features, configurations, and feature
models. We also take a look at the compiler infrastructure LLVM and its intermediate
representation (IR), with focus on the instructions that handle the control flow of a program,
called terminator instructions. Then, we take a brief look at different types of data-flow
and data-access. Next, we introduce the feature taint analysis (FTA) and the feature-region
detection of VaRA. At the end of the chapter, we explain how to use the Tool-Suite of VaRA
to automatically run experiments over multiple real-world software projects, as well as
evaluate the precision of the feature taint analysis (FTA).

2.1 feature-oriented software development

Different users have different aims in different contexts when they use a software system.
For that reason, they should be able to tailor the software individually, by choosing the
functionalities they need. Software should be designed appropriately to achieve this goal.
For that purpose, the term of feature-oriented software development (FOSD) was introduced.
Apel and Kästner [1] defined FOSD as

A paradigm for the construction, customization, and synthesis of large-scale
software systems.

FOSD serves as an umbrella term of general development principles that cover the whole
software lifecycle instead of presenting a single method or technique. The crucial element
that connects all of the approaches in FOSD are features. They provide functionalities and
configuration options among which users can choose in order to tailor a system to their
needs. The set of possible variants of a software product is called a software product
line (SPL) [8].

In the following sections, we explain the role of features in FOSD and present a way to
describe the dependencies among the features of a SPL using feature models.

2.1.1 Features and Configurations

The different variants of a SPL differ in the features they realise. To get a tailored software
product, the user has to select the features of interest. This set of features that specifies a
software variant is called a configuration. Usually, not all combinations of features describe
possible system variants. Take for example a SPL of a car where the customer can choose
between an automatic and a manual transmission. A car with both transmission types is not
possible, and therefore a configuration with both features invalid. We call a configuration
valid if it specifies a possible system variant.

3



4 background

Car

Car Body Engine

Combustion Electric Hydrogen

Air-Condition Transmission

Automatic Manual

License Plate

Number

1-9999

Legend:

Feature

Mandatory

Optional

Or Group

Alternative Group

Electric =⇒ Air-Condition

Figure 2.1: Exemplary feature diagram of a car

There are a lot of different ways to define a feature [7]. Basically, these definitions take
two perspectives on the concept of a feature. While some see them as domain-specific
abstractions that represent requirements of the users [6, 15], others take a more technical
perspective on features by comprising the fact that the requirements must be implemented
in a way [2, 4].

Czarnecki and Eisenecker [9] distinguish between problem space and solution space. The
problem space considers the users requirements on a software system and therefore consists
of the set of all valid configurations. The solution space consists of the actual software
systems that realise the configurations. With this distinction, the definitions above can be
classified. The domain-specific perspective on features corresponds to the perspective of the
problem space, while the implementation-oriented perspective fits the perspective of the
solution space.

For our work, we need a more implementation-oriented definition of a feature that
describes it from the perspective of the solution space as VaRA detects the code regions
that implement a feature. We use the following definition by Apel et al. [2]:

A feature is a structure that extends and modifies the structure of a given
program in order to satisfy a stakeholder’s requirement, to implement a design
decision, and to offer a configuration option.

This technical approach describes features as code extensions of a software system that
realise the requirements of and can be selected by the users. Specific parts of the source
code are dedicated to the features and implement them.

2.1.2 Feature Models

We use feature models to describe the features of a system and the dependencies among
them [15]. They are a precise way to present the valid configurations of a SPL. The graph-
ical depiction of a feature model as seen in Figure 2.1 is called a feature diagram. We
use an extended version of the feature diagram notation introduced by Czarnecki and
Eisenecker [9].

Figure 2.1 shows the feature model of a car SPL. The nodes of the feature diagram
represent the features, with the blue ones being binary features and the white ones being
numeric features. A feature can only be selected if its parent feature is selected. The root of
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Figure 2.2: Basic compilation pipeline

the diagram must always be selected. A filled circle marks a feature as mandatory, what
means that it has to be part of the configuration if its parent is. An empty circle marks a
feature as optional, what means that it can but must not be selected. An empty arc at the
edges to the children indicates an alternative group, i.e., exactly one of the children must be
enabled. The filled arc represents an or group, that is, at least one child must be selected.
Numeric features are always part of the configuration, no matter if the parent is enabled
or not. The child of a numeric feature contains the possible values the feature can have.
Dependencies among the features that cannot be expressed in the hierarchy if the diagram,
so-called cross-tree constraints, are listed as propositional formulas right under the feature
diagram.

In our example above, every car needs to have a car body, an engine, a transmission, and
a license plate, as these are mandatory features. A car may or may not have an air condition.
The engine works either per combustion, electric, or with hydrogen but also every hybrid
combination is possible, for instance an engine that can switch between combustion and
electric. The transmission must be automatic or manual but not both and the license plate
has a number with a value in the range from at least 1 and at most 9999. A car with an
electric engine always has an air-condition as the cross-tree constraint indicates.

2.2 llvm

The LLVM framework1 comprises a number of technologies related to compilers and
toolchains, e.g., the C language family compiler Clang

2. The starting point of LLVM was as
a language-independent compiler framework with the goal of code optimisation [17]. The
optimiser nowadays forms the core of the project. It operates on an IR which we discuss in
the next section.

2.2.1 LLVM Intermediate Representation

A compiler translates human-readable source code of a programming language into machine-
readable executable code. Often, compilers transform the source code into an abstract
machine language, the so-called intermediate representation (IR), before generating the
machine code. The IR serves as a language-independent code representation on which

1 https://llvm.org/ (visited on 03/07/2023)
2 https://clang.llvm.org/ (visited on 03/07/2023)

https://llvm.org/
https://clang.llvm.org/
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(a) Without IR (b) With IR

Figure 2.3: Compilers for source languages and target machines. (a) Without an IR, you need one
compiler for every combination of language and machine. (b) With an IR, you only need
one front end per language and one back end per machine.

the compiler can operate to analyse and optimise the generated machine code. So, in an
intermediate step, the IR gets optimised, potentially several times, before the machine code
is produced. The front end of the compiler generates the IR from the source code and the
back end transforms the IR to the machine code. This basic compilation pipeline is depicted
in Figure 2.2.

The IR consists of a set of instructions similar to the instructions of a machine language
but without being bound to a specific machine. So, it is independent of the source language
as well as of the machine language. Figure 2.3 visualises this property. Without an IR, it
would need one compiler for every combination of source language and machine language.
With an IR, it only takes one front end per source language and one back end per machine
language. This brings modularity, as a compiler can than easily be created by a combination
of both. [3]

The LLVM compiler framework includes the optimiser Opt
3 as well as a back end for a

number of machines4. It also provides several so-called passes5. These are optimisations and
analyses that can be run with Opt. Passes can be divided into different categories. For our
work, we only distinguish between analysis passes and transform passes. Analysis passes
investigate the program and compute information, such as alias information. Transform
passes modify the IR, for instance by deleting dead code or unrolling loops.

The LLVM compiler framework operates on LLVM IR. We use the equivalent human-
readable assembly language representation of LLVM IR when showing corresponding
instructions or code fragments. The reference manual for the assembly language can be
found online6. For the purpose of our work, there is no need to explain the IR in detail. The
instruction set of the assembly language is subdivided into several classes of instructions.
We only focus on terminator instructions, more precisely br and switch instructions because
these are important for our evaluation as we explain in Section 4.1.

3 https://llvm.org/docs/CommandGuide/opt.html (visited on 03/07/2023)
4 https://llvm.org/docs/CodeGenerator.html (visited on 03/07/2023)
5 https://llvm.org/docs/Passes.html (visited on 03/07/2023)
6 https://llvm.org/docs/LangRef.html (visited on 03/07/2023)

https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/LangRef.html
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2.2.1.1 Terminator Instructions

Within LLVM, terminator instructions manage the control flow of a program. The terminator
instructions br and switch evaluate a condition and direct the control flow accordingly. In
the following, we take a look at these. Paraphrased from the LLVM reference manual:

br instruction
7

syntax : br i1 <cond>, label <iftrue>, label <iffalse>

description : The br instruction directs the control flow after checking the boolean value
<cond>. If it is true, the program execution branches to the label <iftrue>, if it is false, it
branches to the label <iffalse>. It is semantically similar to if statements of high-level
programming languages like C or C++. The br keyword also accepts only one label
without a condition to perform an unconditional branch.

example : br i1 %cond, label %IfThen, label %IfElse

If the value of cond is true, go to label IfThen. If it is false, go to label IfElse.

switch instruction
8

syntax : switch <intty> <value>, label <default> [ <intty> <val>, label <dest> ... ]

description : The switch instruction compares the integer value <value> with the integer
values <val> of the given array of pairs of integers and labels. If an equal value is
found, the program execution branches to the corresponding label <dest>. In case
<value> does not match any value of the array, the execution continues at the label
<default> . The switch instruction is semantically similar to the switch statement of
high-level programming languages like C or C++.

example : switch i32 %val, label %default [ i32 0, label %IfZero i32 1, label %IfOne ]

If the value of val is 0 or 1, go to label IfZero or IfOne, respectively. Otherwise, go to
label default.

2.3 data-flow & data-access

We distinguish between implicit and explicit flows when it comes to analysing the data-flow
of a program. An explicit flow arises if the data of a variable is directly assigned to another
variable. For instance, in the assignment Y := X, the variable X explicitly flows to the variable
Y. On the other hand, we talk about an implicit flow if a variable is assigned due to a control
flow decision dependent on another variable. In the code fragment if (X) then Y := true;
else Y := false, the variable X implicitly flows to Y. Here, Y is implicitly assigned to the
value of X by a control flow decision dependent on X. [16]

For this work, we also introduce the concept of direct and indirect data-access. We speak
of a direct access to a variable X when we access the data of X by directly referencing X itself.
Now assume that X explicitly flows to another variable Y. Then, we speak of an indirect

7 https://llvm.org/docs/LangRef.html#br-instruction (visited on 03/07/2023)
8 https://llvm.org/docs/LangRef.html#switch-instruction (visited on 03/07/2023)

https://llvm.org/docs/LangRef.html#br-instruction
https://llvm.org/docs/LangRef.html#switch-instruction


8 background

1 int main(int argc, char *argv[]) {

2

3 int Foo;

4

5 if (Foo) {

6 Foo = 1;

7 }

8

9 int local = Foo;

10

11 if (local) {

12 return 42;

13 } else {

14 return 0;

15 }

16 }

Listing 2.1: Direct and indirect access. Direct accesses to Foo are highlighted red, indirect accesses to
Foo are highlighted orange.

access to X whenever the data of Y is accessed. In Listing 2.1, we can see 3 accesses to the
variable Foo. In Line 5 and 9, the data of Foo is accessed by referencing Foo itself. Therefore,
these are direct accesses. In Line 9, Foo explicitly flows to local. Hence, the direct access of
local in Line 11 is also an indirect access of Foo.

2.4 variability-aware region analyser

The variability-aware region analyser VaRA is a framework that provides access to static and
dynamic analyses of C/C++ source code. The overall goal of the analyses is to detect code
regions that users are interested in. VaRA uses a customised Clang compiler to generate
modified LLVM IR code and implements passes for its customised LLVM optimiser Opt to
operate on it. One of the provided analyses is the static detection of the feature code regions,
introduced by Sattler [22] and later extended with PhASAR9 support by Timm [24]. The
static analysis framework PhASAR offers implementations for solving data-flow problems
on the IR of LLVM. With the inclusion of PhASAR, the feature taint analysis (FTA) was
introduced in VaRA. The FTA, also known as feature taint propagation, is an integral part of
the feature-region detection pipeline and subject of our evaluation.

In the following sections, we take a look at VaRA’s FTA as well as its feature-region
detection. We also explore the Tool-Suite that provides means for using VaRA and that we
utilise for our research.

9 https://phasar.org/ (visited on 03/07/2023)

https://phasar.org/
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1 #include <string.h>

2

3 int main(int argc, char *argv[]) {

4

5 int Foo = 0; // Feature Variable

6

7 if (argc >= 2 && !strcmp(argv[1], "−−foo")) {

8 Foo = 1;

9 }

10

11 if (Foo) {

12 return 42;

13 } else {

14 return 0;

15 }

16 }

Listing 2.2: C example with feature variable Foo. The feature taints are highlighted red and the
feature-regions are highlighted blue.

2.4.1 Feature-Region Detection

The aim of VaRA’s feature-region detection is to identify the feature-regions of a given
C or C++ project. In order to understand this process, we first need to clarify what a
feature-region actually is.

2.4.1.1 Feature-Regions

VaRA’s feature-region detection expects features to be implemented with the help of runtime
parameters. By selecting or deselecting a feature, e.g., via command-line options, the user
influences a certain variable at runtime. This means that there are variables in the source
code, the so-called feature variables, that represent the configuration options of the SPL.
Through control flow decisions dependent on the feature variable, e.g., in the form of if

conditions, feature-related code fragments are executed. These code fragments implement
the functionality of the feature and are called feature-regions.

Listing 2.2 shows a simple C program with the optional feature Foo which can be selected
by the user per command-line option. If the user sets the respective flag, the variable Foo is
touched in Line 8. This allows us to identify Foo as the feature variable of Foo. Since Foo is
subject of the condition of the if statement in Line 11, the then block and the else block of
the statement are its feature-regions. They are highlighted in blue.

2.4.1.2 Pipeline Overview

Now that we know what the feature-region detection is supposed to find, we take a look
at how VaRA achieves this. There is more than one feature-region detection implemented
in VaRA but their differences are not important for this work. The aspects of it that are
interesting for us are the same throughout all the implementations. So, we explain one
exemplary and generalised detection pipeline to convey these aspects.
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Figure 2.4: Pipeline of VaRA’s feature-region detection

In Figure 2.4, we see the processing pipeline of VaRA’s feature-region detection. As input,
we give VaRA the C/C++ source code to analyse and information about the features of
interest containing the locations of their respective feature variables in the source code,
i.e., the mapping from feature to feature variable in the code. This information can be
transmitted in the form of a feature model, for instance. VaRA then translates the source
code to LLVM IR and produces modified IR code with annotated feature-regions as the
result of the analysis.

An intermediate step of the pipeline is the detection of the br and switch instructions.
Feature-regions always occur in combination with conditional control flow decisions and
these are the instructions of LLVM IR that produce this type of control flow. Hence, VaRA
annotates every br and switch in the generated IR.

In parallel with the br/switch detection, VaRA marks the feature variables in the
generated IR code based on the locations given as input. Then, the FTA is run to trace
the data-flow of the feature variables and find the feature taints of every feature. A more
detailed explanation of the FTA is given in the next section.

In the last step, VaRA builds the intersection of feature taints and br/switch instructions,
i.e., it identifies every tainted br and switch in the LLVM IR. Those instructions produce
conditional control flow dependent on the feature variable. Therefore, the branching options
that correspond to the instructions form the feature-regions. [24]

2.4.2 Feature Taint Analysis

The feature taint analysis (FTA) plays an important role in the pipeline of VaRA’s feature-
region detection. The principle of taint analysis underlies the FTA. A taint analysis traces the
flow of data that comes from outside the system, e.g., via the command-line parameters argc

and argv, and identifies the situations, in which this data may be leaked again to the outside,
e.g., via print-methods. Functions that read data from outside the system are referred to as
sources and functions that can leak data to the outside are referred to as sinks. The data
from outside is considered as tainted and the goal of a taint analysis is to report whenever
tainted data is accessed by a sink. [23]

In contrast to taint analysis, we are not interested to trace data from outside and find
potential data leaks with the FTA. Instead, VaRA’s FTA tracks the data of feature variables
and identifies the instructions that access it. The FTA considers feature variables as the
sources and instructions as the sinks. Whenever an instruction accesses the tainted data of a
feature variable, the instruction is tainted by the respective feature.

It is worth to mention that VaRA’s FTA, as well as VaRA’s feature-region detection, are
interprocedural analyses. They take the data-flow across function calls into account and
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1 main

2 entry

3 %retval = alloca i32, align 4, !psr.id !5 FTaints: {}

4 ...

5 %Foo = alloca i32, align 4, !FVar !8, !psr.id !9 FTaints: {Foo}

6 ...

7 br i1 %cmp, label %land.lhs.true, label %if.end, !psr.id !16 FTaints: {}

8 land.lhs.true

9 ...

10 br i1 %tobool, label %if.end, label %if.then, !psr.id !22 FTaints: {}

11 if.then

12 store i32 1, i32* %Foo, align 4, !psr.id !23 FTaints: {}

13 br label %if.end, !psr.id !24 FTaints: {}

14 if.end

15 %3 = load i32, i32* %Foo, align 4, !psr.id !25 FTaints: {Foo}

16 %tobool1 = icmp ne i32 %3, 0, !psr.id !26 FTaints: {Foo}

17 br i1 %tobool1, label %if.then2, label %if.else, !psr.id !27 FTaints: {Foo}

18 if.then2

19 store i32 42, i32* %retval, align 4, !psr.id !28 FTaints: {}

20 br label %return, !psr.id !29 FTaints: {}

21 if.else

22 store i32 0, i32* %retval, align 4, !psr.id !30 FTaints: {}

23 br label %return, !psr.id !31 FTaints: {}

24 return

25 %4 = load i32, i32* %retval, align 4, !psr.id !32 FTaints: {}

26 ret i32 %4, !psr.id !33 FTaints: {}

Listing 2.3: Intermediate representation (IR) excerpt of Listing 2.2 with annotated feature taints

analyse the whole program, rather than single functions. For the FTA, this basically means
that tainted data which is passed as a parameter of a function call is also considered as
tainted inside the function. So, whenever an instruction of the respective function accesses
the tainted data of the parameter, the FTA should identify this instruction as tainted.

In Listing 2.2, the feature taints are highlighted red. When we trace the feature variable
Foo, we see that the data of the variable is only accessed insight the if condition in Line 11.
Accordingly, the only feature taints of the program are related to this if condition. Note,
that the other occurrences of the feature variable in the Lines 5 and 8 are no feature taints,
since the variable is only assigned to values and the data of the variable is not used.

An excerpt of the IR module as we get it when we run the FTA on Listing 2.2 is shown
in Listing 2.3. Here, the feature taints are annotated behind the respective instruction. All
tainted instructions are highlighted red. There are four tainted instructions in the IR, all
of them are taints of the feature Foo with the feature variable Foo. The instructions in Line
15-17 realise the if condition and as expected, they are tainted. The other feature taint in
Line 5 belongs to the memory allocation of the feature variable and does not directly map
to any statement of the high-level code. Memory allocations of feature variables are initially
tainted by the FTA. So, the output of the FTA perfectly matches the feature taints that we
previously identified in the high-level code.
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Figure 2.5: VaRA-Tool-Suite pipeline

2.4.3 Tool-Suite

VaRA-Tool-Suite (VaRA-TS)10 is a framework written in Python that provides research tools
to ease the use of VaRA in order to execute experiments on real-world software projects.
Figure 2.5 gives an overview of the tools that we use and shows how they work together in
VaRA-TS. In the following, we briefly describe them.

projects
11 Projects are used to access software projects with C/C++ source code. They

contain information about how to build and execute the respective software project,
and serve as a key abstraction to write project-independent experiments. A number of
projects is already shipped with VaRA-TS.

case studies
12 A case study stores a set of revisions of a project. So, if we want to run

an experiment several times over the same project revisions, we can use case studies.
This allows us to make the experiment results of a project conveniently reproducible.
VaRA-TS ships with the command-line tool vara-cs13 that gives handy support in the
management of case studies.

paper configs
14 Paper configs are collections of case studies. With a paper config, we

can group together all the projects and revisions used in the thesis and make them
easily accessible for reproducing the evaluation results. A paper config is realised

10 https://vara.readthedocs.io/en/vara-dev/index.html (visited on 03/07/2023)
11 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/projects.html (visited on 03/07/2023)
12 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/paper.html#how-to-use-case-studies (visited

on 03/07/2023)
13 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tools/vara-cs.html (visited on 03/07/2023)
14 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/paper.html#how-to-use-paper-configs (visited

on 03/07/2023)

https://vara.readthedocs.io/en/vara-dev/index.html
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/projects.html
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/paper.html#how-to-use-case-studies
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tools/vara-cs.html
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/paper.html#how-to-use-paper-configs
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as a directory which contains the case studies of interest. Similar as for case studies,
VaRA-TS provides the command-line tool vara-pc15 for support in the use of paper
configs.

experiments
16 An experiment declares a set of steps that should be executed. We use

them to set how VaRA should compile and optimise the respective projects. They sep-
arate experiment specific steps from project specific ones in order to make experiment
execution project-independent and reproducible. We can use the command-line tool
vara-run17 to run experiments with VaRA-TS. It operates on the projects as specified in
the case studies of the selected paper config.

reports
18 The results of experiments are documented in the form of reports. Reports are

stored in report files and we can interact with the data in a report file by creating
a report class in VaRA-TS. A report class parses the content of the file and makes it
accessible for further analyses.

tables
19 With tables, we can process reports and other input files to generate and visualise

tabular data. We can create tables by implementing a table class. VaRA-TS provides the
command-line tool vara-table20 to automatically generate a table for the successfully
produced reports, restricting the data for the table to the projects and revisions
specified in the paper config. When implementing a table, we specify what arguments
the tool expects.

15 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tools/vara-pc.html (visited on 03/07/2023)
16 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/experiments.html (visited on 03/07/2023)
17 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tools/vara-run.html (visited on 03/07/2023)
18 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/data.html (visited on 03/07/2023)
19 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tables.html (visited on 03/07/2023)
20 https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tools/vara-table.html (visited on 03/07/2023)

https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tools/vara-pc.html
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/experiments.html
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tools/vara-run.html
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/data.html
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tables.html
https://vara.readthedocs.io/en/vara-dev/vara-ts-api/tools/vara-table.html
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D E T E C T I N G F E AT U R E TA I N T S

Up to now, VaRA’s FTA has only been evaluated on small, synthetic test cases [24]. However,
to get an idea about the overall performance in actual use cases, the analysis should also
been tested on real-world programs. So, we first want run the FTA on a number of projects
and later on compare the detected feature taints with a ground truth. In this chapter, we
present a way to automatically run the FTA by using VaRA-TS. We create an experiment that
generates a report which contains all the relevant information for the evaluation.

3.1 running the feature taint analysis

We need to run the FTA on several projects to collect expressive data for the evaluation. In
order to do this, we create an experiment named PhASARFeatureTaintAnalysis (PTA)
in VaRA-TS. It automatically calls VaRA’s Clang and Opt and provides a consistent and
convenient way to compile projects to LLVM IR and to run the FTA on them. The output
of the PTA-experiment is a report that we discuss in Section 3.2. In case a paper config is
selected, we can execute the experiment on its case studies with a simple command-line call:

1 $ vara-run -E PhASARFeatureTaintAnalysis

The PTA-experiment uses the modified Clang compiler of VaRA to translate projects to
LLVM IR. In the implementation, we specify the following options to call Clang with:

-O1 Generates IR with optimisation level 1. The optimisation levels are predefined sets
of options for Clang and Opt. Opt is called implicitly after Clang produced the
IR. Optimisation level 1 includes an analysis pass that annotates the IR with high-
level type information. These information are used later for an alias analysis that is
implicitly executed with the FTA.

-Xclang=-disable-llvm-optzns Suppresses the transformation passes that are included
in -O1. This ensures that the generated IR is a direct translation of the source code.
Otherwise, Opt may for instance delete instructions that could be relevant for the FTA.

-g Demands debug information that include the high-level source code location of every
instruction in the IR. So, every instruction gets assigned the code file and line, it
corresponds to. These locations are utilised later during the report generation.

-fvara-feature Detects and annotates the feature variables in the generated IR. The
features and their locations in the source code are extracted from the given feature
model.

-fvara-fm-path=<path> Specifies the path of the feature model of the current project.
In the experiment, the path is automatically determined prior to the specification of
the Clang options.

15
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After generating the IR with Clang, the PTA-experiment calls Opt to optimise and analyse
the code. We specify the following options for the execution of Opt:

-enable-new-pm=0 Disables the new pass manager of LLVM. Without this, we would
need to hand over the optimisation passes in another format which VaRA currently
does not support.

-S Tells VaRA to use the human-readable LLVM assembly language for the instructions
that are printed in the output file.

-vara-FAR Runs the FTA and generates a feature analysis report (FAR) as output. The FAR

is subject of Section 3.2.

-vara-report-outfile=<path> Specifies the path of the report file.

3.2 feature analysis report

The output of the PTA-experiment is a YAML file containing a feature analysis report (FAR).
The report consists of a header, metadata, and a body. The header just contains the report
type and the version number of the report type. The metadata are general information about
the analysed LLVM IR module. Here, the number of functions1, instructions, and br/switch

instructions in the module is stored. The body is the main part of the report. It contains the
actual results of the FTA by mapping every function of the module to their demangled name
and their feature-related instructions. Each instruction entry in the report comprises the
tainted instruction, along with the location in the high-level source code it was generated
from, as well as a list of the features it is related to.

Let us take a look at a FAR by running our experiment on the project FeaturePerfC-
SCollection

2 which is shipped with VaRA-TS. We create a paper config named example,
add a case study with the latest revision of the FeaturePerfCSCollection, and run the
PTA-experiment on it:

1 $ vara-pc create example

2 $ vara-cs gen -p FeaturePerfCSCollection select_latest

3 $ vara-run -E PhASARFeatureTaintAnalysis

The FeaturePerfCSCollection is a collection of small C++ code examples, including
the one shown in Listing 3.1 named SingleLocalSimple. In this program, the variable Slow

is the feature variable of the feature Slow. In Listing 3.2, we can see an excerpt from the FAR

of SingleLocalSimple which we get as output of our experiment. We can retrieve from its
metadata that there are 72 functions in the IR module. The only function with feature taints
is main. Since Slow is the only feature variable in the module, all 4 feature taints are related
to Slow. The first taint is the memory allocation of the variable and does not directly result
from any statement in the C++ file. The other taints are the translation of the if statement
condition in Line 14 of the source file.

1 We do not need to know what functions in LLVM IR exactly are. We only use them to structure the body of the
FAR.

2 https://github.com/se-sic/FeaturePerfCSCollection (visited on 03/07/2023)

https://github.com/se-sic/FeaturePerfCSCollection
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1 #include " fpcsc/perf_util/sleep .h"
2

3 #include <string>

4

5 int main(int argc, char *argv[]) {

6

7 bool Slow = false;

8

9 if ((argc >= 2 && argv[1] == std::string("−−slow")) ||

10 (argc >= 3 && argv[2] == std::string("−−slow"))) {

11 Slow = true;

12 }

13

14 if (Slow) {

15 fpcsc::sleep_for_secs(5);

16 } else {

17 fpcsc::sleep_for_secs(2);

18 }

19

20 return 0;

21 }

Listing 3.1: SingleLocalSimple

The FAR offers a useful representation of LLVM IR for our purposes. It restricts the IR code
to the feature taints and maps every instruction to their related features, as well as to their
corresponding location in the high-level source code. We utilise these information for our
evaluation of the FTA as we describe in the next chapter.
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1 ---
2 DocType: FeatureAnalysisReport
3 Version: 1

4 . . .
5 ---
6 funcs −in −module: 72

7 i n s t s −in −module: 1011

8 br−switch − i n s t s −in −module: 83

9 . . .
10 ---
11 r e s u l t −map:
12 _GLOBAL__sub_I_SLSmain . cpp:
13 demangled−name: _GLOBAL__sub_I_SLSmain . cpp
14 fea ture −re la ted − i n s t s : [ ]
15 . . .
16 _ _ c x x _ g l o b a l _ v a r _ i n i t :
17 demangled−name: _ _ c x x _ g l o b a l _ v a r _ i n i t
18 fea ture −re la ted − i n s t s : [ ]
19 main:
20 demangled−name: main
21 fea ture −re la ted − i n s t s :
22 - i n s t : ’%Slow = alloca i8, align 1, !FVar !1356’

23 l o c a t i o n : None
24 t a i n t s :
25 - Slow
26 - i n s t : ’%32 = load i8, i8* %Slow , align 1, !dbg !1563, !tbaa !1388, !range !1565’

27 l o c a t i o n : ’src/SingleLocalSimple/SLSmain.cpp:14’

28 t a i n t s :
29 - Slow
30 - i n s t : ’%tobool = trunc i8 %32 to i1, !dbg !1563’

31 l o c a t i o n : ’src/SingleLocalSimple/SLSmain.cpp:14’

32 t a i n t s :
33 - Slow
34 - i n s t : ’br i1 %tobool , label %if.then71 , label %if.else , !dbg !1566’

35 l o c a t i o n : ’src/SingleLocalSimple/SLSmain.cpp:14’

36 t a i n t s :
37 - Slow
38 . . .

Listing 3.2: Excerpt from feature analysis report (FAR) of Listing 3.1
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For every feature taint in the FAR, we need to decide if it should be found by the FTA or
not. In addition, there may be taints that are not included in the report but actually should
be. So, for every real-world project that we consider in our evaluation, we need to define a
ground truth that we can compare with the FAR to collect data about the precision of the
FTA. In this chapter, we describe how we find this ground truth and show the data that we
get, when we compare it to the FAR. Based on this data, we may need to adjust our initial
expectations by revising the ground truth. In the end of the chapter, we present the projects
that are subject of our research.

4.1 ground truth

After generating an FAR for a project with the PTA-experiment, we need to decide which
taints are correct, wrong or missing. The easiest way to do so, is by defining a reference,
a ground truth, that contains all the expected feature taints. The ground truth should be
conveniently comparable with the FAR to collect data that quantifies the precision of the
FTA. In this section, we explain what feature taints we expect the FTA to find and how we
proceed to get the ground truth for a project.

In Section 2.4.1.2, we saw that the FTA is part of the feature-region detection pipeline. It is
important that the FTA works correct in especially this context, since it is the main task of the
analysis to serve as an intermediate step of the feature-region detection. The feature-region
detection determines the feature-regions as the branching options of tainted br and switch

instructions. This means if the FTA does not taint these two types of instructions correctly,
the feature-region detection will not be able to find the correct feature-regions. Therefore,
we will constraint our evaluation on br and switch instructions, rather than every single
instruction of an IR module. With this constraint, we can focus on the feature taints that
really matter and do not need to deal with unnecessary details.

So, we could generate the IR of a project and decide for each br/switch instruction
individually if it should be tainted or not, in order to get the ground truth of the project.
This would require us to understand the whole IR code and is pretty unreasonable and error
prone, as the IR module of a real-world software project is usually very huge and hard to
read. Luckily, the FAR maps every feature-related instruction to the location in the high-level
code that the instruction was derived from. We exploit this information and relocate our
investigations to the high-level code of a project, instead of analysing the IR code of a project
by hand. We use an integrated development environment (IDE) for convenient access to the
source code.

When we open the project code in an IDE, we need to identify the feature variables. Their
locations are specified in the feature model that is used by the PTA-experiment. Next, we
trace the data-flow of the feature variables by hand, one after another. With the supporting
features provided by the IDE, we look up every direct access to a feature variable and search

19
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1 int main(int argc, char *argv[]) {

2

3 int Foo, Bar; // Feature Variables

4

5 if (Foo) {

6 Foo--;

7 } else {

8 Foo++;

9 }

10

11 if (Bar) {

12 Bar--;

13 }

14

15 if (Foo && Bar) {

16 return 1;

17 }

18 return 0;

19 }

Listing 4.1: gt_basic.c

1 Bar:
2 - ’gt_basic.c:11’

3 - ’gt_basic.c:15’

4 Foo:
5 - ’gt_basic.c:5’

6 - ’gt_basic.c:15’

Listing 4.2: Ground truth of gt_basic.c

for conditional control flow decisions dependent on the variable. In other words, we look
for the code locations where the feature variable is directly accessed insight the condition of
the ternary operator, if-, while-, for-, or switch statements. The compiler probably realises
these expressions with br or switch instructions. We collect all these locations for every
feature of interest of a project. This collection then contains all the locations of the high-level
code where we expect a tainted br/switch in the IR. This is the ground truth1 of the project.

Let’s have a look at Listing 4.1 to get an idea of this process in practice. Foo and Bar are
the feature variables of the features Foo and Bar, respectively. We trace the data-flow of both
variables and search for conditional control flow decisions dependent on them to get the
ground truth of the program. Starting with Bar, we see that the if statements in Line 11

and 15 use the variable in their condition. Therefore, we expect that feature Bar taints br

instructions at these locations and put them in the ground truth. Now, we trace the other
feature variable Foo and identify that it is directly accessed insight the if conditions in Line
5 and 15. Hence, we put these locations in our ground truth. This gives us the ground truth
as presented in Listing 4.2.

We also need to consider that the FTA is an interprocedural analysis. Accordingly, we have
to trace feature variables across function calls. If a feature variable is passed to a function via
a parameter of a function call, we trace the data-flow of the respective parameter insight the
function. For example in Listing 4.3, the feature variable Foo is passed to the function helper

in Line 13. Therefore, we need to trace the flow of the tainted data insight the function.
Since Foo is passed as the parameter a, we search the body of helper for conditional control
flow decisions dependent on a. We identify Line 2 as the only qualifying location and put
it in the ground truth. Additionally, in Line 3, a is directly accessed in one of the return

1 Strictly speaking, it is an approximated ground truth of the project. In Section 4.3, we talk about this in further
detail. For simplicity, we just refer to our approximated ground truth as ground truth.
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1 int helper(int a) {

2 if (a) {

3 return a++;

4 }

5 return 0;

6 }

7

8

9 int main(int argc, char *argv[]) {

10

11 int Foo; // Feature Variable

12

13 if (helper(Foo)) {

14 return 42;

15 }

16 return 0;

17 }

Listing 4.3: gt_func_call.c

1 Foo:
2 - ’gt_func_call.c:2’

3 - ’gt_func_call.c:13’

Listing 4.4: Ground truth of gt_func_call.c

Analysis Result

Positive Negative

Ground
Truth

Positive True Positive False Negative

Negative False Positive True Negative

Table 4.1: Types of collected data

statements of helper. Therefore, we expect the function to return tainted data. The function
is called inside the if condition in Line 13. Hence, we also expect a tainted br instruction at
this location and get the ground truth as shown in Listing 4.4.

4.2 collecting evaluation data

Now, we want to collect actual data about the quality of the FTA based on the ground truth
and the FAR of a project. The FAR is the true analysis result and the ground truth is the
expected analysis result. So, we can find unexpected behaviour of the FTA by comparing
both and looking for differences in the locations of feature taints.

For this purpose, we implement the Python class FeatureAnalysisReportEval in VaRA-TS.
Given the FAR and the ground truth of a project, this class contrasts both inputs with each
other. For every location in the ground truth, it searches for a corresponding entry of a
br/switch instruction of the same feature in the FAR. Additionally, it checks if there are
any tainted br/switch instructions in the report whose locations are not part of the ground
truth.

With this process, the class computes the four types of data that are depicted in Table 4.1.
We have a true positive in case a location of a feature is part of the ground truth and there
is a feature taint of the respective feature at a br/switch instruction with the same location
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Feature True Positive True Negative False Positive False Negative

Bar 2 30 1 0

Foo 2 30 0 1

Total 4 60 1 1

Table 4.2: Exemplary evaluation results

in the FAR. If a br/switch location is neither part of the ground truth, nor in the report, we
have a true negative. In these two cases, the FTA works as expected and there is no need for
further investigations.

More interesting are the situations in which ground truth and FAR differ from one another.
If a location is part of the ground truth but not in the FAR, we have a false negative. This
means that the FTA does not taint an instruction which is expected to be tainted. The other
way around, we speak of a false positive if an instruction is not in the ground truth but in
the report. In this case, the FTA finds a taint where no taint is expected. So, false negatives
and false positives reflect unexpected behaviour of the analysis and need to be further
investigated.

Table 4.2 shows an exemplary evaluation result of the made up FAR in Listing 4.5 and the
ground truth in Listing 4.6. The ground truth contains expected taints of the two features
Bar and Foo. For Bar, there are tainted br instructions at both locations of the ground truth
in the FAR in Line 2 and 30, respectively. Hence, we have 2 true positives. However, in Line
6 is an entry of a br instructions whose location is not in the ground truth. Therefore, we
also have a false positive for the feature. All other br/switch instructions in the IR are not
tainted and not expected to be tainted. This way, we get the 30 true negatives. For the other
feature Foo, we have two matching taints at the first location that is specified in the ground
truth, with their entries in Line 18 and 30 of the FAR. So, we again have two true positives
for the feature. But as their is also a location specified in the ground truth of which no
corresponding entry can be found in the FAR, we also have one false negative for feature
Foo.

This example exposes an interesting detail of our evaluation process. Namely, that we do
not distinguish between instructions at the same location. A location in the ground truth
means that we expect at least one tainted br/switch instruction at this location but it is not
specified how this instruction looks like. For instance, in Listing 4.5, two br instructions
with the same location are tainted by the feature Foo. Both are considered true positive as
the respective location is specified in the ground truth. However, it may be the case that
actually only one of the instructions should be tainted. This leaves space for inaccuracies
in our evaluation. Nonetheless, verifying that really the correct instructions are tainted
would produce a lot of overhead. For every location in the ground truth, we would need
to check in the IR if there are multiple br/switch instructions with this location. And in
this case, we would need to decide for each of these instructions individually if the taint is
correct or not. This requires us to comprehend the IR and backtrack the data-flow by hand.
We consider this overhead as inappropriate compared to the expected inaccuracies of our
current approach. Therefore, we accept this inaccuracy of our evaluation process.
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1 . . .
2 − i n s t : ’br i1 %tobool , label %if.then42 , label %if.else , !dbg !1524’

3 l o c a t i o n : ’example.c:24’

4 t a i n t s :
5 − Bar
6 − i n s t : ’br i1 %tobool , label %if.then49 , label %if.else , !dbg !1531’

7 l o c a t i o n : ’example.c:31’

8 t a i n t s :
9 − Bar

10 − i n s t : ’%32 = load i8, i8* %Foo, align 1, !dbg !1562, !tbaa !1388, !range !1562’

11 l o c a t i o n : ’example.c:42’

12 t a i n t s :
13 - Foo
14 − i n s t : ’%tobool = trunc i8 %32 to i1, !dbg !1563’

15 l o c a t i o n : ’example.c:42’

16 t a i n t s :
17 - Foo
18 − i n s t : ’br i1 %tobool , label %if.then71 , label %if.else , !dbg !1566’

19 l o c a t i o n : ’example.c:42’

20 t a i n t s :
21 − Foo
22 − i n s t : ’%33 = load i8, i8* %Bar, align 1, !dbg !1568, !tbaa !1388, !range !1568’

23 l o c a t i o n : ’example.c:42’

24 t a i n t s :
25 - Bar
26 − i n s t : ’%tobool = trunc i8 %33 to i1, !dbg !1569’

27 l o c a t i o n : ’example.c:42’

28 t a i n t s :
29 - Bar
30 − i n s t : ’br i1 %tobool , label %if.then72 , label %if.else , !dbg !1570’

31 l o c a t i o n : ’example.c:42’

32 t a i n t s :
33 − Foo
34 − Bar
35 . . .

Listing 4.5: Exemplary feature analysis report (FAR) excerpt. Entries of br instructions are highlighted
red.

1 Bar:
2 - ’example.c:24’

3 - ’example.c:42’

4 Foo:
5 - ’example.c:42’

6 - ’example.c:66’

Listing 4.6: Ground truth of Listing 4.5
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After collecting the mentioned evaluation data, we use the following formulas to draw
conclusions about the overall accuracy of VaRA’s FTA:

precision =
TP + TN

TP + TN + FP + FN
(4.1)

sensitivity =
TP

TP + FN
(4.2)

speci f icity =
TN

TN + FP
(4.3)

The precision (4.1) reflects the proportion of correct analysis results to correct and incorrect
analysis results. If the FTA behaves completely as expected, i.e, there are no false positives
and no false negatives, the precision is 100%. The precision decreases as the unexpected
behaviour increases. The sensitivity (4.2), also known as the true positive rate, expresses
how certain we can be to have a feature taint at a location where we expect one. It is 100%
in case the FTA taints a br/switch instruction at every location in the ground truth, i.e.,
there are no false negatives. The specificity (4.3), also known as the true negative rate, is the
percentage of instructions that are not tainted among the instructions that are not expected
to be tainted. A specificity of 100% means that the FTA does not unexpectedly taint any
br/switch instruction, i.e., there are no false positives.

In this section, we saw that true positives and true negatives reflect expected behaviour of
the FTA, while false positives and false negatives reflect unexpected behaviour. However, it
is important to note that unexpected does not necessarily mean wrong, as we explain in the
next section.

4.3 further ground truth approximation

We mentioned before that the ground truth is just an approximation. This is because we
encounter some problems when we create and evaluate a ground truth. We probably need
to revise an initial ground truth and approximate it further.

So far, we only consider direct accesses to feature variables in the ground truth. However,
VaRA’s FTA should also be able to identify indirect accesses. Therefore, we also need to
consider them in order to get the real ground truth of a project. Nevertheless, we decided
that we do not expect indirect accesses to be found in the first place. We came up with this
decision as the data-flow of real world software is usually very complex. We may expect
taints at wrong locations or oversee them. Accordingly, the risk of putting wrong locations
in the ground truth is high. Hence, identifying every indirect access to a feature variable by
hand is very error prone and leaves a high risk of getting wrong evaluation results.

Nevertheless, we need to respect indirect accesses to feature variables. Therefore, we say
that the FTA can find them but does not necessarily has to. Our goal is to underapproximate
the ground truth. Initially, we only put direct accesses in the ground truth. Then, we use
this ground truth and the FAR of the respective project to generate evaluation data. In case
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1 int main(int argc, char *argv[]) {

2

3 int Foo; // Feature Variable

4

5 int local = Foo ? Foo++ : Foo--;

6

7 return Foo || local;

8 }

Listing 4.7: Uncertain LLVM instructions. The ternary operator in Line 5 is not translated with a br

instruction. The logical-OR operator in Line 7 is translated with a br instruction.

the FTA finds any indirect accesses, they would be part of the false positives. So, we identify
the locations of false positives in the source code and add all indirect accesses to the ground
truth. This way, we approximate the ground truth further by adding the taints that could be
found by the FTA.

Indirect accesses are not the only situations in which we may have to revise the ground
truth subsequently. Remember that we infer from the high-level code to the IR code when we
create the ground truth. For every location in the ground truth, we expect that the respective
high-level code is translated with a br or switch instruction. Yet, it could happen that there
are br/switch instructions where we would not expect them intuitively, or, the other way
around, that there are no br/switch instructions where we would expect them.

For instance, in Listing 4.7, the only tainted br/switch instruction we would expect is
in Line 5 because the feature variable is used inside the condition of the ternary operator.
However, the only tainted br/switch instruction that the FTA finds in the program is in
Line 7. So, our evaluation generates one false positive and one false negative. Nevertheless,
we see that the FTA actually works perfectly fine when we look in the IR of the program. The
logical-OR operator in Line 7 is realised with a br and the instruction should be tainted as
the operator uses the feature variable. On the other hand, the ternary operator in Line 5 is
translated with a select

2 instruction into IR. This instruction does not produce control flow
and is therefore not interesting for our evaluation. Accordingly, we have to remove Line 5

and add Line 7 to the ground truth.
This means in general, that we look up every finding, i.e., every false positive and false

negative, that we generate with our initial ground truth. Then, we decide individually if the
outcome of the FTA makes sense in the specific situation and, if necessary, revise the ground
truth to approximate it further.

4.4 considered projects

We use real-world C projects of medium size for the evaluation. Overall, we collect data
for 39 features from 4 projects. The revised ground truths of these 4 projects contain 290

expected taints in total. Table 4.3 provides an overview of all considered projects.

2 https://llvm.org/docs/LangRef.html#select-instruction (visited on 03/07/2023)
3 https://github.com/libarchive/bzip2.git (visited on 03/07/2023)
4 https://github.com/vulder/gzip.git (visited on 03/07/2023)
5 https://github.com/bnico99/picoSAT-mirror (visited on 03/07/2023)
6 https://github.com/xz-mirror/xz.git (visited on 03/07/2023)

https://llvm.org/docs/LangRef.html#select-instruction
https://github.com/libarchive/bzip2.git
https://github.com/vulder/gzip.git
https://github.com/bnico99/picoSAT-mirror
https://github.com/xz-mirror/xz.git
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Project Domain #Features #Expected-Taints Commit

bzip2
3 Compression 8 89 1ea1ac1

gzip4 Compression 8 48 23a870d

PicoSAT5 Solver 12 55 33c685e

xz6 Compression 11 98 4773608

Table 4.3: Considered projects

Note that we dropped 7 features of gzip because VaRA did not annotate the respective
feature variables in the generated IR. For these features, the FTA is not able to analyse
the feature taints correctly. The missing feature variable annotations would result in false
negatives for every entry of the affected features in the ground truth. However, these false
negatives do not reflect wrong behaviour of the FTA. Therefore, we would produce incorrect
results if we consider these features in the evaluation.

Initially, we also wanted to collect data for C++ projects. However, VaRA currently has
problems with annotating feature variables that are implemented as struct members. We
tried to include projects with this type of feature variables in the evaluation, but had to
drop them, eventually, since the annotation of the variables did not work. Especially in
object-oriented programming languages like C++, it is a common pattern to implement
feature variables as struct members. So, we decided to not include C++ projects in general.
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E VA L UAT I O N

We created ground truths for the subject projects and generated the corresponding FARs
with the PTA-experiment in order to collect evaluation data. In this chapter, we present and
discuss the evaluation results, as well as the threats to validity of the evaluation.

5.1 results

Table 5.1 shows the results of the evaluation. The corresponding precision, sensitivity, and
specificity are listed in Table 5.2. Our results are based on VaRA1 commit cbc6c8f and
vara-llvm-project

2 commit 84c3e84. A detailed overview of the evaluation results of all
considered projects can be found in Appendix A.

VaRA’s FTA found 304 true positives and 1 false negative. This gives us a total sensitivity
of 99.67%. The only false negative appears in xz, all other projects have a perfect sensitivity
of 100%. Additionally, we found 1044 false positives and measured a total specificity of
99.16%. Most of the false positives appear in gzip, which has a specificity of 95.30%. The
projects bzip2 and PicoSAT have a nearly perfect specificity of more than 99.90%, resulting
from their few false positives. xz has a perfect specificity of 100%. The overall precision that
we measured is 99.16%. By far the worst precision, through its relatively high amount of
false positives, has gzip with 95.31%.

Table 5.3 provides a summary of all features in the evaluation with unexpected behaviour.
The one false negative in our results is related to the feature Mode of xz. In Listing 5.1, we
see the function of xz where this false negative occurs. The problem arises in Line 4 when
the parameter mode is accessed. There are several calls of the function specified in the source
code of xz. In two of these calls, the feature variable opt_mode is passed to the function.
Therefore, the access to the function parameter mode in Line 4 should be tainted. However,
the FTA does not find this taint.

Besides this single false negative, we found many false positives. The false positives of
PicoSAT’s NoPrintAssignment arise due to the fact that VaRA does annotate an additional
feature variable in the IR that is not specified in the feature model. The FTA traces the
data-flow of the wrong variable correctly and therefore, the false positives occur. We decided
to keep this feature in the evaluation, since the actual feature variable is correctly annotated.
This finding may serve as a starting point for future improvements of VaRA’s feature
variable detection.

All other false negatives occur due to wrong behaviour of the FTA. At some point in
the program, the analysis treats variables as indirect feature variable accesses although
the respective feature variable does neither explicitly, nor implicitly flow to the variable.
This causes potentially huge overapproximations of the feature taints of single features.
In Listing 5.2, we see a code excerpt of PicoSAT where this behaviour occurs. In Line 10,

1 https://github.com/se-sic/VaRA (visited on 03/07/2023)
2 https://github.com/se-sic/vara-llvm-project (visited on 03/07/2023)
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Project True Positive True Negative False Positive False Negative

bzip2 97 25568 23 0

gzip 53 19634 969 0

PicoSAT 55 61297 52 0

xz 99 17049 0 1

Total 304 123548 1044 1

Table 5.1: Evaluation results

Project Precision Sensitivity Specificity

bzip2 99.91% 100% 99.91%

gzip 95.31% 100% 95.30%

PicoSAT 99.92% 100% 99.92%

xz 99.99% 99% 100%

Total 99.16% 99.67% 99.16%

Table 5.2: Precision, sensitivity, specificity

the accesses to err and i in the for loop condition appear to be tainted by the feature
Verbose. However, the feature variable verbose flows at no point to one of these variables.
Alongside other variables that are tainted like this, the variables propagate feature taints
of Verbose through the program. This way, the 50 false positives come about. The same
behaviour occurs for bzip2 and gzip. For gzip however, it is on a much wider scale as it
effects 3 features and variables are tainted across the whole IR module, not just in a single
function. Therefore, the total amount of false positives in gzip is bigger compared to bzip2

and PicoSAT. It is also worth to mention that the random feature taints of no_name are a
subset of the random feature taints of decompress, which are again a subset of the random
feature taints of force. This means that the FTA starts by randomly identifying taints of force.
As the control flow of the program proceeds, the random taints first become taints of force
and decompress, and later of force, decompress, and no_name.

We failed to extract and reproduce the unexpected behaviour from above in the form
of minimal examples. However, while we tried to reproduce these bugs, we found some
other problems that can not be mapped to the findings in Table 5.3. One of these problems
is exposed by the code fragment in Listing 5.3. Here, the feature variable Foo is directly
accessed in the return statement of the function get_foo in Line 4. As expected, the FTA

correctly identifies the return value of the function as tainted. In Line 11, this function is
now called by the main function inside an if condition. Accordingly, the analysis should also
taint the corresponding br instruction. However, the FTA does not do this since the returned
data of the function call is not identified as a feature taint. Interestingly enough, the taint
gets identified as soon as the analysis finds another feature taint in the main function. In
Listing 5.4, the feature variable Bar causes feature taints inside main. In this example, the
FTA taints the br instruction in Line 11 correctly.
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1 extern uint64_t

2 hardware_memlimit_get(enum operation_mode mode)

3 {

4 const uint64_t memlimit = mode == MODE_COMPRESS

5 ? memlimit_compress : memlimit_decompress;

6 return memlimit != 0 ? memlimit : UINT64_MAX;

7 }

Listing 5.1: Function of xz with false negative for the feature Mode. The false negative is highlighted
red.

1 int

2 picosat_main (int argc, char **argv)

3 {

4 int res, done, err, print_satisfying_assignment, force, print_formula;

5 ...

6 int i, decision_limit;

7 ...

8 done = err = 0;

9 ...

10 for (i = 1; !done && !err && i < argc; i++) {...}

11 }

Listing 5.2: Excerpt of PicoSAT with false positives for the feature Verbose. The false positives are
highlighted red.

1 int Foo; // Feature Variable

2

3 int get_foo() {

4 return Foo;

5 }

6

7 int main(int argc, char *argv[]) {

8

9 int Bar; // No Feature Variable

10

11 if (get_foo()) {

12 return 42;

13 }

14

15 return 0;

16 }

Listing 5.3: The function call of get_foo in
Line 11 does not return tainted
data. The only feature taint of Foo
appears in Line 4.

1 int Foo; // Feature Variable

2

3 int get_foo() {

4 return Foo;

5 }

6

7 int main(int argc, char *argv[]) {

8

9 int Bar; // Feature Variable

10

11 if (get_foo()) {

12 return 42;

13 }

14

15 return 0;

16 }

Listing 5.4: The function call of get_foo in
Line 11 returns tainted data.
Feature taints of Foo appear in
Line 4 and 11.
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Project Feature TP TN FP FN

bzip2 verbosity 17 3171 23 0

gzip
decompress 19 2238 325 0

force 9 2234 339 0

no_name 2 2275 305 0

PicoSAT
NoPrintAssignment 3 5112 2 0

Verbose 22 5045 50 0

xz Mode 24 1534 0 1

Table 5.3: Evaluation findings

1 int main(int argc, char *argv[]) {

2

3 int i; // Feature Variable

4 int arr[3]; // No Feature Variable

5

6 if (arr[i]) {

7 return 42;

8 }

9

10 return 0;

11 }

Listing 5.5: The array access in Line 6 returns tainted data. The corresponding br instruction is
tainted by i.

In Listing 5.5, we can see some other problematic corner case. The feature variable i is
used to access the array arr in the if condition in Line 5. The analysis now identifies the
accessed data of the array as a feature taint of i, and, consequently, taints the br instruction.
However, this behaviour is arguable as the feature variable does not explicitly flow to the
accessed data. The index i is only used for address calculation. The accessed data is then
determined based on the calculated address, but the feature variable itself is not explicitly
assigned to the value that is accessed. Intuitively, this pattern matches more to an implicit
flow, but formally, this is also not the case. Per definition, we would need some kind of
control flow decision to be involved in the process of the array access in order to have an
implicit flow. Because of its ambiguity, this edge case deserves attention when it comes to
discussing future improvements of VaRA’s FTA.

Listing 5.6 and the corresponding feature model in Figure 5.1 present a pattern of feature
implementation that we faced several times during research. Here, the variable Foo is the
feature variable of the feature Foo, which has the sub-features A, B, and C. These features are
not implemented with the help of feature variables, but with the help of an enum. Each of
the sub-features can be mapped to a different value of the enumeration type e. Accordingly,
VaRA’s FTA should be able to identify feature taints of A and B in Line 7. However, this
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1 enum e { A, B, C };

2

3 int main(int argc, char *argv[]) {

4

5 enum e Foo; // Feature Variable

6

7 if (Foo == A || Foo == B) {

8 return 1;

9 }

10

11 return 0;

12 }

Listing 5.6: Features as enum values

Foo

A B C

Legend:

Feature

Alternative Group

Figure 5.1: Feature model for Listing 5.6

pattern of feature implementation is currently not supported by VaRA and may be an
interesting extension in the future.

5.2 discussion

Based on the evaluation data that we collected, we are now able to answer the central and
eponymous research question of this thesis:

How precise can VaRA track the influence of feature variables in real-world
programs?

The precision that we measured for VaRA’s FTA is 99.16%. The total sensitivity is 99.67%,
the total specificity is 99.16%. Note that the precision is way more influenced by true
negatives and false positives than by true positives and false negatives. This is because
the number of expected taints is usually way smaller than the number of instructions that
should not be tainted. Therefore, it is especially important to separate the sensitivity from
the precision.

The precision expresses that we can be 99.16% sure that the FTA taints a conditional
control flow instruction correctly. This means that the analysis works pretty accurate in the
pipeline of VaRA’s feature-region detection. With a probability of 99.16%, the FTA provides
the feature-region detection with correct information.

However, there also are inaccuracies. We never encountered false positives and false
negatives for the same feature, i.e., in case of unexpected behaviour, the FTA either over-
approximates, or underapproximates the feature taints. The specificity is lower than the
sensitivity. Hence, we can conclude that the FTA tends to overapproximate the feature taints.
These overapproximations rather occur for single features than being scattered across all
features of a project.

But still, there are situations in which the analysis overlooks feature taints. If the FTA

does not find feature taints, the feature-region detection is not able to fully determine the
feature-regions. With an overapproximation of feature taints, it is at least guaranteed that
the feature-region detection can find all feature-regions. Therefore, false negatives are to a
certain extend more problematic than false positives. We have 1 false negative in our results,
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i.e., the FTA found 289 of 290 expected feature taints. Note that the number of true positives
is 304, and thus bigger than 289. This is due to the fact that we do not specify the number
of expected taints at a location in the ground truth. In case there is more than 1 tainted
br/switch instruction at a location, all of those are counted as true positive.

It is also worth to mention again that we dropped 7 features of gzip from our evaluation.
We discussed this in Section 4.4. VaRA did not annotate any feature variables for those
features. Respectively, the FTA was not able to analyse the feature taints of the features,
resulting in a high amount of false negatives. Therefore, the sensitivity of our results would
have been significantly lower. However, the missing feature taints were induced by the
feature variable annotation and not by the FTA. Therefore, we decided to drop the features
as their evaluation results do not reflect wrong behaviour of the analysis.

5.3 threats to validity

A threat to the internal validity of our results is that we trace the data-flow of the subject
projects by hand in order to get the ground truths. We reduce the risk of errors to a minimum
by analysing the high-level code, rather than the IR, and by restricting our expectations to
direct accesses to feature variables that are translated with br/switch instructions in the IR.
Yet, there is still room for human errors. For instance, we may have overseen a br instruction
that is not obvious from the high-level code perspective. In case that the instruction actually
qualifies for the ground truth and the FTA also did not find it, we would consider it as a
true negative even if it should be a false negative.

It is also a threat to the internal validity of our research that we do not distinguish between
instructions at the same location. We only specify that we expect at least one tainted br or
switch instruction when we put a location in the ground truth. If the high-level source
code at this location is translated into IR with multiple br/switch instructions, we do not
specify which of these instructions actually should be found by the FTA. This leaves room for
inaccuracies of the analysis that we are not able to identify with our evaluation approach.

The focus on direct accesses increases the internal validity of our results, but at the
same time threatens their external validity. This is because the FTA is also supposed to
find indirect accesses. However, these are not reflected by the results that we gathered.
We underapproximated the ground truth of the analysis by declaring indirect accesses as
optional.

The restriction to br and switch instructions of C projects is another threat to the external
validity of our results. The precision that we measured for VaRA’s FTA is only valid in the
context of the feature-region detection for C software. We can not say how good the analysis
performs as a whole, i.e., with all feature taints under consideration. We are also not able to
draw conclusions about the precision for C++ projects. The behaviour of the FTA may be
different for these projects due to the complex language features of C++.
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R E L AT E D W O R K

In 2017, Sattler [22] introduced the variability-aware region analyser VaRA, an open-source
analysis framework that provides developers an interface for all kinds of code region
detections in LLVM IR. In his work, Sattler showcased his framework by implementing the
first revision of VaRA’s static feature-region detection. Timm [24] extended the feature-region
detection later on with PhASAR support in order to implement the FTA into VaRA. The open-
source static analysis framework PhASAR provides convenient access to implementations
for solving data-flow problems in LLVM IR [23].

Other research also investigated the data-flow problem of tracking configuration options
and feature variables in configurable systems. Both; static [10, 26] and dynamic [21, 27]
analyses; were presented to achieve this goal. For instance, Velez et al. [26] introduced
ConfigCrusher, a tool that analyses the performance of feature-regions in order to build
so-called performance-influence models. The feature-regions are determined with a static
data-flow analysis which also considers implicit flows. The static analysis, however, does
not scale beyond small systems. Therefore, Velez et al. [27] developed Comprex. This tool
builds performance-influence models with an iterative dynamic taint analysis. Comprex

maps features to regions by repeatedly executing a system in different configurations and
analysing the feature taints. This approach also considers implicit flows and, in contrast to
ConfigCrusher, scales to large systems.

In general, static analyses are a broad research field. For instance, they are examined in
the context of identifying software vulnerabilities [14, 18, 19, 25], or coding errors [5, 11, 12].
Another example was presented by Haas et al. [13]. They investigated if static analyses can
be used in order to detect unnecessary source code. VaRA’s FTA adapts the concept of static
taint analysis. These are typically used to identify security leaks in software [14, 18, 25].

In their recent work, Nachtigall, Schlichtig, and Bodden [20] evaluated the usability of
static analysis tools. They evaluated 46 mainly non-proprietary static analysis tools for
different languages against 36 usability criteria. Their research exposes huge chances of
VaRA as an open-source framework providing static analyses of C/C++ source code. A total
of 69 tools for C/C++ code were considered, but only 5 could be included in the evaluation.
The other 64 were excluded for different reasons, e.g. because they were proprietary or
could not be installed. The 5 tools that were tested on the usability criteria did not perform
very well. For instance, only one tool provides some kind of fix support, and warning
messages are, in general, pretty poor. This means that the usability of open-source static
analysis tools for C/C++ is usually neglected. VaRA has good chances to stand out from
other tools if it provides a good usability.
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C O N C L U D I N G R E M A R K S

In this chapter, we summarise and conclude our work. We also provide an outlook for
future work at the FTA, the feature-region detection, and VaRA in general.

7.1 conclusion

In this thesis, we evaluated VaRA’s FTA on real-world programs. For 4 C projects, we
underapproximated the analysis’ ground truth by tracing the data-flow of feature variables
by hand. We determined conditional control flow decisions dependent on the feature
variables with the aim to ensure that the analysis finds the information that are important
in the feature-region detection pipeline.

We implemented an experiment in VaRA-TS that automatically configures and runs the
FTA. For every subject project, we compared the output of the experiment with the created
ground truth. We encountered unexpected behaviour of the analysis for some features, and
failed to extract and reproduce these bugs. However, while we tried to extract these findings,
we found some other problematic corner cases that deserve further investigation in the
future.

Overall, we measured a high precision of the FTA. According to our results, the analysis
provides the feature-region detection with correct information with a probability of 99.16%.
Inaccuracies either occur as overapproximations, or as underapproximations of the feature
taints, whereat the case of an overapproximation is more likely.

7.2 future work

The problematic corner cases that we mined can be utilised to improve VaRA’s FTA in the
future. The respective code fragments expose analysis bugs that need to be fixed, or at least
deserve special attention. The same holds for the unexpected behaviour of the real-world
projects that we were unable to reproduce in the form of minimal examples. For the affected
features, the behaviour of the analysis can be further analysed in the future for the purpose
of determining shortcomings.

We only considered C projects in our research. However, VaRA also supports C++ projects.
A detailed evaluation of the FTA on C++ real-world software is currently not feasible due to
problems with the feature variable annotation in case that feature variables are implemented
as struct members. These problems are well known and currently worked on. But as soon
as they are fixed, an evaluation of VaRA’s FTA on C++ projects would be appropriate. The
more complex language features of C++ are likely to uncover additional shortcomings of
the analysis.

Besides the known bugs, we also encountered unknown problems of the feature variable
annotation. These need to get fixed in order to ensure that the FTA can work correctly. The
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respective features of gzip and PicoSAT can be analysed to identify the bugs, and to further
improve VaRA in the future.

The FTA is an intermediate part of VaRA’s feature-region detection. In a next step, it needs
to be assured that the feature-regions are correctly detected. For the features without any
false positives and false negatives in our evaluation results, we can be sure that the detection
pipeline works correct to the point when it comes to detecting the feature-regions. Hence,
these features serve as a good starting point for a future evaluation of the feature-region
detection.



A
A P P E N D I X

Feature True Positive True Negative False Positive False Negative

blockSize100k 5 (5) 3206 (3206) 0 (0) 0 (0)

forceOverwrite 7 (7) 3204 (3204) 0 (0) 0 (0)

keepInputFiles 2 (2) 3209 (3209) 0 (0) 0 (0)

opMode 8 (8) 3203 (3203) 0 (0) 0 (0)

quiet 15 (15) 3196 (3196) 0 (0) 0 (0)

smallMode 5 (5) 3206 (3206) 0 (0) 0 (0)

srcMode 38 (38) 3173 (3173) 0 (0) 0 (0)

verbosity 17 (17) 3171 (3171) 23 (23) 0 (0)

Total 97 (97) 25568 (25568) 23 (23) 0 (0)

Table A.1: Evaluation results for project bzip2. The brackets contain the results from the initial and
unrevised ground truth.

Feature True Positive True Negative False Positive False Negative

decompress 19 (19) 2238 (2233) 325 (325) 0 (5)

do_lzw 1 (1) 2581 (2581) 0 (0) 0 (0)

force 9 (9) 2234 (2234) 339 (339) 0 (0)

keep 3 (3) 2579 (2578) 0 (0) 0 (1)

list 12 (12) 2570 (2570) 0 (0) 0 (0)

no_name 2 (2) 2275 (2275) 305 (305) 0 (0)

no_time 3 (3) 2579 (2579) 0 (0) 0 (0)

recursive 4 (4) 2578 (2578) 0 (0) 0 (0)

Total 53 (53) 19634 (19628) 969 (969) 0 (6)

Table A.2: Evaluation results for project gzip. The brackets contain the results from the initial and
unrevised ground truth.
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Feature True Positive True Negative False Positive False Negative

All 7 (7) 5110 (5110) 0 (0) 0 (0)

ClausalCoreFile 2 (2) 5115 (5115) 0 (0) 0 (0)

CompactTrace 2 (2) 5115 (5115) 0 (0) 0 (0)

Defaultphase_val 3 (3) 5114 (5114) 0 (0) 0 (0)

ExtendedTrace 2 (2) 5115 (5115) 0 (0) 0 (0)

FileListingCoreVariables 2 (2) 5115 (5115) 0 (0) 0 (0)

IgnoreInvalidHeader 3 (3) 5114 (5114) 0 (0) 0 (0)

NoPrintAssignment 3 (3) 5112 (5112) 2 (2) 0 (0)

Partial 3 (3) 5114 (5114) 0 (0) 0 (0)

PrintToFile 3 (3) 5114 (5114) 0 (0) 0 (0)

ReverseUnitPropagationProof 3 (3) 5114 (5114) 0 (0) 0 (0)

Verbose 22 (22) 5045 (5045) 50 (50) 0 (0)

Total 55 (55) 61297 (61297) 52 (52) 0 (0)

Table A.3: Evaluation results for project PicoSAT. The brackets contain the results from the initial
and unrevised ground truth.

Feature True Positive True Negative False Positive False Negative

FlushTO_val 2 (2) 1557 (1557) 0 (0) 0 (0)

ForceOverwrite 5 (4) 1554 (1554) 0 (1) 0 (0)

Format 17 (16) 1542 (1541) 0 (1) 0 (1)

KeepIn 4 (2) 1555 (1555) 0 (2) 0 (0)

Mode 24 (24) 1534 (1534) 0 (0) 1 (1)

NoAdjust 2 (2) 1557 (1557) 0 (0) 0 (0)

Robot 7 (7) 1552 (1552) 0 (0) 0 (0)

SingleStream 2 (2) 1557 (1557) 0 (0) 0 (0)

Stdout 7 (4) 1552 (1552) 0 (3) 0 (0)

Suffix 5 (5) 1554 (1554) 0 (0) 0 (0)

Verbosity 24 (17) 1535 (1535) 0 (7) 0 (0)

Total 99 (85) 17049 (17048) 0 (14) 1 (2)

Table A.4: Evaluation results for project xz. The brackets contain the results from the initial and
unrevised ground truth.
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