
Bachelor’s Thesis

A N E VA L UAT I O N O F D I F F E R E N T
M E A S U R E M E N T A P P R O A C H E S F O R

F E AT U R E P E R F O R M A N C E A N A LY S I S

jonas kaufmann

December 7, 2022

Advisor:
Florian Sattler Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Sebastian Hack Compiler Design Lab

Chair of Software Engineering
Saarland Informatics Campus

Saarland University

Jonas Kaufmann: An Evaluation of Different Measurement Approaches for Feature Performance
Analysis, © December 2022

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

A B S T R A C T

With an ever more growing user base, software systems require more and different function-
alities. Developers implement features to offer functionality and satisfy these requirements.
Additionally, modern software systems are highly configurable, allowing the user to tune
the offered features to their concrete use-case. During execution, features can interact and
lead to complex functional, as well as, performance bugs, which may only manifest when
using a specific configuration [12] and are therefore hard to fix [19].

For the resolution of performance bugs, experts conduct performance analysis to identify
slow code parts. The first step typically involves the use of an off-the-shelf profiler to gain
an overview where time is spent during execution. The profile shows, in detail, which
functions consume the most time. The issue is that off-the-shelf-profilers are unaware of
features and their interactions. Developers struggle "looking for relevant information to
identify influencing options [...] and trace the cause-effect chain [19]. In contrast, feature
performance analysis uses measurements of the time spent per feature to aggregate the
measured timing information into known concepts to users of configurable software systems,
including non-developers like system administrators. To enable the measurement of features,
current work on white-box performance analysis for configurable software systems [17,
18] inserts simple and static measurement code for regions. This instrumentation can lead
to high overhead when these regions are executed with high frequency [17]. Additionally,
current feature performance analysis approaches [17, 18] are designed for offline analysis of
configurable software systems and don’t allow measurements to be dynamically turned on
or off or to be adjusted during execution without restarting the software system.

In this thesis, we evaluate two fundamental measurement approaches, namely tracing and
sampling in the context of measuring feature performance. To solve the before mentioned
issues, we leverage flexibility offered by state-of-the-art eBPF-based profiling to implement
these. Finally, we conduct case studies to evaluate accuracy and overhead of these implemen-
tations using a mixture of real world and synthetic configurable software systems. We show
that we can enable on-the-fly feature performance analysis with only 5 % overhead when
measurements are inactive. Furthermore, we show that sampling is a promising approach
to reduce high measurement overhead observed in current work.

v

C O N T E N T S

1 introduction 1

1.1 Goal of this Thesis . 2

1.2 Overview . 2

2 background 5

2.1 Features and Configuration Options . 5

2.2 Feature Regions and Feature Interactions . 7

2.3 Analyzing Performance through Measurements 9

2.3.1 Overhead . 9

2.3.2 Tracing . 10

2.3.3 Interrupts . 11

2.3.4 Sampling . 11

2.4 State-of-the-art Profiling Tools . 13

2.4.1 bpftrace . 14

2.5 VaRA . 16

3 implementation 17

3.1 Overview . 17

3.2 Static Tracing . 17

3.3 Tracing with Dynamic Instrumentation . 19

3.3.1 Minimizing Overhead and Selective Activation of Probes 20

3.4 Sampling . 20

3.5 Potential Limitations of eBPF-based Tracing 25

4 evaluation 27

4.1 Case Studies . 27

4.2 Operationalization . 28

4.2.1 Dry Experiments . 29

4.2.2 Tracing Experiments . 29

4.2.3 Sampling Experiments . 29

4.3 Results . 30

4.4 Discussion . 32

4.5 Threats to Validity . 33

5 related work 35

6 concluding remarks 37

6.1 Conclusion . 37

6.2 Future Work . 37

bibliography 39

vii

L I S T O F F I G U R E S

Figure 2.1 Feature model for the export feature of Xournal++. It encodes re-
lationships and mutually exclusive groups. Abstract features are
inserted to logically group functionality and to enable the expres-
sion of mutually exclusive features (alternative group). They don’t
actually represent a feature of the software system. We can form
other constraints in addition to those encoded in the feature model
from the configuration options. For example, size =⇒ PNG and
export_range =⇒ create. 7

Figure 2.2 A zoomed-in excerpt of the xz feature region trace visualized using
Perfetto. Feature regions are represented as start and end events
including timestamps. The trace viewer is then able to automatically
determine the nesting of complete (having start and end) events.
The feature Base is active from beginning to the end of the program
execution. The feature region above a feature region is its parent.
By clicking on a single bar, we can see additional information, for
example, the feature region’s UUID and its measured duration. . . . 10

Figure 2.3 Flame Graph for the visualization of sampled call stacks from MySQL.
Each horizontal bar represents a function. The bar directly beneath is
its parent function in the call stack. The graph is colored from yellow
to red, where red highlights functions that execute for a long time.
Source: https://www.brendangregg.com/FlameGraphs/cpu-mysql-updated.
svg, visited 4th December 2022 . 12

Figure 2.4 This figure shows how the USDT probes from Listing 3.2 are compiled
into the ELF binary. A nop instruction is inserted at the location where
the probe is declared. Additionally, an entry is added to the ELF notes
section. It contains the locations of all USDT probes together with
their provider and name, which form the identifier. It also specifies
where the supplied arguments can be found. 15

Figure 2.5 This figure shows the two components bpftrace produces when
tracing an arbitrary software system with USDT probes and how
they interact. 16

Figure 3.1 This figure shows the visualized trace file and sampling flamegraph
for a constructed software system, which nests three feature regions.
It represents the result we aim for when sampling where the resulting
flamegraph matches the duration trends and nesting of the feature
regions we see in the trace. 21

Figure 3.2 This figure shows the result of the algorithm we proposed to translate
call stack to feature region stack samples for the real world case-study
xz. The flamegraph contains the feature regions visible in the trace
but also additional ones that didn’t actually execute. 25

viii

https://www.brendangregg.com/FlameGraphs/cpu-mysql-updated.svg
https://www.brendangregg.com/FlameGraphs/cpu-mysql-updated.svg

L I S T O F TA B L E S

Table 4.1 A comparison of the dry (no active measurements) execution times.
The shown values are in seconds and averages from 10 runs including
their standard deviation inside the parentheses. The 0 variance is
caused by Gnu Time’s limited measurement precision. 30

Table 4.2 A comparison of the execution time for the tracing experiments and
running dry. The shown values are seconds and averages from 10

runs including their standard deviation inside the parentheses. Static
tracing is the comparison baseline. 31

Table 4.3 Execution time during sampling compared to the experiments dry
and static tracing. The shown values are in seconds and averages
from 10 runs including their standard deviation inside the parentheses. 32

Table 4.4 Number of events for all case studies during tracing. 32

Table 4.5 Tracing with regular USDT instrumentation but using a lower-level
eBPF frontend called bcc instead of bpftrace can reduce measure-
ment overhead. 33

L I S T I N G S

Listing 2.1 Export feature and some of its subfeatures in the note taking applica-
tion Xournal++. The feature export-range depends on the feature to
export an image or pdf file. export-png-dpi and export-png-wdith are
mutually exclusive. 6

Listing 2.2 A constructed example showing features A and B interacting in
source code and their feature regions. The total execution time de-
pends on which features are active. We can’t simply add the execution
time values of the two configurations {A} and {B} to predict the
performance for {A, B} due to the feature interaction in the regions
R2 and R4. 8

Listing 2.3 A simple bpftrace program counting the number of begin and
end events of feature regions. @num_probes_fired is an eBPF map,
which can also be read from user-space. $1 inserts the first argument
provided to the bpftrace program, in our case the path to the binary
to trace. 15

Listing 3.1 Main functionality of the instrumented measurement code for static
tracing. MeasureManager internally manages a queue and uses a con-
sumer running in a separate thread to write the tracing data to a file.
The current timestamp is measured when enqueuing. 18

ix

x Listings

Listing 3.2 Adding USDT probes to feature regions in VaRA. The sys/sdt.h

header contains macros to declare USDT probes. There are variants
to pass multiple arguments to the attached tracer. The first and
second argument of the macro form the identifier of the probe. The
first is the provider name and the second the probe name. Both can
be chosen freely. Notice however, that they aren’t strings and as such
can’t be chosen dynamically. The available characters that can be
used are restricted in the same way as identifiers of variables in code. 19

Listing 3.3 An excerpt of a call stack sample, which has been collected using
perf. The array for callchain contains the addresses on the call stack.
The current instruction’s address is the first one in this array. Perf

attempts to translate the addresses to function names if the necessary
information is available. 22

Listing 3.4 This example shows that we can construct cases where the address
range spanned by entry and exit points of a feature region has no
correlation with the addresses of the executed instructions at all. . . 22

Listing 3.5 A constructed example in which we wrongly translate to feature
region Foo instead of Bar under assumption A1. 23

Listing 3.6 This example shows how our algorithm to extract address ranges
when a feature region has multiple entry and exit locations fails. It
won’t produce an address range for capturing the instructions at
label do_something. 24

Listing 4.1 Main logic of SimpleBusyLoop. NumIterations is declared as a feature
variable through an annotation processed by VaRA’s feature region
analysis. The inner loop continously increments Counter to simulate
a heavy computation. 28

1
I N T R O D U C T I O N

Users of software systems require different functionality. To satisfy these requirements,
developers add functionality in the form of features. For example, offering the functionality
to print out a web page in a browser or to compress and encrypt data sent by a web
server are features. In addition, modern software systems are highly configurable, offering
configuration options, e.g., command-line switches, to turn certain features on or off
and customize their run-time behavior. This configurability however, has a flip-side. It
increases the complexity of a software system. Each configuration option adds additional
possible paths in the source code, which the program’s execution can take. Furthermore,
configuration options can interact, for example, by executing some specific code only if
both features are simultaneously active [2]. Features and configuration options are not
only relevant when testing and debugging functional correctness, but also influence a
software system’s performance. Performance is a non-functional characteristic of software
and typically quantified as throughput or response time to fulfill a certain task or total
execution time. By enabling the features compression and encryption through configuration
options in our example of a web server, we increase the response times for web requests.

Performance is an important non-functional quality of modern software systems. In a post-
Moore era where hardware on its own isn’t able to significantly increase performance from
generation to generation without requiring changes to the software anymore, performance
gains require writing more efficient code [3].

The industry is investing increasing resources to prevent performance regressions across
releases [4]. Zaman, Adams, and Hassan [21] found that performance bugs take on average
significantly more time to fix, are fixed by more experienced developers, and require
changes to larger parts of the code than non-performance bugs. Compared to functional
bugs, performance bugs don’t produce a wrong result or crash the configurable software
system. Additionally, they may only occur when using a certain configuration [12] and
only be discovered once running in production using large workloads that highlight the
issue. When discovered, they require performance debugging starting with performance
analysis to figure out where time is spent during execution. The first step in performance
analysis typically involves the use of an off-the-shelf profiler to measure time the CPU
spends executing each function. This grants a quick yet detailed overview and provides
places where to investigate further. Off-the-shelf profilers, however, are unaware of features
and their interactions, which are involved in more than half of the performance bugs Han
and Yu [12] investigated. Using feature unaware tools, developers struggle to find relevant
information to identify features or their interactions causing a performance bug, as well as,
where and how these affect the performance of the configurable software system [19].

Feature performance analysis aims to address this need for relevant information by
measuring time spent per feature instead of function to provide information on how the
active features contribute to the observed performance of a configurable software system.
Features are a concept directly visible to all users of a software system. This also means that

1

2 introduction

they can be understood even by non-developers. Feature performance analysis aggregates
timing information in this high-level concept.

To realize feature performance analysis, current work [17, 18] inserts measurement code,
a process called instrumentation, to log the current timestamp whenever the execution
enters or leaves a region in the source code relating to a feature. This instrumentation can
lead to high overhead when such a region is executed with high frequency and slow the
system under measurement down up to orders of magnitude [17]. When high overhead
causes total execution time to be noticably longer, an otherwise significant performance
difference between two configurations (one of them being slower due to a performance
bug) can become insignificant compared to the total execution time. In addition to the issue
of overhead, current work on white-box performance analysis for configurable software
system [17, 18] is designed for offline analysis. For production use, we on one hand want to
be able to measure at any time to collect information about short-term performance issues,
for example, a momentary spike in observed latency. On the other hand, our software
should execute as efficiently as possible to reduce operating costs. To achieve this, we need
to be able to disable measurements most of the time to avoid paying the overhead. Current
instrumentation approaches for feature performance analysis don’t offer the functionality
to dynamically turn measurements on or off. Moreover, the user has no way to influence
overhead, for example, by reducing accuracy.

Profiling tools, which only induce a small amount of overhead and which allow flexible
on-demand measurements, do already exist but not for feature performance analysis. We
are going to use their fundamental ideas to offer the same flexibility and small overhead for
feature performance analysis.

1.1 goal of this thesis

We aim to solve the current limitations of feature performance analysis by first discussing
two fundamental measurement approaches state-of-the-art profilers use, namely tracing
and sampling. Both fundamentally differ in terms of measurement overhead and accuracy,
as well as the controllability they offer to the user. We then implement both and evaluate
them using case studies on a mixture of real world and synthetic configurable software
systems. Additionally, we also investigate the compromises we have to accept to achieve the
flexibility state-of-the-art profilers provide.

Our results show that we can indeed offer on-demand feature performance analysis but at
the cost of around 5 % overhead when measurements are inactive. This flexibility comes at
the cost of higher overhead when measuring though. If we are willing to sacrifice accuracy,
we can use sampling to enable feature performance analysis with negligible measurement
overhead.

1.2 overview

In Chapter 2, we discuss the necessary concepts we use throughout the thesis. This includes
an introduction to features and configuration options. Feature performance analysis uses
feature regions, which group statements in code that implement a feature. We want to
measure the time spent in feature regions and therefore also talk about the two measurement

1.2 overview 3

approaches tracing and sampling and the important concept of measurement overhead.
We continue with state-of-the-art eBPF-based profiling and an introduction to VaRA, a
framework which can automatically detect and insert measurement code into feature regions,
which is required for performing feature performance analysis.

Chapter 3 describes how we can implement the introduced measurement approaches
and minimize measurement overhead while doing so. Sampling is particularly hard to
implement because we don’t have direct access to feature regions and instead use call stacks
to infer them. During our implementation, we also encountered potential limitations for the
use of the eBPF-based profiling and discuss these.

We evaluate our implementations on a mixture of real-world and synthetic case studies in
Chapter 4 to determine whether we have been successful in offering on-demand feature per-
formance analysis while also reducing high overhead seen in current work [17]. We point out
related work that inspired our ideas and used similar approaches in Chapter 5. We conclude
the thesis in Chapter 6 and describe open future work to improve our implementations.

2
B A C K G R O U N D

In this thesis, we implement two fundamental measurement approaches for feature per-
formance analysis. Before diving into concrete details, we first discuss the concept of
software features and configuration options. Based on that we introduce the concept of
feature regions, a model to capture the statements in code, which implement a feature.
Our goal is to measure the time a program spends in a feature region during its execution.
We therefore continue by discussing two fundamental approaches how to measure them
and highlight differences as well as theoretical limitations. We conclude the chapter by
introducing additional tools we use for the implementation of the measurement approaches.

2.1 features and configuration options

In today’s world, users have many individually different requirements in terms of function-
alities the software they work with has to offer. Developing customized software systems for
each of them is expensive and error-prone. Instead, users turn towards off-the-shelf software,
which is designed to serve a broad mass of customers. This approach allows the company
building the software to focus its resources on a single instead of many individually tailored
systems and hence reduces individual acquiring costs for customers while overall offering
better quality due to the drastically larger user and developer base. [2] To appeal to a large
range of users, off-the-shelf software has to offer the required functionalities while not
limiting their use to just single individuals. To achieve this, today’s software implements
features and configuration options. "A feature is a characteristic or end-user-visible behavior
of a software system" [2]. In 1998, Kang et al. defined it as "a distinctively identifiable func-
tional abstraction that must be implemented, tested, delivered, and maintained". There are
multiple other definitions, however, we aim to use features to explain observed performance,
even to non-developers. As such, we care about their property of being end-user-visible,
which includes all stakeholders of a software system.

As we have discussed, implementing just the required features is not enough to serve a
wide range of users. For example, we can use different algorithms to implement a feature
to compress payloads sent by our web server. There is a trade-off depending on which
one we choose. Algorithm a may be faster but algorithm b achieves better compression
ratios. Users may want one algorithm over the other for their concrete use-case. The solution
is to implement both algorithms as features and then offer the choice to users through
configuration options.

Modern software systems are highly configurable, allowing users to enable and disable
certain features and tune their run-time behavior to their needs. In this thesis, we investigate
load-time configuration options. Examples include command-line options and entries in
configuration files. As the name implies, the software system loads the options when it is
started and does not change them afterwards.

5

6 background

We now look at an example of features and configuration options in a real software system.
Listing 2.1 shows some configuration options related to the export feature of a note-taking
application. Configuration options control the features a software system offers. We can
therefore look at configuration options to discover features a software system implements.

1 $ xournalpp --help-export

2 Usage:

3 xournalpp [OPTION...]

4

5 Advanced export options

6 -p, --create-pdf=PDFFILE Export FILE as PDF

7 -i, --create-img=IMGFILE Export FILE as image files (one per page)

8 Guess the output format from the extension

9 of IMGFILE

10 Supported formats: .png, .svg

11

12 --export-no-ruling Export without ruling

13 The exported file has no paper ruling

14

15 --export-range Only export the pages specified by RANGE

16 (e.g. "2-3,5,7-")

17 No effect without -p/--create-pdf or

18 -i/--create-img

19 --export-png-dpi=N Set DPI for PNG exports. Default is 300

20 No effect without -i/--create-img=foo.png

21 --export-png-width=N Set page width for PNG exports

22 No effect without -i/--create-img=foo.png

23 Ignored if --export-png-dpi is used

Listing 2.1: Export feature and some of its subfeatures in the note taking application Xournal++. The
feature export-range depends on the feature to export an image or pdf file. export-png-
dpi and export-png-wdith are mutually exclusive.

The example also shows that features can have relationships. This software system offers
a subfeature for the feature export to create a PDF or an image file. Configuration options
don’t have to be just binary simply offering an on/off switch. The configuration option
to export a specific range of pages takes a string as its input. Another observation is that
features and by extension also configuration options can be mutually exclusive. The user
can either provide export-png-dpi or export-png-width. Using both at the same time logically
speaking makes no sense. There can also be other forms of dependencies. The two just
mentioned configuration options require the feature to export to an image file to have an
effect. The relations and dependencies of features can be captured using feature models.
Figure 2.1 shows the feature model for the export feature of Xournal++.

For any configurable software system, we provide a configuration when executing it.
A configuration contains configuration options and their assigned values. In the case of
configuration options that toggle a feature, this value is limited to on or off. As a user of a
software system, we usually don’t specify all configuration options because the developer
provides a default configuration. We only indicate the changed configuration options.

2.2 feature regions and feature interactions 7

Xournal++

export

create

create pdf create img

SVG PNG

export no ruling export range size

export png dpi export png width

Legend:

Abstract Feature

Concrete Feature

Optional

Alternative Group

Figure 2.1: Feature model for the export feature of Xournal++. It encodes relationships and mutually
exclusive groups. Abstract features are inserted to logically group functionality and to
enable the expression of mutually exclusive features (alternative group). They don’t
actually represent a feature of the software system. We can form other constraints in
addition to those encoded in the feature model from the configuration options. For
example, size =⇒ PNG and export_range =⇒ create.

2.2 feature regions and feature interactions

In the last section, we introduced the user-visible concept of features and configuration
options. We now continue on the developer side discussing how features are implemented
in code and how their behavior is influenced through configuration options. We introduce
feature regions, which span a continuous range of source code and implement a feature.
They are the basis for conducting feature performance analysis. We conclude the section by
discussing how features can interact with each other and cause a performance issue that
only occurs for specific configurations.

Load-time configuration options are parsed when the program starts and control the
behavior of features by changing the control-flow during execution. The control-flow of a
program is the order in which the individual instructions, statements, or function calls
are executed. Source code isn’t necessarily executed line after line. Instead, the execution
can jump using control-flow statements like if-else, for-loops, break, or continue. To be
able to influence the control-flow of a program, the parsed value of a configuration option
is stored in some location to later be accessible from control-flow statements. Examples
of these locations are local or global variables, struct fields, and data structures. For the
software systems we are going to look at, we consider only variables and struct fields for
simplicity. As discussed in Section 2.1, configuration options enable and control features.
We therefore call variables and struct fields containing a configuration option’s parsed value
feature variable.

Listing 2.2 shows an example of a software system with two configuration options A
and B, which can be enabled independently. Both options are represented in the program’s
source code with the feature variables a and b. The corresponding feature regions can be
found using data-flow analysis by looking for control-flow statements that use a feature
variable in their control-flow decision. All code that is executed as a consequence of this
decision forms a feature region. In the case of an if-statement, this not only includes the if-
but also the else-block because having a configuration option not enabled also influences the

8 background

runtime behavior by executing different code. If there is no else block, then the configuration
option won’t have an effect at the examined location when disabled.

1 int main(int argc, char *argv[]) {

2 bool a = getOpt("A", argc, argv);

3 bool b = getOpt("B", argc, argv);

4

5 bool x = false;

6

7 // Begin R1 (Feature A)

8 if (a) {

9 ... // 2 seconds

10 x = true;

11 } else {

12 ... // 1 second

13 }

14 // End R1

15

16 // Begin R2 (Feature A, B)

17 if (a && b) {

18 ... // 3 seconds

19 }

20

21 // Begin R3 (Feature B)

22 if (b) {

23 ... // 1 second

24

25 // Begin R4 (Feature A)

26 if (x) {

27 ... // 1 second

28 }

29 // End R4

30 }

31 // End R3

32 }

Listing 2.2: A constructed example showing features A and B interacting in source code and their
feature regions. The total execution time depends on which features are active. We can’t
simply add the execution time values of the two configurations {A} and {B} to predict
the performance for {A, B} due to the feature interaction in the regions R2 and R4.

The feature regions are marked with comments in Listing 2.2. This example shows some
possibilities of how features can interact and cause performance issues to only arise in
certain configurations. Regions R2 and R4 are only executed in the case where both features
are active. R2 contains an explicit and wanted feature interaction. Region R4, however, is
an example of a feature interaction which may be unwanted and easily overseen. We are
not able to identify this relationship by investigating control-flow only, as the decision isn’t
directly based on the feature variable. When looking at possible control-flow paths the
execution can take, we see that the value of x is influenced by that of the configuration option

2.3 analyzing performance through measurements 9

A. Actually, it is only true if A is enabled. As a consequence, if x is used in control-flow
decisions, it should form additional feature regions which belong to A. data-flow analysis
performs the reasoning we just discussed algorithmically and can therefore be used to detect
feature regions. We are going to use an existing framework to find feature regions.

2.3 analyzing performance through measurements

We discussed the concept of feature regions and challenges when trying to identify them.
For performing feature performance analysis, we want to find out how much time we are
spending per feature region. We now introduce two fundamentally different measurement
approaches for this task. Both differ in how they collect the measurement data and, more
importantly, how the system under measurement is influenced. The main comparison
property is the overhead-accuracy trade-off. High overhead slows down the system under
measurement and can also alter (perturb) its observed behavior.

2.3.1 Overhead

A central concept when comparing measurement approaches is overhead, the amount of
additional execution time incurred to perform the measurements compared to running dry
(i.e. without any measurements). The obvious consequence is a slowdown in performance
or, in other words, that our system under measurement will take longer to perform certain
tasks. Additionally, overhead can perturb the system under measurement and also our
measurement results.

Imagine we want to trace the duration of two tasks. Task A takes a long time to complete,
while task B is much shorter. Taking the measurements requires time, which means that the
two tasks will take longer to finish. Suppose the measurement overhead is constant. From a
relative view, the long task’s execution time will increase only slightly, while the increase
for the short task is much more significant.

The measurement overhead can perturb the overall time the system spends on each of
its tasks when B is executed with a high frequency, for example, because it performs some
basic operation. Task A executes only rarely. Due to the higher frequency, the measurement
overhead is also paid often by task B. The time the software system spends on task B over
the course of its whole execution therefore increases significantly while the time spent on
A sees nearly no difference. We are now in a situation where the measurement overhead
perturbs the system behavior.

To minimize the influence of this perturbation on our measurement results, we need
to make sure that we only measure the original time spent on the two tasks and don’t
include measurement overhead itself in our results. In practice, even if we managed to
realize the time measurements in a single instruction just before the first or last instruction
of the code we want to measure, there would always be a small delay between the CPU
executing these two. This means that we can’t prevent perturbation from happening. The
question is whether it is relevant in practice. Our goal when performing measurements
therefore is to keep overall measurement overhead small since this also reduces the amount
of perturbation.

10 background

2.3.2 Tracing

After discussing overhead, we now introduce the first fundamental measurement approach
named tracing. Its measurements are event-based. An event is a "change in the system state
that is relevant for the measurement of a given metric" [14]. By this definition, we as the
user of a measurement tool decide what is considered an event. If we were managing a web
server, we could choose the arrival of a request or a detected denial of service attack as an
event. In the case of this thesis, we are interested in the metric execution time per feature
region. For this metric, events are the program’s execution entering and leaving a feature
region. The idea of tracing is to execute measurement code whenever an event occurs. For
example, we can write out the current timestamp to a file, indicate whether we entered
or left a feature region and which region it was. By subtracting the timestamps we gain
the amount of time we spent per feature region. An example of the result can be found
in Figure 2.2. We can also access local variables, for example, inside the current function’s
scope, and write out their values as well. In the tracing context, the collected information is
called trace, which is generally a list of events plus the measured information. [14]

Figure 2.2: A zoomed-in excerpt of the xz feature region trace visualized using Perfetto. Feature
regions are represented as start and end events including timestamps. The trace viewer
is then able to automatically determine the nesting of complete (having start and end)
events. The feature Base is active from beginning to the end of the program execution.
The feature region above a feature region is its parent. By clicking on a single bar, we
can see additional information, for example, the feature region’s UUID and its measured
duration.

For performing the measurements we need to insert measurement code. This process is
called instrumentation and can be performed either statically or dynamically. For the former,
the measurement code is inserted into the program’s binary before starting its execution,
while dynamic instrumentation modifies instructions during runtime. In this thesis, we are
going to start off with static instrumentation for the measurement of feature regions, which
we perform during the compilation process of a program. As a next step, we investigate how
we can use state-of-the-art profiling tools to implement dynamic instrumentation which
gives us greater flexibility since we are able to dynamically add and remove measurement
code. However, this flexibility could come at the cost of additional overhead.

For tracing, the overhead is determined by the events’ frequencies and the time neces-
sary to execute the instrumented measurement code. Even if a single measurement code
invocation takes negligible time, due to high event frequencies, overhead can become large
enough to slow down the system under measurement up to orders of magnitude [17]. One
possibility to combat overhead when we can’t make the measurement code more efficient
is to trace less frequent events at the cost of accuracy. Whether this is acceptable or not
depends on the concrete situation (overhead-accuracy trade-off). Additionally, we may not be

2.3 analyzing performance through measurements 11

able to find or define a lower frequency event. In that case, tracing doesn’t offer any further
adjustment possibilities. The dependency of overhead on the events’ frequencies therefore
poses a fundamental limitation.

2.3.3 Interrupts

In the following sections, we discuss the second fundamental measurement approach
sampling and state-of-the-art profiling tools. Both use interrupts to execute measurement
code, a concept we now introduce. Using interrupts also has implications on how overhead
is induced and which information is available during measurements compared to inserting
the measurement code directly into the software system, as seen for tracing.

Interrupts make the CPU immediately transfer execution to a pre-defined address in
the kernel. Interrupts can be invoked from hard- and software. An example of software
interrupts are system calls. When a user application performs a system call, it writes
information like the system call number and additional information the kernel needs to
pre-defined registers and the stack. To invoke the system call, an interrupt instruction is
executed. The interrupt takes care of switching the CPU into kernel mode such that the
kernel’s code has full privileges to respond.

The operating system also uses timer interrupts to periodically interrupt the currently
executing user program and regain control. They are used for performing periodic tasks,
for example, scheduling another user application on the CPU. [1] Timer interrupts can also
be used to periodically execute measurement code. The measurement approach we present
in the following section uses this idea.

2.3.4 Sampling

Sampling aims to solve tracing’s fundamental limitation by sacrificing accuracy. The idea of
sampling is to execute external measurement code in equidistant time intervals. Its overhead
is determined solely by the sampling frequency and the time to execute the measurement
code. Consequently, sampling can conceptually offer lower overhead than tracing in the
case of high event frequencies.

To realize sampling in practice, we need a way to periodically invoke the measurement
code. This is done using timer interrupts. Due to this design, the measurement code is
executed asynchronously to the system under measurement’s code. This makes it impossible
to measure events in the sense of tracing, where they represent a single point in time. Instead,
we can only measure state, which has a certain duration. We need a way to expose the
software system’s current state to the measurement code.

One possibility is to manage externally visible state, for example, some constant address
in the memory which is accessible by the external measurement code and whose content we
continuously update during execution. Doing so slows down the system under measurement
though and hence causes overhead. A popular alternative that doesn’t suffer this overhead
and that we are going to use is call stack sampling. It uses the call stack information
automatically maintained on the stack by the CPU when executing a program. When a
function is invoked, the return address is written to the stack. This is the address of the next
instruction to execute in the current function once the invoked one returns. It is possible to

12 background

traverse these return addresses and doing so reconstruct all currently active functions or
in other words the call stack [7]. Figure 2.3 gives an example of the result obtained by call
stack sampling.

Flame Graph Search

mys.. m..
mysqld`row_search_for_mysql

mysqld`handle_one_connection

my..

mysqld`do_command

my..

mysqld`find_all_keys

mysqld`btr..

mysq..

mysqld`handle_select

mysqld`JOIN::exec

l..

mys..

libc..

mysqld`sub_select
mysqld`eval..

m..my..

mysqld`mysql_select

libc.so.1`_lwp_start

mysql..

m..
mysq..

mysqld`handler::read_multi_range..

mysq..

mysqld`mysql_execute_command

mysqld`ha_innobase::general_fetch

mysqld`ha_innobase::general_fetch
mysqld`row_..

mys..

mysql..

mysqld`ro..

mysql..mysqld`row_search_for_mysql

mysqld`filesort

mysqld`dispatch_command
mysqld`mysql_parse

l..

mysq..

mysqld`join_read_prev

mysqld`ha_innobase::index_next_..

mysqld`execute_sqlcom_select

mysql..
mysql..

l..

m..
m..

mys..

my..

mysqld`row_sel_get_..

mysqld`ha_innobase::index_prevmysqld`QUICK_RANGE_SELECT::get_n..

mysq..
mysqld`do_select

m..

my..

mysqld`handler::read_range_next

libc.so.1`_thrp_setup

mysq..

mysqld`btr..

mysqld`create_sort_index

my..

Figure 2.3: Flame Graph for the visualization of sampled call stacks from MySQL. Each horizontal
bar represents a function. The bar directly beneath is its parent function in the call stack.
The graph is colored from yellow to red, where red highlights functions that execute for
a long time.
Source: https://www.brendangregg.com/FlameGraphs/cpu-mysql-updated.svg, visited
4th December 2022

Whatever we choose to represent our system’s current state, we can’t just access it asyn-
chronously from the measurement code. This can lead to data races since the program might
be in the process of writing updating the state while the measurement code simultaneously
reads it. As a consequence, we need to synchronize to ensure that only one of the two can
access the state at a time. To do so, we temporarily interrupt the execution of the program,
execute the measurement code and then resume program execution [7]. This means that
the amount of execution time required to execute the measurement code influences the
measurement overhead.

In the context of tracing, overhead can lead to measurement perturbation. For sampling it
exists as well, but for different reasons. We need to be careful when choosing the sampling
rate in the presence of periodically occurring state to ensure we collect meaningful samples.
Values like 97 Hz and 997 Hz are used to avoid sampling in lock-step with common
frequencies of periodic tasks. If we were call stack sampling with 100 Hz and a short
function was also invoked at the same rate, we might end up in a situation where all
samples only show this single call stack, because we might always sample at the moment
the function is invoked. [8]

https://www.brendangregg.com/FlameGraphs/cpu-mysql-updated.svg

2.4 state-of-the-art profiling tools 13

Having discussed the conceptual idea of sampling and some important implementation
details, we now turn towards its fundamental limitation, accuracy. Through the sampling
frequency we not only control the overhead but also resolution. We can miss program
states, which last a shorter amount of time than 1

sampling frequency . Increasing the sampling
rate therefore also increases the resolution, but we sacrifice overhead doing so. This is the
accuracy-overhead trade-off.

Comparing sampling to tracing, sampling offers controllability of the accuracy-overhead
trade-off, while tracing only allows us to measure less events, which might not be feasible
in the concrete case. When sampling in practice, we are often interested in a profile of the
software system, which provides a high-level summary of the execution behavior [14].
Since we can in principle always encounter state durations, which are shorter than a single
sampling period, sampling can only provide an approximation. In addition, we might see
different profiles when sampling the exact same execution of a program but when starting
with a slight offset in time for taking the first sample. If we require to capture all events, we
need to turn towards tracing.

2.4 state-of-the-art profiling tools

For the tracing of feature performance, our goal is to reduce overhead and offer more
flexibility compared to the static instrumentation used in current work [17, 18]. As found by
Velez et al. [17], the tracing of feature regions can induce significant overhead. When running
a software system in production, performance issues may only be observable in a limited
time frame because they depend on the current workload [11]. The possibility for high
tracing overhead poses two issues though: First, we can’t keep the instrumentation active all
the time or else we have to pay additional operating costs and second, we may perturb the
measured data noticeably. Even if we were able to restart the software system to activate the
static instrumentation for detailed analysis on demand, the problematic workload would
probably be gone. To solve these issues we investigate state-of-the-art profiling tools for
tracing with two design goals: First, dynamic instrumentation with insignificant overhead
when inactive and second, the option to only trace selected features with lower event
frequencies to reduce measurement overhead.

We can use eBPF in conjunction with USDT probes to implement dynamic tracing. In
addition, eBPF offers programmability of the measurement code to change the collected
information on demand. It therefore provides a high level of flexibility to the user, which
is useful for performance debugging. We explain all of these concepts in the following
sections.

The idea of eBPF is to provide the ability to load programs which are executed in the
kernel-space whenever a specified event occurs. Examples for these events are system
calls, function entries and exits either in kernel- or user-space, network events, and also
developer-defined locations in code called trace points. Like tracing, we have access to local
information when the eBPF code is invoked, for example, when instrumenting a function
entry we have access to the arguments the function is called with. Since eBPF programs are
executed in the kernel, they need to be safe to run, that is, not crash or hang the kernel by
executing indefinitely. A verifier is used to restrict what can be done in an eBPF program, for

14 background

example, it doesn’t allow for unbounded loops. For what we want to do, mainly measuring
time and writing out the data to a trace file, these limits don’t impact us. [5]

For our implementation, we make use of trace points since we can place them at arbitrary
locations in the source code, which especially includes entry and exit points of feature
regions. We insert them during compilation into the software system of interest and make
use of USDT probes (User Statically Defined Tracing) for that task. To add them to our
software, we use macros provided by the header sys/sdt.h in the SystemTap project as
shown in Listing 3.2. USDT probes work by placing a single nop instruction at the location
where they are declared. When attaching an eBPF program during execution, the kernel
will replace this instruction by an interrupt [9]. This process is called activation of a probe.
The code handling the interrupt in the kernel then looks up and executes the attached eBPF
program for the probe.

We already introduced the concept of interrupts in Section 2.3.4. For USDT probes, the
code invoked in the kernel as a consequence of the interrupt has to identify which probe
caused it and then invoke the attached eBPF program or function. When attaching an eBPF
program, for example, the one shown in Listing 2.3, we need to specify the identifier of the
USDT probe and what to execute as a response. The identifier of a probe and its location are
stored inside the notes section in a program’s executable binary with the ELF format. ELF is
an abbreviation for Executable and Linking Format, which is a file format for executable
binaries under Linux [13].

Figure 2.4 shows an excerpt of the contents in this section, which can be viewed on the
command-line through readelf -n <path_to_binary>. We see four attributes which are of
interest to us. Provider and Name are used to identify the USDT probe. We can choose both
freely. The attribute Provider is useful to differentiate between probes with the same name,
for example, in the situation where we are using common probe names and link against a
library also declaring probes with the same name. Location stores the address where we
can find the nop instruction. Using objdump -d <path_to_binary> to disassemble the code
segments in the ELF file indeed shows a nop instruction at that address.

The attribute Arguments contains the location where the arguments passed to the USDT
probe’s can be found. Finally, there is the attribute Semaphore which we don’t use. Suppose
the arguments passed to our USDT probes aren’t directly available and instead have to be
constructed using a time-intensive operation first. Without a semaphore, we have to pay
this cost independent of whether the probe is active or inactive. The semaphore allows us to
check the status beforehand.

2.4.1 bpftrace

To write eBPF tracing code, we use a high-level language frontend called bpftrace. Writing
eBPF code directly is cumbersome and makes the contents presented here unnecessarily
hard to understand. We introduce bpftrace and some additional details of how dynamic
tracing is realized, which is relevant for the later discussion on overhead.

When writing bpftrace code, we describe two components. One is the eBPF component
running in the kernel, which collects tracing information and writes it to a storage object
called map. The other is a user application, which asynchronously consumes entries in the

2.4 state-of-the-art profiling tools 15

1 // RUN WITH: sudo bpftrace <path to this script> <path to binary to trace>

2

3 BEGIN {

4 // Initialize maps.

5 @num_probes_fired["begin"] = 0;

6 @num_probes_fired["end"] = 0;

7 }

8

9 usdt:$1:vtrace:feature_begin

10 {

11 @num_probes_fired["begin"]++;
12 }

13

14 usdt:$1:vtrace:feature_end

15 {

16 @num_probes_fired["end"]++;
17 }

Listing 2.3: A simple bpftrace program counting the number of begin and end events of feature
regions. @num_probes_fired is an eBPF map, which can also be read from user-space. $1
inserts the first argument provided to the bpftrace program, in our case the path to the
binary to trace.

Figure 2.4: This figure shows how the USDT probes from Listing 3.2 are compiled into the ELF binary.
A nop instruction is inserted at the location where the probe is declared. Additionally,
an entry is added to the ELF notes section. It contains the locations of all USDT probes
together with their provider and name, which form the identifier. It also specifies where
the supplied arguments can be found.

16 background

map and writes them to a file. The application accesses the data in the map via system calls.
Figure 2.5 visualizes the two components and their interactions.

Figure 2.5: This figure shows the two components bpftrace produces when tracing an arbitrary
software system with USDT probes and how they interact.

The design just described is intentional to reduce overhead while offering high flexibility.
First, data is written asynchronously to a file. The execution of the software system under
measurement can therefore resume faster after it invoked the interrupt for the USDT probe.
Second, eBPF can reduce the overhead when computing statistical metrics which require a
lot of data to be written to a file. The metric itself is then computed in a post-processing
step after the execution of the software system under measurement has finished. eBPF can
instead compute it efficiently in the kernel without writing loads of data to a file first. [10]

The overhead for eBPF tools comes from performing the interrupt to invoke eBPF code
and then the execution time required for the eBPF code itself.

2.5 vara

To measure feature performance, we use an analysis framework based on LLVM called
VaRA (Variability-aware Region Analyzer). It offers the necessary data-flow analysis to
determine feature regions along with an interface to instrument measurement code at entry
and exit locations of feature regions.

VaRA is based on LLVM and modifies the clang compiler to perform feature region
analysis and instrument feature regions during the compilation of a software system. [16]
The feature region analysis itself needs a starting point in the form of the feature variable.
We supply the location where the feature variable is declared in code using a feature model
for the concrete software system. VaRA then uses data-flow and taint analysis to detect
feature regions by tracking how values of these feature variables propagate throughout the
program and where they are used in control-flow decisions.

VaRA also offers an interface to instrument the entry and exit points of feature regions.
VaRA inserts calls to functions, which we implement. An example for this is shown in
Listing 3.1. We can choose the provided arguments freely. Concretely, we use them to expose
information about the current feature region like its unique identifier (UUID) and name.

3
I M P L E M E N TAT I O N

3.1 overview

Our objective in this thesis is to evaluate different measurement approaches for feature
performance analysis on a mixture of synthetic and real world software systems. We now
discuss how to implement these approaches and which obstacles and potential issues we
encountered doing so.

The basis for all measurement approaches is that we identified feature regions and have a
way of instrumenting them. This task is handled by VaRA and its built-in data-flow analysis.
The data-flow analysis requires the information which variables are feature variables. We
provide this information through a feature model containing the declaration locations of
the corresponding feature variables for each feature.

Next, to add instrumentation, VaRA already offers an interface by inserting function
calls at the entry and exit locations of feature regions. We implement these functions by
adding our measurement code as the functions’ body. We can also decide which information
about the feature region to provide as the functions’ arguments and therefore expose to our
measurement code. In the following sections, we implement tracing and sampling using
this instrumentation capability and show concrete examples of how this can be done with
VaRA’s instrumentation interface.

3.2 static tracing

In this section, we describe the implementation of our tracing baseline, which uses static
instrumentation. As discussed in Section 2.3.2, tracing is event-based. The events in our
case are the execution entering and leaving feature regions. The conceptual idea for the
instrumented code is the following: When an event occurs, write the current timestamp,
a feature region identifier and whether it is an entry or exit event to a trace file. We use
Google’s Trace Event Format1 because it allows us to later visualize the trace file using their
viewer Perfetto

2. A good example of a resulting trace can be found in Figure 2.2.
A naive implementation of tracing can suffer from unnecessary overhead. Writing to a file

is performed using a system call, which in turn means writing values to specific registers
or pushing them to the stack and issuing an interrupt [1]. As discussed in Section 2.3.3,
this not only consumes processor time, but can also have other side effects, for example,
cache pollution. To minimize overhead in the application’s worker thread, we only push
the information about an occurred event to a queue and use a separate thread to issue the
system calls for writing to the trace file. Listing 3.1 shows the implemented functions for
VaRA’s instrumentation interface.

1 https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview

2 https://perfetto.dev/

17

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
https://perfetto.dev/

18 implementation

1 static MeasureManager *MM = nullptr;

2 static const char *BaseFeatureName = "Base";
3

4 void __vtrace_tef_init() {

5 MM = new MeasureManager(GetFilename());

6 MM->enqueue_start(0, BaseFeatureName, GetPid(), GetTid());

7 }

8

9 void __vtrace_tef_finalize() {

10 MM->enqueue_end(0, BaseFeatureName, GetPid(), GetTid());

11 // wait for consumer thread to write all events to trace file

12 MM->report();

13 }

14

15 void __vtrace_tef_start(uint64_t ID, char *RegionName) {

16 MM->enqueue_start(ID, RegionName, GetPid(), GetTid());

17 }

18

19 void __vtrace_tef_end(uint64_t ID, char *RegionName) {

20 MM->enqueue_end(ID, RegionName, GetPid(), GetTid());

21 }

Listing 3.1: Main functionality of the instrumented measurement code for static tracing.
MeasureManager internally manages a queue and uses a consumer running in a separate
thread to write the tracing data to a file. The current timestamp is measured when
enqueuing.

3.3 tracing with dynamic instrumentation 19

3.3 tracing with dynamic instrumentation

Next, we implement tracing but with dynamic instrumentation using USDT probes in
conjunction with an attached eBPF program. The high-level idea for the measurement code
is to produce the same trace file as the static counterpart.

We insert the required USDT probes by adding a declaration macro through VaRA’s
instrumentation interface (see Listing 3.2). We provide two arguments to the USDT probes,
the feature region’s unique identifier and region name. The current timestamp is measured
on the eBPF side. To write the eBPF code, we use bpftrace

3, a high-level eBPF frontend
language designed to allow developers and system administrators to quickly write arbitrary
eBPF code that should be executed in response to passing a USDT probe during execution.
As a result, tracing tools can be created as needed, for example, the simple script shown in
Listing 2.3 to count the number of occurred events.

1 #include <sys/sdt.h>

2

3 // inserted at the start of the program’s main() function

4 void __vtrace_usdt_init() {

5 DTRACE_PROBE(vtrace, feature_init);

6 }

7

8 // inserted at exit points of main() function

9 SANITIZER_INTERFACE_ATTRIBUTE void __vtrace_usdt_finalize() {

10 DTRACE_PROBE(vtrace, feature_finalize);

11 }

12

13 // inserted at entry points of feature regions

14 void __vtrace_usdt_start(uint64_t ID, char *RegionName) {

15 DTRACE_PROBE2(vtrace, feature_begin, ID, RegionName);

16 }

17

18 // inserted at exit points of feature regions

19 void __vtrace_usdt_end(uint64_t ID, char *RegionName) {

20 DTRACE_PROBE2(vtrace, feature_end, ID, RegionName);

21 }

Listing 3.2: Adding USDT probes to feature regions in VaRA. The sys/sdt.h header contains macros
to declare USDT probes. There are variants to pass multiple arguments to the attached
tracer. The first and second argument of the macro form the identifier of the probe. The
first is the provider name and the second the probe name. Both can be chosen freely.
Notice however, that they aren’t strings and as such can’t be chosen dynamically. The
available characters that can be used are restricted in the same way as identifiers of
variables in code.

3 https://github.com/iovisor/bpftrace

https://github.com/iovisor/bpftrace

20 implementation

3.3.1 Minimizing Overhead and Selective Activation of Probes

The instrumentation just described has two issues, suboptimal overhead, especially when
the probes are inactive, and the user can’t selectively choose which feature regions to
measure. This is helpful in a situation where certain feature regions are executed often
and hence their measurement incurs high overhead. The user can then selectively turn off
measurement of these regions.

The reason for suboptimal overhead is the implementation of VaRA’s instrumentation
interface. VaRA inserts function calls at the location of entry and exit points of feature
regions. This means that, when inserting the USDT probe as shown in Listing 3.2, we wrap
it inside an additional function, which means the potential for more overhead compared to
inserting the probe directly at the event location. This higher overhead might be shadowed
by the time required to perform the interrupt to execute the eBPF program when the probe
is active. In the case where the probe is inactive though, the function call pushes arguments
to the stack, jumps to the function and jumps back for the return. We suspect that this takes
more time than executing a single nop instruction.

The other issue is that a user of the instrumented USDT probes can’t currently choose
to only activate a subset. The reason is that we can’t change the probe’s identifier when
inserting the instrumentation during compile time using the macro to declare the USDT
probe. The two arguments for provider and name aren’t strings and by our observations
behave like identifiers of variables in C code.

To fix both issues, we investigated how the macro works internally and especially how
it adds the necessary entry to the notes section of the compiled ELF binary to provide
information about the inserted nop instruction. Both the nop instruction and the notes section
entry are added using a series of assembly instructions. We can replicate these on VaRA’s
side because the framework is based on LLVM, which does support inserting assembly code
directly. This assembly code is defined using a string containing the instructions, which we
can modify to use a custom probe identifier.

We realize the just described optimizations separately from the simpler approach of
adding the USDT probes using the pre-defined macro to evaluate the effectiveness of our
optimization later. We denote the optimized variant raw USDT instrumentation.

3.4 sampling

The second measurement approach we implement is sampling. The goal is to produce a
sampling profile for feature regions, which can be visualized as a flamegraph. Flamegraphs
are for example used for visualizing sampled call stacks (see Figure 2.3). They highlight
where the most amount of time is spent using the bar length and colors and are therefore a
good starting point to gather a high-level understanding when conducting performance
analysis.

The resulting flamegraph should match the trends of feature region durations seen in a
trace for the same software system. We also want to preserve the nesting of feature regions.
For Figure 3.1 we used a constructed software system called SimpleFeatureInteraction with
three nesting feature regions to do a proof of concept and show a resulting flame graph we
aim for.

3.4 sampling 21

(a) Trace in Perfetto

Flame Graph Search ic

'FR(Compression) 1729382256910270467'
'FR(Encryption) 1729382256910286851'

'FR(Compression) 1729382256910303235'

(b) Flamegraph of sampling profile

Figure 3.1: This figure shows the visualized trace file and sampling flamegraph for a constructed
software system, which nests three feature regions. It represents the result we aim for
when sampling where the resulting flamegraph matches the duration trends and nesting
of the feature regions we see in the trace.

To construct a flamegraph visualizing nested feature regions, we need a call stack pendant.
Our high-level idea is to sample the call stack and then translate this to a feature region
stack. This idea has the that advantage we don’t need to spend any time to construct a
feature region stack during execution, hence we minimize measurement overhead. This
kind of overhead would also be susceptible to the frequency of events and therefore void
the big advantage sampling has over tracing.

To obtain the call stack samples, we use perf, a profiling tool for Linux, which already
offers this functionality and is used widely. To give an idea of the content of a sampled
call stack, Listing 3.3 shows a single perf sample collected from SimpleFeatureInteraction.
The first address in the array we see there is the currently executing instruction and also
top of the call stack. All other values are return address [7] and form the rest of the call
stack. Return addresses indicate the next instruction to execute in the calling function when
returning from the callee.

We now describe how we can translate a sample of the call stack to a feature region stack
sample. To make explanations easier in the beginning, suppose we only have the address
of the current instruction and only want to translate that to a single feature region, hence
ignoring nesting. Furthermore, suppose every feature region only has a single entry and
exit location and that we know the addresses of these. To implement a simple algorithm,
we assume the following (A1): The execution does only execute instructions in this address
range while in the corresponding feature region and leaves it once the feature region is
completed.

With this assumption, we can determine feature regions by checking whether the current
instruction’s address lies inside the address range for each feature region. The issue is that
we can construct examples, for which A1 doesn’t hold at all. One such example is shown
in Listing 3.4. The execution enters the feature region, after a few instructions jumps to
another location outside the address range and later jumps back in to invoke the exit probe.
This pattern causes us to miss parts of, or even the full time, a feature region executes. The
result is that we under-approximate the actual execution time.

22 implementation

1 [...]

2 {

3 "timestamp": 112718368898239,

4 "pid": 161850,

5 "tid": 161850,

6 "comm": "SimpleFeatureInteraction",

7 "callchain": [

8 {

9 "ip": "0x227ccf"

10 },

11 {

12 "ip": "0x228084"

13 },

14 {

15 "ip": "0x228882"

16 },

17 {

18 "ip": "0x228a8c"

19 },

20 {

21 "ip": "0x7fc17c54a510",

22 "symbol": "__libc_start_call_main",

23 "dso": "libc.so.6"

24 }

25]

26 },

27 [...]

Listing 3.3: An excerpt of a call stack sample, which has been collected using perf. The array for
callchain contains the addresses on the call stack. The current instruction’s address is
the first one in this array. Perf attempts to translate the addresses to function names if
the necessary information is available.

1 [...]

2 nop // entry point of FR(Foo)

3 jump do_something

4 exit_feature_region:

5 nop // exit point of FR(Foo)

6

7 do_something:

8 [...] // do work for FR(Foo)

9 jump exit_feature_region

10 [...]

Listing 3.4: This example shows that we can construct cases where the address range spanned by
entry and exit points of a feature region has no correlation with the addresses of the
executed instructions at all.

3.4 sampling 23

We can also construct an example to show the other way around, where we wrongly
detect time spent in a feature region. The example is shown in Listing 3.5.

1 [...]

2 nop // entry point of FR(Foo)

3 jump main_code_of_Foo

4 main_code_of_Bar:

5 nop // entry point of FR(Bar)

6 [...]

7 nop // entry point of FR(Bar)

8 main_code_of_Foo:

9 [...] // do work

10 nop // exit point of FR(Foo)

Listing 3.5: A constructed example in which we wrongly translate to feature region Foo instead of
Bar under assumption A1.

We did not encounter this pattern when conducting experiments on small synthetic
software systems though. We hope that compiler optimizations arrange assembly code in
such a way, that as few jump instructions as possible are used and A1 therefore only rarely
breaks in practice.

Continuing with the description of the algorithm to translate call to feature region stack
samples, we need to get the addresses of entry and exit locations. For that, we can use the
data in the ELF notes section because it contains the locations of the inserted nop instructions.
It is important that we use the raw USDT instrumentation though, since the regular USDT
instrumentation inserts an intermediate call to the same function for all entry and exit
probes.

When inspecting the ELF notes section for the SimpleFeatureInteraction example, we notice
that we can have multiple entry and exit locations for a single feature region. We need to
combine them in a sensible way to retrieve multiple address ranges for each feature region.
The algorithm is to form an address range for each entry address and end it at the closest
larger exit address. We can discard ranges that overlap and only keep the larger one.

So far, we discussed how to translate only the current instruction address to a single
feature region for the current instruction. Now, we include nesting. The high-level idea is
to iterate over addresses in the call stack sample from first return address inserted to the
current instruction to construct the feature region stack bottom-up. We need to handle two
important edge cases. The address we are currently investigating may have no matching
feature region. We ignore that one. The second case is that we may see multiple matching
address ranges, for example, due to nested feature regions in the same function. The outer
region can only be equal or larger than the regions it nests. We therefore add the feature
regions ordered ascending in address range size to the feature region stack sample.

It is possible to encounter a situation, where a feature region is already contained in the
translated stack because a feature region can in principle span multiple functions. We don’t
insert such a feature region into the feature region stack again.

When applying the algorithm just described to our example SimpleFeatureInteraction, it
fails. When investigating the assembly instructions, we see the pattern shown in Listing 3.6.

24 implementation

The reason is not that assumption A1 does not hold, but an issue in our algorithm to derive
address ranges in the presence of multiple entry and exit points.

1 [...]

2 // BEGIN address range

3 nop // entry point of FR(Foo)

4 [...] // do some basic work

5 conditional_jump do_something

6 [...]

7 nop // first exit point of FR(Foo)

8 // END address range

9 [...]

10 do_something:

11 [...] // do heavy work

12 nop // second exit point of FR(Foo)

13 [...]

Listing 3.6: This example shows how our algorithm to extract address ranges when a feature region
has multiple entry and exit locations fails. It won’t produce an address range for capturing
the instructions at label do_something.

Our high-level idea to solve the issue is to perform static analysis of instructions in the
binary to take conditional and non-conditional jumps into account. We iterate over each
feature region and its entry locations. We start the static analysis at the location of the
concrete entry location and follow the execution path. When encountering a non-conditional
jump, we insert an exit location for its address and an entry location at its target address. In
the case of a conditional jump, we only add its target address to the list of entry locations
for the current feature region. We stop when we encounter an exit location for the current
feature region and then proceed to perform the same analysis for the next entry location.
We repeat the whole algorithm until we no longer insert new entry locations.

Due to limited time, we did not implement this idea. Instead, we executed the Sim-
pleFeatureInteraction twice. In the first run, we collected the addresses of the probes hit
during execution. Using this information as a filter for the entry and exit locations, we only
produce a single entry and exit location for each feature region in the concrete case. This
was sufficient to produce our aimed for result visible in Figure 3.1.

We then also tried the algorithm on the real world case-study xz (introduced later in
evaluation). The result is shown in Figure 3.2. The sampling profile contains the three most
notable bars seen in the trace, which are FR(Mode,Robot), and twice FR(Mode). The issue
though is that we completely miss the small periodically appearing, purple region called
FR(Size_val,Threads_val). We expect to see a fraction of samples that includes and another
that doesn’t include this region. The sampling profile also contains wrong feature regions,
which provides evidence that assumption A1 does not hold in practice.

To conclude, the presented algorithm for translating call to feature region stack samples
does not work for real world case studies yet. We see evidence that assumption A1 does
not hold in practice. We propose to use static analysis to determine the control flow of the
binary’s assembly instructions and doing so produce more precise address ranges of the
instructions implementing a feature region.

3.5 potential limitations of ebpf-based tracing 25

(a) xz trace in Perfetto

Flame Graph Search ic

'FR(FlushTO_val,Mode) 1729382256910401539'

'FR(Mode,Format) 1729382256910303235'

'FR(Format) 1729382256910368771'

'FR(Mode) 1729382256911089667'
'FR(Mode,Robot) 1729382256911073283'
'FR(Mode) 1729382256910450691'

(b) Flamegraph of xz sampling profile

Figure 3.2: This figure shows the result of the algorithm we proposed to translate call stack to feature
region stack samples for the real world case-study xz. The flamegraph contains the feature
regions visible in the trace but also additional ones that didn’t actually execute.

3.5 potential limitations of ebpf-based tracing

When using eBPF to trace feature regions, we encountered three potential limitations, which
can prohibit the application of this measurement approach in certain situations.

The first issue is that the number of concurrently active probes is limited. In bpftrace

the default limit is 512 probes and can be extended. However, in their documentation4 they
mention that using more probes "will consume more memory, increase startup times and
incur high performance overhead or even freeze or crash the system". We didn’t encounter
this limit during implementation. For one of the case study xz used in the evaluation,
however, we require up to 450 concurrently active probes. We didn’t notice any slowdown
in performance though. Depending on the size of the software system under measurement
and the number of feature regions, we imagine that the pre-defined limit can definitely be
surpassed in practice when using the raw USDT instrumentation. If this happens and poses
issues, we propose to either measure only a subset of feature regions and therefore also only
activate a subset of USDT probes or use the regular instead of raw USDT instrumentation
because it wraps the USDT probe in a function call meaning that there will be only the four
probes shown in Listing 3.2 in total.

Another potential issue is that events are dropped when the maps for passing information
from the kernel- to the user-space component of a bpftrace program run out of space. The
size of an eBPF map is fixed and specified during its initialization5. The eBPF verifier also
doesn’t allow eBPF programs to block execution for an indefinite amount of time [5] to wait
for space to become available in the map. During implementation, we actually encountered
a situation where simply increasing the map size to compensate for sudden spikes in event
frequency did not suffice. We performed an experiment on the case study gzip, where a
single feature region was invoked with high frequency throughout the whole program
execution and overwhelmed the user-space consumer. Even though we might be able to

4 https://github.com/iovisor/bpftrace#bpftrace_max_probes, visited on December 1st 2022

5 https://www.kernel.org/doc/html/latest/bpf/maps.html, visited on December 1st 2022

https://github.com/iovisor/bpftrace#bpftrace_max_probes
https://www.kernel.org/doc/html/latest/bpf/maps.html

26 implementation

speed up the consumer by using a lower-level language than bpftrace, the tracing overhead
was also significant in the concrete case. The desired solution therefore is to reduce the
amount of events.

We discussed this case with the VaRA developers and they implemented nested feature
regions merging with the high-level idea of discarding inner feature regions when they
don’t add additional information compared to the outer one. To provide an example, if
we encounter a feature region containing the feature Foo nested inside a feature region
containing Foo and Bar, then measuring the inner in addition to the outer region does
not add new information. This solved our issue but in principle we can always encounter
dropped events, which in the case of tracing means we can no longer determine the duration
of certain feature region. This is especially problematic when this feature region executes
for a significant amount of time. Suppose we are conducting feature performance analysis
and interested in which features the CPU spends most of its time on. Missing a significant
feature region can lead to wrong conclusions. Sampling also isn’t accurate but in comparison
to this issue, it only drops details and the overall statistical information in the sampling
profile isn’t skewed. bpftrace will therefore warn when events are dropped. When dealing
with high event frequencies, this might be an exclusion criterion for the usage of eBPF
though.

The third issue is that running eBPF programs for tracing currently requires root privileges.
In addition, bpftrace offers the feature to invoke arbitrary binaries on the command-line.
This can be a huge security risk in practice, not only in the sense of malicious code but
also because it eliminates the isolation guarantees between processes enforced by the
operating system. We could, for example, accidentally influence other software systems
concurrently running in the production environment and cause them to enter a faulty state.
The environment we plan to measure in may therefore not offer the ability to run privileged
software.

In principle, we don’t require access to internal kernel information to execute a function
in an external program whenever we hit a USDT probe. We can wrap sensitive functionality
in a system call to limit the ability of user-space applications and preserve the operating
system’s isolation guarantees. eBPF is designed to offer programmability and do so with
high performance though [6]. Adding invocations of additional system calls in measurement
code means introducing more overhead.

We found no other tool to attach arbitrary measurement code to USDT probes. The issue
of requiring root privileges in our view does not have fundamental reasons and a solution
might be developed in the future.

4
E VA L UAT I O N

In this chapter, we describe the experiments we conducted to compare the overhead and
accuracy properties of tracing and sampling in practice. We answer the following research
questions to evaluate the discussed theoretical limitations:

• RQ1: Can state-of-the-art profiling tools provide feature-specific on-demand measure-
ments with insignificant overhead when inactive?

• RQ2: How much do state-of-the-art tools compromise measurement overhead to offer
flexibility?

• RQ3: By how much can feature-specific measurement overhead be reduced when
switching from profiling traces to sampling?

• (RQ4: How much measurement error is introduced by sampling-based feature perfor-
mance analysis compared to tracing?)*

*We did not evaluate the accuracy of our call stack to feature region stack translation to
answer RQ4 due to limited time. Still, we highlight the research question here because it is
a deciding factor whether sampling feature regions is feasible in practice.

4.1 case studies

To answer our research questions, we conduct experiments on real world and synthetic
software systems. We now briefly introduce them.

For the real world software systems we decided on xz, gzip, and bzip2. All of them are
file compression tools implementing a different compression format each. We chose to
limit ourselves to file compression projects because their execution time on a fixed input
file is strongly influenced by the compression level we choose using the configuration
options. Consequently, we expect to see a noteworthy amount of time spent on the features
responsible for the compression level when conducting feature performance analysis. Com-
pression tools are also used in the evaluation of feature performance analysis in current
work [17, 20] Furthermore, the code size and amount of configuration options of these
compression tools is limited such that we were able to investigate issues we encountered
during implementation in a reasonable amount of time. One example for these issues is
VaRA’s feature region analysis, which is still under development and can miss feature
regions.

Originally, we also planned to include the compression tool brotli as a case study. VaRA’s
data-flow analysis to detect feature regions is expensive and in the case of this software
system, we ran out of memory before obtaining a result. We didn’t investigate further and
decided to drop this software project.

27

28 evaluation

By only studying a few real world software projects, we may not observe the fundamental
limitations of tracing and sampling like unavoidable high overhead due to high event
frequencies and inaccurate measurements. We therefore complement the real world software
projects with a synthetic one, which allows us to construct a certain amount of feature
regions with deliberately chosen execution properties like their execution frequencies.
Furthermore, we can form feature regions which purposefully span certain statements and
which VaRA can reliably detect.

The synthetic case study is called SimpleBusyLoop and designed to stress-test the overhead
property of the measurement approaches. It is used for answering RQ1 to 3. We use a single
small feature region, which we place in a loop, meaning it is constantly entered and left.
Inside the feature region we perform busy sleeping by continuously incrementing an integer
until it reaches a certain value. This value is chosen such that the feature region executes only
for a few microseconds. The idea of the busy sleeping is to simulate a heavy computation
which will take longer to complete when inserting measurement code. The details are shown
in Listing 4.1. We expect this case study to stress differences in instrumentation overhead
since even if small, they should become noticeable due to many events in a short amount of
time.

1 long __attribute__((feature_variable("NumIterations"))) NumIterations;

2 long CountTo;

3

4 int main(int argc, char *argv[]) {

5 if (!parseParams(argc, argv)) {

6 return 1;

7 }

8

9 for (long i = 0; i < NumIterations; ++i) {

10 // conceptual entry point of feature region

11 for (long Counter = 0; Counter < CountTo; ++Counter) {

12 // prevent compiler optimization

13 asm volatile(" " : "+g"(i), "+g"(Counter) : :);

14 }

15 // conceptual exit point of feature region

16 }

17 }

Listing 4.1: Main logic of SimpleBusyLoop. NumIterations is declared as a feature variable through
an annotation processed by VaRA’s feature region analysis. The inner loop continously
increments Counter to simulate a heavy computation.

4.2 operationalization

To answer the presented research questions, we designed multiple experiments we ran on
the presented case studies. In this section, we describe these and the efforts we have taken
to eliminate external influences, for example, from other processes running on the system.

4.2 operationalization 29

In all experiments, we measure the execution time of the software system with the
goal of comparing the overhead of the different feature performance analysis approaches.
For this purpose, we wrap the execution of the case studies in a call to Gnu Time. The
measured execution time has limited precision though as Gnu Time reports seconds with
only two decimal places. Even though this means we can’t measure small differences, we
are interested in general trends and perceivable differences. For this intention, the precision
suffices as we don’t see a difference of only 10 ms to be meaningful.

To make the obtained results comparable between experiments, we use the same workload
for the same case study throughout. The reason is that the applied workload or input of a
software system influences the execution time. Compressing a larger file takes more time
than compressing a smaller one. We choose the workload for each case study such that it
produces an execution time of at least 30 seconds to reduce the impact of external influences
or variations in startup time. For the same reasons, we repeat each experiment 10 times and
compute mean and standard deviation for the measurements.

The experiments are performed on a machine with a six-core AMD Ryzen 5 5600X
processor and 16 GB of RAM. We disable turbo boost and lock all processor cores at a
frequency of 2.8GHz. The machine is running a clean Ubuntu server install. We ensure that
no other processes are actively executing to minimize a possible influence on the results.

In the following, we explain the operationalization for each experiment in detail.

4.2.1 Dry Experiments

We conduct three dry experiments, which are designed to answer RQ1. The case studies are
executed dry, meaning we are not performing any measurements. We first execute the case
studies without any instrumentation. The measured execution time is the baseline to later
determine the amount of overhead. Comparing the execution time in the other experiments
to this baseline gives the amount of induced overhead. We also conduct two further dry
experiments to determine the amount of overhead the inactive USDT probes or inserted nop

instructions induce. One of them uses the regular and the other the optimized raw USDT
instrumentation.

4.2.2 Tracing Experiments

For answering RQ2, we perform three experiments to compare the amount of overhead that
tracing with each of the presented implementations induces. In the first experiment, we
trace the case studies using the static instrumentation. We then run two further experiments
in which we instrument the case study with the two USDT instrumentation variants and
attach a bpftrace script to produce the same trace file as the static instrumentation.

4.2.3 Sampling Experiments

In RQ3, we are interested in how much the overhead for conducting feature performance
analysis can be reduced by switching to sampling. We conduct two experiments for which we
compile the case studies with the raw USDT instrumentation. This is necessary to determine

30 evaluation

the addresses of entry and exit points of feature regions for producing a flamegraph. We
sample the call stacks of the case studies using perf and the two sampling frequencies,
97 Hz and 997 Hz. Measuring the execution time of the case studies when sampled with the
two frequencies gives us an idea of how much additional overhead we have to pay for the
higher accuracy.

4.3 results

In this section, we present the results we obtained during our experiments. We summarize
the observations in the context of each research question.

RQ1: Can state-of-the-art profiling tools provide on-demand measurements with insignificant over-
head when inactive?

Table 4.1 presents the results of the experiments conducted for this research question. Our
synthetic case study SimpleBusyLoop shows a 3 % increase in execution time when adding
the regular USDT instrumentation. bzip2 shows a more noticeable increase of 5-6 %. gzip
and xz both show a smaller increase.

Comparing the execution times of regular and raw USDT instrumentation, we don’t
see a clear picture and observe cases where the optimized version is actually slower. The
difference is less than 1 % though so for executing dry, our optimization doesn’t have a
meaningful effect.

Case Study Dry Dry USDT ∆ USDT Dry Raw USDT ∆ Raw USDT

SimpleBusyLoop 59.27 (0.02) 61.12 (0.00) +3.12 % 61.10 (0.00) +3.8 %

bzip2 35.23 (0.03) 37.08 (0.11) +5.25 % 37.16 (0.07) +5.48 %

gzip 43.50 (0.04) 43.75 (0.01) +0.58 % 43.55 (0.02) +0.11 %

xz 48.30 (0.35) 48.50 (0.18) +0.41 % 48.83 (0.25) +1.09 %

Table 4.1: A comparison of the dry (no active measurements) execution times. The shown values
are in seconds and averages from 10 runs including their standard deviation inside the
parentheses. The 0 variance is caused by Gnu Time’s limited measurement precision.

Based on our observations, we can answer RQ1: Using state-of-the-art profiling tools to
provide feature-specific on-demand measurements does come at the cost of about a 5 %
overhead when inactive.

RQ2: How much do state-of-the art tools compromise measurement overhead to offer flexibility?

Table 4.2 shows the concrete results of all experiments we conducted to answer RQ2. Static
tracing serves as our comparison baseline.

We see 42 % more overhead in the case of SimpleBusyLoop. For the real world software
projects the difference in overhead is less than 1 %. These results confirm that our design
intention for SimpleBusyLoop to stress overhead is indeed working.

4.3 results 31

When comparing raw USDT tracing numbers to regular USDT tracing to evaluate whether
our optimization reduces overhead, we see a similar picture to the results in RQ1. The
differences are at most around 1 % and close to the measurement standard deviation. We
therefore conclude that raw USDT tracing causes the same amount of overhead as regular
USDT tracing. Our optimization is therefore ineffective.

Case Study Static Tracing USDT Tracing ∆ USDT Raw USDT Tracing

SimpleBusyLoop 66.52 (0.20) 94.15 (0.33) +41.53 % 94.65 (0.24)

bzip2 37.31 (0.09) 37.42 (0.10) +0.29 % 37.16 (0.24)

gzip 44.19 (0.04) 44.52 (0.01) +0.75 % 43.58 (0.04)

xz 48.85 (0.35) 48.70 (0.19) -0.3 % 48.78 (0.23)

Table 4.2: A comparison of the execution time for the tracing experiments and running dry. The
shown values are seconds and averages from 10 runs including their standard deviation
inside the parentheses. Static tracing is the comparison baseline.

Based on our observations, we can answer RQ2: We are able to construct examples
where state-of-the-art tools can significantly compromise measurement overhead to offer
flexibility while tracing. In practice, this depends on the concrete software system. We saw
an insignificant difference below 1 % for the real world software systems we evaluated.

RQ3: By how much can measurement overhead be reduced when switching from profiling traces to
sampling?

The results are denoted in Table 4.3. The execution times from the static tracing experiment
denote our comparison baseline as we found them to be generally lower than tracing with
eBPF. The basis to compute the relative amount of overhead are the execution times from
the dry experiment.

Starting with our synthetic project SimpleBusyLoop, we see a decrease in measurement
overhead to just 3 % compared to 12 % when tracing. For the real world case studies,
sampling also produces less overhead throughout, the difference is generally smaller though
and largest for gzip with between 1 and 2 %. Increasing the resolution of sampling by using
a higher sampling frequency doesn’t see any change in overhead for SimpleBusyLoop and xz,
while bzip2 and gzip are slightly affected. The difference is less than 1 % of the dry execution
time though. We conclude that increasing the sampling frequency from 97 to 997 Hz does
not see a perceivable difference in overhead.
Based on our observations, we can answer RQ3: We are able to reduce the overhead by
sampling instead of tracing in all cases. The concrete amount differs though and depends
on whether we are dealing with high tracing overhead in the first place. The largest
difference we see was a reduction from 12 to just 3 % measurement overhead.

32 evaluation

Case Study Dry Static Tracing Sampling 97 Hz Sampling 997 Hz

SimpleBusyLoop 59.27 (0.02) 66.52 (0.20) 61.13 (0.00) 61.14 (0.00)

bzip2 35.23 (0.03) 37.31 (0.09) 37.12 (0.02) 37.27 (0.02)

gzip 43.50 (0.04) 44.19 (0.04) 43.58 (0.01) 43.64 (0.02)

xz 48.30 (0.35) 48.85 (0.35) 48.80 (0.31) 48.80 (0.20)

Table 4.3: Execution time during sampling compared to the experiments dry and static tracing. The
shown values are in seconds and averages from 10 runs including their standard deviation
inside the parentheses.

4.4 discussion

In this section, we discuss the implications of our results for applying our presented
measurement approaches in practice. We also conduct two subsequent experiments to
explore interesting findings further.

By answering RQ1, we saw that inactive USDT probes, even in our synthetic case study
designed to stress overhead, only increase the execution time up to 5 %. It is therefore
sensible to compile them in by default to allow on-demand feature performance analysis
and when not worrying about every percent of performance.

In RQ2, we did not observe a noticeable difference when tracing with static instrumenta-
tion vs tracing with USDT probes for the real world case studies. The synthetic software
system hints though that there can indeed be a significant difference. This difference can
be explained by the additional time we require to perform an interrupt and determine the
eBPF program to execute in response.

To investigate the negligible difference observed for the real world case studies further,
we wrote a small bpftrace script to count the number of events for each case study. The
result is shown in Table 4.4. The highest number of events for the real world case studies
is only roughly 42000, which is low when taking into account that execution time is at
least 30 seconds. This number is also by orders of magnitude lower than SimpleBusyLoop.
The code size and amount of features for our real world case studies is small. If we were
tracing feature regions in a larger software system, which offers more functionality and
consequently more features and configuration options, we probably see higher overhead.

Case Study Number of Events

SimpleBusyLoop 20000002

bzip2 115

gzip 13496

xz 42528

Table 4.4: Number of events for all case studies during tracing.

In general, we were surprised to see a roughly 40 % larger execution time when tracing
our constructed case study with bpftrace instead of static instrumentation. We wondered

4.5 threats to validity 33

how much overhead would decrease when using a lower level eBPF frontend like bcc
1. bcc

allows us to write the measurement eBPF code in C. We can remove additional operations
bpftrace performs, for example, checking whether events are dropped and communicating
that to the user. We performed another tracing experiment using regular USDT probes with
the bcc script attached.

The results are shown in Table 4.5 and show a significant reduction in overhead to only a
6.3 % larger execution time than performing static tracing. As expected, the real world case
studies don’t show a meaningful difference because for them bpftrace wasn’t slower than
static tracing to begin with.

Case Study Static Tracing USDT Tracing USDT Tracing with bcc

SimpleBusyLoop 66.52 (0.20) 94.15 (0.33) 70.73 (0.11)

bzip2 37.31 (0.09) 37.42 (0.10) 37.41 (0.05)

gzip 44.19 (0.04) 44.52 (0.01) 44.51 (0.02)

xz 48.85 (0.35) 48.70 (0.19) 48.64 (0.26)

Table 4.5: Tracing with regular USDT instrumentation but using a lower-level eBPF frontend called
bcc instead of bpftrace can reduce measurement overhead.

We can also draw another conclusion from RQ2. If we don’t require on-demand mea-
surements but need to use tracing to not miss events, static instrumentation offers lower
overhead than using dynamic instrumentation and should therefore be the preferred choice
when measuring in an offline environment, for example, during development.

The experiments conducted for RQ3 show that sampling can offer significantly smaller
overhead than tracing when only interested in a statistical summary of feature performance.
It is therefore a possible approach to reduce measurement overhead during feature per-
formance analysis, for example, when deriving performance influence models as done by
Velez et al. [17]. Additionally, when the goal is to influence the system under measurement
as little as possible, for example, while investigating performance issues of applications
running on production servers, sampling is the obvious choice. As presented in this thesis,
it is limited in its applicability though because using our implementation to translate call
stacks can currently miss or even translate wrong feature regions. It definitely requires
future work to become more reliable.

4.5 threats to validity

In this section, we discuss internal and external threats to the results of our experiments.
We begin with internal threats to validity. We did not have any variations in the workloads

used for each case study. The workload chosen influence the time required to compute
the output to given inputs. In addition, they can also change the concrete code paths the
software system takes during execution. Furthermore, we only evaluated the software
domain of compression tools due to limited time. Other software systems may be much
more susceptible to overhead during tracing due to a higher event rate. The case studies

1 https://github.com/iovisor/bcc

https://github.com/iovisor/bcc

34 evaluation

we chose only offer a few features and are also small in terms of code size. We expect
the number of events on more complex software systems with hundreds of features to
be significantly larger. This causes more overhead and can create a significant difference
between eBPF-based and static tracing contrary to our observations in the context of RQ2.

Another threat to internal validity is the quality of VaRA’s feature analysis. Since it
determines the feature regions we instrument, it decides whether we collect meaningful
information for feature performance analysis using our measurement approaches. The
quality of the analysis also controls the number of events during execution, which directly
influences the overhead of the tracing implementations. VaRA’s analysis is still under active
development. As a consequence, feature regions may be missing or may be determined
wrongly. While working on this thesis, we were indeed able to identify such missing regions.
Additionally, the collected trace files for all case studies have changed significantly due to
updates to VaRA since we tested our tracing implementation for the first time. Despite the
unclear level of reliability of VaRA’s analysis, we used a synthetic case study to stress the
fundamental difference in overhead between the measurement approaches. Doing so we
expect our results to generalize to situations with more events, for example, larger software
systems.

Our evaluation also has threats regarding external validity. We ran every experiment in a
controlled environment with only few other processes executing concurrently. For a server
in a production environment, this is typically not the case. Multiple processes are competing
for resources like CPU and storage bandwidth. Since our measurement code uses these
resources as well, the observed overhead may be larger. Additionally, other processes may
be slowed down due to measurements as well.

Furthermore, we did not evaluate the accuracy of the necessary call stack to feature region
stack implementation on real world case-studies due to limited time. The accuracy is an
important property and decides whether sampling feature regions is feasible in practice.
We showed ways to improve our preliminary experiments though and belief that accuracy
can improve to a reliable state.

5
R E L AT E D W O R K

In this chapter, we put our work into the context of related work. We provide examples of
what motivated our work and highlight the concrete contributions we make.

One of the main motivations for our work was a user study conducted by Velez et al.
[19] to identify information needs of developers while debugging the performance of
a configurable software system. They found that even though developers compare the
execution times of a problematic and non-problematic configurations, and analyze call
stacks, they still "struggle for a substantial amount of time looking for relevant information
to identify influencing options, locate option hotspots, and trace the cause-effect chain". To
solve the need for relevant information, Velez et al. [19] provide local performance influence
models at the method level to developers. Performance influence models capture how the
execution time is influenced when changing the values for certain configuration options.
The authors found evidence that providing this information to developers does indeed help
during performance debugging.

To determine performance influence models, two approaches do currently exist, black-
and white-box analysis. An example for a black-box approach is the work from Siegmund
et al. [15]. Their goal is to create a performance influence model for the whole configurable
software system. They measure total execution time using many configurations and learn a
machine learning model using "the influence of individual configuration options and their
interactions from the differences among the measurements". This machine learning model
predicts performance of unseen configurations and hence not all possible configurations
have to be measured. Measuring all possible configurations using brute-force is not feasible
in practice due to the size of the configuration space. Each configuration can potentially
interact with each other. The significant drawback of black-box approaches is that depending
on the concrete software system it can take a lot of executions with different configurations
and therefore long time to build a reliable model.

White-box approaches promise to solve this limitation. Their idea is to analyze source
code and doing so reduce the number of required executions, while increasing the precision
of the obtained performance influence models.

Weber, Apel, and Siegmund [20] trace methods to learn a performance influence model.
They generally use only a few measurements and analyze the code in methods to determine
those potentially showing a lot of execution time variance when using a different configu-
ration. The authors then improve the accuracy of the model predictions by extending the
amount of measurements to selectively measure additional configurations for methods with
potentially significant variance.

Velez et al. [18] also want to reduce the amount of necessary measurements by determining
influence of options on fixed regions in code. They chose methods as their region granularity
and decompose the performance influence model for a whole system into multiple smaller
ones for each region and then combine them later. These smaller performance influence
models can be built in parallel during every execution of the configurable software system.

35

36 related work

Using white-box analysis, the authors only execute configurations that actually influence the
execution time in each region. Interestingly, this work uses call stack sampling to measure
the time spent per method with the reasoning to induce a small amount of overhead.

Velez et al. [17] use a similar idea to the work in our thesis. First, they detect regions
in code that are influenced by configuration options, which have the same idea as feature
regions used throughout our work. Compared the approach from Velez et al. [18], these
regions are not fixed to certain structures in code like methods. They then trace the found
regions to build the performance influence model. This enables reliable pinpointing of
which regions are responsible for observed performance afterwards.

Our work aims to contribute to the current state in the following ways. All white-box
approaches we presented here are concerned with high measurement overhead, which
could perturb the obtained results. We provide ways of minimizing this, for example, by
using sampling. Additionally, we specifically measure the time spent in feature regions
with the goal of pinpointing how and where configuration options influence the observed
performance.

All discussed approaches are built for offline analysis of configurable software system.
We propose a way to enable on-demand feature performance analysis and explain the
performance observed in the concrete configuration of the software system deployed
in production. There is no need to build a performance influence model beforehand.
Furthermore, our approach is developed for high-performance software systems written in
C or C++. All before-mentioned work conducts their experiments on Java systems.

6
C O N C L U D I N G R E M A R K S

In this chapter, we summarize what we learned and which aspects we can improve in future
work.

6.1 conclusion

During this thesis, we implemented an approach for enabling on-demand feature perfor-
mance analysis. We increased the execution time of the compiled binaries by a small amount
of 5 % to add the necessary instrumentation to enable these on-demand measurements.
We also showed that the flexibility of conducting feature performance analysis on-demand
can come at the cost of significantly more overhead compared to static tracing. The reason
is the necessary interrupts to invoke the measurement code, which takes more time than
inserting measurement code directly into the binary, but enables us to disable them in
practice to save operating costs. When on-demand measurements are not required, for
example, because feature performance analysis is conducted in an offline environment, we
therefore recommend static instrumentation to reduce necessary measurement time when
dealing with a complex configurable software system.

During our evaluation, we were able to confirm that using sampling instead of tracing
can significantly reduce the overhead during measurements when interested in a statisti-
cal summary instead of exact event information. The challenge in the context of feature
performance analysis is that we need to enable the measurement of feature regions, which
don’t correspond to functions found in call stacks. We proposed an algorithm to translate
call stacks to feature region stack. It requires future work though to become reliable. We
presented an idea to do so using a static analysis of the compiled instructions in the binary.

Finally, we highlight that our work is not limited to measuring feature regions and can be
applied to measure other regions of interest in the source code as well.

6.2 future work

While working on this thesis, we either discovered or left opportunities for future work,
which we present in this section.

Regarding the tracing implementations we introduced, our results don’t show meaningful
differences between static instrumentation and dynamic instrumentation using eBPF. We
were able to construct a synthetic example that produces significant differences though. In
practice, software systems can be more complex offering more features and consisting of
more lines of code. We therefore wanted to the experiments we presented on larger software
systems but did not have the opportunity due to a limited amount of time.

Furthermore, VaRA’s feature region analysis is still under active development to im-
prove the reliability and precision of the found regions. It can either miss feature regions
completely or their detection is wrong. An example for this, we encountered during our

37

38 concluding remarks

evaluation, is gzip. The chosen compression level has significant influence on execution time.
The corresponding feature does not appear in the trace though. If we were conducting per-
formance debugging and the reason for high observed execution time was a configuration
error, which set the compression level to the highest value, the trace offered is of limited
use to identify this relationship. This is the motivation for conducting feature performance
analysis in the first place though. This example shows that analysis needs more work to
become more precise to ensure we provide helpful and trustworthy information to users.

As we saw in our evaluation, sampling is a promising approach to reduce measurement
overhead to a small amount compared to tracing-based implementations. The reason is that
feature regions are reconstructed after taking the measurements and the measurement code
samples state that is maintained automatically without any additional overhead by the CPU.
We did not have the time to evaluate the accuracy of our idea to translate call stack samples
into feature regions samples and based on these results improve it further. We instead
focused on tracing because it can reliably measure feature regions and doesn’t introduce a
source of measurement error compared to sampling. One idea to improve sampling is to
statically analyze the produced binary to reliably identify the address ranges of instructions
implementing the feature regions.

B I B L I O G R A P H Y

[1] Greg Gagne Abraham Silberschatz Peter Baer Galvin. “Operating System Concepts,
8th Edition.” In: Wiley, 2008. Chap. 1.2.1 Computer-System Operation, 1.5 Operating-
System Operations.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. “Feature-Oriented
Software Product Lines: Concepts and Implementation.” In: Springer, 2013, pp. 6–10,
18, 213–218.

[3] Anindya Banerjee, Sankar Basu, Erik Brunvand, Pinaki Mazumder, Rance Cleaveland,
Gurdip Singh, Margaret Martonosi, and Fernanda Pembleton. “Navigating the Seismic
Shift of Post-Moore Computer Systems Design.” In: IEEE Micro 41.6 (2021), pp. 162–
167.

[4] David Daly. “Creating a Virtuous Cycle in Performance Testing at MongoDB.” In:
Proceedings of the ACM/SPEC International Conference on Performance Engineering. Asso-
ciation for Computing Machinery, 2021, pp. 33–41.

[5] eBPF.io. Introduction to eBPF. visited on November 21st, 2022. url: https://ebpf.io/
what-is-ebpf/#introduction-to-ebpf.

[6] eBPF.io. Why eBPF? visited on December 4th, 2022. url: https://ebpf.io/what-is-
ebpf#why-ebpf.

[7] Brendan Gregg. “BPF Performance Tools.” In: Addison-Wesley Professional, 2019.
Chap. 2.4 Stack Trace Walking.

[8] Brendan Gregg. “BPF Performance Tools.” In: Addison-Wesley Professional, 2019.
Chap. 18.2 Sample at 49 or 99 Hertz.

[9] Brendan Gregg. “BPF Performance Tools.” In: Addison-Wesley Professional, 2019.
Chap. 2.10 USDT.

[10] Brendan Gregg. “BPF Performance Tools.” In: Addison-Wesley Professional, 2019.
Chap. 2.3.1 Why Performance Tools Need BPF, 2.3.3 Writing BPF Programs.

[11] Brendan Gregg. Analyzing a High Rate of Paging. visited on November 21st, 2022. url:
https://brendangregg.com/blog/2021-08-30/high-rate-of-paging.html.

[12] Xue Han and Tingting Yu. “An Empirical Study on Performance Bugs for Highly
Configurable Software Systems.” In: Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. Association for Com-
puting Machinery, 2016.

[13] Linux Man-Pages. Executable and Linking Format. visited on November 21st, 2022. url:
https://man7.org/linux/man-pages/man5/elf.5.html.

[14] Jóakim von Kistowski Samuel Kounev Klaus-Dieter Lange. “Systems Benchmarking -
For Scientists and Engineers.” In: Springer, 2020, pp. 131–133, 138–140.

39

https://ebpf.io/what-is-ebpf/#introduction-to-ebpf
https://ebpf.io/what-is-ebpf/#introduction-to-ebpf
https://ebpf.io/what-is-ebpf#why-ebpf
https://ebpf.io/what-is-ebpf#why-ebpf
https://brendangregg.com/blog/2021-08-30/high-rate-of-paging.html
https://man7.org/linux/man-pages/man5/elf.5.html

40 bibliography

[15] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. “Performance-
Influence Models for Highly Configurable Systems.” In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. Association for Computing Ma-
chinery, 2015, pp. 284–294.

[16] VaRA Documentation. visited on December 1st, 2022. url: https://vara.readthedocs.
io/en/vara-dev/research_tool_docs/vara/vara.html.

[17] Miguel Velez, Pooyan Jamshidi, Florian Sattler, Norbert Siegmund, Sven Apel, and
Christian Kästner. “ConfigCrusher: towards white-box performance analysis for
configurable.” In: Automated Software Engineering 27.3 (2020), pp. 265–300.

[18] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Kästner.
“White-Box Analysis over Machine Learning: Modeling Performance of Configurable
Systems.” In: Proceedings of the 43rd International Conference on Software Engineering.
IEEE Press, 2021, pp. 1072–1084.

[19] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Kästner.
On Debugging the Performance of Configurable Software Systems: Developer Needs and
Tailored Tool Support. 2022.

[20] Max Weber, Sven Apel, and Norbert Siegmund. “White-Box Performance-Influence
Models: A Profiling and Learning Approach.” In: Proceedings of the 43rd International
Conference on Software Engineering. IEEE Press, 2021, pp. 1059–1071.

[21] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. “Security versus Performance
Bugs: A Case Study on Firefox.” In: Proceedings of the 8th Working Conference on Mining
Software Repositories. Association for Computing Machinery, 2011, pp. 93–102.

https://vara.readthedocs.io/en/vara-dev/research_tool_docs/vara/vara.html
https://vara.readthedocs.io/en/vara-dev/research_tool_docs/vara/vara.html

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Overview

	2 Background
	2.1 Features and Configuration Options
	2.2 Feature Regions and Feature Interactions
	2.3 Analyzing Performance through Measurements
	2.3.1 Overhead
	2.3.2 Tracing
	2.3.3 Interrupts
	2.3.4 Sampling

	2.4 State-of-the-art Profiling Tools
	2.4.1 bpftrace

	2.5 VaRA

	3 Implementation
	3.1 Overview
	3.2 Static Tracing
	3.3 Tracing with Dynamic Instrumentation
	3.3.1 Minimizing Overhead and Selective Activation of Probes

	3.4 Sampling
	3.5 Potential Limitations of eBPF-based Tracing

	4 Evaluation
	4.1 Case Studies
	4.2 Operationalization
	4.2.1 Dry Experiments
	4.2.2 Tracing Experiments
	4.2.3 Sampling Experiments

	4.3 Results
	4.4 Discussion
	4.5 Threats to Validity

	5 Related Work
	6 Concluding Remarks
	6.1 Conclusion
	6.2 Future Work

	 Bibliography

