
University of Passau

Department of Informatics and Mathematics

Bachelor’s Thesis

Using Multiplex Centrality Measures to
Identify Core Developers in Open-Source

Software Projects

Author:

Anselm Fehnker

September 21, 2019

Advisors:

Prof. Dr.-Ing. Sven Apel Thomas Bock

Chair of Software Engineering I Chair of Software Engineering I

Angelika Schmid Barbara Eckl-Ganser

Junior Research Group PICCARD Junior Research Group PICCARD

Fehnker, Anselm:
Using Multiplex Centrality Measures to Identify Core Developers in Open-Source
Software Projects
Bachelor’s Thesis, University of Passau, 2019.

Abstract

The identification of core developers in Open-Source Software (OSS) projects is an
important but challenging topic. It is essential for the understanding and the im-
provement of the OSS development process to know which developer is a core devel-
oper. A common approach to identify core developers is to transform OSS projects
into socio-technical developer networks in which central nodes can be identified by
centrality measures. This central nodes give information about which developers
are the most important developers in the OSS project. Because the established
centrality measures are not able to consider dependencies between different types
of interactions in OSS projects, we introduce a new approach to apply multiplex
centrality measures on OSS projects. In particular we apply a multiplex centrality
measurement called Essential nodes Determining based on CP Tensor Decomposition
(EDCPTD).

Therefore OSS projects are modeled as forth-order tensors. The decomposition of
this tensor shall provide information about the importance of developers in OSS
projects. This multiplex centrality measurement has not been applied on OSS
projects yet. To evaluate if this multiplex centrality measurement is useful for the
identification of core developers in OSS projects and to examine if the multiplex ap-
proach has advantages over the established centrality measures, we implement ED-
CPTD centrality for OSS projects and conduct different research questions. These
research questions analyze how EDCPTD centrality behaves compared to the al-
ready established centrality measures degree- and eigenvector centrality and how
EDCPTD centrality is able to identify cor developers on the basis of their behavior.
The results of these research question demonstrate, that EDCPTD centrality is in
the most cases able to identify core developers in OSS projects.

iv

Contents

1 Introduction 1
1.1 Goal of this Thesis . 1
1.2 Structure of the Thesis . 2

2 Background 5
2.1 OSS Projects in General . 5
2.2 The Role of Core Developers in OSS Projects 6

3 Network Modeling and Centrality Measurement for OSS Projects 9
3.1 OSS Projects as Developer Networks 9
3.2 Established Centrality Measures for OSS Projects 12

3.2.1 Degree Centrality . 12
3.2.2 Eigenvector Centrality . 13

3.3 Centrality Measurement in Multiplex Networks 15
3.3.1 EDCPTD Centrality . 15

4 Research Questions 19

5 Methodology 21
5.1 OSS Projects Modeled as Multiplex Networks 21

5.1.1 Forth-Order Tensor Representation 21
5.1.2 Normalized Forth-Order Tensor Representation 23

5.2 Implementation of EDCPTD Centrality 24
5.3 (RQ1) EDCPTD Centrality Compared to Already Established Cen-

trality Measures with the Help of Real OSS Projects 26
5.3.1 Retrieval of OSS Project Data 26
5.3.2 Data for The Comparison of OSS Projects 27
5.3.3 Calculation of the Established Centrality Measures 28
5.3.4 Calculation of EDCPTD Centrality 29
5.3.5 Comparison of EDCPTD Centrality with Established Central-

ity Measures . 30
5.4 (RQ2) Detection of Typical Core Behavior by EDCPTD Centrality

applied on synthetically generated OSS Projects 32
5.4.1 Random Generated Artificial OSS Projects 32
5.4.2 Setting 1: Core Developers are More Active then Peripheral

Developers . 35
5.4.3 Setting 2: Core Developers Communicate More With Other

Core Developers . 36

vi Contents

5.4.4 Setting 3: Peripheral Developers Only Communicate With
Core Developers . 38

5.4.5 Setting 4: Hierarchy Networks 38

6 Evaluation 41
6.1 (RQ1) Comparison of EDCPTD centrality with Established Central-

ity Measures . 41
6.2 (RQ2) Detection of Typical Core Developer Behavior 43

6.2.1 Results of Setting 1 . 43
6.2.2 Results of Setting 2 . 45
6.2.3 Results of Setting 3 . 46
6.2.4 Results of Setting 4 . 47

7 Conclusion 51

8 Future Work 53

A Appendix 55

Bibliography 59

Contents vii

viii Contents

1 Introduction

1.1 Goal of this Thesis

Many popular software projects such as Mozilla Firefox, Google Chromium, An-
droid or Libre Office have been developed as Open-Source Software (OSS) projects.
This kind of software projects have public source codes for everybody to read, use
and work on. Therefore volunteer software developers from all over the world can
contribute to them. In many cases these developers are interested users of the soft-
ware that have different motivations for their work [FG07]. So it is not unusual that
developers with different interests and different skills work together on the same
code. Further it is not unusual and that these developers do not know each other
personally. Because of this piece of setting, problems that are in the clear hierar-
chically structured commercial software development unusual, can occur more likely
in the development of OSS projects. For example developers can have degener-
ated discussions on how things should be implemented, several developers can have
implemented the same functionality due to missing agreement, or developers with
insufficient programming knowledge can contribute to a project.

To ensure that the software development process in OSS projects proceeds in an
ordered way, many interactions between the developers are necessary. New tasks
have to be distributed to appropriate developers, new code contributions have to
be checked if they are flawless and consistent to the other code in the project or
already existing code has to be maintained as it could get outdated. To process
all these interactions in a regulated manner it is essential that the large groups of
volunteer software developers are organized in a hierarchical structure [QHB11]. As
the hierarchy of software developers in OSS projects is not ordered in progressive
stages as in commercial software development, OSS developers are often divided into
different groups of core and the peripheral developers [CS17]. Core developers are
developers who are a permanent part of the project. Beside their code contributions,
they also play an important role in the organization of the project. For example,
they distribute tasks to other developers, check if new code contributions fit to the
project, keep an eye on the maintenance of the source code or help other developers in

2 1. Introduction

the community. Therefore they have many permissions in the OSS project [KCH06].
In contrast, peripheral developers are developers who only temporarily contribute
code to the project. They usually do not play an important role in the organization
of the project and therefore do not get more permissions than necessary [PSC12].
For example, code of peripheral developers is usually checked by core developers
first before it becomes part of the OSS project.

To improve the organization and the maintenance of OSS projects and to reduce
costs it is important to understand which developer is a core developer. Therefore
it would be useful to figure out the importance of the developers in the project with
the help of measurable data. A common approach to rate how important developers
in OSS projects are, is to transform the OSS project data to a developer network
and apply mathematical centrality measures on it. This will return information
about the centrality of the developers in the network and thereby also about the
importance of the developers in the OSS project.

As the for the identification of core developers established centrality measures do
not consider all relationships from OSS projects for their calculations, we will exam-
ine a new approach to identify core developers in OSS projects. Therefore we will
introduce a new way to represent OSS projects as multiplex networks and apply a
multiplex centrality measurement called EDCPTD centrality on them. This mul-
tiplex centrality measurement is based on tensor decomposition and has not been
used to identify core developers in OSS projects yet.

The main research question of this bachelor thesis is, weather this new representation
of OSS projects and the application of the new multiplex centrality measurement
EDCPTD centrality can be used to identify core developers.

1.2 Structure of the Thesis

First in Chapter 2 we will provide background information and explain what OSS
projects are, how OSS development works and how OSS developers can be divided
in a hierarchical core and peripheral structure. Here we will especially point out
what typical patterns of behavior for core developers in OSS projects are.

After this, in Chapter 3, we will declare how OSS projects can be modeled as net-
works and introduce the centrality measures degree- and eigenvector centrality that
are able to identify core developers in these network representations of OSS projects.
Further we will introduce the multiplex centrality measurement EDCPTD centrality
that is currently used to identify central nodes in real-world biological networks but
might also be interesting to identify core developers in OSS projects.

To examine if EDCPTD centrality is able to identify core developers in OSS projects,
we present two research questions in Chapter 4. How this research is arranged is
explained in Chapter 5. Especially the transformation of OSS data to multiplex
networks, the implementation of EDCPTD centrality, as well as the execution of
the research questions are described.

The evaluation of the research questions will be presented in Chapter 6. After this we
will give a conclusion how EDCPTD centrality is able to identify core developers in

1.2. Structure of the Thesis 3

OSS projects in Chapter 7. At the end in Chapter 8, a perspective how the research
questions can be extended to gain even more information about the application of
EDCPTD centrality is given.

4 1. Introduction

2 Background

In this chapter an introduction about OSS projects and how they are organized is
given. Further it is explained which tasks core developers have in OSS projects and
how they distinguish from peripheral developers.

2.1 OSS Projects in General

Open-Source Software (OSS) projects are by definition software projects in which
users have free access to the source code. In these projects is the software develop-
ment usually not centrally planed but a decentralized self-organized process [GM02].

Nevertheless big software projects have been developed this way. These include
prominent projects like the Internet browsers Mozilla Firefox and Google
Chromium, the operating systems Linux and Android, the programming lan-
guages Perl and Python, and much more. For the development, the enhancement
and the maintenance of these large OSS projects, a huge number of developers is
needed. The developers are mostly voluntary users of the developed software. The
motivation for their work can have different reasons. Some want to signal their
quality or improve their future job prospects, others just contribute for fun or for
the reputation to be part of the project [FG07] [Kri06]. This has the consequence
that developers from all over the world who do not know each other personally and
who can have different programming competences work on the same source code.

To avoid misunderstandings and to ensure a regulated flow of work, a lot of orga-
nization and communication is necessary. To simplify this process, OSS projects
usually provide mailing lists or supporting platforms such as GitHub1, GitLab2,
or JIRA3.

A mailing list is a simple tool that helps OSS developers to communicate with each
other. This includes discussions about how things should be implemented or the

1https://github.com/(Accessed at 20.09.2019)
2https://about.gitlab.com/(Accessed at 20.09.2019)
3https://www.atlassian.com/de/software/jira(Accessed at 20.09.2019)

https://github.com/
https://about.gitlab.com/
https://www.atlassian.com/de/software/jira

6 2. Background

assignments of tasks. The typical use of mailing lists is that one developer writes
a message in which he asks for help, suggests improvements, presents new ideas, or
starts a discussion. Other interested developer start replying to this initial mail.
This group of messages is called a mail thread. With the help of threads developers
can coordinate their work and the organization of the project stays documented.
This makes it easy for new developers to retrace decisions. [SLT09]

Similar advantages in the organization and the documentation of the project can be
achieved by the usage of platforms such as GitHub4, GitLab5, or JIRA6. All three
platforms support a concept called issues. Likewise to the start of a mail thread, a
developer can open an issue about problems in the project or possible improvements.
Underneath this issue other developers can write comments to discuss solutions or to
share their opinions. Further these issues provide the opportunity to directly assign
developers that are responsible for its solution. After the issue has been processed
it can be marked as resolved in order to notify developers that this problem or
discussion is no longer active. So again a comprehensible flow of work is ensured.

In addition GitHub and GitLab provide even more advantages in the assistance of
the OSS development process as they do not only simplify the communication and
organization of the project but also have a direct interface to the source code. As the
name already suggests they are based on the version control system GIT7 and can
be used as a code hosting repository. This makes it easier and safer for developers
to contribute to the project. Instead of directly changing the source code of the
project, developers can clone the source code into private forks and apply changes
there. This way the original source code stays unchanged while the developers
work on their private copy. Thereby several developers can make changes on the
same code file, without interfering each other. After a developer has completed his
changes, he can create a pull-request. This pull-request is kind of an application
for the changes to become part of the actual project. Pull-requests are internally
handled as issues, which means that developers can write comments underneath the
pull-request and give feedback or request changes. When the new code fulfills all
demands it can directly be merged to the original project with the help of GIT.
This procedure is especially reasonable for OSS projects as it helps to prevent that
unqualified developer contribute to the project.

2.2 The Role of Core Developers in OSS Projects

In fact, OSS developer collaborate and communicate in many different ways with
each other. This different types of interactions between developers makes OSS de-
velopment a complex process. In order to keep this process regulated and enable a
high quality software development, a hierarchical structure is needed [Abe07]. But
how can volunteer developers be divided in such a hierarchical structure? A com-
mon approach is to classify OSS developers in an onion model [CH03]. This model
was originally invented by Nakakoji et al. ([NYN+02]) with eight different types of
project members. Nowadays the onion model is often reduced to four different types

4https://github.com/(Accessed at 20.09.2019)
5https://about.gitlab.com/(Accessed at 20.09.2019)
6https://www.atlassian.com/de/software/jira(Accessed at 20.09.2019)
7https://git-scm.com/(Accessed at 20.09.2019)

https://github.com/
https://about.gitlab.com/
https://www.atlassian.com/de/software/jira
https://git-scm.com/

2.2. The Role of Core Developers in OSS Projects 7

of project members Figure 2.1 [CH03] [Abe07]. This reduced form is sufficient to
understand the hierarchy for our application.

In the middle of the onion are the core developers. Core developers are the group
of developers that usually contribute most of the code and control the design and
evolution of the project. Around the middle are different layers of peripheral devel-
opers. The first layer around the core developers consist of co-developers. These are
developers that contribute temporary to the project. This can include submitting
bug fixes or modifying already existing code. In the most projects a core developer
must review the contributions of co-developers before they get merged to the OSS
project. The group of co-developers is usually much larger than the group of core
developers. Around the co-developers is the layer of active users. This consist of
users that do not directly contribute to the project but affect the development for
example by reporting bugs. On the very outside of the onion-model are the passive
users, that only use the software developed by the OSS project but do not contribute
to it [CH03] [CS17].

passive users

active users

co

- d
e v e l o p er

core
developers

Figure 2.1: An onion model of OSS develop-
ment. In the middle are the core developers.
Around the middle are several layers of periph-
eral developers.

In this thesis we engage with
the question how core developers
can be identified in this structure.
Therefore a closer look on the pat-
tern of behavior of core develop-
ers in OSS projects is necessary.
In particular a delimitation be-
tween the behavior of core and co-
developers is wanted.

A main difference between core
and co-developers is that core de-
velopers play an important role in
the leadership of the project. They
usually have a detailed knowledge
of the system architecture and of-
ten feel strongly associated to the
part of the project and the code
files that they manage [JAHM17].
All this is reflected in their be-
havior and activity on the OSS
project. Because of their role in
the leadership and organization in
the OSS project, core developers
tend to be more active in the com-
munication than peripheral developers [CS17]. This includes extraordinary much
communication between core developers [JAHM17] and a high integration in the
communication with peripheral developers. So peripheral developers do not of-
ten directly communicate with each other but have a core developer as middlemen
[CS17]. But not only the frequent and significant communication is striking for core
developers. Further most code contributions with new functionalities are made by
core developers while peripheral developers more often only modify code. Some

8 2. Background

studies found that in some projects 80% of the code is written by just a small group
of developers [CH03].

After all, the behavior of core and peripheral developers differs in several ways. Core
developers have a more important role in collaboration and communication than
peripheral developers. This provides evidence to identify core developers in OSS
projects. A method that rates the importance of developers in OSS projects would
suggest which developers are adequate core developers. Therefore OSS projects are
often considered as social networks such that centrality measures can be applied
on them. The idea behind a centrality measurement is to calculate a score that
represents the centrality of a subject in a social network and thereby gain informa-
tion about the importance of the corresponding participant in the real compound.
[PG06].

Because OSS development consists of much more than just programming, all differ-
ent aspects of OSS development have to be considered in the centrality measurement.
As well the code contributions as the activities on a mailing list or on issues have to
be considered in the identification of core developers. So adequate centrality mea-
sures for OSS projects have to be able to handle different types of interactions in
social networks.

3 Network Modeling and
Centrality Measurement for OSS
Projects

In this chapter established approaches to model OSS projects as networks and iden-
tify core developers with one-dimensional centrality measures are introduced. As
this approaches are not able to consider the influence that different types of inter-
actions in the OSS project have on each other, we further introduce a multiplex
centrality measurement called EDCPTD centrality, from which we expect to con-
sider this influence. This multiplex centrality measurement is currently primarily
used for other areas of research, but could be adapted for the use on OSS projects.

3.1 OSS Projects as Developer Networks

Centrality Measurements which are commonly used to identify core developers in
OSS projects are degree centrality and eigenvector centrality. As recent studies by
Joblin et al. ([JAHM17]) have shown, do these one-dimensional centrality measure-
ments reflect the roles of developers in OSS projects accurately. Both centrality
measures are based on socio-technical developer networks. This is a kind of social
networks, in which developers are represented by nodes and interactions between de-
velopers are represented by connections between the corresponding nodes [JAM17].
This developer networks can be represented by a graph (Figure 3.1).

Definition 3.1.1. In a mathematician’s terminology, a graph is a collection of
points and lines connecting some (possibly empty) subset of them. The points of a
graph are most commonly known as graph vertices, but may also be called ”nodes”
or simply ”points”. Similarly, the lines connecting the vertices of a graph are most
commonly known as graph edges, but may also be called ”arcs” or ”lines”. [Weia]

In order to transform the data of OSS projects to a developer network, a breakdown
to the specific interactions between OSS developers is necessary. For every type of

10 3. Network Modeling and Centrality Measurement for OSS Projects

Nodes Edges
Author Issue

Olaf

Thomas

Udo

Björn

Maja

Klara

Figure 3.1: A graph representation of the developer network that models the issue
interactions between developers in an example project. A connection between two
nodes means that the two developers have been active on the same issue. This is an
undirected and weighted graph. In this representation the weights of the edges are
displayed by several connections between two nodes. This graph has been plotted
with coronet

3.1. OSS Projects as Developer Networks 11

interaction a different developer network is build. When a developer is active for
the first time in an OSS project, a node that represents his activity is added to
the developer networks. When two developers first interact with each other in one
type of interaction, an edge between the nodes that represents the two developers
is added to the corresponding developer network. Every time these two developers
interact with each other in this way again, the weight of this edge is increased.

In our application we concentrate on three different types of interactions: First we
consider the code contributions that developers make on the same code files to pro-
gram the project. Further we examine the two ways of communication that where
introduced earlier, the mails developers write via the mailing list to each other and
the issues developers are active on together. So three different developer networks
are build, the cochange network that represents if developers have made changes on
the same code files, the mail network that represents if developers have communi-
cated via the mailing list with each other and the issue network that represents if
developers have been active on the same issues. All of these networks have the same
amount of nodes, the developers that work in the OSS project. The edges between
the developers in these networks represent if and how often the developers have in-
teracted in this type of interaction with each other. For example if two developers
contribute to the same code file, an edge between their corresponding nodes on the
cochange network is added or, if already existing, the weight of the edge between
them in the cochange network is increased. Analogous if a developer writes an email
to another developer the weight of the edge between them in the mail network in-
creases and if two developers are active on the same issue the weight between them
in the issue network increases. So the developer networks only contain connections
with weights that are integers and bigger than zero. Note that the graph represen-
tation of developer networks can either be weighted or unweighted and directed or
undirected.

Definition 3.1.2. A weighted graph is a graph in which each edge is given a nu-
merical weight. A weighted graph is therefore a special type of labeled graph in which
the labels are numbers (which are usually taken to be positive). An unweighted
graph is a graph in which edges have no weights. [Weie]

Definition 3.1.3. A undirected graph is a graph for which the relations between
pairs of vertices are symmetric, so that each edge has no directional character (as
opposed to a directed graph). [Weid]

However, the centrality measurements that are used to identify core developers in
OSS projects, cannot directly be applied on a graph representation of a developer
network like in Figure 3.1. The common representation with nodes and edges of
such a graph might be a good visualization for the human eye to recognize relations
between nodes, but nevertheless it is not adequate for centrality calculations. To
apply centrality measures on this developer networks, the adjacency matrices that
represent the connections in the graphs are needed (Figure 3.2). These adjacency
matrices contain exactly the same information as the graph representation but in a
mathematically more useful way.

12 3. Network Modeling and Centrality Measurement for OSS Projects

A =

0 0 6 17 16 7
0 0 0 6 5 0
6 0 0 0 0 0
17 6 0 0 12 3
16 5 0 12 0 4
7 0 0 3 4 0

Figure 3.2: The corresponding adjacency matrix to the graph in Figure Figure 3.1.
The authors are ordered by alphabet: Björn, Klara, Maja, Olaf, Thomas, Udo

Definition 3.1.4. For a graph with n nodes the adjacency matrix A ∈ Rn×n is
defined as follows:

(A)ij =

{
wij if node i points to node j with weight wij

0 otherwise
(3.1)

If the graph is unweighted wij is 1 if the nodes i and j are connected and 0 if not.
[Lui13]

As the graphs had only positive weighted edges the corresponding adjacency matrices
that represent the software projects have also only nonnegative entries. With this
adjacency matrices it is possible to identify core developers in OSS projects using
degree- and eigenvector centrality.

3.2 Established Centrality Measures for OSS Projects

The one-dimensional centrality measures degree- and eigenvector centrality are con-
firmed able to determine developer roles in OSS projects [JAHM17]. In the following
section, is explained how these two centrality measures work.

3.2.1 Degree Centrality

Degree Centrality is a centrality measurement that is based on the number of adja-
cencies a node has in the network, i.e. the number of connections to other nodes a
node has [TOS10]. For a node i in a given network with adjacency matrix A ∈ Rn×n

the degree centrality can be calculated by summing up all weights of edges that
point to the node.

Definition 3.2.1. For a node i in a network with n nodes the degree centrality is
defined as:

DCi =
n∑
j=1

aji (3.2)

Where aji is a entry in the adjacency matrix A of the network. [TOS10]

The node with the highest degree centrality on an adjacency matrix is the most
important one in the corresponding developer network. Therefore the developers,

3.2. Established Centrality Measures for OSS Projects 13

which nodes are rated high by degree centrality in all three developer networks,
are identified as core developers. As the calculation of degree centrality only adds
entries of the adjacency matrix it is a centrality measurement that is quite easy
to calculate. But in the calculation of this centrality measurement, only direct
connections between two developers are considered. It does not make a difference if
two developers are completely independent of each other or an indirect connection,
for example via a third developer that often interacts with both of them, exists. In
a real OSS project this makes a difference.

Another disadvantage of the centrality measurement is that all edges are considered
with the same importance. This can lead to mistakes in the centrality measurement,
as some edges, for example edges that link different groups of developers should be
considered as more important than other edges. In conclusion degree centrality only
gives a quick overview about who are the most active developers in this interaction.

3.2.2 Eigenvector Centrality

Eigenvector Centrality is in opposite to this a centrality measurement that is able to
consider these indirect relations and the importance of connections in the network
[Bon07]. To understand the functioning of eigenvector centrality, it is necessary to
look a little bit deeper into mathematics, especially in linear algebra. First it is
essential to know what an eigenvector is and when it exists.

Definition 3.2.2. Let F be an endomorphism of the K-vectorspace V . A λ ∈ K is
called eigenvalue of F, if a v ∈ V with v 6= 0 exists, for that

F (v) = λ · v (3.3)

Every vector v ∈ V that is different to the null vector and for that Equation 3.3
holds is called eigenvector of F (to eigenvalue λ). [Fis89]

As our squared adjacency matrix A ∈ Rn×n is an endomorphism of the R-vectorspace
Rn, a vector v ∈ Rn that is different to the null vector and for that a λ ∈ R with

A · v = λ · v (3.4)

exists, is called eigenvector of A to the eigenvalue λ. Note that matrices can have zero
or several eigenvalues and eigenvectors. To calculate the eigenvector centrality of a
developer network, an unique eigenvector of its adjacency matrix is needed. As the
adjacency matrix has only nonnegative entries, the Perron–Frobenius theorem states,
that at least one nonnegative eigenvector exists if the network has no independent
groups.

Theorem 1. Perron–Frobenius Theorem: If all elements (A)ij of an irreducible
matrix A are nonnegative, then λ = minEγ is an eigenvalue of A and all the eigen-
values of A lie on the disk |z| ≤ λ, where, if γ = (γ1, γ2, ..., γn) is a set of nonnegative
numbers (which are not all zero),

Eγ = inf

{
µ : µγ ≥

n∑
j=1

|aij|γ, 1 ≤ i ≤ n

}
(3.5)

[Weib]

14 3. Network Modeling and Centrality Measurement for OSS Projects

Remark 1. As Eγ only contains elements that are nonnegative, at least one positive
eigenvalue of an irreducible, nonnegative matrix A exists.

Definition 3.2.3. A square n × n matrix A = (A)ij is called reducible if the
indices 1, 2, . . . , n can be divided into two disjoint nonempty sets i1, i2, . . . , iµ and
j1, j2, . . . , jν (with µ+ ν = n) such that

aikjl = 0, k = 1, 2 . . . , µ and l = 1, 2, . . . ν (3.6)

A matrix is reducible if and only if it can be placed into block upper-triangular form
by simultaneous row/column permutations. In addition, a matrix is reducible if and
only if its associated directed graph is not strongly connected.

A square matrix that is not reducible is said to be irreducible. [GR]

Definition 3.2.4. A strongly connected graph is a directed graph in which it is
possible to reach any node starting from any other node by traversing edges in the
direction(s) in which they point. The nodes in a strongly connected digraph therefore
must all have indegree of at least 1 [Weic].

Remark 2. A matrix with an associated directed graph is irreducible if and only if
it is possible to reach any node starting from any other node by traversing edges.

Remark 3. Undirected graphs can easily be transformed to directed graphs by replac-
ing every undirected edge with directed edges for each direction. Therefore Remark
2 holds analogously for undirected graphs. Furthermore an undirected graph is irre-
ducible if and only if it is connected.

As usually OSS projects do not consist of completely independent groups of devel-
opers, the graphs of the associated developer networks are (strongly) connected and,
at least, one positive eigenvalue to the adjacency matrix exists. For the calculation
of eigenvector centrality, the largest positive eigenvector of the adjacency matrix is
chosen. As this eigenvector is unique (i.e, it is not possible that two largest posi-
tive eigenvalues exist), eingevector centrality can be calculated with it. The chosen
eigenvector v ∈ Rn has n entries, one entry for every node in the developer network.
As the eigenvector contains compressed information about the adjacency matrix,
and therefore also about the connections in the developer network, the entries give
direct information about the node centrality in the developer network and thereby
about the importance of the developers in the OSS project. The higher the absolute
value of an entry in the eigenvector is, the more important is the corresponding
node in the developer network. Again, developer which nodes have high results in
all three developer networks are identified as core developers.

But both of this methods have the same disadvantage in the representation of the
OSS project. Even through they are able to identify accurate core developers, there
is one thing they do not consider in their calculations: the influence different types
of interactions have on each other. In OSS development the different interactions
of developers are not independent of each other. For example if a developer opens
an issue about a software problem, it will directly influence that another developer
tries to fix it. In the developer network approach, the developer that opens the issue

3.3. Centrality Measurement in Multiplex Networks 15

just gets a new connection in the issue network, the developer that fixes the issue
just gets a connection in the cochange network. A dependence between them is
not apparent. Therefore could it be possible, that a centrality measurement which
includes this dependence in its calculation, is able to identify core developers even
more accurate.

3.3 Centrality Measurement in Multiplex Networks

A way to consider the influence that for example cochange and issue activities have
on each other, is to use multiplex networks and multiplex centrality measures for the
identification of core developers. But this approach has not been applied on OSS
projects yet. In the following section we introduce a multiplex centrality measure-
ment that has been used on similar networks but in a different area.

3.3.1 EDCPTD Centrality

A centrality measurement that is able to consider dependencies between differ-
ent types of interactions is EDCPTD centrality. EDCPTD centrality stands for
Essential nodes Determining based on CP Tensor Decomposition [DWZ17] and is
a quite new centrality measurement, that is currently primarily used for real-world
biological networks. This real world-biological networks have, similar to the devel-
oper network model of OSS projects, biological objects as nodes and interactions
between the different objects as edges between the corresponding nodes. For exam-
ple, in the yeast landscape multilayer network (YLMN) are proteins represented by
nodes and different interactions and correlations of proteins represented by different
edges between the corresponding nodes. On the real-world biological networks, ED-
CPTD centrality is able to consider the influence that different types of interactions
have on each other and therefore can calculate the centrality of the nodes more
accurate than degree- and eigenvector centrality do [DWZ17].

To include the influence between different interactions in its calculation, EDCPTD
centrality is not calculated separately for every type of interaction, such as degree-
and eigenvector centrality, but once already including all types of interactions.
Therefore it does not use separate networks with corresponding adjacency matri-
ces for every type of interaction, but a multiplex network that includes all types
of interactions in one network. Different types of interactions are now represented
by connections on different layers in the multiplex network instead of connections
in different single-layer networks. Because of this, EDCPTD centrality is called a
multiplex centrality measurement.

Definition 3.3.1. A multiplex network is a set of n nodes interacting in m
layers, each reflecting a distinct type (or time or resolution) of interaction linking
the same pair of nodes [MRP+14].

Similar to the mathematical representation of a single-layer network with an adja-
cency matrix, a multiplex network can be represented by a tensor.

16 3. Network Modeling and Centrality Measurement for OSS Projects

Definition 3.3.2. An kth-order tensor in d-dimensional space is a mathematical
object that has k indices and dk components and obeys certain transformation rules.
Each index of a tensor ranges over the number of dimensions of space. However,
the dimension of the space is largely irrelevant in most tensor equations (with the
notable exception of the contracted Kronecker delta). Tensors are generalizations of
scalars (that have no indices), vectors (that have exactly one index), and matrices
(that have exactly two indices) to an arbitrary number of indices. [TR]

In order to apply EDCPTD centrality on them, the real-world biological networks
were represented by a fourth-order tensor M ∈ Rn×m×n×m, where n is the number
of nodes and m is the number of layers. An entry in this tensor M is defined as
follows:

Definition 3.3.3.

(M)iαjβ =

wiαjβ
if node i on layer α is connected to node
j on layer β with weight wiαjβ

0 otherwise
(3.7)

[DWZ17]

This forth-order tensor does not only has the advantage that the influence between
connections on different layers can be retraced, but it also has space for entries that
represent a direct connection between two layers. This could for example make sense
if a node on one layer has direct influence on a node on another layer. To distinguish
between this type of connections and the connections on one layer, we introduce the
terms intra-layer connection and inter-layer connection. This differentiation further
helps to evaluate, if the use of inter-layer connections is reasonable for centrality
measurements.

Remark 4. A connection between developers on the same layer is called intra-
layer connection. Such a connection is represented by a tensor entry (M)iαjβ
with α = β.

Remark 5. A connection between developers on different layers is called inter-
layer connection. Such a connection is represented by a tensor entry (M)iαjβ
with α 6= β.

EDCPTD centrality is based on the idea to get compressed information about the
connections in the tensor by decomposing it. Therefore, as the name already sug-
gests, CP tensor decomposition is used. CP tensor decomposition is the CAN-
DECOMP/PARAFAC or just canonical polyadic kind of tensor decomposition. It
approximates a tensor as a finite sum of vectors concatenated with the vector outer
product.

3.3. Centrality Measurement in Multiplex Networks 17

Definition 3.3.4. CP tensor decomposition is an approximation that factorizes a
tensor into a finite sum of outer products of vectors. For a kth-order-tensor M an
best approximation M̂ of the form

M̂ =
R∑
r=1

λra
(1)
r ◦ a(2)r ◦ · · · ◦ a(n)r ≈M (3.8)

with approximation rank R > 0 and singular values λ1, ..., λR ∈ R of M, λ1 ≥ ... ≥
λR is calculated. [Gos]

Remark 6. Let V be a normed space of real-valued functions that are defined over
[a, b], U a set of real-valued functions that are defined over [a, b] and ‖ · ‖ a norm
over V ∩ U . An element f ∈ V is called best approximated by u ∈ U if

‖f − u‖ ≤ ‖f − v‖ ∀v ∈ U (3.9)

holds. [Joh]

Remark 7. The entry (M̂)i1,i2,...,in of the CP decomposition of a n-order-tensor can
be written as

(M̂)i1,i2,...,in =
R∑
r=1

λr(a
(1)
r)i1 · (a(2)r)i2 · · · · · (a(n)r)in ≈ (M)i1,i2,...,in (3.10)

[Gos]

For the four dimensional tensor M ∈ Rn×m×n×m the result of the CP tensor decom-
position M̂ has the form:

M̂ =
R∑
r=1

λra
(1)
r ◦ a(2)r ◦ a(3)r ◦ a(4)r ≈M (3.11)

[DWZ17]

With the desired approximation rank R, the singular vectors λ1, ..., λR ∈ R of M
and the to the singular values corresponding singular vectors a

(1)
r , a

(3)
r ∈ Rn and

a
(2)
r , a

(4)
r ∈ Rm. For the singular values holds λ1 ≥ ... ≥ λR .

The desired approximation Rank R determines how exact the approximation of the
tensor shall be calculated. The singular values and singular vectors of tensors are
the interesting result of the decomposition, as they contain compromised information
about the structure of the tensor. This information can be used to determine the
centrality of nodes. This concept reminds of the way eigenvector centrality works.
More in detail are eigenvalues a special form of singular values and eigenvectors a
special form of singular vectors. So the basis for EDCPTD centrality is quite similar
to the basis for eigenvector centrality.

As already in eigenvector centrality, only the singular vectors corresponding to the
largest singular value λ1 are considered for the centrality calculation. But different
to the eigenvector centrality, four singular vectors correspond to the largest singular

18 3. Network Modeling and Centrality Measurement for OSS Projects

value. a
(1)
1 and a

(3)
1 with n entries and a

(2)
1 and a

(4)
1 with m entries. These singular

vectors give direct information about the centrality of the nodes and layers [DWZ17].

The vectors a
(1)
1 and a

(3)
1 provide the so called hub and authority scores of the nodes.

Analogous do the vectors a
(2)
1 and a

(4)
1 provide the hub and authority scores of the

layers. The hub scores reveal how often connections on a node or a layer take place.
The authority scores reveal how important these connections are. With this scores
it is possible to calculate the EDCPTD centrality for every node.

Definition 3.3.5. For a forth-order tensor M ∈ Rn×m×n×m with a CP decomposi-

tion M̂ =
R∑
r=1

λra
(1)
r ◦ a(2)r ◦ a(3)r ◦ a(4)r where a

(1)
r , a

(3)
r ∈ Rn and a

(2)
r , a

(4)
r ∈ Rm

for r = 1, 2, . . . R the EDCPTD score for every node i can be calculated as follows:

Hi =
1

2

m∑
l=1

|(a(1)1)i(a
(2)
1)l|+ |(a(3)1)i(a

(4)
1)l| (3.12)

[DWZ17]

This returns a score between zero and one for every node. If the scores from all
nodes are added together, the total value will be one. The higher the score of
one node is, the more important is the node. As all four singular vectors give
different information about the centrality of nodes and layers, they are all necessary
for the calculation of EDCPTD centrality. Therefore the multiplex network has
to be modeled as forth-order tensor, independently of the plausibility of inter-layer
connections in the application.

This multiplex centrality measurement is able to identify central nodes, such as
proteins, cells or genes, in real-world biological networks. As evaluated by Wang et
al. ([DWZ17]) is the result of EDCPTD centrality in this networks more accurate
than the results of degree- and eigenvector centrality. In this thesis we will evaluate
if this multiplex centrality measurement is also applicable to OSS projects and if it
is able to identify core developers accurate.

4 Research Questions

The centrality measures degree- and eigenvector centrality, that are used to identify
core developers in OSS projects, have the disadvantage of not considering depen-
dencies between different types of interactions. Such correlations do exist in OSS
projects, as for example issue and mail activities do in many cases also cause changes
on the code. In this point, the accuracy of the identification of core developers can
still be improved.

Therefore we examine the new approach of applying the multiplex centrality mea-
surement EDCPTD centrality on OSS projects. When EDCPTD centrality is ap-
plied on real-world biological networks, it is able to consider dependencies between
different layers in the network and determine essential nodes more accurate than
degree- and eigenvector centrality can. For the application on OSS projects and the
identification of core developers we expect a similar result. With the use of a mul-
tiplex centrality measurement, the influence that code contributions and mail and
issue activities have on each other shall be considered for the identification of core
developers. The modeling of a OSS project as a multiplex network causes, that indi-
rect influence between connections on different layers can be retraced. Further with
the introduction of inter-layer connections, even direct influence between layers can
be added to the model. For example if a developer reviews someones pull-request,
a direct connection between the reviewer on the issue layer and the committer on
the cochange layer could be added to the multiplex network to represent the influ-
ence the review has on the code. In this way dependencies in OSS projects can be
considered more accurate to identify core developers.

To evaluate this expectation, we will model OSS projects as multiplex networks and
apply EDCPTD centrality on them. To ensure, that the developers with the highest
EDCPTD score a correctly identified core developer, we will examine two research
questions.

(RQ1) Is EDCPTD centrality able to identify core developers that have also been
rated as important by established centrality measures?

20 4. Research Questions

To evaluate this question, we will apply EDCPTD centrality as well as degree- and
eigenvector centrality on real OSS projects and compare the results. To figure out if
EDCPTD centrality is able to identify core developers, a correlation between a high
EDCPTD score of a node and an important role of the corresponding developer in
the project has to be shown. As degree- and eigenvector centrality are established
methods to identify the most important developers in cochange, mail and issue
interactions, their results can be used to validate the results of EDCPTD centrality.
It can be assumed, that a core developer of the OSS project is either one of the
most important developers for code contributions, on the mailing list or in issue
activities or is surpassing important in all three of them. Therefore we will apply
degree- and eigenvector centrality on the three one-dimensional developer networks,
that represent the common code contributions, the communication on the mailing
list and activities on issues. Furhter we will union these three developer networks,
to one network that represents all interactions in the same way, and apply the two
centrality measures on it. If a developer that has been identified as important
by EDCPTD centrality has also been identified as important by one of the other
eight measures, it can be concluded that the developer was identified by EDCPTD
centrality correctly.

(RQ2) Is EDCPTD centrality able to identify core developers that fulfill the typical
behavior of core developers?

To evaluate this question, we will test if EDCPTD centrality is able to detect the
patterns of behavior from core developers that where described inSection 2.2 and
rates the developers that fulfill them as most important. Therefore we will generate
synthetic OSS projects in which theses patterns occur. The developers that fulfill
these patterns are labeled as core developers. When EDCPTD centrality is applied
on these artificial networks, the labeled core developer shall be the developers with
the highest EDCPTD score. If this is the case, it will indicate that EDCPTD
centrality is able to detect and rate these patterns correctly.

If both both research questions confirm the expected result, it can be assumed that
EDCPTD centrality is able to identify core developers in OSS projects.

5 Methodology

In this chapter we will explain how OSS projects can be transformed to multiplex
networks and how EDCPTD centrality can be calculated on them. Further we
state how the transformation and the calculation of EDCPTD centrality can be
implemented in R. In the last two sections the organization and execution of the
two research questions is described.

5.1 OSS Projects Modeled as Multiplex Networks

Before the two research questions from the previous chapter can be examined, OSS
projects have to be represented in an appropriate model such that EDCPTD cen-
trality can be applied on them. Therefore the data from OSS projects has to be
transformed to a multiplex network. Similar to the single-layer network model the
developers that are active in the OSS project can be represented as nodes in the
multiplex network. Also quite similar to the single-layer networks, the different inter-
actions between developers can be represented by edges between the corresponding
nodes. But this time, different interactions are not modeled in different single-layer
networks but on different layers in the multiplex network (Figure 5.1).

5.1.1 Forth-Order Tensor Representation

Further this multiplex network has to be represented as forth-order tensor M ∈
Rn×m×n×m, where n is the number of developers and m is the number of different
interactions. Similar to the single-layer networks that where described in Section 3.1
we consider three different layers to represent the OSS project: layer 1 to represent
the cochange interactions, layer 2 to represent the email interactions and layer 3 to
represent the issue interaction. So in this application m = 3 holds. An entry in this
forth-order tensor representation of an OSS project can be defined as follows:

(M)iαjβ =

{
wiαjβ

if developer i on layer α has interacted
with developer j on layer β wiαjβ times

(5.1)

22 5. Methodology

Cochange

Mail
Issue

Issue

Mail

Cochange

Figure 5.1: Example developer networks. On the left side are three single-layer net-
works for the cochange, mail and issue activities. On the right side is one multiplex
network that represents the same connections. This multiplex network has only
intra-layer connections.

With this forth-order tensor, all information that previously has been modeled in
independent single-layer networks, are now represented in one forth-order tensor.
All information are now compact represented in one multiplex network. This has
the consequence, that that indirect influence between two types of interaction can
be retraced. For example if developer A communicates with developer B on the issue
layer and developer B works on the same code as developer C, an indirect influence
of developer A on developer C can be considered in the centrality measurement.
This indirect influence could be interesting to identify core developers. For example
if developer A suggests a new functionality in an issue and assigns developer B to
it, the implementation of this new functionality from developer B could have the
consequence that developer C updates other methods in the same code file to fit
this new functionality. In this way the suggestion of developer A has influenced the
work of developer C, even though they have not been active in the same type of
interaction.

Even further, the representation of the multiplex network as forth-order tensor offers
the possibility to represent direct influence between developers on different layers.
With the introduction of inter-layer connections, relations between different types
of interactions can be modeled. This can for example be useful in the representation
of OSS projects, if one developer reviews another ones code on GitHub. Now these

5.1. OSS Projects Modeled as Multiplex Networks 23

developers can not only be linked with an intra-layer connection on the issue layer,
but also with an inter-layer connection between the reviewer on the issue layer and
the committer on the cochange layer. So the direct influence between the issue
layer and the cochange layer can become part of the multiplex network. Another
application of inter-layer connections in OSS projects would be if the text of a mail
contains the hash code of a commit. A connection that represents these interaction
between the developer that wrote the mail on the mail layer and the developer
that contributed the commit on the cochange layer can be added to the multiplex
network.

In this way the transformation of an OSS project in a multiplex network with forth-
order tensor representation has the advantage that direct and indirect connections
between different types of developer interactions can be considered for centrality
measurements. So the multiplex network model enables a more accurate representa-
tion of an OSS project than it was possible with the single-layer network approach.
To evaluate if the results of the multiplex centrality measurement EDCPTD are
also more accurate than the results of degree- and eigenvector centrality, this the-
oretically transformation to a multiplex network and the calculation of EDCPTD
centrality has to be implemented.

5.1.2 Normalized Forth-Order Tensor Representation

But before our implementation is explained, we will introduce another approach to
represent the OSS project as forth-order tensor, the normalized forth-order tensor
representation.

In our first EDCPTD centrality calculations, we analyzed an OSS project which
had much more interactions for the cochange layer than for the other two layers.
The developers with the highest EDCPTD centrality have been exactly the same
developers that where the most important developers in the cochange single-layer
network. The developers that where important in the mail and issue single-layer
networks have only rarely been identified as important by EDCPTD centrality. So
the cochange layer dominated the calculation of EDCPTD centrality. But, for ex-
ample a high number of code contributions does not implicate that the mails from
the mailing lists and the issue activities are less important. Even in opposite the
communication could be more important to organize the huge number of code con-
tributions. So the domination of the centrality measurement by the most active
layer could be an unwanted effect.

Therefore we do not only consider the ordinary forth-order representation M of
the multiplex network, that was introduced in Section 5.1.1, in our analysis, but
additionally we introduce a normalized forth-order tensor representation M ′. In
this representation the weights of the connections are adjusted so that the sum of
the weight of all connections on every layer, and between every two layers are the
same. More precisely if all weights of connections on a single layer or all weights of
connections between two layers are summed up together the result will always be
one.

This is achieved by dividing the weight of a connection by the sum of the weights
of all connections on this layer. The same happens for inter-layer connections. The

24 5. Methodology

weight of one inter-layer connection is divided by the sum of all inter-layer connec-
tions between these two layers. In this way the connections and the proportion of
the weights of the connections between two nodes on a layer (or inter-layer) stays
the same but the weightiness of the layers, and thereby also their importance in
the centrality measurement, is equalized. An entry in this normalized fourth-order
tensor M ′ can be calculated by using the ordinary forth-order tensor M as follows:

(M ′)iαjβ =
(M)iαjβ

n∑
k=1

n∑
l=1

(M)kαlβ

(5.2)

EDCPTD centrality can be calculated on this normalized forth-order tensor in the
same way as on the ordinary forth-order tensor. All analyses in this bachelor thesis
will be executed twice, as well with the ordinary forth-order tensor representation as
with the normalized forth-order tensor representation. In this way we will evaluate if
the normalized forth-order tensor is a more reasonable representation for centrality
measurement than the ordinary forth-order tensor.

5.2 Implementation of EDCPTD Centrality

In theory it is possible to apply EDCPTD centrality on OSS projects represented
by a (ordinary or normalized) forth-order tensor. To evaluate the research questions
and to show that EDCPTD centrality is a multiplex centrality measurement that
identifies core developer in OSS projects, the forth-order tensor representation, the
CP decomposition and the EDCPTD centrality calculation have to be implemented.

For the implementation of the forth-order tensor and its CP-decomposition we make
use of the statistical software environment R1 and the package rTensor2. R is a
programming language and environment that is made for statistical computing and
to illustrate graphics. It is a suitable software environment to implement the forth-
order tensor modeling and the EDCPTD centrality as it is can handle and store data
effectively and provides many operators for calculations on arrays and matrices3.

With R it is easy to create a forth-order tensor representation of a given multi-
plex network from an OSS project. The following code creates an array M.arr

∈ Rn×m×n×m with only zeros in it. So an array that already has the needed dimen-
sions but does not represent any connections is saved.

1 M.arr = array(0, dim = c(n, m, n, m))

In the next step, all connections from the multiplex network of the OSS project
that shall be represented by the forth-order tensor have to be entered to this array.
Therefore analogous to Equation 5.1 the entries can be assigned:

1 M.arr[i, alpha , j, beta] = w.i.alpha.j.beta

1https://www.r-project.org/ (Accessed at 19.09.2019)
2https://cran.r-project.org/web/packages/rTensor/index.html (Accessed at 19.09.2019)
3https://www.r-project.org/about.html(Accessed at 19.09.2019)

https://www.r-project.org/
https://cran.r-project.org/web/packages/rTensor/index.html
https://www.r-project.org/about.html

5.2. Implementation of EDCPTD Centrality 25

In this R code snippet is the weight w.i.alpha.j.beta, that represents the con-
nection between developer i on layer α to developer j on layer β in the multiplex
network, assigned to the array entry (M.arr)iαjβ. These weights of the connections
between developers have to be extracted from OSS projects. When all weights are
known, an array that has the same dimensions and equal entries as the forth-order
tensor representation of the multiplex network can be created in R.

For the normalized forth-order tensor representation it is the easiest way to normalize
this array. Analogous to Equation 5.2 the entries can be assigned in R with:

1 norm.M.arr[i, alpha , j, beta] =(M.arr[i, alpha , j, beta] / sum (M.arr[, alpha , ,

beta]))

Now also an array with the same dimensions and equal entries as the normalized
forth-order ternsor representation can be created.

But to calculate EDCPTD centrality, an array and the normal R operators are not
sufficient, as they cannot decompose tensors. Therefore the R package rTensor is
needed. rTensor provides a set of tools for the creation, the manipulation, and
the modeling of tensors with arbitrary number of modes4. Therefore it provides a
class ’Tensor’ that wraps around an array. On objects of this class tensor operations
can be applied. In order to apply these operations on the previous created arrays,
they have to be transformed to objects of the ’Tensor’ class. This can be achieved
in R as follows:

1 M <- rTensor ::as.tensor(M.arr)

2 norm.M <- rTensor ::as.tensor(norm.M.arr)

Now forth-order tensors M ∈ Rn×m×n×m and norm.M ∈ Rn×m×n×m that represent the
multiplex networks of the OSS project have been created in R .

To calculate EDCPTD centrality, CP decomposition has to be applied on this ten-
sors. The package rTensor provides a method that calculates such a decomposition
of tensor objects. The following R code snippet calculates a CP decomposition as
defined in Equation 3.11:

1 M.hat = rTensor ::cp(M, num_components = 1, max_iter = 50, tol = 1e-05)

In this method the parameter num_components indicates how many singular vec-
tors shall approximate one order of the tensor. To calculate EDCPTD centrality,
num_components will be chosen to be 1, as only the singular vectors corresponding
to the largest singular value are needed. The parameter max_iter and tol decide
how exact the approximation of the tensor shall be. Here max_iter indicates how
many iterations to calculate the CP decomposition shall be made as maximum and
the parameter tol indicates the maximum relative error in the Frobenius norm the
approximation of the tensor shall have. The CP decomposition method stops its
iterations, if the relative error is below tol or the maximum of max_iter iterations
is reached. For our calculations we use the default values max_iter = 50 and tol

= 1e-05. Analogous a decomposition for norm.M can be created.

4https://cran.r-project.org/web/packages/rTensor/index.html(Accessed at 19.09.2019)

https://cran.r-project.org/web/packages/rTensor/index.html

26 5. Methodology

The calculated M.hat has all information needed to calculate EDCPTD centrality
in R. The four needed singular vectors are saved by M.hat in a list "U". A possible
function that uses M.hat to calculate the EDCPTD scores for all developers defined
in Equation 3.12 and returns them in an array could look like this:

1
2 calculate.EDCPTD.scores = function(M.hat){

3
4 EDCPTD.scores = array(0, dim = n)

5
6 for(user in 1:n){

7
8 # sum over the layers

9 for(layer in 1:m) {

10
11 EDCPTD.scores[user] = (EDCPTD.scores[user]

12 + abs(M.hat[["U"]][[1]][user]*M.hat[["U"]][[2]][layer])

13 + abs(M.hat[["U"]][[3]][user]*M.hat[["U"]][[4]][layer]))

14
15 }

16
17 }

18
19 # the division in front of the sum

20 result = EDCPTD.scores / 2

21
22 return(result)

23 }

Now it is possible to model the OSS project as a multiplex network with forth-order
tensor representation and calculate EDCPTD centrality in R. In the next step the
research questions can be evaluated.

5.3 (RQ1) EDCPTD Centrality Compared to Al-

ready Established Centrality Measures with

the Help of Real OSS Projects

The first research question (RQ1) shall figure out if the core developers, which
the multiplex centrality measurement EDCPTD centrality identifies, are really im-
portant developers in OSS projects. To examine this we will apply EDCPTD -,
degree - and eigenvector centrality on real OSS projects and compare the results.
As degree- and eigenvector centrality are already established centrality measures for
OSS projects, a comparison of their result with the results of EDCPTD centrality
will give information about the reliability of the results of EDCPTD centrality. To
conduct this comparison, data from real OSS projects are needed.

5.3.1 Retrieval of OSS Project Data

For the comparison of the centrality measurements we extract data from several OSS
projects. In particular for every OSS project that shall be analyzed the commit
history, the mails from the mailing lists and the issue activities are necessary to
model the multiplex network.

5.3. (RQ1) EDCPTD Centrality Compared to Already Established Centrality
Measures with the Help of Real OSS Projects 27

Because the source codes of OSS projects are public, it is easy to get the commit
histories via the public git5 repositories of the projects. Access to the mailing lists
is possible with the public archive Gmane6. Gmane is used as a gateway that
enables to read mails without being part of the mailing lists. The issue data can be
retrieved with the help of the API of the particular platform, such as the GitHub
REST API7 or the JIRA REST API8 . So all needed data can be accessed. But
the data still needs to be processed to a practical and consistent format.

For processing of the data, we use the frame-work codeface9 developed by Siemens
and its extension codeface-extraction10. These tools extract the needed meta
data, such as the sender and the receiver of an email, from the originally retrieved
raw data. Further it makes the meta data from the different sources consistent,
for example if one user from the commit history and one user from the mailing list
have the same username and the same email address they are combined to one user.
The processed meta data now can finally be used by another tool, coronet11, that
is able to build socio-technical developer networks of OSS projects. coronet can
for example build developer networks as described in Chapter 3. For this network
representation it uses, consistent to our implementation in Section 5.2, the statistical
programming language R and the R package igraph12.

5.3.2 Data for The Comparison of OSS Projects

To examine the first research question, we use the data from three different OSS
projects. These are Apache Zeppelin, OpenSSL and OwnCloud. All three
provide data about the cochange, the mail and the issue interactions. The data
we extracted covers several years of software development. During this time the
projects grew and advanced. So do all three projects have during this time an
increasing number of developers. Thereby also the number of interactions between
developers increases. Interactions that took place in different stages of the project,
might have a different importance. In order to analyze projects with a consistent
structure, we split the project data in 6-month time ranges.

The OSS project Apache Zeppelin13 is a web-based notebook that enables in-
teractive data analytics. For our research we analyze the developer activities from
the time between 20.03.2015 and 19.03.2017. The data about the project in this
time is divided in four time ranges, each covering 6 months. The number of active
developers in the project increased in this time. In the first range 55 developers
participated in the project. In the last time range 169 developer have been active.

The second OSS project, OpenSSL14, is a toolkit for the Transport Layer Security
(TLS) and Secure Sockets Layer (SSL) protocols. For the analysis the developer

5https://git-scm.com/(Accessed at 20.09.2019)
6http://home.gmane.org/(Accessed at 20.09.2019)
7https://developer.github.com/v3/(Accessed at 20.09.2019)
8https://developer.atlassian.com/server/jira/platform/rest-apis/(Accessed at 20.09.2019)
9https://github.com/siemens/codeface(Accessed at 20.09.2019)

10https://github.com/se-passau/codeface-extraction(Accessed at 20.09.2019)
11https://github.com/se-passau/coronet(Accessed at 20.09.2019)
12https://igraph.org/r/(Accessed at 20.09.2019)
13https://zeppelin.apache.org/(Accessed at 20.09.2019)
14https://www.openssl.org/(Accessed at 20.09.2019)

https://git-scm.com/
http://home.gmane.org/
https://developer.github.com/v3/
https://developer.atlassian.com/server/jira/platform/rest-apis/
https://github.com/siemens/codeface
https://github.com/se-passau/codeface-extraction
https://github.com/se-passau/coronet
https://igraph.org/r/
https://zeppelin.apache.org/
https://www.openssl.org/

28 5. Methodology

activities between 14.03.2002 and 14.03.2019 are examined. This data is split into
34 time ranges. Again the number of active developers in this project increases by
time. In the first range only 11 developers have been active. In the last range 322
active developers contributed to the project.

The third and last project we will analyze is the file hosting service Owncloud15.
For this analysis we consider the developer activities between 25.08.2012 and 09.03.2019.
The data is split into 13 time ranges, again each with the length of 6 month. Also in
this OSS project the number of active developers increases by time. In the first time
range 61 developers have been active. In the last time range this number raised to
258 developers.

5.3.3 Calculation of the Established Centrality Measures

The data of these projects is processed as described in Section 5.3.1 and in this
way imported to coronet. With the help of coronet this data can be split
into the 6-month time ranges and developer networks for every time range can
be constructed. For every time range one single-layer network for the cochange
activities, one single-layer network for the mail activities and one single-layer network
for the issue activities is constructed. Additionally, we analyze one single-layer union
network, obtained by uniting the cochange, mail and issue network. This shall give
a comparison if it has a reasonable advantage to model the independent single-layer
networks to a more complex multiplex network instead of uniting them to an overall
single-layer network. All networks that we build are weighted and undirected.

For all four of these networks, degree- and eigenvector centrality can be calculated.
As coronet generates the single-layer networks as igraph objects, the degree- and
eigenvector centrality methods of this R package can easily be applied on them. For
both centrality measures igraph provides a method that calculates the centrality
score for every node of an igraph object:

1 degree.centralities = igraph :: degree(developer.network)

2 eigenvector.centrality = igraph ::eigen_centrality(author.networks [[x]], directed =

TRUE)

In this way, centrality scores of the already established centrality measures can
be obtained from OSS projects. This centrality scores shall be compared to the
centrality scores determined by EDCPTD centrality.

15https://owncloud.org/(Accessed at 20.09.2019)

https://owncloud.org/

5.3. (RQ1) EDCPTD Centrality Compared to Already Established Centrality
Measures with the Help of Real OSS Projects 29

5.3.4 Calculation of EDCPTD Centrality

For the comparison of the different centrality measures, the EDCPTD centrality
scores for the developers are also needed. Therefore the data of the three OSS
projects have to be transformed to forth-order tensors. With the help of coronet
the adjacency matrices of the previous in Section 5.3.3 created single-layer networks
can be obtained. Given the adjacency matrices A1 of the cochange network, A2 of
the mail network and A3 of the issue network, it is easy to transfer the entries in
the a forth-order tensor M ∈ Rn×m×n×m as follows:

(M)i1j1 = (A1)ij (5.3)

(M)i2j2 = (A2)ij (5.4)

(M)i3j3 = (A3)ij (5.5)

Unfortunately it is not possible yet, to obtain information about inter-layer connec-
tions with the retrieval of data as in Section 5.3.1. Therefore the modeling of the
OSS project is limited to multiplex networks with only intra-layer connections. So
the forth-order tensor that is built shall have exactly the same entries as the three
adjacency matrices of the cochange, the mail and the issue singe-layer networks.
In the second research question we also examine the influence that the usage of
inter-layer connection has on the centrality measurement.

With coronet the adjacency matrices can not only be obtained in the common
matrix form but also as sparse matrix16. This is a memory efficient representation
that only saves the entries in the matrix that are unequal zero. This corresponds
exactly to the entries that have to be transferred to the forth-order tensor. By using
the sparse matrices, run-time expensive iterations about the whole matrices are not
necessary. But the structure of these sparse matrices is a bit more complicated than
the structure of common array-like matrices. Instead of a two-dimensional array, a
sparse matrix saves three lists of the same size. A list ’x’ with the weights of the
entries in the matrix that are unequal zero, a list ’i’ with the first indices of that
entries and a list ’j’ with the second indices of that entries. For example the first
entry in list x represents the weight of the entry in the matrix with the coordinates
of the first entries in list i and list j. Additionally to this structure the indices
that are saved in the lists i and j start at zero, while the indices of an array start
at one. Therefore the indices in the lists i and j of the sparse matrix have to be
incremented by one before the entries can be transferred to the array. If this is
taken in account the three given sparse adjacency matrices adjacency.cochange,
adjacency.mail and adjacency.issue can be transferred into a four-dimensional
array with following function:

16https://www.rdocumentation.org/packages/Matrix/versions/1.2-17/topics/
sparseMatrix(Accessed at 20.09.2019)

https://www.rdocumentation.org/packages/Matrix/versions/1.2-17/topics/sparseMatrix
https://www.rdocumentation.org/packages/Matrix/versions/1.2-17/topics/sparseMatrix

30 5. Methodology

1 create.multiplex.array = function(adjacency.cochange , adjacency.mail , adjacency.

issue){

2
3 # create array

4 M.arr = array(0, dim = c(n, m, n, m))

5
6 # transfer the entries from the cochange adjacency matrix

7 for(entry in 1:length(adjacency.cochange)){

8 i = adjacency.cochange@i[entry] + 1

9 j = adjacency.cochange@j[entry] + 1

10 M.arr[i, 1, j, 1] = adjacency.cochange@x[entry]

11 }

12
13 # transfer the entries from the mail adjacency matrix

14 for(entry in 1:length(adjacency.mail)){

15 i = adjacency.mail@i[entry] + 1

16 j = adjacency.mail@j[entry] + 1

17 M.arr[i, 2, j, 2] = adjacency.mail@x[entry]

18 }

19
20 # transfer the entries from the issue adjacency matrix

21 for(entry in length(adjacency.issue)){

22 i = adjacency.issue@i[entry] + 1

23 j = adjacency.issue@j[entry] + 1

24 M.arr[i, 3, j, 3] = adjacency.issue@x[entry]

25 }

26
27 return(M.arr)

28 }

Now a four-dimensional array that has equal dimensions and the same entries as
the ordinary forth-order tensor representation of the multiplex network has been
created. With the procedure of Section 5.2 also a normalized array can be created,
the two arrays can be transformed to an object of the S4 tensor class and EDCPTD
centrality can be calculated on both of them.

Now all values that are necessary for the comparison of EDCPTD centrality with
already established centrality measurements are given. So the first research question
can be evaluated.

5.3.5 Comparison of EDCPTD Centrality with Established
Centrality Measures

With the procedures from Section 5.3.3 and Section 5.3.4 the centrality scores of
degree- , eigenvector- and EDCPTD can be calculated for every developer in the
OSS projects. For degree- and eigenvector centrality, separate scores of the cochange,
mail and issue single-layer networks and for the union of these single-layer networks
are returned. In contrast to that only one centrality score for every developer is
given by EDCPTD centrality. In order to see if the EDCPTD centrality is able to
identify core developers in OSS projects correctly, the relationship between a high
EDCPTD centrality score of a node and an important role in the OSS project of the
corresponding developer has to be shown.

Therefore we compare the result of the EDCPTD centrality measurements with the
results of the, already for the identification of core developers established, centrality
measures degree- and eigenvector centrality. For this comparison we do not consider
the exact order of the results but the set of the most important 20% of develop-
ers detected by the different centrality measures. In detail we will evaluate how

5.3. (RQ1) EDCPTD Centrality Compared to Already Established Centrality
Measures with the Help of Real OSS Projects 31

many developers that are rated to be part of the most important 20% with ED-
CPTD centrality are also rated to be part of the most important 20% by the other
measurements. This shall show if the EDCPTD centrality scores are meaningful to
evaluate the importance of developers in OSS projects and thereby can be used to
identify core developers.

On the one hand the most important 20% nodes of the EDCPTD centrality mea-
surement can be directly compared to the most important 20% nodes of the other
centrality measurements. This will return eight results, one result for the EDCPTD
centrality compared with degree- and eigenvector centrality, applied on each of the
four single-layer networks, the cochange, the mail and the issue network as well with
their union. These results give information how similar the results from EDCPTD
centrality are to the results from the already established single-layer centrality mea-
sures. If the results from EDCPTD centrality have a constantly high accordance to
the results of degree- and eigenvector- centrality applied on one of the three single-
layer networks cochange, mail or issue, but not to the two others, it indicates that
this layer dominates the centrality calculation of EDCPTD centrality. For example
if EDCPTD centrality always determines the same top 20% of developers as degree-
and eigenvector centrality applied on the mail network do, but only a few develop-
ers that are among the top 20% of the cochange and issue networks, it will signify
that EDCPTD centrality rates the connections on the mail network as much more
important than the connections on the other layers.

Because a core developer usually is important in all types of interaction, all layers
shall be weighted with approximately the same importance for the identification of
core developers in OSS projects. Further if the results of EDCPTD centrality have
a constantly high accordance to the results of degree- and eigenvector centrality of
the union network but not to the other single-layer networks, it will indicate that
the more complex modeling in the multiplex network considers no extra information
compared to the simple union of single-layer networks. Therefore we do not only
expect a high accordance in a few of the eight comparisons, but more a high but
steady magnitude in all of the results. This will indicate that all types of interaction
are considered by EDCPTD centrality.

On the other hand the most important 20% nodes of the EDCPTD centrality mea-
surement are compared to the union of the most important 20% nodes of the other
eight centrality measures. More certainly it is compared if a node that is part of the
top 20% in the EDCPTD centrality measurement is also part of the top 20% in any
of the other measurements. This comparison shall examine that developers that are
considered as important by EDCPTD centrality are rightly considered as important.
If a developer is a core developer in the OSS project he has to stand out in one of the
ways of interaction, and therefore be detected in the centrality measurement on the
corresponding single-layer network, or he has to be surpassing active in all ways of
interactions, and therefore be detected by the centrality measurements on the union
of the single-layer networks. Therefore we expect a high accordance in this overall
comparison.

These comparisons are executed on all time ranges of the three OSS projects Apache
Zeppelin, OpenSSL and OwnCloud. So in total 51 6-month time ranges of
OSS projects are considered. Further these comparisons are executed twice, once

32 5. Methodology

for EDCPTD centrality applied on the ordinary forth-order tensor and once for
EDCPTD centrality applied on the normalized forth-order tensor.

This comparison of the results from different centrality measures applied on real
OSS projects helps to examine the first research question. For the second research
question we try a different approach. This time synthetically generated OSS projects
are analyzed.

5.4 (RQ2) Detection of Typical Core Behavior by

EDCPTD Centrality applied on synthetically

generated OSS Projects

A centrality measurement on an OSS project is not automatically able to identify
suitable core developers. Core developers are not just the most important developers
in the project, they also have a special behavior as described in Section 2.2. To
evaluate our second research question (RQ2) and test if EDCPTD centrality is able
to detect these behaviors and rates them as important, we will construct several
synthetic OSS projects that simulate typical core-peripheral interactions. In several
settings, we will construct different types of core behavior in OSS projects.

5.4.1 Random Generated Artificial OSS Projects

Each setting consists of an OSS project with 25 developers and three different ways
of interactions, the cochange, the mail and the issue activities. Every OSS project
is modeled as a multiplex network with 25 nodes and three layers. From the 25
developers, five are labeled as core developers and twenty are labeled as peripheral
developers. Every developer is active in every kind of interaction. The multiplex
networks are represented by a forth-order tensors, such that EDCPTD centrality
can be applied on them. Again, the forth-order tensors will also be normalized, even
if for all layers the same estimated number of connections is created. In this way
the influence that the normalization has on the result, if all layers already have the
same importance can be examined.

To distinguish the constructed settings, we define in which frequency and with which
group of developers a developer is allowed to interact. For example, in one setting
peripheral developers are only allowed to interact with core developers, while core
developers are allowed to interact with everyone. With which exact developer of
this group the developer is connected is decided randomly. Also the exact number
of connections a developer has is decided randomly. We only define the estimated
number of connections that a developer shall have. The exact number is then gen-
erated with a normal distribution around this estimated number with a variance of
three. So the number of connections a developer has can be this estimated num-
ber minus or plus three. The further away the number of connections is from the
estimated number, the less probable is its occurrence in the constructed project.

The random generation of the OSS projects has the advantage that all possible cases
can occur. To receive a representative result, each synthetic OSS project is generated
10.000 times. For each project it is measured, how many of the five labeled core

5.4. (RQ2) Detection of Typical Core Behavior by EDCPTD Centrality applied on
synthetically generated OSS Projects 33

developers are among the most important five developers identified by EDCPTD
centrality. In this way a representative percentage how accurate EDCPTD centrality
identifies core developers correctly can be calculated.

Each setting is executed for several cases with different estimated numbers of con-
nections. Further each case is executed three times, once with only intra-layer con-
nections, once with inter-layer connections only for the core developer between every
layers and once with inter-layer connections between every layer for all developers.
Thereby the difference that the introduction of inter-layer connections makes can
be measured. This is especially interesting, as inter-layer connections have not been
used to model OSS projects before.

The generation of these synthetic OSS projects is implemented in R. The OSS
projects are directly modeled in forth-order tensors as defined in Equation 5.1. In
these tensors, the nodes 1-5 are labeled as core developers, and the nodes 6-25 are
labeled as peripheral developers. To calculate the amount of connections a developer
shall have, a method that returns an integer that is normal distributed around
the estimated.value with a variance of three is needed. Further as no negative
connections are allowed in the forth-order-tensor this method shall guarantee that
no results beyond the variance are returned. The R method we use is:

1 n.random = function(estimated.value){

2
3 standard.deviation = sqrt(3)

4
5 result = round(rnorm(1, estimated.value , standard.deviation))

6
7 if(result < estimated.value -3){

8 result = floor(estimated.value -3)

9 } else if (result > estimated.value + 3){

10 result = ceiling(estimated.value + 3)

11 }

12
13 return(result)

14 }

To avoid a negative number of connections in the constructed settings, the esti-

mated.value has to be at least three.

Now random generated synthetic OSS projects can be constructed. The first projects
that we construct are projects in which every developer behaves the same. Therefore
also the probability that a developer is among the five developers with the highest
EDCPTD score should be the same for every developer. With this networks we
want to test if 10.000 executions of the generation are enough for a precise result.

The following code generates two synthetic OSS projects with 25 developers. Both
generated multiplex networks are weighted and undirected. The first network has
only intra-layer connections. For every developer is a estimated number of 15 con-
nections on every layer generated. The network is weighted and undirected. The
second network has intra- and inter-layer connections. For every developer are half
of the estimated number of connections generated as intra-layer connections and half
of the estimated number of connections as inter-layer connections. In this way both
networks have approximately the same number of connections in total.

34 5. Methodology

1
2 # construct tensor only with intra -layer connections

3 create.equal.tensor = function (){

4 array <- array(0, dim = c(25, 3, 25, 3))

5
6 for(i in 1:25){

7 for (l in 1:3) {

8 for (x in 1:n.random(15)) {

9 j = sample ((1:25)[-i], 1)

10 array[i,l,j,l] = array[i,l,j,l] +1

11 array[j,l,i,l] = array[i,l,j,l]

12 }

13 }

14 }

15
16 tensor <- rTensor ::as.tensor(array)

17 return(tensor)

18 }

1 # construct tensor with intra - and inter -layer connections

2 create.equal.inter.tensor = function (){

3 array <- array(0, dim = c(25, 3, 25, 3))

4
5 for(i in 1:25){

6 for (l in 1:3) {

7
8 # intra -layer connections

9 for (x in 1:n.random(15/2)) {

10 j = sample ((1:25)[-i], 1)

11 array[i,l,j,l] = array[i,l,j,l] +1

12 array[j,l,i,l] = array[i,l,j,l]

13 }

14
15 # inter -layer connections

16 l2 = l %% 3 +1

17 for (x in 1:n.random(15/2)) {

18 j = sample ((1:25)[-i], 1)

19 array[i,l,j,l2] = array[i,l,j,l2] +1

20 array[j,l2,i,l] = array[i,l,j,l2]

21 }

22 }

23 }

24
25 tensor <- rTensor ::as.tensor(array)

26 return(tensor)

27 }

As all developers behave in the same way, each developer should be considered to be
among the five most important nodes with the same possibility. As the number of
core developers is a fifth of the number of all developers, the estimated result should
be 20%.

When this synthetic OSS projects are generated 10.000 times and EDCPTD central-
ity is applied on them, following results are obtained: EDCPTD centrality applied
on the ordinary forth-order tensors identifies the labeled core developers in 20,0166%
of the executions in the network without inter-layer connections and in 19,9756 % in
the network with inter-layer connections correctly. For the EDCPTD centrality on
the normalized tensor, the labeled core developers are identified in 20,0508% of the
executions in the network without inter-layer connections and in 19,9406% in the
network with inter-layer connections. So in all cases the estimated value is obtained
quite exactly. This confirms that 10.000 is a sufficient number of repetitions.

5.4. (RQ2) Detection of Typical Core Behavior by EDCPTD Centrality applied on
synthetically generated OSS Projects 35

To examine the second research question, we construct networks in four settings:

• Setting 1: core developers have more connections than peripheral developers

• Setting 2: core developers have more connections to other core developers than
to peripheral developers

• Setting 3: peripheral developers have only connections to core developers

• Setting 4: peripheral developers are divided in separate clusters. Only core
developers are allowed to have connections to different clusters.

5.4.2 Setting 1: Core Developers are More Active then Pe-
ripheral Developers

In the first constructed setting, we simulate the behavior that core developers are
more active than peripheral developers. This includes both, communication and
code contribution, so this activeness holds for all three layers. In the generated
network has each labeled core developer more connections than the labeled periph-
eral developers. Therefore we define estimated numbers of connections for core and
peripheral developers. For each developer this estimated number of connections are
created on every layer. These connections are undirected, so for every entry in the
tensor, also a second entry that represents the connection in the other direction is
added. The following code constructs a synthetic OSS project which has approxi-
mately 20 connections on every layer for core developers, and only approximately
15 connections on every layer for peripheral developers:

1 create.more.core.connections.tensor = function (){

2 array <- array(0, dim = c(25, 3, 25, 3))

3
4 for (l in 1:3) {

5
6 # core connections

7 for(i in 1:5){

8 for (x in 1:n.random(20)) {

9 j = sample ((1:25)[-i], 1)

10 array[i,l,j,l] = array[i,l,j,l] +1

11 array[j,l,i,l] = array[i,l,j,l]

12 }

13 }

14
15 # peripheral connections

16 for(i in 6:25){

17 for (x in 1:n.random(15)) {

18 j = sample ((1:25)[-i], 1)

19 array[i,l,j,l] = array[i,l,j,l] +1

20 array[j,l,i,l] = array[i,l,j,l]

21 }

22 }

23 }

24
25 tensor <- rTensor ::as.tensor(array)

26 return(tensor)

27 }

I will execute this setting several times with different estimated number of connec-
tions. For example will be tested, if EDCPTD centrality is still able to identify a

36 5. Methodology

Nodes Edges

Core

Core

Core

Perihperal

Perihperal

Perihperal
Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Perihperal
Perihperal

Perihperal

Perihperal

Cochange

Mail

Issue

Developer

Figure 5.2: An example multiplex network for setting 1 with 15 developers and
without inter-layer connections. In this OSS project are core developers more active
than peripheral developers.

high rate of core developers, if the estimated number of connections for core devel-
opers is only a little higher than the estimated number of connections for peripheral
developers.

5.4.3 Setting 2: Core Developers Communicate More With
Other Core Developers

In the second setting, we simulate the behavior that core developers tend to com-
municate more with other core developers. Therefore we generate networks in which
core developers have more connections to other core developers than to peripheral
developers. For labeled core developers are in this networks only connections to
other core developers generated. For peripheral developers are still connections to
anyone generated. In this way connections between core and peripheral develop-
ers still occur, but kind of a core cluster is constructed. The code, that we use to
construct a network in which core developers have approximately 15 connections to
other core developers on every layer, while peripheral developers have approximately
15 connections to any developer is the following:

1 create.more.among.core.tensor = function (){

2 array <- array(0, dim = c(25, 3, 25, 3))

3
4 for (l in 1:3) {

5
6 # core connections

7 for(i in 1:5){

8 for (x in 1:n.random(15)) {

5.4. (RQ2) Detection of Typical Core Behavior by EDCPTD Centrality applied on
synthetically generated OSS Projects 37

9 j = sample ((1:5)[-i], 1)

10 array[i,l,j,l] = array[i,l,j,l] +1

11 array[j,l,i,l] = array[i,l,j,l]

12 }

13 }

14
15 # peripheral connections

16 for(i in 6:25){

17 for (x in 1:n.random(15)) {

18 j = sample ((1:25)[-i], 1)

19 array[i,l,j,l] = array[i,l,j,l] +1

20 array[j,l,i,l] = array[i,l,j,l]

21 }

22 }

23
24 }

25
26 tensor <- rTensor ::as.tensor(array)

27 return(tensor)

28 }

Nodes Edges

Core

Core

Core

Perihperal

Perihperal

Perihperal
Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Perihperal
Perihperal

Perihperal

Perihperal

Cochange

Mail

Issue

Developer

Figure 5.3: An example multiplex network for setting 2 with 15 developers and
without inter-layer connections. In this OSS project have core developers more
interactions with other core developers than with peripheral developers.

Again we will execute this setting with different estimated numbers of connections
for core and peripheral developers. This time it could for example be interesting, if
EDCPTD centrality is able to identify core developers correctly, even if they have
less connections than peripheral developers.

38 5. Methodology

5.4.4 Setting 3: Peripheral Developers Only Communicate
With Core Developers

In the third setting, we simulate the behavior that peripheral developers not often
interact with each other directly but with a core developer as middleman. Therefore
we construct networks in which core developers have connections to any other devel-
opers and peripheral developers have only connections to core developers. The code,
that we use to construct a network in which core developers have approximately 15
connections to any other developer on every layer, while peripheral developers have
approximately 15 connections only to core developers is the following:

1 create.middleman.core.tensor = function (){

2 array <- array(0, dim = c(25, 3, 25, 3))

3
4 for (l in 1:3) {

5
6 # core connections

7 for(i in 1:5){

8 for (x in 1:n.random(15)) {

9 j = sample ((1:5)[-i], 1)

10 array[i,l,j,l] = array[i,l,j,l] +1

11 array[j,l,i,l] = array[i,l,j,l]

12 }

13 }

14
15 # peripheral connections

16 for(i in 6:25){

17 for (x in 1:n.random(15)) {

18 j = sample ((1:5)[-i], 1)

19 array[i,l,j,l] = array[i,l,j,l] +1

20 array[j,l,i,l] = array[i,l,j,l]

21 }

22 }

23
24 }

25
26 tensor <- rTensor ::as.tensor(array)

27 return(tensor)

28 }

Also in this setting, we will execute several cases with different estimated numbers
of connections for core and peripheral developers. Again it will be interesting if
EDCPTD centrality is also able to identify a high percentage of core developers
correct if the peripheral developers have more connections than the core developers.

5.4.5 Setting 4: Hierarchy Networks

The fourth constructed setting is a little bit different. In opposite to the previous
settings it does not simulate the typical core-peripheral relationships that where
described in Section 2.2, but a hierarchy that was discovered in some OSS projects.
This hierarchy consists of several nested clusters of peripheral developers that only
interact among each other. Only core developers communicate with all separate
clusters. In this way core developers have a more important role than peripheral
developers.

The following code simulates such a hierarchy structure. For every peripheral devel-
oper are approximately 10 connections on every layer inside his cluster generated.
For every core developer are approximately five connections on every layer to other

5.4. (RQ2) Detection of Typical Core Behavior by EDCPTD Centrality applied on
synthetically generated OSS Projects 39

Nodes Edges

Core

Core

Core

Perihperal

Perihperal

Perihperal
Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Perihperal
Perihperal

Perihperal

Perihperal

Cochange

Mail

Issue

Developer

Figure 5.4: An example multiplex network for setting 3 with 15 developers and
without inter-layer connections. In this OSS project interact peripheral developers
only with core developers.

core developers and additionally five connections to a developers in every cluster
generated. In this way core developers have also more connections than peripheral
developers.

1 create.hierarchy.tensor = function (){

2 array <- array(0, dim = c(25, 3, 25, 3))

3
4 for (l in 1:3) {

5
6 # core connections

7 for(i in 1:5){

8
9 # core group connections

10 for (x in 1:n.random(5)) {

11 j = sample ((1:5)[-i], 1)

12 array[i,l,j,l] = array[i,l,j,l] +1

13 array[j,l,i,l] = array[i,l,j,l]

14 }

15
16 # core to other connections

17 for (group in 2:5) {

18 for (x in 1:n.random(5)) {

19 j = sample ((1 + (group -1)* 5) : (group * 5), 1)

20 array[i,l,j,l] = array[i,l,j,l] +1

21 array[j,l,i,l] = array[i,l,j,l]

22 }

23 }

24 }

25
26 # peripheral connections

27 for (group in 2:5) {

28
29 # connections inside a group

30 for(i in (1 + (group -1)* 5) : (group * 5)){

40 5. Methodology

31 for(x in 1:n.random(10)){

32 j = sample (((1 + (group -1)* 5) : (group * 5))[-i], 1)

33 array[i,l,j,l] = array[i,l,j,l] +1

34 array[j,l,i,l] = array[i,l,j,l]

35 }

36 }

37 }

38
39 }

40
41 tensor <- rTensor ::as.tensor(array)

42 return(tensor)

43 }

Nodes Edges

Core

Core

Core
Perihperal

Perihperal
Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Perihperal

Cochange

Mail

Issue

Developer

Figure 5.5: An example multiplex network for setting 4 with 15 developers and with-
out inter-layer connections. In this OSS project are peripheral developers divided
in cluster. Only core developers have connections to several clusters.

Also this setting will be executed with different numbers of connections. For ex-
ample could peripheral developers communicate more among each other than core
developers.

6 Evaluation

In this section we evaluate the research questions. In two sections are the results of
the two research questions described and interpreted.

6.1 (RQ1) Comparison of EDCPTD centrality with

Established Centrality Measures

To examine the first research question, I compared the results of EDCPTD central-
ity with the results of the already for the detection of core developers established
centrality measures degree- and eigenvector centrality. The results of the compar-
isons are represented in tabular form. The tables with the results for the Apache
Zeppelin data are displayed in Section 6.1 and Section 6.1. The results for the
OpenSSL and OwnCloud data, which consist of more time ranges, are displayed
in the appendix.

In the tables are all comparisons that were described in Section 5.3.5 represented.
The first three columns contain information about the time ranges of the project
that are compared. This includes the number of the range, the number of active
developers in the range and how many developer belong to the top 20% of the
active developers that are identified as core developers. The following columns
present the results of the direct comparison of the top developers that have been
identified by EDCPTD centrality applied on the multiplex network and degree- and
eigenvector centrality applied on the single-layer networks. The percentage states
how many of the top 20% developers of EDCPTD centrality are also among the top
20% developers of the particular one-dimensional centrality measurement. The last
column indicates how many percent of the top 20% developer identified by EDCPTD
centrality have also been identified to be among the top 20% of developers by any
other method. In the last line the average results of the comparisons are shown.

The direct comparisons of the EDCPTD centrality with degree- and eigenvector cen-
trality applied on the different single-layer networks show that EDCPTD centrality
is able to consider the information from the cochange, the mail and the issue layer

42 6. Evaluation

Table 6.1: Comparison of the top 20% most important developer identified by
EDCPTD centrality applied on the ordinary forth-order tensor representation of
Apache Zeppelin and the top 20% developers identified by degree- and eigenvec-
tor centrality applied on the cochange, mail, issue and union single-layer networks.
The results state how many percent of the most important developers that have been
identified by EDCPTD centrality are also identified as one of the most important
developers in the particular other centrality measurements.

Time Active Number Degree Centrsality Eigenvector Centrality
Range Developer Top 20% cochange mail issue union cochange mail issue union Any

1 55 11 0.55 0.82 0.18 0.82 0.55 0.82 0.18 1.00 1.00
2 79 16 0.19 0.69 0.19 0.69 0.19 0.88 0.25 0.88 1.00
3 127 26 0.38 0.73 0.35 0.54 0.42 0.65 0.38 0.77 1.00
4 169 34 0.59 0.85 0.53 0.79 0.59 0.59 0.56 0.82 0.97

Average 0.43 0.77 0.31 0.71 0.44 0.74 0.34 0.87 0.99

Table 6.2: Comparison of the top 20% most important developer identified by ED-
CPTD centrality applied on the normalized forth-order tensor representation of
Apache Zeppelin and the top 20% developers identified by degree- and eigenvector
centrality applied on the cochange, mail, issue and union single-layer networks. The
results state how many percent of the most important developers that have been
identified by EDCPTD centrality are also identified as one of the most important
developers in the particular other centrality measurements.

Time Active Number Degree Centrsality Eigenvector Centrality
Range Developer Top 20% cochange mail issue union cochange mail issue union Any

1 55 11 0.91 0.45 0.55 0.45 1.00 0.36 0.45 0.55 1.00
2 79 16 0.19 0.69 0.19 0.69 0.19 0.88 0.25 0.88 1.00
3 127 26 0.38 0.73 0.35 0.54 0.42 0.65 0.38 0.77 1.00
4 169 34 0.59 0.85 0.53 0.79 0.59 0.59 0.56 0.82 0.97

Average 0.52 0.68 0.4 0.62 0.55 0.62 0.41 0.76 0.99

and combines them in one centrality score. All established centrality measurements
on the single-layer networks have an accordance with EDCPTD centrality, so it can
be concluded that all types of interaction have influence on the centrality score of
EDCPTD centrality. In the most cases eigenvector centrality is more similar to ED-
CPTD centrality than degree centrality. This holds for both, EDCPTD centrality
applied on the ordinary and the normalized tensor. The reason for that could be
the related concept of eigenvalues and singular values that these centrality measures
uses for their calculations. Further is EDCPTD centrality applied on the ordinary
tensor in every project quite similar to eigenvector centrality applied on one of the
single-layer networks. In Apache Zeppelin it is with an average accordance of
87% quite similar to the results of the union network, in OpenSSL with an average
accordance of each 95% quite similar to the results of the cochange and the union
network and in OwnCloud with an average accordance of 81% quite similar to the
results of the cochange network. The results of the comparisons between EDCPTD
centrality applied on the normalized tensor and the other centrality measures are
closer together. So EDCPTD centrality applied on the normalized tensor, in which
all layers have the same weightiness, rates all layer with a more equal importance.
In this case the normalization of the tensor could make sense, as it guarantees that
no layer with extraordinary much connections dominates the centrality calculations.

6.2. (RQ2) Detection of Typical Core Developer Behavior 43

An even clearer result shows the rate of how many top 20% developers of EDCPTD
centrality have also been identified as important by any of the other centrality mea-
surements. In the most cases, all developer that have been identified as important
by EDCPTD centrality have also in at least one of the other measurements been
identified as important. The most important developers identified by EDCPTD cen-
trality in both tensors of Apache Zeppelin, are in average 99% also identified as
important by the established centrality measures. In OpenSSL this number differs
a little bit for the application of EDCPTD centrality on both tensors, but with av-
eragely 100% for the ordinary and 97% for the normalized tensors it is a high rate
for both of them. In OwnCloud all developers that have been identified by ED-
CPTD centrality applied on the ordinary and the normalized tensors have also been
identified by one of the established centrality measures. Even though the results of
the ordinary tensor measurements are in some cases higher than the results of the
normalized tensor measurements, all measurements fulfill the expected result. These
results show, that EDCPTD centrality is able to identify core developers, that do
have an important role in the OSS project.

As all established one-dimensional centrality measures have an accordance with ED-
CPTD centrality, it can be concluded that EDCPTD centrality is able to identify
core developers that are important for the OSS project with the consideration of all
interactions between developers.

6.2 (RQ2) Detection of Typical Core Developer

Behavior

To test if EDCPTD centrality is able to recognize typical core behavior, I simulated
different structures in several settings. All settings have different limitations about
how often and in which way core and peripheral developers behave. The exact
construction of the settings is described in Section 5.4.

6.2.1 Results of Setting 1

The first setting examines the behavior, that core developers are more active in
communication and collaboration than peripheral developers. Therefore the esti-
mated number of connections on each layer is higher for core developers than for
peripheral developers. To rate how EDCPTD centrality is able to recognize this
pattern, I executed this setting with five different estimated numbers of connections
for core and peripheral developers. This includes cases in which the difference of the
estimated number is high and a case in which core developers have only a few more
connections than peripheral developers. To rate the results of EDCPTD centrality, I
measure how many percent of the labeled core developers are identified as the most
important developers with the highest EDCPTD score. The higher the rate, the
better is EDCPTD centrality ale to identify this pattern of behavior.

Further to figure out how inter-layer connections affect the result of EDCPTD cen-
trality, I simulate three different networks, one network in which only intra-layer
connections for core and peripheral developers are generated, one network in which
both have intra-layer connections but only for core developers are inter-layer connec-
tions to any other developer generated and one network in which core and peripheral

44 6. Evaluation

developers have intra- and inter-layer connections. For all five cases with different
estimated numbers, the three networks are generated. In order to keep the results of
the different networks comparable, the estimated number of connections on a layer
is split to intra- and inter-layer connections. If the developer group has inter-layer
connections, half of the estimated connections point as intra-layer connections to a
node on the same layer and half of the estimated connections point as inter-layer con-
nections to a node on a different layer. In this way the total number of connections
stays the same for all three networks. The results are displayed in Table 6.3

Table 6.3: The results how many percent of the labeled core developers in setting
1 have been identified by EDCPTD centrality correctly. In this setting the core
developers have more connections on every layer than peripheral developers. The
setting is executed with different estimated numbers of connections for core and
peripheral developers on every layer.

Estimated number No inter-layer Core with inter-layer All with inter-layer
of connections connections connections connections
on every layer ordinary normalized ordinary normalized ordinary normalized

30 core - 15 peripheral 0.89 0.89 1.00 1.00 1.00 1.00

25 core - 15 peripheral 0.74 0.74 0.94 0.94 0.94 1.00

20 core - 15 peripheral 0.49 0.49 0.66 0.67 0.66 0.66

20 core - 10 peripheral 0.79 0.79 0.98 0.98 0.97 0.97

20 core - 5 peripheral 0.94 0.94 1.00 1.00 1.00 1.00

The results of the networks without inter-layer connections show that the bigger
the difference between the estimated number of connections for core and peripheral
developers is, the higher is the rate of correct identified core developers. For example
in the case in which peripheral developers have only five connections, 94% of the core
developers are identified correctly. This result indicate that EDCPTD centrality can
differentiate if a developer is regularly or just temporary active in the OSS project.
A small difference of the estimated number of connections of core and peripheral
developers is still noticed in 49% of the cases correctly, which is still almost in the
half of the executions, but could be higher. The higher the proportional difference
of estimated connections gets, the higher gets the rate. But however, EDCPTD
centrality is in no case able to identify all core developers correctly.

The results of the networks with inter-layer connections only for core developers
and the results of the networks with inter-layer connections for all developers are
approximately the same. Again, the bigger the difference between the estimated
numbers is, the more core developers are identified correctly. But the rate of correct
identified core developers is in all cases higher than in the networks without inter-
layer connections. In the cases with a big difference of the estimated numbers of
connections, even all core developers are identified correctly. Apparently is the addi-
tional influence of the inter-layer connections more important for the identification
of core developer than just the number of connections.

6.2. (RQ2) Detection of Typical Core Developer Behavior 45

Further it is noticeable, that there is almost no difference in the results if EDCPTD
centrality is applied on the ordinary or the normalized tensor.

6.2.2 Results of Setting 2

In the second setting, the behavior that core developers interact more with other
core developers is simulated. Therefore only connections to other core developers
are generated for the labeled core developers, while connections to anyone in the
project are generated for peripheral developers. In this way, a network in which
core developers are arranged in a central cluster is simulated. To differentiate this
behavior from the behavior of the first setting, in which core developer haven been
more active than peripheral developers, I examine cases in which core developers
have a lower or equal estimated number of connections than peripheral developers.
The higher the rate of correct identified core developer, the better is EDCPTD
centrality able to identify this core behavior.

Again, these cases are executed three times, without inter-layer connections, with
inter-layer connections only for core developers and with inter-layer connections
for both developer groups. If a developer group has inter-layer connections, half
of the estimated connections are generated as intra-layer connections and half of
the estimated connections are generated as inter-layer connections. The inter-layer
connections are generated with the same behavior as intra-layer connections, so core
developers have only inter-layer connections to other core developers. The results of
this setting are displayed in Table 6.4.

Table 6.4: The results how many percent of the labeled core developers in setting 2
have been identified by EDCPTD centrality correctly. In this setting core developers
have more connections to other core developers than to peripheral developers. The
setting is executed with different estimated numbers of connections for core and
peripheral developers on every layer.

Estimated number No inter-layer Core with inter-layer All with inter-layer
of connections connections connections connections
on every layer ordinary normalized ordinary normalized ordinary normalized

15 core - 25 peripheral 0.80 0.81 0.93 1.00 0.94 0.93

15 core - 20 peripheral 1.00 1.00 0.99 1.00 1.00 1.00

15 core - 15 peripheral 1.00 1.00 1.00 1.00 1.00 1.00

10 core - 15 peripheral 0.86 0.87 0.95 1.00 0.97 0.96

5 core - 15 peripheral 0.03 0.03 0.01 1.00 0.02 0.02

In the network without inter-layer connections, EDCPTD centrality is in the most
cases able to identify a high rate of core developers correctly. Especially in the case
in which the estimated number of connections for core and peripheral developers
is the same, all core developers are identified correctly. Also in the cases in which
peripheral developer have a few more connections than core developers, the most
core developers are still identified correct. This indicates that EDCPTD centrality is

46 6. Evaluation

able to detect the behavior that core developer in OSS projects tend to interact more
among each other. Further, as the rates in this result are higher than the rates of
setting 1, it can be implicated that the centrality of a node in the network structure
is more important for EDCPTD centrality than just the number of connections of a
node. Only in the case in which core developers have approximately five connections
on every layer, while peripheral developers have approximately fifteen connections
on every layer, the core developers are just in a low rate identified correctly. A
reason for this could be that due the small number of core connections, the pattern
that core developers communicate more with other core developers is not noticeable.
As in real OSS projects core developers usually are more active, this result does not
play an important role for the application on real OSS data.

The rates for EDCPTD centrality applied on the ordinary tensor of the networks in
which only core developers have inter-layer connections are quite similar, or even a
little higher. The results for the normalized tensor of these networks are different.
Surprisingly, all core developers have been identified correctly. Even in the case
in which barely any correct core developer in the other networks is identified. A
reason for this could be, that due the setting only inter-layer connections from core
to core developers are created. So peripheral developers do not occur in the inter-
layer connections. While these inter-layer connections are just not rated as that
important in the ordinary tensor, they are considered with the same weightiness as
layers in the normalized tensor. Thereby the not-occurrence of peripheral developers
in inter-layer connections has a bigger influence on the result.

In the networks in which inter-layer connections for both developer groups are gen-
erated, the results are again equal for the ordinary and normalized tensor. In most
cases the core developers are identified correctly. Even with a better rate than in
the networks without inter-layer connections.

6.2.3 Results of Setting 3

The third setting simulates the behavior, that peripheral developers do not often
communicate directly with each other, but with a core developer as middleman.
Therefore are for peripheral developers only connections to core developers gener-
ated. For core developers connections to any other developer are generated. Similar
to the second setting, I analyze cases in which core developer have less or equal
connections than peripheral developers, to distinguish this setting from the first
setting.

Also for these cases three different networks are generated, one without inter-layer
connections, one with inter-layer connections only for core developers and one with
inter-layer connections for all developers. If inter-layer connections exist, half of the
estimated number of connections on every layer are generated as intra-layer connec-
tions and half of the estimated number of connections are generated as inter-layer
connections. So the total number of connections for core and peripheral develop-
ers stays approximately the same. Also the limitations for inter-layer connections
are the same as for intra-layer connections. This means, that peripheral developer
only have inter-layer connections to core developers. The results of this setting are
represented in Table 6.5.

6.2. (RQ2) Detection of Typical Core Developer Behavior 47

Table 6.5: The results how many percent of the labeled core developers in setting
3 have been identified by EDCPTD centrality correctly. In this setting peripheral
developers have only connections to core developers. The setting is executed with
different estimated numbers of connections for core and peripheral developers on
every layer.

Estimated number No inter-layer Core with inter-layer All with inter-layer
of connections connections connections connections
on every layer ordinary normalized ordinary normalized ordinary normalized

5 core - 15 peripheral 1.00 1.00 1.00 0.64 1.00 1.00

10 core - 15 peripheral 1.00 1.00 1.00 0.93 1.00 1.00

15 core - 15 peripheral 1.00 1.00 1.00 1.00 1.00 1.00

15 core - 30 peripheral 1.00 1.00 1.00 1.00 1.00 1.00

15 core - 45 peripheral 1.00 1.00 1.00 1.00 1.00 1.00

The third setting has the most definite results. In the networks without inter-layer
connections and in the networks in which core and peripheral developers have inter-
layer connections, all core developers are identified correctly. This holds for the case
with equal estimated connections for core and peripheral developers and even in the
cases in which peripheral developers have more connections than core developers.
It can be succeeded, that EDCPTD centrality is well able to recognize this pattern
and identify all developers correctly. Again, this indicates that central network
structures have more influence on the result of EDCPTD centrality than just the
number of connections.

The networks in which only core developers have inter-layer connections do again
show irregularities. While in the ordinary tensors all core developers have been
identified correctly, EDCPTD centrality applied on the normalized tensor has a few
problems to identify all core developers in the cases with only a few core connec-
tions. A reason for this could be, as only peripheral developers have a limitation
in their behavior, the wanted pattern is not represented on the inter-layer connec-
tions. With the normalization of this tensor, the few inter-layer connections which
do not represent the wanted pattern of behavior, become more important for the
result. As soon as the number of core developer rises, also in this networks are all
core developers identified correctly. So again, as core developers usually have many
connections, this result is not that important for the application on real OSS data.

Because the core developers are, apart from the edge cases that do not model the
setting, always identified correctly, it can be assumed that EDCPTD centrality can
perfectly identify this core developer behavior in OSS projects.

6.2.4 Results of Setting 4

The forth setting simulates a hierarchy cluster structure in OSS projects. There-
fore the peripheral developer are divided in four different clusters. Each peripheral
developer has only connections to a developer in his cluster. Core developers have

48 6. Evaluation

connections to any developer. To evaluate this setting, cases with three different
estimated numbers of connections on every layer are executed. The first estimated
number defines how many connections core developer have to other core developer,
the second estimated number defines how many connections a core developer has
to each of the four peripheral clusters and the third estimated number defines how
many connections a peripheral developer has inside his cluster.

As in the previous three settings, for all cases are networks only with intra-layer con-
nections, networks with inter-layer connections only for core developers and networks
with inter-layer connections for all developers generated. The estimated number of
connections on every layer is split in intra- and inter-layer connections and inter-layer
connections behave the same as intra-layer connections. In this way the proportion
of the three different networks stays the same for every case.

As in this setting the estimated number of connections between core developers,
the estimated number of connections from core to peripheral developers and the
estimated number of connections for peripheral developers inside their cluster can be
changed, a bigger number of different cases can be evaluated. The most interesting
results are displayed in Table 6.6

Table 6.6: The results how many percent of the labeled core developers in setting
4 have been identified by EDCPTD centrality correctly. In this setting peripheral
developers are divided in four cluster and only interact with peripheral developers in
the same cluster. Core developer interact with each other and with every peripheral
cluster. The setting is executed with different estimated numbers of connections
between core developers, between core developers and peripheral developers in every
clusters, and between peripheral developers inside their clusters.

Estimated number No inter-layer Core with inter-layer All with inter-layer
of connections connections connections connections
on every layer ordinary normalized ordinary normalized ordinary normalized
5 core to core
5 core to peripheral 0.00 0.00 0.00 1.00 0.00 0.00
20 in peripheral cluster
20 core to core
5 core to peripheral 1.00 1.00 0.99 1.00 1.00 0.99
20 in peripheral cluster
20 core to core
5 core to peripheral 1.00 1.00 1.00 1.00 1.00 1.00
10 in peripheral cluster
5 core to core
10 core to peripheral 1.00 1.00 1.00 1.00 1.00 1.00
5 in peripheral cluster

The results of the different cases indicate different conclusions. In the first case
is, apart of the normalized network with only inter-layer connections for core de-
velopers, no core developer identified correctly. In this case core developer have
approximately five connection on every layer to other core developer and another
five connections to every peripheral cluster. So approximately 25 connections on
every layer in total. Peripheral developers have 20 connections to other peripheral
developers inside their cluster on every layer. Additionally they are involved in
approximately five connections from core developers. So core and peripheral devel-
opers have more or less the same number of connections. That in this case no core
developer is identified correctly, indicates that the hierarchy cluster structure alone
is not sufficient for EDCPTD centrality to detect core developers.

6.2. (RQ2) Detection of Typical Core Developer Behavior 49

In the other cases are core developers identified correctly in a high rate. In these
cases is the hierarchy cluster structure combined with the typical core behaviors of
the previous settings. In the second case have core developers more connections
than peripheral developers. Here the core developers are identified in the most cases
correctly. In the third case have core developers more connections to other core
developers. Because of the limitation that peripheral developers only communicate
inside their cluster, this case cannot be separated from the case that core devel-
opers also have more connections than peripheral developers. In this case all core
developers are correctly identified. The forth case combines the hierarchical clusters
with the behavior that peripheral developers have more connections to core devel-
opers than to other peripheral developers. Again all core developers are identified
correctly.

Only the normalized networks in which just core developers have inter-layer con-
nections have a different result. In this networks all core developers are identified
correctly. The reason for this could be that in this networks no inter-layer connec-
tions without a core developer are generated. So the peripheral cluster do not occur.
While this inter-layer connections are not considered as important in the ordinary
tensor, the normalization makes them as important as normal layers.

In conclusion EDCPTD centrality is not able to identify the hierarchy cluster struc-
ture without the other characteristics of core developers. But as soon as this struc-
ture occurs in an OSS project in which also at least on of typical patterns for core
developers that where examined in the previous settings occurs, EDCPTD centrality
is able to identify most core developers correctly.

50 6. Evaluation

7 Conclusion

In this thesis I examined how useful multiplex centrality measures are to identify
core developers in OSS projects. In particular I analyzed the results of the multiplex
centrality measurement EDCPTD centrality applied on OSS projects. As EDCPTD
centrality is applied on a multiplex network, it is possible to consider the influence
of different types of interactions in the OSS project on the centrality calculation.

In the first research question I compared the results of EDCPTD centrality applied
on real OSS projects with the results of degree- and eigenvector centrality, which
are approved centrality measures to identify important developers in OSS projects,
applied on the same OSS projects. This comparison confirmed that EDCPTD cen-
trality is able to identify developers that are important in real OSS projects. Almost
all developers that are identified by EDCPTD centrality to be among the most im-
portant developers in the project have also been identified as important by one of
the established centrality measures. As EDCPTD centrality is, different to degree-
and eigenvector centrality, applied on a multiplex network, it is able to consider all
different types of interactions from OSS projects in its calculation. Thereby ED-
CPTD centrality can also recognize influences between different types of interaction
and has in this way an advantage over the established centrality measures.

In the second research question I tested if EDCPTD centrality is able to identify
developers that fulfill typical core developer behavior in synthetic OSS projects. In
most cases, EDCPTD centrality identified a high rate of the labeled core developers
correctly. Especially in the setting in which core developers interact more with other
core developers and in the setting in which peripheral developers interact more with
core developers, most core developers are identified correct. Even in the cases in
which core developer have less connections than peripheral developers EDCPTD
centrality was able to identify a high rate of core developers. The high rate of
correctly identified developers in these settings indicates that the network structure
has more influence on the result of EDCPTD centrality than just the number of
connections of a node.

Further are the rates of correctly identified developers in the networks in which core
and peripheral developers have intra- and inter-layer connections in almost all cases

52 7. Conclusion

higher or equal than the rates in the networks in which both developer groups have
only intra-layer connections. So the use of inter-layer connections in an OSS project
has positive influence on the identification of core developers. The introduction of
inter-layer connections, could therefore help to model OSS projects more accurate
and enable a more precise centrality measurement.

In the first research question have the results of the normalized tensor less difference
from each other than the results of the ordinary tensor. In this case the normaliza-
tion insured that no layer is weighted with a too high importance. In the second
research question the results for the ordinary and the normalized tensor are in many
cases the same. This is not surprising as all layers have approximately the same
number of connections. Only in the networks in which only core developer has
inter-layer connections, the normalized tensor caused in some cases a unexpected
result. This is an example that the normalization of the tensors can sometimes also
make unimportant layers more important. After all, cases in which the normaliza-
tion leads to a better result as well as cases in which the normalization can falsify
the result exist.

In conclusion, EDCPTD is well able to identify core developers in OSS projects.
The developers with the highest EDCPTD centrality score are confirmed important
developers in the OSS project. Developers that fulfill typical core behavior have a
higher EDCPTD centrality score than others.

8 Future Work

As in all synthetically constructed networks the result of the networks in which both
developer groups have inter-layer connections are better than the results of the net-
works without inter-layer connections, inter-layer connections in real OSS projects
may have a positive influence on the identification of core developers. Therefore it is
reasonable to create inter-layer connections in the retrieval of real OSS project data.
For example could a reviewer on the issue layer could be with the corresponding
committer on the cochange layer. Or it could be analyzed if a mail or issue text
includes a hash code of a commit, so that the author of the mail/issue can be linked
via an inter-layer connection with the committer. The comparison of RQ1 could
than be executed again with inter-layer connections for EDCPTD centrality and an
even more accurate centrality measurement can be expected.

Further both research questions showed that EDCPTD centrality is able to order
developers according their importance and identify a fixed amount of most important
developers correctly. But as the exact number of core developers in a OSS project
is not known, it would be interesting to find out if EDCPTD centrality is also able
to figure out how many core developer an OSS project has. This could for example
work if EDCPTD centrality realizes a high difference between the EDCPTD scores
of two successive ordered developers. All developers whose score is above this scores
could be identified as core developers and all developers whose score is below this
score could be identified as peripheral developers. Therefore an execution of the
setting from RQ2 with a varying number of core developers would be interesting. In
this settings it could be tested if EDCPTD centrality is able to identify all labeled
core developers, even though it is not know how many labeled core developers exist.

54 8. Future Work

A Appendix

Table A.1: Comparison of the top 20% most important developer identified by
EDCPTD centrality applied on the ordinary forth-order tensor representation of
Apache Zeppelin and the top 20% developers identified by degree- and eigenvector
centrality applied on the cochange, mail, issue and union single-layer networks. The
results state how many percent of the most important developers that have been
identified by EDCPTD centrality are also identified as one of the most important
developers in the particular other centrality measurements.

Time Active Number Degree Centrsality Eigenvector Centrality
Range Developer Top 20% cochange mail issue union cochange mail issue union Any

1 55 11 0.55 0.82 0.18 0.82 0.55 0.82 0.18 1.00 1.00
2 79 16 0.19 0.69 0.19 0.69 0.19 0.88 0.25 0.88 1.00
3 127 26 0.38 0.73 0.35 0.54 0.42 0.65 0.38 0.77 1.00
4 169 34 0.59 0.85 0.53 0.79 0.59 0.59 0.56 0.82 0.97

Average 0.43 0.77 0.31 0.71 0.44 0.74 0.34 0.87 0.99

Table A.2: Comparison of the top 20% most important developer identified by
EDCPTD centrality applied on the normalized forth-order tensor representation of
Apache Zeppelin and the top 20% developers identified by degree- and eigenvector
centrality applied on the cochange, mail, issue and union single-layer networks. The
results state how many percent of the most important developers that have been
identified by EDCPTD centrality are also identified as one of the most important
developers in the particular other centrality measurements.

Time Active Number Degree Centrsality Eigenvector Centrality
Range Developer Top 20% cochange mail issue union cochange mail issue union Any

1 55 11 0.91 0.45 0.55 0.45 1.00 0.36 0.45 0.55 1.00
2 79 16 0.19 0.69 0.19 0.69 0.19 0.88 0.25 0.88 1.00
3 127 26 0.38 0.73 0.35 0.54 0.42 0.65 0.38 0.77 1.00
4 169 34 0.59 0.85 0.53 0.79 0.59 0.59 0.56 0.82 0.97

Average 0.52 0.68 0.4 0.62 0.55 0.62 0.41 0.76 0.99

56 A. Appendix

Table A.3: Comparison of the top 20% most important developer identified by
EDCPTD centrality applied on the normalized forth-order tensor representation
of OpenSSL and the top 20% developers identified by degree- and eigenvector
centrality applied on the cochange, mail, issue and union single-layer networks. The
results state how many percent of the most important developers that have been
identified by EDCPTD centrality are also identified as one of the most important
developers in the particular other centrality measurements.

Time Active Number Degree Centrsality Eigenvector Centrality
Window Developer Top 20% cochange mail issue union cochange mail issue union Overall

1 11 3 1.00 0.00 0.33 1.00 1.00 0.33 0.33 1.00 1.00
2 14 3 0.67 0.00 0.67 0.67 1.00 0.00 0.67 1.00 1.00
3 11 3 1.00 0.33 0.33 1.00 1.00 0.33 0.33 1.00 1.00
4 13 3 1.00 0.33 0.33 1.00 1.00 0.33 0.33 1.00 1.00
5 13 3 0.33 0.67 0.33 0.67 0.33 1.00 0.67 0.33 1.00
6 12 3 1.00 0.67 0.33 1.00 1.00 0.67 0.33 1.00 1.00
7 14 3 1.00 0.00 0.33 1.00 1.00 0.33 0.33 1.00 1.00
8 15 3 0.67 0.33 0.33 0.67 1.00 0.33 0.67 1.00 1.00
9 13 3 1.00 0.33 0.33 1.00 1.00 0.67 0.33 1.00 1.00
10 19 4 1.00 0.25 0.00 1.00 1.00 0.25 0.25 1.00 1.00
11 18 4 0.75 0.00 0.25 0.75 1.00 0.00 0.5 1.00 1.00
12 18 4 1.00 0.25 0.5 1.00 1.00 0.5 0.5 1.00 1.00
13 20 4 0.75 0.00 0.5 0.75 1.00 0.25 0.5 1.00 1.00
14 21 5 0.8 0.4 0.4 0.8 1.00 0.2 0.6 1.00 1.00
15 21 5 1.00 0.6 0.6 1.00 1.00 0.4 0.8 1.00 1.00
16 23 5 0.8 0.4 0.4 0.8 1.00 0.2 0.8 1.00 1.00
17 21 5 1.00 0.4 0.6 1.00 1.00 0.4 0.8 1.00 1.00
18 24 5 1.00 0.6 0.6 1.00 1.00 0.6 1.00 1.00 1.00
19 22 5 0.8 0.2 0.4 0.8 1.00 0.4 0.8 1.00 1.00
20 27 6 1.00 0.33 0.5 1.00 1.00 0.5 0.67 1.00 1.00
21 28 6 1.00 0.33 0.5 1.00 1.00 0.33 0.67 1.00 1.00
22 32 7 1.00 0.29 0.43 1.00 1.00 0.29 0.71 1.00 1.00
23 36 8 0.75 0.5 0.62 0.75 1.00 0.62 0.25 1.00 1.00
24 48 10 1.00 0.4 0.3 1.00 1.00 0.4 0.6 1.00 1.00
25 121 25 0.96 0.4 0.32 0.88 1.00 0.4 0.24 1.00 1.00
26 126 26 0.96 0.38 0.31 0.88 1.00 0.38 0.5 0.96 1.00
27 150 30 1.00 0.43 0.37 0.97 0.97 0.4 0.37 1.00 1.00
28 178 36 0.97 0.39 0.47 0.83 1.00 0.36 0.53 0.89 1.00
29 206 42 0.98 0.33 0.45 0.86 0.98 0.38 0.43 1.00 1.00
30 207 42 0.93 0.4 0.55 0.9 0.98 0.45 0.55 0.98 1.00
31 241 49 0.92 0.41 0.51 0.84 0.98 0.39 0.53 0.88 1.00
32 242 49 0.96 0.41 0.49 0.82 0.96 0.67 0.49 0.82 1.00
33 248 50 0.5 0.3 0.94 0.7 0.44 0.56 0.98 0.68 1.00
34 322 65 0.55 0.23 0.97 0.68 0.52 0.65 0.98 0.65 1.00

Average 0.88 0.33 0.45 0.88 0.95 0.41 0.56 0.95 1

57

Table A.4: Comparison of the top 20% most important developer identified by
EDCPTD centrality applied on the normalized forth-order tensor representation
of OpenSSL and the top 20% developers identified by degree- and eigenvector
centrality applied on the cochange, mail, issue and union single-layer networks. The
results state how many percent of the most important developers that have been
identified by EDCPTD centrality are also identified as one of the most important
developers in the particular other centrality measurements.

Time Active Number Degree Centrsality Eigenvector Centrality
Window Developer Top 20% cochange mail issue union cochange mail issue union Any

1 11 3 1.00 0.00 0.33 1.00 1.00 0.33 0.33 1.00 1.00
2 14 3 0.00 0.67 0.33 0.00 0.00 1.00 0.33 0.00 1.00
3 11 3 0.33 0.67 0.33 0.33 0.33 0.67 0.00 0.33 0.67
4 13 3 0.33 1.00 0.00 0.33 0.33 1.00 0.33 0.33 1.00
5 13 3 0.67 0.33 0.33 0.67 0.67 0.33 0.67 1.00 1.00
6 12 3 0.67 1.00 0.33 0.67 0.67 1.00 0.33 0.67 1.00
7 14 3 0.33 0.67 0.33 0.33 0.33 1.00 0.33 0.33 1.00
8 15 3 0.33 1.00 0.33 0.33 0.33 1.00 0.33 0.33 1.00
9 13 3 1.00 0.33 0.33 1.00 1.00 0.67 0.33 1.00 1.00
10 19 4 0.25 1.00 0.5 0.25 0.25 1.00 0.25 0.25 1.00
11 18 4 0.75 0.00 0.25 0.75 1.00 0.00 0.5 1.00 1.00
12 18 4 1.00 0.25 0.5 1.00 1.00 0.5 0.5 1.00 1.00
13 20 4 0.25 0.75 0.25 0.25 0.00 0.75 0.5 0.00 0.75
14 21 5 0.8 0.4 0.4 0.8 1.00 0.2 0.6 1.00 1.00
15 21 5 1.00 0.6 0.6 1.00 1.00 0.4 0.8 1.00 1.00
16 23 5 0.8 0.4 0.4 0.8 1.00 0.2 0.8 1.00 1.00
17 21 5 0.4 0.8 0.4 0.4 0.4 1.00 0.6 0.4 1.00
18 24 5 0.6 0.8 0.2 0.6 0.6 1.00 0.6 0.6 1.00
19 22 5 0.8 0.2 0.4 0.8 1.00 0.4 0.8 1.00 1.00
20 27 6 1.00 0.33 0.5 1.00 1.00 0.5 0.67 1.00 1.00
21 28 6 1.00 0.33 0.5 1.00 1.00 0.33 0.67 1.00 1.00
22 32 7 1.00 0.29 0.43 1.00 1.00 0.29 0.71 1.00 1.00
23 36 8 0.38 0.75 0.38 0.38 0.5 0.75 0.25 0.5 0.75
24 48 10 1.00 0.4 0.3 1.00 1.00 0.4 0.6 1.00 1.00
25 121 25 0.36 0.76 0.48 0.48 0.36 0.72 0.32 0.36 0.92
26 126 26 0.62 0.5 0.54 0.69 0.62 0.54 0.31 0.65 1.00
27 150 30 1.00 0.43 0.37 0.97 0.97 0.4 0.37 1.00 1.00
28 178 36 0.97 0.39 0.47 0.83 1.00 0.36 0.53 0.89 1.00
29 206 42 0.43 0.45 0.9 0.55 0.43 0.45 0.98 0.43 0.98
30 207 42 0.93 0.4 0.55 0.9 0.98 0.45 0.55 0.98 1.00
31 241 49 0.92 0.41 0.51 0.84 0.98 0.39 0.53 0.88 1.00
32 242 49 0.96 0.41 0.49 0.82 0.96 0.67 0.49 0.82 1.00
33 248 50 0.5 0.3 0.94 0.7 0.44 0.56 0.98 0.68 1.00
34 322 65 0.55 0.23 0.97 0.68 0.52 0.65 0.98 0.65 1.00

Average 0.67 0.51 0.44 0.68 0.7 0.59 0.53 0.71 0.97

Table A.5: Comparison of the top 20% most important developer identified by ED-
CPTD centrality applied on the ordinary forth-order tensor representation of Own-
Cloud and the top 20% developers identified by degree- and eigenvector centrality
applied on the cochange, mail, issue and union single-layer networks. The results
state how many percent of the most important developers that have been identified
by EDCPTD centrality are also identified as one of the most important developers
in the particular other centrality measurements.

Time Active Number Degree Centrsality Eigenvector Centrality
Window Developer Top 20% cochange mail issue union cochange mail issue union Any

1 61 13 0.85 0.46 0.69 0.77 1.00 0.38 0.69 0.85 1.00
2 110 22 0.86 0.59 0.5 0.77 1.00 0.59 0.5 0.73 1.00
3 141 29 0.93 0.48 0.52 0.72 1.00 0.48 0.55 0.72 1.00
4 172 35 0.94 0.29 0.49 0.77 1.00 0.34 0.54 0.8 1.00
5 230 46 0.96 0.28 0.57 0.78 1.00 0.35 0.54 0.76 1.00
6 252 51 0.47 0.35 0.92 0.71 0.51 0.53 0.98 0.63 1.00
7 253 51 0.78 0.24 0.53 0.71 0.92 0.76 0.51 0.82 1.00
8 298 60 0.45 0.27 0.9 0.63 0.5 0.5 0.97 0.6 1.00
9 246 50 0.88 0.2 0.5 0.7 1.00 0.52 0.5 0.78 1.00
10 243 49 0.61 0.29 0.94 0.73 0.55 0.49 1.00 0.65 1.00
11 236 48 0.54 0.23 0.96 0.73 0.48 0.44 1.00 0.73 1.00
12 240 48 0.94 0.19 0.52 0.9 1.00 0.56 0.52 0.85 1.00
13 258 52 0.62 0.23 0.96 0.71 0.6 0.5 0.9 0.69 1.00

Average 0.76 0.32 0.69 0.74 0.81 0.5 0.71 0.74 1

58 A. Appendix

Table A.6: Comparison of the top 20% most important developer identified by
EDCPTD centrality applied on the normalized forth-order tensor representation
of OwnCloud and the top 20% developers identified by degree- and eigenvector
centrality applied on the cochange, mail, issue and union single-layer networks. The
results state how many percent of the most important developers that have been
identified by EDCPTD centrality are also identified as one of the most important
developers in the particular other centrality measurements.

Time Active Number Degree Centrsality Eigenvector Centrality
Window Developer Top 20% cochange mail issue union cochange mail issue union Any

1 61 13 0.85 0.46 0.69 0.77 1.00 0.38 0.69 0.85 1.00
2 110 22 0.86 0.59 0.5 0.77 1.00 0.59 0.5 0.73 1.00
3 141 29 0.93 0.48 0.52 0.72 1.00 0.48 0.55 0.72 1.00
4 172 35 0.94 0.29 0.49 0.77 1.00 0.34 0.54 0.8 1.00
5 230 46 0.96 0.28 0.57 0.78 1.00 0.35 0.54 0.76 1.00
6 252 51 0.43 0.37 0.88 0.67 0.47 0.55 0.92 0.61 1.00
7 253 51 0.51 0.31 0.84 0.76 0.49 0.47 0.96 0.71 1.00
8 298 60 0.48 0.27 0.78 0.67 0.53 0.47 0.72 0.65 0.95
9 246 50 0.5 0.3 0.88 0.68 0.5 0.42 1.00 0.64 1.00
10 243 49 0.61 0.29 0.94 0.73 0.55 0.49 1.00 0.65 1.00
11 236 48 0.54 0.23 0.96 0.73 0.48 0.44 1.00 0.73 1.00
12 240 48 0.56 0.29 0.96 0.62 0.54 0.4 0.98 0.65 1.00
13 258 52 0.62 0.23 0.96 0.71 0.6 0.5 0.9 0.69 1.00

Average 0.68 0.34 0.77 0.72 0.7 0.45 0.79 0.71 1

Bibliography

[Abe07] Mark Aberdour. Achieving Quality in Open-Source Software. IEEE
software, 24(1):59–64, 2007. (cited on Page 6 and 7)

[Bon07] Phillip Bonacich. Some unique properties of eigenvector centrality. Social
Networks, 29(4):pp 555–564, 2007. (cited on Page 13)

[CH03] Kevin Crowston and James Howison. The Social Structure of Open
Source Software Development Teams. School of Information Studies -
Faculty Scholarship, 2003. (cited on Page 6, 7, and 8)

[CS17] Kevin Crowston and Ivan Shamshurin. Core-periphery communication
and the success of free/libre open source software projects. Journal of
Internet Servicesand Applications, 8(10), 2017. (cited on Page 1 and 7)

[DWZ17] Haitao Wang Dingjie Wang and Xiufen Zou. Identifying key nodes in
multilayer networks based on tensor decomposition. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 26(6), 2017. (cited on Page 15,

16, 17, and 18)

[FG07] Chaim Fershtman and Neil Gandal. Open source software: Motivation
and restrictive licensing. International Economics and Economic Policy,
4(2):pp 209–225, 2007. (cited on Page 1 and 5)

[Fis89] Gerd Fischer. Lineare Algebra. vieweg studium, The address, 9 edition,
1989. (cited on Page 13)

[GM02] Renee Tynan Gregory Madey, Vincent Freeh. THE OPEN SOURCE
SOFTWARE DEVELOPMENT PHENOMENON: AN ANALYSIS
BASED ON SOCIAL NETWORK THEORY. AMCIS 2002 Proceed-
ings, 2002. (cited on Page 5)

[Gos] Alexej Gossmann. Understanding the candecomp/parafac tensor decom-
position. https://www.alexejgossmann.com/tensor decomposition CP/.
Accessed: 2019-08-15. (cited on Page 17)

[GR] Eric W. Weisstein Gordon Royle. Mathworld–a wolfram web resource:
”reducible matrix”. http://mathworld.wolfram.com/ReducibleMatrix.
html. Accessed: 2019-08-15. (cited on Page 14)

[JAHM17] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. Clas-
sifying Developers into Core and Peripheral: An Empirical Study on

https://www.alexejgossmann.com/tensor_decomposition_CP/
http://mathworld.wolfram.com/ReducibleMatrix.html
http://mathworld.wolfram.com/ReducibleMatrix.html

60 Bibliography

Count and Network Metrics. International Conference on Software En-
gineering, 39, 2017. (cited on Page 7, 9, and 12)

[JAM17] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. Evolutionary trends
of developer coordination: a network approach. Empirical Software En-
gineering, 22(4):pp 2050–2094, 2017. (cited on Page 9)

[Joh] Prof. Dr. Volker John. Numerik i. https://www.wias-berlin.de/people/
john/LEHRE/NUMERIK I/numerik 1 1.pdf. Accessed: 2019-08-15.
(cited on Page 17)

[KCH06] Qing Li Kevin Crowston, Kangning Wei and James Howison. Core and
periphery in Free/Libre and Open Source software team communica-
tions. Proceedings of the 39th Annual Hawaii International Conference
on System Sciences (HICSS’06), 6:pp. 118a–118, 2006. (cited on Page 2)

[Kri06] Sandeep Krishnamurthy. On the intrinsic and extrinsic motivation of
free/libre/open source (FLOSS) developers. Knowledge, Technology &
Policy, 4(18):pp 17–39, 2006. (cited on Page 5)

[Lui13] Luis Sola, Miguel Romance, Regino Criado, Julio Flores, Alejandro Gar-
ćıa del Amo and Stefano Boccaletti. Eigenvector centrality of nodes in
multiplex networks . Chaos: An Interdisciplinary Journal of Nonlinear
Science, 23(3), 2013. (cited on Page 12)

[MRP+14] G Giulia Menichetti, Daniel Remondini, Pietro Panzarasa, Raúl J. Mon-
dragón, and Ginestra Bianconi. Weighted Multiplex Networks. 2014.
(cited on Page 15)

[NYN+02] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi
Kishida, and Yunwen Ye. Evolution patterns of open-source software
systems and communities. Proceedings of the International Workshop
on Principles of Software Evolution, pages Pages 76–85, 2002. (cited on

Page 6)

[PG06] Stephen P.Borgatti and Martin G.Everett. A Graph-theoretic perspec-
tive on centrality. Social Networks, 28(4):pp 466–484, 2006. (cited on

Page 8)

[PSC12] Vallabh Sambamurthy Pankaj Setia, Balaji Rajagopalan and Roger
Calantone. How Peripheral Developers Contribute to Open-Source Soft-
ware Development. Information Systems Research, 23:pp. 144–163, 2012.
(cited on Page 2)

[QHB11] S.C. Cheung Qiaona Hong, Sunghun Kim and Christian Bird. Under-
standing a developer social network and its evolution. IEEE Interna-
tional Conference on Software Maintenance (ICSM), 27:pp. 323 –332,
2011. (cited on Page 1)

https://www.wias-berlin.de/people/john/LEHRE/NUMERIK_I/numerik_1_1.pdf
https://www.wias-berlin.de/people/john/LEHRE/NUMERIK_I/numerik_1_1.pdf

Bibliography 61

[SLT09] Federico Barrero Sergio L. Toral, Roćıo Mart́ınez Torres. Modelling Mail-
ing List Behaviour in Open Source Projects: the Case of ARM Embedded
Linux. Journal of Universal Computer Science, 15(3), 2009. (cited on

Page 6)

[TOS10] Filip Agneessens Tore Opsahl and John Skvoretz. Node centrality in
weighted networks: Generalizing degree and shortest paths. Social Net-
works, 32(3):pp 245–251, 2010. (cited on Page 12)

[TR] Eric W. Weisstein Todd Rowland. Mathworld–a wolfram web resource:
”tensor”. http://mathworld.wolfram.com/Tensor.html. Accessed: 2019-
08-15. (cited on Page 16)

[Weia] Eric W. Weisstein. Mathworld–a wolfram web resource: ”graph”. http:
//mathworld.wolfram.com/Graph.html. Accessed: 2019-08-18. (cited

on Page 9)

[Weib] Eric W. Weisstein. Mathworld–a wolfram web resource:
”perron-frobenius theorem”. http://mathworld.wolfram.com/
Perron-FrobeniusTheorem.html. Accessed: 2019-08-13. (cited on

Page 13)

[Weic] Eric W. Weisstein. Mathworld–a wolfram web resource:
”strongly connected digraph”. http://mathworld.wolfram.com/
StronglyConnectedDigraph.html. Accessed: 2019-08-15. (cited on

Page 14)

[Weid] Eric W. Weisstein. Mathworld–a wolfram web resource: ”undirected
graph”. http://mathworld.wolfram.com/UndirectedGraph.html. Ac-
cessed: 2019-08-18. (cited on Page 11)

[Weie] Eric W. Weisstein. Mathworld–a wolfram web resource: ”weighted
graph”. http://mathworld.wolfram.com/WeightedGraph.html. Ac-
cessed: 2019-08-18. (cited on Page 11)

http://mathworld.wolfram.com/Tensor.html
http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/Perron-FrobeniusTheorem.html
http://mathworld.wolfram.com/Perron-FrobeniusTheorem.html
http://mathworld.wolfram.com/StronglyConnectedDigraph.html
http://mathworld.wolfram.com/StronglyConnectedDigraph.html
http://mathworld.wolfram.com/UndirectedGraph.html
http://mathworld.wolfram.com/WeightedGraph.html

62 Bibliography

Eidesstattliche Erklärung:

Hiermit versichere ich an Eides statt, dass ich diese Bachelorarbeit selbständig und
ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt
habe und dass alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
als solche gekennzeichnet sind, sowie dass ich die Bachelorarbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Anselm Fehnker

Münster, 21. September 2019

	Contents
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Structure of the Thesis

	2 Background
	2.1 OSS Projects in General
	2.2 The Role of Core Developers in OSS Projects

	3 Network Modeling and Centrality Measurement for OSS Projects
	3.1 OSS Projects as Developer Networks
	3.2 Established Centrality Measures for OSS Projects
	3.2.1 Degree Centrality
	3.2.2 Eigenvector Centrality

	3.3 Centrality Measurement in Multiplex Networks
	3.3.1 EDCPTD Centrality

	4 Research Questions
	5 Methodology
	5.1 OSS Projects Modeled as Multiplex Networks
	5.1.1 Forth-Order Tensor Representation
	5.1.2 Normalized Forth-Order Tensor Representation

	5.2 Implementation of EDCPTD Centrality
	5.3 (RQ1) EDCPTD Centrality Compared to Already Established Centrality Measures with the Help of Real OSS Projects
	5.3.1 Retrieval of OSS Project Data
	5.3.2 Data for The Comparison of OSS Projects
	5.3.3 Calculation of the Established Centrality Measures
	5.3.4 Calculation of EDCPTD Centrality
	5.3.5 Comparison of EDCPTD Centrality with Established Centrality Measures

	5.4 (RQ2) Detection of Typical Core Behavior by EDCPTD Centrality applied on synthetically generated OSS Projects
	5.4.1 Random Generated Artificial OSS Projects
	5.4.2 Setting 1: Core Developers are More Active then Peripheral Developers
	5.4.3 Setting 2: Core Developers Communicate More With Other Core Developers
	5.4.4 Setting 3: Peripheral Developers Only Communicate With Core Developers
	5.4.5 Setting 4: Hierarchy Networks

	6 Evaluation
	6.1 (RQ1) Comparison of EDCPTD centrality with Established Centrality Measures
	6.2 (RQ2) Detection of Typical Core Developer Behavior
	6.2.1 Results of Setting 1
	6.2.2 Results of Setting 2
	6.2.3 Results of Setting 3
	6.2.4 Results of Setting 4

	7 Conclusion
	8 Future Work
	A Appendix
	Bibliography

