
Master’s Thesis

S A M P L I N G E F F E C T O F N U M E R I C O P T I O N
E N C O D I N G O N P E R F O R M A N C E

P R E D I C T I O N O F H I G H LY- C O N F I G U R A B L E
S O F T WA R E S Y S T E M S

anna-maria maurer

October 25, 2022

Advisor:
Christian Kaltenecker Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Andreas Zeller CISPA Helmholtz Center for Information Security

Chair of Software Engineering
Saarland Informatics Campus

Saarland University



Anna-Maria Maurer: Sampling Effect of Numeric Option Encoding on Performance Prediction of
Highly-Configurable Software Systems, © October 2022



Erklärung 

 

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine 
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. 

 

Statement 

 

I hereby confirm that I have written this thesis on my own and that I have not used 
any other media or materials than the ones referred to in this thesis 

 

 

 

Einverständniserklärung 

 

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in 
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird. 

 

Declaration of Consent 

 

I agree to make both versions of my thesis (with a passing grade) accessible to the 
public by having them added to the library of the Computer Science Department. 

 

 

 

 

Saarbrücken,______________________ _____________________________                  
                             (Datum/Date)                                        (Unterschrift/Signature)
            

            

        

 

                                                                                                                                                                     





A B S T R A C T

Despite the fact that numeric features make up a huge share in real software systems,
performance analyses often ignore their existence or process them in a binary-encoded
format. However, there has been little research on the effect an encoding might have
on performance predictions. Only one article has analyzed the effect of encoding on the
learning aspect in more detail, but the sampling of configuration spaces has been disregarded
completely.

This thesis fills that void by analyzing the effect of one-hot encoding versus numeric feature
processing on the sampling phase, with the learning technique Random Forest. As effect
metrics, we regard the duration and cycle time of the sampling and learning phases, in
addition to the model prediction error. The findings are based on 22 case studies, of which
16 were measured from real software systems, and 6 were synthesized.

Our results demonstrate that there undoubtedly is a significant effect of encoding on
the execution and outcome of the performance-prediction pipeline. For the sample size,
processing numeric features leads to a smaller amount than applying binary encoding. The
same implication applies to the duration of the sampling and learning phase. Due to the
increase in sample size, the learning and total cycle time decreases when sampling over
one-hot encoded features. In contrast to the duration, the prediction error is lower for binary
than numeric feature encoding.

As a consequence, this thesis provides a first insight into the behavior of sampling for
performance prediction when regarding numeric features in contrast to one-hot encoding.

v





A C K N O W L E D G M E N T S

Writing a thesis is a very challenging task. Therefore, I am very thankful for the enormous
support I received.

First, I would like to express my sincerest gratitude to my advisor Christian Kaltenecker,
who guided me throughout this project and implemented required features in SPL Con-
queror. Thank you for providing the topic to the thesis, as well as for your continuous aid
and the occasional proofreading.

Furthermore, I would like to show my deep appreciation to Prof. Dr. Sven Apel for
allowing me to write the thesis at his Chair, and always having time to discuss the direction
of the thesis and the decisions made.

Additionally, I would like to recognize Prof. Dr. Andreas Zeller for performing the second
examination of this thesis.

Finally, I could not have undertaken this journey without my family and friends. My
thanks goes to Annabelle Weber for introducing me to the Chair and informing me about
the open thesis topic. Special thanks also to my family for their patience and continuous
encouragement.

vii





C O N T E N T S

1 introduction 1

2 background 3

2.1 Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Binary Encoding for Numeric Features . . . . . . . . . . . . . . . . . . 5

2.1.4 Feature Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Performance-Prediction Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 SPL Conqueror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Sampling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Binary Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Numeric Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Combination of Sample Sets . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Learning Models with Random Forest . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Statistical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 related work 21

3.1 Systematic Literature Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Quantitative Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 implementation 29

4.1 Generation of Artificial Software Systems . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Synthetic Feature Models . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Artificial Models for NFP Measurements . . . . . . . . . . . . . . . . . 29

4.1.3 Presentation of Created Models . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Selection of Real Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Realization of the Performance-Prediction Pipeline . . . . . . . . . . . . . . . 33

4.3.1 Sampling Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Learning Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 experiments 37

5.1 Experimental Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Sampling Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.3 Learning and Total Duration . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.4 Prediction Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 evaluation 45

6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



x contents

6.2.1 Analysis of Selected Hyperparameters . . . . . . . . . . . . . . . . . . 47

6.2.2 Distribution of Dependent Variables . . . . . . . . . . . . . . . . . . . . 47

6.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.2 External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 concluding remarks 55

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

a appendix 57

a.1 Extension of the Quantitative Description . . . . . . . . . . . . . . . . . . . . . 57

a.2 Artificial System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

a.3 Publication Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

a.4 Description of Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 70

bibliography 73



L I S T O F F I G U R E S

Figure 2.1 Example of a Feature Diagram . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.2 One-Hot Encoding Scheme . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.3 Example of a Feature Diagram with One-Hot Encoding . . . . . . . . 6

Figure 2.4 Performance-Prediction Pipeline . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.5 Visual Sample for One-Factor-at-a-Time . . . . . . . . . . . . . . . . . 13

Figure 2.6 Exemplary Sampling with Plackett-Burman Design . . . . . . . . . . 14

Figure 2.7 Visualization of Box-Behnken Design . . . . . . . . . . . . . . . . . . . 14

Figure 2.8 Scheme of Central Composite Inscribed Design . . . . . . . . . . . . 15

Figure 3.1 Numeric Input Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.2 Sampling Techniques for Binary-Encoded Features . . . . . . . . . . 25

Figure 3.3 Sampling Techniques Applied on Numeric Input . . . . . . . . . . . . 26

Figure 3.4 Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.1 Categories of Measurement Distributions . . . . . . . . . . . . . . . . 30

Figure 4.2 Cut of One-Hot Encoded Feature Model in Sampling . . . . . . . . . 33

Figure 5.1 Scheme for Calculating the Evaluation Score . . . . . . . . . . . . . . 44

Figure 6.1 Linear Plot of the Metrics’ Distributions . . . . . . . . . . . . . . . . . 49

Figure 6.2 Metrics’ Distributions Plotted on a Logarithmic Scale . . . . . . . . . 50

Figure A.1 Publication Chronology . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure A.2 Origin of Publishers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure A.3 Influence of the Chair of Software Engineering . . . . . . . . . . . . . 58

Figure A.4 Feature Diagram for Dataset_01 . . . . . . . . . . . . . . . . . . . . . 59

Figure A.5 Measurement Distributions of Dataset_01 . . . . . . . . . . . . . . . 59

Figure A.6 Feature Diagram for Dataset_02 . . . . . . . . . . . . . . . . . . . . . 60

Figure A.7 Measurement Distributions of Dataset_02 . . . . . . . . . . . . . . . 60

Figure A.8 Feature Diagram for Dataset_03 . . . . . . . . . . . . . . . . . . . . . 61

Figure A.9 Measurement Distributions of Dataset_03 . . . . . . . . . . . . . . . 61

Figure A.10 Feature Diagram for Dataset_04 . . . . . . . . . . . . . . . . . . . . . 62

Figure A.11 Measurement Distributions of Dataset_04 . . . . . . . . . . . . . . . 62

Figure A.12 Feature Diagram for Dataset_05 . . . . . . . . . . . . . . . . . . . . . 63

Figure A.13 Measurement Distributions of Dataset_05 . . . . . . . . . . . . . . . 63

Figure A.14 Feature Diagram for Dataset_06 . . . . . . . . . . . . . . . . . . . . . 64

Figure A.15 Measurement Distributions of Dataset_06 . . . . . . . . . . . . . . . 64

xi



L I S T O F TA B L E S

Table 2.1 Sampling Strategies Supported by SPL Conqueror . . . . . . . . . . . 9

Table 2.2 Valid Binary Configurations for the Example . . . . . . . . . . . . . . 10

Table 2.3 Example for Option-Wise Sampling . . . . . . . . . . . . . . . . . . . 11

Table 2.4 Exemplary Negative Option-Wise Sampling . . . . . . . . . . . . . . . 11

Table 2.5 Examples of t-Option-Wise Sampling . . . . . . . . . . . . . . . . . . 11

Table 2.7 Exemplary Distance-Based Sampling . . . . . . . . . . . . . . . . . . . 12

Table 2.8 One-Factor-at-a-Time for Examplary Features . . . . . . . . . . . . . . 13

Table 2.9 Example of a Sampling with Plackett-Burman Design . . . . . . . . . 14

Table 2.10 Example of Sampling with Box-Behnken Design . . . . . . . . . . . . 14

Table 2.11 Two Examples for Central Composite Inscribed Design . . . . . . . . 15

Table 2.13 Valid Configurations after Combining Sample Sets . . . . . . . . . . . 17

Table 3.1 Listing of Regarded Publications . . . . . . . . . . . . . . . . . . . . . 22

Table 4.1 Generation of Artificial Software Systems . . . . . . . . . . . . . . . . 31

Table 4.2 Selection of Real Software Systems . . . . . . . . . . . . . . . . . . . . 32

Table 4.3 Scheme for the Sampling Step . . . . . . . . . . . . . . . . . . . . . . . 34

Table 4.4 Encoding Categories in the Performance Pipeline . . . . . . . . . . . 34

Table 4.5 Scheme for the Realization of the Hyperparameter-Learning Step . . 36

Table 5.1 Hardware Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 5.2 Grid of Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 6.1 Score Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table A.1 Identified Publications Applying Binary Encoding . . . . . . . . . . . 65

Table A.2 Detected Articles Processing Numeric Options . . . . . . . . . . . . . 67

Table A.3 Characteristics of Real and Synthetic Software Systems . . . . . . . . 70

xii



A C R O N Y M S

ASE Automated Software Engineering

BBD Box-Behnken Design

CART Classification and Regression Trees

CCID Central Composite Inscribed Design

CPU Central Processing Unit

DOD D-Optimal Design

DFNN Deep Feed-forward Neural Network

DT Decision Tree

ESEC/FSE European Software Engineering Conference and Symposium on the
Foundations of Software Engineering

FF Full-Factorial

FW Feature-Wise

GAN Generative Adversarial Network

GPR Gaussian Process Regression

ICSE International Conference on Software Engineering

KDE Kernel Density Estimation

kNN k-Nearest-Neighbors Regression

KRR Kernel-Ridge Regression

LMT Linear Model Tree

MAPE Mean Absolute Percentage Error

MAE Mean Absolute Error

ML Machine Learning

MLR Multiple Linear Regression

NN Neural Network

NFP Non-Functional Property

NOW Negative Option-Wise

OFAT One-Factor-at-a-Time

OW Option-Wise

PBD Plackett-Burman Design

PW Pair-Wise

RF Random Forest

RMSE Root Mean Square Error

xiii



xiv acronyms

SE Software Engineering

SHAP SHapley Additive exPlanations

SVR Support Vector Regression

tOW t-Option-Wise



1
I N T R O D U C T I O N

Highly configurable software systems are deployed everywhere in nowadays life [39]. Thus,
it is crucial to realize that the choice of selected features and feature values in a system
highly influences its performance. This has far-reaching consequences, since the effect on the
performance can occur in various ways and on many different aspects of a system [23]. Next
to variations in the functionality, many non-functional properties (NFPs) are also affected [5].
It concerns e. g., runtime, Central Processing Unit (CPU) utilization, memory load, response
time, or for zipping applications, compression rates.

Despite the fact that many software systems also use a fair share of numeric values to
encode system options [8, 66], many analyses constrain themselves to assimilate only binary
configuration options [29, 37, 43, 47, 57, 70, 88]. Those are often simpler to process, as
binary features consist only of two states selected and deselected, whereas numeric options
can encompass an arbitrary amount of numeric values, e. g., memory size.

To identify the optimal configuration regarding a certain NFP for a given software system,
it is crucial to either know or estimate the performance of each valid configuration [86].
Since brute-force measuring is very inefficient for determining the performance of a software
system [5], a vast majority of approaches specialize in performance predictions to locate the
optimal configuration [57, 87].

Many articles deal with sampling and performance prediction. For those publications
that include numeric options, there exist two strategies of integrating them inside the
performance-prediction procedure [30]: On one hand, several articles accept numeric values
when analyzing or predicting variable system performances. On the other hand, some
publications rely on binary encoding methods to process numeric features. Hereby, each
numeric option is transformed into one or multiple binary features, depending on the type
of encoding. In this paper, we focus on the one-hot encoding technique, because it is widely
accepted and considers each value of the numeric feature.

The applied encoding can have side effects on the performance analysis [30], as it plays a
decisive factor when selecting sampling strategies [58], and binary encoding can lead to
information loss. Nonetheless, nature and extent of this side effect have not been identified
in detail yet, since there has been little research in this area prior to this thesis. To achieve
an overview over the use of numeric and encoded features in performance prediction, we
performed an extensive literature research. The procedure of binary encoding has been
applied in quite some publications, with little reasoning and in some cases it was done
implicitly. Other articles include numeric features directly, again seldom with a sound
justification. Only three publications make use of both binary encoding and numeric
processing, and contrast the results afterwards. However, the focus of two publications
clearly lies in another area, and the choice of sampling strategies and the variation in learning
are quite narrow [31, 34]. The third one generates insight into the effects encoding has on
performance prediction. Thereby they concentrate on the learning aspect of predictions, and
disregard the sampling completely [30].

1



2 introduction

Afterwards, we performed a quantitative analysis over 16 case studies based on real
software systems, in addition to six synthetic case studies, to examine the effect of encoding
in more detail. Thereby, we concentrated on the sampling phase of the prediction pipeline
and analyze the sampling and learning duration, as well as the model prediction error. As
a result, we gain insight of when the usage of one-hot encoding is preferable over numeric
values.

In the evaluation, we showed the existence of a non-negligible effect on the performance
prediction. We discovered that the duration of the steps and the whole pipeline, as well
as the sample size, are significantly lower when applying numeric feature representation.
In contrast, for the prediction error, one-hot encoding combined with learning of Random
Forests performs better.



2
B A C K G R O U N D

In this chapter, we explain the background knowledge needed to understand the mechanics
used in this thesis. First, we introduce the basic terms of configurations and options. Later
on, the foundations for the following chapters are lined out. Hereby, the focal point lies in
elaborating the process for creating performance-prediction models, as well as the realization
and variation of two crucial process steps. Additionally, it provides a short overview of the
application used to perform these phases, and the statistical test included in the calculation
of the results.

2.1 configuration options

Highly configurable systems offer a variety of configuration options to the user, which
regulate what parts of a system are active and how the application is to proceed [5]. The
choice for or against an option can influence both functionality and NFPs of a system [23,
92]. Those configuration options are also called features f ∈ F and can take multiple forms.

The most common type of options are binary options fbin ∈ Fbin, where the assigned
value is an element of {0; 1} [5]. Hereby 1 signifies that the feature is selected, and 0 means
that the option is deselected. In real-life systems, for instance they can be used to portray
whether a log is to be written, the data should be compressed, or encryption shall be used.
For the following explanations in the chapter, we use the 7 binary features:

A, B, C, D, E, F, G ∈ {0; 1}

Another, more complex kind of configuration options are numeric options [58]. In contrast to
binary ones, those allow a discrete amount of real numbers. A numeric feature fnum ∈ Fnum

can for instance store buffer or block sizes, auto-save intervals or work memory capacity.
Some examples, which will also be referred to later on, are:

M ∈ {2; 4; 8; 16; 32},

N ∈ {−3; 0; 1; 8; 15},

O ∈ {1; 3; 5; 7; 9; 11; 17}.

2.1.1 Feature Model

Moreover, configuration options are usually organized in a hierarchical structure, also called
feature model [5]. They are written as Boolean formulas describing the interdependence
of features. In there, we can portray child-parent relationships between options. Thus, if
a parent feature is selected, a Boolean formula regulates the presence of child options. In
contrast, for all deselected features, their sub-options are per default deselected.

3



4 background

Commonly, there exist different types of relationships, based on Boolean AND, OR and
XOR operators [93]. For OR relations (and XOR respectively), at least (exactly) one of the
children has to be selected. With the AND operator, all sub-features are in principle mandatory.
However, in some scenarios optional sub-trees are of necessity. Therefore each direct child
of an AND relation is supplemented with a unary operator signifying whether the option is
obligatory or elective.

An example for a feature model is presented via Boolean Formula in Equation 2.1.

A ∧ (B⇒ A) ∧ ((C ∨ D)⇔ B) ∧ (E⇔ A) ∧ ((F ∨ G)⇔ E) ∧ (¬(F ∧ G))

∧(M = 2∨M = 4∨M = 8∨M = 16∨M = 32)

∧(N = −3∨ N = 0∨ N = 1∨ N = 8∨ N = 15)

∧(O = 1∨O = 3∨O = 5∨O = 7∨O = 9∨O = 11∨O = 17)

(2.1)

It portrays the following relationships of a feature model:

• If option A is selected (and as the root node, it always is), E is mandatory and B can or
cannot be selected. Based on A, M, N and O can take any of their defined values.

• If B is deselected, then neither C or D can be selected. Otherwise, at least one of them
must be selected.

• Similarly, the presence of E dictates that exactly one of F and G must be selected.

As an alternative to Boolean formulas, feature models are usually displayed in form of
a tree-based graph, so that they are easier for humans to read [5]. Those graphs are then
called feature diagrams.

Figure 2.1 displays an exemplary feature diagram equivalent to the feature model in
Equation 2.1.

A

B EN
{-3;0;1;8;15 }

M
{2;4;8;16;32}

O
{1;3;5;7;9;11;17 }

C D F G

binary numeric
values

Mandatory option

Optional option

Alternative group

Or group

Figure 2.1: Example of a feature diagram with 7 binary options A to G and three numeric options
M, N, O



2.1 configuration options 5

2.1.2 Configurations

A configuration c is then made up of features f and their assigned values c(f) [37]. For
instance, regard the following configuration given as a set of feature-value pairs:

cexample = {A = 1; B = 1; C = 1; D = 1; E = 1; F = 0; G = 1; M = 2; N = 1; O = 11}.

The set of all possible configurations C is calculated via the Cartesian product of all option
ranges [42]. In our case, the amount of entries equals

|C| = P(F) = 2|Fbin| · |M| · |N| · |O| = 27 · 5 · 5 · 7 = 22 400.

Even though, depending on the construction of the feature model, the majority of those
configurations may be invalid [85]. For our example, the usable configurations in C f m
amount to 6, 25%:

|C f m| = 1A=1 · (1B=0 + 1B=1 · (1C=1;D=0 + 1C=0;D=1 + 1C=1;D=1))

· 1E=1 · (1F=1;G=0 + 1F=0;G=1) · |M| · |N| · |O|
= 1 · 4 · 1 · 2 · 5 · 5 · 7 = 1 400 = 6, 25% · |C|.

In addition to the restrictions given by the options’ hierarchy, Boolean constraints appended
to the feature model can limit the set of accepted configurations even further [62]. They are
commonly called cross-tree constraints [5]. For instance, regard an additional constraint
con := G ⇒ (M > 8) as to be included into our feature model. Then, the number of valid
configurations C f m∧con is limited to 4.375%:

|C f m∧con| = 1A=1 · (1B=0 + 1B=1 · (1C=1;D=0 + 1C=0;D=1 + 1C=1;D=1))

· 1E=1 · (1F=1;G=0 · |M|+ 1F=0;G=1 · |(M > 8)|) · |N| · |O|
= 1 · 4 · 1 · (5 + 2) · 5 · 7 = 1 120 = 4.375% · |C|.

The configuration space is defined as the set of all valid configurations given by the whole
feature model (in our case C f m∧con).

2.1.3 Binary Encoding for Numeric Features

As not every approach is capable of processing numeric input, some approaches transform
the numeric features into one or multiple binary options by specified encoding mechanisms.
There exist several strategies for such a binary encoding, depending on the granularity of
the wanted result.

The most frequently used technique is commonly called one-hot encoding. The first in-
troduction of this encoding on feature models occurs in Grebhahn et al. by the name
discretization [31, 34]. One-hot encoding transforms each numeric option into a tree consisting
of binary features with height 1. Hereby the mandatory tree root node takes the place of
the numeric option. Each numeric value is represented by an annotated binary child node
in the tree. Its selection corresponds to the feature taking this concrete value. A numeric
option can only take one value in a configuration, therefore, the corresponding binary



6 background

nodes are alternative (XOR). Figure 2.2 visualizes the scheme of this encoding. We call the
set of all one-hot encoded options Fohe, this set contains the whole sub tree created by the
encoding including their root features. The one-hot encoding transformation is bijective, as
every numeric value can be depicted by a unique selection of binary features; and each
selection of the one-hot encoded features can be re-transferred to a numeric value.

feature
{v1,v2,v3,...}

feature

feature v1 feature v2 feature v3 feature ...

one-hot-encoding

one-hot-decoding

binary numeric
values

Alternative group

Figure 2.2: Scheme describing the process of one-hot encoding and its reversal, one-hot decoding

The Boolean feature model in Equation 2.2 shows the model introduced in Section 2.1.1,
where the numeric option M has been one-hot encoded. In this case Fohe is given as:

Fohe = {M; M_2; M_4; M_8; M_16; M_32}

Although usually all numeric features are encoded in the same way (all one-hot encoded or
all numeric), for simplification reasons we transform only M in this example. All changes
were rendered bold for an easier identification. Furthermore, the additional constraint
introduced in the previous section is left out.

A ∧ (B⇒ A) ∧ ((C ∨ D)⇔ B) ∧ (E⇔ A) ∧ ((F ∨ G)⇔ E) ∧ (¬(F ∧ G))

∧(N = −3∨ N = 0∨ N = 1∨ N = 8∨ N = 15)

∧(O = 1∨O = 3∨O = 5∨O = 7∨O = 9∨O = 11∨O = 17)

∧(M⇔ A) ∧ ((M_2 ∨M_4 ∨M_8 ∨M_16 ∨M_32)⇔ M)

∧(¬(M_2 ∧M_4)) ∧ (¬(M_2 ∧M_8)) ∧ (¬(M_2 ∧M_16)) ∧ (¬(M_2 ∧M_32))

∧(¬(M_4 ∧M_8)) ∧ (¬(M_4 ∧M_16)) ∧ (¬(M_4 ∧M_32))

∧(¬(M_8 ∧M_16)) ∧ (¬(M_8 ∧M_32)) ∧ (¬(M_16 ∧M_32))

(2.2)

The preceding feature model corresponds to the feature diagram presented in Figure 2.3.

A

M B E

M 2 M 4 M 8 M 16 M 32

N
{-3;0;1;8;15 }

O
{1;3;5;7;9;11;17 }

C D F G

binary numeric
values

Mandatory option

Optional option

Alternative group

Or group

Figure 2.3: Feature diagram from Figure 2.1, where option M has been one-hot encoded

Furthermore, other encoding techniques can be realized by disregarding some feature
values and thus, possibly valid configurations. Denk, for instance proposes to ignore all



2.2 performance-prediction pipeline 7

but the default value [20]. For the categorical variable SQLITE_THREADSAFE encoded by
numbers all but the two most contrasting options where left out. Similarly, Jamshidi et al.
and Velez et al. suggest the use of just two values, typically opposites on the feature value
spectrum [43, 88].

As those techniques restrict the configuration space and are seldom applied in research
publications, we further on concentrate on one-hot encoding and its effects.

2.1.4 Feature Interactions

Options do not only exist in isolation, but rather they also must interact with each other to
reach their respective goals [5]. This also affects the NFPs, as the actual measurement NFP(c)
for a configuration c usually differs from the value resulting from adding the influence
i(f = c(f)) of each single feature f to the base term NFP0.

NFP(c) 6= NFP0 + ∑f∈F i(f = c(f))

One popular example is a mailing system which allows users to both encrypt and compress
mails [6, 60]. Regarding the duration, each of those features individually adds an effect
greater than 0. However, combined the supplement is much smaller than both option
influences together, as the compression reduces the amount of encryption that needs to
be performed by the system. This shows that the interaction between compression and
encryption also has an impact on the duration.

NFP(c) = NFP0 + i( = 1) + i( = 1) + i( = 1, = 1)

< NFP0 + i( = 1) + i( = 1)

Similarly, the interactions of various features may affect several NFPs in other scenarios [6].
Those can be of any order o, therefore all combinations of o options may be relevant as well
having either a positive or negative effect on the NFP. These effects should be covered when
building models. One example for a high-order interaction is the performance feature bug
portrayed in Nguyen et al. concerning 6 options [67].

2.2 performance-prediction pipeline

The regarded pipeline for performance predictions is an adaption of the pipeline presented
by Kaltenecker et al. and consists of four central steps [46]. This analysis has no insight
into the implementation of a configurable system, therefore it represents a black-box
approach [89].

(1) Sampling configurations selects a subset of all valid configurations based predefined
strategies [35]. This step is essential, as the amount of configurations to consider
increases exponentially when adding new features. Consequently, performing the
later actions for all valid configurations would be quite inefficient [63]. The choice of
sampling strategies to apply is mostly based on the option encoding, thus the feature
setup may affect the final sample. The resulting sample set of this phase forms the
foundation of all following steps.



8 background

(1) Sampling

(4) Predicting

…

Figure 2.4: Pipeline used for performance prediction
It includes its four steps (1) sampling, (2) measuring, (3) learning, and (4) predicting.

(2) Measuring performance determines the property values of the sampled configurations
for the examined software system on a constant setting [33]. This step was left out in
the creation of this thesis, as the measurements for the whole configuration set were
provided by the Chair. In practice, this phase takes up the majority of the prediction
duration when estimating NFP for a new software system [63].

(3) Learning models creates a property model with machine-learning techniques based on
the sample set and their corresponding measurements, taking into account all features
and their interactions [89]. The inherent assumptions may cause enormous variation in
the model quality, thus the modeling parameters, also referred to as hyperparameters,
have to be chosen well [33, 38]. The learning process is executed upon sampled data,
therefore the size and encoding of the sample set affects the quality of the model as
well [26].

(4) Predicting: With the resulting model, the regarded NFP can be estimated for all other
configurations. The further goal is usually the optimization of the performance model
to identify the (nearly) optimal configuration [63, 68].

The central steps for this thesis, sampling and learning, are elaborated in Section 2.4
respectively Section 2.5, and their execution is described in Section 2.3.

encoding-independence Regarding the sampling and learning steps of the prediction
pipeline, it is crucial to realize that the encoding used for sampling es does not necessarily
have to be identical to the one applied for learning el . This presents a greater opportunity
for optimization, as on one hand we can choose an encoding together with a suitable
strategy for sampling, on the other hand for learning we can select the encoding and an
appropriate machine-learning technique. However, similar to function composition, there
exist prerequisites for the transformations between the encoding strategies t_,s and ts,l :

• The codomain of t_,s and the domain of the ts,l function must match, so that every
value resulting from t_,s is applicable to ts,l [83].



2.3 spl conqueror 9

• If a re-transfer to the original values is intended, bijection is recommended for both
t_,s and ts,l [19].

One-hot encoded and numeric representation are two encoding strategies, which along with
their transformations one-hot encoding and one-hot decoding fit all these criteria. Therefore,
one-hot encoded and numeric representation are allowed for both the sampling and learning
phase in our experiment.

2.3 spl conqueror

Two of the phases inside the performance-prediction pipeline, namely sampling and learning,
can be realized partially with the application SPL Conqueror1. It can be used to sample
configurations including measurements and learn performance models to make predictions.

In SPL Conqueror software systems are regarded as black-box models, as deeper analysis
like in Velez et al. [87] requires available and processed source code, which is only given for
open-source projects.

After specifying the variability model and the valid configurations including performance
measurements, the sampling strategies are to be selected. The following Table 2.1 displays
the strategies offered by SPL Conqueror that we consider to use.

Table 2.1: Sampling strategies supported by SPL Conqueror for both binary and numeric features, as
far as they are relevant in the progress of this thesis.
Equivalents between sampling strategies are marked by an equivalence symbol (⇔).
The entries in brackets are also mechanisms provided by SPL Conqueror, even though
they are not actually sampling techniques as they just return all configurations.

Binary Sampling Strategies Numeric Sampling Strategies

Option-Wise (OW) ⇔ One-Factor-at-a-Time (OFAT)

Negative Option-Wise (NOW) Plackett-Burman Design (PBD)

Pair-Wise (PW) Box-Behnken Design (BBD)

t-Option-Wise (tOW) Central Composite Inscribed Design (CCID)

Random ⇔ Random

Distance-based

(Allbinary) ⇔ (Full-Factorial (FF))

In the command line version, the options over which to sample can be indicated as
well, so that the sampling occurs only on a subset of all potentially relevant options. This
program aspect will be used to split the binary from the one-hot encoded features later on
(cf. Section 4.3.1). The results of the sampling step can be issued for separate analysis.

Afterwards, the model learning can also be executed in SPL Conqueror. The NFP to
estimate can be selected, and the learning algorithm including additional parameters may
be specified for the sampled set. SPL Conqueror natively supports only Multiple Linear
Regression (MLR), but other techniques are available via python imports of the package

1 available at: https://github.com/se-sic/SPLConqueror/tree/xgboost, last visited at: 2022-08-12.

https://github.com/se-sic/SPLConqueror/tree/xgboost


10 background

scikit-learn2 to perform the training and predictions needed. Further commands allow the
optimization of the model and more detailed analysis of the learning process.

2.4 sampling strategies

The available sampling strategies highly depend on the given feature type. Most established
sampling strategies can only be used with binary features, whereas many experimental
designs are applicable for sampling numeric features [79].

Only few strategies are capable of processing both binary and numeric options. Just
one is considered in this thesis, random sampling [38, 61, 78]. Despite that possibility, SPL
Conqueror applies random sampling separately per datatype and joins the results [46].
Therefore the strategy is described for both binary and numeric input individually.

2.4.1 Binary Sampling Methods

There are various sampling strategies in use for binary features. For illustration purposes,
the options A to G including feature model constraints are consulted in this section, as
introduced in Section 2.1. All valid configurations Cbin regarding those features are portrayed
in Table 2.2.

Table 2.2: All valid configurations Cbin based on the binary features A to G

cindex A B C D E F G

1 1 0 0 0 1 1 0

2 1 1 0 1 1 0 1

3 1 1 0 1 1 1 0

4 1 1 1 0 1 0 1

5 1 1 1 0 1 1 0

6 1 1 1 1 1 0 1

7 1 1 1 1 1 1 0

One category of sampling strategies are coverage-based strategies, as they are defined
by a coverage criteria [90]. In this thesis, the granularity of coverage is restricted to the
feature-level, since SPL Conqueror analyzes black-box models.

One member of this category is Option-Wise (OW) sampling, also called Feature-Wise (FW)
sampling, where for each available feature a valid configuration with this feature selected and
minimal other options selected is chosen [35]. This minimizes the effect of interactions in later
analyses. For our example, this would result for instance in the set COW = {c1; c2; c3; c4; c5},
reasoning and iteration cycles are presented in Table 2.3.

In contrast, Negative Option-Wise (NOW) maximizes the amount of interactions to con-
sider, as here valid configurations are selected with a maximum of selected features while

2 https://scikit-learn.org/, last visited at: 2022-07-23.

https://scikit-learn.org/


2.4 sampling strategies 11

deselected the current option for each feature of interest [32]. An example is CNOW =

{c1; c2; c5; c6; c7}, as clarified by Table 2.4.

Table 2.3: An exemplary result for OW sampling
based on the binary features A to G

cindex A B C D E F G

1 1 0 0 0 1 1 0

5 1 1 1 0 1 1 0

4 1 1 1 0 1 0 1

3 1 1 0 1 1 1 0

1 1 0 0 0 1 1 0

1 1 0 0 0 1 1 0

2 1 1 0 1 1 0 1

Table 2.4: In contrast Negative Option-Wise
(NOW) sampling for the same features

cindex A B C D E F G

- 0 - - - - - -

1 1 0 0 0 1 1 0

2 1 1 0 1 1 0 1

5 1 1 1 0 1 1 0

- - - - - 0 - -

6 1 1 1 1 1 0 1

7 1 1 1 1 1 1 0

As the result is usually iteratively determined, the focal feature per row is underlined.

Table 2.5: tOW sampling for t = 2 (PW) and t = 3
In both tables, the two respective three underlined features per line indicate the combina-
tions covered by this configuration. The mandatory options A and E are only considered
in the first row, as including them in other iteration is equivalent to performing OW and
PW on the other features.

(a) PW Sampling

cindex A B C D E F G

1 1 0 0 0 1 1 0

4 1 1 1 0 1 0 1

3 1 1 0 1 1 1 0

5 1 1 1 0 1 1 0

2 1 1 0 1 1 0 1

6 1 1 1 1 1 0 1

5 1 1 1 0 1 1 0

4 1 1 1 0 1 0 1

3 1 1 0 1 1 1 0

2 1 1 0 1 1 0 1

(b) tOW Sampling for t = 3

cindex A B C D E F G

1 1 0 0 0 1 1 0

6 1 1 1 1 1 0 1

5 1 1 1 0 1 1 0

4 1 1 1 0 1 0 1

3 1 1 0 1 1 1 0

2 1 1 0 1 1 0 1

7 1 1 1 1 1 1 0

6 1 1 1 1 1 0 1

Furthermore, t-Option-Wise (tOW) has been designed to recognize interactions of size t or
less, thus all combinations of t selected options are required [46]. However, this strategy be-
comes quite costly with increasing t, as the size of the resulting set lies in O(|Fbin|t) [46]. The
special case of t = 2 is also called Pair-Wise (PW) [31]. Table 2.5 shows exemplary iterations



12 background

for PW and tOW with t = 3, which result in CPW = {c1; c2; c3; c4; c5; c6} and C3OW = Cbin
respectively. The small number for both is a consequence of the tight constraints, in a setting
with 7 optional and independent features, the number of sampled configurations would
amount to 21 respective 35.

A more randomized approach is given by distance-based sampling [47]. Here, an origin
(all options deselected), and a distance metric (Manhattan Distance) for all configurations is
defined. Based on this setting, a random distance d is chosen. Afterwards, a configuration
with distance d to the origin is randomly selected by a SAT-Solver. An advantage of this
strategy is the flexible amount of samples selected. Moreover, the resulting configurations
are more (randomly) widespread than pure SAT-based approaches, as with those the sample
set often forms dense clusters inside the total configuration space [69]. Table 2.7 provides an
example with 4 configurations.

Table 2.7: Example of 4 configurations selected via distance-based sampling.
Since the origin implies that all features are deselected, a distance with valid configurations
lies within {3; 5; 6}.
All non-mandatory features are underlined when selected for this configuration.

origin:

A B C D E F G

0 0 0 0 0 0 0

cindex Distance A B C D E F G

1 3 1 0 0 0 1 1 0

4 5 1 1 1 0 1 0 1

2 5 1 1 0 1 1 0 1

6 6 1 1 1 1 1 0 1

The idea of random sampling is, as the name indicates, a pure random selection of a
predefined number of samples among the valid configuration space. However, the systems
often have too many possible configurations to enumerate, and many of those may be
invalid [53]. This is visualized by an example of the Linux kernel: Out of one million
randomly selected configurations, less than 100 were valid. Thus, it is very inefficient
to randomly generate a configuration and afterwards check it for validity. Therefore, in
practice SAT solvers identify all valid configurations [79]. Based on this result set, an
arbitrary amount of valid configurations can be chosen.

The sampling allbinary choice in SPL Conqueror (cf. Table 2.1) defines the whole configu-
ration set as sampled. Undoubtedly, this strategy is very inefficient and thus seldom applied
in practice [36]. In our case, as the measurements have already been completed, using all
data might provide some insights for interpreting other sampling strategies. Nonetheless,
the results of those runs do not take part in any evaluation.



2.4 sampling strategies 13

2.4.2 Numeric Sampling Methods

In this section, our example features from Section 2.1 are accessed once again; this time the
numeric ones M, N, O. As no constraints are defined between those, all |Cnum| = 5 · 5 · 7 =

175 configurations are considered valid for this subsection.
Three strategies available have equivalents in binary sampling: Just like OW, One-Factor-

at-a-Time (OFAT) varies one feature while leaving the others in default value (usually
minimum or 0) [33]. Visually interpreted, the selected configurations try to cover all points
on the option axes. Figure 2.5 illustrates this aspect, and Table 2.8 lists all corresponding
configurations for the given options.

3
4

O

N

M
-3

1

8

15

8 16 32

5
7

9
11

17

Figure 2.5: Sample for M, N, O with OFAT

The number in the blue dots marks the
value for the feature on the axis it lies,
the other values are default.

Table 2.8: Configurations for the example features
M, N, O when using OFAT

M N O M N O

4 0 1 2 0 3

8 0 1 2 0 5

16 0 1 2 0 7

32 0 1 2 0 9

2 -3 1 2 0 11

2 1 1 2 0 17

2 8 1 center:

2 15 1 2 0 1

Full-Factorial (FF) selects the combination of every value from each option, thus all
possible configurations are chosen [45]. It corresponds to the allbinary choice in binary
sampling, and the same rules are applied here. The random sampling for numeric options
is identical to the one of binary features [79].

Various experimental designs have been transferred as sampling strategies for numeric
features. These techniques frequently make use of attributions to match the values of k differ-
ent features onto l homogeneous levels, based on which the design then is sampling over the
given scenario. Afterwards, the mapped samples are transformed into real configurations
referring now again to feature values.

One adopted design is the Plackett-Burman Design (PBD) introduced by Plackett and
Burman [73]. Its advantage is the flexible number of levels l and configurations to extract,
which are also called measurements m [35]. Hereby, m must be no higher than l|Fnum|, as the
number of levels constricts the configuration space considered by the sampling strategy.
Nonetheless, due to conventions, m often takes the form of lx, 0 < x ≤ |Fnum|.

First, the levels 0, 1, . . . , l − 1 are mapped uniformly to each option range, such that 0
points to the smallest value, and l − 1 to the largest. Based on this allocation, a random
array of size m− 1 is created for the first feature [73].

For all later features, this array is shifted by one value compared to the previous array.
Finally, the default configuration (minimum of all option values) is added as the last row.



14 background

An example showing the mapping including array shift with l = 3, m = 9 is displayed in
Figure 2.6. Moreover, in Table 2.9 we illustrate a realistic sample from the numeric features
introduced in Section 2.1.

0 1 2 2 0 2 1 1

options

0 1 2 2 0 2 1

0 1 2 2 0 2

0 1 2 2 0

0 1 2

0 1 2 2

0 1

0

1

1 1

2 1 1

2 0 2 1 1

0 2 1 1

2 2 0 2 1 1

1 2 2 0 2 11

00 0 0 0 0 0 0

co
n

fi
g

u
ra

ti
o

n
s

Mapping

0 -> minimal value

1 -> center value

2 -> maximal value

Figure 2.6: Exemplary sample of mappings with
PBD for l = 3 and m = 9 measure-
ments [35]

Table 2.9: Configurations for the example features
M, N, O for l = 3 and m = 9 sampled
with PBD as the tree first columns of
Figure 2.6

M N O M N O

2 1 17 32 -3 17

8 -3 7 32 15 1

8 1 1 8 15 17

32 1 7 2 -3 1

2 15 7

Box-Behnken Design (BBD) is a second-order design published by Box and Behnken [11].
It is based on three option levels (-1 for the minimal value, 0 refers to the mid-value and 1

maps to the highest value) [33]. Depending on an internal variable k, a fractional design
consisting of multiple blocks is created. In each block, one part of the features is set to
0, whereas the remaining m options form a full-factorial mesh of the levels -1 and 1. In
addition, some center points are selected. Figure 2.7 provides the standard design for three
features, and additionally Table 2.10 contains sampled configurations for our example.

O

N

M

Figure 2.7: Design scheme for BBD with 3 features
It can be interpreted as a cube, from
which all midpoints of the edges are
selected, together with the cube’s cen-
ter [2].

Table 2.10: An exemplary sampling with BBD for
the three options (M, N and O) based
on the design scheme portrayed in Fig-
ure 2.7.

M N O M N O

32 1 17 2 1 17

32 1 1 2 1 1

32 15 7 2 15 7

32 -3 7 2 -3 7

8 15 17 8 -3 17

8 15 1 8 -3 1

center: 8 1 7



2.4 sampling strategies 15

Central composite design is a second-order technique presented in 1951 by Box and
Wilson [12]. It is realized by embedded factorial designs, combined with 2 · k star points
and additional center points. Those are projected into a mapped feature space, with their
origin being in the middle of the value range [32].

M

N

2 4 8 16 32

-3

0

1

8

15

(a) Design Scheme with two Options M and N
The star (in green) is shaped like a cross and
the blue embedded factorial design looks like a
square [45].

O

M

N

(b) Three-dimensional Scheme with M, N and O
The factorial is represented by a small die of blue
dots. It is surrounded by 6 green points located
on each end of the option axes. In contrast to BBD,
these points don’t mark midpoint edges, instead
they are situated in the center of each side of the
feature cube [12].

Figure 2.8: CCID design schemes for two and three options

Table 2.11: Central Composite Design in two examples for 2 and 3 features respectively
The green star dots are listed on the left side of each table, the blue factorial on the right
side.

M N M N

2 1 4 0

8 -3 4 8

8 15 16 0

32 1 16 8

center: 8 1

(a) Sampling over 2 options M and N

M N O M N O

2 1 7 4 0 3

8 -3 7 4 0 11

8 1 1 4 8 3

8 1 17 4 8 11

8 15 7 16 0 3

32 1 7 16 0 11

center: 16 8 3

8 1 7 16 8 11

(b) Listing of samples for three features M, N and O



16 background

There exist multiple variations of this design. In this thesis, we use Central Composite
Inscribed Design (CCID), a central design using five option levels. The mapping is similar to
BBD. In contrast to the central composite circumscribed design, the other two levels regarded
in CCID are found inside the feature range [94]. The end points of the star lie at the outer
ring of the feature space; for each option the minimum and maximum are combined with
the center value of the other features. Concerning the factorial design, its corners have about
the same distance to the center as the star points, and they are stationed diagonally from
the feature axes. Figure 2.8 shows two design schemes for two respective three features, and
Table 2.11 displays the configurations on our example with once just M and N as well as
another with all three options.

2.4.3 Combination of Sample Sets

When sampling over different feature subsets, the resulting partial configurations have to
be merged to receive usable configurations over the whole feature space [32]. To prevent
information losses during the join, it is realized via a Cartesian product [35], which combines
each sampled configuration of the first set with every entry from the second sampling result.
For m partial configurations sampled over the first subset of features, and respectively n for
the second feature subset, the product issues m · n complete configurations. For our example,
when using the results from distance-based sampling CDB presented in Table 2.7 merged
with the samples generated by PBD CPBD displayed in Table 2.9, the possible configurations
amount to 36 as calculated in Equation 2.3.

|CDB×PBD| = |CDB| · |CPBD| = 4 · 9 = 36 (2.3)

However, a feature model usually incorporates restrictions to the configuration space [8] –
given by the hierarchical setup of the options, as well as additionally formulated constraints
(Section 2.1.1 and Section 2.1.2). Consequently, not all of the resulting configurations
are necessarily valid, and each configuration emitted by the Cartesian product has to
be examined for validity. Therefore, the amount of configurations to consider may be
significantly lower than the configurations identified by the Cartesian product, especially
if the hierarchy is complex or the additional constraints limit the configuration space
drastically. In our example of Section 2.1.2, the feature M is restricted by the selection of G.
This excludes 18 entries as calculated in Equation 2.4 and leaves the 18 valid configurations
CDB×PBD;valid as stated in Table 2.13.

|CDB×PBD;valid| = |CDB×PBD| − |{c | c ∈ CDB ∧ c(G) = 1}|
· |{c | c ∈ CPBD ∧ c(M) > 8}|

= 36− 3 · 6 = 36− 18 = 18

(2.4)

2.5 learning models with random forest

The modeling techniques considered in this paper are restricted to Random Forest (RF)
regression, as the focus lies in the effect of sampling. We choose RF, as it has provided the
best results in Kaltenecker et al. over all sampling strategies [46].



2.5 learning models with random forest 17

Table 2.13: All valid configurations CDB×PBD;valid resulting from the Cartesian product of distance-
based sampling over the features A to G joined with the results of PBD generated for the
options M, N, O

A B C D E F G M N O

1 0 0 0 1 1 0 2 1 17

1 0 0 0 1 1 0 8 -3 7

1 0 0 0 1 1 0 8 1 1

1 0 0 0 1 1 0 32 1 7

1 0 0 0 1 1 0 2 15 7

1 0 0 0 1 1 0 32 -3 17

1 0 0 0 1 1 0 32 15 1

1 0 0 0 1 1 0 8 15 17

1 0 0 0 1 1 0 2 -3 1

A B C D E F G M N O

1 1 1 0 1 0 1 32 1 7

1 1 1 0 1 0 1 32 -3 17

1 1 1 0 1 0 1 32 15 1

1 1 0 1 1 0 1 32 1 7

1 1 0 1 1 0 1 32 -3 17

1 1 0 1 1 0 1 32 15 1

1 1 1 1 1 0 1 32 1 7

1 1 1 1 1 0 1 32 -3 17

1 1 1 1 1 0 1 32 15 1

Random Forest (RF) is a machine-learning technique based on bagging of decision trees.
In there, all trees are learned in parallel but with a varying, random feature subset to reduce
the correlation between the trees. The outcome after training consists of a set of decision
trees with differing internal models, e. g., concerning splitting rules, depth, and leaf nodes.
The prediction for a new input is calculated as the equally-weighted mean of all tree results,
which are given as the average of all values in the leaf the input ends up in. The herein used
technique has been implemented in Python’s scikit-learn package3.

2.5.1 Hyperparameters

Many machine learning techniques offer multiple settings to control the creation of their
models, parameters that do not influence the training input, but rather lay regulations on
the model or the training algorithm itself. They can influence the decision making strategy
inside a model, like quality criteria, or try to reduce over-fitting, e. g., via reducing the
amount of iterations when learning a model. As they work on a meta level compared to the
other parameters, they are often called hyperparameters [38].

For the creation of optimal prediction models, those hyperparameters need to be opti-
mized as well [33, 74]. Therefore, one can perform a hyperparameter optimization before
learning the model to find the hyperparameters best suitable for the intended purpose and
data.

For RF, the implementation offers the control of multiple hyperparameters. Only a fraction
of those are relevant our the execution (cf. [25, 74]), the others are just left at their default
value.

• n_estimators: The number of estimators represents the amount of decision trees inside
the forest.

3 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html,
last visited at: 2022-07-23.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html


18 background

• max_depth: This can be used to regulate the maximal depth of a tree and thus reduce
overfitting.

• min_samples_leaf : To prohibit leaf nodes with too few samples, this parameter can
restrict leaves to at least the given size. Any split needs to contain at least double the
amount to be considered.

• max_features: It restricts the number of features in the feature space for the decision
trees to the given amount.

• random_state: This argument influences the randomness of the training, both in the
choice of features to use for a decision tree, as well as in the tree training itself when
determining the best split.

2.6 model properties

Multiple characteristics of a final model can be regarded to determine its quality. In the
following, we present some properties that are suitable for our purpose.

model prediction error One factor to analyze is the prediction error of the model,
which is defined as the error caused by the model when applied to the whole, unsampled
dataset, as used by Grebhahn, Siegmund, and Apel [33]. This property is the most obvious
one, as the error is the standard criteria used to define model quality. Equation 2.5 provides
the formula to calculate the Mean Absolute Percentage Error (MAPE) as used in this thesis.
It is frequently used as a metric for regression models [47], since we expect small prediction
errors, so roots and squares like in Root Mean Square Error (RMSE) would distort the result.
Moreover, to enable a better comparison between different case studies, we use a relative
error measure instead of Mean Absolute Error (MAE).

MAPE(NFP, N̂FP) = ∑
c∈Cvalid

|NFP(c)− N̂FP(c)|
NFP(c)

(2.5)

duration Another aspect to analyze is the time needed for steps in the pipeline, mainly
sampling ∆ts and learning ∆tl [30]. For the sampling phase, we can observe the duration
of the central aspect, which is the sampling over the different feature types according to
the given strategy. Similarly, during learning, one can measure the time needed to train the
model with input data. The duration for the whole pipeline ∆t matches the sum for both
steps (∆ts + ∆tl), as those are the only phases we consider and execute in our experiment.

sample size The size of the sampling result |Csampled| is another factor to consider [33].
Although the size is not a quality indicator like the prediction error, it greatly influences
the flow of the prediction pipeline. It indicates the number of times the measurements to
be performed in a real setting, and also the size of the input data for the learning phase.
Between those two steps, there is a trade-off, as a higher amount of samples signifies more
measuring, but usually leads to a lower prediction error [26]. It can be contrasted to other
metrics, or combined to e. g., analyze the throughput and cycle time.



2.7 statistical testing 19

throughput and cycle time The metrics duration and sample size presented above
can be combined to calculate the throughput of a processing step in the pipeline, as displayed
in Equation 2.6. For the sampling phase, the throughput Rs indicates the average amount of
samples selected in a given time frame. Regarding the learning part, Rl shows the mean
number of entries in the sample set that the specified learning technique processes to create
a prediction model.

R{s,l} =
|Csampled|

∆t{s,l}
(2.6)

Since the throughput of a phase is an objective to maximize, and the previous ones must
be minimized, we invert the throughput and calculate the cycle time for the phases, as
presented in Equation 2.7. The cycle time of the sampling phase Ts signifies the average
duration for the addition of a single configuration to the sample set. For the learning phase,
the the cycle time Tl is the average duration to process a single instance of the sample set
for the prediction model. The calculation of the cycle time for the whole prediction pipeline
T corresponds to the one for the pipeline duration ∆t, and indicates the mean time for the
pipeline to process a single configuration.

T{s,l} =
∆t{s,l}
|Csampled|

(2.7)

feature importance The importance of features and interactions inside the model
is another conclusive factor to analyze models in-depth. Here, one evaluates the effect
of a feature (or interaction) being present on the prediction. In contrast to linear models,
where the influence of features and interactions can be determined directly from the
formula, there are more complex mechanisms needed for tree-based strategies. Literature
introduces Shapley Values to measure such an effect [59, 77], or one of their successors, like
SHapley Additive exPlanations (SHAP) that combines Shapley Values with local explanatory
models [55]. A variation for tree-based models, TreeSHAP, has also been published later
on [54].

However, those interpretations are very complex and complicated to interpret on a global
scale for the input features, and even more challenging for interactions. Consequently, we
neglect this aspect for our evaluation and reduce the system to a black-box model analyzed
from the outside.

2.7 statistical testing with scott-knott tests

The Scott-Knott test4 is a statistical test capable of comparing multiple variables directly
in one execution [76]. Furthermore, it is applicable for data without the assumption of a
normal distribution, and for independent, unequally-sized samples. It uses the mean and
variance of each variable to cluster them into different groups, which can be used to rank
them later on. This test has already been used successfully in literature to group and create
ranked scores for given categories [30, 84].

4 Imported as the R package ScottKnott [44] into the python implementation, more information is available at:
https://cran.r-project.org/web/packages/ScottKnott/index.html, last visited at: 2022-09-01.

https://cran.r-project.org/web/packages/ScottKnott/index.html


20 background

The principle of the test lies in recursively splitting a group of variables G = {X1, ..., Xn}
by their means into two subgroups G1, G2 all while maximizing the sum of squares between
the groups, until all possible splits are deemed insignificant [76]. The formula to calculate
the sum of squares is given in Equation 2.8.

SSB(G1, G2) = |G1| × G1
2
+ |G2| × G2

2 − G2
(2.8)



3
R E L AT E D W O R K

This chapter presents the results of the case study we performed to examine the usage and
effect of encoding in performance prediction. As stated in the introduction, the consideration
of numeric features is rare in this research area. Most publications dealing with performance
analysis consider only binary features and completely exclude the existence of other option
types. Thus, the following research aims to look for publications that include numeric
options and find out in which form they are used to influence the prediction. This can be
either directly when numeric values themselves are built into the process, or indirectly e. g.,
via binary encoding mechanisms pre-configured into the respective pipeline.

3.1 systematic literature research

To find articles that focus on numeric features or binary encoding in performance prediction,
multiple strategies from systematic literature review have been deployed. First, we searched
in the papers published by the Chair1, especially for theses and dissertations.

Afterwards, we browsed through articles published in the three most prominent confer-
ences in Software Engineering (SE) [24], namely International Conference on Software Engi-
neering (ICSE)2, Automated Software Engineering (ASE)3 and European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)4.
Hereby, only the years 2014 to September 2022 were considered. This results in a cover of
all high-rank published articles in the recent years.

Furthermore, to cover relevant articles that have not been published in those conferences,
we performed a specific keyword search via combinations of the following terms:

• (highly) configurable, software system as the domain

• performance prediction as the field of research

• performance, Non-Functional Property as the target metric to analyze

• sampling, learning, modeling as the steps to perform

• feature, configuration (option), feature / variability model as the domain elements to perform
upon

• numeric, binary, boolean, discretize, discretization, one-hot encoding as the applied encoding

Finally, we performed a forward and backward search for all publications identified by
the means above. This way, we identify missing articles others have considered relevant for
their work, or that have performed tasks similar to the ones we already named fitting.

1 https://www.se.cs.uni-saarland.de/publications.php, last visited at: 2021-11-24.
2 http://www.icse-conferences.org/, last visited at: 2022-09-17.
3 http://ase-conferences.org/, last visited at: 2022-09-12.
4 https://conf.researchr.org/series/fse, last visited , last visited at: 2022-09-15.

21

https://www.se.cs.uni-saarland.de/publications.php
http://www.icse-conferences.org/
http://ase-conferences.org/
https://conf.researchr.org/series/fse


22 related work

As restrictions for relevant publications, we require the build of performance models
and the evaluation of those models on the given dataset(s). Furthermore, the analyzed
software system(s) must be configurable with various parameters, which correspond to our
configuration options. We do not regard configurable algorithms per se, but only systems.
The approach must include numeric features, not just binary and/or categorical ones.
This counts even when those features have been one-hot encoded. Moreover, we exclude
the analysis of cloud services, since we focus on fixed software systems. Likewise, we
ignore self-adaptive systems, which evaluate the performance and try to adapt at runtime.
Additionally, we ignore publications in other research fields, like (performance) testing,
performance regression, defect prediction, verification or compiler optimization, since those
may touch our area but do not perform the required analysis.

3.2 quantitative description

Based on the literature research, 40 articles were identified that considered numeric options
when analyzing performance. They are listed in Table 3.1, and presented with more detail
in Table A.1 and Table A.2.

Table 3.1: Listing of all publications using numeric features and identified as relevant for this thesis
No. Title of Publication Authors Year

1 “ACTGAN: Automatic Configuration Tuning for Software Systems with
Generative Adversarial Networks” [7]

Bao et al. 2019

2 “An Uncertainty-Aware Approach to Optimal Configuration of Stream
Processing Systems” [42]

Jamshidi and Casale 2016

3 “Automated Search for Configurations of Deep Neural Network Architec-
tures” [29]

Ghamizi et al. 2019

4 “Automatic Configuration of the Cassandra Database using irace” [81] Silva-Muñoz, Franzin,
and Hugues

2021

5 “Black-Box Models for Non-Functional Properties of AI Software Sys-
tems” [27]

Friesel and Spinczyk 2022

6 “Combining Multi-Objective Search and Constraint Solving for Configur-
ing Large Software Product Lines” [41]

Henard et al. 2015

7 “Comparison of Analytical and Empirical Performance Models: A Case
Study on Multigrid Systems” [45]

Kaltenecker 2016

8 “Data-efficient Performance Learning for Configurable Systems” [37] Guo et al. 2018

9 “DeepPerf: Performance Prediction for Configurable Software with Deep
Sparse Neural Network” [38]

Ha and Zhang 2019

10 “Detecting Control-Flow and Performance Interactions in Highly-
Configurable Systems” [20]

Denk 2017

11 “Distance-Based Sampling of Software Configuration Spaces” [47] Kaltenecker et al. 2019

12 “Does Configuration Encoding Matter in Learning Software Performance?
An Empirical Study on Encoding Schemes” [30]

Gong and Chen 2022

13 “Evolution of Performance Influences in Configurable Systems” [40] Hasreiter 2019

14 “Experiments on Optimizing the Performance of Stencil Codes with SPL
Conqueror” [31]

Grebhahn et al. 2014



3.2 quantitative description 23

No. Title of Publication Authors Year

15 “Fast Performance Modeling across Different Database Versions Using
Partitioned Co-Kriging” [13]

Cao et al. 2021

16 “Finding Faster Configurations Using FLASH” [65] Nair et al. 2020

17 “Grammar-Based Sampling” [90] Weis 2020

18 “Hdconfigor: Automatically Tuning High Dimensional Configuration
Parameters for Log Search Engines” [22]

Dou, Chen, and Zheng 2020

19 “HINNPerf: Hierarchical Interaction Neural Network for Performance
Prediction of Configurable Systems” [16]

Cheng, Gao, and Zheng 2022

20 “Learning to Sample: Exploiting Similarities across Environments to Learn
Performance Models for Configurable Systems” [43]

Jamshidi et al. 2018

21 “LONViZ: Unboxing the black-box of Configurable Software Systems
from a Complex Networks Perspective” [52]

Li, Mao, and Chen 2022

22 “Mastering Uncertainty in Performance Estimations of Configurable Soft-
ware Systems” [21]

Dorn, Apel, and Sieg-
mund

2020

23 “Multi-Objectivizing Software Configuration Tuning” [14] Chen and Li 2021

24 “Optimizing Performance of Stencil Code with SPL Conqueror” [34] Grebhahn et al. 2014

25 “Perf-AL: Performance Prediction for Configurable Software through
Adversarial Learning” [78]

Shu et al. 2020

26 “Performance is not Boolean: Supporting Scalar Configuration Variables
in NFP Models” [28]

Friesel and Spinczyk 2022

27 “Performance Modeling under Resource Constraints Using Deep Transfer
Learning” [57]

Marathe et al. 2017

28 “Performance Prediction of Multigrid-Solver Configurations” [35] Grebhahn et al. 2016

29 “Performance-Influence Models for Highly Configurable Systems” [79] Siegmund et al. 2015

30 “Performance-Influence Models of Multigrid Methods: A Case Study on
Triangular Grids” [32]

Grebhahn et al. 2017

31 “Predicting Performance of Software Configurations: There is no Silver
Bullet” [33]

Grebhahn, Siegmund,
and Apel

2019

32 “Regression Models for Performance Ranking of Configurable Systems:
A Comparative Study” [15]

Chen et al. 2020

33 Scalable Performance Models for Highly Configurable Systems [71] Oh and Zilmano 2020

34 “The Interplay of Compile-Time and Run-Time Options for Performance
Prediction” [51]

Lesoil et al. 2021

35 “The Interplay of Sampling and Machine Learning for Software Perfor-
mance Prediction” [46]

Kaltenecker et al. 2020

36 “Tradeoffs in modeling performance of highly configurable software
systems” [49]

Kolesnikov et al. 2019

37 “Using Bad Learners to Find Good Configurations” [64] Nair et al. 2017

38 “VEER: A Fast and Disagreement-Free Multi-objective Configuration
Optimizer” [72]

Peng et al. 2021

39 “White-Box Analysis over Machine Learning: Modeling Performance of
Configurable Systems” [88]

Velez et al. 2021

40 “White-Box Performance-Influence Models: A Profiling and Learning
Approach” [89]

Weber, Apel, and Sieg-
mund

2021



24 related work

Out of those papers, 12 use or imply to use only binary encoding mechanisms to deal
with numeric features. In contrast, 25 articles incorporate the numeric values directly. Only
three additional publications fall in both categories. The papers applying encoding could be
identified in seven cases via specifications provided in the paper itself (for instance [14, 29,
31, 40, 51]), or by the characteristics of the used case studies (e. g., [15, 21, 47]). As the set of
case studies for performance predictions is very limited as of now, the origin and properties
of case studies are determined easily. The majority of the publications refer to the same
encoding as discussed in this work, one-hot encoding. However, it is sometimes referred to as
discretization, or there is no mentioning except for the encoded case studies. But there are
also three articles [20, 43, 88] encoding numeric features as binary options by leaving out
some values and thus, valid configurations before starting the pipeline. Figure 3.1 displays
the distribution of the input encoding.

Numeric & one-hot-encoded

Only binary encoding

One-hot-encoded

25

3

9

3
12

Consideration of numeric features

Other binary encoding

Only numeric

Figure 3.1: Allocation of the input methods numeric values are subjected to in various articles

Regarding the sampling techniques, for all 15 articles using binary encoding in their
approaches, most use one or multiple methods presented in Section 2.4.1. A detailed list of
all publications applying binary encoding is given in Table A.1. The most frequent sampling
is binary random in 7 publications, followed by 6 articles with tOW sampling (with one
or multiple t ≥ 2) and 4 publications applying OW. Higher-order and hot-spot heuristic5,
distance-based as well as solver-based sampling occur in 2 articles each. Four articles
also apply other techniques not mentioned previously, including iterative approaches. The
distribution is visualized in Figure 3.2.

5 Similar to tOW, both are based on interactions between multiple features [34], although they don’t cover all
possible combinations between options.



3.2 quantitative description 25

7

6

4

2 2 2 2

4

0

1

2

3

4

5

6

7

8

Binary sampling methods for encoded options 

Binary sampling methods for encoded options

Figure 3.2: Distribution of the sampling techniques applied on binary-encoded features only

For the 28 publications considering numeric input directly, 21 implemented sampling
strategies covering all configurations in one go, thereof 7 are selected via purely random
sampling, and 9 applied other approaches which are partially based on a random selection
of configurations. 2 articles use function learning6. The other 7 articles separate between
binary and numeric features for sampling, and join the results via Cartesian products.
Regarding the binary strategies, OW and tOW are applied in 6 articles each, followed by
2 cases of NOW as well as binary random sampling. As for the numeric techniques, most
of them have been explained in Section 2.4.2. Most frequent here is PBD used in all seven
articles, succeeded by 5 cases of CCID and numeric random each. Afterwards come three
instances of BBD and D-Optimal Design (DOD). OFAT and FF are least deployed, with 2
respective 1 publications. The whole distribution is illustrated in Figure 3.3. All regarded
publications with numeric options are listed in Table A.2.

Concerning the learning methods adopted, there is a great diversity. Most papers apply
rather simple techniques like MLR [32, 34, 45, 46, 49, 79] or regression trees [37, 46, 63, 90],
but a few others rely on more complex methods, like Deep Neural Networks [16, 38, 71] or
Generative Adversarial Networks (GANs) [78]. The most frequently used models are learned
via MLR in 15 articles (mostly in SPL Conqueror), followed by 9 cases of Classification
and Regression Trees (CART). RF are applied in 6 articles, other tree-based approaches like
Linear Model Trees (LMTs), XGBoost or Extra Trees occur sparsely in accordance with CART

and RF. Support Vector Regression (SVR) and neural networks like Deep Feed-forward
Neural Network (DFNN) appear only in 5 publications each. Other regression techniques,
k-Nearest-Neighbors and Kernel-Ridge Regression (KRR) occur thrice. Four articles apply
Gaussian Process Regression (GPR), mostly in accordance with Bayesian optimization, and

6 Determined polynomial influence for each combination of binary and numeric options [34].



26 related work

9

7

2 2

6 6

2 2

7

5 5

3 3

2

0

1

2

3

4

5

6

7

8

9

10

Numeric sampling methods

Over all 

features

Over binary 

options

Over numeric

options

Figure 3.3: Amount of articles applying one of the named sampling strategies on numeric features
To the left are the ones covering the whole feature space; whereas the middle and the
right parts illustrate the strategies when splitting the configuration options per type.
Binary strategies appear in the middle of the chart and numeric ones are visualized on
the right side.



3.3 key findings 27

two apply other optimization techniques. GAN and special techniques are applied twice in
the publications. A bar chart portrays this distribution in Figure 3.4.

15

9

6

5 5

4

3 3 3

2 2

0

2

4

6

8

10

12

14

16

Learning methods

Learning methods

Figure 3.4: Deployment of learning techniques over identified articles

3.3 key findings

Even when covering this literature base, it is difficult to obtain any papers focusing on
binary encoding and its effects in performance prediction. The two early articles published
in 2014 by Grebhahn et al. [31, 34] tentatively apply both numeric and binary encoded
pipelines. In their work, they use discretization, which is the same binary encoding we refer
to as one-hot encoding. However, their analysis regarding encoding is quite insubstantial, as:

• Only few binary sampling strategies are considered in the encoded pipeline.

• Just one strategy is applied for the numeric processing, the function-learning heuristic.
This technique just regards influences of all pairs of binary features mixed with
numeric options. Higher-ordered feature interactions, as well as influences between
just binary elements or within the numeric option space are neglected completely.

• The amount of regarded case studies is limited to only two and three systems respec-
tively. This is too few to make a general prediction. Moreover, the results in those
papers are inconclusive for the given case studies; thus no first tendencies or result
expectations are recognizable.



28 related work

Therefore, the outcome of the publications regarding the effect of encoding cannot be
considered for the further procedure.

A recent publication by Gong and Chen is the first identified article to openly analyze
and compare the encoding aspect and its effect on the performance-prediction pipeline [30].
Herein, the measurements of 5 software systems are evaluated for three encoding variants
– (1) label encoding, which corresponds to mostly our usual numeric features, but also
transforms string options into numeric features, (2) scaled label encoding, where the data
is resized to a range of [0; 1] for each label encoded feature, and (3) one-hot encoding.
However, their focus lies in the learning phase of the prediction, which is why they apply
only random sampling (with 90% samples), but determine their results for seven model
types: MLR, Deep Learning Model, Neural Network (NN), Decision Tree (DT), RF, k-Nearest-
Neighbors Regression (kNN) and KRR. Similar to the approach utilized in this thesis, they
analyze several metrics when comparing the results per encoding. Next to accuracy, which
they determine via RMSE, they also regard the learning duration per encoding and ML
technique as well as a trade-off between both. The evaluation is performed via a score based
on the Scott-Knott test, as well as via Pareto-optima.

The results of the article show a first insight: one-hot encoding leads in general to a higher
accuracy, although for RF, label seems to perform better. Regarding training duration, scaled
label and label outperform one-hot encoding in this order, but for RF, label leads to the shortest
training times.

Consequently, this article leads to the tentative hypothesis, that in our case numeric
features might perform better than their one-hot encoded counterparts for both prediction
accuracy and learning duration. In contrast, our work is specialized more into the sampling
part of the prediction, although we also consider the overall process.

One further striking aspect when regarding all articles is that, in contrast to the possibilities
displayed in Section 2.2 and Table 4.4, the chosen feature representation (binary encoding
or numeric values) is always maintained for the whole pipeline.



4
I M P L E M E N TAT I O N

This chapter presents the setup of the procedure followed in this thesis. First comes the
creation of artificial software systems, with feature models and configuration-based mea-
surements. Those are detailed in Section 4.1.

Afterwards, in Section 4.2 we portray the process for choosing suitable real-life systems,
which were measured beforehand.

Then, Section 4.3 describes the operations of the prediction pipeline that we need to
execute for the crucial phases sampling and learning. They have been trial run with the given
artificial case studies. The additional remarks about the procedure are further described in
??. After finalizing the mechanics, the pipeline is executed on the case studies.

4.1 generation of artificial software systems

4.1.1 Synthetic Feature Models

To cover various kinds of software systems, the artificial systems differentiate along the
following criteria regarding the underlying feature model:

(1) The share of numeric features, how many of the options are numeric, and which
ones are binary. We differentiate between considering only numeric features, just one
numeric option with multiple binary ones, or a fair share of both types of features.

(2) A numeric option is also characterized by its value function in a defined range1.:

(a) Linear features imply a linear function, for instance (2; 8;+3)→ {2; 5; 8}.
(b) In contrast, features with exponential functions have the values spaced out e. g.,

(4; 40000;×100)→ {4; 400; 40000}.
(c) A specialty of a) are incremental features, like (1; 50;+1)→ {1; 2; 3; ...; 48; 49; 50}.
(d) Irregular features underlie no such basic functions, like {0; 3; 5; 15; 30}.

4.1.2 Artificial Models for NFP Measurements

For the NFP model imitating the measurements usually collected by running a task on a
system with a tightly-constrained computing environment, we consider certain criteria:

(1) The model is constrained to linear or quadratic terms based on a single or multiple
options. Other types like complex polynomial or logarithmic functions, fractions, are
discounted. Example terms based on the features from Section 2.1 are:

3× C, −5× G× B, 20×O, 0.0003×M×M, −2.67185346× D× N

1 The function for the numeric features is given as: (minimal value;maximal value;step function).

29



30 implementation

(2) The order and structure of interactions (one or multiple features involved) is crucial
as well [80]. They can include just binary options, consist only of numeric features, or
a mesh of both types, e. g., see the examples above.

(3) Usually the underlying model cannot be found directly via measurements, as the data
may be obscured by noise of various degrees. In first instance, however, we restrict
our models to clear functions without noise.

(4) The last criteria is the positivism of the model: As the example in Section 2.1.4
illustrates, the influence of features and their interactions can be either positive or
negative. However, negative measurement values have little practical relevance, as the
majority of performance metrics – like runtime, CPU usage, and so on – merely allow
non-negative values as measurements. Therefore, to eliminate negative numbers, all
non-positive values are mapped to the smallest positive entry inside the value range.

An example is a model NFP = 5 + 3× B− 9× D + 2× G, which takes on the value
−1 when D is selected and G deselected. The smallest positive value is 1 when both D
and G are selected, so the resulting model is NFP = max(1; 5+ 3× B− 9×D + 2×G).

Since the system’s measurements shall be as realistic as possible, we use an approach similar
to the one implemented in Thor [80]. As portrayed by Siegmund, Sobernig, and Apel, the
crucial aspect when generating synthetic measurements is the output distribution of NFPs.
Therefore, we regard the Kernel Density Estimation (KDE) of real NFP measurements, and
imitate those with artificial values. Then, we compare real and synthetic measurements
manually by creating and regarding their violin plots. The following categories of real NFPs

could be identified, and are exemplary visualized in Figure 4.1:

(a) Normal distribution (b) Multiple bulks (c) Dumbbell form (d) Irregular form

Figure 4.1: The four categories of measurement distributions

(a) This first category contains NFPs with approximately normal distributions. At the end
of the value range, there can be a small agglomeration.



4.2 selection of real software systems 31

(b) The second one stations distributions with multiple bulks separated by indentations.

(c) Two focal points at each end of the value range (similar to a dumbbell form) mark the
third group.

(d) More irregular forms that cannot be classified into one of the categories above are
summarized within the fourth class.

4.1.3 Presentation of Created Models

Based on the criteria presented in Section 4.1.1, we synthesized six artificial software
systems with varying feature models. Each contain zero to eleven binary options, and one
to three numeric features with different value characteristics. We included incremental
and exponential options, as well as some with irregularities. Their values range from a
dense interval [1; 11] to a sparse, exponential one within [8; 32768]. Table 4.1 presents a short
overview over those systems and models.

Afterwards, we generated measurements via regression functions based on the developed
feature models. They were synthesized by adapting their measurement distributions to
those of existing systems. We applied mostly linear influences of features and interactions,
although in a few cases we applied polynomial factors to reach certain distributions.
Section A.2 in the Appendix elaborates both the feature models and the measurement
distributions for each synthesized software system. Furthermore, an extended summary for
all systems is introduced in Table A.3.

Table 4.1: Overview over the artificial systems generated as case studies

No. Case Study |Fbin| |Fnum| |Fohe| |Cvalid|

1 Dataset_01 3 3 21 1344

2 Dataset_02 0 3 82 6900

3 Dataset_03 5 1 12 352

4 Dataset_04 7 1 4 72

5 Dataset_05 7 1 6 80

6 Dataset_06 11 2 14 1400

4.2 selection of real software systems

For the case studies based on real software systems, we resort to the database provided by
the Chair. As the implementation of SPL Conqueror supports the splitting of feature types
for sampling only in a basic setting (see Section 6.3.1), we focus on case studies with little
to no cross-tree constraints. Consequently, the following case studies were ignored in our
execution:



32 implementation

• Hipa
cc

• Apache energy

• Apache pervolution

• exastencils energy

• HSQLDB pervolution

energy

• Nginx energy

• Nginx pervolution

• TriMesh

As some of the systems were measured multiple times with different focal aspects, we
reduced the amount of case studies choosing only one of those. Thus, the following case
studies were disregarded as well:

• 7z energy • lrzip energy • MariaDB • VP9

After the selection, we end up with 16 case studies of real software systems as presented
in Table 4.2. A more detailed description of all selected systems is given in Table A.3.

Table 4.2: Overview over the real systems selected as case studies

No. Case Study |Fbin| |Fnum| |Fohe| |Cvalid|

1 7z 10 3 33 68 640

2 brotli 0 2 29 180

3 Dune 8 3 23 2 304

4 HSMGP 11 3 21 3 456

5 JavaGC_small 5 6 33 193 536

6 Libopus pervolution 15 4 15 6 480

7 lrzip pervolution 6 3 20 1 440

8 MySQL pervolution 8 3 12 972

9 OpenVPN 18 1 5 512

10 Polly 15 4 24 60 000

11 PostgreSQL pervolution 5 3 12 864

12 PostgreSQL pervolution energy 5 3 12 864

13 VP8 pervolution energy 9 4 17 2 736

14 VP9 pervolution 11 3 13 3 008

15 x264 pervolution 6 3 15 3 840

16 x265 pervolution 17 2 9 3 840



4.3 realization of the performance-prediction pipeline 33

4.3 realization of the performance-prediction pipeline

In contrast to the prediction pipeline presented in Section 2.2, only two phases are relevant
for the conduction of our experiment: sampling and learning. One reason for this is the
provision of measurement files for real software systems, which eliminates the need to
measure them in the course of the experiment. Furthermore, the concrete predictions for
each valid configuration are considered irrelevant for this setting. To realize the necessary
steps of the prediction pipeline, each part is divided into multiple aspects.

4.3.1 Sampling Phase

The first part of the phase, sampling, begins with selecting elements from the configuration
space for each feature-model variant. Thereby, we first partition the features in the feature
model and then sample separately over the original binary options as well as the numeric
features in their various encoding forms. Afterwards, we join the two sets via a Cartesian
product. For a better understanding, Figure 4.2 presents an example for such a cut based
on the one-hot encoded feature model portrayed in Section 2.1.3. A cut of the corresponding
numeric model would partition the two features M and O off the remaining options.

A

M O B E

M 2 M 4 M 8 M 16 M 32 O 1 O 3 O 5 O 7 O 9 O 11 O 17 C D F G

binary

Mandatory option

Optional option

Alternative group

Or group

Figure 4.2: Cut of the one-hot encoded feature model in the sampling phase
The example is based on the feature model shown in Section 2.1.3, where option O is
one-hot encoded as well, and feature N is left out for simplification.
The cut line separating the original binary options from the one-hot encoded features is
marked as a red dashed line.

This procedure aids with comparing the results, as the number of samples can affect both
generalization and quality of a model [26]. When contrasting pairings, an identical strategy
for the original binary options reduces the difference between both techniques. For each
case study, all three feature categories (original binary options, numeric-valued or one-hot
encoded features) are granted manually a separate set of sampling strategies to choose from,
depending on the properties of the feature model. Table 4.3 displays and the result set for
this step in form of a systematic scheme.

Afterward, the sampled case studies are transformed into the oppositely encoded feature
space to allow the learning of models with a different encoding than the one used for
sampling (cf. Section 2.2). Thus, numeric options inside the sampled data will be one-hot
encoded, and previously one-hot encoded features transformed into their numeric counterparts.

As a result, we receive four encoding categories of sampled data, which will be used in
the learning phase, as displayed in Table 4.4.



34 implementation

Table 4.3: Scheme for the combination of sample sets to get the sampling-step result (in bold)

Binary sampling strategy bs1 br2 bs3 bs4 bs5 ...

Binary result br1 br2 br3 br4 br5 ...

O
ne

-h
ot

en
co

de
d

Sa
m

pl
in

g
st

ra
te

gy ds1

En
co

de
d

re
su

lt dr1 br1 × dr1 br2 × dr1 br3 × dr1 br4 × dr1 br5 × dr1 ...

ds2 dr2 br1 × dr2 br2 × dr2 br3 × dr2 br4 × dr2 br5 × dr2 ...

ds3 dr3 br1 × dr3 br2 × dr3 br3 × dr3 br4 × dr3 br5 × dr3 ...

ds4 dr4 br1 × dr4 br2 × dr4 br3 × dr4 br4 × dr4 br5 × dr4 ...

... ... ... ... ... ... ... ...

N
um

er
ic

Sa
m

pl
in

g
st

ra
te

gy ns1

N
um

er
ic

re
su

lt

nr1 br1 × nr1 br2 × nr1 br3 × nr1 br4 × nr1 br5 × nr1 ...

ns2 nr2 br1 × nr2 br2 × nr2 br3 × nr2 br4 × nr2 br5 × nr2 ...

ns3 nr3 br1 × nr3 br2 × nr3 br3 × nr3 br4 × nr3 br5 × nr3 ...

ns4 nr4 br1 × nr4 br2 × nr4 br3 × nr4 br4 × nr4 br5 × nr4 ...

ns5 nr5 br1 × nr5 br2 × nr5 br3 × nr5 br4 × nr5 br5 × nr5 ...

... ... ... ... ... ... ... ...

Table 4.4: Encoding Categories in the Performance Pipeline

Prediction phase (1) Numeric→
numeric

(2) Numeric→
one-hot

(3) One-hot→
numeric

(4) One-hot→
one-hot

Sampling Numeric Numeric One-hot encoded One-hot encoded

(Transformation) None One-hot encoding One-hot decoding None

Learning Numeric One-hot encoded Numeric One-hot encoded

4.3.2 Learning Phase

As machine-learning techniques like RF need to be tuned to perform optimal results [74],
the second phase starts with the learning of hyperparameters for each case study, NFP and
encoding category as portrayed in Table 4.4. Beforehand, a defined grid of possible values
for those hyperparameters has been determined. At the beginning, we perform a grid search
optimization, which identifies the prediction error for each accepted combination of hyper
values. Thereby, it is important to consider that although the learning of the RF model takes
place only with the sampled data, the final error calculation is based on the whole case
study. This allows a later analysis and optimization undiluted by the sampling aspect.

Next step is the evaluation of hyperparameters to find the best ones within each category. As
the random state may affect the results when learning, each point in the grid is executed
multiple times with different seeds. Nonetheless, since the random factor is not to be
analyzed in this case, the first action is to aggregate over random seeds used in the
hyperparameter grid. This step is already performed inside SPL Conqueror.

Similarly, the seed-based sampling strategies – namely distance-based and random
sampling – are executed multiple times with different seeds. This results in a more general



4.3 realization of the performance-prediction pipeline 35

statement about those sampling strategies, as it can be highly variable. Nonetheless, the
robustness of these strategies [47] suggests that the error for the samplings converges,
therefore the mean prediction error of those strategies can be estimated by the mean error
of several instances for a given strategy. Thus, to reduce the overhead of those strategies
compared to fixed ones like, tOW, PBD or CCID, the errors of sampling strategies with
identical parameters (ignoring the seeds) are aggregated. This forms the foundation for
determining the optimal hyperparameters. Table 4.5 displays an exemplary calculation
scheme for this process. Next, we average the results for each value combination of the
hyperparameters over all sample sets. Based on this data, we identify the minimal error
to decide which hyper values are to be taken. In case of equivalence regarding numbered
values, we choose the minimal hyperparameter values.

The last part in this phase is the model learning itself, which is relying on the optimal
hyperparameters determined beforehand. The results of this aspect are then used for the
evaluation of the complete prediction pipeline. The output consists of analysis metrics like
learning duration and prediction error.



36 implementation

Table 4.5: Scheme for the realization of the hyperparameter-learning phase for one ‚column‘ in the
hyperparameter grid (parameters varying only in the seed of the random state)

Sampling strategy Hyperp. grid Error Aggregate over random seeds of

Binary2 Numeric Seed Error 1 st grid 2nd binary 3rd numeric

random(5, 15) OFAT 32 0.21
A: 0.22

I: 0.24 1: 0.24
random(5, 15) OFAT 43 0.23

random(5, 22) OFAT 32 0.27
B: 0.26

random(5, 22) OFAT 43 0.25

random(7, 48) OFAT 32 0.31
C: 0.32

II: 0.34 2: 0.34
random(7, 48) OFAT 43 0.33

random(7, 75) OFAT 32 0.37
D: 0.36

random(7, 75) OFAT 43 0.35

OW OFAT 32 0.10
E: 0.21 III: 0.21 3: 0.21

OW OFAT 43 0.32

random(5, 15) random(3, 67) 32 0.41
F: 0.43

IV: 0.445

4: 0.445

random(5, 15) random(3, 67) 43 0.45

random(5, 22) random(3, 67) 32 0.43
G: 0.46

random(5, 22) random(3, 67) 43 0.49

random(5, 15) random(3, 81) 32 0.47
H: 0.45

V: 0.445
random(5, 15) random(3, 81) 43 0.43

random(5, 22) random(3, 81) 32 0.46
J: 0.44

random(5, 22) random(3, 81) 43 0.42

random(5, 15) random(3, 59) 32 0.48
C: 0.44

VI: 0.445
random(5, 15) random(3, 59) 43 0.40

random(5, 22) random(3, 59) 32 0.47
C: 0.45

random(5, 22) random(3, 59) 43 0.41
Average error for this hyperparameter combination: 0.30875

2 The instantiation of random sampling occurs as follows: random(size, seed), where size is the number of
configurations to be selected randomly, and seed is the random seed to use.



5
E X P E R I M E N T S

This chapter describes the main experiments that are conducted in this thesis. First, Sec-
tion 5.1 presents the variables influencing the experiment and its setup including the
explanation of all relevant experimental variables. In Section 5.2, we describe the research
questions examined in the course of this thesis, which build the foundation for the later
procedure.

5.1 experimental variables

For our experiment, we identified the following variables.
The experiment and its variables are based on the data foundation to analyze; it consists

of the software systems and the regarded NFPs for each system. The detailed list is given
in Table A.3, including the features, configuration space and all NFPs. Additionally, a short
overview has been presented in the previous chapter by Table 4.1 and Table 4.2. Based on
this data, the sampling and learning steps will be performed as described in Section 4.3.
The variables can be divided into four categories, by which they are presented.

independent variables are the varying factors in an experiment; they are selected
and controlled directly by the experimenter. They are not influenced by each other or
another variable [18, 75].

The central variable is formed by the encoding applied to numeric features. Those can
either be left numeric or one-hot encoded in form of multiple binary options. For analyzing the
sampling phase, only those two encoding categories are considered. Section 2.2 elaborates
that the encoding can be applied both for the sampling and the learning phase independently.
Therefore, when regarding the evaluation for the learning phase, we use the 4 categories
presented in Table 4.4.

dependent variables describe the effect metrics to analyze. They are expected to
differ based on a change in the independent factors [18, 75].

Hereby, we rely on the model properties discussed in Section 2.6. After performing the
sampling phase on the data, we receive the metrics sample size |Csampled| and sampling
duration ∆ts, which can also be combined to get the sampling cycle time Ts. Next, as a
result of the learning phase, we analyze the effects for the model prediction error MAPE,
learning duration ∆tl and cycle time Tl . Furthermore, the sampling and learning durations
are combined to calculate the total duration ∆t and cycle time T for the prediction pipeline.
Section 5.2 provides more insight into those metrics and how exactly they will be evaluated.

fixed control variables are the factors remaining constant for each execution and
throughout the whole procedure of the pipeline [17, 82]. This is, for instance, the use of SPL
Conqueror for performing the sampling and learning phases. Thus, the way SPL Conqueror

37



38 experiments

performs the concrete sampling and learning tasks (for instance feature-wise sampling) has
an effect on the results.

In our experiment, another fixed control variable is given by the machine-learning
technique used in the learning phase of the prediction pipeline, since the technique is
restricted to RF only. This choice also has an enormous influence on the metrics to analyze.

On the technical side, the hardware used for executing the pipeline is also a fixed variable.
Hereby, we focus our regard for the hardware on those parts of the pipeline where we
measure the sampling and learning duration, as here it influences our metrics directly.

Table 5.1: Description of the hardware performing the measured aspects in the pipeline

Phase Computer name CPU threads Memory

Sampling maxl[01-20] 1x AMD EPYC Milan 72F3 256-1024 GB RAM

@ 3.7 GHz, 8C/16T (limit on 250GB)

Learning eku[04, 11] 1x Intel Core i5− 4590 16 GB RAM

@ 3.30 GHz 4C/4T (limit on 3 GB)

randomized control variables in contrast to the fixed control variables, are varied
during the conduction to increases the generalization of the experiment [17, 48]. Further,
the difference to independent variables is that the variation of the variable is ignored rather
than analyzed. In our case, those variables usually assume values from a fixed set.

One randomized control variable poses the subset of sampling techniques chosen per
case study for each feature type (original binary, numeric and one-hot encoded). They are
selected out of a repository of sampling techniques, which remains constant throughout
the whole process. Section 2.4 elaborates all sampling strategies in depth. All phases of the
pipeline are executed for each combination of techniques in the sets. The concrete effect of
each strategy is ignored in the overall analysis, as only the aggregated version of the metrics
is considered for each category and case study.

Random states during sampling or (hyperparameter) learning are also randomized control
variables, as the steps are executed repeatedly with a fixed set of seeds, but their results are
analyzed in an aggregated form to increase the robustness of the execution [47].

The optimal hyperparameters for the learning phase form another control variable,
which are evaluated after the sampling. The regarded grid used for the hyperparameter
optimization with RF remains constant, but the concrete optimum may differ given the
scenario. The chosen hyperparameters (ignoring the seed) are permitted to vary across the
independent variable, as well as case study and NFP. Section 4.3.2 describes the optimization
procedure in more detail, and Table 5.2 displays the grid of accepted hyperparameters,
which are elaborated in Section 2.5.1. In contrast to the other randomized variables, we do
not perform the learning phase multiple times with different values for the hyperparameters
and aggregate the results. Rather we only determine the overall optimal combination, and
execute the learning step with those parameters (ignoring the seed).



5.2 research questions 39

Table 5.2: Listing of all hyperparameters allowed to vary during the execution, and their range of
accepted values

No. Hyperparameter Value range Values used in grid search

1 max_depth int {100000000; 5; 10; 20}
2 max_features {"auto", "sqrt",

"log2"}, int or
float

{”auto”; ”sqrt”; ”log2”}

3 min_samples_leaf int or float {0.001; 0.003; 0.005}
4 n_estimators int {100; 200; 400}
5 random_state int, RandomState

instance or None
{790554120; 989443602; 426026004;
297788243; 642376861; 96118863;
56621629; 621404434}

5.2 research questions

In this section, we present the research questions posed in the given experiment, whose
variable setup is described above.

5.2.1 Sample Size

RQ0: How do sample sizes differ depending on the encoding of numeric options across all case
studies?

Here we regard whether the chosen encoding has an influence on the size of the sample
sets resulting from the sampling phase. Some of the upcoming research questions include
the sample size in their analysis, therefore this question is the foundation for evaluating the
research questions and must be regarded beforehand. The query itself does not represent
a research question, as the result cannot be used to draw a conclusion on the quality of a
system. Nonetheless, it can be used as a cost metric, since in real-life scenarios, the sample
size indicates the amount of configurations to measure and thus the effort to take before
analyzing a software system.

restriction The analysis includes only the sampling strategies which have fixed-size
results depending on the case study’s feature model. Varying techniques like distance-based
or random sampling are exempt from this question, as their size is predetermined by the
user before execution.

validity The sample size of some strategies depends on the implementation inside
SPL Conqueror, thus another program might come to differing results. Nonetheless, the
experimental designs usually have a fixed implementation and thus, their difference should
be minimal.



40 experiments

realization As an evaluation metric we use the rank-based score introduced in Sec-
tion 5.3 with the metric sample size |Csampled| across case studies and sampling strategies for
the encoding categories numeric versus one-hot encoded. Because of the symmetrical sampling
setup for both encoding strategies and the minimum of cross-tree constraints inside the
feature models, one binary sampling strategy is exemplary and can represent all others.
Therefore, we adapt the binary aggregation step of the calculation by determining the sample
sizes for one binary sampling strategy only instead of aggregating them. The rest of the
procedure is performed as described.

5.2.2 Sampling Duration

RQ1: What is the effect of encoding numeric options on the duration of sampling across all case
studies?

To our knowledge, there has been no analysis comparing the sampling duration depend-
ing on the encoding of numeric features inside the feature model. We would like to evaluate
whether the time span needed to sample over the configuration space differs depending on
the encoding category (one-hot encoded or numeric).

restriction The measured duration includes only the time span needed for the sam-
pling procedures. Consequently, the loading of the feature model and measurement files,
the check for validity of all measurements, as well as the combination of sampling results
and their storage in a file are not taken into account. This leads to a better comparability
between case studies, as the fluctuating amount of entries inside the measurements could
distort the measure by adding enormous overheads.

validity The sampling duration depends highly on the performance of SPL Conqueror,
thus another implementation might come to completely different results. Furthermore, there
is no guarantee that SPL Conqueror has been optimized for all sampling strategies, so the
differences in performance may (partially) also be caused due to unequally performing
implementations.

realization The calculation of the evaluation metric is performed as elaborated in
Section 5.3. As a metric, we apply sampling duration ∆ts and sampling cycle time Ts, as
described in Section 2.6, across case studies and sampling strategies for the encoding
categories numeric versus one-hot encoded.

5.2.3 Learning and Total Duration

RQ2: What influence has the encoding of numeric options on the duration of learning, and the
performance prediction in total across all case studies?

Evaluations of Machine Learning (ML) executions in different branches have detected that
one-hot encoding increases the complexity of the data and thus the learning duration [4].
First outcomes show that the surge in training time applies also for learning performance
models [30], especially for RFs. We would like to evaluate whether this effect takes place in



5.2 research questions 41

our situation as well, and how significant it is. For the sampling phase, there was no such
statement found, thus we have no prior expectations for the previous question.

Furthermore, since we regard the encoding during the whole pipeline, and sampling and
learning can have their encoding independent of each other, we receive 4 learning categories
to differentiate for this question (cf. Table 4.4).

realization For this research question, we calculate the evaluation metric as detailed
in Section 5.3. However, we now apply four metrics: learning duration ∆tl , learning cycle
time Tl , total duration ∆t and total cycle time T. As categories, we now regard the four
encoding categories described in the independent variables paragraph of Section 5.1. They
are evaluated across case studies, NFP and sampling strategies.

5.2.4 Prediction Error

RQ3: How does the encoding of numeric options during sampling and machine-learning affect
the error of performance prediction across all case studies?

As of now, the effect of encoding during sampling on the prediction error is hardly
researched.

Based on the knowledge of our team, we were able to formulate some hypotheses about
the differences this encoding causes, which may have an effect on the prediction error.
For instance, there may be a loss of information due to a change in value conception.
One-hot encoding regards the values of a feature independent of each other, and draws no
assumptions or relations between those. Therefore, Bao et al. suggests it for categorical
options [7]. With regard to numeric encoding, it might be helpful for features whose
influence on the prediction model is irregular. In contrast, numeric features allow the use
of functions over the feature space, which can simplify the prediction model and deliver
more precise answers even for values not covered by sampling results [33]. However, since
RF does not learn a global function, this advantage will not show in our scenario.

Furthermore, one-hot encoding reduces the potential influence of each value feature in the
configuration space, since a numeric option with v values causes each one-hot encoded value
feature to appear in just about 1

v cases compared to the original numeric feature. This may
affect splitting rules or limitations.

Recently, a first article appeared, which discussed the effect of encoding on prediction
errors in more detail [30]. However, the focus lies on learning effects of encoding, and the
sampling is always performed randomly with a 90% share of samples, which cannot be
considered sampling in a practical scenario at all. Therefore, we concentrate on the sampling
aspect of the encoding, and restrict the learning technique to RF only. Nonetheless, it is
impossible to ignore the machine learning aspect completely, thus it will also appear in our
analysis.

realization The evaluation metric, elaborated in Section 5.3, is calculated in accordance
with the last question Section 5.2.3. The regarded metric is now the model prediction error
MAPE issued by SPL Conqueror as described in Section 2.6.



42 experiments

5.3 evaluation metric

For evaluating and analyzing the research questions, we calculate a rank-based evaluation
score. This procedure is applied to the data provided by the prediction pipeline for each
research question. The evaluation metric is based on a rank-based score for each encoding
category across all sampling strategies and case studies. For the questions relating to data
provided by the learning phase, we also include the NFP into the dimensions to create the
score over. This is indicated by the round brackets () in the step descriptions below. The
procedure for calculating the rank-score is as follows for each measured metric:

(0) Available data: As a result of the execution of the prediction pipeline, we receive a value
for any case study (and NFP for RQ2 and RQ3) and for each combination of strategies
applied to the case study. To reduce the overhead of sampling strategies executed
multiple times with varying seeds, the values are aggregated prior to evaluation.
This happens in analogy to the aggregation procedure for hyperparameter evaluation
in Table 4.5, so that we receive a mean value for all strategies that use seeds, as given
in the last column of the table.

Thus, we receive the following data for all case studies (and NFP): For each binary and
each encoded sampling strategy used in the case study (ignoring the seed), there is a
value representing the measured metric by encoding category.

(1) Binary aggregation: Since the binary sampling strategies are not targeted in this evalua-
tion, we begin by calculating the mean value across all binary sampling strategies for
each case study, (every NFP) and encoding category.

(2) Numeric aggregation and Grouping: Next, we aggregate over the numeric respective one-
hot encoded sampling strategies. A simple aggregation would have been to calculate the
mean for each encoding category. As the data given here is not distributed normally,
but rather irregular with dense clusters and sparse areas, just using the mean would
lead to a high loss of information.

In contrast, statistical tests that do not require normally-distributed data, like the
Mann-Whitney U or the Wilcoxon signed-rank test [56, 91], usually rely on ranks for
their analysis. However, a simple ranking of means over this irregular data would
distort the results greatly as well, e. g., for the means {0.1, 0.2, 50} of each category
this could lead to a ranking of {1, 2, 3}, where the difference of one rank is on one
hand caused by a delta of 0.1, and on the other hand by a delta of 49.8. Therefore, it
does not make sense to apply ranks directly on means for the categories.

Instead, we group similarly-distributed instances of the measured metric across all
encoding categories for each case study (and NFP) before ranking them. For given
example, this would result in a grouping {1, 1, 2}, which is less distorted. Another
advantage hereby is that we can base our grouping and ranking not just on the simple
mean, but also include other factors like the variance. The grouping is done via the
Scott-Knott test based on the mean and variance of the numeric respective one-hot
encoded sampling strategies for each case study (and NFP). Hereby, a smaller group
index implies a smaller mean value over all encoding strategies referenced, and this is
preferable for all regarded metrics. As a result, each case study, (NFP) and encoding



5.3 evaluation metric 43

category has been assigned a group representing the metric across the sampling
strategies for the numeric features.

(3) Category ranking: Those resulting groups are then ranked across the encoding categories
for each case study (and NFP). As a ranking strategy, we choose fractional ranking,
since it is used in the aforementioned statistical tests [56, 91], and preserves the sum
over all ranks. Those ranks take values between 1 and the product of the number of
encoding categories with the amount of case studies (and NFP), which is in our case
2× 22 = 44 (4× 64 = 256). Hereby a smaller group signifies once again a smaller rank,
and thus a better result. For the given example, this means a ranking of {1.5, 1.5, 3}.

(4) Case study aggregation: Now we can aggregate the categories over all case studies (and
NFPs) by summing up the ranks for each encoding category. Since those sums increase
quadratically by the amount of entries, we divide it by the total rank sum. Thus, we
receive our final score for each encoding category, and their sum makes up 1. Those
rank-based scores can now be interpreted by their difference to 0.5 (0.25) and each
other, thereby a smaller score implies a better result.

Figure 5.1 visualizes the scheme for this realization on the metric sampling duration for
the two encoding categories numeric and one-hot encoding, and additionally provides an
example.



44 experiments

𝐶𝑆3 𝑛𝑠1 𝑛𝑠2 𝑜𝑠1 𝑜𝑠2

𝑏𝑠1 9.49 10.54 13.53 14.24

𝑏𝑠2 8.95 9.32 13.77 14.96

𝑏𝑠3 7.94 9.76 13.68 14.73

𝑏𝑠4 8.76 7.28 13.42 14.24

𝑏𝑠5 9.01 6.40 13.15 14.58

𝐶𝑆2 𝑛𝑠1 𝑛𝑠2 𝑛𝑠3 𝑛𝑠4 𝑜𝑠1 𝑜𝑠2 𝑜𝑠3 𝑜𝑠4

𝑏𝑠1 25.78 24.17 26.13 24.97 23.49 21.54 33.66 21.61

𝑏𝑠2 26.24 24.93 26.49 25.38 27.76 27.61 34.27 22.17

𝑏𝑠3 26.43 24.76 26.86 25.63 31.28 29.17 34.42 22.34

𝑏𝑠4 25.95 24.82 26.64 24.76 26.25 24.36 33.85 21.86

𝑏𝑠5 25.27 23.71 26.35 24.35 28.42 26.73 32.46 21.23

𝑏𝑠6 26.09 24.37 26.23 25.93 29.18 27.49 33.12 22.37

𝐶𝑆3 𝑛𝑠1 𝑛𝑠2 𝑜𝑠1 𝑜𝑠2

𝑏𝑠1 𝑡𝑛𝑠1,𝑏𝑠1 𝑡𝑛𝑠2,𝑏𝑠1 𝑡𝑜𝑠1,𝑏𝑠1 𝑡𝑜𝑠2,𝑏𝑠1

𝑏𝑠2 𝑡𝑛𝑠1,𝑏𝑠2 𝑡𝑛𝑠2,𝑏𝑠2 𝑡𝑜𝑠1,𝑏𝑠2 𝑡𝑜𝑠2,𝑏𝑠2

𝑏𝑠3 𝑡𝑛𝑠1,𝑏𝑠3 𝑡𝑛𝑠2,𝑏𝑠3 𝑡𝑜𝑠1,𝑏𝑠3 𝑡𝑜𝑠2,𝑏𝑠3

𝑏𝑠4 𝑡𝑛𝑠1,𝑏𝑠4 𝑡𝑛𝑠2,𝑏𝑠4 𝑡𝑜𝑠1,𝑏𝑠4 𝑡𝑜𝑠2,𝑏𝑠4

𝑏𝑠5 𝑡𝑛𝑠1,𝑏𝑠5 𝑡𝑛𝑠2,𝑏𝑠5 𝑡𝑜𝑠1,𝑏𝑠5 𝑡𝑜𝑠2,𝑏𝑠5

𝑅𝑎𝑛𝑘 𝑛𝑠 𝑜𝑠

𝐶𝑆1 𝑟𝑛𝑠,𝐶𝑆1 = 𝑟 𝑔𝑛𝑠,𝐶𝑆1 𝑟𝑜𝑠,𝐶𝑆1 = 𝑟 𝑔𝑜𝑠,𝐶𝑆1

𝐶𝑆2 𝑟𝑛𝑠,𝐶𝑆2 𝑟𝑜𝑠,𝐶𝑆2

𝐶𝑆3 𝑟𝑛𝑠,𝐶𝑆3 𝑟𝑜𝑠,𝐶𝑆3

𝐶𝑆2 𝑛𝑠1 𝑛𝑠2 𝑛𝑠3 𝑛𝑠4 𝑜𝑠1 𝑜𝑠2 𝑜𝑠3 𝑜𝑠4

𝑏𝑠1 𝑡𝑛𝑠1,𝑏𝑠1 𝑡𝑛𝑠2,𝑏𝑠1 𝑡𝑛𝑠3,𝑏𝑠1 𝑡𝑛𝑠4,𝑏𝑠1 𝑡𝑜𝑠1,𝑏𝑠1 𝑡𝑜𝑠2,𝑏𝑠1 𝑡𝑜𝑠3,𝑏𝑠1 𝑡𝑜𝑠4,𝑏𝑠1

𝑏𝑠2 𝑡𝑛𝑠1,𝑏𝑠2 𝑡𝑛𝑠2,𝑏𝑠2 𝑡𝑛𝑠3,𝑏𝑠2 𝑡𝑛𝑠4,𝑏𝑠2 𝑡𝑜𝑠1,𝑏𝑠2 𝑡𝑜𝑠2,𝑏𝑠2 𝑡𝑜𝑠3,𝑏𝑠2 𝑡𝑜𝑠4,𝑏𝑠2

𝑏𝑠3 𝑡𝑛𝑠1,𝑏𝑠3 𝑡𝑛𝑠2,𝑏𝑠3 𝑡𝑛𝑠3,𝑏𝑠3 𝑡𝑛𝑠4,𝑏𝑠3 𝑡𝑜𝑠1,𝑏𝑠3 𝑡𝑜𝑠2,𝑏𝑠3 𝑡𝑜𝑠3,𝑏𝑠3 𝑡𝑜𝑠4,𝑏𝑠3

𝑏𝑠4 𝑡𝑛𝑠1,𝑏𝑠4 𝑡𝑛𝑠2,𝑏𝑠4 𝑡𝑛𝑠3,𝑏𝑠4 𝑡𝑛𝑠4,𝑏𝑠4 𝑡𝑜𝑠1,𝑏𝑠4 𝑡𝑜𝑠2,𝑏𝑠4 𝑡𝑜𝑠3,𝑏𝑠4 𝑡𝑜𝑠4,𝑏𝑠4

𝑏𝑠5 𝑡𝑛𝑠1,𝑏𝑠5 𝑡𝑛𝑠2,𝑏𝑠5 𝑡𝑛𝑠3,𝑏𝑠5 𝑡𝑛𝑠4,𝑏𝑠5 𝑡𝑜𝑠1,𝑏𝑠5 𝑡𝑜𝑠2,𝑏𝑠5 𝑡𝑜𝑠3,𝑏𝑠5 𝑡𝑜𝑠4,𝑏𝑠5

𝑏𝑠6 𝑡𝑛𝑠1,𝑏𝑠6 𝑡𝑛𝑠2,𝑏𝑠6 𝑡𝑛𝑠3,𝑏𝑠6 𝑡𝑛𝑠4,𝑏𝑠6 𝑡𝑜𝑠1,𝑏𝑠6 𝑡𝑜𝑠2,𝑏𝑠6 𝑡𝑜𝑠3,𝑏𝑠6 𝑡𝑜𝑠4,𝑏𝑠6

𝐶𝑆1 𝑛𝑠1 𝑛𝑠2 𝑛𝑠3 𝑜𝑠1 𝑜𝑠2 𝑜𝑠3 𝑜𝑠4

𝑏𝑠1 𝑡𝑛𝑠1,𝑏𝑠1 𝑡𝑛𝑠2,𝑏𝑠1 𝑡𝑛𝑠3,𝑏𝑠1 𝑡𝑜𝑠1,𝑏𝑠1 𝑡𝑜𝑠2,𝑏𝑠1 𝑡𝑜𝑠3,𝑏𝑠1 𝑡𝑜𝑠4,𝑏𝑠1

𝑏𝑠2 𝑡𝑛𝑠1,𝑏𝑠2 𝑡𝑛𝑠2,𝑏𝑠2 𝑡𝑛𝑠3,𝑏𝑠2 𝑡𝑜𝑠1,𝑏𝑠2 𝑡𝑜𝑠2,𝑏𝑠2 𝑡𝑜𝑠3,𝑏𝑠2 𝑡𝑜𝑠4,𝑏𝑠2

𝑏𝑠3 𝑡𝑛𝑠1,𝑏𝑠3 𝑡𝑛𝑠2,𝑏𝑠3 𝑡𝑛𝑠3,𝑏𝑠3 𝑡𝑜𝑠1,𝑏𝑠3 𝑡𝑜𝑠2,𝑏𝑠3 𝑡𝑜𝑠3,𝑏𝑠3 𝑡𝑜𝑠4,𝑏𝑠3

𝑏𝑠4 𝑡𝑛𝑠1,𝑏𝑠4 𝑡𝑛𝑠2,𝑏𝑠4 𝑡𝑛𝑠3,𝑏𝑠4 𝑡𝑜𝑠1,𝑏𝑠4 𝑡𝑜𝑠2,𝑏𝑠4 𝑡𝑜𝑠3,𝑏𝑠4 𝑡𝑜𝑠4,𝑏𝑠4

𝐶𝑆3 𝑛𝑠1 𝑛𝑠2 𝑜𝑠1 𝑜𝑠2

𝑀𝑒𝑎𝑛 𝑡𝑛𝑠1 𝑡𝑛𝑠2 𝑡𝑜𝑠1 𝑡𝑜𝑠2

𝐶𝑆2 𝑛𝑠1 𝑛𝑠2 𝑛𝑠3 𝑛𝑠4 𝑜𝑠1 𝑜𝑠2 𝑜𝑠3 𝑜𝑠4

𝑀𝑒𝑎𝑛 𝑡𝑛𝑠1 𝑡𝑛𝑠2 𝑡𝑛𝑠3 𝑡𝑛𝑠4 𝑡𝑜𝑠1 𝑡𝑜𝑠2 𝑡𝑜𝑠3 𝑡𝑜𝑠4

𝐶𝑆1 𝑛𝑠1 𝑛𝑠2 𝑛𝑠3 𝑜𝑠1 𝑜𝑠2 𝑜𝑠3 𝑜𝑠4

𝑀𝑒𝑎𝑛 𝑡𝑛𝑠1 𝑡𝑛𝑠2 𝑡𝑛𝑠3 𝑡𝑜𝑠1 𝑡𝑜𝑠2 𝑡𝑜𝑠3 𝑡𝑜𝑠4

𝐺𝑟𝑜𝑢𝑝 𝑛𝑠 𝑜𝑠

𝐶𝑆1 𝑔𝑛𝑠,𝐶𝑆1 = 𝑔 𝑡𝑛𝑠 𝐶𝑆1 𝑔𝑜𝑠,𝐶𝑆1 = 𝑔 𝑡𝑜𝑠 𝐶𝑆1

𝐶𝑆2 𝑔𝑛𝑠,𝐶𝑆2 𝑔𝑜𝑠,𝐶𝑆2

𝐶𝑆3 𝑔𝑛𝑠,𝐶𝑆3 𝑔𝑜𝑠,𝐶𝑆3

Basis: Available data

1. Binary aggregation
Via mean

2. Numeric aggregation and grouping
Via Scott-Knott test

3. Ranking
Via fractional ranks

4. Case study aggregation
Via weighted rank sum

Scheme Example

𝐶𝑆1 𝑛𝑠1 𝑛𝑠2 𝑛𝑠3 𝑜𝑠1 𝑜𝑠2 𝑜𝑠3 𝑜𝑠4

𝑏𝑠1 0.06 0.37 0.28 2.13 2.39 4.52 5.2

𝑏𝑠2 0.04 0.61 0.15 3.82 2.51 4.78 6.60

𝑏𝑠3 0.01 0.09 0.31 3.42 2.73 4.15 6.98

𝑏𝑠4 0.21 0.17 0.14 2.71 2.45 4.91 6.14

𝐶𝑆3 𝑛𝑠1 𝑛𝑠2 𝑜𝑠1 𝑜𝑠2

𝑀𝑒𝑎𝑛 8.83 8.66 13.51 14.55

𝐶𝑆2 𝑛𝑠1 𝑛𝑠2 𝑛𝑠3 𝑛𝑠4 𝑜𝑠1 𝑜𝑠2 𝑜𝑠3 𝑜𝑠4

𝑀𝑒𝑎𝑛 25.96 24.46 26.45 25.17 27.73 26.15 33.63 21,93

𝐶𝑆1 𝑛𝑠1 𝑛𝑠2 𝑛𝑠3 𝑜𝑠1 𝑜𝑠2 𝑜𝑠3 𝑜𝑠4

𝑀𝑒𝑎𝑛 0.08 0.31 0.22 3.02 2.52 4.59 6.36

𝐺𝑟𝑜𝑢𝑝 𝑛𝑠 𝑜𝑠

𝐶𝑆1 1 2

𝐶𝑆2 1 1

𝐶𝑆3 1 2

𝑅𝑎𝑛𝑘 𝑛𝑠 𝑜𝑠

𝐶𝑆1 1 2

𝐶𝑆2 1.5 1.5

𝐶𝑆3 1 2

𝑆𝑐𝑜𝑟𝑒 𝑛𝑠 𝑜𝑠

𝑟𝑛𝑠 =
σ𝑖∈ 1,2,3 𝑟𝑛𝑠,𝐶𝑆𝑖

𝑇𝑅𝑆
𝑟𝑜𝑠 =

σ𝑖∈ 1,2,3 𝑟o𝑠,𝐶𝑆𝑖

𝑇𝑅𝑆

𝑆𝑐𝑜𝑟𝑒 𝑛𝑠 𝑜𝑠

𝑟𝑛𝑠 = 0.389 𝑟𝑜𝑠 = 0.611

𝑇𝑅𝑆 = σ𝑖∈ 1,2,3 𝑟𝑛𝑠,𝐶𝑆𝑖+σ𝑖∈ 1,2,3 𝑟o𝑠,𝐶𝑆𝑖 𝑇𝑅𝑆 = 3.5 + 5.5 = 9

Figure 5.1: Scheme and example for calculating the rank-based evaluation score on the metric
sampling duration for the two encoding categories numeric and one-hot encoding



6
E VA L UAT I O N

In this chapter, we perform the analysis pertaining the experiment and the pipeline execution
described in the previous chapters. In Section 6.1, we evaluate the results of the experiment
described in the previous chapter. The next section, Section 6.2 gives more context about
the evaluated metrics as well as the optimal hyperparameters used for learning. Finally in
Section 6.3, we describe the constraints placed on the execution and experiment that may
affect the results portrayed in Section 6.1.

6.1 results

In this section, we present and evaluate the results of the research questions portrayed in
Section 5.2. Table 6.1 summarizes the evaluation scores for each research question.

Table 6.1: Summarized results of the evaluation score for all research questions
Behind each score, we added a rank in brackets to accentuate the order of
the categories per metric. The best scores for each metric are highlighted in bold.
Hint: Due to round-off errors, the sum of all scores may not match 1 for each metric.

Metric Categories

Sampling Numeric One-hot

rqi Learning Numeric One-hot Numeric One-hot

0 Sample size (|Csampled|) 0.4318 (1) 0.5682 (2)

1 Sampling duration (∆ts) 0.4848 (1) 0.5152 (2)

1 Sampling cycle time (Ts) 0.5000 (1.5) 0.5000 (1.5)

2 Learning duration (∆tl) 0.2055 (1) 0.2313 (3) 0.2289 (2) 0.3344 (4)

2 Learning cycle time (Tl) 0.2875 (3) 0.3000 (4) 0.2031 (1) 0.2094 (2)

2 Duration (∆t) 0.2148 (1) 0.2367 (2) 0.2609 (3) 0.2875 (4)

2 Cycle time (T) 0.2711 (3) 0.2773 (4) 0.2242 (1) 0.2273 (2)

3 Prediction error (MAPE) 0.2813 (4) 0.2242 (2) 0.2766 (3) 0.2180 (1)

sample size Here, we receive a score of 0.4318 for the numeric and 0.5682 for the one-hot
encoded sampling. This indicates that the sample size is much smaller for sampling strategies
based on numeric features compared to the use of one-hot encoding for fixed-size strategies.
RQ0: The sample size is much smaller when treating numeric features in the sampling phase
than when applying one-hot encoding.

sampling duration Concerning the sampling duration, we get similar results for the
two encoding strategies (0.4848 and 0.5152, respectively). However, the difference between

45



46 evaluation

the scores is much less, which signifies a lesser rank distance between the categories. In
contrast, the scores for the sampling cycle time are identical with 0.5000 for both, so we
cannot determine a rank-based difference between numeric and one-hot encoding.
RQ1: The duration of the sampling phase is lower for sampling over numeric than one-hot
encoded features. Regarding the sampling cycle time, we detected no significant difference.

learning and total duration The learning duration shows three rather similar
categories, and the fourth one, one-hot encoded category. With 0.3344, one-hot encoding has
the highest score and thus, it is much worse than the others. The numeric category has the
lowest score with 0.2055, afterwards comes the one-hot encoded sampling 0.2289 and nearby
the one-hot encoded learning 0.2313. This indicates that learning with one-hot encoding results
in a larger learning duration, which may be due to the higher dimensional complexity.
One-hot encoded sampling also increases the duration, which may stem from the larger
sample size. Both reasons combined might explain the high score for the one-hot encoded
category.

Concerning the learning cycle time, there is a clear divide between numeric and one-hot
encoded sampling of 8− 10%, where the last categories perform more efficiently with 0.2031
and 0.2094 for numeric respective one-hot encoded learning. Numeric sampling leads to a
score of 0.2875 versus 0.3000. The higher score for one-hot encoded sampling can be a result
of the larger sample size.

For the pipeline’s duration we see results combining the properties of sampling and
learning duration. Thus, the numeric category performs best with the lowest score of 0.2148,
followed by their one-hot encoded learning counterpart with 0.2367 and its reversal 0.2609.
The one-hot encoded category brings up the rear with 0.2875. The larger divide between the
second and third-ranked categories is due to the difference in sampling.

Similarly to the learning one, the cycle time of the whole pipeline has similar scores
for the categories. Due to the sampling influence, they are only on a tighter scale. One-hot
encoded sampling has the scores 0.2242 and 0.2273, and 0.2711 respective 0.2773 for numeric
versus one-hot encoded learning.
RQ2: The learning duration differs depending on the encoding applied in the sampling and
learning phases of performance prediction. The best result is obtained by an all-numeric
pipeline. It is followed by one-hot encoded sampling combined with numeric learning, and
close-by its reversal. Finally, the learning phase lasts considerably longer with one-hot encoded
prediction.
For the learning cycle time, the encoding in the sampling phase is crucial, and in the learning step
quite negligible. Hereby, one-hot encoded sampling performs a lot more efficiently compared
to the numeric counterpart, and numeric learning leads to slightly better results per sampling
strategy.
The duration of the prediction pipeline is uniformly distributed with regards to the encoding
categories. Similar to the duration of both sampling and learning steps, sampling over numeric
features is significantly faster than categories with one-hot encoded sampling. Likewise, within
each sampling encoding, the categories based on numeric learning perform quicker as well.
The cycle time of the pipeline performs in analogy to the learning cycle time.

prediction error For this metric, we can see a huge distinction in the scores of the four
categories regarding the learning encoding, whereas between the sampling encoding there



6.2 discussion 47

is only a slight difference. With a score of 0.2180, the one-hot category has a minimal rank-
based error across all case studies and NFP, and the corresponding category with numeric
sampling is a close second with 0.2242. Afterward comes the numeric learning categories
with 0.2766 respective 0.2813 for one-hot encoding versus numeric sampling. Consequently,
the encoding during learning has an enormous effect on the prediction error, the sampling’s
feature encoding only very little. Regarding the small descent in score stemming from the
sampling encoding, it might correlate with the increase in sample size.
RQ3: For the prediction error, we can detect crucial differences regarding the encoding categories.
In contrast, the output now depends mostly on the encoding applied in the learning phase.
Learning with one-hot encoded features performs considerably better than with numeric options.
Within those phases, one-hot encoded sampling achieves slightly better predictions than its
numeric counterpart.

6.2 discussion

6.2.1 Analysis of Selected Hyperparameters

For the hyperparameter analysis and evaluation performed as described in Section 4.3.2,
we use a common strategy of k-cross validation (k = 5) in combination with a grid search
algorithm [1, 16, 30]. Thereby, we can identify the prediction errors across all points of the
grid portrayed in Table 5.2. Afterwards, the results for each combination of hyperparameters
are aggregated separately and the one with minimal error is selected.

Bergstra and Bengio suggest random search instead of grid search for an efficient optimiza-
tion [9], which has been applied multiple times in literature for performance prediction [10,
33, 46]. Nonetheless, the grid search algorithm is more practical and feasible in our setup,
because of aggregation inside the evaluation. When using the grid search, we can just
aggregate over the predefined grid points in the hyperparameter dimensions to find the
optimal one. However, we may miss global or even local minima with grid search if they do
not coincide with the given grid points. In contrast, when using random search, one would
have to estimate an error function over the dimensions for each combination of sampling
strategies before the aggregation and then resume by calculating the global minima over
the aggregated error function.

Here the danger of missing minima is reduced with random search and a good approxi-
mation of the error functions. However this approach increases the amount of computation
immensely. For our prediction, the accuracy of grid search optimization suffices.

6.2.2 Distribution of Dependent Variables

In addition to the evaluation scores presented in Section 6.1, we can also regard the
distributions for each metric, across all case studies and sampling strategies. They are
plotted across all categories as well as for each category separately. This can give an
orientation of the value range the metrics lie in, and allows us to contrast the distributions
per category against each other. Thus, we can also get a better understanding of the research
questions. As our procedure of calculating the evaluation metric is not a standard approach,



48 evaluation

we can use the insights gained from those plots to verify our score results portrayed in
Table 6.1.

After regarding the distribution plots portrayed in Figure 6.1, we can see a high span of
outliers that dominate all plots, and that the major bulk of values lies in the lower 10% of
the value range, in most cases it is even less.

Therefore, we additionally regard the distribution of the metrics also on a logarithmic
scale, as Figure 6.2 illustrates. Based on those charts, we can make multiple observations:

(a) For the sample size, the one-hot encoded samples are usually larger than the numeric
ones, as the distribution is identical with an offset for the one-hot encoded sample sizes.
The high amount of samples is sometimes quite large, with up to 60 000 samples in
the outliers. In a real setting, those are definitely not wanted, since measuring NFP for
thousands of configurations is rather impractical.

Thus, we intuitively expect a higher ranking for the one-hot encoded than the numeric
category, as stated in the results.

(b) Regarding the sampling duration, the metrics look alike but the numeric values more
densely distributed, and both start and end of the value range lie lower than those
of one-hot encoded sampling duration. Most of the values lie below 10 s and thus are
rather irrelevant in the pipeline execution, however the outlier indicate the period of
half an hour in an unfortunate setting.

Consequently, we should receive a higher ranking for the one-hot encoded than the
numeric category as well, which is fulfilled by the results.

(c) Concerning the sampling cycle time, the distributions are reversed. Both bulk and outlier
range end earlier for the encoded than the numeric cycle time. However, the start of
the one-hot encoded value range lies above the numeric one. This difference between
duration and cycle time has its reasons in the higher sampling size, e. g.,the runs for
binary-random sampling can issue a high amount of samples corresponding to a tOW

strategy in very little time.

For this metric, it is difficult to determine ranking orders manually. Here, the results
postulate no significant difference.

(d) The four categories of the learning duration differ as well. Thereby, the duration for
categories with numeric sampling use a smaller value range and upper focal point
than those starting with one-hot encoded sampling. Between the distributions of the
numeric-sampled categories, there is a large difference in the shape of the focal range.
Nonetheless, it is difficult to interpret those differences and rank one category above
another. In contrast, the categories starting with one-hot encoded sampling show a larger
difference, since one-hot encoded learning results in a more widespread distribution
with a slightly higher starting point than the distribution performed with numeric
learning. This indicates, that one-hot encoded sampling and learning perform much
longer than those with numeric learning. Most of the values lie below 1 s, but can go
up to half a minute, and thus can be ignored even more.

As a result, we should receive the lowest ranking for the numeric sampling categories,
together with the one-hot encoded sampling and numeric learning. The one-hot encoded



6.2 discussion 49

(a) Sample Size (b) Sampling Duration (c) Sampling Cycle Time

(d) Learning Duration (e) Learning Cycle Time

(f) Total Duration (g) Total Cycle Time

(h) Prediction Error

Legend:
Regarding the category names in the plot, ‚n‘
stands for numeric and ‚o‘ for one-hot encoded.
The letter in front of the arrow indicates the
feature representation at the sampling phase,
the letter behind stand for the encoding used

for learning. When different, there was a
transformation between those steps.

Figure 6.1: Distributions of metrics all together and per category, on a linear scale



50 evaluation

(a) Sample Size (b) Sampling Duration (c) Sampling Cycle Time

(d) Learning Duration (e) Learning Cycle Time

(f) Total Duration (g) Total Cycle Time

(h) Prediction Error

Legend:
Regarding the category names in the plot, ‚n‘
stands for numeric and ‚o‘ for one-hot encoded.
The letter in front of the arrow indicates the
feature representation at the sampling phase,
the letter behind stand for the encoding used

for learning. When different, there was a
transformation between those steps.

Figure 6.2: Distribution of metrics all together and per category, on a logarithmic scale



6.2 discussion 51

category should achieve the highest score by far. This is given by the result, although
numeric sampling and one-hot encoded learning scores higher than its reversal.

(e) Concerning the learning cycle time, the results differ much from the corresponding du-
ration measurement. One category is highlighted, one-hot encoded sampling combined
with numeric learning, since it results in smaller values than they can be detected in
other categories. The upper range however looks similar to the category with one-hot
encoded learning. Similarly but on a smaller scale, the same counts for the categories
of numeric sampling. when comparing the total numeric respective one-hot encoded
categories, one-hot encoded performs better as the upper distribution is lower than the
one for numeric.

Thus, we intuitively expect a higher ranking for the numeric sampling and one-hot
encoded learning, followed by the numeric and afterward one-hot encoded category. One-
hot encoded sampling with numeric learning brings up the rear. This also validates the
results, although the delta in score is higher between the different types of sampling
encoding.

(f) For the total duration, the distribution ranges (with and without outliers) for the
categories are plotted similar to the sampling duration. Both distributions of the
categories sampling over numeric features encompass a smaller value range, and less
distant outliers. Out of both, the category with one-hot encoded learning leads to a
denser bulk, as the range starts at a higher value. In a similar way but more widely
spread upwards, the categories with one-hot encoded sampling are analogous, here the
range with one-hot encoded learning includes a higher starting point. In analogy to the
sampling duration, which on average make up a higher part of the total duration,
most of the values lie below 10 s. Nonetheless, the outlier indicate the duration of half
an hour in an unfortunate setting.

Consequently, we should receive the best (minimal) scores for the numeric sampling
categories, followed by one-hot encoded sampling combined with numeric learning
and the one-hot encoded category. The results reflect those ideas, although they also
portray the same distance between numeric and one-hot encoded learning for numeric
sampling.

(g) Regarding the total cycle time, the distributions are analogous to those of the learning
cycle time, although on a different scale. The only major difference is between the
one-hot encoded learning categories, as both distributions start at about the same value.

Therefore, we expect a higher but similar ranking for the numeric sampling categories,
followed by afterward one-hot encoded category and the one-hot encoded sampling with
numeric learning. This is fulfilled by the results, with a significant delta between the
sampling categories.

(h) In contrast to the size, duration and cycle time metrics, the distributions for the
prediction error are formed less like a goth window, but rather they fade upwards
uniformly. Furthermore, the range starts at a much lower value, at less than 10−4.
However, the interpretation of the value range above 100 is quite disappointing, since
the values indicate a relative error of up to 100 in the bulk and 5 000 for the outliers,



52 evaluation

which signifies a very poor model quality in certain instances of case study, NFP and
sampling strategies. When contrasting the distributions, it can be noticed that the
one-hot encoded learning categories both start on a much higher value than those with
numeric learning, although those value differences are negligible in reality. The ranges’
and bulks’ ends are all on about the same level, but the categories with one-hot encoded
learning are represented less in the upper regions. For the numeric sampling, this is
portrayed by a much more pointed top, and for one-hot encoded sampling the top is
lower and also more pointed than the totally one-hot encoded execution.

As a result, we should receive the highest score for the numeric learning categories,
followed by learning with one-hot encoding. In between the sampling encoding, we
expect an increase in score from one-hot encoded to numeric sampling. This is reflected
by the evaluation scores, although the difference between the learning categories is
much higher than expected, and overshadows the small delta between the sampling
strategies.

When regarding the distribution of the dependent variables, it can be noticed that all
metrics cover a huge interval on the value axis. The major part of the span is taken by
outliers that stem from single instances of a few case studies only, the main share of the
values lie in the lower 10% of the range.

Based on the metrics’ distributions provided in form of the plots, we could verify the
results for each metric as presented by the evaluation scores in Section 6.1.

6.3 threats to validity

During the conduction of this experiment, we made assumptions and restrictions that
threaten the results presented in Section 6.1. Thereby, we differentiate between internal
validity, which is affected by decisions that shape the internal stability of an experiment,
and external validity, which is influenced by limitations affecting the generalization of the
outcome.

6.3.1 Internal Validity

To get comparable results when sampling, the sampling of binary features and one-hot
encoded options is split and their results are merged via a Cartesian product. This enables
the use of sampling strategies for both feature types separately, and therefore we can cover
a larger base of sample sets with one-hot encoding, as all strategies chosen for binary and
one-hot encoded features can be combined. The same procedure is mandatory for numeric
features, thus this technique is used for a better comparison of the results and the chosen
subsets for numeric respective one-hot encoded options. Despite that, we have to consider
that the merged sample set usually is larger than when applying the sampling strategy to
the whole feature set.

The implementation of SPL Conqueror supports the use of cross-tree constraints in
sampling only for whole feature type subsets, thus constraints are only considered when
sampling over either all binary options or all numeric features at once. For our execution,
when sampling binary and one-hot encoded options separately, this can result in invalid



6.3 threats to validity 53

configurations being forwarded. To deter those, the final results (after Cartesian product) are
all tested for validity once again. Nonetheless, the partial results of a sampling may already
be invalid due to those constraints, which has not been tested beforehand. In contrast,
in most binary strategies, the recursive model constraints are taken into account. Thus,
for those a major part of the invalid feature space is already forbidden. Therefore, this
procedure of checking constraints at the end can reduce the sample set significantly.

To maintain the size of a sampling set even under cross-tree constraints, a solver could
find the closest valid configuration. An alternative approach would be to consider the
constraints in sampling strategies where at a certain point in time, the strategy must decide
between multiple configurations with an equal heuristic. Those techniques, however, are
not considered in this thesis, as sampling completion is not the focal aspect and they would
complicate the setting even further. Because of those two flaws in execution, we restricted
the choice of case studies to those with none or minimal cross-tree constraints, such that the
sampling of potentially invalid configurations is minimized.

For each feature representation, we chose only one single strategy to sample over their
sub configuration space. In a real setting, it might make sense to combine multiple strategies
to reduce the weaknesses of each approach, e. g., PW with BBD for all numeric features.

As elaborated in the discussion, the hyperparameter learning and evaluation is performed
with grid search and an aggregation of the errors across configurations. Consequently, we
do not identify the global optimum over all combination of hyperparameters, but only
the minimum of all grid points. The alternative is calculating the error functions for each
configuration, and then determining the global minimum over the aggregation of those
functions. This adds a colossal calculation overhead, therefore we decided on the grid search
as a hyperparameter learning strategy.

The hardware during the execution of the measured sampling and learning aspects of the
pipeline is kept constant by machines with identical hardware and set up, as described in
Table 5.1. This guarantees the comparability of the resulting metrics.

The evaluation metric works on a rank-based score with significant grouping of means,
which can easily be distorted by the results of a single sampling strategy. Especially the first
mean over the binary sampling strategies can make an enormous difference to the analyzed
metric.

6.3.2 External Validity

To achieve a sufficient overview of the state-of the art in the given topic, multiple systematic
strategies for literature review were applied (cf. Chapter 3). Moreover, it has also not been
cited by any publication of those categories, and therefore it is seen as negligible. Recent
articles published after September 2022 will be disregarded as well. We might have missed
some publications while performing snowballing if they have not been cited in any of the
publications.

For the results to be as general as possible, various real-world configurable systems were
analyzed. In addition, synthesized but realistic case studies of varying size and feature
space were examined to broaden the perspective.

In the feature models constructed for all systems, we pre-encoded the categorical options
via one-hot encoding, as the encoding preserves the nominal characteristic and does not



54 evaluation

assume an ordering. This is performed similar to the works of Bao et al. [7], and in contrast
to the (scaled) label encoding used by Gong and Chen [30].

The measurements taken for the real software systems are not based on the complete
feature model of the system including every single option, as this would be infeasible
for most systems. For example, regard the Linux kernel with more than 12 000 options in
2022 [1]. Based on a subset of 8 700 of those features, over 95 000 random configurations
took more than 15 000 hours to measure the build of the system. Instead, most of our models
consist of the main features and the others are set to default when measuring. For some
numeric options, their value range was also reduced to a commonly-applied range [92]. Both
restrictions sample over the system options before even starting the performance-prediction
pipeline, so this pre-sampling reduces the explainability for the whole system.

For generating the synthesized case studies, we do not employ the application Thor [80],
since it cannot include numeric features. However, we incorporated its approach, the
consideration of measurement distributions when modeling NFPs. Thereby, we identified
four categories of distributions in real case studies and imitated those with linear and
polynomial models.

Furthermore, the procedure for calculating the evaluation metric takes into account
multiple sampling strategies for the binary features and the (encoded) numeric options over
which we aggregate the results, thus we reach a higher generalization.

During the procedure of the performance-prediction pipeline, there are multiple com-
ponents inside the sampling and learning phase which are based on (pseudo)-random
influence. For those, multiple tries with different random seeds have been established. This
includes the strategies for random and distance-based sampling, which have been executed
with two to five different, randomly chosen seeds. In the hyperparameter learning, the grid
contains also 8 fixed random states, over which the mean prediction error is optimized.
During the hyperparameter evaluation, the errors are averaged over those seeds to receive
more general results. Only afterwards the best hyperparameter setting for all sample sets is
chosen. Similarly, the evaluation score calculated for the research questions aggregates over
the given random seeds in the sampling strategies before calculating the final score.

Moreover, the split in the feature domain for sampling is not common in the area of
performance-prediction and thus less generally applicable.

The restriction of learning methods to RF reduces the generalization, as the results cannot
be transferred to other techniques, especially to ones based on a completely different
learning concept like MLR or neural networks.



7
C O N C L U D I N G R E M A R K S

7.1 conclusion

Many articles analyzing performance prediction in software systems encode numeric
features explicitly or implicitly before applying their pipeline, even though they take part
in almost all software systems. Despite that, the effect of encoding in this field has been
sparsely researched. To fill that void, we contrast the effect of one-hot encoding versus numeric
feature representation. Thereby, we focus on the sampling aspect of performance prediction,
but also consider the influence of the learning phase with regards to sample size, step
duration and prediction error.

Our results demonstrate that the encoding definitely has an enormous, non-negligible
effect on the performance prediction. The sample size and sampling duration are both
significantly smaller when using numeric-encoded feature representations. Regarding the
corresponding cycle time, there is no significant evidence for an encoding effect. Also for
the learning phase and the whole prediction pipeline, the duration is minimal for numeric
sampling and learning, and maximal for a wholly one-hot encoded execution. All in all, the
sampling duration makes up a larger share of the pipeline than the learning with RF, and
both times are negligible, as the major portion lasts less than 10 seconds during execution.
Due to the higher sample size, the (learning) cycle time is optimal for one-hot encoded
sampling and numeric learning. Concerning the most relevant metric, the model prediction
error, the effect of encoding is crucial as well. Here, the best scores are reached with one-hot
encoded learning, and optimal also with the same encoding in sampling. Therefore, this
thesis provides a deeper insight into the effect of encoding numeric features and paves the
way for further research in this area. The effect could be analyzed per sampling strategy
in-depth, or for other learning techniques to receive a more general impression.

7.2 future work

The results presented in this thesis have been retrieved from a higher amount of case studies
compared to other approaches and publications in the field of performance prediction [30,
34, 38, 61]. Nonetheless, concerning the vast amount of software systems in existence, it is
still a minuscule amount. Thus, the conclusion could be solidified on a higher number of
case studies to receive a more legit answer. The valid configuration space of the regarded
software systems are rather small compared to systems in real life. Therefore, a validation
with larger systems might be favorable as well.

Moreover, we manipulated the sampling process for the one-hot encoded feature variants,
since we split up the feature domain and sampled on binary and one-hot encoded options
separately. Consequently, one might want to perform this research again with a wholesome
sampling approach on the encoded feature models.

55



56 concluding remarks

Furthermore, we fixated the encoding for the whole domain of numeric features, however,
the optimal feature representation could also vary between options. This could get evaluated
in another experiment.

Additionally, we restricted the sampling strategies to those given in SPL Conqueror.
Nonetheless, there exist other sampling strategies that are disregarded in this application,
like t-wise interaction sampling [3, 50]. Regarding the encoding techniques applied, many
more are available which have not been included in this thesis, like scaled label encoding [30]
or alternative binary encoding techniques mentioned in Section 2.1.3.

Finally, we compared the encoding strategies as a whole group in each scenario. It might
be interesting to contrast the performance of all included strategies as well to receive a more
detailed outcome and create a sampling guideline.



A
A P P E N D I X

a.1 extension of the quantitative description

This section elaborates further quantitative aspects about the literature research, which are
not as crucial for the performance of this thesis, but may of interest to the public.

The chronological distribution of the 40 publication years ranges from 2014 to 2022. At
the first phase, from 2014 to 2018, there was little interest into the topic, and only 2 to
3 publications were issued annually. An exception is 2017 with five submissions. Later
on, the research increased, as starting from 2019, at least five articles with numeric input
were published. The peak is situated in 2019 and 2021 with 7 publications in both years.
Figure A.1 displays the chronological publication of the articles.

2 2

3

5

3

7

6

7

5

0

1

2

3

4

5

6

7

8

2014 2015 2016 2017 2018 2019 2020 2021 2022

Publication year

Publication year

Figure A.1: Distribution of the publication year for the articles

Regarding the origin of the articles, the entries are from mostly Europe, but also America,
Asia and Australia. Out of 31 articles created within Europe, 23 stem from Germany, and
only 5 have been contributed to by the UK. Luxembourg, Belgium and France added
2 respective 1 publication each. Then, North America follows with 11 publications, of
which the US has taken part in 10 articles and Canada one. Asia (China) contributed to 8
publications and 2 originated in the country Australia. Figure A.2 portrays the origin of all
publishers.

57



58 appendix

31

23

5

2
1 1 1

11
10

1

8

2

0

5

10

15

20

25

30

35

Location of articles' creation

Location of articles' creation

Figure A.2: The origin country of all publishers involved in an article
As multiple parties from different countries may cooperate for some articles, the overall
sum as well as the sums in each continent may not add up.

The Chair of SE has contributed to 20 articles (independent of the Chair’s location at the
time of publishing); only half of all publications were created without relation to the Chair.
This may be partly due to a selection bias, as the articles and theses originating from the
Chair are easily accessible. However, the Chair has also invested a great deal of research
into the topic, and cooperated with many other institutes to publish articles together. This
is also visualized in Figure A.3.

2020

Influence of the Chair of SE

By / with contribution of the Chair of Software Engineering

Outside work

Figure A.3: The influence of the Chair of SE on the selected articles



A.2 artificial system models 59

a.2 artificial system models

This section presents the six artificial software systems that were generated for this the-
sis. They are characterized by their feature models, and their synthesized measurements
imitating the NFPs of real systems. For each system, we will display the corresponding
feature diagram. The measurements will be provided in form of violin plots visualizing
their distribution. A short summary of the systems is given in Table 4.1 and Table A.3.

dataset_01 has, with three each, a fair share of both binary and numeric features. It
includes 2 linear numeric options with 7 and 8 values, as well as an exponential one with
just 3 values. The feature diagram is depicted in Figure A.4.

Afterwards, we generated and selected four measurements. Linear_model_06 pertains to
category (a), as it has a normal distribution with upward outliers. The second one, lin-
ear_model_07, with a dumbbell form, is part of category (c). Similar to the first measurement,
linear_model_09 is also a member of category (a), although with less severe outliers that form
a small bulk at top range. Category (b) is represented by linear_model_11, with multiple
agglomerations at different parts of the value domain. Figure A.5 illustrates their value
distributions.

root

b1 b2 b3

nn2
(6; 48;+6)

nn3
(0; 102;+17)

nk3
(50; 3200;×8)

binary Optional option

numeric
(min;max;

step function)

Figure A.4: Feature diagram for artificial Dataset_01

Figure A.5: Four measurement distributions for artificial Dataset_01



60 appendix

dataset_02 does not include any binary options, but consists of three linear numeric
features. Two of those include many values, the other one consists of much less values that
extend to up to 1 800. Its feature diagram is visualized in Figure A.6.

We administered four NFPs. The linear_model_02 is an abnormal one, bulking steeply at
zero and with a high lance upwards. Thus, it is assigned to category (d). Linear_model_04 and
linear_model_07 both belong to category (a). Whereas the linear_model_04 has few outliers
and a flattened normal distribution, the linear_model_07 resembles a rhombus with outliers
upwards. Finally, there is again a member of category (b), linear_model_10, with multiple,
unevenly spaced agglomerations. Figure A.7 presents the plots for the measurements.

root

nl1
(1; 99;+2)

nl2
(300; 1800;+300)

nl4
(5; 115;+5)

binary

numeric
(min;max;

step function)

Figure A.6: Feature diagram for artificial Dataset_02

Figure A.7: Measurement distributions for artificial Dataset_02



A.2 artificial system models 61

dataset_03 contains a single, dense incremental numeric option in the range [1; 11].
Additionally, we added five binary features, that are optional and completely independent
of each other. The feature diagram is portrayed in Figure A.8.

Once again, we synthesized four measurements suiting the system. Similar to the one
above we have two members of category (a), linear_model_02 flattened, and linear_model_06
steeper, with small bulky outliers. Linear_model_04 has multiple agglomerations, and is
a part of category (b), whereas linear_model_05 is a dumbbell of category (c). Figure A.9
visualizes the measurement distributions.

root

b1 b2 b3 b4 b5

nl3
(1; 11;+1)

binary

numeric
(min;max;

step function)

Optional option

Figure A.8: Feature diagram for artificial Dataset_03

Figure A.9: Measurement distributions for artificial Dataset_03



62 appendix

dataset_04 Figure A.10 displays the feature diagram of the fourth artificial system,
which contains an irregular numeric option with only three values. In addition, it includes
seven binary features, of which one is an optional child of another, and two form an
alternative group to yet another parent.

In contrast to the systems portrayed above, this dataset includes only three generated mea-
surements displayed in Figure A.11. First, we have a model of category (c), linear_model_01,
which has the shape of a dumbbell. Linear_model_04, in contrast, is more irregular and thus
part of category (d). Category (a) is represented by linear_model_06.

root

b1 b2 b3 b4

nk1
{2;27;54 }

b11 b41 b42

binary numeric
values

Optional option

Alternative group

Figure A.10: Feature diagram for artificial Dataset_04

Figure A.11: Measurement distributions for artificial Dataset_04



A.2 artificial system models 63

dataset_05 also includes just a single numeric feature, this time however a linear option
in [0; 48] with a missing value in-between. Furthermore, it encompasses again seven binary
features, and three form an alternative group under another optional feature. The diagram
is displayed in Figure A.12.

In accordance with the model, we generated three synthesized NFPs, illustrated in Fig-
ure A.13. Linear_model_02 is a part of category (a), with a normal distribution and no outliers.
Category (c) is represented by linear_model_03, and the more irregular linear_model_05 is a
member of category (d).

root

b1 b2 b3 b4

nn1
{0;8;16;32;48 }

b41 b42 b43

binary numeric
values

Optional option

Alternative group

Figure A.12: Feature diagram for artificial Dataset_05

Figure A.13: Measurement distributions for artificial Dataset_05



64 appendix

dataset_06 includes two numeric features, in addition to eleven hierarchically-organized
binary options. The numeric ones are both exponential ones, once on base 2 and the other
on base 8. For the binary ones, we have two alternative groups of size two and five, each
under an optional binary parent. The entire diagram is depicted in Figure A.14.

Regarding the measurement distributions, we have synthesized three NFPs, as illustrated
in Figure A.15. Linear_model_02 has multiple agglomerations, and is a member of category
(b). In contrast, linear_model_03 resembles more a normal distribution, however with some
outliers. Thus, it belongs to category (a). At last, linear_model_04 pertains to category (c), as
it has a dumbbell form, even though there are some outliers.

root

b1 b2 b3 b4

nl1
(8; 32768;×8)

nn3
(1; 64;×2)

b11 b12 b41 b42 b43 b44 b45

binary

numeric
(min;max;

step function)

Optional option

Alternative group

Figure A.14: Feature diagram for artificial Dataset_06

Figure A.15: Measurement distributions for artificial Dataset_06



A
.
3

p
u

b
l

i
c

a
t

i
o

n
l

i
s

t
i
n

g
s

6
5

a.3 publication listings

Table A.1: Publications applying binary encoding mechanisms to deal with numeric options

No. Title of publication Authors Year Sampling strategy Encoding Determined by Learning method Contribution1

1 “Automated Search for Configurations of
Deep Neural Network Architectures” [29]

Ghamizi et
al.

2019 PLEDGE:Global
Maximum Distance
Prioritization

One-hot Explicit No

2 “Data-efficient Performance Learning for
Configurable Systems” [37]

Guo et al. 2018 Random One-hot Case study
Hipa

cc

CART Yes

3 “Detecting Control-Flow and Performance
Interactions in Highly-Configurable Sys-
tems” [20]

Denk 2017 Not mentioned Omit feature
values or
use default

Explicit MLR Yes

4 “Distance-Based Sampling of Software Con-
figuration Spaces” [47]

Kaltenecker
et al.

2019 Random, solver-
based, distance-
based, tOW

One-hot Case studies 7z,
Dune, Hipa

cc,
JavaGC, Polly,
VP9

MLR Yes

5 “Does Configuration Encoding Matter in
Learning Software Performance? An Empiri-
cal Study on Encoding Schemes” [30]

Gong and
Chen

2022 Random One-hot Case studies
MongoDB, lrzip,
TriMesh, x264,
exastencils

MLR, NN, DT, RF,
kNN, KRR, SVR

No

6 “Evolution of Performance Influences in
Configurable Systems” [40]

Hasreiter 2019 OW, PW, random One-hot Explicit MLR Yes

7 “Experiments on Optimizing the Perfor-
mance of Stencil Codes with SPL Con-
queror” [31]

Grebhahn et
al.

2014 OW, PW, higher-
order heuristic and
hot-spot heuristic

One-hot Explicit MLR Yes

8 “Grammar-Based Sampling” [90] Weis 2020 Grammar-Based
Sampling, tOW,
solver-based,
distance-based,
random

One-hot Case studies 7z,
Dune, Hipa

cc,
JavaGC, Polly,
VP9

MLR, RF, SVR Yes



6
6

a
p

p
e

n
d

i
x

No. Title of publication Authors Year Sampling strategy Encoding Determined by Learning method Contr.

9 “Learning to Sample: Exploiting Similarities
across Environments to Learn Performance
Models for Configurable Systems” [43]

Jamshidi et
al.

2018 Active sampling
(L2S)

Mapping of
2 values to
0;1

Explicit MLR No

10 “Mastering Uncertainty in Performance Es-
timations of Configurable Software Sys-
tems” [21]

Dorn, Apel,
and Sieg-
mund

2020 OW, PW, 3OW One-hot Case studies
Hipa

cc, HSQLDB,
JavaGC, Polly,
PostgreSQL,
VP9

Bayesian model Yes

11 “Optimizing Performance of Stencil Code
with SPL Conqueror” [34]

Grebhahn et
al.

2014 OW, PW, higher-
order heuristic and
hot-spot heuristic

One-hot Case studies
Hipa

cc, HSMGP
MLR Yes

12 “Performance Modeling under Resource
Constraints Using Deep Transfer Learn-
ing” [57]

Marathe et
al.

2017 random One-hot Explicit Extra Trees, RF,
DFNN for transfer

No

13 Scalable Performance Models for Highly Config-
urable Systems [71]

Oh and Zil-
mano

2020 Random One-hot Case studies
Dune, Hipa

cc,
HSMGP

DFNN No

14 “Tradeoffs in modeling performance of
highly configurable software systems” [49]

Kolesnikov
et al.

2019 Not mentioned One-hot Case studies
Dune, HSMGP

MLR Yes

15 “White-Box Analysis over Machine Learn-
ing: Modeling Performance of Configurable
Systems” [88]

Velez et al. 2021 Pick > 1 c per sub-
space

Mapping of
2 values to
0;1

Explicit Composition of
local linear mod-
els

Yes

1 This column indicates whether this university Chair on its various locations has participated in composing this publication.



A
.
3

p
u

b
l

i
c

a
t

i
o

n
l

i
s

t
i
n

g
s

6
7

Table A.2: Publications processing numeric options directly

No. Title of publication Authors Year Sampling strategy Learning method Contribution

Binary Numeric

1 “ACTGAN: Automatic Configuration Tuning for
Software Systems with Generative Adversarial Net-
works” [7]

Bao et al. 2019 Random GAN No

2 “An Uncertainty-Aware Approach to Optimal Configu-
ration of Stream Processing Systems” [42]

Jamshidi and Casale 2016 Bayesian Optimization with Latin Hypercube De-
sign and GPR

No

3 “Automatic Configuration of the Cassandra Database
using irace” [81]

Silva-Muñoz,
Franzin, and
Hugues

2021 irace:random iterative sam-
pling

irace:stochastic opti-
mizer

No

4 “Black-Box Models for Non-Functional Properties of AI
Software Systems” [27]

Friesel and
Spinczyk

2022 Not mentioned DECART, CART,
LMT, XGBoost,
DECARTnb, LMTnb

No

5 “Combining Multi-Objective Search and Constraint
Solving for Configuring Large Software Product
Lines” [41]

Henard et al. 2015 Solver-based Multi-Objective Op-
timization

No

6 “Comparison of Analytical and Empirical Performance
Models: A Case Study on Multigrid Systems” [45]

Kaltenecker 2016 Not mentioned FF, PBD, CCID,
random

MLR Yes

7 “DeepPerf: Performance Prediction for Configurable
Software with Deep Sparse Neural Network” [38]

Ha and Zhang 2019 Random DFNN No

8 “Does Configuration Encoding Matter in Learning Soft-
ware Performance? An Empirical Study on Encoding
Schemes”2 [30]

Gong and Chen 2022 Random MLR, NN, DT, RF,
kNN, KRR, SVR

No

9 “Experiments on Optimizing the Performance of Stencil
Codes with SPL Conqueror”2 [31]

Grebhahn et al. 2014 Function-learning heuristic MLR Yes

10 “Fast Performance Modeling across Different Database
Versions Using Partitioned Co-Kriging” [13]

Cao et al. 2021 Random kMeans, co-kriging No

11 “Finding Faster Configurations Using FLASH” [65] Nair et al. 2020 Bayesian Optimization with progressive, projective
and rank-based sampling (random) and GPR

Yes



6
8

a
p

p
e

n
d

i
x

No. Title of publication Authors Year Sampling strategy Learning method Contribution

Binary Numeric

12 “Hdconfigor: Automatically Tuning High Dimensional
Configuration Parameters for Log Search Engines” [22]

Dou, Chen, and
Zheng

2020 Bayesian Optimization with random-based sam-
pling via Expected Improvement and GPR

No

13 “HINNPerf: Hierarchical Interaction Neural Network
for Performance Prediction of Configurable Sys-
tems” [16]

Cheng, Gao, and
Zheng

2022 Random DFNN No

14 “LONViZ: Unboxing the black-box of Configurable
Software Systems from a Complex Networks Perspec-
tive” [52]

Li, Mao, and Chen 2022 ParamILS: random iterative
approach

local optima net-
work

No

15 “Multi-Objectivizing Software Configuration Tun-
ing” [14]

Chen and Li 2021 Random-based objectivization Plain Multi-
objectivization
Model, meta multi-
objectivization

No

16 “Optimizing Performance of Stencil Code with SPL Con-
queror” 2 [34]

Grebhahn et al. 2014 Function-learning heuristic MLR Yes

17 “Perf-AL: Performance Prediction for Configurable Soft-
ware through Adversarial Learning” [78]

Shu et al. 2020 Random GAN No

18 “Performance is not Boolean: Supporting Scalar Config-
uration Variables in NFP Models” [28]

Friesel and
Spinczyk

2022 Random sampling with neigh-
borhood exploration

CART, DECART,
LMT, and Regres-
sion Model Tree

No

19 “Performance Prediction of Multigrid-Solver Configura-
tions” [35]

Grebhahn et al. 2016 OW, PW PBD, random MLR Yes

20 “Performance-Influence Models for Highly Config-
urable Systems” [79]

Siegmund et al. 2015 OW, NOW, PW BBD, CCID, PBD,
random

MLR Yes

21 “Performance-Influence Models of Multigrid Methods:
A Case Study on Triangular Grids” [32]

Grebhahn et al. 2017 OW, NOW, PW CCID, PBD, DOD MLR Yes

22 “Predicting Performance of Software Configurations:
There is no Silver Bullet” [33]

Grebhahn, Sieg-
mund, and Apel

2019 OW, PW, 3OW,
random

OFAT, BBD,
CCID, PBD,
DOD, random

CART, kNN, KRR,
MLR, RF, SVR

Yes

23 “Regression Models for Performance Ranking of Con-
figurable Systems: A Comparative Study” [15]

Chen et al. 2020 Rank-based iterative (random) CART, SVR,GPR, Gra-
dient Boosted Re-
gression Trees

No



A
.
3

p
u

b
l

i
c

a
t

i
o

n
l

i
s

t
i
n

g
s

6
9

No. Title of publication Authors Year Sampling strategy Learning method Contribution

Binary Numeric

24 “The Interplay of Compile-Time and Run-Time Options
for Performance Prediction” [51]

Lesoil et al. 2021 Random RF No

25 “The Interplay of Sampling and Machine Learning for
Software Performance Prediction” [46]

Kaltenecker et al. 2020 OW, NOW, tOW,
random

OFAT, BBD,
CCID, PBD,
DOD, random

CART, kNN, KRR,
MLR, RF, SVR

Yes

26 “Using Bad Learners to Find Good Configurations” [64] Nair et al. 2017 Progressive and projective
sampling, rank-based iterative
(random)

CART Yes

27 “VEER: A Fast and Disagreement-Free Multi-objective
Configuration Optimizer” [72]

Peng et al. 2021 Bayesian Optimization with random-based sam-
pling approach and CART

Yes

28 “White-Box Performance-Influence Models: A Profiling
and Learning Approach” [89]

Weber, Apel, and
Siegmund

2021 OW, PW PBD CART Yes

2 This article is found also in Table A.1, as it uses both binary encoding and numeric features for performance prediction.



7
0

a
p

p
e

n
d

i
x

a.4 description of software systems

Table A.3: Details of the selected real software systems as well as the generated artificial ones

No. Software
system

Case study name Binary features Numeric features3 |Cvalid| NFP

1 7z 7z 10 filterOff; HeaderCompressionOff;
mtOff; CompressionMethod;
LZMA; LZMA2; PPMd; BZip2;
Deflate; tmOff

3 Files(0; 100;+10);
BlockSize(1; 4096;×2);
x(0; 10;+2)

68 640 Time, Size

2 brotli brotli 0 - 2 WindowSize(10; 24;+1);
CompressionLevel(0; 11;+1)

180 testmem, performance, decom-
pressperf, size, testperf, mem-
ory, decompressmem, energy

3 Dune Dune 8 Precon; Solver; SeqGS; SeqSOR;
CGSolver; BiCGSTABSolver;
LoopSolver; GradientSolver

3 pre(0; 6;+1); post(0; 6;+1);
cells(50; 55;+1)

2 304 Performance

4 HSMGP HSMGP 11 CGS; Smoother; CGS_IP_CG;
CGS_IP_AMG; CGS_RED_AMG;
Smoother_JAC; Smoother_GS;
Smoother_GSAC;
Smoother_GSACBE;
Smoother_GSRB;
Smoother_GSRBAC

3 pre(0; 6;+1); post(0; 6;+1);
numCore(64; 4096;×4)

3 456 AverageTimePerIteration, Nu-
mIterations, TimeToSolution

5 JavaGC JavaGC_small 5 DisableExplicitGC; UseAdap-
tiveGCBoundary; UseAdap-
tiveSizeDecayMajorGCCost;
UseAdaptiveSizePolicy; Use-
AdaptiveSizePolicyFootprint-
Goal

6 MaxTenuringThreshold(5; 15;+5);
MinSurvivorRatio(1; 10;+3);
NewRatio(1; 32;×2);
SurvivorRatio(1; 31;+5);
TenuredGenerationSizeSupplement(50; 90;+20);
TenuredGenerationSizeSupplementDecay(2; 16;×2)

193 536 GCTime



A
.
4

d
e

s
c

r
i
p

t
i
o

n
o

f
s

o
f

t
w

a
r

e
s

y
s

t
e

m
s

7
1

No. Software
system

Case study name Binary features Numeric features |Cvalid| NFP

6 Libopus Libopus pervolu-
tion

15 mode; audio; cbr; cvbr; band-
width; NB; WB; FB; frameSize;
lowest; default; highest; force-
mono; MB; SWB

4 channels(1; 2;+1);
samplingRate(8000; 24000;+8000);
bitRate(6000; 216000;×6);
complexity(0; 10;+5)

6 480 performance

7 lrzip lrzip pervolu-
tion

6 compression; compressionBzip2;
compressionGzip; compression-
Lzo; compressionLzma; disable-
CompressibilityTesting

3 level(1; 9;+1);
maxWindowSize(1; 8;×2);
processorCount(1; 8;×2)

1 440 performance, size, cpu

8 MySQL MySQL MariaDB
pervolution

8 delayedInnodbLogFlush; de-
layedInnodbLogWrite; inn-
odbFlushMethod; fsyncFlush;
dsyncFlush; directFlush; binary-
Log; innodbDoubleWrite

3 tempTableSize(256; 65536;×16);
innodbBufferPoolSize(8; 512;×8);
innodbLogBufferSize(1; 64;×8)

972 performance, cpu

9 OpenVPN OpenVPN 18 tcp; compression; none;
lzo; cipher; AES_256_CBC;
AES_128_CBC; TCP_NODEAL;
prng; prng_none;
prng_rsa_sha512; prng_sha512;
prng_sha1; auth; auth_none;
auth_sha1; auth_sha512;
auth_rsa_sha512

1 reneg_bytes(10; 70;+20) 512 throughput_server

10 Polly Polly 15 polly_vectorizer; none; polly;
polly_parallel; parallel; par-
allel_force; polly_no_tiling;
polly_delinearize;
polly_dependences_analysis_type;
value_based; memory_based;
polly_opt_fusion; min; max;
polly_opt_simplify_deps

4 pollyrtcmaxparameters(1; 16;×2);
pollydefaulttilesize(4; 1024;×4);
pollyoptmaxconstantterm(1; 10000;×10);
pollyoptmaxcoefficient(1; 10000;×10)

60 000 UserTime, ElapsedTime

11 PostgreSQL PostgreSQL per-
volution

5 fsync; synchronousCommit;
fullPageWrites; trackActivities;
trackCounts

3 sharedBuffers(64; 256;×2);
tempBuffers(2; 32;×4);
workMem(256; 4096;×4)

864 performance, cpu



7
2

a
p

p
e

n
d

i
x

No. Software
system

Case study name Binary features Numeric features |Cvalid| NFP

12 PostgreSQL PostgreSQL per-
volution energy

5 fsync; synchronousCommit;
fullPageWrites; trackActivities;
trackCounts

3 sharedBuffers(64; 256;×2);
tempBuffers(2; 32;×4);
workMem(256; 4096;×4)

864 performance, cpu, benchmark-
energy, fixed-energy

13 VP8 VP8 pervolution

energy

9 twoPass; quality; bestQuality;
goodQuality; rtQuality; constant-
Bitrate; autoAltRef; noAltRef; al-
lowResize

4 threads(1; 4;+1);
tokenParts(0; 2;+1);
arnrMaxFrames{0; 5; 15};
arnrStrength(0; 6;+3)

2 736 performance, size, energy, cpu

14 VP9 VP9 pervolution 11 twoPass; quality; bestQuality;
goodQuality; rtQuality; constant-
Bitrate; autoAltRef; noAltRef; al-
lowResize; columnTiling; rowTil-
ing

3 threads(1; 8;×2);
arnrMaxFrames{0; 5; 15};
arnrStrength(0; 6;+3)

3 008 performance, size, cpu

15 x264 x264 pervolution 6 no_8x8dct; no_cabac;
no_deblock; no_fast_pskip;
no_mbtree; no_mixed_refs

3 rc_lookahead(10; 160;×4);
ref(1; 16;×2); cores(1; 8;×2)

3 840 performance, size, cpu

16 x265 x265 pervolution 17 asm; wpp; rdoLevel; rdoBasic;
rdoSplits; rdoChroma; rdoPre-
diction; rect; amp; bitdepth;
8bit; 10bit; me; meDia; meHex;
meUmh; meStar

2 frameThreads(1; 8;×2);
ref{1; 3; 6}

3 840 performance, size, cpu

17 - Dataset_01 3 b1; b2; b3 3 nn2(6; 48;+6); nk3(50; 3200;×8);
nn3(0; 102;+17)

1 344 linear_model_[06,07,09,11]

18 - Dataset_02 0 - 3 nl1(1; 99;+2);
nl2(300; 1800;+300);
nl4(5; 115;+5)

6 900 linear_model_[02,04,07,10]

19 - Dataset_03 5 b1; b2; b3; b4; b5 1 nl3(1; 11;+1) 352 linear_model_[02,04,05,06]

20 - Dataset_04 7 b1; b11; b2; b3; b4; b41; b42 1 nk1{2; 27; 54} 72 linear_model_[01,04,06]

21 - Dataset_05 7 b1; b2; b3; b4; b41; b42; b43 1 nn1{0; 8; 16; 32; 48} 80 linear_model_[02,03,05]

22 - Dataset_06 11 b1; b11; b12; b2; b3; b4; b41; b42;
b43; b44; b45

2 nl1(8; 32768;×8);nn3(1; 64;×2) 1 400 linear_model_[02-04]

3 Regarding numeric features, their values are given in the following form (minimal value;maximal value;step function).
In case this is not possible, their are given in set notation.



B I B L I O G R A P H Y

[1] Mathieu Acher, Hugo Martin, Luc Lesoil, Arnaud Blouin, Jean-Marc Jézéquel, Djamel
Khelladi, Olivier Barais, and Juliana Pereira. “Feature Subset Selection for Learning
Huge Configuration Spaces: The Case of Linux Kernel Size.” In: Proceedings of the
International Systems and Software Product Line Conference (SPLC) - Volume A. 2022,
pp. 85–96.

[2] Bouzid Ait-Amir, Abdelkhalak El Hami, and Philippe Pougnet. “6 - Meta-Model
Development.” In: Embedded Mechatronic Systems 2. Ed. by Abdelkhalak El Hami and
Philippe Pougnet. Elsevier, 2015, pp. 151–179.

[3] Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thüm, Malte Lochau, and Gunter Saake.
“IncLing: Efficient Product-Line Testing Using Incremental Pairwise Sampling.” In:
Proceedings of the International Conference on Generative Programming and Component
Engineering (GPCE) 52.3 (2016), pp. 144–155.

[4] Mokhtar Alaya, Simon Bussy, Stéphane Gaïffas, and Agathe Guilloux. “Binarsity: a
penalization for one-hot encoded features in linear supervised learning.” In: Journal of
Machine Learning Research 20.118 (2019), pp. 1–34.

[5] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented Software
Product Lines: Concepts and Implementation. 2013.

[6] Sven Apel, Sergiy S. Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. “Exploring feature interactions in the wild: the new feature-interaction chal-
lenge.” In: International Workshop on Feature-Oriented Software Development (FOSD).
2013, pp. 1–8.

[7] Liang Bao, Xin Liu, Fangzheng Wang, and Baoyin Fang. “ACTGAN: Automatic
Configuration Tuning for Software Systems with Generative Adversarial Networks.”
In: Proceedings of the International Conference on Automated Software Engineering (ASE).
2019, pp. 465–476.

[8] Thorsten Berger. “Variability Modeling in the Real. An Empirical Journey from
Software Product Lines to Software Ecosystems.” PhD thesis. Germany: University of
Leipzig, 2012.

[9] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter Optimiza-
tion.” In: Journal of Machine Learning Research 13 (2012), pp. 281–305.

[10] James Bergstra, Daniel Yamins, and David Cox. “Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures.”
In: Proceedings of the International Conference on Machine Learning (ICML). 2013, pp. 115–
123.

[11] George Box and Donald Behnken. “Simplex-Sum Designs: A Class of Second Order
Rotatable Designs Derivable From Those of First Order.” In: The Annals of Mathematical
Statistics 31 (1960), pp. 838–864.

73



74 bibliography

[12] George Box and K. Wilson. “On the Experimental Attainment of Optimum Condi-
tions.” In: Breakthroughs in Statistics. Perspectives in Statistics. Vol. 2. 1992, pp. 270–
310.

[13] Rong Cao, Liang Bao, Shouxin Wei, Jiarui Duan, Xi Wu, Yeye Du, and Ren Sun.
“Fast Performance Modeling across Different Database Versions Using Partitioned
Co-Kriging.” In: Applied Sciences 11.20 (2021).

[14] Tao Chen and Miqing Li. “Multi-Objectivizing Software Configuration Tuning.” In:
Proceedings of the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 2021,
pp. 453–465.

[15] Yuntianyi Chen, Yongfeng Gu, Lulu He, and J. Xuan. “Regression Models for Per-
formance Ranking of Configurable Systems: A Comparative Study.” In: Structured
Object-Oriented Formal Language and Method (SOFL+MSVL). 2020.

[16] Jiezhu Cheng, Cuiyun Gao, and Zibin Zheng. “HINNPerf: Hierarchical Interaction
Neural Network for Performance Prediction of Configurable Systems.” In: ACM
Transactions on Software Engineering and Methodology (2022).

[17] Control variable. APA Dictionary of Psychology. Oct. 6, 2022. url: https://dictionary.
apa.org/control-variable.

[18] Uwe Czienskowski. Wissenschaftliche Experimente: Planung, Auswertung, Interpretation.
Beltz, Psychologie Verlag-Union, 1996.

[19] Anton Deitmar. Analysis. Springer, 2021.

[20] Alexander Denk. “Detecting Control-Flow and Performance Interactions in Highly-
Configurable Systems.” Master’s Thesis. Germany: University of Passau, 2017.

[21] Johannes Dorn, Sven Apel, and Norbert Siegmund. “Mastering Uncertainty in Perfor-
mance Estimations of Configurable Software Systems.” In: Proceedings of the Interna-
tional Conference on Automated Software Engineering (ASE). 2020, pp. 684–696.

[22] Hui Dou, Pengfei Chen, and Zibin Zheng. “Hdconfigor: Automatically Tuning High
Dimensional Configuration Parameters for Log Search Engines.” In: IEEE Access 8

(2020), pp. 80638–80653.

[23] Clemens Dubslaff, Kallistos Weis, Christel Baier, and Sven Apel. “Causality in Con-
figurable Software Systems.” In: Proceedings of the International Conference on Software
Engineering (ICSE). 2022, pp. 325–337.

[24] Computing Research & Education, ed. CORE Conference Portal. Jan. 19, 2022. url:
http://portal.core.edu.au/conf-ranks/?search=Software+Engineering&by=all&

source=CORE2021&sort=arank&page=1.

[25] Bastian Fleischmann. “Meta-Learning for Performance Prediction on Configurable
Software Systems.” Bachelor’s Thesis. Germany: University of Passau, 2018.

[26] Giles Foody, Ajay Mathur, Carolina Sanchez-Hernandez, and Doreen Boyd. “Training
set size requirements for the classification of a specific class.” In: Remote Sensing of
Environment 104.1 (2006), pp. 1–14.

[27] Daniel Friesel and Olaf Spinczyk. “Black-Box Models for Non-Functional Properties
of AI Software Systems.” In: International Conference on AI Engineering – Software
Engineering for AI (CAIN). 2022, pp. 170–180.

https://dictionary.apa.org/control-variable
https://dictionary.apa.org/control-variable
http://portal.core.edu.au/conf-ranks/?search = Software+Engineering&by = all&source = CORE2021&sort = arank&page = 1
http://portal.core.edu.au/conf-ranks/?search = Software+Engineering&by = all&source = CORE2021&sort = arank&page = 1


bibliography 75

[28] Daniel Friesel and Olaf Spinczyk. “Performance is not Boolean: Supporting Scalar
Configuration Variables in NFP Models.” In: Tagungsband des FG-BS Frühjahrstreffens
2022. 2022.

[29] Salah Ghamizi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. “Automated
Search for Configurations of Deep Neural Network Architectures.” In: ArXiv (2019).

[30] Jingzhi Gong and Tao Chen. “Does Configuration Encoding Matter in Learning
Software Performance? An Empirical Study on Encoding Schemes.” In: International
Conference on Mining Software Repositories (MSR). 2022, pp. 482–494.

[31] Alexander Grebhahn, Sebastian Kuckuk, Christian Schmitt, Harald Köstler, Norbert
Siegmund, Sven Apel, Frank Hannig, and Jürgen Teich. “Experiments on Optimizing
the Performance of Stencil Codes with SPL Conqueror.” In: Parallel Processing Letters
24.3 (2014).

[32] Alexander Grebhahn, Carmen Rodrigo, Norbert Siegmund, Francisco Gaspar, and
Sven Apel. “Performance-Influence Models of Multigrid Methods: A Case Study on
Triangular Grids.” In: Concurrency and Computation: Practice and Experience 29.17 (2017).

[33] Alexander Grebhahn, Norbert Siegmund, and Sven Apel. “Predicting Performance of
Software Configurations: There is no Silver Bullet.” In: ArXiv (2019).

[34] Alexander Grebhahn, Norbert Siegmund, Sven Apel, Sebastian Kuckuk, Christian
Schmitt, and Harald Köstler. “Optimizing Performance of Stencil Code with SPL
Conqueror.” In: Proceedings of the International Workshop on High-Performance Stencil
Computations (HiStencils). 2014, pp. 7–14.

[35] Alexander Grebhahn, Norbert Siegmund, Harald Köstler, and Sven Apel. “Perfor-
mance Prediction of Multigrid-Solver Configurations. Lecture Notes in Computational
Science and Engineering.” In: Software for Exascale Computing (SPPEXA). 2016, pp. 69–
88.

[36] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej Wą-
sowski. “Variability-aware performance prediction: A statistical learning approach.”
In: Proceedings of the International Conference on Automated Software Engineering (ASE).
2013, pp. 301–311.

[37] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel Valov,
Krzysztof Czarnecki, Andrzej Wąsowski, and Huiqun Yu. “Data-efficient Performance
Learning for Configurable Systems.” In: Empirical Software Engineering (EMSE) 23.3
(2018), pp. 1826–1867.

[38] Huong Ha and Hongyu Zhang. “DeepPerf: Performance Prediction for Configurable
Software with Deep Sparse Neural Network.” In: Proceedings of the International
Conference on Software Engineering (ICSE). 2019, pp. 1095–1106.

[39] Huong Ha and Hongyu Zhang. “Performance-Influence Model for Highly Config-
urable Software with Fourier Learning and Lasso Regression.” In: IEEE International
Conference on Software Maintenance and Evolution (ICSME). 2019, pp. 470–480.

[40] Johannes Hasreiter. “Evolution of Performance Influences in Configurable Systems.”
Master’s Thesis. Germany: University of Passau, 2019.



76 bibliography

[41] Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. “Combin-
ing Multi-Objective Search and Constraint Solving for Configuring Large Software
Product Lines.” In: Proceedings of the International Conference on Software Engineering
(ICSE). 2015, pp. 517–528.

[42] Pooyan Jamshidi and Giuliano Casale. “An Uncertainty-Aware Approach to Optimal
Configuration of Stream Processing Systems.” In: International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS). 2016,
pp. 39–48.

[43] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. “Learning
to Sample: Exploiting Similarities across Environments to Learn Performance Models
for Configurable Systems.” In: Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). 2018, pp. 71–82.

[44] Enio Jelihovschi, José Faria, and Ivan Allaman. “ScottKnott: A Package for Performing
the Scott-Knott Clustering Algorithm in R.” In: Trends in Computational and Applied
Mathematics 15.1 (Mar. 2014), pp. 3–17.

[45] Christian Kaltenecker. “Comparison of Analytical and Empirical Performance Models:
A Case Study on Multigrid Systems.” Master’s Thesis. Germany: University of Passau,
2016.

[46] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven Apel. “The
Interplay of Sampling and Machine Learning for Software Performance Prediction.”
In: IEEE Software 37.4 (2020), pp. 58–66.

[47] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo, and
Sven Apel. “Distance-Based Sampling of Software Configuration Spaces.” In: Pro-
ceedings of the International Conference on Software Engineering (ICSE). 2019, pp. 1084–
1094.

[48] Geoffrey Keppel and Thomas Wickens. Design and analysis: a researchers handbook.
4th ed. Pearson Prentice Hall, 2004.

[49] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander Grebhahn, and
Sven Apel. “Tradeoffs in modeling performance of highly configurable software
systems.” In: Software & Systems Modeling 18.3 (2019), pp. 2265–2283.

[50] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Gunter Saake, and Thomas Leich.
“YASA: Yet Another Sampling Algorithm.” In: Proceedings of the International Working
Conference on Variability Modelling of Software-Intensive Systems (VAMOS). 2020, pp. 1–
10.

[51] Luc Lesoil, Mathieu Acher, Xhevahire Térnava, Arnaud Blouin, and Jean-Marc
Jézéquel. “The Interplay of Compile-Time and Run-Time Options for Performance Pre-
diction.” In: Proceedings of the International Systems and Software Product Line Conference
(SPLC) - Volume A. 2021.

[52] Ke Li, Peili Mao, and Tao Chen. “LONViZ: Unboxing the black-box of Configurable
Software Systems from a Complex Networks Perspective.” In: ArXiv (2022).

[53] Jörg Liebig. “Analysis and Transformation of Configurable Systems.” PhD thesis.
Germany: University of Passau, 2015.



bibliography 77

[54] Scott Lundberg, Gabriel Erion, and Su-In Lee. “Consistent Individualized Feature
Attribution for Tree Ensembles.” In: ArXiv (2018).

[55] Scott Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predic-
tions.” In: Proceedings of the Advances in Neural Information Processing Systems (NIPS).
2017, pp. 4765–4774.

[56] H. Mann and D. Whitney. “On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other.” In: The Annals of Mathematical Statistics 18.1
(1947), pp. 50–60.

[57] Aniruddha Marathe, Rushil Anirudh, Nikhil Jain, Abhinav Bhatele, Jayaraman Thi-
agarajan, Bhavya Kailkhura, Jae-Seung Yeom, Barry Rountree, and Todd Gamblin.
“Performance Modeling under Resource Constraints Using Deep Transfer Learning.”
In: Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). 2017.

[58] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. “A
Comparison of 10 Sampling Algorithms for Configurable Systems.” In: Proceedings of
the International Conference on Software Engineering (ICSE). 2. 2016, pp. 643–654.

[59] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black Box Models
Explainable. 2022. Chap. 8 Local Model-Agnostic Methods, pp. 179–240.

[60] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. “Identifying Software Per-
formance Changes across Variants and Versions.” In: Proceedings of the International
Conference on Automated Software Engineering (ASE). 2020, pp. 611–622.

[61] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. “Uniform
Random Sampling Product Configurations of Feature Models That Have Numerical
Features.” In: Proceedings of the International Systems and Software Product Line Conference
(SPLC) - Volume A. 2019, pp. 289–301.

[62] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. “Where
Do Configuration Constraints Stem From? An Extraction Approach and an Empirical
Study.” In: IEEE Transactions on Software Engineering 41.8 (2015), pp. 820–841.

[63] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. “Faster Discovery of
Faster System Configurations with Spectral Learning.” In: ArXiv (2017).

[64] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. “Using Bad Learners
to Find Good Configurations.” In: Proceedings of the Joint Meeting on Foundations of
Software Engineering (ESEC/FSE). 2017, pp. 257–267.

[65] Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. “Finding Faster
Configurations Using FLASH.” In: IEEE Transactions on Software Engineering 46.7 (2020),
pp. 794–811.

[66] Damir Nešić, Jacob Krüger, Stefan Stănciulescu, and Thorsten Berger. “Principles
of Feature Modeling.” In: Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). 2019, pp. 62–73.



78 bibliography

[67] Son Nguyen, Hoan Nguyen, Ngoc Tran, Hieu Tran, and Tien N. Nguyen. “Feature-
Interaction Aware Configuration Prioritization for Configurable Code.” In: Proceedings
of the International Conference on Automated Software Engineering (ASE). 2019, pp. 489–
501.

[68] Thanh Nguyen, Ugur Koc, Javran Cheng, Jeffrey Foster, and Adam Porter. “IGen:
Dynamic Interaction Inference for Configurable Software.” In: Proceedings of the Sym-
posium on the Foundations of Software Engineering (FSE). 2016, pp. 655–665.

[69] Jeho Oh, Don S. Batory, Margaret Myers, and Norbert Siegmund. “Finding near-
optimal configurations in product lines by random sampling.” In: Proceedings of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 2017, pp. 61–71.

[70] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. “Finding Near-Optimal
Configurations in Product Lines by Random Sampling.” In: Proceedings of the Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). 2017, pp. 61–71.

[71] Jeho Oh and Oleg Zilmano. Scalable Performance Models for Highly Configurable Systems.
2020.

[72] Kewen Peng, Christian Kaltenecker, Norbert Siegmund, Sven Apel, and Tim Menzies.
“VEER: A Fast and Disagreement-Free Multi-objective Configuration Optimizer.” In:
ArXiv (2021).

[73] R. Plackett and J. Burman. “The Design of Optimum Multifactorial Experiments.” In:
Biometrika 33 (4 1946), pp. 305–325.

[74] Philipp Probst, Marvin Wright, and Anne-Laure Boulesteix. “Hyperparameters and
tuning strategies for random forest.” In: WIREs Data Mining and Knowledge Discovery
9.3 (2019).

[75] Yvonne Rogers, Helen Sharp, and Jenny Preece. Interaction Design - Beyond Human-
Computer Interaction. Wiley, 2019.

[76] A. J. Scott and M. Knott. “A Cluster Analysis Method for Grouping Means in the
Analysis of Variance.” In: Biometrics 30.3 (1974), pp. 507–512.

[77] Lloyd Shapley. “17. A Value for n-Person Games.” In: Contributions to the Theory of
Games. Vol. II. Princeton University Press, 1953, pp. 307–317.

[78] Yangyang Shu, Yulei Sui, Hongyu Zhang, and Guandong Xu. “Perf-AL: Performance
Prediction for Configurable Software through Adversarial Learning.” In: Proceedings of
the International Symposium on Empirical Software Engineering and Measurement (ESEM).
2020, pp. 1–11.

[79] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. “Performance-
Influence Models for Highly Configurable Systems.” In: Proceedings of the Joint Meeting
on Foundations of Software Engineering (ESEC/FSE). 2015, pp. 284–294.

[80] Norbert Siegmund, Stefan Sobernig, and Sven Apel. “Attributed Variability Models:
Outside the Comfort Zone.” In: Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). 2017, pp. 268–278.

[81] Moisés Silva-Muñoz, Alberto Franzin, and Bersini Hugues. “Automatic Configuration
of the Cassandra Database using irace.” In: PeerJ Computer Science 7.e634 (2021).



bibliography 79

[82] Werner Stangl. Kontrollvariablen. Online Lexikon für Psychologie und Pädagogik. Oct. 6,
2022. url: https://lexikon.stangl.eu/5504/kontrollvariablen.

[83] Werner Stangl. Verkettung. Mathematisches Lexikon. Oct. 22, 2022. url: https://www.
mathe-online.at/mathint/lexikon/v.html#Verkettung.

[84] M. Sujitha and N. Sivakumar. “Software Effort Estimation Using Scott Knott Test.” In:
International Journal of Computer Science and Engineering Communications 3 (2 2015).

[85] Chico Sundermann, Thomas Thüm, and Ina Schaefer. “Evaluating SAT Solvers on
Industrial Feature Models.” In: Proceedings of the International Working Conference on
Variability Modelling of Software-Intensive Systems (VAMOS). 2020.

[86] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. “A
Classification and Survey of Analysis Strategies for Software Product Lines.” In: ACM
Computing Surveys 47.1 (2014).

[87] Miguel Velez, Pooyan Jamshidi, Florian Sattler, Norbert Siegmund, Sven Apel, and
Christian Kästner. “ConfigCrusher: towards white-box performance analysis for
configurable systems.” In: Automated Software Engineering. Vol. 27. 3. 2020, pp. 265–300.

[88] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Kästner.
“White-Box Analysis over Machine Learning: Modeling Performance of Configurable
Systems.” In: Proceedings of the International Conference on Software Engineering (ICSE).
2021, pp. 1072–1084.

[89] Max Weber, Sven Apel, and Norbert Siegmund. “White-Box Performance-Influence
Models: A Profiling and Learning Approach.” In: Proceedings of the International
Conference on Software Engineering (ICSE). 2021, pp. 1059–1071.

[90] Kallistos Weis. “Grammar-Based Sampling.” Master’s Thesis. Germany: Saarland
University, 2020.

[91] Frank Wilcoxon. “Individual Comparisons by Ranking Methods.” In: Biometrics Bul-
letin 1.6 (1945), pp. 80–83.

[92] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma
Talwadker. “Hey, You Have given Me Too Many Knobs!: Understanding and Dealing
with over-Designed Configuration in System Software.” In: Proceedings of the Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). 2015, pp. 307–319.

[93] H. Ye and H. Liu. “Approach to modelling feature variability and dependencies in
software product lines.” In: IEE Proceedings - Software 152 (3 2005), pp. 101–109.

[94] Zhihong Zhang and Bai Xiaofeng. “Comparison about the Three Central Composite
Designs with Simulation.” In: Proceedings of the International Conference on Advanced
Computer Control (ICACC). 2009, pp. 163–167.

https://lexikon.stangl.eu/5504/kontrollvariablen
https://www.mathe-online.at/mathint/lexikon/v.html#Verkettung
https://www.mathe-online.at/mathint/lexikon/v.html#Verkettung

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	2 Background
	2.1 Configuration Options
	2.1.1 Feature Model
	2.1.2 Configurations
	2.1.3 Binary Encoding for Numeric Features
	2.1.4 Feature Interactions

	2.2 Performance-Prediction Pipeline
	2.3 SPL Conqueror
	2.4 Sampling Strategies
	2.4.1 Binary Sampling Methods
	2.4.2 Numeric Sampling Methods
	2.4.3 Combination of Sample Sets

	2.5 Learning Models with Random Forest
	2.5.1 Hyperparameters

	2.6 Model Properties
	2.7 Statistical Testing

	3 Related Work
	3.1 Systematic Literature Research
	3.2 Quantitative Description
	3.3 Key Findings

	4 Implementation
	4.1 Generation of Artificial Software Systems
	4.1.1 Synthetic Feature Models
	4.1.2 Artificial Models for NFP Measurements
	4.1.3 Presentation of Created Models

	4.2 Selection of Real Software Systems
	4.3 Realization of the Performance-Prediction Pipeline
	4.3.1 Sampling Phase
	4.3.2 Learning Phase


	5 Experiments
	5.1 Experimental Variables
	5.2 Research Questions
	5.2.1 Sample Size
	5.2.2 Sampling Duration
	5.2.3 Learning and Total Duration
	5.2.4 Prediction Error

	5.3 Evaluation Metric

	6 Evaluation
	6.1 Results
	6.2 Discussion
	6.2.1 Analysis of Selected Hyperparameters
	6.2.2 Distribution of Dependent Variables

	6.3 Threats to Validity
	6.3.1 Internal Validity
	6.3.2 External Validity


	7 Concluding Remarks
	7.1 Conclusion
	7.2 Future Work

	A Appendix
	A.1 Extension of the Quantitative Description
	A.2 Artificial System Models
	A.3 Publication Listings
	A.4 Description of Software Systems

	 Bibliography

