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A B S T R A C T

Whenever software faults can endanger human life, property, or the environ- 1Context

ment, the absence of faults must be ensured with utmost care and the best
technologies available. Evidence is needed showing that all requirements
are satisfied and that the risk of faults is reduced. One technique to conduct
such a verification task—composed of the software to verify, the specification
to check, and a model of the environment—is software model checking.

To conduct a verification task with a model checker, different models of 2Problem

the task are constructed. We distinguish between two types of task mod-
els: syntactic task models and semantic task models, which define the respective
syntactic structure (control flow) and semantic structure (state transitions, in-
variants) of the verification task. When constructing such models, we can ob-
serve that similar structures and substructures reappear within and among
different verification tasks. For example, the same assertions to check can
appear in different functions, or the same predicate can be part of different
invariants to describe sets of program states. Similarities that appear during
the model construction process can be the result of solving similar reasoning
problems, often solved using computationally expensive procedures (as typ-
ical for model checking), over and over again. Not reusing results of solving
similar problems, not having a means for conducting repeated efforts auto-
matically, or not trying to reduce the number of similar reasoning efforts, is
a waste of precious resources.

To address these problems, we present a common conceptual and techni- 3Objectives

cal foundation for sharing syntactic and semantic task artifacts for reuse, within
and among verification runs. Both the syntactic construction of a verification
task and the construction of its semantic model—which describes all pos-
sible behaviors and states—are covered. We study how commonalities and
regularities in the task models can be taken into account to facilitate the pro-
cess of sharing task artifacts for reuse, and to make the overall verification
process more efficient and effective. We introduce abstract transducers as the
theoretical foundation of this thesis: a type of finite-state transducers with an
inherent notion of abstraction for states, the input alphabet, and its output
alphabet. Abstracting these transducers allows us to widen both the set of
input words for that they produce output and the sets of output words. Ab-
stract transducers are instantiated as task artifact transducers to map from
program structures to task artifacts to share. We show that the notion of ab-
straction provides a means for increasing the scope for that task artifacts are
shared for reuse. We present two instances of task artifact transducers: Yarn
transducers and precision transducers. We use Yarn transducers for providing
code to weave into the control-flow structure of a computer program, and
present the Loom analysis as a means for orchestrating the weaving process.
Precision transducers provide a means for sharing abstraction precisions for
reuse, thus aid in defining the level of abstraction of a semantic task model.
For both types of transducers, we provide empirical evidence on their practi-
cal applicability, for example, to verify Linux kernel modules, and show that
they can help in increasing the verification performance.
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P U B L I C AT I O N S

While most of this work consists of unpublished material, we have presented
some of the ideas previously as part of the following publications. The au-
thors are ordered alphabetically. For each paper, we provide a summary, out-
line the contributions of the author of this thesis, describe the overlap with the
content of this thesis, and outline inspirations that we gained for follow-up
work. This list is required by the doctoral degree regulations of the Faculty
of Computer Science and Mathematics of the University of Passau.

1.
D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and P. Wendler. “Preci-
sion Reuse for Efficient Regression Verification.” In: Proc. ESEC/FSE.
ACM, 2013, pp. 389–399.

Summary. This paper is on sharing abstraction precisions for reuse
among verification runs. It provides evidence on the performance gains
that can result from precision reuse in the context of regression verifica-
tion. The empirical study is conducted on revisions of 62 Linux device
drivers that cover more than 5 years of kernel development.

Contributions. The author of this thesis was the principal investigator
for this paper. He coordinated the contributions of the co-authors, de-
signed and conducted all experiments, has created all tables and con-
tributed a significant fraction of the paper’s text. Furthermore, he pre-
sented the work at the Alpine Verification Meeting in Trento (Italy),
at ESEC/FSE in St. Petersburg (Russia), at the Software Engineering
Conference in Kiel (Germany), and GrammaTech Inc. in Ithaca (USA).

Overlap. This thesis shares the idea that abstraction precisions are a
precious intermediate verification result that should be reused with
this paper. Furthermore, the paper helped to identify potential adverse
effects of precision reuse. Nevertheless, this thesis does not share any
texts, tables, or figures with that paper. Chapter 5 is an independent
work on precision reuse, also independent from the other authors on
the paper.

Inspirations. Follow-up investigations resulted in prototypes for preci-
sion synthesis because we learned that many of the refinements could
be saved by deriving predicates from the specification. Furthermore,
this work helped to identify the potential of precision reuse within a
model checker.

2.
D. Beyer and A. Stahlbauer. “BDD-based Software Verification - Ap-
plications to Event-Condition-Action Systems.” In: STTT 16.5 (2014),
pp. 507–518.

Summary. We implement a program analysis based on an abstract do-
main that encodes the state-space of a program in binary decision dia-
grams (BDDs) to verify safety properties. We compare the performance
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of this state-space encoding to various other established approaches for
a restricted class of programs: event-condition-action systems from the
challenge on Rigorous Examination of Reactive Systems (RERS).

Contributions. The author of this thesis implemented the BDD-based
program analysis on top of CPAchecker, and participated with this im-
plementation in the RERS challenge. Furthermore, he conducted all
experiments, created tables, figures, examples, and plots. He discussed
the results of the experiments and also contributed a significant por-
tion of the paper’s other text. The author of this thesis presented a
preliminary version of this work at ISoLA 2012 in Crete (Greece).

Overlap. This thesis does not share any contributions with the paper.

Inspirations. The programs from the RERS challenge are an interesting
class of programs. Our Reactive scenario, which we use in the empirical
study in Chapter 4, is inspired by these programs.

3.
D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer.
“Witness Validation and Stepwise Testification across Software Veri-
fiers.” In: Proc. ESEC/FSE. ACM, 2015, pp. 721–733.

Summary. This paper presents the concept of sharing error-witnesses
among different verifiers for validation. This process increases the con-
fidence in whether a given counterexample is a false alarm or not.

Contributions. The work in this paper was conducted in three phases, by
three different teams of contributors. The first phase was about choos-
ing and implementing an exchange format, discussions with different
tool developers, and first experiments with the full set of SV-COMP
programs. The second phase was about establishing the concept in the
SV-COMP community, including discussions with tool developers on
the value and integration of such an approach. The last phase was
about conducting the experiments, fine-tuning the tools, and finishing
the paper. The author of this thesis contributed considerably during the
first and the last phase. He contributed the concept of step-wise testi-
fication, identified the role of abstraction for witness automata, identi-
fied and elaborated on the relationship to conditional model checking,
designed and conducted the experiments on the effectiveness (reduc-
tion of the covered state space) of witness validation, and contributed
large amounts of text to the paper. Furthermore, the author of this the-
sis presented the work, together with another co-author, at ESEC/FSE
in Bergamo (Italy).

Overlap. Both the paper and the thesis share the idea of reusing (inter-
mediate) verification results within and among runs of a verifier. Nev-
ertheless, all contributions of the present thesis are independent work,
and the paper can be seen as any other related work in the literature.

Inspirations. This thesis generalizes the idea of abstracting finite-state
machines to increase their potential for reuse in a verification run.



4.
S. Apel, D. Beyer, V. O. Mordan, V. S. Mutilin, and A. Stahlbauer.
“On-the-fly Decomposition of Specifications in Software Model
Checking.” In: Proc. FSE. ACM, 2016, pp. 349–361.

Summary. A software model checker checks if a given program satisfies
a given specification, which is composed of a set of properties. This
work aims at dynamically partitioning a given set of properties such
that the overall verification performance is increased. Along with this,
we present an approach that interleaves weaving the specification with
the program to check and the actual state-space exploration.

Contributions. The author of this thesis was the principal investigator
for the paper. He coordinated the work with the co-authors, imple-
mented the approach, designed and conducted all experiments, has
created all tables and figures and contributed the majority of the con-
cepts and text. Others contributed both the idea of taking the relevance
of properties for the partitioning into account and the set of verifica-
tion tasks (Linux kernel modules and a specification of Linux kernel
API functionality). The author of this thesis presented the work at the
FSE conference in Seattle (USA).

Overlap. The thesis presents a considerably refined version of the weav-
ing mechanism, the Loom, along with refined finite-state machines for
program specification.

Inspirations. We adopt the idea of using abstraction precisions to specify
which properties to consider during the state-space exploration, which
results in the notion of abstract precision.
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N OTAT I O N

We provide a brief summary of notations that we use to present and for-
malize our contributions. Less frequently used symbols and notations are
introduced locally. Generally, we try to stick to following rules:

· A centered dot (·) is used to abstract away details that are irrelevant for
the discussion or explanation.

s1,ai,Ck Subscripts are used to specify specific subsets, instances, or an enumera-
tion of elements of collections; the subscript is dropped if it is clear from
the context.

A, B, K Sets are denoted by uppercase letters, such as the set A.

A∗ The set of all words over an alphabet A is denoted by A∗.

a, b, k Elements of sets or lists are denoted by lowercase letters, such as the ele-
ment a.

〈s1, s2, . . .〉 The elements of sequences, lists, or vectors are enclosed in angle brackets.

(s1, s2, s3) The components of tuples are enclosed in round brackets.

{s1, s2, s3} The elements of sets are enumerated in curly brackets.

[a,b] The closed interval of numbers from a to b (including a and b) is denoted
by [a,b], that is, it is enclosed in squared brackets.

ā ∈ A∗ A symbol s with a bar ā denotes a vector, sequence, or (ordered) list.

â ⊆ A A symbol a with a hat â denotes a set.

a ′, a ′′, a ′′′ We use primed symbols—that is, symbols that are followed by one or
more prime symbol ( ′)—to denote related variables. In most of the cases,
it denotes a new version of the variable that is the result of an assignment.

N, N0 The symbol N denotes the set of natural numbers without zero; the sym-
bol N0 denotes the natural numbers including zero.

Z, R, B We use the common symbols for the set of integers Z, the set of reals R,
and the set of Booleans B.

∪, ∩, ⊆, ⊂, \ We use the common set-theoretic operators with their common meaning.

∅, {} The empty set is denoted by ∅ or by {}.

2S The power set of a set S, that is, the set of all subsets of S, is denoted by 2S.

s ∈ S, s 6∈ S A predicate that states that an entity s is element of a set S is denoted by
s ∈ S; we use s 6∈ S to denote the negation of this predicate.

{ · | · } We use set comprehension with its common meaning.

|A| The number of elements in a collection A is denoted by |A|.

A×B The Cartesian product of two sets A and B is denoted by A×B.

foo : C→ D A function or operator foo that takes an element a from a set A and returns
an element b from a set B is declared by foo : A→ B.
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1 I N T R O D U C T I O N

Keywords: Software Model Checking, Static Analysis, Formal Methods,
Safety Critical, Transducers, Abstraction, Artifacts, Sharing and Reuse

This thesis presents novel concepts and techniques that support automatic
and algorithmic reasoning about software and its properties. We introduce
abstract transducers as the common conceptual foundation to unify several
techniques from the fields of program analysis and verification. We focus on
applying abstract transducers for sharing task artifacts for reuse, for exam-
ple, to compose analysis tasks on a syntactical level, or for creating semantic
models of an analysis task in an efficient way. We implement and evaluate
our techniques within one framework and illustrate the practical applicabil-
ity and relevance of these concepts and techniques. Along with this work,
bugs in the Linux kernel have been identified, reported, and fixed [36].
Context. Software has taken a critical role in today‘s world. Our society is
dependent on reliable software systems and can be affected in dramatic ways
if these—and the hardware the software is running on—do not perform their
tasks. A system is called safety critical if its malfunction could harm people,
equipment, property, or the environment [76]. 4Safety Critical Systems

Along with the increase of the criticality of software came an increase of
the economic pressure to develop complex software systems fast, and bring
these systems to the markets early. Regulation authorities have addressed
this by establishing standards that enforce processes and tools that are ap-
propriate for ensuring the quality of software systems. For example, the
standard IEC 62304 for medical device software, DO-178C for avionics, and
ISO 26262 for automotive systems. More general requirements on the devel-
opment and maintenance of safety critical systems were formulated in the
standard IEC 61508. Despite standards and regulations, we can read nearly
weekly about a new safety critical bug that caused huge damage, for exam-
ple, a bug in the Airbus A350 that requires a reboot after 149h of operation1

or a similar bug that affected Boeing’s 787
2.

1 https://ad.easa.europa.eu/ad/2017-0129R1
2 https://federalregister.gov/a/2015-10066

1

https://ad.easa.europa.eu/ad/2017-0129R1
https://federalregister.gov/a/2015-10066
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Figure 1: An artifact sharing model provides a means for providing different task
artifacts of different kind at different sharing points, in different contexts, for
reuse. The goal is to reduce the overall effort for reasoning about programs
and their properties.

Various techniques for ensuring the quality of software systems have been5Testing and Verification

proposed continuously since software engineering and the quality of its
products has been identified to be critical [201]. Testing [200] is by far the
most established technique to ensure the quality of software systems. The
increased criticality of software systems, and progress in research, brings
more elaborated techniques for ensuring the quality of software into fo-
cus. New techniques for formal verification—model checking and deduc-
tive verification—promise an increased practical applicability [162]. Whereas
testing can show only the presence of bugs [96], more elaborated verifica-
tion techniques, such as model checking, can prove their absence. Formal
verification techniques are considered to be cost-effective, especially if the
price of failures is high [50]. Already ethical considerations should force en-
gineers to apply formal methods for safety-critical software systems [50]. A
big success story of the application of formal methods is the verification of
device drivers [19], which helped to increase the reliability of operating sys-
tems considerably. Formal verification techniques complement testing; these
techniques can, in some cases, even replace tests and provide an exhaustive
coverage of the state space, which is considered by the standard DO-178C
and its extension DO-333. Reliable software and the verifying compiler have6Grand Challenge

been declared as one of the grand challenges in computer science [139, 140].

Software Model Checking. This work contributes to getting closer to the
ideal of fully verified computer programs—that is, programs for which the
absence of bugs, regarding a formal specification, has to be proven—and
focuses on concepts and techniques for software model checking. Software
model checking [71, 151] is an automatic and algorithmic approach to explore
the entire space of all states and behaviors of a program exhaustively. That
is, contrary to testing—which checks only a limited number of paths—all
possible paths that executions can take are checked.

Task Models. A software model checker operates on a verification task,
which is composed of the program to analyze, an environment model,7Verification Task

and the specification. The environment model describes the environment in
which the program is supposed to operate in and to interact with; it provides
assumptions that should be taken into account in the verification process to
not cause false alarms. The specification provides a formal description of
properties that the program must satisfy.
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To motivate the problems that we address in this work, we introduce the
notion of task models. A task model provides a formal and unambiguous de-
scription of an analysis task. A model checker deals with two types of task
models—see Fig. 1 for an illustration: The syntactic task model models the 8Syntactic Task Model

syntactic structure of an analysis task, and the semantic task model models all 9Semantic Task Model
semantically possible states and behaviors that are implied by the syntactic
model. A task artifact is a piece of information that contributes to an analy-
sis task, its construction and solution; it is a reusable entity from which a
syntactic or semantic model of the analysis task can be composed of.

Problem. We address the problem of repeated, similar, computational and
manual efforts that arise when constructing models of verification tasks, both
of syntactic task models and semantic task models: (1) To construct a seman-
tic task model, a syntactic task model has to be constructed first, which is
typically done in different tools, and with different approaches, and in a step
before the verifier is invoked. This increases the complexity of the tool chain, 10

Complex Tool Chainand with it the costs in the overall verification process. (2) Different verifica-
tion tasks, especially those that result from such a composition process, have
many commonalities. That is, the verifier has also to come up with similar solu- 11

Similaritiestions for these similar reasoning problems—which can be the result of expensive
computations—for these common parts. Not reusing intermediate verifica-
tion results that have already been computed for similar problems is a waste
of precious resources. (3) Despite regularities that can be observed both in the
construction of syntactic task models and semantic task models, there is no 12

Common Foundationcommon formalism that aids in both the construction of the syntactic and the
semantic task model. We identified three core problems: (1) similar efforts
among different tools or tool instances, (2) similar efforts within one verifica-
tion run (tool instance), and (3) similar problems but different concepts and
techniques to solve them.

Goal. In this work, we aim at providing a fully-integrated approach, and
tool, that provides a common conceptual and technical foundation for shar-
ing and reusing task artifacts within and among verification runs, and to pro-
vide solid empirical evidence on the practical applicability and performance
of this approach. We study how commonalities and regularities in syntac-
tic and semantic task models can be taken into account to make the overall
verification process more efficient and effective, and to provide generic mech-
anisms that aid in sharing of common task artifacts for reuse. We address
the syntactic construction of a verification task and the construction of its
semantic model—which describes all its possible behaviors and states.

1.1 contributions

Two themes are central for this work and are an integral part of most of our
contributions: (1) sharing and reuse that is (2) guided by abstract transducers:

Sharing and Reuse. From the conceptual perspective, we aim at fostering
sharing and reuse. The potential for sharing and reuse stems from common-
alities between different sub-problems in the verification tasks and their con-
struction, within a verification run and among different verification runs.
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We share artifacts that can contribute to many different concerns of a ver-
ification task, at different points of a task model, in different contexts. We
address the following questions: How to deal with different task artifacts
that should independently contribute to solve a reasoning problem? Which
adverse effects can sharing and reuse have? How do sharing and reuse con-
tribute to the complexity of the verification task? What are the similarities
between reasoning problems that make task artifacts reusable?

Transducer-aided Program Analysis. Automata can describe sets of words.
Since also execution traces of programs are words in a specific formal lan-
guage, we can use automata to describe sets of execution traces. An exten-
sion of automata are transducers, that is, automata that produce output on
their states or transitions. We use this capability of transducers to provide
different task artifacts, at different points of execution traces, that contribute
to the composition or the solving of a verification task, that is, we use them
as a means for sharing task artifacts for reuse. Transducers can provide
different artifacts for reuse in different contexts; this can be important for
(1) the soundness of the analysis, and (2) for an efficient analysis process
since only artifacts that are useful in the corresponding context should (or
can) be reused. We answer the following questions: How to formulate in-
finitely long output words that describe task artifacts? Is there an approach
to summarize these output words in a finite representation? For which types
of task artifacts is the approach applicable?

This work provides substantial contributions that have, at the time of writ-
ing this thesis, not yet been published in that form. For some of the con-
cepts and techniques, prototypes and pilot studies were presented at major
software engineering conferences [8, 36] before. Our work is in line with re-
search [31, 32] on the convergence of static analysis and model checking: We
(1) build on established concepts and formalisms from this community, and
(2) provide results that advance its state of the art. The typical audience of
this work is expected in the fields of software engineering, programming lan-
guages, program analysis, and computer-aided software verification. We make the
following contributions:

Artifact Sharing Model. We introduce the notion of an artifact sharing model,
which we instantiate based on transducers that provide task artifacts as out-
put (task artifact transducers), as the conceptual foundation to describe possi-
ble compositions of syntactic task models and the corresponding semantic
task models: It describes which task artifacts should be composed to arrive
at the final task model. That is, a family of task models can be constructed
based on an artifact sharing model. The artifact sharing model defines the
context for that the reuse of artifacts is intended. Different syntactic models—
in the form of relations that describe the control flow, and implicitly the data
flow, of the programs to analyze—of verification tasks can be composed, for
example, based on different properties to check. Different semantic models—
in the form of Kripke structures—of verification tasks can be produced, for
example, by modeling different details of the syntactic model with different
levels of abstraction, that is, with different abstraction precisions. Figure 1

illustrates different application scenarios of artifact sharing models for shar-
ing task artifacts for reuse.
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1. Abstract Transducers. We introduce abstract transducers as the theoretical
foundation of this work. Abstract transducers are abstract machines
that map between an input language and an output language and can
conduct a lookahead. Both their input alphabet and the output alpha-
bet are composed of abstract words, where one abstract word denotes
a set of concrete words. An abstract word domain provides the mapping
between abstract words and concrete words, and means for abstrac-
tion (widening). The fact that abstract transducers produce an inter-
mediate language has several implications on the design of algorithms
that operate on these machines. We use techniques from abstract inter-
pretation and domain theory as the foundation to provide means to
compute abstractions of abstract transducers, including their output.

2. Output Closure Abstraction. Abstract transducers can emit exponentially
many and infinitely long words as output, for example, code fragments
that take advantage of the full Turing-completeness of a programming
language, that is, including loops. We present a technique for comput-
ing finite abstractions of the output of ε-closures with ε-loops.

3. Task Artifact Transducers. We instantiate abstract transducers as task arti-
fact transducers and with it as one instance of an artifact sharing model.
They are a generic means to provide various artifacts, which contribute
to different concerns of an analysis task, in different contexts of an
analysis task for reuse. They foster sharing and reuse of components
of an analysis task and the intermediate verification results that are
produced while conducting an analysis. They are the foundation for
several concepts and techniques that are presented in this work: We in-
stantiate them as Yarn transducers to compose syntactic task models,
and as precision transducers to aid in the construction of semantic task
models. We use the possibility to compute abstractions of task artifact
transducers as a means to increase the sharing of emitted task artifacts:
Task artifacts become emitted for a larger set of input words.

4. Generic Transducer Analysis. To execute abstract transducers—for exam-
ple, task artifact transducers—as components of a program analysis
framework, we provide an abstract transducer analysis. It is a generic
analysis that tracks the current control state of a transducer and stores
its output; we formalize and implement it as a configurable program
analysis (CPA). Having this type of analysis at hand aids in provid-
ing a fully-integrated approach for program analysis, for example, to
compose and construct both syntactic and semantic task models.

Syntactic Task Artifact Sharing and Reuse. With this group of contribu-
tions, we demonstrate that syntactic program artifacts can be shared for reuse
based on abstract transducers. We formalize the syntactical fragments that
we share as Yarns. A Yarn denotes a set of sequences of program opera-
tions that is mapped to a specific task concern. The explicit mapping to a
task concern fosters tractability and enables concern-specific state-space ab-
straction strategies. We present a fully-integrated approach for composing
verification tasks by weaving Yarn and describe an approach for conduct-
ing this composition along with their actual verification.



6 introduction

1. Yarn and Yarn Transducers. We introduce Yarn as an abstract syntactic
task artifact, which can be composed into control-transition relations
by weaving. We present Yarn transducers, an approach that is based on
abstract transducers for providing Yarn to weave. A full program, a
safety specification, or an environment model can be expressed based
on a Yarn transducer.

2. On-the-fly Weaving. We present the Loom analysis, a program analysis
for composing Yarn from different sources—for example, from Yarn

transducers—by weaving. Loom introduces the possibility to delegate
the encoding of information to different analysis components or analy-
sis steps (for more efficient or effective handling), aids in providing
traceability of program fragments (mapping to concerns), and enables
the idea of on-the-fly weaving. That is, the construction of the syntactic
task model is interleaved with the construction of the semantic model.

3. Dynamic Control Encoding. We introduce the concept of dynamic control
encoding. An automaton analysis can delegate the encoding of the cur-
rent control state, on-demand, to other analysis components by emitting
guards and assignments based on state variables as Yarn to weave. This
Yarn can then be encoded more efficiently by other analyses—with
different, possibly symbolic, abstract domains. This approach gives the
flexibility to use the full range (hybrid) of encodings of automata states
dynamically: from pure explicit state representations to fully weaved,
and possibly symbolic, representations.

4. Empirical Study. We systematically evaluate the performance of differ-
ent control-encoding strategies based on a set of scenarios and a set
of Linux modules. Our results show that the type of control encoding
has a considerable influence on the performance of a verification tool.
Depending on the characteristics of a verification problem, a different
encoding strategy provides better performance. A detailed sensitivity
analysis reveals the dependency of the performance to several parame-
ters of a verification tool, which indicates directions for further studies.

Semantic Task Artifact Sharing and Reuse. This group of contributions aims
at sharing semantic tasks artifacts for reuse. A semantic task artifact aids in
summarizing the semantics of a fragment of a syntactic task model. We share
and reuse abstraction precisions as semantic tasks artifacts. An abstraction
precision determines the set of details of a verification task that the semantic
model should describe for reasoning about a specific property. One instance
of an abstraction precision is, for example, a set of predicates in predicate
logic, which is used for computing predicate abstractions.

1. Discover-Share-Reuse Scheme. We provide a scheme for expressing and com-
paring strategies for sharing and reusing abstraction precisions. The
scheme is applicable both for sharing and reuse within one verification
run, but also for sharing and reuse among different runs of a verifier.

2. Abstraction Precision. We formalize the notion of abstraction precision
and define a lattice of abstraction precisions. We define the scope of an
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abstraction precision and introduce the notion of an abstract precision
that separates abstraction precisions by concern.

3. Precision Transducers. We introduce precision transducers as a means to
share abstraction precisions for reuse at different points of the control
flow of a verification task, in different contexts. A precision transducer is
an abstract transducer that emits abstraction precisions as its output.

4. Precision Sharing Strategies. Precision transducers are a flexible means
to share abstraction precisions in precisely defined scopes. That is, dif-
ferent precision sharing strategies can be realized, or become realizable,
based on precision transducers, including lazy abstraction [136]. These
strategies can help to balance the positive and adverse effects of pre-
cision sharing (and reuse). We use the concept of precision transducer
abstraction to increase the abstraction precision sharing scope. These
strategies can help, for example, to reduce the sensitivity to changes in
the context of regression verification.

5. Empirical Study. We conduct an empirical study to demonstrate the
applicability and effects of different strategies for sharing abstraction
precisions for reuse based on precision transducers. A novel sharing
strategy that takes advantage of the expressiveness of precision trans-
ducers yields promising results. Furthermore, we present first results
for precision synthesis based on precision transducers.

Replication Package. Along with this work, we provide a replication pack-
age. This package makes our results more convenient to reproduce; it in-
cludes the verification tasks of all case studies, the tool configurations, the
raw results, and the full source code of our implementation. Parts of the
replication package that ship with this thesis have already been evaluated [8,
36] by artifact evaluation committees of major conferences.

1. Open-Source Implementation. We instantiate our concepts based on the
configurable program analysis (CPA) [31, 32] framework. We provide
different CPAs and corresponding operators to run abstract transdu-
cers. We provide an open-source (Apache 2.0) implementation—based
on CPAchecker—of our approach to the community.

2. Sensitivity Plots. To increase the validity of our results, we analyze
the sensitivity of our approaches to different parameters, that is, we
conduct sensitivity analyses. We provide sensitivity plots to obtain an
overview of the sensitivity of different analysis configurations regard-
ing a specific parameter. The implementation for creating this type of
plot is part of the replication package.

3. Tasks and Results. We provide all programs and the corresponding spec-
ifications, that is, the verification tasks, as part of the replication pack-
age. Other tools and approaches can then quickly be evaluated based
on these tasks. We ship the raw results of all experiments to make our
results easy to verify.
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1.2 outline

We begin (Chapter 2) by describing the established concepts and techniques
on that the contributions of this work build. The chapter that follows (Chap-
ter 3) introduces the concept of abstract transducers and various techniques
that increases their general utility for the use in static analysis and software
model checking. We then (Chapter 4) introduce the Loom analysis, the con-
cept of Yarn, and Yarn transducers as a means to provide control-transition
relations for composition by weaving. In the next chapter (Chapter 5) in-
stantiate abstract transducers as precision transducers, that is, as a means to
share abstraction precisions—with different levels of granularity—to various
abstraction tasks in an analysis run.



2 B A C KG R O U N D

This chapter introduces existing concepts and techniques for program analy-
sis and software model checking that are the foundation of this work. Please
note that definitions of different terms vary within the community. We use
the formalisms and definitions that fit best for this work: Readers that are al-
ready familiar with the field of program analysis and model checking should
take notice of the definitions, formalisms, and notions we use.

Possible sources for further information on basic concepts are the Hand-
book of Practical Logic and Automated Reasoning [130], the Handbook of Model
Checking [73], and the Principles of Program Analysis [204].

2.1 program representation

Before we introduce concepts for program analysis, we introduce formalisms
and concepts to represent the syntactic structure of programs and do not
focus on their semantics yet.

2.1.1 Language and Word

We take a language-theoretic approach for formalizing many of the concepts
and techniques that we present in this work. The set of all finite words over an 13

Wordalphabet Σ is denoted by Σ∗, which is a free monoid Σ∗ = (Σ, ◦, ε), also known
as Kleene star, where concatenation ◦ : Σ∗×Σ∗ → Σ∗ is its binary operator and
its neutral element ε is the empty word. A word σ̄ is a sequence 〈σ1, . . . ,σn〉
of symbols from the alphabet. The concatenation W1 ◦W2 of two collections
W1 ⊆ Σ∗ and W2 ⊆ Σ∗ of words is conducted pairwise, and is defined as
W1 ◦W2 := {w̄1 ◦ w̄2 | w̄1 ∈ W1 ∧ w̄2 ∈ W2}. The set of all symbols in a
word s̄ is denoted by Σ(s̄) ⊆ Σ. The length |σ̄| of a word σ̄ is its number of
subsequent symbols; the empty word has length |ε| = |〈〉| = 0. Given two
words σ̄ = 〈σ1, . . . ,σn〉 and τ̄ = 〈τ1, . . . , τm〉, the concatenation σ̄ ◦ τ̄ results
in the word c̄ = 〈σ1, . . . ,σn, τ1, . . . , τm〉 with length |c̄| = |σ̄|+ |τ̄|. 14

PrefixA word σ̄a is prefix of another word σ̄b, that is, it is element (σ̄a, σ̄b) ∈�
of the prefix relation �, if there exists a suffix σ̄s ∈ Σ∗ such that σ̄b = σ̄a ◦ σ̄s.
Given a word s̄ = 〈s1, . . . , sn〉, the prefix operator pre : Σ∗ → Σ∗ returns a new
word without the last symbol sn = last(s̄). 15

Finite and InfiniteFinitely long words over an alphabet Σ are denoted by Σ∗, the infinitely
long ones are denoted by Σω. The set of all words is denoted by Σ∞ =

Σ∗ ∪ Σω [185], with the infinite iteration ·ω and the finite iteration ·∗. 16

LanguageThe set of all words over an alphabet Σ that is described by a structure S
and that are considered well-formed regarding certain production rules is
called language L(S) ⊆ Σ∞ of S. The empty word language {ε} consists of the
empty word ε only, the empty language corresponds to the empty set {}.

9
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2.1.2 Program

We formalize programs based on several building blocks: the set of all
typed data locations X, the set of all control locations L, the set of all program
operations Op, and the set of all control transitions G = L×Op× L.

A data location x ∈ X corresponds to a specific memory cell on the heap or
stack. The set of control locations (program locations) corresponds to possible17

Control Locations values of the program counter register, which is also known as the instruction
pointer. A control location l ∈ L is a point in a program where the value of
all memory locations can be observed [70]. Control locations help to identify
common points in the control flow. We use a special data location pc ∈ X

that holds the current position in the control flow: It represents the program
counter register. A control location can be compound: A composite (lp, lc) ∈ L18

Compound Locations is composed of a major control location lp ∈ L and a minor control location lc ∈
L. Please note that we add attributes to control locations along with this
work, which might give control locations further semantics.19

Program Operations The set of program operations Op = Asu ∪ Asg consists of assign-
ments Asg and assumes Asu on data locations; we model the neutral pro-
gram operation nop ∈ Asu as an assumption that always evaluates to true.
Furthermore, we assume that the operation nop does not influence any tem-20

Neutral Program Operation poral properties of the program under analysis, that is, a control-flow tran-
sition with the program operation nop is dual to an ε-move in a NFA [237].
Each operation op ∈ Op is represented by an abstract syntax tree.

A program is a finite sequence P of program statements, where one program
statement is compound of a set of program operations and can—depending
on its evaluation result—jump to different control locations. A program is21

Program Concerns composed (written) to contribute to particular program concerns. The set H
denotes all program concerns; each control transition can contribute to a set
of different concerns.

2.1.3 Control Flow Automaton

We represent a program P by a control-flow automaton [136] CFAP =

(LP,GP, l0), with a set LP ⊆ L of control locations, a control transition rela-
tion GP ⊆ G of possible control flows (transitions) between the control loca-
tions, and the initial control location l0 ∈ LP. The set of LF of final control
locations (states) is defined implicitly: It is the set of control locations where
the CFA relinquishes its control [186].22

Control Path A sequence of control transitions 〈g1, . . .〉 ∈ G∞ is well-formed regarding
a control transition relation Gr ⊆ G if g1 ∈ Gr and for all i ∈ 〈2, . . .〉,
with gi−1 = (·, ·, l) ∈ Gr holds true that gi = (l, ·, ·) ∈ Gr. A finite sequence
of control transitions can also be written as l1

op1→ l2 . . .
opn→ ln+1. A control

path—also referred to as a path segment—is a well-formed sequence of con-
trol transitions; a program control path (or program trace) is a control path that
starts in the initial control location l0 ∈ LP of a program and its CFA. Please
note that we sometimes use the notion of control path in a projected form,
that is, either as a sequence σ̄ = 〈l0, . . .〉 ∈ L∗ of control locations or as a
sequence σ̄ = 〈op1, . . .〉 ∈ Op∗ of program operations.
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program = { statement "; " } ;

statement = declare | assign | condjump;

condjump = "if" assume "goto" stmtno "else" stmtno ;

declare = ? declaration of arrays with different types and lengths ? ;

assign = ? assignment to an array cell from a given expression ? ;

assume = ? an expression that evaluates to the type ’bool’ ? ;

stmtno = ? an unique identifier ∈N0 of a statement ? ;

Figure 2: The Turing-complete Pseudo Programming Language (PPL)
and its pseudo grammar

The transitive closure of a set of locations M ⊆ L regarding a transition
relation Gr is denoted by M+ ⊆ L× L, that is, for all pairs (l1, l2) ∈ M+ 23

Closureexists a well-formed control path from l1 to l2 on Gr. A set of locations M ⊆
L is said to be connected if there exists a control path between every pair of
locations inM, that is, for all l1, l2 ∈M, either (l1, l2) ∈M+ or (l2, l1) ∈M+.

The set F represents all functions of a program. Given a function f ∈ F, the 24

Function Locationsset L(f) ⊆ L represents all control locations that belong to the function f, the
set G(f) = {g | (l1, ·, l2) ∈ G∧ l2 ∈ L(f)} represents all transitions that lead to
a location in f. Given a control location l ∈ L, the function F(l) ∈ F represents
the function to that location l belongs to.

2.1.4 Language of a Program

The language of a program P and its control-flow automaton CFAP is the set
of all its program control paths L(P) = L(CFAP) ⊆ G∞, that is, the set of
sequences of control transitions that are well-formed regarding the control
transition relation GP. The language LOp(P) ⊆ Op∞ is a projection of L(P)
with words over program operations only. The language LL(P) ⊆ L∞ is a
projection of L(P) with words over control locations only.

Figure 2 shows a basic Turing-complete language without functions, to
illustrate the basic complexities we have to cope with. You can assume that
functions are inlined and recursions are transformed to loops. The number
of words of a (imperative) program is determined by its control structure
and the transition system that is implied by it. Programming in a Turing
complete programming language implies that there can be programs that
result in exponentially many and infinitely long program traces.

2.2 program specification

Since we aim at checking the correctness of programs, we need a formal-
ism to specify which words are considered to be correct, that is, within the
specification and which words violate the specification—and represent in-
correct words (runs). A specification formulates requirements as a set of prop-
erties ρ ⊂ S. The set of all properties is denoted by S. A program can be seen
as a refined form of a specification, that is, program and specification have
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different levels of abstraction. We consider each property to be a program
concern, that is, S ⊂ H.

From the discussion of programs that are written in Turing complete lan-
guages, we have learned that the language L(P) of a program can have in-
finitely long and exponentially many words, and all of them could be cor-
rect. A means for specifying desired properties of such execution sequences
is Linear Temporal Logic (LTL) [115, 243], which extends classical logic and25

LTL is considered to be one natural and unambiguous way of describing the
temporal behavior of a computer program [179].

2.2.1 Safety and Liveness

We distinguish between safety properties and liveness properties [178, 187],
and do not discuss hyperproperties [74]: A safety property specifies that some-26

Safety Properties thing (bad) must not happen [178]. Checking safety properties is equivalent
to checking invariants, that is, we check that the (global) invariant is always
satisfied (a violation never happens); assertions that always hold are a typi-
cal example for invariants. The violation of safety properties is witnessed by
counterexamples of finite length [171]. Please note that also test goals [33, 114,27

Test Goals 141, 221] are expressible as safety properties—literature also uses the term
never claims [101] or trap properties [114]. Tests goals can be derived based on
a coverage criteria [141]. A liveness property specifies that something (good)28

Liveness Properties must happen eventually—that is, after a finite number of steps. The vio-
lation of a liveness property is witnessed by a counterexample of infinite
length; checking liveness requires to prove termination.

2.2.2 Behavior and State

Literature also distinguishes properties based on the extent to which tempo-
ral aspects are relevant. For example, if we say that we check the correctness
regarding a specification, we also say that we check that there are no states
or behaviors that violate the specification. The Oxford Dictionary defines “to
behave” as “act or conduct oneself in a specified way”, whereas “the state”
is defined as “the particular condition that someone or something is in at
a specific time.” The model checking community uses [235] the terms data
property (data-dependent property) and control property (control-dependent
property) to talk about state and behavior.29

Control Properties A pure control property only refers to the control flow, that is, the sequence
of program operations or control locations. The control locations in a se-
quence thereof must appear in a particular temporal order. This corresponds
to the expressiveness that is brought by the temporal operators of temporal
logic. A pure data property does not have a notion of temporal order: It does30

Data Properties not refer to any (sequence of) control locations. It makes propositions about
data locations and their values for one point in time only.

Please note that control properties can be converted to data properties and
vice versa [61]. Also, hybrid forms of these property types are possible. Du-
ally, safety checking (reachability) can be expressed as global invariant check-
ing [214], and liveness checking can be performed as safety checking [229].
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2.3 program semantics and model

After the previous section has introduced the syntactical program representa-
tion, we now discuss how we represent and model the semantics of program
executions and their space of possible behaviors and states.

Some general terms and definitions upfront: A proposition in the form of
a phrase a is said to be valid if it is true for all its possible interpretations.
The denotation function [[a]] provides the set of all semantically valid inter-
pretations of a phrase a. Two phrases a and b are said to be semantically
equivalent a ≡ b if [[a]] = [[b]]. A proposition b is a semantic consequence
of a proposition a, that is, a � b, if [[a]] ⊆ [[b]]. We say that proposition b 31

Overapproximationoverapproximates proposition a if [[a]] ⊆ [[b]]. A decision procedure is called to
32

Soundness and Completeness
be sound if only logically valid propositions are deduced. A decision proce-
dure is said to be complete if all logically valid propositions can be deduced.

2.3.1 Predicate Logic

The semantics of programs can be captured in formulas in predicate
logic [122, 161]—also known as first-order logic. Predicate logic is defined
based on a set V of variables, a set of logical symbols X, a set of n-ary func-
tions F, with n > 0, a set of m-ary predicates U, with m > 0, and a set
of rules to derive well-formed formulas F in predicate logic. We use the set
of logical operators X = {∀,∃,∧,¬,∨,⇒,⇔} with their common meaning.
A binary operators ∗ ∈ X on formulas forms the relation ∗ : F × F → F,
a unary operator ? ∈ X forms the relation ? : F → F. We use the sym-
bols ϑ,ϕ,ψ, ρ ∈ F to denote separate formulas. A predicate asserts attributes
of a set of objects; it is a formula in predicate logic with n free variables. The 33

Vocabularyvocabulary of a formula ϑ is the set vocab(ϑ) of all symbols that identify vari-
ables and functions. The set of all predicate formulas P ⊆ (F ∪ {true, false})
also includes the formulas true and false. 34

AllSatGiven a formula ϑ ∈ F and a sequence of Boolean variables V ∈ V∗,
the operator AllSat : F × 2V → B∗ returns a truth table, where each row
corresponds to a truth assignment to the variables V that make ϑ satisfiable.

2.3.2 Lattices

Lattices are one of the most fundamental structures that this work builds on.
They are used, for example, to compute abstractions [80]. Building program
analyses based on lattices [80, 155] allows relying on fixed-point theorems
for checking convergence in the state-space exploration process [174].

Lattice. We define a (complete) lattice [123] as a tuple E = (E,v,u,t,>,⊥),
with a set of abstract entities E and an partial order relation v ⊆ E → E. The 35

Inclusion Relationrelation v is also called the inclusion relation [250], and implies a graph that
represents this relation [46]. The operator meet (infimum) is a relation u :

(E×E)→ E that provides the greatest lower bound for a given pair (m1, m2) ∈
E × E of abstract entities. The operator join (supremum) is a relation t :

E× E → E that provides the least upper bound for a given pair of abstract
entities. The bottom entity ⊥ is the least in the partial order relation, that
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is, there exists no other entity m v ⊥, with m 6= ⊥. The top entity > is the
greatest in the partial order relation, that is, there exists no other entity> v m,
with m 6= >. The operators u and t extend to sets naturally: The meet
over a set of abstract entities is denoted by

d
: 2E × E, and the join by

⊔
:

2E × E, for example, ⊥ =
d
E and > =

⊔
E. A join semilattice is similar to a

complete lattice except that no meet is available for all entities in E. A meet
semilattice is similar to a complete lattice except that no join is available for
all entities in E. That is, a semilattice either has no meet or no join for all
abstract entities. Partially ordered sets (posets) can be made semilattices, and
semilattices can be made complete by adding additional abstract entities with
special meaning (supremum or infimum) [113].

Flat Lattice. A flat lattice [123, 255] is a widely used type of lattice over a
set of elements E. We denote such a lattice over E by fl(E) = (E,v,u,t,>,⊥).36

fl(E) A given pair of elements is the inclusion relation (e1, e2) ∈v if and only if the
first element e1 = ⊥ is the bottom element or if the second element e2 = >
is the top element of the lattice.

Map Lattice. A map lattice ml(K,
...
V) = (2K→V ,v,u,t,>,⊥) is a lattice of el-37

ml(K,
...
V) ements that are maps, that is, the elements are functions that map from a

set K of keys to a set V of values; the values of this map are elements of
another lattice

...
V = (V ,vV ,uV ,tV ,>V ,⊥V). Such a lattice is also known as

function lattice [16, 99]. The inclusion relation v has element (m1,m2) ∈v
if and only if ∀k ∈ K : m1(k)⊥ vV m2(k)⊥. In the following, we rely38

m(k)⊥ on the function m(k)⊥ = m(k) if (k, ·) ∈ m otherwise ⊥V which returns
the value for a given key k from a map m, and the bottom element of
the value lattice if no entry for the key is present. The meet u is defined
by u(m1,m2) = {(k, v1 uV v2) | (k, v1) ∈ m1 ∧ v2 = m2(k)⊥}, the join t is
defined by t(m1,m2) = {(k,m1(k)⊥ tV m2(k)⊥) |k ∈ keys(m1)∪ keys(m2)},
the top element > is defined by > = {(k,>V) |k ∈ K}, and the bottom ele-
ment ⊥ is defined by ⊥ = {(k,⊥V) |k ∈ K}.39

Operator
⊔

→ We define an image-join operator
⊔
→ : 2K×E → 2K→E: Given a map M ⊆

K× E, with a set of keys K, and a set of lattice elements E, the operator joins
all tuples (k, e) ∈ M with the same key k into one tuple with a value that
aggregates all value elements e, that is,

⊔
→M = { (k,

⊔
{e | e ∈ {(k, e) ∈

M}}) | k ∈ {k | (k, ·) ∈M} }.

Powerset Lattice. A powerset lattice that describes a Hoare powertheory [4,
103, 131]—over a given lattice

...
E = (E,vE,uE,tE,>E,⊥E)—is denoted

by pw(
...
E) = (2E,v,u,t,>,⊥), where the set of elements is constituted by40

pw(
...
E) the set of all subsets 2E of the set E. The inclusion relation v has the el-

ement (E1,E2) ∈v if and only if ∀e1 ∈ E1∃e2 ∈ E2 : e1 vE e2. The
join t(E1,E2) = E1 ∪ E2 is the union, and the meet u(E1,E2) = E1 ∩ E2
is the intersection of two given sets E1,E2 ⊆ E. The bottom element ⊥ = ∅ is
the empty set, and the top element > = E is the set with all elements.

Prefix Lattice. It is well known [2, 53, 251] that a (sequential) program can
be characterized by a prefix-closed set of sequences of program operations.
A set W of words is called prefix closed if for each word σ̄ ∈ W also every
single prefix of the word is included in the set W. That is, a set W is prefix
closed if it is a downset regarding a partial order of words that describes
whether or not one word is prefix of another word. The prefix lattice de-
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scribes a corresponding partial order of words: The prefix lattice pr(Σ∞) =

(Σ∞,v,u,t,>,⊥) describes the relationship between words Σ∞ over an al-
phabet Σ. A word is a sequence σ̄ = 〈σ1, . . .〉 ∈ Σ∞ of symbols from the alpha- 41

pr(Σ∞)bet Σ. Two words are in the inclusion relation (σ̄1, σ̄2) ∈v, withv⊆ Σ∞×Σ∞,
if and only if word σ̄1 is prefix of word σ̄2. A word ā is prefix of a word b̄
if and only if ā = b̄ or ∀i=1...nbi = ai, where ai is the ith letter of the
corresponding word, and n is the length |ā| of the word ā. The definitions
of the join (least upper bound) t : Σ∞ × Σ∞ → Σ∞, and the meet (greatest
lower bound) follow from the relation v. The bottom symbol ⊥ of the lattice
corresponds to the empty word ε. The symbol > is added to complete the
lattice such that for all σ̄ ∈ Σ∞ holds that (σ̄,>) ∈v.

Boolean Algebra. Any complemented distributive lattice is isomorphic to a
Boolean algebra [146], which also follows from the Stone duality [240]; one
example for such lattices are powerset lattices. Lattices generalize Boolean
algebras by not requiring complement and distributivity in the first hand.

2.3.3 Abstraction

We reason about the states of a program on a computer and distinguish
between concrete states and abstract states. One concrete state represents the
full state of a computer at one point (CPU cycle) in time—a concrete state
can be seen as one vector of bits. One abstract state describes a set of concrete
states—a set of concrete states is sometimes called region.

Abstract Domain. The abstract domain [31] defines mechanisms for mapping
between concrete and abstract entities and for reasoning about the relation-
ship between abstract entities. The abstract domain concept we build on was
introduced in the context of abstract interpretation [80, 81, 104] and is the
foundation for several program analysis frameworks [31, 82, 83, 155, 224,
227]. An abstract domain D = (C,E, [[·]], 〈〈·〉〉) is an algebraic structure that
consists of the set of concrete elements C, a (semi-)lattice E = (E,>,⊥,v
,t,u) on the set E of abstract elements, a denotation function [[·]] : E → 2C,
and an abstraction function 〈〈·〉〉 : 2C → E. The denotation (concretization)
function [[·]] : E→ 2C maps from an abstract state e ∈ E to a set C ⊆ C of con-
crete elements. The denotation [[e]] : E → 2C of an abstract element e is the
set of all its possible interpretations—as known from denotational seman-
tics [4]. The abstraction function 〈〈·〉〉 : 2C → E maps from a set of concrete
elements to an abstract state, that is, it is a surjection that provides a symbolic
representation. The abstraction 〈〈Ck〉〉 of a set of concrete elements Ck ⊆ C

results in an abstract element e, with [[e]] = Ck. Please note that constructing
a symbolic (abstract) representation does not imply any loss of information.

Two elements are called semantically equal, that is, e1 ≡ e2, if and only
if [[e1]] = [[e2]] in the same universe. One element semantically implies another
element, that is, e1 � e2, if and only if [[e1]] ⊆ [[e2]].

Widening. The term abstraction is typically associated with a loss of infor- 42

Abstraction Precisionmation, that is, the number of interpretations of a given entity is increased.
We reflect this in the abstraction function 〈〈·〉〉π : E → E with widening. The
widening is performed based on a given abstraction precision π ∈ Π [202],
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which defines the set of details (facts) to keep or to discard. The result of a
widening e ′ = 〈〈e〉〉π in a new abstract element e ′ with [[e]] ⊆ [[e ′]].

Composite Domain. A list of abstract domains D1, . . . ,Dn can be com-
bined [31] to form a composite domain D×. A composite domain operates
on composite elements E× ⊆ E1× . . .× En, which are elements of a product lat-
tice, and form tuples of abstract elements from the component domains [31].

2.3.4 Concrete and Abstract Semantics

We define the semantics of a program operationally and rely on the for-
malization that is provided with predicate transformers [95]—as used in
predicate abstraction [122]. One formula ϑ ∈ F denotes a set [[ϑ]] of concrete
program states. The strongest postcondition is an operator SP : F ×Op → F.43

Strongest Postcondition That is, the result of a call SPop(ϑ), also written as SP(ϑ,op), results in a
new formula ϑ ′ that satisfies the Hoare triple {ϑ} op {ϑ ′} [138]. The op-
erator naturally extends to sequences of program operations such as s̄ =

〈op1, . . . ,opn〉 ∈ Op∗, that is, SPs̄(ϑ) = SP(opn, (. . . , (SP(op1, ϑ)).
Since we model the state space of a program based on an abstract do-

mainD = (C,E, [[·]], 〈〈·〉〉), we use the term abstract state for an abstract element
that describes a set of concrete (program) states. An abstract state e ∈ E is an
element in the corresponding lattice E of abstract states E. The set C corre-
sponds to the set of concrete states. We overload the strongest postcondition
operator to operate on abstract states SP : E × Op → E, and on concrete
states SP : C×Op→ 2C.

Each concrete state c ∈ C is a map of data locations X to corresponding
data values with the respective type—we restrict the discussion to integers
for now. We assume that each operation is atomic regarding its execution
on a computer. The current status of a computer can be observed in discrete
points in time.

2.3.5 Transition Systems

The semantics of a program, with all its states and behaviors, can be cap-
tured in a transition system, for example, a Kripke structure [54, 69]. A
software model-checking procedure creates a reachability graph to prove
a safety property, A control-flow automaton CFA, in contrast, describes a
program on a syntactical level, that is, it has a language L(CFA) that consists
of all syntactically well-formed program control paths.

Abstract Reachability Graph. An abstract reachability graph (ARG) is a
graph ARG = (R, e0, ), with a set of reached abstract states R ⊆ E, an
initial abstract state e0 ∈ R, and an abstract transfer relation  ⊆ E × E.
That is, each node corresponds to an abstract state e ∈ R, and an edge be-
tween two nodes e and e ′ represents the transition (e, e ′) ∈  between
two abstract states—which we also write as e e ′. The ARG is implicitly pa-
rameterized with an abstract domain D that provides the mapping between
abstract states and concrete states. The size of an abstract reachability graph—
also referred to as the size of the abstract model, or the size of the abstract state
space—is the number of abstract states |R|. We called an abstract reachability
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graph to be labeled if each transition (e, e ′) ∈  between abstract states is
labeled with a program operation op ∈ Op of a corresponding control flow
transition g = (l,op, l ′) ∈ G. The labeling is made explicit by the labeled
transfer relation

Op
 ⊆ E×Op× E.

Compared to a Kripke structure [54, 69, 173], an ARG does not have a
notion of state labeling, but such a labeling can be performed, such that the
ARG is lifted to become a full or partial [249] Kripke structure [55, 249].

Program Path. An abstract program path is a sequence ē = 〈e0, . . . , en〉 ∈ E∞ 44

Abstract Program Pathof abstract states that starts in the initial state e0 ∈ E, and is well-formed
regarding the transfer relation  of the corresponding abstract reachability
graph; we also write it as with e0 . . . en. One abstract program path rep- 45

Concrete Program Pathresents a set of concrete program paths [[e0]] . . . [[en]]. A concrete program
path is a path c0−→ . . .−→cn, with ci ∈ [[ei]]. An abstract program path is fea-
sible if each abstract state along the path has a concrete counterpart, that is,
∀i∈[0,n]∃ ci ∈ [[ei]], otherwise it is called infeasible. A concrete program path
is also called a test vector.

Inductive Invariants. Given a transition system in the form of an
ARG (R, e0, ). A formula ϑ ∈ F is an inductive invariant for this transition
system if (1) then invariant holds in the initial state e0, that is, [[e0]] ⊆ [[ϑ]],
and (2) it holds for every state e ′ that is transitively reachable on the
transition relation [106, 210], that is, [[e ′]] ⊆ [[ϑ]]. A sequence of abstract
states ē = 〈e1, . . . , en〉 satisfies invariant ϑ if and only if ∀ei∈ē[[ei]] ⊆ [[ϑ]].

2.4 model checking programs

Software verification is considered a grand challenge of computer sci-
ence [139]. Several different approaches exist to verify the correctness of a
program concerning a given specification. We choose software model check-
ing for this purpose. Model checking is an automatic, algorithmic, and exhaus-
tive analysis of the states and behaviors of systems that can be described by
state-transition systems [73]. Given a system S and a specification ϕ, a model
checker constructs a model K that overapproximates all possible states and
behaviors of S and checks whether this model satisfies the specification ϕ or
not, that is, K � ϕ, where the symbol � represents the semantic entailment.
A software model checker takes as input a program P (the system to verify) and 46

Software Model Checkera specification and outputs whether this specification is satisfied or not—in
an algorithmic, automatic, and exhaustive fashion.

2.4.1 Problem Characterization

The applicability of model checking faces theoretical and practical limita-
tions. First and foremost, Gödel’s incompleteness theorem [121] states that
there cannot be a complete and sound solution for all possible model check-
ing problems (verification tasks). In practice, we face the state space explosion
problem, which describes the fact that the size—the number of states and
transitions—of a Kripke structure can be exponential several times, regard-
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ing different factors. Each factor represents a sub-problem with high (expo-
nential) costs on its own.47

Control Explosion First, there is the path explosion problem or control explosion problem, that is,
with each branching in the control flow, the size of the state-space potentially
doubles and is therefore exponential in the number of branchings—there can
be exponentially many words in the language L(P) of the program P.48

Unwinding Explosion The next dimension is the unwinding explosion problem that can result in
infinitely long words in the language L(P) of the program, which arise from
unwinding loops and recursion. Loop invariants [111, 167] are needed to con-
struct a finite abstraction of this possibly infinite behavior. In the case of
liveness properties, also termination has to be proven.49

Data Explosion Another dimension, the data explosion problem, arises from the data in the
system’s memory. Given a system with |X| = n data locations, each data
location is mapped to a domain D; the domain defines the number of differ-
ent abstract representations of different values for a data location. The num-
ber |C| of concrete states therefore raises exponentially in the number of data
locations, where the factors are determined by the domains: D1 × . . .×Dn.
Please note that also costs of some decision procedures that are used for
symbolic state-space representation can be quadratic or exponential [177] in
the number of variables regarding time or space.50

Interleaving Explosion The next dimension, the interleaving explosion problem, arises from all pos-
sible interleavings of code fragments (components, processes, or threads) in
the context of the analysis of concurrent systems or compositional reason-
ing. The number of states in the Kripke structure can be exponential in the
number of processes [211] or the number of components [117] to interleave.

Another dimension, the configuration explosion problem, is defined based on
the different compile-time or run-time configurations that a program can51

Configuration Explosion have [6, 222]. The number of variants a system can have is exponential in the
number of configuration options.

2.4.2 Counterexample-Guided Abstraction Refinement
52

Abstraction The most effective approach to cope with the state-space explosion is ab-
straction, that is, to remove (abstract from) all details of the system that are
irrelevant for the reasoning task at hand. Or dually, model only those details
that are relevant to solve the task. The set of details of a system to model is53

Abstraction Precision called the abstraction precision [32, 202], which can be, for example, a set of
predicates, or a set of data locations.

The most prominent approach to derive an abstract model that is suf-
ficiently precise to prove that a program adheres to a given specification
is counterexample-guided abstraction refinement (CEGAR) [67]. A scheme of
CEGAR is illustrated in Fig. 3. The abstraction process starts with an empty
abstraction precision π0 = ∅, which is used to construct a first abstract
model (abstract reachability graph) of the program. The abstract model is
then checked for abstract states that violate the specification. The program
is safe if no violating state is found because the model checking procedure
ensured that the abstract model overapproximates all possible states and be-
haviors that the concrete system can have. In case a violating state is found, a
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Model Checking

Feasibility Check

Precision Refinement

Program

Specification

TRUE FALSE

π0 = ∅
σ̄ infeasible

σ̄ = 〈l0, . . .〉

π ′

σ̄ feasible

Figure 3: Counterexample-Guided Abstraction Refinement (CEGAR)

counterexample is constructed as a witness for the violation; for safety prop- 54

Spurious Counterexampleserties, such a counterexample is a finite program path σ̄ = 〈l0, . . .〉 [170]. This
path might be infeasible in the concrete program, that is, SPσ̄(true) ≡ false,
and was only reachable in the abstract model due to a lack of precision; we
call such a counterexample spurious. To eliminate spurious counterexamples, 55

Precision Refinementand to prove the absence of violations, the abstraction precision—and with
it, the abstract model—has to be refined. Additional details to model are
identified based on the counterexample and added to a new abstraction pre-
cision π ′ such that it does not re-appear in the next iteration of the CEGAR
loop. Different techniques are available to identify the details to rule out a
spurious counterexample, for example, Craig interpolation [84].

2.4.3 Craig Interpolation

We use Craig interpolation [84, 190] to derive precision refinements from
spurious counterexamples. It is a technique to get a (more) abstract explana-
tion φ for the unsatisfiability of a formula ϑ in predicate logic and helps to
localize different facts to track alongside a counterexample [137].

We use McMillans formulization [190] of the Craig interpolation theo-
rem [84]: Given a formula ϑ ≡ ϑ− ∧ ϑ+, a formula φ is a Craig interpolant if
and only if

ϑ− ∧ ϑ+ unsat

and ϑ− ⇒ φ

and φ∧ ϑ+ unsat

and vocab(φ) ⊆ vocab(ϑ−)∩ vocab(ϑ+).

A Craig interpolant can be obtained in polynomial time [192] from the proof
of an SMT solver if the background theories have the interpolation property.

2.4.4 Predicate Abstraction

Predicate abstraction [122] is an approach to summarize (abstract or widen)
a given formula ϑ ∈ F in predicate logic based on a set of predicates π ⊂ P.
It is an essential [19, 28, 41, 177] means to derive a finite abstract model of a
program. The formula that should be summarized by predicate abstraction
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represents a set Cϕ = [[ϕ]] of concrete program states. A program analysis
typically conducts such an abstraction at specific points [35] in the control
flow—the abstraction locations, for example, loop heads [28, 35]. The resulting
abstraction is a Boolean combination of the given set of predicates π, that is,
it is an abstraction with widening 〈〈·〉〉 : F × 2P → F, which we also write
as 〈〈·〉〉π : F → F. We distinguish between Boolean predicate abstraction and
Cartesian predicate abstraction [21, 28]:
Boolean Predicate Abstraction. A Boolean predicate abstraction 〈〈ϑ〉〉πB of a
given formula ϑ ∈ F is the strongest Boolean combination ψ ∈ F of predi-
cates π ⊂ P that is entailed by ϑ, that is, ϑ⇒ ψ [177]. The resulting formula ψ
represents a set of concrete states such that [[ϕ]] ⊆ [[ψ]].

The predicates π are ordered (are assigned an index), which results in the
list ρ̄ = 〈ρ1, . . . , ρn〉 ∈ P∗ of predicates. We introduce a propositional vari-
able vi ∈ F and get v̄ = 〈v1, . . . , vn〉 ∈ F∗. We solve the following AllSat [177]
problem, which results in a truth table R ⊆ B|P| with at most 2|π| entries:

R = AllSat(ϑ∧
∧

i∈1..|ρ̄|

vi ⇔ ρi, v̄)

A row in the result table R is a tuple r̄ = 〈r1, . . . , rn〉 ∈ B|π|. For each
row r̄ ∈ R we conjunct all predicates for that the propositional variable vi
was evaluated to true. The resulting abstraction formula ψ is the disjunction
of all these conjunctions:

ψ =
∨
r̄∈R

∧
ρi∈ρ̄

{ρi | ri ≡ true}

The AllSat procedure is implemented on top of an incremental SMT solver.
A new blocking clause is pushed after each satisfying assignment. The result
is typically [177] stored in a BDD to arrive at a compact representation and
allow for fast coverage checks.

Example 1. Given a formula ϑ ≡ x = 2∧ ((b = x∧ a > 0∧ i = 64)∨ (b =

x − 1 ∧ i > 128 ∧ a = 0) ∨ (i = 64)) to abstract using Boolean predicate
abstraction with the list of predicates ρ̄ = 〈ρ1, ρ2, ρ3〉 = 〈b = 1, x = 2, i 6 90〉.
We introduce a list of propositional variables v̄ = 〈v1, v2, v3〉, where each of
them has a one-to-one correspondence to the predicates in ρ̄. The AllSat call
returns the assignments R = {〈0, 1, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}, which results in the
Boolean predicate abstraction ρ2 ∧ (ρ1 ∨ ρ3).

Cartesian Predicate Abstraction. Another approach for predicate abstraction
is Cartesian predicate abstraction 〈〈ϑ〉〉πC of a given formula ϑ ∈ F. It is the
conjunction ψ ∈ F of all predicates ∈ π that entail ϑ, that is, the abstraction ψ
results from:

ψ =
∧
ρi∈π

{ρi | ϑ⇒ ρi}.

This approach does not take dependencies between predicates into account
and results in coarse-grained abstractions.

Example 2. Given the formula ϑ and the abstraction precision π from Exam-
ple 1, the Cartesian predicate abstraction 〈〈ϑ〉〉πC results in the formula x = 2.



2.5 configurable program analysis 21

2.5 configurable program analysis

Configurable program analysis (CPA) [31, 32] is a concept, formalism, and
framework [34] for formalizing and implementing program analyses. It pro-
vides the foundation to combine techniques from different directions of re-
search for reasoning about programs, for example, combinations of tech-
niques from abstract interpretation [80], data-flow analysis [155], symbolic
execution [161], and techniques from model checking [71, 73].

The framework was first provided within the tool Blast [41] and was fur- 56

CPAcheckerther refined and extended in the tool CPAchecker [34], on which our imple-
mentation is based. We slightly modify different operators of the framework, 57 "
for example, by adding some operators, adding parameters to existing oper-
ators, or removing some parameters if they are not relevant to present the
contributions of this work. We indicate the modifications where appropriate.

Please note that we build on configurable program analysis with dynamic
precision adjustment [32]: Different operators and algorithms are extended
with an abstraction precision. An abstraction precision π ∈ Π is a set of pro- 58

Abstraction Precisiongram facts to track, and determines the level of abstraction of the abstract
model to construct; the set of all abstraction precisions is denoted by Π. An
elaborated formal definition of abstraction precisions is provided in Sect. 5.2. 59

Verification EngineWe use the term verification engine to denote all components of a verifica-
tion tool that contribute to the verification process. The set of components
includes an SMT solver, a BDD library, different algorithms that wrap the
reachability algorithm, for example, a CEGAR loop [67].

2.5.1 CPA Algorithm

The CPA Algorithm [8, 31, 32] is the heart of the model-checking procedure
that we use. It is a reachability (semi-)algorithm that operates based on a 60

waitlist and reachedworklist called waitlist, which is a subset of the set of abstract states reached
that is considered reached at a given point in time. The algorithm starts the
state space exploration starting from an initial worklist waitlist = W0 of ab-
stract states and a set of initially reached states reached = R0, and terminates
either if the worklist is empty, that is waitlist = ∅, or if a target state has
been found. A target state is an abstract state whose absence or presence— 61

Target Statedepending on the type of property to check—has to be witnessed by the
analysis. All operators, except the operator choose, that are used within the
CPA algorithm, are defined within the CPA D—which is an implicit parame-
ter of the algorithm. The operator choose determines the state space traversal 62

Operator choosestrategy, that is, given the set of frontier states waitlist, which state to com-
pute successors for next. The CPA algorithm is typically wrapped by another
algorithm, for example, a CEGAR loop. The pairing of abstract states with
an abstraction precision was introduced to allow for lazy abstraction [136]
and dynamic precision adjustment [32].
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Algorithm 1 CPAalgD(R0,W0), adopted from [31, 32]

Input: a CPA D = (D, , merge, stop, prec, target),
a set R0 ⊆ E×Π of abstract states with precision,
a subset W0 ⊆ R0 of frontier abstract states with precision,
where E denotes the elements of the lattice of D

Output: reached abstract states with precision,
remaining frontier abstract states with precision

Variables: a set reached ⊆ E×Π, a set waitlist ⊆ E×Π
1: reached := R0; waitlist :=W0
2: while waitlist 6= ∅ do
3: (e,π) := choose(waitlist)
4: for each e ′ with e (e ′,π) do
5: (ê, π̂) := prec(e ′,π, reached)
6: for each (e ′′,π ′′) ∈ reached do
7: enew := merge(ê, e ′′, π̂)
8: if enew 6= e ′′ then
9: waitlist :=

(
waitlist∪ {(enew, π̂)}

)
\ {(e ′′,π ′′)}

10: reached :=
(
reached∪ {(enew, π̂)}

)
\ {(e ′′,π ′′)}

11: if ¬ stop(ê, {e | (e, ·) ∈ reached}) then
12: waitlist := waitlist∪ {(ê, π̂)}
13: reached := reached∪ {(ê, π̂)}
14: if target(ê) 6= ∅ then
15: return (reached, waitlist)
16: return (reached, ∅)

2.5.2 CPA

The central building block of the CPA framework is the configurable program
analysis (CPA) which defines, for example, how the concrete states and be-
haviors of the program under analysis are abstracted, to which extend in-
formation from different states is combined, and provide means to check
whether a fixed-point has been reached or not.

A configurable program analysis (CPA) with dynamic precision adjust-
ment [32] is formalized as a tuple D = (D, ,merge, stop, prec, target) of
analysis components (operators):

Abstract Domain D. The abstract domain D = (C,E, [[·]], 〈〈·〉〉) defines the map-
ping between sets of concrete states and abstract states. The set of concrete
elements C corresponds to the concrete states; the set of abstract elements E
of the lattice E corresponds to the abstract states. See Sect. 2.3.3 for detailed
definitions and discussions.

Transfer Relation  . The transfer relation  ⊆ E× E×Π—sometimes called
accessibility relation—defines the predecessor–successor relation of abstract
states, that is, it is the central component that defines the shape of the ab-
stract reachability graph of the program to analyze. The relation is total and
must overapproximate the reachable states to not miss potential specifica-
tion violations. Please note that the general notion of a CPA is independent
of the control-flow automaton of the program (or system) to analyze. For
analyses that encode the semantics of a control-flow automaton, the labeled
transfer relation

g
 ⊆ E×G× E×Π has been introduced [31], which defines
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the set of successor states based on a given control-flow transition g ∈ G. For
a forwards analysis, the strongest postcondition SP is used to compute the
set of successor states for a given abstract state—see Sect. 2.3.4.

Operator stop. The coverage check operator stop : E× 2E → B determines [31]
if a given abstract state is already covered sufficiently by the current set of
reached states. A call stop(e,R) gets as argument the abstract state e ∈ E to
check coverage for, the set of reached states R that might already cover the
newly reached state. To be sound—for example, for model checking—we re-
quire that [[e]] ⊆

⋃
r∈R[[r]]. Literature defines two standard stop operators [31]:

stopsep(e,R) = (∃r ∈ R : e v r) and stopjoin(e,R) = (e v
⋃
r∈R r).

Operator merge. The merge operator merge : E× E×Π → E determines how
and to which extent information of a pair of abstract states should get com-
bined to a new (more abstract) abstract state. It controls if two abstract
states should be combined or if they should be explored separately and
separate the state space. The default is to always separate two different ab-
stract states. The semantics of the operator also follow from its usage in
the CPA algorithm: Given a call merge(e, r,π), the result is computed by
widening the second argument r based on the first argument e—that is,
the operator is not commutative. To be sound, the operator must ensure
that [[r]] ⊆ [[merge(e, r,π)]]. 63

mergejoinIn a path-insensitive data-flow analysis, the merge operator combines
two abstract states based on the join t of the lattice that is defined along
with the abstract domain. This behavior is implemented in the opera-
tor mergejoin(e, r,π) = (et r) [31]. Another merge operator is mergesep that al- 64

mergesepways keeps information of two abstract states separated: mergesep(e, r,π) = r,
which means that the second argument is not widened [31].

Operator prec. The precision adjustment operator prec : E × Π × 2E×Π →
E × Π [32] can provide a new abstract state with an adjusted abstraction
precision. Given a call prec(e,π,R), the operators returns a pair (e ′,π ′),
with [[e]] ⊆ [[e ′]]. That is, it adjusts the abstraction precision of the given
state e, resulting in a widened state e ′ and a new abstraction precision π ′. An
abstraction is, for example, computed based on the abstraction operator 〈〈·〉〉π
with widening based on the given abstraction precision π. Please note that
the precision adjustment operator does not add any requirements on the
given abstraction precision π and the returned abstraction precision π ′—
while such a requirement can help to ensure the progress of the analysis.

Operator target. The target operator target : E → 2S determines if a given
abstract state is a target state of the analysis process, for example, a state
that must not be reachable in the concrete system (safety property). A
call target(e) returns a set of properties ρ ⊆ S for that the given abstract
state might have to be ruled out. The operator returns the empty set ∅ if the
state is not a target state.

2.5.3 Composite CPA

In the framework of configurable program analysis [31] different analy-
ses (CPAs) can be responsible for tracking different facts about the sys-
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tem under analysis. We need a mechanism for composing different ana-
lyses, their abstract domains and semilattices, and operators. This mech-
anism is provided by the Composite CPA [31]. A composite CPA D× is
composed of a sequence of component analyses 〈D1, . . . , Dn〉. The compos-
ite domain D× is the direct product of the abstract domains of the com-
ponent analysis domains 〈D1, . . . ,Dn〉, that is, it operates on abstract com-
posite states E× = E1 × . . . × En, which are elements of the product lat-
tice E× = E1 × . . .× En.

Strengthening. Whenever an analysis runs as a component analysis within a
composite analysis, it can implement an additional strengthening operator ↓.
The operator is invoked for each component analysis c1, . . . , cn separately,
after all of them have computed a successor state based on their transfer re-
lation, which resulted in the composite state e ′× = (e1, . . . , en). Compared to
the original formalism [31, 32], we have extended the strengthening operator
for our needs. The remaining details about this analysis can be found in the
literature [31, 32].

Operator ↓. The strengthening operator ↓ : E× × E× × Eci → Eci can be
implemented in a component analysis to use information from other ab-
stract states in the composite state to strengthen the component state. A
call ↓i(e×, e ′×, eci) takes as argument the predecessor composite state e× ∈
E×, the successor composite state e ′× ∈ E×, and the abstract component suc-
cessor state eci ∈ Ei, and returns a strengthened successor state ec ′i ∈ Ei. The
strengthening process can take information from e× and e ′× into account.

2.5.4 Predicate CPA

We use the predicate abstraction with adjustable block encoding [35] to ab-
stract the heap and stack of the program under analysis. The functionality
of this analysis is implemented in the Predicate CPA DP. We now describe
those details of the analysis that are relevant for this work. Please refer to
the literature [35] for a full description of this analysis.

Abstract Domain DP. The abstract domain DP = (C,E, [[·]]) is defined based
on a semilattice E on the set of abstract states E = F × F × L. An abstract
predicate state e = (ϕ,ψ, lψ) ∈ E consists of a block formula ϕ, an abstraction
formula ψ (summary), and an abstraction location lψ ∈ L. The abstraction
formula is typically stored in a BDD [177], which allows fast entailment
checks on the level of propositional variables, and simplifies the formulas.

Details on the semilattice E can be found in the literature [35]. Since we
use the Predicate CPA (and this abstract domain) in a composite analysis
along with an analysis that keeps care of tracking the current position in the
transition relation of the system under analysis, we do not model the current
control location as part of this domain—as done in existing work [35].

Operator precP. We use the precision adjustment operator precP : E ×
Π × 2E×Π → E × Π to compute predicate abstractions, at specific control
locations—called the abstraction locations.

The block operator blk : E× L×B is used to determine the points in the65

Block Operator state space for that an abstraction (summary) should be computed based on
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a given abstraction precision (set of predicates). The block operator blkL re-
turns true iff the given control location is a loop head, the block operator blkLF

returns true iff the given control location is a function call or a loop head,
and the operator blkSBE returns true always, that is, fosters a single-block
encoding [21, 28]. Cartesian predicate abstraction is used to compute the ab-
straction in case single-block encoding [21] is enabled; otherwise, Boolean
predicate abstraction [177] is used. Please note that the original analysis [35]
computes abstraction in the transfer relation of the analysis.

Given an abstract state e = (ϕ,ψ, lψ) and a set of predicate π for a control
location l ∈ L, the operator precP returns (e,π) if blk(e, l) = false, otherwise,
it returns ((true, 〈〈ψ ∧ ϕ〉〉π, l),π). Depending on the block operator, a dif-
ferent abstraction function 〈〈·〉〉π with widening is used to conduct either a
Cartesian predicate abstraction or a Boolean predicate abstraction.
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Keywords: Abstract Transducers, Transducer Abstraction, Sharing and
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Figure 4: Printing press: A
means to reproduce and
share information

In this chapter, we present a new type of abstract machine, which we use
as the generic conceptual and technical foundation for sharing task artifacts
for reuse and reproduction, within and among verification runs, both for
constructing and composing syntactic and semantic task models—see the
motivation of this thesis in Sect. 1. Having such a generic concept—and
corresponding techniques—for sharing at hand can reduce the complexity
of analysis tools, and the toolchain it is used in, considerably; it reduces
the number of concepts to deal with, and allows to build on generic and
well-tested implementations. 66

Common Foundation NeededOver time, several techniques for sharing task artifacts, of different types,
for reuse have been presented. These techniques are used, for example, to
store and share reachability graphs [30, 33, 135], summaries for distinct func-
tions [233], sets of predicates [122], cross-cutting concerns—which are shared
as aspect—to weave [160], or specifications that are applicable among pro-
gram variants, which are stored in separate specification files for reuse [22,
39]. These techniques use different concepts, mechanisms, and data struc-
tures to depict the process of sharing. All of them have to deal with the
structure of computer programs, and changes thereof in case they evolve
and reuse from other revisions or variants is intended. Not only the com-
plexity of a tool is increased by implementing all these techniques without
a generic foundation, but also common ideas are hidden behind different
formalisms: Gaining a deep understanding of the fundamental ideas is hin-
dered. Without reducing the differences between concepts, techniques, and
their implementations to the necessary minimum, the number of threats that
are imposed on the internal validity of empirical studies is increased.

We propose a form of transducers as generic means for sharing artifacts 67

Transducersof different types for reuse. In general, a transducer is a mechanism for trans-
forming information between different information carriers, for example, be-

27
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Figure 5: Each transition of an abstract transducer is annotated with an abstract
input word v and an abstract output word w. An abstract input word
denotes [[v]] ⊆ Σ∗ a set of words over an input alphabet Σ, an abstract
output word denotes [[w]] ⊆ Θ∞ a set of words over an output alphabet Θ;
the illustration shows the sets of concrete words. Please note that already
the activation of the initial state q0 emits an abstract output word—in this
case: the set {p} of concrete words. We use the abstract epsilon word vε,
with [[vε]] = {ε}, with the semantics that is known from ε-NFAs [143, 237].
Transitions with the abstract input word vε are called ε-moves and can
result in output words of (here countable) infinite length, which result
from ε-loops—for example, the loop q2→q3→q4→q2. The table on the
right shows—for the transducer on the left—a set of input words and
corresponding output words in the form of regular expressions.

tween different forms of energy [1, 209]; it might carry information on its
own, which it can emit under specific conditions. It can be used as a mech-
anism for reproducing and sharing information, possibly on a different form of
information carrier. Examples for transducers in the real world include mi-
crophones [188], which transduce between sound (mechanical energy) and
electrical energy, or a printing press, which transduces between a printing
plate and paper—one form of sharing a large amount of complex informa-
tion with a broad audience. The transducers that we propose for sharing arti-68

Finite State Machines facts for reuse are finite-state machines (automata) and map between words
that are constructed based on different alphabets. Automata are a funda-
mental computational model for computer science; an automaton typically
defines or classifies a set of words. Finite-state transducers are an extension
of automata that also produce outputs—on their states or on transitions be-
tween states; a transducer maps between words from different alphabets.
For our application, the input words describe execution traces of verifica-
tion tasks, that is, the input alphabet consists of control-flow transitions or
program operations; the output words are formed based on the artifacts to
share. Figure 5 illustrates the general working principle of the type of trans-
ducers we propose. By using such transducers as means for sharing artifacts
for reuse, we gain precise control over the sharing process: We can precisely
specify at which points and in which context (path prefix), of the control
flow of a program, certain artifacts should be shared for reuse.

We present abstract transducers as a new type of abstract machines that op-69

Abstract Transducers erate on an abstract input alphabet and an abstract output alphabet, and that
have an inherent notion of abstraction. Both the input alphabet and the out-
put alphabet are described based on abstract domains, which enables differ-
ent forms of abstracting these transducers and allows for different forms of
symbolic representations. An abstract representation of words is essential for
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(1) creating finite abstractions of possibly exponentially many and infinitely
long output words, and (2) abstraction of a transducer allows to increase
the sharing of its outputs, that is, one output becomes applicable to a wider
set of input words. Different abstract domains, with corresponding lattices, 70

Transducers
and Abstract Domainshave been proposed to represent and abstract states and behaviors of sys-

tems and their relationships [80]. An abstract domain provides means to
map between abstract and concrete entities—it defines a Galois connection.
Combining abstract domains and finite-state transducers results in a generic
formalism that (1) provides a unified view on different types of automata and
transducers, and (2) enables new applications in different areas, for example,
in program analysis and verification. 71

Addressed ProblemsAbstract transducers address several problems: (1) In case alphabets con-
72

Alphabets
sist of many, possibly exponentially many, symbols, traditional automata
concepts with single concrete symbols per transitions provide limited effi-
ciency. Automata that employ a symbolic alphabet—where one symbol from
the alphabet denotes a set of concrete symbols—solve this issue [206, 244].
Having a symbolic representation of alphabet symbols makes approaches for
abstracting (or widening) finite-state machines—such as relational abstrac-
tion or alphabet abstraction [58, 217]—applicable. We use abstract domains,
as known from abstract interpretation, for constructing symbolic represen-
tations, and mapping between concrete and symbolic alphabets. This way,
we can choose from a large variety of abstract domains to provide different
symbolic and explicit mechanisms for representing data, for example, binary
decision diagrams [56], predicates [21, 122], or polyhedra [236]. Abstraction
is also essential for output words, which are produced by transducers, and
has not yet received attention by researchers. (2) We allow the transducers 73

ε-Movesto have ε-moves that are annotated with outputs, which can lead to out-
put words of infinite length; here, a symbolic representation of sets of output
words, based on corresponding abstract domains for the output alphabet,
can help to provide a finite representation that represents or even overap-
proximates sets of exponentially many and infinitely long words. By having
a means for abstracting both the input alphabet and the output alphabet,
we can implement further, more elaborated techniques with various applica-
tions. We abstract our transducers to increase the sharing of the output they
emit. An abstract transducer might have been constructed to produce its 74

Means for Sharingoutput for a specific set of input words that can be found in a specific ana-
lysis task, that is, (3) the reuse of the output can be limited to a specific set
of analysis tasks, while the output would also be applicable to a broader
set of tasks. Sharing is increased if a given output word becomes produced
for a larger set of input words—that is, we take advantage of the nonde-
terminism that abstraction introduces [14]. The alphabets from which these
words can be composed of can (in general) consist of arbitrarily complex en-
tities (symbols), for example, tuples of concrete letters as used for multi-track
automata [58]. (4) Nevertheless, also for these complex symbols, a means of
abstraction is needed. Constructing complex alphabets, and words thereof,
based on abstract product domains [79] addresses this issue.

We instantiate abstract transducers as task artifact transducers. A task ar- 75

Task Artifact Transducerstifact transducer is an abstract transducer that maps between a set of control
paths of a given program to analyze and a set of task artifacts, which are
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(a) Yarn Transducer
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(b) Precision Transducer

Figure 6: Two types of abstract transducers are illustrated: A Yarn transducer that
emits code to weave, that is, it corresponds to an aspect in AOP, and a pre-
cision transducer, which is a means to share candidate invariants, or pred-
icates, for (re-)use in predicate abstraction. Please note that the abstract
input word v3 describes a lookahead, that is, it contains a word σ̄ ∈ [[v]]
with |σ̄| > 1. The lookahead matches if the input that remains to be
consumed after word v3 matched starts with alloc($1,$2), where $1
and $2 are parameters that bind the arguments that are given to the func-
tion alloc to internal variables, which are then used to produce the con-
crete output for the abstract output words w1 and w2.

intended to be shared for reuse. We use task artifact transducers as a generic
means to provide information that contributes to an analysis task and its solution.
Task artifact transducers are an artifact sharing model—see Chapter 1 for the
idea of sharing models. These task artifact transducers aid in various analy-76

Application Scenarios sis tasks for that task artifacts, for example, intermediate verification results,
have to be provided at specific points and in specific contexts in the control
flow. We use them both to construct the transition relation of the analysis
task itself, and for constructing a state-space abstraction with a finite num-
ber of abstract states in an efficient and effective manner, that is, for sharing
syntactic and semantic task artifacts. Syntactic task artifacts include, for ex-
ample, components, aspects, or assertions to check; semantic task artifacts
include, for example, function summaries, invariants, or Craig interpolants.

The chapters that follow do instantiate the generic concept of abstract tr-
ansducers and use them as the foundation for concrete analysis techniques:
Yarn transducers and the corresponding Yarn analysis (Chapter 4), preci-
sion transducers and a precision transducer analysis (Chapter 5). Figure. 6

provides examples for these types of transducers. A Yarn transducer can ex-
press aspects—source code, or labeled transition systems (LTSs) in general,77

Yarn Transducer to emit at specific points—to weave into a control-flow graph (or an LTS
in general). Such aspects can, for example, provide the environment model
or a specification. It must be possible to emit code to weave before any of
the transitions that are processed as input: An initial transducer output is
needed. For soundness, operations such as epsilon-elimination, union, or
reduction must keep the semantics—including their temporal relationships,
also concurrency—of these aspects. A precision transducer is annotated with
sets of predicates (candidate invariants) to emit for reuse in different contexts
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of the transition system to construct (for example, a Kripke structure) in an
analysis process. The shared predicates can be used to compute predicate 78

Precision Transducerabstractions (as used for software model checking [20, 122]), the number
of CEGAR [36, 67] iterations can be reduced by abstracting these transdu-
cers, which increases sharing (the same predicate can be emitted in more
contexts). Such precision transducers can also express the predicate sharing
strategy of lazy abstraction [136].

This chapter presents the following contributions:

• We introduce abstract transducers as a generic and unifying type of ab-
stract machines that use abstract word domains to characterize both the
input alphabet and the output alphabet, and that have an inherent no-
tion of abstraction.

• We present techniques for computing finite abstractions of the output of
ε-closures with ε-loops that are possible in transducers that allow ε-
moves. These techniques allow to produce finite outputs from transdu-
cers with outputs that describe exponentially large sets of potentially
infinitely long words, and they aid in eliminating the ε-moves.

• We present an abstract transducer analysis as a generic configurable pro-
gram analysis for running different types of abstract transducers.

• We instantiate abstract transducers as task artifact transducers to have a
generic means to share various artifacts that contribute to different con-
cerns of an analysis task. Task artifact transducers foster sharing and
reuse of components of an analysis task and the intermediate analy-
sis (reasoning) results that are produced while conducting an analysis.

3.1 abstract words

Before we present abstract transducers, we describe concepts to cope with
sets of possibly exponentially many and infinitely long words symbolically.
A word can express temporal or causal relationships between the letters of the
word. We introduce concepts and techniques to deal with sets of words on
an abstract level.

3.1.1 Hierarchy of Characters, Words, and Languages

We now discuss established terms that are relevant in the context of the
terms that we introduce in the following sections. This helps to understand
our terminology choices.

Both the input alphabet and the output alphabet of an abstract transducer
is characterized based on an abstract domain. Abstract domains are a generic
means for abstraction and provide various operations for manipulating and
comparing abstract elements (entities) [80], and for mapping between con- 79

Abstract Domaincrete and abstract elements—see Sect. 2.3.3 for a formal definition.
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Elements from a set Σ can be combined to form (possibly infinitely long)
sequences σ̄ ∈ Σ∞ of those elements. We use the term word to denote se-
quences of elements that can be formed from other words by concatenation.
Words are elements of a free monoid (semigroup) for that concatenation is80

Words and Languages the binary and associative operator, and the empty word (empty sequence)
is the identity (neutral) element. A language is a set of words—and typically
well-formed regarding some production rules.

In a generic abstract domain, one abstract element maps to a set of concrete81

Concrete and Abstract elements, which is reflected by the denotation (concretization) function [[·]].
That is, we can deduce that one abstract word represents a set of concrete
words, and an abstract language maps to a set of concrete languages.82

Temporal A word, as mentioned earlier, establishes a temporal relationship between all
its characters; each character has a semantic denotation on its own, that is, it
maps to a set of entities. The expressiveness of words compared their char-
acters is dual to the expressiveness of linear temporal logic to propositional83

Linear Time logic: A formula in propositional logic (interpreted for a specific universe)
denotes a set of entities, whereas a formula in linear temporal logic denotes
sequences of sets of entities (over time). A set of words, that is, a language,
provides sufficient expressiveness to describe a set of forks in words over84

Branching Time time, for example, to describe a set of concurrent program executions, or for
matching trees or (more general) graphs.

That is, an abstract word, which maps to a set of concrete words, provides85

Abstract Words and Languages an abstraction with sufficient expressiveness to describe sets of linear-time
concerns, and an abstract language, which represents a set of sets of words,
provides expressiveness to describe sets of concerns that are expressible in
branching-time logic. In the following, we restrict the discussion and presen-
tation to abstract words and keep abstract languages for future work.86 "

3.1.2 Abstract Word Domain

The foundation of abstract transducers is formed by the abstract word do-
main, a lattice-based abstract domain [80, 104] for mapping between abstract
words and concrete words.

Definition 1: Abstract Word
An abstract word v ∈ I is a symbolic representation of a set ⊆ Σ∞ of
concrete words over a concrete alphabet Σ, where the set I denotes all
abstract words.
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The relationship between an abstract word and the set of concrete words
it represents, along with a means for abstraction, is defined by the abstract
word domain:

Definition 2: Abstract Word Domain
An abstract word domain is an abstract domain DW = (pw(

...
W),

...
I , [[·]],

〈〈·〉〉) that has abstract words I as its abstract elements. The relation-
ship between abstract words is defined based on the abstract word
lattice

...
I = (I,v,u,t,>,⊥). One abstract word v maps to a set of

concrete words [[v]] ⊆ W, which is defined by the denotation func-
tion [[·]] : I → 2W . The lattice of concrete words

...
W defines the rela-

tionship between elements from the set of concrete words W. Sets of
concrete words are formed based on a powerset lattice pw(

...
W). The

abstraction function 〈〈·〉〉 : 2W → I transforms a given set of concrete
words ̂̄w ⊆ W into an abstract word v, that is, v = 〈〈 ̂̄w〉〉. The abstract
epsilon word vε maps [[vε]] = {ε} to the set with the empty word ε only.
The bottom element ⊥, or also abstract bottom word, of the abstract word
lattice denotes an abstract word that maps to the empty set of concrete
words, that is, [[⊥]] = ∅.

The abstraction mechanism that is provided by the abstract word domain 87

Role of Abstractionis important for (1) constructing finite abstractions of collections with expo-
nentially many or infinitely long words; it can be used to (2) check whether
or not the analysis process ran into a fixed point, and (3) for increasing the
sharing of the output that we produce based on abstract transducers. 88

Word Coverage ProblemA problem that we have to deal with is the word coverage problem, that is,
the question of whether or not a given abstract word va is covered by an-
other abstract word Lb, that is, if va v vb, where v is the inclusion relation
of the abstract word lattice. The actual matching process, that is, the check
for coverage can be implemented based on quotienting: The abstract word 89

Quotientingdomain must provide the possibility to compute left quotients [57] (Brzow-
zowski derivates) to match abstract words.

Definition 3: Left Quotient

The left quotient [57] vw : I×I→ I of an abstract word v ∈ I regarding
an abstract word w ∈ I is defined as vw = 〈〈{s̄ | p̄ ◦ s̄ ∈ [[v]]∧ p̄ ∈ [[w]]}〉〉.
It denotes suffixes of v for that w contains prefixes.

Another fundamental operation when dealing with words is their concate-
nation, which is the binary operator of the free monoid Σ∗ that describes the
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set of words over an alphabet Σ. We extend this operator to abstract words,
and with it to sets of words:

Definition 4: Concatenation
The concatenation of a pair of abstract words v1 ◦ v2 results in an ab-
stract word v◦ that denotes [[v◦]] the concatenation of all concrete finite
words from the abstract word v1 with all (finite and infinite) concrete
words from the abstract word v2. The concatenation σ̄1 ◦ σ̄2 of an in-
finite word σ̄1 with another word σ̄2 results in the infinite word σ̄1.
That is [[v1 ◦ v2]] = {σ̄1 ◦ σ̄2 | σ̄1 ∈ [[v1]]∧ σ̄2 ∈ [[v2]]}.

To deal with abstract words, the notion of head and tail is important:

Definition 5: Head
Given an abstract word v, the function head(v) : I → I denotes
the head of an abstract word: The resulting abstract word represents the
set of prefixes with length one, or formally [[head(v)]] = { h̄ | h̄ ◦ σ̄ ∈
[[v]]∧ |h̄| = 1 }.

Definition 6: Tail
The tail of an abstract word is provided by the function tail(v) : I→ I. A
call v ′ = tail(L) returns a new abstract word v ′ that represents the set
of postfixes that follow after the head. That is, [[tail(v)]] = { σ̄ | h̄ ◦ σ̄ ∈
[[v]]∧ |h̄| = 1 }, which equals tail(v) = vhead(v).

3.1.3 Boolean Algebra

On several occasions, when reasoning about abstract words and their re-90

Boolean Algebra lationship, we need the full expressive power of a Boolean algebra. We
can build on the duality between Boolean algebras, regular languages, and
complemented and distributive lattices, which follows from the Stone dual-
ity [213, 240]. The abstract word lattice is dual to a Boolean algebra if and
only if its meet u and join t are distributive over each other and if each
element in the lattice has a complement within the lattice. One example of
a lattice that is dual to a Boolean algebra is the powerset lattice and another
one the lattice of regular languages [52, 116]. Both lattices can describe sets of
words and can thus be instantiated as an abstract word lattice of an abstract
word domain. Given a lattice of regular expressions, the join t corresponds
to the language union, the meet u to the language intersection, and the op-
erator v describes the language inclusion; the language is complemented
since the complement of a regular expression is still regular.
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Definition 7: Abstract Word Complement

Given an abstract word v, its complement word ¬v defines a set of
concrete words such that ∀v ∈ I : ¬vu v = ⊥ and ∀v ∈ I : ¬vt v = >,
with ∀ā ∈ [[v]] : ∀b̄ ∈ [[¬v]] : ā uc b̄ = ⊥c, where uc and ⊥c are
components of the concrete word lattice.

In case an abstract word lattice is dual to a Boolean algebra, the abstract
words and their composition, can also be described using Boolean opera-
tors, which have their duals in lattice theory: The join t corresponds to the
logical disjunction ∨, the meet u corresponds to the conjunction ∧, and the
complement corresponds to the logical negation ¬. A Boolean formula ϑ is
equivalent to an abstract word v if and only if [[ϑ]] = [[v]].

3.1.4 Parameterized Words

An abstract word can be parameterized with a finite set of parameters β ⊆ B.
A parameterized abstract word can take two roles: It (1) can capture (bind)
values to the parameters during a matching process for a given input, and (2)
values for the arguments can get passed explicitly (and act as a template).
We use the term instantiation to denote the process of deriving an abstract
word v ′ from an abstract word v by assigning values to the parameters,
with [[v ′]] ⊂ [[v]]. Examples for different types of templates words include
invariant templates [166, 238]. The values that have been bound to the param-
eters of an abstract word are provided by the operator bounded : I→ 2B→V.
We can bind values to parameters of an abstract word and derive a new ab-
stract word with the operator bind : I× 2B→V → I. Binding of values to
parameters (variable binding) was extensively studied in the past, for exam-
ple, for rewriting systems [125, 205], and regular expressions [110].
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3.2 abstract transducers

This work introduces abstract transducers, a type of abstract machines that
map between abstract input words and abstract output words. Compared to91

Intermediate Language established transducer concepts, intermediate languages are central (we still
have a notion of accepted language): Informally speaking, the intermediate
input language is the set of words for which the transducer can perform state
transitions, and the set of words that are produced as output along these
transitions is called the intermediate output language.92

Transducers. A transducer is an established concept for transforming a signal s ∈ S of
one type S, to another signal d ∈ D of a type D [1, 209]. The term transduc-
tion denotes the process of transforming between two signals. Transductions
might result in a loss of precision. A transducer can carry information on its
own and encode it into the output signal. Compared to a compiler, a trans-
ducer does not guarantee to preserve the semantics between words of the
input language and words of the output language.93

Prescient To produce the intermediate output language, an abstract transducer oper-
ates prescient, that is, it can take a lookahead into account to decide whether
to conduct a state transition or not—and with it produce an output. Words
from the intermediate output language are intended to be used immediately,
that is, as soon as they are produced while executing the transducer, which
has several implications on the design on the algorithms that execute abstract
transducers and that manipulate them—for example, to eliminate ε-moves.

Both the input language and their output language are abstract and de-
fined based on abstract word domains. One abstract word maps to a set of
concrete words; the abstract domain provides means for mapping between
these representations. This abstraction functionality enriches the possibilities
to compute abstractions (widenings) of abstract transducers, which we use
as a means of increasing the scope of sharing: one output language is mapped
to a larger input language.

Each transition of an abstract transducer is annotated with an abstract
input word and an abstract output word—which corresponds to symbols
of the input alphabet and the output alphabet of traditional transducers.
Consuming and producing abstract words instead of single concrete letters
has several advantages that increase the generality of our approach: (1) it
can be used for lookahead-matching, that is, instead of describing the input
symbol to consume, also a sequence of symbols that must follow can be
described, (2) the abstract epsilon word vε, with [[vε]] = {ε}, can be used to
model the behavior of an ε-NFA [237] with a corresponding ε-closure and
to model automata that do not produce outputs at all, and (3) relying on
abstract words allows to produce and cope with output words of infinite
length, which can be the result of ε-loops.

Formally, we define an abstract transducer as:
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Definition 8: Abstract Transducer
An abstract transducer T ∈ T is defined by following tuple:

T = (Q,Din,Dout, ι0, F, δ)

• Control States Q. The finite set Q defines the control states in
which the transducer can be in.

• Abstract Input Domain Din. The abstract input domain is an abstract
word domain that maps between abstract words I and concrete
words over the concrete input alphabet Σ. It provides a denota-
tion function [[·]]in : I → 2Σ

∗
to map between an abstract word

and a set of concrete (and finite) words. We assume the lattice
of abstract words to be distributive and complemented, that is,
to be dual [240] to a Boolean algebra. An abstract domain with
lattice-valued regular expression [195] would be an example of
an abstract input domain.

• Abstract Output Domain Dout. The abstract output domain is an ab-
stract word domain that defines the abstract output words W

and their relationship. Its denotation function [[·]]out : W → 2Θ
∞

maps between an abstract output word and the corresponding
set of concrete output words over the concrete output alpha-
bet Θ. An instance of an abstract output domain could, for ex-
ample, use antichains [3] for word inclusion checks.

• Initial Transducer State ι0 ∈ 2Q→W. The (non-empty) map ι0
characterizes the initial transducer state. The pairing of control
states with outputs is needed, since already the transitions that
leave the initial state can be ε-moves that are annotated with an
output, and it must be possible to eliminate those moves without
affecting the semantics of the transducer.

• Final Control States F ⊆ Q. The set F defines the final (accept-
ing) control states. This set can be empty, for example, if the
transducer is not intended to operate as a classical acceptor, that
is, if the focus is on the intermediate languages.

• Transition Relation δ ⊆ ∆. The transition relation defines the set
of transducer transitions that are possible between the different
control states. Given a transducer transition (q, v,q ′,w) ∈ δ, with
∆ = Q× I×Q×W, both the abstract transition input word v and
the abstract transition output word w can be the abstract epsilon
word, which is used to implement the functionality of an ε-NFA.
The abstract input word v must never be the abstract bottom
word, that is, [[v]]σ̄ 6= ∅. Having the empty word as output explic-
itly signals that the matching process must stop for the given
abstract input word—nevertheless, there can be another transi-
tion from the same state q that has an intersecting abstract input
word which can cancel out this effect.

The set of all transducers is denoted by T, with the subset TDin×Dout ⊆
T of transducers that transduce from words from an abstract input
domain Din to those from an abstract output domain Dout.
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The set of control states Q of an abstract transducer implicitly contains two94

Special Control States special states that are entered under certain conditions or are used by algo-
rithms that operate on abstract transducers:

Definition 9: Trap State

The trap state or inactivity signaling state is a special control state qπ
that can be entered to signal that the analysis should continue from
that point on, but the transducer will no more contribute to the ana-
lysis process. We assume that this state is implicitly present for each
transducer, that is, qπ ∈ Q and (qπ,>,qπ,wε) ∈ δ, with [[wε]]out = {ε}.

The trap state is entered if no more transitions to move are left, but the
analysis should still continue from that point on. This state is important for
configurations of analyses that track automata or transducers with a non-
stuttering semantics, that is, that do not stay in the same state if no transition
matches. We define another, similar, control state:

Definition 10: Bottom Control State
A bottom control state or unreachable control state is a special control
state q⊥ ∈ Q that has no leaving transitions and is not an accepting
state, that is, (q⊥, ·, ·, ·) 6∈ δ and q⊥ 6∈ F, while we assume this state to
be present for all transducers implicitly in their set of control states Q.

The core of an abstract transducer is its transition relation, which defines
the possible transitions between control states and the output to produce on
these transitions. The result of a state transition is a new transducer state:

Definition 11: Transducer State
A transducer state ι ∈ J, with J = 2Q→W, is map ι : Q → W from
control states to abstract output words. Typically, a transducer state is
the result of running the abstract transducer for a given input, starting
in the initial transducer state ι0 ∈ J.

We formalize abstract transducers as Mealy-style [193] finite-state ma-
chines. Nevertheless, also a Moore-style [196] representation is possible:

Definition 12: Moore-style Abstract Transducer

A Moore-style abstract transducer is an abstract transducer that emits
its outputs not on transitions between control states but active control
states. That is, it is defined by the tuple

TMoore = (Q,Din,Dout,Q0, F, δ, λ).

This form of abstract transducer has a control transition relation δ ⊆
Q× I×Q and uses a state-output labeling function λ : Q → W to
map abstract output words to control states. Furthermore, this style
of abstract transducer has a set Q0 of initial control states.
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A Moore-style abstract transducer allows to represent an abstract reachabil-
ity graph easily. For this work, we prefer the Mealy-style formalization of
abstract transducers because they require fewer states and are fit well for
sharing syntactic task artifacts (program fragments for weaving).

After we have defined the components of an abstract transducer, we con-
tinue in following subsections with the description of their semantics.

3.2.1 Lookaheads and Graph Matching

Annotating a transition of an abstract transducer with an abstract input word
that maps to at least one concrete word that is longer than one letter, spec-
ifies a lookahead. The possibility of conducting lookaheads is essential if a
transition should produce a particular output only if the remaining word to
process has a specific word as its prefix. Consider the following example:

Example 3. Assume that the transducer is in control state q ∈ Q. Given a con-
crete input word σ̄ = 〈σ1, . . . ,σn〉 ∈ Σ∗, a transducer transition (q, v,q ′,w) ∈
δ, with [[v]]in = {〈x, ‘e‘, ‘d‘〉 | x ∈ Σ} will only match if σ2 = ‘e‘ ∧ σ3 = ‘d‘ and
will then produce the output w.

We characterize the lookahead of a transducer transition by a number:

Definition 13: Transition Lookahead
The lookahead `(τ) ∈ N0 of a transition τ = (q, v, ·, ·) ∈ δ is `(τ) = 0 if
the input language is either the abstract epsilon word or the abstract
bottom word, otherwise it is defined as `(τ) = max {|σ̄| | σ̄ ∈ [[v]]in}− 1.

The lookahead of an abstract transducer is defined by the maximal looka-
head that is conducted on one of its transitions, that is:

Definition 14: Transducer Lookahead
The lookahead of an abstract transducer `(T) ∈ N0 is the maximal looka-
head of any of its transition. That is, `(T) = max {`(τ) | τ ∈ δ}, where δ
is the transition relation of transducer T.

One can execute an abstract transducer on a rooted and directed graph
instead of a particular input word—one word corresponds to a list or a
sequence of letters. Each edge of the graph that we match is labeled with a
letter. Words are formed by concatenating all letters on the graph edges that
get traversed during the matching process, starting from the root node of the
graph. Figure 9 provides an intuition of the matching process. In this work,

Lookahead 2
Lookahead 1

To be consumed

Consumed Input
Concatenation

Figure 7: Matching

we restrict the graph matching process to disjunctive tree matching:

Definition 15: Disjunctive Tree Matching

A tree matching procedure is called to be disjunctive if not several
input branches that follow from a particular point on have to satisfy
specific criteria. That is, if only one of the input words that follow (on
that the lookahead is conducted), must satisfy a given criterion.
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To allow for matching based on the full expressiveness of regular tree ex-
pressions (several of the input words might have to satisfy a specific crite-
rion), the abstract transducer’s abstract input domain has to be lifted from95

Role of Abstract Languages an abstract word domain to an abstract language domain—see Sect. 3.1.1.
We keep abstract transducers with abstract input domains based on abstract
languages for future work.

3.2.2 Epsilon Closure

An established practice [143, 237] in automata theory and its application is
to use automata with transitions that are annotated with an empty-word
symbol ε. This was, first and foremost, introduced as a convenience feature
to describe automata and its transition relation in a more concise fashion.
Abstract transducers allow to annotate transitions with the abstract epsilon
word vε to provide similar semantics and convenience:

Definition 16: ε-Move
An ε-move (or ε-transition) is an automaton transition (or transducer
transition) (q, v,q ′,w) ∈ δ that is annotated with the abstract epsilon
word vε as its input, that is, [[v]]in = [[vε]]in = {ε}.

Some algorithms might not be able to deal with transducers that have ε-
moves—or they might be more sophisticated in their presence—but only
with those transducers from that all ε-moves were eliminated. We define
abstract transducers without ε-moves as:

Definition 17: Input-ε-Free

An abstract transducer is said to be input-ε-free if it does not have any
transition based on an ε-move, that is, (·, vε, ·, ·) 6∈ δ, with [[vε]]in = {ε}.

The presence of ε-moves can lead to loops thereof, which is vital for express-
ing complex outputs, for example, to describe the control-flow of Turing-
complete programs—assuming that each move emits a program operation
to conduct as output.

Definition 18: ε-Loop

An ε-loop is any sequence of ε-moves that starts in a control state qk
and could include this control state qk infinitely often in such a se-
quence. More formally, an ε-loop is a sequence τ̄ = 〈τ1, . . . , τn〉 ∈ ∆∞
of ε-moves that is well-founded in the transition relation δ and there
exists a transducer transition τi = (q, ·, ·, ·) ∈ τ̄ for which the source
state q is precisely the destination state q ′ of a transducer transi-
tion τj = (·, ·,q ′, ·) ∈ τ̄, with i 6 j.

From the definition of ε-moves follows the definition of the ε-closure [237].
Intuitively speaking the ε-closure of a control state q is the set of control
states that become instantly and simultaneously (parallel) active if state q
becomes active.
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Definition 19: Epsilon Closure

The epsilon closure epsclosure : Q → 2Q of a state q ∈ Q is the
set epsclosure(q) ⊆ Q of states that can get reached transitively from
state q by only following ε-moves [237]. The bottom state q⊥ is added
if the epsilon closure includes an ε-loop from which no control state
is reachable with no ε-move leaving.

The transition relation of an abstract transducer can contain se-
quences {(q1, vε,q2,w1), (q2, vε,q3,w2)} ⊆ δ of ε-moves but not each con-
trol state that is reached within such a sequence might have non-ε-moves
leaving in the transition relation. We therefore introduce the notion of clo-
sure termination states:

Definition 20: Closure Termination States
The closure termination states closureterm : Q → 2Q of a given state q
are both the states (1) in the epsilon closure epsclosure(q) from which
no ε-move leaves and (2) states within the closure that are accepting,
that is, closureterm(q) = {q ′ | q ′ ∈ epsclosure(q)∧ (q ′, vε, ·, ·) 6∈ δ} ∪
(epsclosure(q)∩ F).

Each transition between states from an epsilon closure can be mapped to a
set of closure termination states:

Definition 21: Termination State Mapping

The termination state mapping is a map ∆Ω : ∆→ 2Q that maps a given
transducer transition to the set of closure termination states that are
reachable. Given a control state q ∈ Q, the result is the empty set ∅ if
no ε-move leaves state q; it is the bottom state q⊥ if there is not any
other termination state.

Since also each transition within an epsilon closure can produce an output,
we introduce the notion of concrete language on termination. This notion re-
flects with which output words the different closure termination states can
be reached:

Definition 22: Concrete Language on Termination

The concrete language on termination Ω : Q ×Q → 2Θ
∞

for a given
pair (q,qΩ) describes the concrete output language (a set of concrete
words) that can be produced starting in control state q and that termi-
nates with a closure termination state qΩ ∈ closureterm(q).
More formally, let τ̂ = {τ̄1, . . .} ⊆ ∆∞ be the set of all well-founded se-
quences of transducer transitions between control state q and the ter-
mination state qΩ, with τ̄i = 〈τ1, . . .〉 and τi = (q, vi,q ′,wi) ∈ δ. The
concrete output language [[τ̄i]] of a sequence τ̄i is the concatenation
[[w1]]out ◦ . . . of the concretizations of all abstract output words wi that
are emitted along it. That is, the concrete output language Ω(q,qΩ)

is the union
⋃
τ̄i∈τ̂ [[τ̄i]].
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Definition 23: Concrete Closure Language

The concrete closure language Ω(q) ⊆ Θ∞ of a given control state q and
its ε-closure is the set of concrete output words that is produced while
making transitions along the ε-moves between states in the closure.
More precisely, it is the join of concrete languages on termination,
that is, Ω(q) =

⋃
{σ̄ ∈ Ω(q,qΩ) | qΩ ∈ closureterm(q)}.

In our applications of abstract transducers, we use the (anonymous) states
and transitions in the epsilon closure as a tool for expressing relational out-
puts. Please note, that also ε-moves that lead to a dead-end are relevant and
must not be eliminated—what is done for some applications [87]—because the
output might be relevant for the analysis task, and the soundness of the
produced result, for which the transducer is executed.

Example 4. Figure 8 illustrates an example transducer: The ε-closure of con-
trol state q0 is the set epsclosure(q0) = {q0,q1,q2,q3,q4,q⊥}, for state q2, the
closure epsclosure(q2) = {q2} does not contain additional states. State q0 has
the set of closure termination states closureterm(q0) = {q2,q⊥}, and state q1
has closureterm(q1) = {q⊥}, that is, no other termination state is reachable.
The transitions between states {q1,q3,q4} form an ε-loop.

q0

q1

q2

q3

q4

q5

/w0

vε/wa

vε/wc

vε/wb

vε/wd

vε/wf

v1/we

Figure 8: With ε-loop

Given a control state q ∈ Q, the semantics of ε-moves implies that with
reaching state q, actually all states in Qt = closureterm(q) are reached im-
mediately. That is, also all output on the transitions from q to a state in Qt
is produced immediately, resulting in—possibly exponentially many and in-
finitely long—words ⊆ Θ∞ over the output alphabet Θ.

3.2.3 Output Closure

Previous section describes the epsilon closure of abstract transducers; in
contrast to established transducer concepts, we also address ε-moves that
are annotated with non-empty outputs, and use them as tool to express
complex output languages, with possibly exponentially many and infinitely
long words, in a convenient fashion. When executing or reducing (mini-
mizing) abstract transducers, means for collecting, aggregating, and possi-
bly abstracting the output on these transitions are needed. Given a con-
trol state q ∈ Q, the goal of this summarization process is to provide
an abstract output word wΩ ∈ W for each of its closure termination
states qΩ ∈ closureterm(q) that overapproximates the concrete closure lan-
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guage, that is, Ω(q,qΩ) ⊆ [[wΩ]]out—which can lead to a loss of information.
The computation of this closure is done in a corresponding operator:

Definition 24: Abstract Output Closure

The abstract output closure of a given control state q ∈ Q is a finite
overapproximation of the concrete closure language of each of its
closure termination states; it is a map of closure termination states
of q to abstract output words, which summarizes the correspond-
ing closure output languages: abstclosure : (Q ×W) → 2Q→W. A
call abstclosure(q,w0), with an initial abstract output word w0, returns
a map {(qt,wt) | qt ∈ closureterm(q)∧ [[wt]]out ⊆ [[w0]]out ◦Ω(q,qt)}.

We extend the abstract output closure operator abstclosure to sets:

Definition 25: Abstract Output Closure

The abstract output closure of a given set of transducer states
̂abstclosure : 2Q×W → 2Q→W is defined as ̂abstclosure(S) =⊔
→
⋃

{(qΩ,wΩ) | (q,w0) ∈ S∧ (qΩ,wΩ) ∈ abstclosure(q,w0)}.

Actual implementations of an abstract output closure operator can be pro-
vided, for example, based on abstract interpretation, or based on techniques
from automata theory. Even transducers can be used [218] to compute ab-
stractions of languages, in our case, the concrete output languages that are
produced in the ε-closure. We give two examples of implementations:

Joining Closure. The first abstract output closure operator abstclosuret joins
all abstract output words that can be found on transitions in the epsilon clo-
sure from control state q that are mapped to the same closure termination
state. Let us assume that there is an operation closuretrans : Q×Q → 2∆

that, given a pair of control states q,qΩ ∈ Q, returns all transitions from
the transition relation δ that are in the epsilon closure epsclosure(q) and
are mapped to a closure termination state qΩ. Then, we can define the
closure operator as follows: abstclosuret(q,w0) = {(qΩ,w0 tout

⊔
out{w |

(·, ·, ·,w) ∈ closuretrans(q,qΩ)}) | qΩ ∈ closureterm(q)}. This operator pro-
duces an overapproximation of the concrete output language. The resulting
abstraction does neither preserve information on the flow nor is path infor-
mation kept.

Regular Closure. Another example of an output closure operator
is abstclosure∞. Here, we assume that the abstract output words can be de-
scribed based on an abstract domain of ∞-regular languages [185], with a
corresponding lattice thereof. Rules for transforming automata into regular
expressions can be applied [185]: The result for the transducer in Fig. 8 is
abstclosure∞(q0,w0) = {(q2,w0 ◦wb), (q⊥,w0 ◦wa ◦ (wc ◦wf ◦wd)ω)}. This
type of output closure is lossless. Nevertheless, not all applications require
this level of detail.



44 abstract transducers

3.2.4 Runs

We now define runs of abstract transducers and illustrate how they are con-
ducted for given inputs. All runs of an abstract transducer start from the
initial transducer state and follow the transition relation:

Definition 26: Abstract Transducer Run
A run of an abstract transducer on a concrete input word σ̄ = 〈σ1, . . . ,
σn〉 ∈ Σ∗ and a lookahead σ̂ ⊆ Σ∗ is a sequence of transducer state
transitions ι0

v1/w1−−−−→ . . . vn/wn−−−−→ιn, also denoted by 〈ι0, . . . , ιn〉 in case
the actual transducer transitions are irrelevant for the discussion. A
run always starts in the initial transducer state ι0 ∈ J, is well-founded
in the transition relation δ, and all transitions along the input match,
that is, the quotienting (〈〈{〈σi, . . . ,σn〉} ◦ σ̂〉〉in)vi 6= ⊥ does not result
in the abstract bottom word.

Before we continue to define feasible and accepting runs of an abstract trans-
ducer, we define the abstract output of a run:

Definition 27: Abstract Run Output

The abstract output of a run ι0
v1/w1−−−−→ . . . vn/wn−−−−→ιn is the concatenation

of the subsequent abstract output words w◦ = w0 ◦w1 ◦ . . . ◦wn. The
abstract output word w0 is one abstract output word from the initial
transducer state, that is, there exists a pair (·,w0) ∈ ι0.

The output of an abstract transducer run is essential for the definition of
feasible transducer runs:

Definition 28: Feasible Run
A run is called feasible if and only if its abstract output w◦ is not the
bottom element ⊥, that is, if and only if [[w◦]]out 6= ∅. The set of all
concrete inputs (with lookaheads) that result in a feasible run on an
abstract transducer T defines the function feasibleT : Σ∗ × 2Σ∗ → B.

Abstract transducers can also operate as acceptors and define a set of inputs
to be accepted. We first define the notion of an accepting run and define the
accepted input language later:

Definition 29: Accepting Run

A run 〈ι0, . . . , ιn〉 is called to be accepting if it is feasible and its last
transducer state contains an accepting (final) control state, that is, if
and only if (qn,wn) ∈ ιn, with qn ∈ F and wn 6= ⊥.
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In general, an abstract transducer is a nondeterministic automaton, never-
theless it can be deterministic if it satisfies following criterion:

Definition 30: Deterministic Abstract Transducer
We call an abstract transducer deterministic if and only if it does not
allow a run ῑ = 〈ι0, . . . ιn〉 with a transducer state ιi ∈ ῑ that consists
of more than one element, that is, ∀ιi ∈ ῑ : |ιi| 6 1.

We now continue with an operational perspective on the runs of an ab-
stract transducer. Given a concrete input word σ̄ ∈ Σ∗ based on the concrete
input alphabet Σ and a set σ̂ ⊆ Σ∗ of words that can follow to this word (used
for the lookahead), which output does the transducer produce and does pro-
cessing the word terminate in an accepting control state? Since a concrete
input word can be represented as an abstract word, and we consider this the
more general case, we describe runs based on abstract input words: A given
concrete input word σ̄ ∈ Σ∗ can be transformed to an abstract input word
by applying the abstraction operator such that we end up in an abstract
word v = 〈〈{σ̄}〉〉in, with [[v]]in = {σ̄}.

Definition 31: Run
The function runT : Q×W× I× I → 2Q→W conducts a run starting
from a control state q ∈ Q, an initial abstract output word w ∈W, an
abstract input word v ∈ I, with v 6= ⊥, and an abstract word v` ∈ I

that describes the lookahead that must be satisfied:

runT(q,w, v, v`) =



{ (q,w) } if v = vε⊔
→

⋃
{ runT(q ′′,w ◦w ′′, tail(v), v`) |

(q, vτ,q ′,w ′) ∈ δ
∧ (q ′′,w ′′) ∈ abstclosure(q ′,w ′)

∧ (v ◦ v`)vτ 6= ⊥

∧ (head(v))head(vτ) 6= ⊥ } otherwise

The function run terminates its recursion if the abstract input word is
the bottom element. The recursive call to run is done for the tail of the
abstract input word—which ensures termination—in case a transition
that leaves the given control state q matched the input.

We extend this function to r̂unT : 2Q→W× I× I→ 2Q→W, which starts from
a transducer state, and we define it as follows:

r̂unT(ι, v, v`) =
⊔
→

⋃
(q,w)∈ι

runT(q,w, v, v`)

The transducer state to start from is omitted if it is the abstract transducer‘s
initial transducer state ι0, that is, r̂unT(v, v`) = r̂unT(ι0, v, v`). Given a con- 96

Runs on Concrete Inputscrete input word σ̄ ∈ Σ∗ and a corresponding set of concrete words σ̂ ⊆ Σ∗
for the lookahead, we write r̂unT(σ̄, σ̂) as an abbreviation for r̂unT(ι0, σ̄, σ̂),
which is as an abbreviation for r̂unT(ι0, 〈〈{σ̄}〉〉in, 〈〈σ̂〉〉in).
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3.2.5 Languages and Transductions

Contrary to other types of finite state transducers [88] our abstract trans-
ducers distinguish between two types of input languages: the intermediate
input language and the accepted input language.

Definition 32: Intermediate Input Language

The intermediate input language Lin(T) ⊆ Σ∗ × 2Σ
∗

of an abstract trans-
ducer T is the set of concrete input words for that the transducer can
conduct feasible runs starting from the initial transducer state ι0:

Lin(T) = { (σ̄, σ̂) | feasibleT(σ̄, σ̂)∧ σ̄ ∈ Σ∗ ∧ σ̂ ⊆ Σ∗ }.

It follows that each prefix σ̄p � σ̄ of each word σ̄ ∈ Lin(T) is also
element of the intermediate input language, that is, σ̄p ∈ Lin(T).

The accepted input language reflects the established notion of input lan-
guage, which is based on the set of words that can reach a final control state:

Definition 33: Accepted Input Language

The accepted input language Lacc ⊆ Lin is the subset of the intermediate
input language for which an accepting control state q ∈ F is reached:

Lacc(T) = { (σ̄, σ̂) ∈ Lin(T) | (q, ·) ∈ r̂unT(σ̄, σ̂)∧ q ∈ F }.

Beside the accepted input language, another characteristic of an abstract tr-
ansducer is its set of transductions and its set of accepting transductions:

Definition 34: Transductions
The set of transductions T(T) ⊆ Σ∗ × 2Σ∗ × 2Θ∞ of an abstract transdu-
cer T characterizes both its concrete input language and the outputs
that are produced for them. One element (σ̄, Σ̄`, Θ̄) ∈ T(T) from this
set is a tuple that consists of a word prefix σ̄ that is consumed by a run
of the transducer, a set of concrete words Θ̄ ⊆ Σ∗ to conduct the looka-
head on and that remains to be consumed by the next transitions of
the transducer, and the set of concrete output words Θ̄ ⊆ Θ∞ that are
emitted with the consumption of word σ̄—see the definition of r̂unT
for more details:

T(T) =
⋃

{ (σ̄, σ̂, [[w]]out) | (σ̄, σ̂) ∈ Lin(T)

∧ (q,w) ∈ r̂unT(σ̄, σ̂) }.
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Definition 35: Accepting Transductions

The set of accepting transductions Tacc(T) ⊆ T(T) is the subset of the
transductions of a given abstract transducer T that are produced by
accepting runs:

T(T) =
⋃

{ (σ̄, σ̂, [[w]]out) | (σ̄, σ̂) ∈ Lin(T)

∧ (q,w) ∈ r̂unT(σ̄, σ̂)

∧ q ∈ F }.

The number of accepting transductions is greater or equal than the
number of accepted input words, that is, |Lacc(T)| 6 |Tacc(T)|, because
there can be independent concrete output languages for one concrete
input (σ̄, σ̂) ∈ Σ∗ × 2Σ∗ .

In combination, the set of transductions and the set of accepted transduc-
tions determine if two abstract transducers are equivalent to each other:

Definition 36: Equality

Two abstract transducers T1,T2 ∈ T are called equivalent, T1 ≡ T2,
if and only if both have the same set of transductions and the same
set of accepting transductions, that is, if and only if T(T1) = T(T2)
and Tacc(T1) = Tacc(T2).

Based on the notion of equality, we can define different operations, for ex-
ample, reduction or ε-elimination. We start by defining a more fundamental
one: The union of two abstract transducers. The union is constructed similar
to the union of ε-NFAs, with the exception that no ε-moves are added; we
take advantage of the fact that the initial transducer state is a set:

Definition 37: Union
Given two abstract transducers T1,T2 ∈ TDin×Dout that both have
the same abstract input domain Din and the same abstract output
domain Dout, such that T1 = (Q1,Din,Dout, ι01, F1, δ1) and T2 =

(Q2,Din,Dout, ι02, F2, δ2). The union ∪ : T× T → T of two abstract
transducers results in a new abstract transducer T∪ = T1 ∪ T2 that
maintains exactly both the union of the set of transductions and
the set of accepting transductions, that is, T(T∪) = T(T1) ∪ T(T2)
and Tacc(T∪) = Tacc(T1) ∪ Tacc(T2). We define the union as T∪ =

∪(T1,T2) = (Q1 ∪Q2,Din,Dout, ι01 ∪ ι02, F1 ∪ F2, δ1 ∪ δ2).

3.2.6 Elimination of ε-Moves

Since ε-moves are considered to be a convenience feature, eliminating them
without losing any output must be possible—that is, without altering the
semantics of the transducer. The ε-closure can allow sequences of state tran-
sitions of infinite length, that is, a means to encode this infinite information
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Algorithm 2 elim(Tε)

Input: Abstract transducer Tε = (Q,Din,Dout, ι0, F, δ) ∈ T

Output: Abstract transducer T ∈ T, with Tε ≡ T
// Sentinel transitions for the initial transducer state, with vε 6≡ vstart

1: δε = δ∪ { (qs, vstart,q,w) | (q,w) ∈ ι0 }

// Shortcut ε-moves to their termination states
2: δ ′ = { (q, v,q ′′,w ′′) | τ = (q, v,q ′,w) ∈ δε

∧ v 6= vε ∧ (q ′′,w ′′) ∈ abstclosure({(q ′,w)}) }
// Reconstruct a new initial transducer state

3: ι0 ′ = { (q,w) | (·, v,q,w) ∈ δ∧ v = vstart }

// Reassemble the components to a new abstract transducer
4: return (Q,Din,Dout, ι0 ′, F, δ ′)

into one (finite) output symbol is needed. An algorithm for computing ab-
stract output closures provides such a means.

For the design of an ε-elimination algorithm, it is important to note that all
states in the ε-closure of a control state become active when it is entered. This
implies that then also the output that is produced along with these ε-moves
must be emitted: Existing algorithms for ε-elimination are not applicable to
abstract transducers. An algorithm for eliminating ε-moves from an abstract
transducer Tε must ensure that the resulting transducer T is equivalent Tε ≡
T. Please note that stuttering transitions must be made explicit and must be
considered to allow a sound elimination of ε-moves.

Algorithm 2 is our approach for eliminating ε-moves from an abstract tr-
ansducer. The algorithm constructs a new transition relation, from which all
ε-moves are removed by adding shortcut transition to the closure termina-
tion states and concatenating the corresponding closure output language.

Proposition 1. Given an abstract transducer Tε, all its ε-moves can be elimi-
nated without affecting its semantics, that is, without affecting either the set
of transductions or the set of accepting transductions. The abstract transdu-
cer Tε can be transformed into an input-ε-free transducer T, with Tε ≡ T.

Proof. We prove the proposition by providing an algorithm that conducts
this transformation while maintaining the set of transductions and the set of
accepted transductions: Given an abstract transducer Tε that has ε-moves,
Algorithm 2—which we implicitly parameterize with the output closure op-
erator abstclosure∞—produces an abstract transducer T that is input-ε-free
and satisfies T(Tε) = T(T) and Tacc(Tε) = Tacc(T). (1) The transition rela-
tion δ ′, and with it the resulting transducer T, is input-ε-free because only
non-ε-moves are added to the transition relation. (2) The set of closure termi-
nation states, for which abstclosure∞ provides a pairing with the correspond-
ing output closure language, contains all accepting states (Definition 3.2.2),
that is, all moves to accepting states are maintained, and with it the set of
accepting transductions. (3) The set of transductions is maintained: The out-
put from the epsilon closures, that is, the closure termination languages, are
concatenated to the transitions to the closure termination states.

q⊥

q2 q5

Start/w∗

Start/wb
v1/we

Figure 9: Without ε-moves
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Example 5. Given the transducer in Fig. 8, Algorithm 2 proceeds
as follows: First, we extend the transition relation with sentinels and
get δε = {(q0, vε,q1,wa), (q1, vε,q3,wc), (q3, vε,q4,wf), (q4, vε,q1,wd),
(q0, vε,q2,wb), (q2, vε,q5,we), (qs, vstart,q0,w0)}. In the next step, ε-moves
are left out by adding transitions to the closure termination states and con-
catenating the corresponding closure output languages; the result is a new
transition relation δ ′ = {(qs, vstart,q⊥,w∗), (qs, vstart,q2,wb), (q2, v1,q5,we)},
with w∗ = wa ◦ (wc ◦ wf ◦ wd)ω. Then, the initial transducer state is re-
constructed from the relation δ ′ and we get ι0 ′ = {(q⊥,w∗), (q2,wb)}. Finally,
the transducer is re-assembled and we get the transducer shown in Fig. 9.

3.2.7 Determinization

A typical operation when dealing with finite state machines is the transfor-
mation of a nondeterministic automaton into a deterministic one. This is
not possible for abstract transducers in general: The control-flow structure
of the state-transitions within the ε-closure describes different information
flows—that is, sets of output words that reach different closure termination
states—as its semantics, which is not the case for classical automata and tr-
ansducers. For example, a state-space splitting might be intended based on
the information of the emitted output—different outputs for the same in-
put that lead to different control states. That is, different closure termination
states, which can be accepting states, can have associated different closure
termination languages; this separation must be maintained—which is also
reflected in our definition of transducer equivalence.

Proposition 2. Not every nondeterministic abstract transducer T can be trans-
formed into an equivalent deterministic transducer Td, with T ≡ Td.

Proof. We prove the proposition by counterexample—assuming that all ab-
stract transducers can be determinized. Given an abstract transducer T
with the set of initial transducer states ι0 = {(q1,w1), (q2,w2)} and the
relation δ = {(q1, v1,q3,w3), (q2, v2,q4,w4)}, with 〈a〉 ∈ [[v1]]in and 〈b〉 ∈
[[v2]]in, it has the set of transductions T(T) = {(ε, {ε}, [[w1]]out), (ε, {ε}, [[w2]]out),
(〈a〉, {ε}, [[w1 ◦w3]]out), (〈b〉, {ε}, [[w2 ◦w4]]out)}. A determinized version would
have an initial transducer state with only one element, that is, the ini-
tial transducer state can be either ι01 = {(q0,w1 t w2)} of a transdu-
cer T1 or ι02 = {(q0, ε)} of a transducer T2. Both are wrong since tr-
ansducer T intended an initial state space splitting with different out-
put languages. Transducer T2 does not have the transduction (ε, {ε}, [[w1 t
w2]]out) ∈ T(T2). The transductions of T1 are not equal to those of T, since
T(T1) = {(ε, {ε}, [[w1 tw2]]out), (〈a〉, {ε}, [[(w1 tw2) ◦w3]]out), (〈b〉, {ε}, [[(w1 t
w2) ◦w4]]out)} 6= T(T).

Proposition 3. An abstract transducer needs a set of initial transducer states
to allow for an elimination of ε-moves. That is, a set of initial transducer
states with |ι0| = 1 is not sufficient for all ε-input-free transducers while
maintaining their semantics.
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q0 q1 q2

/w0 v1/w1

¬v1/ε

v2/w2

¬v2/w1

(a)

q0 q2

/w0

v1/w1

¬v1/ε

¬v2/w1

v2/w2

(b)

q0 q2

/w0

>/w1

v2/w2

(c)

q0

/w0

>/(w1 tw2)

(d)

Figure 10: Examples for different types of abstractions. Abstractions are applied
step-wise from left to right: (a) we start with the unabstracted transducer,
(b) we conduct a state abstraction by merging states q0 and q1, (c) we
abstract the input alphabet, (d) we abstract the output alphabet.

Proof. Implication of the proof for proposition 2.

3.3 transducer abstraction

Abstracting (widening) an abstract transducer is a means to provide its out-
put for a larger set of input words, that is, a mechanism to increase sharing
and with it the potential of reuse. That is, we explicitly rely on the fact that
abstracting an automaton can widen its input language, and introduces non-
determinism [14]. We discuss different types of abstractions that are relevant
for this work—Fig. 10 provides examples for abstractions. Approaches for
abstracting classical automata and symbolic automata have been presented
in the past [58, 217], which can also be adopted for abstract transducers.

Given an abstract transducer T, the abstraction operator 〈〈·〉〉π : T → T

with widening—with the abstraction precision π as an implicit parameter
that determines the level of abstraction to achieve—has to guarantee that
the resulting abstraction overapproximates both the set of transductions and
the set of accepting transductions:

Definition 38: Overapproximation

An abstract transducer T1 overapproximates another abstract transdu-
cer T2, which we denote by T2 |= T1, if and only if T1 overapproxi-
mates both the set of transductions and the set of accepting transduc-
tions of transducer T2, that is, T2 |= T1 if and only if ∀(σ̄2, σ̂2, θ̂2) ∈
Tacc(T2) : ∃(σ̄1, σ̂1, θ̂1) ∈ Tacc(T1) : σ̄1 = σ̄2 ∧ σ̂1 = σ̂2 ∧ θ̂2 ⊆C θ̂1
and ∀(σ̄2, σ̂2, θ̂2) ∈ T(T2) : ∃(σ̄1, σ̂1, θ̂1) ∈ T(T1) : σ̄1 = σ̄2 ∧ σ̂1 =

σ̂2 ∧ θ̂2 ⊆C θ̂1. The relation ⊆C denotes the inclusion relation of the
concrete language lattice of the output language domain.

The classical approach to abstract an automaton is state abstraction, that is,
to merge several control states into one [212]. Please note that this approach
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Algorithm 3 qmerge(T,Qm)

Input: Abstract transducer T = (Q,Din,Dout, ι0, F, δ),
set Qm of states to merge

Output: Abstract transducer T ′, with T |= T ′

Variables: Control state qm that is not in the set Q of transducer T
// Define the abstraction α

1: α = { (q,q ′) | q ∈ Q∧ q ′ = qm ifq ∈ Qm elseq ′ = q }

// New set of control states
2: Q ′ = (Q \Qm)∪ {qm}

// New set of accepting states
3: F ′ = { α(q) | q ∈ F }

// New initial transducer state
4: ι0 ′ =

⊔
→{ (α(q),M) | (q,M) ∈ ι0 }

// New transition relation
5: δ ′ = { (α(q), v,α(q ′),w) | (q, v,q ′,w) ∈ δ }

// Compose the resulting transducer
6: return (Q ′,Din,Dout, ι0 ′, F ′, δ ′)

can also be used for abstracting output closures, which is the case if control
states within an ε-closure are merged:

Definition 39: Control State Merge

A state merge for a given abstract transducer T is conducted by merg-
ing a set of its control states Qm ⊆ Q into one new state qm, and
results in a new abstract transducer Tm. We denote this process by
the operator qmerge : T× 2Q → T, that is, Tm = qmerge(T,Qm). The
actual definition of operator qmerge is given by Algorithm 3.

Proposition 4. Given an abstract transducer T, a transformation T ′ =

qmerge(T,Qm) results in a new abstract transducer T ′, with T |= T ′, that
is, transducer T ′ overapproximates transducer T.

Proof. We have to show that (1) each input (σ̄, σ̂) ∈ Σ∗ × 2Σ∗ that leads to a
feasible run ι = r̂unT(σ̄, σ̂) on T also leads to a feasible run ι ′ = r̂unT ′(σ̄, σ̂)
on transducer T ′, and for each element (q,w) ∈ ι there exists an element
(q ′,w ′) ∈ ι ′, with [[w]] ⊆ [[w ′]]. Furthermore, we have to show that (2) each
input that leads to an accepting run on transducer T also lead to an accept-
ing run on transducer T ′. Given a run ῑ = 〈ι0, . . . , ιn〉 that is feasible on
transducer T for a given input (σ̄, σ̂) ∈ Σ∗ × 2Σ∗ . The same input will also
produce a feasible run ῑ ′ = 〈ι0 ′, . . . , ι ′n〉 on transducer T ′. For each ιi ∈ ῑ
with (q1, ·) ∈ ιi or (q2, ·) ∈ ιi, the corresponding transducer state ι ′i ∈ ῑ ′
will contain the merged control state qm with a corresponding abstract out-
put word, that is, (qm,w) ∈ ι ′i. The definition of qmerge ensures that all
transitions from either control state q1 or q2 are also possible from control
state qm: All transitions in δ from or to a control state in Qm are replaced
by corresponding transitions from or to control state qm. In case a control
state to merge is included in the initial transducer state ι0, it is replaced by
control state qm in the initial transducer state ι0 ′ of transducer T ′. The non-
deterministic nature of abstract transducers ensures that all transitions that
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match will also be taken: One control state can have a set of successor states
for a given input. The transformation of the set of accepting control states F
to the set F ′ ensures that if one of the states to merge was an accepting state,
also state qm will become an accepting state; states in F that are not included
inQm stay accepting states in F ′. That is, all transitions—and runs on them—
that were possible from or to control states in the set Qm are still possible
(lead to feasible or accepting runs) in the new abstract transducer T ′, but
now start or end in control state qm.

Please note that abstracting abstract transducers by merging control states
does neither affect the number of transitions nor their labeling—both the
input symbols and the output symbols on transitions stay the same, but
output languages of epsilon closures can change.

Definition 40: State Abstraction
The state abstraction 〈〈T〉〉πQ of an abstract transducer T results in a
new abstract transducer T ′ that is computed based on an abstraction
precision π, with T |= T ′. The abstraction precision determines which
states to keep separated and which to combine into one state—which
represents the corresponding equivalence class. The abstraction preci-
sion π = 〈Q1, . . . ,Qn〉 defines a list of disjoint sets of control states
that should be combined. A state abstraction is conducted as follows:

〈〈T〉〉πQ =

{
qmerge(T,Q1) if π = 〈Q1〉

qmerge(〈〈T〉〉〈Q2,...,Qn〉
Q ,Q1) if |π| > 1 and π = 〈Q1,Q2, . . .〉

An abstraction approach that influences the abstract input words of the tran-
sitions is input alphabet abstraction, which is the process of changing the
abstract input word v of a transducer transition τ = (q, v,q ′,w) ∈ δ to an
new abstract input word v ′, with [[v]]in ⊆ [[v ′]]in:

Definition 41: Input Alphabet Abstraction

An input alphabet abstraction 〈〈T〉〉πI of an abstract transducer T results
in a new abstract transducer where some of the abstract input words
of its control transitions were widened based on the given abstraction
precision π ∈ ΠI. The abstraction precision π for input alphabet ab-
straction maps an abstraction precision πin that is applicable to the
abstract input domain to each of the transducer’s control transitions,
that is, it is a left-total function π : ∆ → Πin. The result is an abstract
transducer with a widened transition relation:

δ ′ = { (q, 〈〈v〉〉πin
in ,q ′,w) | τ = (q, v,q ′,w) ∈ δ∧ (τ,πin) ∈ π }.

Along with this work, we introduce an output alphabet abstraction, which
adjusts the abstract output words of transitions. It denotes the process
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of changing the abstract output word w of a transducer transition τ =

(q, v,q ′,w) ∈ δ to an new abstract output word w ′, with [[w]]out ⊆ [[w ′]]out:

Definition 42: Output Alphabet Abstraction

An output alphabet abstraction 〈〈T〉〉πO of an abstract transducer T results
in a new transducer where some of the abstract output words of its
control transitions were widened based on the given abstraction pre-
cision π ∈ ΠO. The precision π for output alphabet abstraction maps
an abstraction precision πout that is applicable to the output domain
to each of the transducer’s transitions, that is, it is a left-total func-
tion π : ∆→ Πout. The result is an abstract transducer with a widened
transition relation:

δ ′ = { (q, v,q ′, 〈〈w〉〉πout
out ) | τ = (q, v,q ′,w) ∈ δ∧ (τ,πout) ∈ π }.

Please note that also the computation of the abstract output closure—see
Sect. 3.2.3—yields a form of output alphabet abstraction.

3.4 transducer reduction

Besides abstraction techniques, also techniques for the reduction of abstract
transducers are important. Such techniques help to reduce the number of
control states, the number of control transitions, and the degree of non-
determinism of a given abstract transducer. That is, they help to reduce the
costs of using and running abstract transducers for particular inputs, for ex-
ample, to conduct a verification task. Minimization is related to reduction
but aims at ending up in finite state machines with a minimal number of
states—an optimum.

The number of control states of an abstract transducer is critical for the
performance of its use in an analysis procedure. Since a minimization is too
expensive [47, 85, 154], we propose to adopt reduction techniques as known
for NFAs to reduce the size and the degree of non-determinism of abstract
transducers—a low degree of non-determinism is critical for efficient execu-
tion of non-deterministic finite state machines [164].

Abstract transducers can be reduced by merging control states, or their
transitions, as long as the set of transductions and the set of accepting trans-
ductions is preserved. Please note that we assume, if not stated otherwise,
that ε-moves were removed before applying the reduction techniques that we
describe here.

Definition 43: Operator reduce

The (generic) reduction operator reduce : T → T reduces a given
abstract transducer T. Instances of this operator have to guarantee to
produce an equivalent abstract transducer, that is, T ≡ reduce(T).
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Reduction by State Merging

Before we continue to outline an algorithm for reducing abstract transducers
by merging control states, we provide more definitions:

Definition 44: Control State Equality

Two control states q1,q2 ∈ Q of an abstract transducer T are called
equivalent to each other, that is, q1 ≡ q2 , if and only if they can
be merged without affecting the transducer‘s set of transductions
nor its set of accepting transductions, that is, if and only if T ≡
qmerge(T, {q1,q2}).

Based on the definition of control state equality, we define the equality of
abstract transducer states:

Definition 45: Transducer State Equality

Two transducer states ι1, ι2 ∈ J are called equivalent if and only if they
describe equivalent pairs of control states and abstract output words,
that is, if and only if ∀(q,w) ∈ ι1 : ∃(q ′,w ′) ∈ ι2 : q ≡ q ′ ∧w ≡ w ′

and ∀(q,w) ∈ ι2 : ∃(q ′,w ′) ∈ ι1 : q ≡ q ′ ∧w ≡ w ′.

To determine whether merging two control states maintains the set of trans-
ductions, the notion of left transductions is essential:

Definition 46: Left Transductions

The set of left transductions
←−
T (T,q) ⊆ Σ∗×2Σ∗ ×2Θ∞ to a given control

state q ∈ Q, which belongs to a particular abstract transducer T ∈ T,
is the set of all transductions that can be produced on paths that start
in the initial transducer state ι0 and that reach the given control state q
with a feasible run:

←−
T (T,q) =

⋃
{ (σ̄, σ̂, [[w ′]]out)

| (q,w ′) ∈ r̂unT(σ̄, σ̂)

∧ σ̄ ∈ Σ∗ ∧ σ̂ ⊆ Σ∗ ∧w ′ 6= ⊥ }.

Proposition 5. A transformation T ′ = qmerge(T, {q1,q2}) maintains both
the set of transductions and the set of accepting transductions if the left-
transductions of the control states q1 and q2 are equal, that is, T ′ ≡
qmerge(T, {q1,q2}) if

←−
T (T,q1) =

←−
T (T,q2).

Proof. Control state q1 is reachable by runs that correspond to the set of left
transductions

←−
T (T,q1) and control state q2 by runs that correspond to the

set of left transductions
←−
T (T,q2). The proposition states that if we merge

control states q1 and q2, with
←−
T (T,q1) =

←−
T (T,q2) into a new state qm

of a new transducer T ′ = qmerge(T, {q1,q2}) then this transducer is equiv-
alent T ′ ≡ T to the original one. (1) First, we show that control state qm is
reachable by all feasible runs that can also reach control state q1 or q2, and
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that there is no feasible run that can reach qm but neither state q1 or q2. That
is, we show that

←−
T (T ′,qm) =

←−
T (T,q1) =

←−
T (T,q2): The operation qmerge

ensures that all transitions that entered either state q1 or state q2 also enter
state qm; that is, all feasible runs that reached q1 or q2 now reach state qm
and since qm is a new state it is only reachable by these runs. (2) Next, we
show that all runs that are feasible from control state q1 or q2 are also fea-
sible from control state qm, and there is no feasible run from state qm that
is not feasible from control state q1 or q2: The construction process of qm
ensures that all transitions that leave states q1 or q2 also leave state qm, and
no other transitions get added to leave this state; that is, all feasible runs
that start in control state qm are also feasible runs if they start in control
state q1 or q2. (3) Finally, we have to show that all runs that are accepting
from control state q1 or q2 are also accepting from state qm, and there is no
accepting run from control state qm that is not accepting from state q1 or q2:
The operator qmerge merges states q1 and q2 into a state qm, which becomes
an accepting control state if also state q1 or state q2 is an accepting control
state. That is, the inputs {(σ̄, σ̂) | (σ̄, σ̂, ·) ∈

←−
T (T,q1) become elements of set of

accepting transductions of transducer T ′ if they were also accepted by trans-
ducer T. All inputs that get accepted by runs starting from control state q1
or state q2, get also accepted by runs that start from control state qm.

Statements about the result of manipulating an abstract transducer by merg-
ing control states are also possible based on the notion of right transductions:

Definition 47: Right Transductions

The set of right transductions
−→
T (T,q,w0) ⊆ Σ∗ × 2Σ

∗ × 2Θ∞ of a given
control state q ∈ Q, which belongs to a specific abstract transdu-
cer T ∈ T, with initial abstract output word w0, is the set of all tr-
ansductions that can be produced on the feasible runs that start from
the given transducer state (q,w0):

−→
T (T,q,w0) =

⋃
{ (σ̄, σ̂, [[w ′]]out)

| (·,w ′) ∈ r̂unT({(q,w0)}, σ̄, σ̂)

∧ σ̄ ∈ Σ∗ ∧ σ̂ ⊆ Σ∗ ∧w ′ 6= ⊥ }.

Definition 48: Right Accepted Language

The right accepted language of a given abstract transducer T for a given
control state q is the set of pairs (σ̄, σ̂) ∈ Σ∗ × 2Σ∗ that lead to an
accepting run if started from the given control state q:

−−→
Lacc(T,q) = { (σ̄, σ̂) ∈ Lin(T)

| (q ′, ·) ∈ r̂unT({(q,wε)}, σ̄, σ̂)

∧ q ′ ∈ F }.

Proposition 6. Merging two control states q1,q2 ∈ Q of an abstract trans-
ducer T, which results in a new abstract transducer, maintains the set of
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transductions if their sets of right transductions are equal, that is, T(T) =

T(qmerge(T, {q1,q2})) if
−→
T (T,q1) =

−→
T (T,q2). Please note that we do not

make a proposition about the set of accepted transductions here.

Proof. Let the set of left transductions of two control states q1 and q2 be dif-
ferent to each other, that is,

←−
T (T,q1) 6=

←−
T (T,q2). From proposition 4 and the

corresponding proof we known that a merge of control states q1 and q2 leads
to an overapproximation, that is, T |= qmerge(T, {q1,q2}). It remains to be
shown that the set of transductions is preserved if the right-transductions of
two control states to merge are actually equal: T(T) = T(qmerge(T, {q1,q2}))
if
−→
T (T,q1) =

−→
T (T,q2), that is, that the merge does not add additional trans-

ductions. To add additional transductions it would be necessary that the set
of right-transductions of control state qm overapproximates the union of the
right-transductions of control states q1 and q2. Nevertheless, since

−→
T (T,q1)

is equivalent to
−→
T (T,q2) also

−→
T (T,qm) does not add additional right trans-

ductions, that is,
−→
T (T,q1) =

−→
T (T,q2) =

−→
T (T,qm).

Proposition 7. Merging two control states q1,q2 ∈ Q of an abstract trans-
ducer T, which results in a new transducer, does not maintain the set of
accepting transductions if their sets of left transductions are not equal to each
other. That is, Tacc(T) 6= Tacc(qmerge(T, {q1,q2})) if

←−
T (T,q1) 6=

←−
T (T,q2).

Proof. Let q1 and q2 be two control states of an abstract transducer T,
with q1 ∈ F and q2 6∈ F. Merging these states by qmerge(T, {q1,q2}) results in
a new transducer T ′ with a control state qm into that q1 and q2 have been
merged, and that became an accepting control state qm ∈ F ′. In case the left
transductions

←−
T (T,q1) and

←−
T (T,q2) are different to each other, different

inputs can reach states q1 and q2. Both inputs that reached q1 or q2 can
reach the control state qm, and all these inputs now result in accepting runs
since qm ∈ F ′, that is, also runs for inputs that reached q2 and that were not
accepting before now reach the accepting control state qm, resulting in an
overapproximation of the set of accepting transductions.

Definition 49: Left Equivalent

The left equivalence relation ≡L⊆ Q×Q describes the pairs of control
states that are equivalent to each other and that have the same set of
left-transductions—it is a subset of control state equivalence relation.
That is, (q1,q2) ∈≡L if q1 ≡ q2 and

←−
T (T,q1) =

←−
T (T,q2).

Proposition 8. Given an input-ε-free abstract transducer T, a set of two con-
trol states Qm = {q1,q2} ⊆ Q of transducer T satisfy

←−
T (q1) =

←−
T (q2)

if ∀ (q, v,q ′,w) ∈ entering(Qm) : ∀ (q ′′, v ′,q ′,w ′) ∈ entering(Qm) : v ≡
v ′ ∧w ≡ w ′ ∧

←−
T (q) =

←−
T (q ′′). We use the auxiliary function entering(Q) =

{(q, v,q ′,w) ∈ δ |q ′ ∈ Q}.
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Proof. Given the set of all control states Qp ⊆ Q from these control states
inQm = {q1,q2} are directly reachable, that is,Qp = {q | (q, ·,q ′, ·) ∈ δ∧q ′ ∈
Qm}. If all states in the set Qp have the same set of left-transductions, then
only transitions from control states in the set Qp to those control states in
the set Qm can affect whether or not the sets of left-transductions of states
in Qm are not equal to each other.

Definition 50: Operator reduceLeft

The reduction operator reduceLeft : T → T reduces a given abstract
transducer T by merging all control-states that are left-equivalent to
another. The transformation satisfies reduceLeft(T) ≡ T.

Existing algorithms [85, 86] for reducing automata and symbolic transducers
are not applicable because the set of transductions is not taken into account
in the definition of equivalence.

3.5 abstract transducer analysis

We now present a generic and configurable program analysis that executes an
abstract transducer. This abstract transducer analysis keeps track of the current
transducer state while processing the input. The analysis can be configured,
for example, to determine the extent to which the transducer states should
be tracked in a path sensitive manner—path sensitivity might be needed
for particular analysis purposes only. Thus, we can mitigate the state-space
explosion problem in some cases. The transducer analysis is the foundation
for several analyses that we describe in this work, for example, for the Yarn

transducer analysis, and the precision transducer analysis.

3.5.1 Abstract Transducer CPA

Our abstract transducer analysis is built on the concept of configurable pro-
gram analysis (CPA) [31, 32]. The abstract transducer CPA

DT = (DT, T, ↓T,mergeT, stopT, precT, targetT)

tracks a set of states of a given abstract transducer T = (Q,Din,Dout, ι0, F, δ).
The CPAs behavior is configured by using different variants of its operators.
For example, varying the operator mergeT can configure the analysis to oper-
ate path sensitive, or only context sensitive and flow sensitive [31]. We rely
on the strengthening operator ↓T for instantiating parameterized outputs.
Other program analyses, which run in parallel to the abstract transducer
analysis, can read and use the output words for different purposes. The ab-
stract transducer analysis DT is composed of the following components:

Abstract Domain DT. The abstract domain DT = (C,E, [[·]], 〈〈·〉〉) is defined
based on a map lattice E = (J,>,⊥,v,t,u), with J = 2Q→W, where each
element ι ∈ J of the lattice is an abstract transducer state—see Sect. 37 for
more details on map lattices. One transducer state ι = {(q,w), . . .} ∈ J is a
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mapping ι : Q → W from control states to abstract output words. The ana-
lysis starts with the initial transducer state ι0 of the abstract transducer to
conduct runs for.

Transfer Relation  T. The transfer relation  T ⊆ J×G× J× Π defines ab-
stract successor states of an abstract state ι = {(q,w), . . .} ∈ J for a given
control-flow transition g ∈ G and abstraction precision π ∈ Π. We define
this transition relation without implicit stuttering, that is, if there should be
stuttering, the transducer must have corresponding transitions. The transfer
relation is defined as follows:

ι
g
 T{ {(q,w)} | (v, v`) = look(g, `)

∧ (q,w) ∈ r̂unT(ι, v, v`)

∧ q 6= q⊥ }.

Please note that the function r̂un is implicitly parameterized with an abstract
closure operator abstclosure. The operator look : G×N0 → I× I maps the
given control-flow transition g ∈ G to an abstract input word v and provides
a bounded lookahead of length ` in form of the abstract input word v` which
is derived from the control-flow transitions that follow transition g on the
control-transition relation of the underlying analysis task.97

Alphabet Translation The operator look does not only provide the lookahead but also translates
between the alphabet of the graph that is traversed to the abstract input
alphabet of the abstract transducer. That is, varying this operator provides
different views on the given input, for example, a control-flow transition g ∈
G can be translated to the function to that the transition belongs to, or to the
successor control location that is reached by the control transition.

The operator merge can decide later if states should be tracked separately
or not—see also Sect. 4.5 for a detailed discussion of the implications that
result from merging state sets.

Operator ↓T. The strengthening [31] operator ↓T : E× × E× × J→ J is called
after all analyses that run in parallel have provided an abstract successor
state as components for the composite state e× = (e1, . . . , en) ∈ E×. At this
point, the strengthening operator can access the information that is present
in any of the component states ei ∈ e× and use them to strengthen its
own (component) state. We instantiate parameterized output words during
strengthening. Information of an analysis that runs in parallel can be used
to support various instantiation and synthesis mechanisms.

The strengthening ι ′ = {(q ′,w ′)} = ↓T(e×, e ′×, ι) is conducted for a given
transducer state ι = {(q,w)}, which is the result of conducting a transducer
transition τ = (q, v,q ′,w) ∈ δ for an input (σ̄, σ̂) ∈ Σ∗ × 2Σ∗ . Beside the
information that can be found in the composite states e× and e ′×, also the
values that were bounded to the parameters of the abstract input word v

can be taken into account to instantiate the abstract output word w ′. A con-
sistent binding of parameters among different transitions, that is, for the
whole program trace—as this is used by some aspects and corresponding
weavers [5]—is not yet supported.

Operator mergeT. The merge operator mergeT : J × J × Π → J controls if
two transducer states should get combined, or if they should be explored
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separately and separate the state space. The behavior of the operator can
be controlled based on a given precision π ∈ Π. The default is to always
separate two different abstract states, that is, mergeT = mergesep [31], which
ensures the path sensitivity of the analysis. Please note that the abstract tr-
ansducer analysis is typically one of several analyses that run as components
of a composite analysis: Even if the analysis would conduct a merge, other
component analyses might signal not to do so.

Operator stopT. The coverage check operator stopT : J × 2J → B decides
whether a given abstract state is already covered by a state reached or not.
As default, we use the inclusion relation of the lattice, that is, stopT = stopsep.

Operator precT. The precision adjustment operator precT could conduct fur-
ther abstraction of a given abstract state. We do not abstract here: A call
precT(ι,π, ·) returns the pair (ι,π) ∈ J×Π without adjustments.

Operator targetT. The target operator targetT : J → 2S determines the set of
properties for which a given abstract state is a target state. Each property is
a task concern, that is, the set of properties S ⊂ H is a subset of the set H of
task concerns. We assume that there is only one transition τ = (·, ·,q ′, ·) ∈ δ
for each accepting control state q ′ ∈ F. We rely on a function ζ : ∆→ 2H that 98

Concern Mapmaps each transducer transition to a set of task concerns. Given an abstract
transducer state ι = {(q1, ·), . . . (qn, ·)} ∈ J, the operator returns:

targetT(ι) =
⋃

{ ζ(t) | (q, ·) ∈ ι

∧ q ∈ F
∧ t = (·, ·,q, ·) ∈ δ }

3.5.2 Analysis Configurations

By relying on the CPA framework [31], the abstract transducer analysis is
equipped with an inherent notion of configurability, and can be instantiated
several times and in different ways within the framework, to conduct an
analysis task in the most efficient and effective manner.

Transducer Composition. It might be necessary to execute several abstract
transducers in parallel along with the state space exploration for an ana-
lysis task. Given a list 〈T1, . . . ,Tn〉 of abstract transducers to run, a
list 〈D1, . . . , Dm〉 of analyses, with n > m > 1, has to be instantiated. We
assume that these transducers have the same abstract input domain and the
same abstract output domain, and consider the composition of transducers
with different abstract output domains to be future work. The first approach
(separation) is to instantiate one analysis for each abstract transducer (m = n),
which fosters a clear separation of concerns. Each of the m instantiated ana-
lyses adds one component to the composite (product) state that is formed
by the composite analysis; the number of CPAs operators that are invoked
transitively by the CPA algorithm increases. An alternative approach (union)
is to construct the union T∪ = T1 ∪ ... ∪ Tn of the transducers to run and
to run this single transducer T∪ with one abstract transducer analysis. Also
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hybrid approaches can be taken, that is, construct unions for subsets of the
transducers, and run others separately.

State-Set Composition. One abstract state ι = {(q1, ·), (q2, ·), . . .} ∈ J of the
transducer analysis can contain several control states from the set Q of the
abstract transducer to run for a given analysis task. The number of control
states per abstract state can be controlled by the transducer analysis and its
operators, for example, the operator merge, which decides whether or not
to explore two abstract states separately. The decision to join two different
control states into one state set of one abstract state of the transducer ana-
lysis can affect the path sensitivity of the analysis, that is, if it is possible to
determine the branch of the state space that has led to a given control state.

3.6 related work

Abstract transducers combine different concepts and techniques from formal
methods, automata theory, domain theory, and abstract interpretation, to
end up in a generic type of abstract machine. We discuss the related work
based on the different concepts that can be found in abstract transducers
and explain the relationship and differences to existing work.

Symbolic Alphabet. An abstract transducer can use arbitrarily composed
abstract domains to define both its input and the output; for the input do-
main, we require that its lattice is dual to a Boolean algebra. We introduce
a special class of abstract domain, the abstract word domain, to describe
words of complex entities, such as program traces of concurrent systems.
Symbolic finite automata and transducers [87] share the idea of using theo-
ries to describe sets of input and output symbols. Other types of automata
describe their input symbols based on predicates [206] or as multi-valued
input symbols [112, 169]. From the perspective of abstract transducers, trace
partitioning domains [223], lattice automata [112], and regular expressions
over lattice-based alphabets [195] are instances of abstract word domains.

Output Closure. With abstract transducers, we also introduce means to deal
with ε-loops that are annotated with outputs, that is, to compute and use fi-
nite symbolic representations of outputs that potentially consist of exponen-
tially many and infinitely long words. Compared to existing work [87, 207],
we also consider ε-moves that lead to dead ends as relevant, handle them in
our algorithms, and do not consider them as candidates for removal.

Lookahead. In each step of processing input, abstract transducers can con-
duct a lookahead on the remaining input to determine which transitions to
take. Several other types of abstract machines provide the capability of looka-
heads, for example, tree transducers, which had been extended to support
regular lookaheads [100], or extended symbolic finite state machines [88]. A
labeling with words instead of letters is also conducted in the case of gen-
eralized finite automata [237], but they consume full words in a transition
step—instead of just one letter as is the case for abstract transducers.

Transducer Abstraction. By defining both the input alphabet and the output
alphabet of abstract transducers based on an abstract domain, we can make
use of the full range of abstraction mechanisms that were developed in the
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context of abstract interpretation for abstracting abstract transducers, that
is, to widen their set of transductions. Approaches for abstracting classical
automata have been presented in the past [58]. A more recent work [217]
presented techniques for abstracting symbolic automata, which could also
be adopted to abstract transducers. This work is the first that proposes to
abstract a type of transducer for increasing its sharing, that is, widen the set
of words for which particular outputs are produced.

Running Transducers. Running automata in parallel to a program analysis is
an established concept in the fields of program analysis and verification [33,
38, 41]. Algorithmic aspects of how automata are executed, for example, how
the current state of automata is represented in the state space of the analysis
task, are in many cases [134] not discussed further, while the performance
implications can be dramatical. Work in the context of configurable program
analysis [29, 30, 40] is most transparent about this.

Transducers for Analysis and Verification. Transducers are widely used in
the context of program analysis and verification. They are used, for example,
for synthesis [216], to describe the input-output-relation of programs [49, 126,
216, 256], and for string manipulations [245, 256]. Automata that produce an
output—which is then used in the analysis process—have been proposed in
the form of assumption automata [30] for conditional model checking, error
witness automata that output strengthening conditions [29] to narrow down
the state space of the analysis process, and for correctness witnesses [40].

3.7 summary

This chapter has introduced abstract transducers, a type of abstract machines 99

Abstract Machinesthat map between an input language and an output language while taking
a lookahead into account. In contrast to established finite-state transducers,
abstract transducers have a strong focus on the intermediate language that
they produce, which has several implications on the design of algorithms
that operate on these machines. Both the input alphabet and the output
alphabet of abstract transducers consist of abstract words, where one abstract 100

Abstract Wordsword denotes a set of concrete words. Means for representing, constructing,
and widening of abstract words, and for describing their relationship, are
provided by the corresponding abstract word domain. Building on these 101

Transducer Abstractionabstract alphabets allows for abstracting these transducers.
We use techniques from abstract interpretation and domain theory as the

foundation for our abstraction mechanisms. The concept of abstract trans-
ducers enables several new applications: We discussed applications in the
context of sharing task artifacts for reuse within program analysis tasks.

From the concept of abstract transducers, we instantiate the concept of 102

Task Artifact Transducerstask artifact transducers, which generalize a group of automata and transdu-
cers that are used in the context of program analysis and verification for re-
producing and sharing information. These transducers provide information
that contributes to an analysis task and its solution. The underlying graph
structure of automata-based transducers allows us to capture the structure of
information, share it, and enable its reuse. Task artifact transducers have sev-
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eral applications, and we present some of them along with this work: Yarn
103

Applications transducers, which provide sequences of program operations to weave into
a transition system, and precision transducers, which are a means to define
the level of abstraction for different parts of the state space. Other applica-
tions of task artifact transducers can be found in the context of providing and
checking verification evidence, for example, transducers for error witnesses,
which provide information that guides towards specification violations, or
transducers for correctness witnesses, which provides certificates to check
while traversing the control flow of programs.

“ Imagination is a very high sort of seeing, which does not come by
study, but by the intellect being where and what it sees, by sharing
the path, or circuits of things through forms, and so making them
translucid to others. ”

Ralph Waldo Emerson



4 YA R N T R A N S D U C E R S A N D T H E
LO O M

Keywords: On-The-Fly Weaving, Specification Weaving, Automata En-
coding, Symbolic Path Sensitivity, Hybrid Path Sensitivity

Figure 11: Carpet loom
with Jacquard attachment.
Source: Popular Science,
Volume 39, 1891

This chapter introduces techniques for interposing (weaving) control-flow
transitions, which are mapped to specific concerns, to the control transition
relation of the analysis task, on-the-fly, during the analysis process. We call the
control-flow transitions of a concern to introduce the Yarn. The analysis
that interposes the Yarn into the transition relation is called the Loom. Any
component of an analysis procedure can provide Yarn to weave, at different
points in time, during the analysis process, for example, as a means to del-
egate information to encode about the state space to later and possibly dif-
ferent analysis steps. We introduce Yarn transducers, that is, automata that
emit Yarn to weave as output; we use them to provide formal specifications
and models of the environment to compose. 104

History:
Programs controlled LoomsThe idea of guiding a weaving process by programs dates back before

the very beginning of universal computers and Turing complete program-
ming languages and computer programs written in those. Figure 11 shows a
carpet loom with a Jacquard attachment. The Jacquard attachment controls
the loom based on a given “program”: a sequence of punched cards that
are joined together—forming an infinite loop—that defines the sequence of
weaving operations to conduct. The Jacquard attachment and its punched
cards also inspired Charles Babbage’s work: the programmable Analytic En-
gine. First programs—sequences of operations—for this machine were writ-
ten by Ada Byron (Countess Lady Lovelace)—she identified the importance
of loops for computer programs. 105

Composition of Analysis TasksIn static program analysis, an analysis task is composed of several
parts (sometimes called modules, components, aspects, or processes) that
represent different concerns of this task. For example, a verification task—
for verifying the adherence to a particular specification—consists of the pro-
gram, the specification, and the environment model. All these parts are them-
selves composed from smaller parts: For example, a specification is com-

63



64 yarn transducers and the loom

Program Property 1Environment 1

q0

q1
/op0

Environment N Property N

× × ...× ×...× ×q0

q1
𝖜0/op1

𝖜1/ɛ

q0

q1
𝖜0/op1

𝖜1/ɛ

q0

q1

𝖜0/ɛ

𝖜1/ɛ

𝖜2/ɛ

qE
𝖜3/ɛ

q0

q1

𝖜0/ɛ

𝖜1/ɛ

𝖜2/ɛ

qE
𝖜3/ɛ

Figure 12: We can model the control-flow of a program, the environment model,
and the specification—a set of properties—as Yarn transducers. The out-
put of these transducers (Yarn) is composed (×) by weaving to end up
in the final program analysis task.

posed of several properties—see Fig. 12 for an illustration of this scenario.
An approach for program analysis can be aware of this compositional structure,
and take advantage of the additional knowledge to make the analysis more ef-
ficient and effective, or the composition structure might not have been made
explicit to the approach and it would have to rediscover it on its own, based
on a costly dependency analysis [144, 158, 180].106

Offline Composition
of Analysis Tasks Given a program P to verify, the established approach [18] to construct a

verification task is to generate a new program P
′ that is the result of instru-

menting the specification and the environment model to the program P. The
program P

′ is then given to the verifier, where checking the (safety) speci-
fication is reduced to checking the reachability of a specific control location:
the error location lErr [64, 136, 150]. That is, statements from the original
program, the environment model, or the specification cannot be distinguished
from each other by a verification tool without any additional hints regarding
the composition structure: traceability is lost. Having a given encoding of the
specification, or the environment model, at hand reduces the flexibility of
choosing (or transforming to) a different encoding on-demand.107

Analysis Task Concerns
as Yarn Transducers Representing parts of a reasoning task as separate transducers (1) fosters

a clear separation of concerns, it (2) brings the flexibility of choosing dif-
ferent encodings (for different parts) dynamically as needed (even different
encodings for different parts of the state space), and (3) it provides the foun-
dation for other techniques, for example, for the synthesis of abstraction
precisions (invariants), or for slicing techniques.108

Hybrid Control Encoding Yarn transducers provide sequences of control-flow transitions, which are
labeled with program operations, to weave as output. Nevertheless, Yarn tr-
ansducers are still automata with a current control state, of which an analysis
procedure has to keep track. Tracking the control state of a finite-state machine
explicitly, that is, its concrete value—can cause an explosion of the abstract
state space. To cope with this problem, the analysis that keeps track of the
current control state of an automaton can emit Yarn that allows for encoding
the control-state of an automaton symbolically; services of the Loom analy-
sis are used to delegate the encoding of particular state-space facts to later
analysis steps or analysis components. An explicit, symbolic, or hybrid (mixed)
control encoding—and with a path sensitivity of this type—can be chosen,
on demand, during the analysis process to keep track of the sequence of con-
trol states an automaton entered while proceeding along a program path.
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Contributions. This chapter shares ideas and material (see page v) with our
papers on “On-the-fly Decomposition of Specifications in Software Model
Checking” [8] and presents the following contributions:

• We introduce Yarn as the abstract entity to represent a set of sequences
of program operations that contribute to a particular concern of an ana-
lysis task. We define different operations on Yarns, for example, their
concatenation, and provide a detailed discussion of the role of assign-
ing an appropriate labeling of control locations to achieve an efficient
and effective analysis process.

• We present Yarn transducers, a conceptually elegant approach, based
on abstract transducers, for providing Yarn to weave, for example, the
full program itself, a safety specification, or an environment model.
Yarn transducers are a syntactic task artifact sharing model.

• We present the Loom, a program analysis for composing Yarn from
different sources by weaving, for example, from Yarn transducers. The
Loom provides the possibility to delegate the encoding of information
to other analysis components or analysis steps (for more efficient or
effective handling), aids in providing traceability of program fragments,
and enables the idea of on-the-fly weaving.

• We introduce the concept of dynamic control encoding. An analysis that
is responsible for running a transducer along a state-space exploration
can delegate the encoding of the transducer’s current control state, on-
demand, to other components of the analysis tool by emitting guards
and assignments on state variables as Yarn to weave; this Yarn can then
be encoded—possibly more efficient—by other analyses, with differ-
ent, possibly symbolic, abstract domains. This approach provides the
flexibility to use the full range (hybrid) of encodings of control states
dynamically: from pure explicit state representation to a fully weaved,
and possibly symbolic, representation.

• We instantiate our concepts based on the CPA framework: The Loom

CPA implements the functionality of the Loom and consumes Yarn

that is emitted by other analyses (CPAs). The Yarn transducer CPA
is responsible for executing a Yarn transducer and for keeping track
of its current control state; it uses sets of automaton control states and
can emit conditions and assignments on state variables as Yarn to allow
for different encodings of the current control state on demand. We provide
an open-source implementation of our approach.

• We conduct an empirical study on different schemes for composing and
encoding Yarn transducers that represent the formal specification and
the environment model. We show the applicability of our techniques
for multi-property verification—of which model-driven test generation
is an instance.
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Outline. We start by discussing the motivation for our work (Sect. 4.1):
What are the origins of this work? Which problems did we face? Why
are these problems important? What are the possible solutions? We will
then (Sect. 4.2) introduce the notion of Yarn: How is it defined? What
were the requirements—especially from the perspective of software model
checking—that led to our formalization? Which operations are possible on
Yarn? The section that follows (Sect. 4.3) introduces the Loom, our mecha-
nism for composing transition relations from Yarn: How is it defined? At
which points in time of an analysis process is it applicable? What does it
guarantee to analyses that provide Yarn to weave? How does its weaving
procedure work? Section 4.4 introduces Yarn transducers, an elegant tech-
nique to provide Yarn to weave for composing analysis tasks: How are Yarn

transducers formally defined? What is their epsilon closure? How can Yarn

transducers be composed? How can Yarn transducers be classified? How do
Yarn transducers become integrated into the analysis process? Section 4.5
introduces the notion of dynamic control encoding: How is it defined? What
can we gain from it? What is the role of the Loom analysis to implement this
concept? Before we summarize the chapter (Sect. 4.8), we provide an empir-
ical study (Sect. 4.6): Are they applicable in practice? Can these techniques
make a verification process more efficient or effective?

4.1 motivation

This work has its roots in the context of multi-property verification [8]. Our109

Multi-Property Verification goal is to provide the formal specification—and the environment model—
as a set of (abstract) transducers, where each of them represents a differ-
ent safety property—or part of the environment model. This separation
of a specification into several properties—and their representation as sep-
arate transducers—aids in easily decomposing a verification task as needed.
Already the process of composing an analysis task from several transducers110

Focus on Task Composition
and Encoding poses many fundamental challenges, on which we focus in this chapter. De-

tails of our decomposition framework can be found in the paper [8] and are
not discussed further in this work.111

Challenges Despite the beauty of our approach, several challenges have to be ad-
dressed to make it both efficient and effective in practice. In the following,
we discuss the requirements, challenges, and possible solutions.

4.1.1 Expressiveness Needed

An approach for specifying code fragments of program concerns should be
as simple as possible—for the user, and for people that implement support
for this approach in their analysis tools—while providing sufficient expres-
siveness for the task at hand. Plain automata without output symbols lack112

Expressiveness of
Turing Machines expressiveness to encode all information needed to describe the different

concerns that contribute to an analysis task, for example, the specification or
the environment model. An elaborated form of automata is needed that can
emit arbitrary sequences of program operations to weave.
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We propose Yarn transducers, an instance of abstract transducers [88]—see
Sect. 3.2. Our Yarn transducers can emit program fragments (Yarn) that
take advantage of the expressiveness of a Turing complete programming
language. The Loom analysis composes the Yarn that is emitted by different
analysis components, for example, by analyses that run Yarn transducers.

4.1.2 Combinatorial Explosion

Depending on the program analysis task, several (to thousands) transducers
have to be executed and composed along with the program analysis iter-
ations. In the case of software verification, these transducers can represent,
for example, the program to analyze, properties to check [8], and an environ-
ment model—see Fig. 12. For a variability-aware program analysis [9, 226],
additional transducers that represent features to compose can be added. In
the case of model-driven test generation [109, 141], each test-goal can be
represented and monitored by a separate transducer.

In general, running n automata (also abstract transducers are automata)
in parallel, with the set of control states Q1, . . . ,Qn, requires to track the
product Q× = Q1 × . . .×Qn, which can be exponential in the number of 113

Combinatorial Explosionautomata, that is, |Q×| =
∏
i∈[1,n] |Qi|. The explosion is caused by tracking

the different control states of the automata explicitly in the composite state;
the more control states have to be described in one composite state, the less
likely it is another composite state covers a given composite state. Despite 114

Explicit vs. Symbolicthis apparent drawback (combinatorial explosion) of tracking the control
state of automata explicitly (with an abstract domain that maps explicit val-
ues to variables), both symbolic abstract domains and explicit abstract do-
mains provide performance benefits:

1. A symbolic representation of the state space can mitigate an exponential
explosion of the number of abstract states. Research shows [28, 35] 115

Advantages of a
Symbolic Abstract Domainthat representing large fragments of a verification task symbolically—

for example, each loop-free fragment of a program as one formula in
predicate logic [28]—can enhance the efficiency of a model-checking
procedure considerably. This observation is generalized by the concept
of late splitting and early joining [175, 184]: separate two states as late
as possible, and join (merge) the abstract state space back as early as
possible—and keep the number of abstract states as small as possible.
Nevertheless, this approach relies on various assumptions, for example,
that the size of the abstract state space indicates the overall efficiency.

2. Tracking the current value of some variables—including variables that
store the current control state of an automaton—in a concrete fash-
ion as explicit components of the abstract state, can have performance
benefits [68]. The current value of some variables might have to be 116

Advantages of an
Explicit Abstract Domaintracked for the majority of the program paths. The program counter—

also known as instruction pointer or control variable—is one of them;
the value of the program counter represents the current position in the
control flow of a program (control location). Always tracking the cur-
rent control location in each abstract state explicitly reduces the num-
ber of abstraction refinement iterations and reduces the complexity of
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1 i n t main ( ) {
2 i f ( g )
3 l o c k ( ) ;
4 access ( ) ;
5 i f ( g )
6 un lock ( ) ;
7 r e t u r n 0 ;
8 }

(a) Source code

access()

return 0

q3 [g]
[!g]

unlock()

q4

q5

q6

q0 [g]
[!g]

lock()

q1

q2

(b) Control flow

⟦𝖜0⟧ = {lock()}

q0

q1

𝖜0/ɛ

𝖜2/ɛ

𝖜1/ɛ

q3
𝖜0/ɛ

⟦𝖜1⟧ = {unlock()}

𝖜2 = ¬ (𝖜0 ⊔ 𝖜1)

q2

𝖜1/ɛ

𝖜2/ɛ

(c) Specification

Figure 13: Example program and specification for discussing the problem of com-
binatorial explosion and the need for path sensitivity. Assume that the
program variable g is of type int, initialized with a random value.

formulas that describe the set of concrete states that is represented by
an abstract state [68]. In program analysis, we therefore always track
the concrete value of the program counter pc of a verification task as an
explicit component of the composite state [31, 161]. It determines the
current position in the control flow and the control-flow transitions
that can be taken next to derive abstract successor states.

117

Counteractive Objectives Our objective is to (1) take advantage of the expressiveness and efficiency
of symbolic representations—as provided, for example, by binary decision
diagrams, or formulas in predicate logic—to represent sets of states of the
analysis task, and (2) reduce the size and complexity of the reasoning prob-
lems that are handed over to the symbolic constraint solvers and the pre-
cision refinement procedures as much as possible, for example, by tracking
the current position in the control-flow relation of the analysis task explicitly.

The problem that we are facing is that these two objectives are counterac-
tive. In the following, we illustrate this based on the example verification
task shown in Fig. 13. We first run a composite analysis that operates on
tuples ei = (lx,ϕz) of abstract states where lx is the current control loca-
tion in the control-flow relation—shown in Fig. 13b—and ϕz is a formula in
predicate logic that represents a set [[ϕz]] of concrete program states:

(l0,ϕ0) (l1,ϕ1) e1 = (l2,ϕ3)

e2 = (l2,ϕ2)
merge e3 = (l2,ϕ2 ∨ϕ3) . . .

[g]

[!g]

lock()

access()

The analysis merges the states e1 and e2, resulting in state e3 because the
control-flow automaton is on the same location l2 in both abstract states:
This example satisfies both of our objectives, but we have not yet composed
the specification automaton, so we do not verify anything.

We now compose the specification automaton that is shown in Fig. 13c
to the task to verify that there is no call to unlock() without a preceding
call to lock(). The composite analysis operates on tuples ei = (lx,qy,ϕz)
of abstract states where lx is the current control location of the control flow
automaton, qy is the current control state of the specification automaton,
and ϕz represents a set of concrete program states:
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(l0,q0,ϕ0) (l1,q0,ϕ1) e1 = (l2, q0,ϕ3)

e2 = (l2, q1,ϕ2)

. . .

. . .

[g]

[!g]

lock() access()

access()

The analysis is not allowed to merge (join) the abstract states e1 and e2
because the specification automaton is in different control states q0 and q1
for them. The problem of this approach: Tracking the current control state of
many automata in parallel leads to a combinatorial explosion of the abstract
state space—the k-nary automaton product leads to an exponential number
of states because the automata can be in pairwise different control states.
Our first objective is violated: The amount of information encoded into the
formula ϕi in predicate logic is limited, which reduces the solver’s chance to
come up with Craig interpolants [190] that aid in the convergence of the analysis
process. An approach to cope with this problem is to track sets of control states
to end up, for example, in a merged abstract state em = (l2, {q0,q1}, . . .), but
this leads to a new problem, which we discuss in the following section.

4.1.3 Path Sensitivity

Why not merge abstract states independent of the current control state they
are in and use sets of control states? We end up with the following result:

(l0, {q0}, true) (l1, {q0},g0 6= 0) (l2, {q1},g0 6= 0)

(l2, {q0},g0 = 0)
merge em = (l2, {q0, q1},g0 = 0∨ g0 6= 0) . . .

[g]

[!g]

lock()

access()

The problem here is that we lose information, more precisely, path sensitivity
is lost. Given the abstract state em, we know that the specification automa-
ton is either in control state q0 or q1 when the control-flow location l2 is
reached; but we do not know which branch has been taken to arrive at the
control state q1 of the specification automaton. Also, the formula ϕz does
not provide any information for ensuring path sensitivity and recovering
the paths. The result is a false alarm if unlock() is called later for branch [g]

while still being in control state q0 of the specification automaton.
We need a technique for ensuring path sensitivity while keeping the ex-

plosion of the abstract state space manageable. Making an analysis path-
sensitive requires to track information about all relevant branchings and
values of the referenced data locations; we would have to enrich the abstract
domain of our transducer analysis such that it would be able to encode all
this information. In the end, this abstract domain would have to provide a
similar expressiveness as, for example, the predicate domain [28, 122].

We choose a novel route and take advantage of the services that are pro-
vided by the Loom analysis to introduce additional control flow transitions
by weaving. That is, the analysis that is responsible for executing an au-
tomaton (or transducer) delegates the encoding of the facts that are relevant
for path sensitivity by emitting the respective Yarn to weave: The emitted
Yarn introduces and initializes a program variable S that represents the cur-
rent control state of the specification automaton, and it prepends code with
guards and assignments to the state variable on all state transitions:
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(l0, {q0}, true){S_0=0} ((l0, l0), {q0},S0 = 0){} (l1, {q0},S0 = 0∧ g0 6= 0){}

(l2, {q1},S0 = 0∧ g0 6= 0){[S==0];S=1}

((l2, l0), {q1},S0 = 0∧ g0 6= 0){S=1}

(l2, {q1},S0 = 0∧ g0 6= 0∧ S1 = 1){}

merge(l2, {q0},S0 = 0∧ g0 = 0){}

(l2, {q0, q1}, (S0 = 0∧ g0 = 0)∨ (S0 = 0∧ g0 6= 0∧ S1 = 1)){} . . .

S=0 [g]

[!g]

lock()

[S==0]

S=1

access()

We can see that the third component—a formula in predicate logic, in single-
static assignment form—of an abstract state is sufficient to provide path
sensitivity; the automaton analysis does not prevent any merges of abstract
states. The path sensitivity is achieved by a hybrid configuration of an explicit-
value analysis and a symbolic analysis: The analysis that keeps track of the
current position in the control-flow automaton still uses an explicit value.

4.1.4 Empirical Evidence

Literature provides no substantial empirical evidence on the efficiency of dif-
ferent encodings of the control state of automata. We aim to get a better un-
derstanding of how symbolic or concrete encoding of current control states
impacts the performance of a software model checker. We study whether
the state of the formal specification (or the environment) should be modeled
with explicit values or symbolically, or if a hybrid approach would yield the
best performance for the verification task at hand. We hypothesize that in-
creasing the chance of merging abstract states can increase the performance
of a verifier, but state merging might not always be positive [128, 175].

Several components of a verification engine (variables for an empirical
study) interact with the choice of the encoding scheme: An abstraction preci-
sion refinement procedure might have to conduct more or fewer refinement
iterations; whereas larger abstraction block sizes [28, 35] might reduce the
number of refinement iterations needed. Delegating information to encode
between analysis components, based on emitting Yarn, can shift the analysis
performance in unexpected ways: If the transducer analysis, which always
operates with the full precision (it always encodes the current control state
of the automaton) delegates the task of encoding he current control state to
another analysis component by emitting Yarn, an analysis that is based on
abstraction precision refinement could come into play: The positive effect of
using state variables for encoding the control state boils down to delegat-
ing to an analysis that uses abstraction refinement, and can thus keep the
abstract state space compact.
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4.2 yarn

Before we introduce the Loom—our mechanism for orchestrating and con-
ducting the task of composing sequences of control transitions by weaving—
in the next section, we introduce the notion of Yarn, that is, the information
that any program analysis component can emit for weaving. We start by for-
mally defining Yarn and will then (1) discuss different considerations that
led to our final design choices, and will (2) present a set of operations for
dealing with Yarn in the context of a program analysis.

Definition 51: Yarn
Yarn describes a set of sequences of program operations for imple-
menting parts of a specific program concern. Formally speaking, Yarn

is a tuple y = (h, (Gy,Len,Lex)) ∈ Y, with the set of yarns Y =

H× 2L×Op×L × 2L × 2L. A Yarn y consists of a control transition re-
lation Gy ⊆ L × Op × L to weave, which is mapped to a program
concern h ∈ H from the set of all program concerns H. The set Len ⊆ L
denotes the control entry locations, and the set Lex ⊆ L denotes the con-
trol exit locations. Both set Len and set Lex must not be empty.

Similar to a control-flow automaton, a Yarn describes the control transi-
tion relation of a program. Each control-flow automaton can be described
as one Yarn y ∈ Y: The set of exit locations of a CFA = (L, l0,G) can
be defined by all control locations in L from that no further transitions
leave. That is, Lex(y) = {l | (·, ·, l) ∈ G ∧ (l, ·, ·) 6∈ G}). But any location
in the transition relation can potentially be an entry location, an exit loca-
tion, or even both. Imagine, for example, a Yarn y with the transition rela-
tion Gy = {(q1, ·,q2), (q2, ·,q3), (q3, ·,q1)}, which describes a loop: What is
an entry location?

Yarn that an analysis emits can have one of two delta types 4 = {., /}.
The additive Yarn . is inserted at a specific position in the control flow; the 118

Delta Typessubstituting Yarn / replaces a specific control transition that has not yet been
woven, that is, it relies on a lookahead to the Yarn that is intended to get
woven next—see Sect. 4.3.3. The ability to substitute control transitions can
be used, for example, for (1) mutation-based test generation, (2) to replace
calls to external methods by an actual implementation, or (3) for program
slicing, which skips control transitions that are irrelevant for the reasoning
task at hand. For this work, we use and further discuss additive Yarn only, 119 "
and keep substituting Yarn for future work—this is why we have kept the
Yarn type out from the formal definition for now. 120

Related ConceptsA Yarn is closely related to a model program [247], a notion that is in
the context of model-based test generation [246]. The set of accepting con-
trol points of a model program corresponds to the set of exit locations of a
Yarn. Model programs are not mapped to specific concerns explicitly. The
notion of advice is the concept from aspect-oriented programming that has
the closest relationship to Yarn. Nevertheless, an advice is defined on the
level of source code and not at the level of control-flow transitions.
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4.2.1 Dependencies between Yarn

As several analysis components can provide Yarn to weave in one analy-
sis step, the weaving mechanism must decide which Yarn to weave next.
To make functional dependencies between Yarn for different concerns clear,
an explicit means to define dependencies is needed—we cannot determine
this automatically since the concatenation of two sequences of control transi-
tions is not commutative without rewriting them [10]. Different orderings of
composing a set of sequences of control transitions can lead to different se-
mantics of the result—semantics of the control-flow relation that represents
the composed analysis task.

Concern Dependency Graph. In case the dependency information that can be
determined automatically is not sufficient for a deterministic choice and a to-
tal order, we must take an additional ordering relation into account to make
the analysis process deterministic. We organize all concerns from that the
transition system of the system to analyze can be composed of in a concern
dependency graph—see Fig. 14 for an illustration of such a graph:

h>

. . .

h⊥

Figure 14: A concern de-
pendency graph yields a
partial order.

Definition 52: Concern Dependency Graph

A concern dependency graph is a graph that determines the dependen-
cies between concerns from a set H of concerns. We define it as a
tuple H = (H,η,h>,h⊥), with the set H of concerns, a transitive con-
cern dependency relation η ⊆ H×H, the top concern h>, and the bottom
concern h⊥. The top concern has the lowest priority in the weaving
process: All other concerns are (transitively) dependent on it and it
depends on no other concern. The bottom concern has the highest pri-
ority in the weaving process: It depends on all other concerns an no
concern depends on the bottom concern.

Weaving Yarn with the highest priority is finished first before any other Yarn

with lower priority, from a queue with Yarn to weave, becomes woven. Since
we do not allow cycles in a concern dependency graph we can compute a
partial order of program concerns.

Proposition 9. Weaving a Yarn for a concern ha is always finished before
another Yarn for the concern ha becomes woven.

Proof. A topological ordering defines the priorities of concerns to weave: The
dependency graph does, by definition, not have cycles. The weaving of the
Yarn from a concern ha can be intercepted by Yarn of a concern hb if
that has higher priority, weaving Yarn of concern hb could then be inter-
cepted by Yarn from concern ha, meaning that concern ha has a higher
priority than concern hb: Contradiction (and forbidden cycle in the depen-
dency graph). The weaving of Yarn for a concern ha will always be finished
before another Yarn for this concern is woven.

The problem of dependencies between code to weave has already been iden-121

Related Concepts tified in context of traditional aspect weaving: A weaving schedule is de-
rived [163] from a weaving-interaction graph if this graph has a topological
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ordering. Similar orderings are also needed by term rewriting systems to
ensure their termination [92, 107].

Mapping of Yarn to Concerns. To be able to take the dependencies of a
Yarn for correct weaving into account, each Yarn must be mapped to a
concern h ∈ H. We additionally map each control location to a program
concern—and all control locations of a given Yarn map to the concern of
the Yarn. The function H(l) ∈ H provides the concern to which a control
location l ∈ L belongs to. We add an attribute to each control location l ∈ L
to easily identify this mapping: l.h = H(l) ∈ H.

4.2.2 Role of Labeling

We now motivate and discuss the role of labeling the positions in the control
flow of an analysis task to end up in an effective program analysis procedure.
Two factors are essential: (1) It should be possible to compose programs that
take advantage of the full Turing completeness of the underlying program-
ming language—which arises from conditional (backward) jumps to other
positions. Moreover, (2) it must be possible to identify common positions in
the control-flow to allow for joining the state space back after branching—if
this does not affect the soundness of the analysis unintentionally.

Path Explosion Problem. The language L(P) of a program P is the set of
sequences of program operations that can be constructed syntactically by
traversing its control-flow automaton—see Sect. 2.1.4 for more details. Such
a language can consist of infinitely long and exponentially (in the number
of branchings) many words: This reflects the path explosion problem [48, 175],
which is one of the problems that make model checking hard. To not sacri-
fice completeness (by not considering all possible execution traces), the state
space that has to be explored should be merged [175] from time to time.

To identifying common points in the control flow of the system under analy-
sis, we require that the Yarn that is emitted by an analysis for weaving is
enriched with control locations: Given a sequence o = 〈op1, . . . ,opn〉 ∈ Op∗

of program operations, we can label each operation opi within this sequence
with a control location li ∈ L that is reached after executing the operation.
The analysis can then merge two abstract states if they belong to the same
control location (same labeling), which is the case at positions where the
control flow merges. Joining abstract states, for that the control flow of the
analysis task does not join, would sacrifice soundness: Information from the
control transition relation is lost.

Proposition 10. Merging two abstract states affects soundness, that is, it can
lead to wrong statements about the program under analysis if they map to
different control locations. l0

l1

l2

l3

l4

l5 l6

a

b

e

c

e
d

f

Figure 15: Split and join
Proof. The correctness of the proposition follows from the well-known need
of having a flow-sensitive program analysis (and also from the need of
having a path sensitive analysis). Take, for example, the control-flow rela-
tion Gb ⊂ L×Op× L that is illustrated in Fig. 15: The analysis must not
join the abstract states on control location l2 and location l3 since it would
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otherwise allow for a sequence of program operation o = 〈b, c, f〉 which is
not in the language original control-flow relation, that is, o 6∈ L(Ge).

The current control location, that is, the position in the control-flow re-
lation of the analysis task, is stored as part of each abstract state that the
software model checker constructs. It is precisely the control location l ′ ∈ L
that is reached after the program operation op ∈ Op on a control-flow
transition g = (l,op, l ′) ∈ G was conducted. Given an abstract compos-
ite state e = (l, . . .) and the control transition g based on that an abstract
successor state e ′ = (l ′, . . .) ∈ E is computed, that is, the transfer e

g
 e ′ is

conducted. Abstract state e ′, which is the result of applying operation op to
abstract state e, maps to the exit point l ′ of the control transition g as its cur-
rent control location. (Please note, that this also depends on the direction of
the program analysis: For a backward reachability analysis, the entry location
should get stored.) The model checker takes, apart from other information
that is tracked in abstract states, the stored control locations into account to
decide whether or not to merge the state space.

Example 6. Given the control-flow automaton in Fig. 15, a program analysis
constructs the following abstract reachability graph. The current control lo-
cation is stored along with each abstract state and is used to decide whether
or not to merge the abstract state space:

(l0, . . .)

(l1, . . .)

(l2, . . .)

(l3, . . .)

(l4, . . .)

(l5, . . .)

(l5, . . .)

merge (l5, . . .) (l6, . . .)

a

b

e

e

c

d

f

Fresh Control Locations. Despite the importance of having and knowing
common control locations, it is sometimes important—to not make wrong
statements about the system to analyze—to assign control locations that are
guaranteed to not having been used before in the control flow of the analysis
task. We use the notion of fresh control locations:122

l# = fresh()
Definition 53: Fresh Control Location

A control locations is a fresh control location l#—with respect to a given
analysis task, which is represented by a program P—if it has not been
used before for the given task, that is, l# 6∈ LP. Fresh control locations
are generated by the 0-ary and nondeterministic operator fresh → L

that returns a new control location l# ∈ L and marks it used for the
given program, that is, L ′

P
= LP ∪ {l#}. A consecutive sequence of k

calls to the operator fresh generates a set {l#1, . . . , l#k} ⊆ L of fresh
control locations.

Based on the concept of fresh control locations, we introduce an operator
for lifting a sequence of program operations to an equivalent sequence of
control-flow transitions:
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Definition 54: Lifting to Control Transitions

The operator liftG : Op∗ → 2L×Op×L lifts a given finite sequence of
program operations to a sequence of control transitions. Given the se-
quence o = 〈op1, . . . ,opn〉, the operator returns the ordered set of con-
trol transitions {(l0,op1, l1), . . . , (ln−1,opn, ln)}, where each control
location li = fresh() is a fresh control location. The operator extends
naturally to sets of sequences of program operations.

We define a separate operator that creates Yarn from a given set of se-
quences of program operations for a given concern:

Definition 55: Lifting to Yarn

The operator liftY : H× 2Op∗ → Y lifts a given set of finite sequences
of program operations ô = {o1, . . . ,on} for a given program concern h
to a Yarn. The resulting Yarn y = (h,Gy,Len,Lex) is created from the
control flow transitions Gy =

⋃
o∈ô liftG(o) that are lifted from the set

of sequences of program operations, and the set of entry locations Len

and exit locations Lex that correspond to the first, respective last, con-
trol locations in the created sequences of control transitions.

Proposition 11. Transforming a set of sequences of program operations ô ⊆
Op∗ into a control transition relation Gô by assign fresh control locations
along each sequence o ∈ ô produces an equivalent result, that is, L(Gô) = ô,
with Gô =

⋃
o∈ô liftG(o), where a different sequence of operations o results

in a different sequence of control location.

Proof. For each sequence of program operations o a new fresh initial control
location l0 = fresh() is generated. We denote this set of initial control loca-
tions by L0. A control transition relation with a set of initial control locations
can be transformed into one with a single initial control location by gener-
ating a fresh control location l00 = fresh(), and by adding neutral control
transitions (with the neutral program operation nop) from there to each of
the control locations in the set L0. The language L(Gx) of a control transition
relation Gx ⊆ L×Op×L is the set of sequences of control transitions that are
well-founded, that is, each sequence starts the initial control location. Each
sequence of control transitions can be projected to a sequence of program op-
erations. The transformation from sets of sequences of program operations
to the control transition relation ensures that the control locations that are
generated for one sequence o ∈ ô are disjoint to all locations that are gener-
ated for one of the other sequences in the set. That is, a transition (l,op, l ′)
can only reach a location l ′ that was generated for the sequence of operations
that it represents. The construction process ensures, that for each sequence of
program operations 〈op1, . . . ,opn〉 also a corresponding sequence of control
transitions {(l0,op1, l1), (l1,op2, l2), . . . , (ln−1,opn, ln)} is created.
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From previous considerations, we derive the following definition:

Definition 56: Sound Labeling

Transforming a given set of sequences of program operations—
denoted by the language L1 ⊆ Op∞—into a control-transition rela-
tion G2 ⊆ L × Op × L must maintain the language, that is, it must
hold that L(G2) = L1. A labeling of control locations that satisfies
this requirement is called sound.

4.2.3 Yarn Composition

So far, we have discussed that an analysis can emit Yarn to compose into the
control transition relation of the analysis task. Providing Yarn with labeled
program operations helps to identify common positions in the correspond-
ing control flows, and thus allows to merge the abstract state space at these
points—to mitigate the path explosion problem.

Based on the sequences of program operations that have been observed
so far (and possibly based on a lookahead), several analyses can provide
Yarn for weaving: The resulting transition relation, of the analysis task, is
composed of Yarn for different concerns, with dependencies to each other.
Each analysis that emits Yarn can ensure only the consistency of the labeling123

Consistency of Labeling it provides. Consistency of labeling among different concerns is not ensured—
typically, one analysis provides Yarn for one concern.

Yarn Composition by Weaving. Before we continue to discuss which labeling
of control locations is chosen for composing Yarn for different concerns, we
describe how composition by weaving is conducted.

Definition 57: Inserting Yarn

An analysis emits Yarn y = (h,Gy,Len,Lex) for weaving after observ-
ing a sequence σ̄ = 〈(l0,op1, l1), . . . (ln−1,opn, ln)〉 of control-flow
transitions and corresponding program operations and in the pres-
ence of a matching lookahead σ̂. Weaving of Yarn y is conducted by
redirecting the control flow: Instead of conducting the transfer to con-
trol location ln, the flow is redirected to the set of entry locations Len,
and from the exit locations Lex back to control location ln.

Whether or not weaving Yarn affects the control flow of the transition sys-
tem of the analysis task in an unexpected way is determined by the labeling
of the control locations:

Definition 58: Sound Weaving

Weaving Yarn with an unspecified labeling of control locations is
called sound if it results in a control-transition relation G1 with the
same language than weaving the Yarn with a fresh labeling, resulting
in a control-flow relation G2, that is, L(G1) = L(G2).
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Compound Control Locations. Which labeling is needed to identify common
points in the composition result while maintaining a sound weaving result?
Consider the following example:

l7

l8

l9

l10

s

t

u

v

Figure 16: Yarn to weave

Example 7. Take the control-flow automaton CFAh that is illustrated in
Fig. 16 and its transition relation Gh to compose by weaving on the tran-
sition relation Gb of the control-flow automaton CFAb that is illustrated in
Fig. 15 as the base. The transitions of Gh should be added just before each
control transition e→ of the base transition relation Gb. The labels for tran-
sitions of Gb are from the interval [l0, . . . , l6], and the labels for Gh are
from [l7, . . . , l10], that is, the intervals are disjoint and each label is unique
among the two transition relations. Nevertheless, producing Yarn based on
disjoint sets of labels does not guarantee a sound composition of two transi-
tion relations; we (would) get the following result:
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The composition is unsound because, for example, the word 〈a, t, v, e, d, f〉
is in the language of the composed transition relation. The transition rela-
tion Gh is woven two times, at two control locations {l1, l2} to the control-
flow of the analysis task. Weaving is conducted in the context on two dif-
ferent sets of program traces {〈a〉} and {〈b〉} that have been observed until
reaching the respective weaving location.

Another example illustrates the problem of assigning fresh labels only:

Example 8. In this example, we compose the control flows as out-
lined in Example 7, except that we assign fresh labels to the
Yarn to compose. Composing the two transition relations by weav-
ing with a fresh labeling of control locations results in an analysis
task with the control-flow relation G× and the language L(G×) =

{〈a, s, u, e, c, f〉, 〈a, t, v, e, c, f〉, 〈b, s, u, e, d, f〉, 〈b, t, v, e, d, f〉}:

l0

l1 l8 l9 l10 l11 l12

l2 l3 l4 l5 l6

l13 l14 l15 l16 l17 l18

l20 l21 l22 l23 l24
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t v e d f

b

We can see that the analysis cannot merge the state space because each con-
trol location in the resulting transition system has assigned a fresh label.
Information on common points in the control flow of the original transition
relation is lost.
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Inserting a sequence of program transitions with fresh control locations
does not affect soundness, but can lead to a path explosion. To mitigate the
path explosion problem and ensure the soundness of the analysis of the composed
transition relation, we have to provide a labeling for identifying common posi-
tions in the composed transition relation.

Our proposed solution is to create compound control locations to end
up in a result that is in the sweet spot of sound weaving and an efficient
state-space exploration that does not jeopardize completeness of the analysis
procedure. Before weaving Yarn of a given concern, the Yarn is re-labeled
with compound control locations:

Definition 59: Compound Yarn Operator o#

The compound Yarn operator o# : Y × L → Y creates a new
Yarn with all control locations compound with a given control
location. Given an Yarn y = (h,Gy,Len,Lex) and a control loca-
tion lc ∈ L to compose with, the operator returns the Yarn y ′ =

(h, {((lc, l),op, (lc, l ′)) | (l,op, l ′) ∈ G}, {lc} × Len, {lc} × Lex) ∈ Y. The
application of the operator is written either infix yo lc or in prefix
notation o(y, lc).

Proposition 12. Creating compound Yarn with the operator o# maintains
the language of the original Yarn, that is

L(y ′) =
⋃
lc∈L

L(yo lc).

Proof. Let y1 = (h,G1,Len1,Lex1) and y2 = (h,G2,Len2,Lex2) be two Yarns
with y2 = y1 o# lc. We have to show that each sequence of program op-
erations o ∈ L(y1) is in L(y2), and there is no sequence in L(y2) that is
not in L(y1). The construction process guarantees that for each entry loca-
tion of Yarn y1, there is a corresponding entry location (lc, l) in the set of
entry locations of Yarn y2. Furthermore, it guarantees that for each entry
location (lc, l) there is a corresponding location l in the set Len1. The same
applies to the set of exit locations. This also applies for the set of control-
flow transitions: There is no control transition ((lc, l),op, (lc, l ′)) ∈ G2 for
that exists no transition (l,op, l ′) ∈ G1, and the other way around.

For each sequence of program operations o = 〈op1, . . .〉 ∈ L(y) ex-
ists, by construction, a sequence 〈(l,op1, l ′), . . .〉 of control transition that
is well-founded in the transition relation Gy of a Yarn y. Since each tran-
sition (l,op, l ′) ∈ G1 was transformed to ((lc, l),op, (lc, l ′)) ∈ G2 also
each sequence of control transitions 〈(l0,op1, l1), (l1,op2, l2), . . .〉 that is well-
founded in the transition relation G1 has a corresponding well-founded se-
quence 〈((lc, l0),op1, (lc, l1)), ((lc, l1),op2, (lc, l2)), . . .〉 in the transition rela-
tion G2. The sequences of program operations are maintained.

Following examples illustrate the creation and use of compound Yarn:

Example 9. Given the Yarn y1 = (·,Gy, {l1}, {l3}), with Gy = {(l1,opa, l2),
(l2,opb, l3)}), that represents the following transition relation:
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l1 l2 l3
opa opb

A composition of y1 with control location l5, that is, y1 o# l5, results in a
new Yarn that represents following transition relation:

(l5, l1) (l5, l2) (l5, l3)
opa opb

Example 10. We now compose the control flows similar as in Example 7, ex-
cept that we use compound control locations. To weave the transition l7

s→l8
on location l1 ∈ L, we create the control transition (l7)

s→(l1, l8). The result
is the following transition system:
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Context. An analysis emits Yarn for weaving after observing a sequence
of program operations τ̄ = 〈op1, . . . ,opn〉 from a corresponding se-
quence 〈(l0,op1, l1), . . . , (ln−1,opn, ln)〉 of control transitions, which we call
the context. The analysis expects that the Yarn is woven by redirecting the
control flow from location ln to the entry locations of the given Yarn. The
weaving and composition process must ensure that the transitions from the
emitted Yarn are only reachable if the context is satisfied, that is, exactly
after traversing along the sequence of program operations described by τ̄.

The labeling of the control locations of the Yarn to weave determines
whether it can be reached for the given context only. One approach to end
up in such a labeling of Yarn is to create a compound Yarn with a fresh
control location. We define a separate operator for this purpose:

Definition 60: Relabeling Operator �#

Given a Yarn y, the unary Yarn relabeling operator �# : Y → Y

produces a new Yarn for that all control locations are replaced by
control locations that have not yet been used in the transition relation
of an analysis task while maintaining the structure of the transition
relation. A call �#(y) returns a new Yarn y ′ = yo l# for that all control
locations are compound with a fresh control location l# = fresh(). The
operator ensures that the language is preserved, that is, L(y) = L(y ′).

Proposition 13. Creating a compound Yarn yx = y o# lc from a Yarn y

for weaving it into the transition relation in a context τ̄ is sound if the con-
trol location lc to compose with uniquely identifies the context τ̄. Note that
different (fresh) control locations (labels) can identify the same context.
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Proof. To show soundness of composition by weaving, we will show—
according to Def. 124—that composing Yarn y with freshly labeled control
locations yields the same language of the analysis task than weaving the
compound Yarn yo# lc, where the control location lc uniquely identifies the
context τ̄ (and nothing else). The effect of weaving such a compound Yarn is
clear: (1) The entry locations of the Yarn are only reachable in the presence
of the context. Moreover, (2) none of the transitions of the compound Yarn

can enter a control location that is not composed with the context identi-
fier (it would otherwise not be part of the Yarn), that is, no control locations
outside the compound Yarn are reachable.

4.2.4 Identification of Cycles

A program that is written in a Turing-complete programming language can
contain loops, and its language can consist of infinitely long program traces.
A model checking procedure has to be able to identify loop heads to com-
pute abstractions that overapproximate their behavior to end up with a finite
model of the program.124

Loop Head A loop head is a control location l� ∈ L from that a sequence of control tran-
sitions can appear (syntactically) infinitely often on a program control path.
We assume that any recursion is eliminated and replaced by a semantically
equivalent loop. We require that each loop head l� ∈ L that is emitted as part
of Yarn to weave has an attribute l.loophead ∈ B set that marks it as such,
that is, l�.loophead = true. The set of all loop heads is denoted by L� ⊆ L.
Different established algorithms for identifying loop heads of programs [28,
157, 220] can be applied.

4.2.5 Traversal Order

A program analysis algorithm is guided by a traversal strategy that de-
fines which abstract state to explore next, that is, how to traverse the state
space. Depending on the objective of an analysis, a different traversal strat-
egy might be preferred: Is the goal to identify bugs early, or to arrive at a
coverage of the state space fast?

For software model checking and data-flow analysis we typically use a
wait-at-meet traversal strategy [78]: Given a control location lm, all abstract
states that belong to its predecessor locations should be explored first before
abstract states for lm are explored. See Fig. 17 for an illustration of this sce-
nario. An analysis can merge two abstract states if there is either (1) no suc-

lm

l1

...

ln

Figure 17: Wait at meet

cessor state for both of them in the set of reached states, or (2) if it removes
already computed successor states from the set of reached states. Explor-
ing the state space based on the wait-at-meet order allows merging abstract
states while avoiding to discard already computed abstract states, and with
it not to waste spent computing resources.

The traversal strategy of the CPA algorithm is configured by providing
an implementation of the operator choose—see Sect. 2.5.1 for more details.
Typically, we implement the wait-at-meet strategy by assigning a wait-at-
meet order number l.wmo ∈ Z to each control location l ∈ L in the transition
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relation of the system to analyze. Ordering all control locations in reverse
post-order [78] is one approach for ending up in a wait-at-meet order. 125

Lexicographical Ordering
of Control LocationsComposing additional control transitions to a transition system invali-

dates an existing wait-at-meet ordering. We solve this issue trivially by
using a compound wait-at-meet ordering: Given a compound location l×
that is composed of a sequence 〈l1, . . . , ln〉 of control locations, we as-
sign l×.wmo = (l1.wmo, . . . , ln.wmo) ∈ Z1 × . . .×Zn. Please note, that also
a non-compound control location can be considered to be a compound lo-
cation, composed of only one control location. The wait-at-meet ordering of
compound control locations is then lexicographical.

4.2.6 Pure Yarn

Some control locations that can be found along a transition relation of an
analysis task have special semantics. For example, target locations that signal 126

Target Locations
and Bottom Locationsthe violation of a set of properties when being reached. Another example

are bottom locations on that the state-space traversal should stop—caused, for
example, by specific system calls (program operations) that cause the process
to terminate immediately. This type of location is of particular importance
for analyses that have to signal that a special analysis state is reached when
arriving at particular control locations in the emitted Yarn.

To signal target locations, we map a set of properties to each control loca-
tion of an analysis task: We assign the attribute l.violated ⊆ S to each control
location l ∈ L, which corresponds to the map violated : L → 2S of control
locations to violated properties. To signal that a given control location l is a
bottom location, we assign the attribute l.bottom ∈ B, which corresponds to
the function bottom : L→ B. A bottom location is also denoted by l⊥.

The information from control locations can be transformed into informa-
tion on the labels of transitions between control locations. For example,
the transition relation l1

op1→ l2, with l2.bottom = true, can be transformed
into l1

op1→ l3
op2→ l4, where program operation op2 signals that the bottom lo-

cation has been reached. We call this transformation purification:

Definition 61: Yarn Purification
Purifying a Yarn denotes the process of transforming a given Yarn

by moving all special semantics from control locations into the labels
of transitions between control locations. Purification is implemented
by the operator pure : Y → Y which takes a Yarn y as input and
produces a pure Yarn y ′ as output.

4.2.7 Yarn Language

We now take the language-theoretic perspective on Yarn, define what the
language of a Yarn is, and provide different operators to deal with different
Yarn and their languages. We assume that each Yarn that is provided as one 127

On Pure Yarnof the arguments of the different operators is pure. Similar to the language of
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control-flow automaton and its transition relation, the language of a Yarn is
a set of sequences of program operations:

Definition 62: Yarn Language

The language of a given Yarn y = (h,Gy,Len,Lex) is the set L(y) ⊆ Op∞
of sequences of program operations that start in one of the control
locations in Len ⊆ L and that are well-founded in the control transition
relation Gy ⊆ L × Op × L. The language L(y) consists of the set of
finite sequences and countable infinite sequences of program operations
that terminate in one of the exit locations Lex, and the set of infinite
sequences of program operations that, by definition, never terminate
in one of the exit locations.

The operators {o#, ◦#,d#,∪#} that we introduce in the following have the
subscript # to signals that they provide functionality for manipulating, con-
structing, or weaving Yarn. We omit the subscript if the meaning is clear
from the context.

Concatenation. A central operation to deal with words is their concatenation.
We also provide this operation for pairs of Yarn, which is their sequential
composition, and with it, the concatenation of the words of their languages.

Definition 63: Yarn Concatenation ◦#

The concatenation of two Yarn y1 and y2 is a binary associative oper-
ator ◦# : Y×Y → Y. The result of concatenating the two Yarn is a
new Yarn y◦ = y1 ◦ y2 with the language

L(y◦) = L(y1 ◦ y2) =
⋃
∀o1∈L(y1)∀o2∈L(y2) { o1 ◦ o2 }.

Please note that the set of exit locations Lex of a Yarn must never be
empty. Nevertheless, the set might contain bottom locations to signal that the
program—or at least the state space exploration—terminates at that point.
Control transitions that follow are ignored by the analysis.

Example 11. Let y1 be the Yarn that was defined for Example 9 on page 78.
The concatenation of y1 ◦# y1 results in a new Yarn y× with the following
transition relation:

l1 l2 l3 (l3, l2) (l3, l3)
opa opb opa opb

Epsilon Yarn. Concatenation is the binary and associative operator of the
free monoid of the set of words over a particular alphabet. The third com-
ponent of a free monoid is its identity element, also known as the neutral
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element. The epsilon Yarn takes this role, and is the neutral element regard-
ing concatenation:

Definition 64: Epsilon Yarn y∅

The epsilon Yarn y∅ = (h⊥, {(lε,nop, l ′ε)}, {lε}, {l ′ε}) ∈ Y consists of one
control transition only: a transition that is labeled with nop, which
means that the transition does not affect the semantics of the con-
trol flow—it is dual to an ε-move in an ε-NFA. All control locations
that are connected by such nop-transitions are considered to be in the
same equivalence class, that is, active at the same time: Temporal prop-
erties are not affected by the introduction of nop-transitions. The Yarn

y∅ is assigned to the h⊥ program concern, that is, it has the highest
priority in the weaving process.

Language Union. A Yarn that has the union of the languages of two given
Yarn as its language becomes constructed by the Yarn union operator:

Definition 65: Yarn Union ∪#

The union of two Yarn y1 and y2 is denoted by the function ∪# :

Y×Y→ Y. We define the operator as

∪#(y1, y2) = �#(y1) d# �#(y2).

The join y∪ = y1 ∪ y2 of two Yarn y1 and y2 results in the union of
their respective languages, that is,

L(y∪) = L(y1 ∪# y2) = L(y1)∪L(y2).

The operator extends to sets of Yarn naturally.

4.2.8 Yarn Domain

A Yarn is an abstract word that represents a set of sequences of program
operations—its language. We now introduce a Yarn domain to describe the
relationship between different Yarns; it is an abstract word domain with
Yarns as its abstract elements to provide a mapping between these abstract
elements and sets of concrete words. See Sect. 3.1 for the general discussion
on abstract words and abstract word domains.

One Yarn y, which is an abstract word, denotes [[y]] ⊆ Op∞ a prefix-closed
set of sequences of program operations. The Yarn domain describes the
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mapping between Yarns and the denoted sets of sequences of program op-
erations, and describes the relationship between different Yarns:

Definition 66: Yarn Domain
The Yarn domain is an abstract word domain that describes the re-
lationship between different Yarns and provides means to map be-
tween Yarns and sets of sequences of program operations. This ab-
stract domain is defined by the tuple DY = (pr(Op∞), ...

Y, [[·]], 〈〈·〉〉). The
concrete words to map to are described by the prefix lattice pr(Op∞),
which defines the relationship between different sequences of pro-
gram operations and is used to form prefix-closed sets of those based
on a powerset lattice. The semantic denotation function [[·]] : Y→ 2Op∞
maps a given Yarn y to the denoted set of sequences of program
operations. The abstraction function 〈〈·〉〉 : 2Op∞ → Y creates Yarn

from a given set of sequences of program operations. The Yarn lat-
tice

...
Y = (Y,v,u,t,>,⊥) describes the relationship between different

Yarns. A pair of Yarns is in the inclusion relation (y1, y2) ∈v if and
only if [[y1]] ⊆ [[y2]]. See Sect. 3.1.2 for the general discussion of ab-
stract word domains. We assume that information about the program
concern is encoded along with each sequence of program operations.

4.3 loom

This section introduces the Loom, an analysis to compose the control tran-
sition relation of the system to analyze. Any analysis component that is
executed along with the Loom can provide Yarn, that is, control transitions
to compose by weaving. The Loom can be used to either compose the con-
trol transition relation of the analysis task before the actual program analysis
algorithm is executed, or to compose or alter the control flow on-the-fly, that
is, during the analysis or verification process.

Definition 67: Loom
The Loom is a program analysis for composing the control transition
relation of an analysis task by weaving, from different sources that
provide Yarn to weave for different concerns.

The Loom analysis provides the labels for transitions between states, that is,128

Labeling of Transitions it is the analysis component for constructing a labeled transition system [215],
or labeled Kripke structure [60]. Given an abstract state, the Loom determines
the list of control transitions to encode next to end up in a set of successor
states. In the case of model checking, where the goal is to give (proof the
satisfaction of) certain guarantees, the weaving process has to ensure to not
unintentionally alter the semantics of the system under analysis. An analysis
of the Yarn to weave can be used [158] to guarantee that desired temporal
properties are preserved, for example, if the Yarn is spectative [158], which
is typically the case for temporal specifications to weave.



4.3 loom 85

The Loom analysis composes Yarn to weave on top of an initial control
flow relation—for example, the control-flow automaton that represents the
program that was initially provided to the verification tool as an argument. 129

Initial Transition RelationThis weaving process results in the control flow relation of the analysis task.
Transitions of the initial control flow relation have priority only if no analysis
component would have provided Yarn to weave. Transitions of the initial
control flow have the lowest priority in the weaving process, that is, the top
concern h> ∈ H is mapped to them—see Sect. 4.2.1 for a discussion of the
priority of concerns in the weaving process.

4.3.1 Composition Periods

The Loom analysis can compose a syntactic task model—of an analysis task,
which is a program—in different periods of an analysis workflow. We distin-
guish between three distinct periods:

Definition 68: Offline Composition

The traditional approach for automatically composing a program
from different, more or less structured, program fragments is offline
composition: Additional functionality is instrumented into a base pro-
gram in a separate process—the result is a fully composed program that
can then be handed over to another process, for example, an analysis
tool or an execution environment, as an argument.

Definition 69: Upstream Composition

We say that a composition approach operates in the upstream if (1) the
composition is finished before the actual interpretation of the composi-
tion result is conducted, and (2) it takes place in the same instance of
an analysis tool, interpreter, or virtual machine.

Definition 70: On-The-Fly Composition

A composition approach operates on-the-fly if the composition is inter-
leaved with the interpretation of the composition result: The interpre-
tation of the composition result can influence the ongoing composi-
tion process and vice versa.

If conducted on-the-fly, Yarn to weave is introduced into the control flow
of the system to analyze during the analysis step, that is, while computing
the abstract successor states in the transfer relation of the analysis. This ap-
proach (1) provides more flexibility in choosing from an encoding of the
Yarn to weave that fits the needs of the current situation best. Furthermore,
(2) it can help to reduce the number of transitions to weave by taking the
current context of the analysis into account, it (3) helps to avoid costs for
static weaving during the initialization step of the analysis tool, and (4) it en-
ables new analysis approaches, for example, in the context of multi-property
verification, model-driven test generation, program synthesis [186], and pre-
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cision synthesis. In our work that presented [8] the initial version of the
Loom analysis, we utilize the concept of dynamic precision adjustment and
lazy abstraction to enable or disable weaving particular sequences of pro-
gram operations for specific parts of the abstract state space dynamically.
If applied for scenarios with a lot to weave—for example, in model-driven
test generation where we have to weave potentially thousands of test goals,
or in multi-property verification [8]—weaving everything into the program
code introduces a lot of noise in the program, especially in cases where only
a subset of the woven transitions is relevant for the reasoning task at hand.
This adds another burden to the precision refinement procedure, makes calls
to the SMT solver more expensive, and makes the program-comprehension
task for users the tool harder [8].

Different program analysis techniques are applicable independent of the
chosen point of time of composition by weaving: Irrelevant transitions can
always be ignored later by slicing [150] or abstraction techniques [15, 35, 67].
Such techniques can, for example, be triggered in the precision refinement
phase of a model checker. A domain-type [7] analysis can be conducted on
woven transitions to make the subsequent analysis step more efficient.

4.3.2 Delayed Weaving of Yarn

Several analysis components are executed along with the Loom, and each
of them can provide Yarn to weave. The Loom guarantees to consume and
weave every Yarn that is provided by any of these analysis components.
Each analysis that provides Yarn to weave can rely on this guarantee and,
for example, pass on information based on the Yarn to other analysis steps
or components to keep the overall analysis sound. The Loom might not nec-
essarily weave a given Yarn already when determining the next abstract suc-
cessor state because other analysis components might have provided Yarn

to weave as well. The Loom analysis maintains a priority queue of Yarn to
compose by weaving in each of its abstract states, for each control location;
priorities are defined based on the concern dependency graph. The follow-
ing example illustrates how dependencies influence the weaving process:

Example 12. In this scenario, dependencies between concerns have to be
taken into account to decide which control transition to weave next to the
transition relation of the analysis task. The component analyses provide
Yarn to weave as part of an abstract state e1:

. . . e1 = (li, . . . , y1, . . . , y2, . . .)

The Yarn y1 = (h1, {(ls, a, lt)}, . . .) is emitted for concern h1 and Yarn

y2 = (h2, {(lk, b, lm)}, . . .) for the concern h2. The Loom has to decided
which Yarn to weave first on location l1 ∈ L; it does so by taking a
concern dependency graph H with the concern dependency relation η =

{(h1,h>), (h2,h>), (h2,h1), (h⊥,h1), (h⊥,h2)} into account—the left-hand
side in the binary relation has higher priority in the weaving process. That
is, Yarn y2 becomes woven prior to the Yarn y1 since (h2,h1) ∈ η:

. . . e1 = (li, . . . , y1, . . . , y2, . . .) ((li, lk), . . .) ((li, ls), . . .) . . .
b a
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4.3.3 Lookahead

Certain program analyses—for example, the Yarn transducer analysis that
we present in Sect. 4.4.4—perform a lookahead in the control transition rela-
tion to conduct their analysis. The depth ` ∈ N0 of a lookahead determines
how many transitions (labeled with program operations) ahead of the cur-
rent position in the transition relation an analysis component can take into
account to decide which action to perform. For example, to emit Yarn that
checks if the arguments that are passed to a function satisfy certain require-
ments, or to replace certain program operations—which is not addressed in
this work further. The possibility of conducting a lookahead allows us to in-
troduce Yarn before or between a particular sequence of program operations.

A lookahead on the Yarn that should be woven next is only possible if it
is available for a lookahead before it becomes actually introduced into the
transition relation of the analysis task. This is possible by taking advantage
of the Loom’s possibility to delay the weaving process to build up a queue of
control transitions to weave and perform the lookahead on them. In the case
that already the initial control flow relation represents the fully composed
analysis task, lookaheads of arbitrary length are possible without relying
on further techniques. In the case transitions from additive Yarn can be
composed into the transition relation, we need mechanisms to also include
those transitions for lookaheads. We limit our discussions of the Loom to a
lookahead of depth ` = 1 and additive Yarn only.

To delay the weaving of Yarn, we can introduce a neutral ε-transition
before and immediately after each abstract state (of the Loom analysis) for
that Yarn was emitted to weave. That is, given a control location l ∈ L,
proceeding along the transitions {g | (l, ·, l ′) ∈ G } that leave location l is
delayed until no more additional Yarn becomes emitted for composition on
control location l. This approach is sufficient for our needs, that is, for a
lookahead of depth ` = 1.

4.3.4 Loom Analysis

After we have discussed the general functionality of the Loom in the preced-
ing sections, we now describe our Loom analysis in full detail. We formalize
the Loom analysis as a Configurable Program Analysis [31, 32] that takes
the Yarns to weave from other analyses that run in parallel in terms of com-
ponent analyses—see Sect. 2.5.3 for details on composite analyses. 130

Different RealizationsIn this work—compared to the paper [8] in that we presented a first proto-
type of a Loom analysis—the analysis combines tracking the current control
location in the transition relation of the analysis task with the weaving func-
tionality. Keeping track of the current control location is traditionally the
functionality of a separate Location CPA [31]. This design choice was made
because of the strong coupling of these two concerns within a tool for pro-
gram analysis. The Loom analysis conducts its weaving by redirecting the
analysis flow to other, or newly introduced, control locations—see Def. 124.
An example that illustrates the weaving process, as conducted by the Loom

analysis, is provided in Fig. 18.
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. . . eb = (lb , . . . , (. . . ,y1), (. . . ,y2))
opb

. . . lb lc . . .

(lb , ls) (lb , lz)

(lb , lu) (lb , lw)

opb opc

opz

opw

(a) Abstract state eb is a successor state for the control transition
opb→ lb. Yarn was emit-

ted for composition by weaving on location lb by two analysis components: Yarn

y1 = (h1, {(ls,opz, lz)}, . . .) and y2 = (h2, {(lu,opw, lw)}, . . .). The Loom’s transfer re-
lation introduces composed transitions into the transition relation G of the analysis task:
G ′ = G∪ {((lb, ls),opz, (lb, lz)), ((lb, lu),opw, (lb, lw))}.

. . . e′b = ((lb , ls), . . .)
opb

. . . lb lc . . .

(lb , ls) (lb , lz)

(lb , lu) (lb , lw)

opb

opc

opz

opw

(b) Since there were two Yarns emitted for weaving on location lb, the Loom has to take the
concern dependency graph into account to choose which one to weave first, and decides
to continue on the compound control location (lb, ls). The Loom analysis redirects the
control flow to location (lb, ls) by strengthening state eb, ending up in state e ′b.

. . . e′b ec = ((lb , lz), . . .) e′c = ((lb , lu), . . .)
opb opz

. . . lb lc . . .

(lb , ls)

(lb , lu) (lb , lw)

opb

opc

opz
opw

(c) When reaching control location (lb, lz), no successor locations are specified in the transi-
tion relation. The Loom analysis comes into play: There are still transitions to add before
location lb. Abstract state ec gets strengthened, which results in state e ′c, such that the
analysis continues on the compound control location (lb, lu).

. . . e′b e′z e′ze ew = ((lb , lw), . . .) e′w = (lb , . . .)
opb opz ε opw

. . . lb lc . . .

(lb , ls)

(lb , lu)

opb

opc

opz

opw

(d) No control transition immediately follows (lb, lw) and no further transitions where pro-
vided to compose on lb. The analysis thus decides to strengthen ew, ending up in state e ′w,
with a redirect to lb.

Figure 18: An example to illustrate composition by weaving with the Loom.

Loom CPA L#. We implement the Loom as a Configurable Program Analy-
sis (CPA) [32] that wraps other CPAs—similar to a composite CPA [31]. The
Loom CPA L# = (W,DL# , L# ,mergeL# , stopL# , precL# , targetL#) is defined by
the following components and operators:



4.3 loom 89

Algorithm 4 CollectCompound(Min,Gin)

Input: A set of Loom states Min ∈M,
and a transition relation Gin ⊆ G.

Output: A pair (Mout,Gout)

1: Mout = ∅
2: Gout = Gin
3: for m = (l, lo, ξ,w) ∈Min do
4: // Extract all Yarn from w and create a compound version of it.
5: Y× = { yo l | y ∈ collect(w) }
6: // In case a lookahead is needed, add additional Yarn that
7: // inserts an ε-transition before new transitions.
8: if Y× 6= ∅ then
9: Y× = Y× ∪ {y∅ o l}

10: // Enqueue the compound Yarn for weaving on location l.
11: ξ ′ = ξ∪ { (l, len) | len ∈ y.Len ∧ y ∈ Y× }

12: // Add the compound Yarn to the resulting transition relation.
13: Gout = Gout ∪

⋃
(h,Gy,...)∈Y× Gy

14: // Add a modified version of the loom state to result.
15: Mout =Mout ∪ { (l, lo, ξ ′,w) }
16: return (Mout,Gout)

Wrapped CPA W. The first component of our Loom CPA is the Configurable
Program Analysis W that is wrapped by the Loom CPA. This wrapped analy-
sis can be composed from yet other analyses. The Loom CPA delegates calls
to this CPA if appropriate.

Abstract Domain DL# . The abstract domain DL# = (C,E, [[·]], 〈〈·〉〉) defines how
information that is relevant for traversing and composing a control transition
relation is encoded. The semi-lattice E defines the relationship between the
abstract Loom states M = (L× L× 2L×L)×W. One abstract Loom state m =

(lc, lo, ξ,w) ∈ M consists of the current control location lc, a redirect origin
location lo from that the Loom has redirected the analysis (lc is equal to lo if
there was no redirect), a remaining redirects relation ξ, and a wrapped abstract
state w that is element of the lattice W of the wrapped CPA W—typically a
composite CPA [31]. Abstract Loom states always refer to control locations
and control transitions of the transition relation that reflects the composed
analysis task. The semi-lattice E = (M,v,t,⊥) is a tuple that consists of
the set of abstract Loom states M, an inclusion relation v, a join operator t,
and a bottom element ⊥. The inclusion relation v⊆ M×M defines which
abstract Loom state overapproximates (includes) which other Loom state.
Two Loom states m1 = (l1, l1o, ξ1,w1) and m2 = (l2, l2o, ξ2,w2) are in the
inclusion relation (m1,m2) ∈ v if and only if l1 = l2 and ξ1 = ξ2 and
(w1,w2) ∈ vW. The join t : M×M → M defines the least upper bound of
two Loom states; its definition follows directly from the inclusion relation.
The denotation function [[·]] :M× 2C provides the set of concrete states that
are represented by an abstract Loom state. The abstraction function 〈〈·〉〉 :
2C →M transforms a set of concrete states to an abstract Loom state.

Operator  L# . The transfer relation  L# of the Loom analysis is the core
component for the process of composing the transition relation of the ana-
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lysis task by weaving. It invokes the transfer relation of the wrapped CPA—
possibly a Composite CPA. The transfer operation is divided in three phases:

1. Transfer. Given a Loom statem = (l, lo, ξ,w), the first phase determines
all transitions that leave control location l and computes a list of ab-
stract successor states m̂ ′ ⊆M for them. The set of control transitions131

Function outFrom that leave location l is defined by outFrom(l) = {g | g = (l,op, l ′) ∈ Gt}.
The transition control relation Gt describes the control flow of the ana-
lysis task that was composed up to this point in time.

We call the transfer relation of the wrapped analysis W to compute
successors for the wrapped abstract state w. We end up in the list of
successor Loom states m̂ ′ = 〈 (l ′, l ′, ξ,w ′) | g = (l, ·, l ′) ∈ outFrom(l)∧

w
g
 Wŵ

′ ∧w ′ ∈ ŵ ′ 〉. The transfer relation returns the empty list ∅ of132

Bottom Location successor states if the current control location l is a bottom location,
that is, l.bottom = true.

2. Collect. This phase creates compound Yarn from the Yarn that has been
emitted along with the successor states m̂ ′ and adds it to the transition
relation Gt of the analysis task. It extracts the Yarn to weave from
all states that are wrapped within any state in m̂ ′. From the set of
abstract Loom states m̂ ′ we derive a set m̂ ′′ of abstract Loom states
and update the control transition relation Gt of the analysis task. We133

Function collect use the function collect : E → 2Y that, given an abstract (composite)
state, returns all Yarn that can be found within it, that is, that was
emitted by one of the component analyses. Algorithm 4 illustrates the
process of deriving a new control transition relation and changed set
of Loom states m̂ ′′, that is, (m̂ ′′,G ′t) = CollectCompound(m̂ ′,Gt).
In case a lookahead—see Sec. 4.3.3—is needed, we introduce ε-moves
whenever additional yarn, for composition by weaving, was provided
in this analysis step.

3. Redirect. The next step is to determine the control-flow location from
that the next control transitions should be taken, which possibly leads
to a redirect to another control location, and with it, control transitions
that have possibly been composed to the transition relation in a previ-
ous phase of the operator, or a previous step of the state space explo-
ration algorithm.

The process of choosing the set of control locations to redirect to is
implemented in the algorithm ChooseRedirectTargets (Alg. 5). We use134

Function withPriority the function withPriority : 2L → 2L, which is implicitly parameterized
with a concern dependency graph H, to determine the set of con-
trol locations to proceed the state space traversal on. Given a set of
control locations Lc ⊂ L the function returns a subset of control lo-
cations Lr ⊆ Lc with the highest priority in the weaving process re-
garding the dependency graph H. Given a control location l, the func-135

Function compoundOn tion compoundOn : l → l returns the major control location lp in case
location l is a composite location l = (lp, lc), and returns the control
location l itself otherwise.
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Algorithm 5 ChooseRedirectTargets(l, ξ)

Input: A control location l ∈ L to redirect from,
a remaining redirects relation ξ ⊆ L× L

Output: A set of control locations Lt ∈ L to redirect to.

1: // Choose from locations to compose with l based on the
2: // priority that results from the concern dependency graph H.
3: Lr = withPriorityH(ξ(l))
4: if Lr 6= ∅ then
5: // There is no Yarn left to compose with location l.
6: return Lr
7: if compoundOn(l) = ⊥ then
8: // The location is not composed with any other locations.
9: return {l}

10: if outFrom(l) = ∅ then
11: // The location is composed with another location:
12: // Check for a redirect from there.
13: return ChooseRedirectTargets(compoundOn(l), ξ)
14: return ∅

Given the set of Loom states m̂ ′′ from the previous phase, we com-
pute a new set m̂ ′′′, for that the current control location of some of
the states might have been changed. Along with a change of the cur-
rent control locations lc, also the redirect origin location lo, and the
remaining redirects relation ξ might have been changed:

m̂ ′′′ = { (l ′, lc, ξ ′,w) | (lc, lo, ξ,w) ∈ m̂ ′′

∧ LR = ChooseRedirectTargets(lc, ξ)

∧ l ′ ∈ LR
∧ ξ ′ = ξ \ {lc, l ′} }

Please note, that the last two phases correspond the strengthening opera-
tor ↓L# that would be used if the Loom is implemented as a component CPA,
which is wrapped by a composite CPA—as this was the case in our paper [8]
that presented a first version of the Loom analysis.

Operator targetL# . Given a Loom statem = (l, lo, ξ,w) ∈M, with a wrapped
state w and the current control location l. The operator targetL# returns true
if and only if the current control location has assigned a non-empty set of
possibly violated properties, or if its wrapped state is a target state, that is:

targetL#((l,w)) = l.violated 6= ∅∨ targetW(w) = true

Operator mergeL# . The merge operator mergeL# determines to which ex-
tent information of two Loom states should get combined. Given a
call merge(e, r), the operator returns r if e.l = r.l, otherwise it delegates
the merge of the wrapped states ew and rw to the merge operator mergeW

of the wrapped CPA W, resulting in state e ′w; the operator mergeL# returns
state r if e ′w = rw, otherwise it returns (e.l, e.lo, e.ξ, e ′w).
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Operator stopL# . The coverage check stopL# : M× 2M → B determines if a
given Loom state is covered fully by a state that has already been reached.
That is, a call stopL#(m,R) returns true if and only if there exists a state r ∈ R
with r.l = m.l and stopW(w, {r.w | r ∈ R}) = true.

Operator precL# . The precision adjustment operator precL# just delegates the
precision adjustment of the wrapped state w to the precision adjustment
operator precW of the wrapped CPA W.
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4.4 yarn transducer

The Loom analysis composes the control-flow relation of the analysis task by
weaving Yarn that is provided by other analyses that run in parallel to—or as
component analyses of—the Loom analysis. In this section, we present Yarn

transducers and the corresponding Yarn transducer analysis as one possible
mechanism for providing Yarn to weave; the latter executes Yarn transducers
during an analysis run.

Definition 71: Yarn Transducer
A Yarn transducer (or y-transducer) is a transducer that emits Yarn

to weave based on the sequence of program operations that it has
observed so far—and possibly a lookahead of finite length on program
operations that follow. We instantiate an abstract transducer to work
as a Yarn transducer, which results in the tuple

Y = (Q,Din,Dout, ι0, F, δ).

The set of control states Q, the set of initial transducer states ι0, the set
of final control states F, and the transition relation δ have the mean-
ing that was defined for generic abstract transducers—see Sect. 3.2.
The abstract input domain and the abstract output domain define the
characteristics that are specific for Yarn transducers:

• Abstract Input Domain Din. The abstract input domain is an abstract
word domain Din = (fl(Op∗),

...
I , [[·]]in, 〈〈·〉〉in), with the lattice

...
I of

abstract input words. One abstract input word denotes a set of fi-
nite sequences of program operations, which is reflected by the
semantic denotation function [[·]]in : I → 2Op∗ . The abstraction
function 〈〈·〉〉in : 2Op∗ → I provides a mapping from sets of pro-
gram operation sequences to abstract input words.

• Abstract Output Domain DY. The abstract output domain
of a Yarn transducer is the Yarn domain Dout =

(pr(Op∞), ...
Y, [[·]]out, 〈〈·〉〉out). Each transition of a Yarn transdu-

cer is annotated with a Yarn y ∈ Y as its output symbol. See
Sect. 4.2.8 for the full definition of this abstract word domain.

The infinite set of all Yarn transducers is denoted by Y.

The Loom analysis can compose a list of Yarn transducers by weaving their out-
put; the result can again be expressed as a Yarn transducer—that is, a Yarn

transducer can be produced by composing it from Yarn transducers. Please
note that we only discuss additive Yarn in this work. In model checking,
two categories of Yarn are of high relevance: (1) Yarn that represents the
formal specification, and (2) Yarn that represents the environment model.
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4.4.1 Lifting to Yarn Transducers

Abstract transducers are a rather abstract concept. Specifying a Yarn trans-
ducer as intended by the formalism can be cumbersome: A practitioner has
to define a Yarn as the abstract output symbol for each transition—that is,
provide a program concern and a set of control transitions.

To reduce the effort for specifying Yarn transducers, we provide means to
create them by lifting them from less expressive representations, for exam-
ple, from finite-state transducers with both a concrete input alphabet and a
concrete output alphabet:

Definition 72: Transducer Lift
We lift a finite-state transducer A = (Q,Σ∗,Θ∗,q0, F, δ) that describes
a fragment of a program concern h, with a set of control states Q, a
concrete input alphabet Σ∗, a concrete output alphabet Θ∗, an initial
control state q0, and set of final control states F to a Yarn transducer.
The resulting Yarn transducer Y = (Q,Din,Dout, ι0, F, δ ′) has the ab-
stract input domain Din = (fl(Op∗),

...
I , [[·]]in, 〈〈·〉〉in), the abstract output

domain Dout = (pr(Op∞), ...
Y, [[·]]out, 〈〈·〉〉out), and the initial set of trans-

ducer states ι0 = {(q0, vε)}. At the heart of this lifting result is the new
transition relation

δ ′ = { (q, v,q ′,w) | τ = (q,o1,q ′,o2) ∈ δ
∧ v = 〈〈{o1}〉〉in
∧ w = deriveY(h, τ) }.

The operator deriveY : H× (L×Op∗ × L) → Y creates a Yarn for a
given concern h from a transition τ ∈ δ. Its result is defined as follows:

deriveY(h, (q,o1,q ′,o2)) = (h, {(l,op, l ′)}, {l}, {l ′}),

if o1 = ε then l = L(q) and l ′ = L(q ′)

if |o1| = 1 then l = l# and l ′ = L(q ′)

if o2 = ε then op = nop

if o2 = 〈op1〉 then op = op1

The fresh labeling for the first control location of a non-ε-move en-
sures that its second location is only reached in the transition matched.

We assume that there is also a lifting operation that lifts from a finite-state
transducer that emits one concrete output symbol on each of its transitions
to a finite-state transducer that emits a sequence of output symbols (word)
on each transition. Lifting to Yarn transducers is also possible from control-
flow graphs or control flow automata—all transitions of such Yarn transdu-
cers are then ε–moves. If not stated otherwise, we assume that each abstract
transducer emits Yarn for one concern only. This helps to reduce the com-
plexity of the presentation.
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4.4.2 Parameterized Yarn Transducers

A Yarn transducer can have parameterized Yarns on its transitions as ab-
stract output words. A parameterized Yarn must be instantiated before the
Loom analysis can weave it to the transition relation of the analysis task. We
instantiate parameterized Yarn and corresponding parameterized program
operations by binding expressions—in the programming language of the
program—to the parameters. Section 3.1.4 provides a general discussion on
parameterized abstract words and their instantiation. Figure 6a on page 30

illustrates an example of a Yarn transducer that emits parameterized words.

4.4.3 Classification of Yarn

Depending on the application of the Loom analysis, or more precisely, the
type of (temporal) property to analyze, the weaving process must satisfy
specific requirements such that neither completeness nor preserve tempo-
ral properties. These ideas are related to the correctness by construction
paradigm [181], which aims at composing components that do not affect,
or have a known impact on, the correctness of the resulting system.

Environment Yarn. A (sufficient) precise environment model for a given soft-
ware system is essential to make software model checking practically appli-
cable. It is crucial for reducing the number of false alarms [199] that would
otherwise—if the environment would not be in place—arise from program
states that are not feasible in the real system in its real (application) envi-
ronment. The environment model is regulative [158]: It aims at reducing the
number of false alarms by restricting the observable behavior of the system
by strengthening assumptions. A Yarn is regulative if “the projection of the 136

Regulativeaugmented state graph on the variables of the underlying system is identi-
cal to the state graph of the underlying system, except that some states are
repeated (with new edges from aspect operations) and some edges are re-
moved. States are ignored that become disconnected (unreachable) from the
augmented state graph with entrance points (external method calls).” [158].

Specification Yarn. Yarn that represents the formal specification must be
spectative. A Yarn is spectative if “the projection of the augmented state 137

Spectativegraph onto the state variables of the underlying system is identical to
the underlying state graph, except that the projection contains additional
repetitions of states connected by edges that correspond to aspect opera-
tions.” [158] That is, specification Yarn must observe the behavior but not
modify or restrict it. The operations that are introduced by the weaving pro-
cess must never modify or restrict the state space of the program under
analysis: (1) assignment operations are only allowed to assign values to vari-
ables that have been introduced by the Yarn itself, and (2) for each control
location, the disjunction of all predicates from assume operations on the
outgoing transitions must evaluate to true—an empty list of assumes eval-
uates to true. An analysis shall not stop exploring a program path after a
property violation; other properties could be violated later along the path
as well (completeness). The Yarn has to introduce a split (branching) of the
state space for this purpose.
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4.4.4 Yarn Transducer Analysis

A Yarn transducer analysis—or Yarn analysis, for short—executes a given
Yarn transducer as one of several analysis components of the verification
engine. The Yarn analysis emits Yarn to weave and is used in combination
with a Loom analysis, which consumes the emitted Yarn and takes care of
weaving it into the transition relation of the analysis task—see Sect. 4.3 on
details of the weaving process.

We instantiate this analysis based on the abstract transducer CPA—see
Sect. 3.2—and redefine some of its operators. One instance of a Yarn ana-
lysis represents one Yarn transducer Y = (Q,Din,Dout, ι0, F, δ). The analy-
sis (1) keeps track of the current state of the abstract transducer (including
the emitted output) and determines its successors based the transition rela-
tion δ and the transitions of the analysis task, (2) it provides Yarn to weave
into the transition relation of the analysis task, and (3) it can signal if a target
state has been reached. That is, we define the Yarn analysis by the tuple

DY = (DY , Y , ↓Y ,mergeY , stopY , precY , targetY).

The components and operators of the analysis are defined as follows:

Abstract Domain DY . The abstract domain DY = (C,E, [[·]], 〈〈·〉〉) is defined
based on a map lattice E = (J,>,⊥,v,t,u), with J = 2Q→Y, where
each element ι ∈ J of the lattice is a transducer state. One transducer
state ι = {(q, y), . . .} ∈ J is a mapping ι : Q → Y from control states to
Yarns. The Yarn analysis starts with the initial transducer state ι0 of the
Yarn transducer to conduct runs for.

Operator  Y . The transfer relation
g
 Y ⊆ J×G× J× Π defines the set of

abstract successor states of an abstract transducer state ι = {(q, y), . . .} ∈ J,
for a given control-flow transition g ∈ G (the label on the control transition)
and abstraction precision π ∈ Π. To deal with ε-moves, we use the output
closure operator that maintains the set of concrete output words, similar to
a regular closure operator abstclosure∞ as defined in Sect. 3.2.3. The transfer
relation Y is in other respects equivalent to the transfer relation T of the
generic abstract transducer analysis—see Sect. 3.5.1.

Operator precY . We use the precision adjustment operator precT of the ab-
stract transducer analysis: precY = precT, that is, we do not abstract here: A
call precY(ι,π, ·) returns the pair (ι,π) ∈ J×Π without adjustments.

Operator mergeY . The operator mergeY : J× J× Π → J keeps two abstract
states always separate, that is, mergeY = mergesep. An alternative implemen-
tation of the operator is presented later in Sect. 4.5.2.

Operator stopY . The operator stopY : J × 2J → B checks whether there
is already an abstract state that subsumes a given state. This means that
stopY(ι,R) returns true if and only if ∃ι ′ ∈ R : ι v ι ′.

Operator targetY . The operator targetY : J×B returns true if and only if the
given abstract state ι = {(q1, y1), . . . (qn, yn)} ∈ J contains a pair (qi, ·), with
qi ∈ F, that is, qi is a target state of the Yarn transducer.
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4.5 dynamic control encoding

A program analysis decides whether or not to merge two abstract states, and
this could mean that it loses track of a path if the property-related behavior is
different for the branches. An analysis, and its abstract domain, can encode
sufficient information to recover the path taken in a later step cheaply, or
it might lose this information and report false alarms and no or imprecise
counterexamples.

Tracking the current control state of a Yarn transducer can lead—as we
have discussed in Sec. 4.1.3—to a combinatorial explosion of the abstract
state space: A pair of abstract states is kept separated if the transducer is not
in the same control state for them. In this section, we describe an extension
of our Yarn analysis that (1) solves this problem, and (2) provides a starting
point for studying the effectiveness and efficiency of different encodings of
the current control state of automata. 138

Yarn for Path SensitivityWe take advantage of the fact that the abstract domain of the Yarn ana-
lysis is defined based on a map lattice: One abstract state of the analysis
can represent a set of control states (with corresponding outputs)—in the
default configuration, we use singleton maps. Merging these abstract states
whenever the control flow of the analysis merges leads to a loss of path sen-
sitivity: Different control states can be reached on different branches of the
control flow. We cope with this problem by concatenating additional Yarn

and then rely on other analyses that run in parallel to ensure path sensi-
tivity (potentially more) efficiently. This allows us to encode control states
symbolically without losing path sensitivity. We say that analyses that have
these attributes have symbolic path sensitivity, the technique to end up it such
is symbolic control encoding.

Our approach is well-suited for scenarios in which the specification to 139

Applicabilitycheck describes the protocol to adhere to for using a set of (API) methods [23,
39, 228], and for expressing test goals [29, 33, 141] of a test-generation pro-
cedure. A pure symbolic encoding of automata states, by instrumenting the
code offline, that is, before the verifier starts, has already been studied [22,
142, 241]. We do the encoding on-the-fly, which enables us to change the type 140

Noveltyof encoding dynamically during the state-space exploration—see Sect. 4.3.1
for a more detailed discussion of points in time to encode. We use sepa-
rate Yarn transducers to emit Yarn for different program concerns (and do
not use their union), with a separate Yarn transducer analysis. Please note 141 "
that the applicability of the concept that we present here is not restricted to
Yarn transducers: In general, it is applicable to encode the control state of
an arbitrary automaton if a Loom analysis is present.

4.5.1 Control Encoding Strategies

In the following section, we present our extended Yarn transducer analysis
that supports three modes of control encoding. A control encoding strategy de-
fines how the current control location or the current control state in a control
transition relation is encoded in the state space of an analysis task. We dis-
tinguish between explicit, symbolic, and hybrid control encoding—please note
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that the terms control location and control state are used interchangeably in
the following definitions:

Definition 73: Explicit Control Encoding

A control encoding is explicit if each abstract state can be mapped to
exactly one control state of a given control transition relation.

Definition 74: Symbolic Control Encoding

A control encoding is symbolic if an abstract state can be mapped to a
set of different control states of a given control transition relation.

Definition 75: Hybrid Control Encoding

We call a control encoding hybrid if a particular control state must
never be mapped to an abstract state among others control states for
some fraction of the state space, while this can be the case for another
fraction thereof.

In the following section, we present an extended Yarn transducer analysis
that can automatically conduct an alternative encoding (explicit, symbolic,
or hybrid). Figure 19 illustrates how the Yarn transducers look like that are
implicitly constructed by these strategies. In the end, the strategies describe
a choice between control-dependent and data-dependent verification problems, that
are solved best either by explicit or symbolic verification techniques.

4.5.2 Extended Yarn Transducer Analysis

This section provides extensions of the Yarn transducer analysis to allow for
different control encoding strategies. We describe how an explicit control
encoding can be transformed to a symbolic, or hybrid, control encoding
by emitting Yarn to keep track of the automaton state in a path sensitive
manner. The Loom with its on-the-fly weaving of emitted Yarn is crucial for
this functionality.

The control encoding strategy of a Yarn transducer analysis is configured
by a pair χ = ( ,merge) of a particular transfer relation and a particular
merge operator, which results in the extended Yarn transducer analysis DYχ =

(DY , ( · , · ), ↓Y , stopY , precY , targetY)—to have effect, we assume that the
transducer to run is provided with explicit control encoding.

Explicit. The explicit control encoding is the default configuration of the
Yarn transducer analysis that we have presented in this work—see Sect. 4.4.4
for details of this analysis. That is, an explicit control encoding is enabled by
the pair χexplicit = ( Y ,mergesep) of operators.

Symbolic. A symbolic control encoding is enabled by the pair χsymbolic =

( YS ,mergeYS) of operators. Symbolic control encoding relies on a state vari-142

State Variable clY able clY ∈ X that stores the current control state of the Yarn transducer Y.
Before the state variable clY can be used, it has to be declared and initialized.
We create an initialization Yarn yd, which declares and initializes the state143

State Numbering
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Figure 19: Different control encodings of a Yarn transducer that represents a spec-
ification. Our Yarn transducer analysis can derive them automatically
from transducers with explicit control encoding. The variable clY ∈ X
is used to store the current control state of the automaton Y (transducer).
Dashed edges indicate transitions within the epsilon closure. The
trigger condition else is syntactic sugar and indicates that this transitions
matches if none of the other leaving transitions matches. Please note
that we have annotated the illustrated transitions with concrete words
instead of abstract words for ease of presentation.

variable clY as int clY = 0, where the number 0 ∈N0 corresponds to con-
trol state q0—that is, there is a mapping qn : Q→N0, where qn(q) denotes
the number of the control state q. The Yarn transducer analysis starts in the
new initial transducer state ι0 ′ = {(q, yd ◦ y) | (q, y) ∈ ι0}, that is, the initial-
ization Yarn is prepended to the initial output of the Yarn transducer. This
is the typical approach to encode automata in programs [22, 241]. In the end,
we convert control dependencies into data dependencies. The responsibility
for ensuring the path sensitivity is delegated to another analysis that runs in
parallel.
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Algorithm 6 YS(ι,g)

Input: A transducer state ι ∈ J,
and a control-flow edge g ∈ G.

Output: A set of abstract transducer states ⊆ J
1: S = { {(q, y,q ′, y ′)} | (q, y) ∈ ι ∧ (q ′, y ′) ∈ g

 Y({(q, y)}) }
2: if ∀(q, ·,q ′, ·) ∈ S : q = q ′ then
3: return { (q ′, y ′) | (·, ·,q ′, y ′) ∈ S }

4: return { (q ′, transguard(q,q ′) ◦ y ′) | (q, ·,q ′, y ′) ∈ S }

Transfer Relation  YS . The transfer relation  YS builds on the relation  Y
and strengthens its result by prepending Yarn that restricts the reachability
of the successor states and the emitted Yarn by adding additional guards
and assignments [94] on the state variable clY that encodes the current control
state of the transducer Y.

Algorithm 6 outlines the functionality of the transfer relation  YS with
symbolic control encoding. We add state guards and new assignments to
the state variable clY if there is a control state transition, that is, if there
exists at least one tuple (q, ·,q ′, ·) ∈ S with q 6= q ′, otherwise we do not
adjust the transitions and their output: We create the Yarn with a guard
and assignment on the state variable using the operator transguard : Q ×144

transguard Q → Y. Given a call transguard(q,q ′), with the predecessor control state q
and the successor control state q ′, it returns a Yarn y = (ht,Gg, {la}, {lx})
with Gg = {(la, clY==qn(q), lb), (lb, clY=qn(q ′), lx)}. An optimization of is to
not add guarding assumptions, but the assignment, if the preceding abstract
transducer state ι only contains one control state.

Operator mergeYS . The operator mergeYS : J× J×ΠY → J always joins two
abstract states if none of them is a target state. That is, target states get kept
separate to avoid the problem of hidden targets in case an analysis would not
continue the state space exploration after a violating (target) state—which
would affect completeness. Given a call mergeYS(ι, ι

′,π), the operator re-
turns ι ′ if either target(ι) or target(ι ′) evaluate to true, it returns ι t ι ′ other-
wise. We assume that the transfer relation always produces singleton state
sets—or empty sets, which stops the state space exploration at that point,
and the operator merge is not called.

Hybrid. We configure the analysis to have hybrid control encoding by using

the pair χhybrid = ( YS ,mergeYH) of operators.

Operator mergeYH . The operator mergeYH : J× J×ΠY → J joins two abstract
states if (1) none of them is a target state, and (2) if none of their control
states is listed for explicitly tracking—or dually: if the are listed for sym-
bolic tracking. That is, the operator mergeYH extends the operator mergeYS
and can keep abstract states with particular control states separate. Given a
call mergeYS(ι

′, ι ′′,π), with ι ′′ = {(q ′′1 , ·), . . . , (q ′′n, ·)}, Q ′′ =
⋃

{q | (q, ·) ∈ ι ′′},
and ι ′ = {(q ′, ·)}, the operator returns ι ′ if (1) target(ι ′) or target(ι ′) evaluate
to true, or (2) if sepctrl(q ′,Q ′′,π) evaluates to true; it returns ι t ι ′ otherwise.
The operator sepctrl is defined as follows:

Operator sepctrl. The operator sepctrl : Q× 2Q ×Π → B determines if
a given control state should be kept separated from other control states
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in the presence of the given abstraction precision. That is, a control
state can be kept separated in certain parts of the state space, whereas
it becomes joined into a transducer state with other control states in
other parts—which enables the idea of Lazy Abstraction [136]. Differ-
ent strategies to keep the state-space separated can be implemented
and evaluated based on this operator. One strategy can be, for exam-
ple, to keep control states that belong to different properties to check
separated—in case all properties of the specification to check are repre-
sented by one Yarn transducer.

4.6 empirical study

This chapter introduces several concepts and techniques, whereas their use-
fulness and applicability have been discussed on a theoretical level or small
examples. We now present an empirical study that aims to (1) provide em-
pirical evidence on the practical applicability of the concepts and techniques,
and (2) show how different configurations of these techniques influence the
performance of a model checker. We focus our study on model checking that
aims at proving the absence of violations of safety properties.

4.6.1 Research Questions

Our study is guided by a set of research questions. We operationalize these
questions later in the form of experiments. Before we continue to the ques-
tions, we define some terms: We call an analysis configuration preferable if it
increases either the (1) efficiency or (2) the effectiveness of the verification
procedure; also a (3) decrease of the size of the abstract model, or (4) the
reduction of the number of refinement iterations can be preferable for some
applications. The performance of a verification procedure is characterized by 145

Performance:
Efficiency and Effectivenessits efficiency and effectiveness. We measure the efficiency of a verifier in terms

of CPU time needed to provide a solution (verdict) for a given verification
task. We measure the effectiveness of a verifier in terms of solved verification
tasks, that is, the number of tasks for that the verifier provided a solution.

Earlier, in Sect. 4.1.2, we have motivated the need of having a symbolic
control encoding with the fact that an explicit encoding of the control state
of automata can counteract the symbolic encoding of the state space of the
program to check. Our first question aims at studying the actual impact of
the choice of control encoding on the performance of a model checker that
models the state space of a program symbolically:

RQ 1 (Interaction). To which extent does an explicit control encoding counteract
a symbolic encoding of the state space of the program to analyze, and how
does this affect the performance of the verification procedure?

We have discussed, in Sect.3.5.2, several configurations of a verifier for
composing transducers and their states. The following questions aim at
studying the influence of these configuration choices on the performance
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of a verification procedure—to come up with a recommended configuration
for a given set of verification tasks.

RQ 2 (Partitioning). Is there a set of verification tasks for which separat-
ing (partitioning) the encoding of control states by concern provides a better
performance in terms of efficiency or effectiveness—compared to not sepa-
rating the control states of different concerns.

RQ 3 (Explicit). Is there a set of verification tasks for which explicit control
encoding is preferable over symbolic control encoding in the sense that it
provides a better efficiency or effectiveness?

RQ 4 (Symbolic). Is there a set of verification tasks for which symbolic con-
trol encoding is preferable over explicit control encoding in the sense that it
provides a better efficiency or effectiveness?

RQ 5 (Hybrid). Are there verification tasks for which a hybrid control encoding
is preferable over both explicit and symbolic control encoding in the sense
that it provides a better efficiency or effectiveness?

4.6.2 Experiment Setup

This subsection describes the chosen case studies and the configurations of
the verifier. We provide a replication package along with this work, which
also describes details on the benchmarking environment—see the appendix
of this work for details.

Case Study Linux. The case study Linux consists of 250 Linux kernel mod-
ules that we consider hard in terms of the size of the abstract state space
and the time needed to solve them. These modules were filtered out of 4 332
modules [8] and cause at least one refinement, result in an abstract reach-
ability graph with at least 5 000 abstract states, yield the verdict true, and
take at least 30 s to verify with our standard predicate analysis configura-
tion. One verification task is composed of one Linux kernel module and
a formal specification that consists of 14 properties to check—see Tab. 13

on page 171 for details of the checked properties. The number of different
kernel modules was reduced to allow for sensitivity analyses on our given
hardware resources. We use a timeout of 900 s and a memory limit of 30GB,
with 24GB for the JVM, for each verification task.

Case Study Scenarios. We use a number of handcrafted scenarios to evaluate
our techniques. A scenario is a family of programs that focuses on a specific146

Scenarios problem dimension of a verification task. Based on these scenarios, we gen-
erate programs with different size and complexity to gain a fundamental un-
derstanding of different configurations of the presented techniques. Please
note that we use a timeout of 600 s for each verification task from the case
study Scenarios.

Scenario Sequential. Programs from the family Sequential are parameter-
ized, and scaled, by the number of lock–unlock-properties N ∈ N. In this
scenario, a sequence ofN conditional calls to lockI() is conducted, followed
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1 i n t a1 = nondet ( ) ;
2 i n t a2 = nondet ( ) ;
3 . . .
4 i n t aN = nondet ( ) ;
5

6 i f ( a1 ) l o ck1 ( ) ;
7 i f ( a2 ) l o ck2 ( ) ;
8 . . .
9 i f (aN) lockN ( ) ;

10

11 / / wh i le ( nondet ( ) )
12 access ( ) ;
13

14 i f ( a1 ) un lock1 ( ) ;
15 i f ( a2 ) un lock2 ( ) ;
16 . . .
17 i f (aN) unlockN ( ) ;
18

19

20

21

22

23

24

25

(a) Sequential

i n t a1 = nondet ( ) ;
i n t a2 = nondet ( ) ;
. . .
i n t aN = nondet ( ) ;

i f ( a1 ) {
l o ck1 ( ) ;
i f ( a2 ) {

l o ck2 ( ) ;
i f ( a . . . ) {

l o c k . . . ( ) ;
i f . . .

} } }

/ / wh i le ( nondet ( ) )
access ( ) ;

i f ( a1 ) {
un lock1 ( ) ;
i f ( a2 ) {

un lock2 ( ) ;
i f ( a . . . ) {

un lock . . . ( ) ;
i f . . .

} } }

(b) Nested

i n t s = 0 ;
wh i le ( 1 ) {

i f ( s==0) {
lock1 ( ) ;
s = 1 ;

} e l s e i f ( s==1) {
lock2 ( ) ;
s = 2 ;

} e l s e i f ( s==2) {
l o c k . . ( ) ;
s = . . . ;

}
. . .
} e l s e i f ( s==N− . . . ) {

un lock . . . ( ) ;
s = N−1;

} e l s e i f ( s==N−1) {
un lock . . . ( ) ;
s = N;

} e l s e i f ( s==N) {
un lock . . . ( ) ;
s = 0 ;

}
}

(c) Reactive

Figure 20: Our control-encoding evaluation scenarios

by the same number of conditional calls to unlockI(). Figure 20a illustrates
the scenario.

Scenario SequentialWhile. The scenario SequentialWhile is similar to Se-
quential except that the loop in line 11 is activated—by uncommenting the
line. The presence of these loops forces the analysis procedure to compute
an abstraction on the loop head.

Scenario Nested. Programs from the family Nested—which is shown in
Fig. 20b—are parameterized, and scaled, by the number of lock–unlock-
properties N ∈ N. The parameter N determines the number of nested and
conditional lock–unlock-pairs.

Scenario NestedWhile. The scenario NestedWhile is similar to Nested except
that the loop in line 15 is activated—by uncommenting the line. This mod-
ification causes the analysis procedure to compute an abstraction on the
introduced loop head.

Scenario NestedWhileSequential. Programs from the scenario NestedWhile-
Sequential are a sequential composition of functionality (and the control
flow) of the scenarios NestedWhile and Sequential; the code of scenario
Sequential is called after line 25 of scenario NestedWhile. The scenario is
scaled by the parameter N ∈ N, which defines both the nesting depth of
scenario NestedWhile and the number of subsequent calls of scenario Se-
quential.
Scenario Reactive. Programs from the scenario family Reactive—which is
shown in Fig. 20c—are scaled by the number of loop statesN ∈N, which are
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possible values of program variable S. It imitates the control-flow structure
that can be found in programs that are present in reactive systems (event-
condition-action systems).

Scenario ReactiveNested. Programs from the scenario family ReactiveNested
compose the functionality (and the control flow) of the scenarios Nested and
Reactive; the code of scenario Nested is called after line 21 of scenario Re-
active. The scenario is scaled by parameter N ∈ N, which defines both the
number of loop states of the code from Reactive and the nesting depth of the
code from scenario Nested.

Scenario ReactiveSequential. Programs from the scenario family ReactiveSe-
quential compose the functionality of the scenarios Sequential and Reactive;
the code of scenario Sequential is called after line 21 of scenario Reactive. The
scenario is scaled by the parameter N ∈ N, which defines both the number
of loop states of the code from Reactive and the number of sequential locks
and unlocks as conducted for scenario Sequential.

Verifier Configuration. Our implementation is based on CPAchecker [32, 34].
We configure a program analysis based on predicate abstraction [122] with
adjustable-block encoding [35]. The refinement is driven by spurious coun-
terexamples (CEGAR) [67] from which we derive Craig interpolants [43, 84];
the set of predicates to compute predicate abstractions is derived from the
Craig interpolants. The reachability graph is constructed from scratch—that
is, beginning from the initial abstract state e0—after each precision refine-
ment. The abstraction precision—in the form of a set of predicates—is shared
globally, that is, the same set of predicates is used for all abstraction compu-
tations per iteration of the CEGAR loop.

4.6.3 Experiments

To answer our research questions, we conduct a series of experiments. We
study multi-property verification [8] configurations, that is, all properties of
a specification are verified at once, simultaneously. We do not study config-
urations that partition the set of properties or verify only a subset of the
properties—we did this in previous work [8]. We consider only those verifi-
cation tasks for that at least two properties are relevant, that is, for that two
properties are not vacuously [172] satisfied.

We focus on a set of (independent and controlled) variables: The control
encoding strategies ENC = {Symbolic,Explicit,HybridHints,HybridModulo}, the
block operators BLK = {blkL, blkSBE} that are used by the predicate analysis,
the automaton compositions ACO = {Separate,Union}, the SMT solvers SLV =

{MathSAT5, SMTInterpol}, and the case studies CST = {Linux, Scenarios}.
More variables, including possibly confounding ones, are discussed in the
threats to validity.

The hybrid control encoding strategy HybridModulo is configured with the
operator sepctrl3 that keeps every third control state q ∈ QY of a given
Yarn transducer Y separate if qn(q) mod 3 = 0, where the function qn maps147

Hybrid Encoding Strategies each control state to a number. The control encoding strategy HybridHints
uses hints that were provided by the user—in forms of annotations of the
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Table 3: Results for the case study Scenarios with the block operator blkL, the
solver MathSAT5, and Atoms as granularity of predicates. The best results
are emphasized.
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Task Set Tasks Solved Tasks Solved Tasks

Sequential 22 22 22 9 6 22 22 22 22

SequentialWhile 22 10 10 6 5 8 8 8 9

Nested 22 22 22 22 22 22 22 22 22

NestedWhile 22 10 10 22 22 7 7 8 10

Reactive 27 27 27 20 25 14 14 18 17

ReactiveNested 27 14 6 5 13 7 5 6 7

ReactiveSequential 27 8 10 5 4 3 8 10 10

NestedWhileSequential 27 21 10 6 5 4 6 6 9

Total 196 134 117 95 102 87 92 100 106

control states to encode: Whenever the verification task is composed with the
scenario Nested, the specification that belongs to the nested control structure
is encoded explicitly, that is, its states are kept separated. More elaborated
hybrid encoding strategies could be implemented based on our framework.
We stay with these simple strategies for a proof of concept.

Experiment 1. We first study different control encoding strategies based on
the scenarios. That is, we study the configurations K1 = {Scenarios}×ENC×
BLK×ACO×SLV. Later, we extend the set of studied configurations to K ′1 =
K1×PGR by different granularities of predicates PGR = {Atoms, Interpolants}.
The parameter PGR decides whether or not the Craig interpolants that are
discovered in the precision refinement procedure—see Sect. 2.4.2 for details
on CEGAR—should be split into their atoms (Atoms) or of they should be
kept as they were computed (Interpolants)—see Sect. 5.6.3 for a discussion of
the granularity of predicates.

Experiment 2. The second experiment aims at studying the effects of different
control encoding strategies based on the case study Linux: We study the
configurations K2 = {Linux}× ENC× BLK×ACO× SLV× PGR.

4.6.4 Results

We now discuss our findings separated by research questions. The overall
picture is discussed in Sect. 4.6.5.

RQ 1: Interaction of Encoding Strategies. The state space of the program is
encoded using a predicate analysis with predicate abstraction and adjustable
block encoding [35]—which allows to chose from different block operators.
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Table 4: Results for the case study Scenarios with the block operator blkSBE, the
solver MathSAT5, and Atoms as granularity of predicates.
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Task Set Tasks Solved Tasks Solved Tasks

Sequential 22 6 6 6 6 6 6 5 5

SequentialWhile 22 6 6 6 6 6 6 5 5

Nested 22 18 18 22 22 7 7 10 19

NestedWhile 22 17 16 22 22 7 7 9 18

Reactive 27 27 27 27 27 9 9 9 20

ReactiveNested 27 17 12 14 18 12 5 8 11

ReactiveSequential 27 5 5 5 5 4 5 4 4

NestedWhileSequential 27 4 4 4 4 3 3 3 3

Total 196 100 94 106 110 54 48 53 85

The choice of the block operators determines the fraction of the state space
to encode into one SMT formula. The general idea of these block encod-
ing strategies—which are defined by the block operator—is that aggregating
more information into bigger formulas benefits performance, and too big formu-
las could overwhelm a solver [28, 35]. Disjunctions of the block formulas of
two abstract states are constructed whenever a merge of the corresponding
abstract states is allowed.

Generally, we can observe the expected behavior: With single-block
encoding, the different control-encoding strategies provide, compared to148

blkL better configurations with an abstraction strategy that summarizes only on loop
heads, the worst performance. While there are some scenarios for which
the block operator blkSBE aids in providing the best performance, the opera-
tor blkL is the best choice to get good overall performance for the scenarios.
The best configuration with the operator blkL can solve 134 verification tasks
from the case study Scenarios, whereas the best configuration with the oper-
ator blkSBE can solve only 110 tasks—see Table 3 and Table 4 for a detailed
overview over the number of solved tasks. Figure 21 presents a sensitivity
plot that illustrates that enabling large-block encoding is beneficial for most
studied configurations; only three of the 15 configurations cannot benefit.
The scatter plots in Fig. 22 provide another perspective on the results, which
illustrates that the chosen control-encoding strategy has a larger impact if
the block operator blkL is enabled. These results support the idea that control-
encoding strategies should aid a large-block encoding, that is, provide the
control state for symbolic encoding into block formulas.

The hypothesis that we formulate based on RQ 1 is that an explicit control
encoding strategy counteracts the symbolic encoding of the state space of the
program under analysis, and influences the performance of the verification
procedure negatively.
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Figure 21: Sensitivity plot—see Sect. A.1.2—for the case study Scenarios that il-
lustrates the extent to which the performance (analysis CPU time in
seconds) of different control encoding configurations is sensitive to the
choice of the block operator. The baseline configurations use the block op-
erator blkSBE, and we compare with configurations that are equal ex-
cept that the block operator blkL is used. The mean performance shift is
marked with the symbol �, the median is marked with the symbol �.

We first discuss verifier configurations for which the block operator blkL is 149

Interaction with blkLused and all control states are kept separated (Separate), that is, each Yarn

transducer is executed in a separate analysis: For these configurations, we
can see that an explicit control encoding only provides a better performance
for the scenarios Nested and ReactiveNested; all other scenarios are solved
with a better performance by either a purely symbolic or a hybrid control
encoding configurations. That is, already this result allows us to accept our
hypothesis that an explicit control encoding interacts with a symbolic control
encoding of the state space of programs negatively.



108 yarn transducers and the loom

10
0

10
1

10
2

Symbolic 

10
0

10
1

10
2

Ex
pl

ici
t 

(a) blkL

10
0

10
1

10
2

Symbolic 

10
0

10
1

10
2

Ex
pl

ici
t 

(b) blkSBE

Figure 22: Scatter plots with the CPU time for analysis for the case study Scenar-
ios. We use a verifier configuration with the solver MathSAT5; the set
of predicates corresponds to the Craig interpolants (Interpolants), that is,
they are not split into atoms.
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Figure 23: Quantile plots that illustrate the effect of splitting Craig interpolants into
atoms (Atoms) vs. not doing so (Interpolants); the analysis configurations
are based on the solver MathSAT5 and the block operator blkL.

For verifier configurations with single-block encoding—which is enabled150

Interaction with blkSBE by the block operator blkSBE—we cannot see a considerable difference in
terms of solved tasks when choosing different control encoding—for both
case studies. There is a difference in the efficiency (in terms of CPU time),
which is due to the number of precision refinements (for predicates on the vari-
ables that encode the state of the specification transducers).

There is a subset of the scenarios for which the control encoding strat-
egy Explicit provides the best results, namely all scenarios that are com-151

Positive Effects
of Explicit on blkL

posed with the scenario Nested or its variant NestedWhile. Symbolic control
encoding configurations get into trouble because of a large number of pred-
icates—which are derived by splitting the Craig interpolants of infeasible
counterexamples into their atoms—and the structure of the formula to encode,
which results from the structure of the control flow. The large number of
predicates (along with the structure of the formula) results in a large num-
ber of satisfying assignments, which have to be enumerated to compute the
Boolean predicate abstraction. Enabling explicit control encoding (1) reduces
the number of predicates to track and (2) reduces the complexity of the for-
mulas to compute abstractions for—by not allowing to merge abstract states
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and the block formulas that are stored along with them. We hypothesise
that splitting Craig interpolants into atoms is not always good and should
get done only if the control-flow structure of the underlying problem does
not have a nested structure. That is, not splitting Craig interpolants into
atoms can enhance the performance of a symbolic state space encoding in
the presence of certain control flow structures. The first evidence for this hy-
pothesis is illustrated in Fig. 23, which illustrates the positive effects of not
splitting Craig interpolants.

We summarize the results for this research question as follows:

Summary (RQ 1) The performance of our verification procedure has a
considerable sensitivity to the choice of the block abstraction strategy. The in-
fluence of the chosen control encoding strategy increases if large fractions
of the state space of the program to analyze are encoded symbolically in
large block formulas, as done, for example, in large-block encoding.

RQ 2: Partitioned Control Encoding. The hypothesis that we formulate
based on RQ 2 is that a separating the encoding of the control states of differ-
ent automata (partitioned encoding of the control state, enabled by Sepa-
rate) provides a better performance, that is, it can reduce the CPU time for
analysis and increase the number of tasks that can be solved. Figure 24 illus-
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Figure 24: The effect of
combining all Yarn trans-
ducers into one using an
union (Union) and sepa-
rating its states (Explicit):
The state space splits al-
ready after the initial ab-
stract state e0 ∈ E.

trates an abstract reachability graph for a configuration for which the control
encoding is not partitioned, which partitions the state space.

Already from Table 3 and Table 4 we can see that configurations with
Separate can solve more tasks than configurations with Union enabled. The
sensitivity plot in Fig. 25 provides details on the sensitivity of more analysis
configurations. We can see that all configurations with Symbolic enabled can
benefit considerably by the partitioning. Also, all configurations with blkSBE
enabled work best if Separate is enabled.

Configurations with Union enabled cannot provide any results for the case
study Linux. The reason is that the abstract state space explodes considerably
for such configurations due to the early state space splitting—see Fig. 24.

Summary (RQ 2) A partitioned control encoding is in general preferable, that
is, can provide a better or equal performance for the studied verification
tasks. Especially verification tasks for which already the modeling of the
program itself would result in a large state space, such as modules of an
operating system, can benefit from a partitioned control encoding.

RQ 3: Explicit Control Encoding. Based on RQ 3, we formulate the hypoth-
esis that there is a set of verification tasks for which an explicit control en-
coding provides the best performance in terms of CPU time for the analysis.
The symbolic control encoding has to be superior for all verification tasks to
falsify this hypothesis.

Already a first glance at the result indicates clear evidence for this hy-
pothesis: The explicit control encoding provides the best result for the sce-
nario NestedWhile among all studied configurations—see Table 3, Table 5,
and Table 4. A closer look at the analysis runs and results for the sce-
nario NestedWhile reveals that the positive effects of explicit control encod-
ing are due to the granularity of the predicates for predicate abstraction—
see our discussion for RQ 1. Changing the granularity of predicates to full
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Figure 25: Sensitivity plot—see Sect. A.1.2—that illustrates the sensitivity of dif-
ferent control encoding configurations to the choice of the automaton
composition parameter for the case study Scenarios: How does the per-
formance change if Separate is used instead of Union?

Craig interpolats, yields (for this scenario) a symbolic control encoding per-
formance similar to those of explicit control encoding strategy. Nevertheless,
a change to this granularity of predicates affects the analysis performance
for the scenarios Reactive and ReactiveSequential negatively.

Enabling the explicit control encoding (Explicit) has a considerable positive
effect on the efficiency of configurations with single-block encoding (blkSBE),
which is illustrated by the scatter plot in Fig. 22b. The positive effect is due
to the reduction of the abstraction refinement iterations. Reusing abstraction
precisions (the set of predicates that is discovered by the abstraction refine-
ment procedure) from other runs can cancel out this effect [36].

101 102 103

Symbolic 

101

102

103
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t 

Figure 27: Scatter plot with
the CPU time for analysis
for the Linux case study.

The results are different for the case study Linux: Configurations with an
explicit control encoding enabled are superior for some verification tasks—
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Table 5: Results for the case study Scenarios with the block operator blkL, the
solver MathSAT5, and Interpolants as granularity of predicates.

blkL, Separate blkL, Union
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Task Set Tasks Solved Tasks Solved Tasks

Sequential 22 22 22 9 6 22 22 22 22

SequentialWhile 22 22 22 6 5 18 18 17 9

Nested 22 22 22 22 22 22 22 22 22

NestedWhile 22 22 22 22 22 14 14 16 22

Reactive 27 14 14 19 25 8 8 9 15

ReactiveNested 27 8 6 6 13 10 5 6 9

ReactiveSequential 27 8 6 4 4 3 4 6 9

NestedWhileSequential 27 21 27 6 5 4 9 14 24

Total 196 139 141 94 102 101 102 112 132

Table 6: Results for the case study Scenarios with the block operator blkL, the
solver SMTInterpol, and Interpolants as granularity of predicates.

blkL, Separate blkL, Union
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Task Set Tasks Solved Tasks Solved Tasks

Sequential 22 22 22 9 6 22 22 22 22

SequentialWhile 22 22 22 6 5 14 14 15 9

Nested 22 22 22 22 22 22 22 22 22

NestedWhile 22 22 22 22 22 12 11 16 22

Reactive 27 14 14 16 25 9 9 11 14

ReactiveNested 27 10 6 5 13 10 3 6 8

ReactiveSequential 27 8 8 4 4 3 3 5 8

NestedWhileSequential 27 21 27 6 5 4 11 14 26

Total 196 141 143 90 102 96 95 111 131

see the scatter plots in Fig. 27. The sensitivity plot in Fig. 28 provides a
different perspective on these results. Table 7 provides the results on the
level of verification tasks.

Summary (RQ 3) An explicit control encoding of the control state of a spec-
ification automaton can have positive effects on the performance of a ver-
ification procedure. However, some of the effects are more a performance
interaction than something that can be attributed to a more efficient con-
trol state encoding.
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Figure 26: Sensitivity plot—see Sect. A.1.2—that illustrates the sensitivity of differ-
ent analysis configurations to the choice of the control encoding strategy
for the case study Scenarios: How does the performance change if Sym-
bolic is used instead of Explicit?

RQ 4: Symbolic Control Encoding. From RQ 4 we derive the hypothesis that
there is a set of verification tasks for which symbolic control encoding is
superior to explicit control encoding in terms of CPU time spent for the ana-
lysis. To falsify this hypothesis, there must be no symbolic encoding that
provides a better performance than an explicit control encoding. This is not
the case: A symbolic control encoding is preferable for the majority of the
verification tasks of the case study Scenarios, especially in terms of effective-
ness. Nevertheless, this highly depends, as we already discussed previously,
on the techniques that are implemented on the analysis that conducts the
symbolic encoding, for example, the granularity of predicates that are used
for predicate abstraction.
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Table 7: Performance shifts on the level of verification tasks for the case study Linux,
with the solver SMTInterpol, and with Craig interpolants split into Atoms.
We show only tasks with a shift of at least 1 in either direction.
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Program Analysis Time (s) Shift |reached| Shift #Refinements Max. Models

crypto-ccp-ccp-crypto 130 770 32080 69751 16 16 2 2

realtek-atp 190 490 19254 19618 16 14 3 3

dvb-frontends-stv0900 170 380 144991 145106 9 9 1 1

dvb-frontends-stv0367 140 290 134052 134167 9 9 1 1

libertas_tf-libertas_tf 140 280 27615 28086 10 10 2 2

marvell-sky2 680 320 88321 46557 14 13 3 2

amd-nmclan_cs 160 71 23406 8980 15 14 4 2

atheros-atl1e-atl1e 380 160 30323 30177 7 6 3 3

atheros-atlx-atl2 210 88 34432 13232 13 12 2 2

dec-tulip-de2104x 330 120 46195 15778 16 15 8 9

atheros-atlx-atl1 430 150 44496 24557 13 12 4 3

micrel-ks8851 270 82 32442 8765 26 24 14 12

Summary (RQ 4) A symbolic control encoding of the control-state of specifi-
cation automata can be preferable, that is, can provide a better performance,
for many verification tasks. We have provided solid evidence that sym-
bolic control encoding can have a considerable positive effect on the per-
formance of a verification procedure, both in terms of solved tasks and in
terms of spent CPU time for the analysis.

RQ 5: Hybrid Control Encoding. We answer RQ 5 based on the hypothesis
that there is a set of verification tasks for that hybrid control encoding is su-
perior to both an explicit control encoding and a symbolic control encoding
either in terms of CPU time for the analysis or the number of verification
tasks. We can see from Fig. 29 that the performance of configurations with
Hybrid enabled is in-between the performance of Symbolic (with Interpolants
enabled) and Explicit configurations for the case study Scenarios. The reason
for the performance advantage of hybrid control encoding configurations for
some verification tasks—see also Table 3—is due to an interaction with the
predicate abstraction mechanism, as already discussed for RQ 1.

Summary (RQ 5) A hybrid control encoding of the control-state of speci-
fication automata can have an effect on the performance of a verification
procedure for certain verification tasks. We have no evidence that verifica-
tion engineers should aim to use a hybrid control encoding to get the best
performance from a well-engineered verification tool that uses predicate
abstraction—with the best possible granularity of predicates—to model
the state space.

4.6.5 Discussion

Our study shows the practical applicability of techniques that we have intro-
duced along with this chapter, first of all, the Loom analysis with its service
to compose Yarn into the transition system of the analysis task, on-the-fly,
during the analysis.
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Figure 28: Sensitivity plot that illustrates the sensitivity of different analysis con-
figurations to the choice of the control encoding strategy (Explicit vs.
Symbolic) for the case study Linux.

Delegating the encoding of control states to another analysis by introduc-
ing Yarn to weave provides more choices for of encoding the state space—
including the control state of finite-state machines—of the verification task,
and we can benefit from the optimizations and contributions that were made
for the more powerful general-purpose analysis techniques—such as analy-
ses based on predicate domains [28, 122] with predicate abstractions.

Our study shows that the performance characteristics of a modern verifi-
cation tool are dependent on many variables that influence each other—that is,
there is a performance interaction between them. We have learned that an
explicit encoding of certain information such as the current control state of a
finite-state machine, or the value of a program variable in general, influences
the size and complexity of block formulas as used for predicate abstraction—
by not allowing to merge some abstract states and with it to construct dis-
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Figure 29: Quantile plot for the case study Scenarios and different control encoding
strategies. With MathSAT5, Interpolants, and blkL enabled.

junctions of block formulas. The size and complexity of block formulas influ-
ence (1) the quality of Craig interpolants a refinement procedure can come
up with, (2) the costs for checking the formulas for (un-)satisfiability, (3) the
number of precision refinements that are needed, and (4) the size of the ab-
stract state space, and with it the chance to converge to a fixed point in the
state space exploration process.

If we would only consider the results for the case study Scenarios we
could conclude that a symbolic encoding of the current control state of finite-
state machines is the best choice in the presence of a verification tool that
implements state-of-the-art techniques—or even some techniques that are
beyond state of the art, such as a structure-aware dynamic choice of the
granularity of predicates. However, we also have to take the results for the case
study Linux into account, for which an explicit control encoding seems to be
the best choice. It turns out that saved abstraction refinement iterations, which
result from the explicit encoding of control states, can provide a performance
benefit for this type of task. We take advantage of this observation in the next
chapter, where means are presented to automatically synthesize predicates
from the Yarn that is emitted for control encoding.

From a more general perspective, this study demonstrates the practical
applicability of Yarn transducers and the Loom for program verification:
Different properties to verify are encoded in a set of Yarn transducers, the
Loom analysis weaves the emitted Yarn, and the possibility to delegate the
encoding of information to other analyses or analysis steps is demonstrated
by our experiments on dynamic control encoding.

4.6.6 Threats to Validity

While we presented a carefully designed study, several threats can lower the
validity of our results.

Studying the performance of a set of analysis configurations based on a
set of scenarios aims at increasing the internal validity of our results. Nev-
ertheless, there is an infinite number of possible program variants that are
expressible based on a Turing-complete programming language. The focus
on a small sample of verification might be prone to overfitting of the an-
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Figure 30: Sensitivity plot that illustrates the sensitivity of different analysis config-
urations to the choice of the solver for the case study Scenarios.

alyzed tool configurations—that is, could lead to optimizations that might
only work well for the given set of programs. Nevertheless, having a small
set of programs with a well-known structure (features) helps us to under-
stand and describe the influence of different analysis parameters, and de-
velop techniques that are applicable to a broader set of programs.

To increase the external validity of our results, we also studied a set of differ-
ent analysis configurations on a set of real-world verification tasks that were
derived from Linux kernel modules [8]. The experiments were conducted
without a pointer aliasing activated, which can lead to different performance
characteristics for those tasks for which the satisfaction of the specification
would be dependent on aliasing. Nevertheless, since the checked properties
are primarily control-dependent, we assume that the validity of our results
is not affected dramatically.
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Another threat to validity is the possible presence of bugs in the tool imple-
mentation, solvers, or libraries—see Sect.A.2 for a detailed discussion. Nev-
ertheless, we have tried to ensure the correctness and soundness of the im-
plementation as good as possible, especially to guarantee the correctness of
the results for the case study Scenarios. The results for the case study Linux
are more likely to be different with a tool that ensures that the semantics
of all program operations—for example, those that are needed for low-level
operating system development—are reflected soundly.

While we tried to increase the validity of our results by conducting sensi-
tivity analyses, which study the effect of different parameters on our results,
our results are only valid for the studied analysis configurations and the
used set of verification tasks. The results can be different, for example, for
bounded model checking, compositional model checking, or explicit-state
model checking. We use an analysis configuration that makes use of an SMT
solver and a BDD library. Both components are critical for the performance
of our analysis procedure. Already an encoding of the state space using dif-
ferent solver theories can provide different efficiency and effectiveness. Fig-
ure 30 presents a sensitivity plot that illustrates how the results are changed
if we change from the solver SMTInterpol to MathSAT5—it shows that there
is considerable sensitivity to the chosen solver.
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4.7 related work

This chapter presents an approach for composing programs (analysis tasks) by
weaving, also on-the-fly, that is, interleaved with their actual interpretation—
for example, during state-space exploration that is conducted by a software
model checker.

Task Specification. We formalize the program fragments to compose as Yarn

and provide Yarn transducers for sharing and reproducing these sets of
control transitions in different contexts of analysis tasks. Using transducers
for this purpose is novel; so far, transducers have been used to describe
the input–output relations of programs [49, 126, 216]. A Yarn transducer
can emit programs that take full advantage of Turing completeness. The
notion of Yarn is related to model programs [246], but those do not have an
inherent mapping to program concerns.

Several techniques have been proposed to operationalize program speci-
fications from higher-level specifications that are provided in some form of
temporal logic or natural language. In this work, we present a specification
mechanism that operates on the same level of abstraction as the syntactic
model of the program to analyze. Many prominent specification approaches
that are applied in practice are on the level of source code—and might
add some temporal notion. Examples include the ANSI-C specification lan-
guage (ACSL) [26], SLIC [22], and the BLAST query language [39, 232]. The
specification can be provided as runtime assertions or can be transformed
into such [90]. Also, general-purpose aspect languages have been used [13,
145] or extended [108] to allow for expressing the desired properties of a
program. Formal specification is also used for test generation, where a speci-
fication consists of a set of test goals. Typically, trap properties [114, 127, 221]
are specified, possibly in the form of trap monitors or test goal automata [127,
141]. That is, automata are an established mechanism for formally describing
parts of a verification task. Based on the concept of abstract transducers, we
present Yarn transducers that emit Yarn—sequences of control transitions,
annotated with program operations—to weave. The notion of Yarn is not
limited to Yarn transducers: Yarn to compose by weaving can be provided
by any analysis component in the verification framework.

Composition Period. We distinguish between three different composition
periods: offline, before the full composed verification task is handed over to
the verifier, initially, before the state-space exploration is conducted, and on-
the-fly, that is, along with the state-space exploration. Our Loom analysis
is designed for on-the-fly composition by weaving but can be used in all
other points of time too. Traditionally, the verification task is composed ei-
ther offline [22, 90, 241], or initially [141, 194, 252, 254]. A specification that
is handed over to the verifier as a set of automata can be composed either
initially, that is, by an eager automaton product computation [134], or on-
the-fly and by computing the automaton product lazily—as already done
for model-driven test generation [33], and in our work on testification of er-
ror witnesses [29]. Work in the field of dynamic software updating [62, 203]
can be considered an instance of on-the-fly weaving.
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Task Composition. Several techniques to compose verification tasks from
different parts (aspects, components, modules, features, automata) exist. We
now focus on how these techniques conduct the composition. Many of these
techniques have their roots in the fields of aspect-oriented [160] and feature-
oriented programming [6]. Aspect weaving [160] is the standard choice for
composing verification tasks offline, as done, for example, by SLIC [26].

For some properties, such as checks for NULL-pointer dereferences or
overflows of buffers or numbers, no full aspect weaver is needed, and sim-
pler weaving techniques that traverse and manipulate control-flow graphs
or the program’s abstract syntax tree can be sufficient [102, 194, 252, 254].
Some approaches encode these properties directly into SMT formulas [194].

Another form of composition is to construct the product of the given au-
tomata directly; this can be done eagerly (and initially) [134] or lazily (and
on-the-fly). The composition approach that we present in this work can com-
pute a lazy automaton product of transducers with outputs that carry infor-
mation that is relevant for the verification task. We present the first holis-
tic approach that can perform a composition by weaving on-the-fly, that
is, along with state-space exploration, while Yarn transducers emit the pro-
gram fragments to weave—both control-dependent, but also data-dependent
properties can be expressed.

Program Composition. The Loom is a generic concept to compose a program
by weaving from given Yarns, that is, from sets of sequences of program op-
erations that provide functionality for specific program concerns. Arbitrary
analyses and analysis components that are executed in parallel to a Loom

analysis can provide Yarn to weave at different points of the abstract state
space, for various purposes.

Concepts like aspect-oriented programming [160], delta-oriented program-
ming [226], or feature-oriented programming [6, 219] are orthogonal to the
Loom and Yarn transducers since they describe programming paradigms.
Certain code artifacts and composition rules that can be defined based
on these paradigms can be operationalized as Yarn transducers, where
the Yarn describes the code artifacts and the composition roles are trans-
lated to a corresponding control transition relation of the Yarn transdu-
cer. Aspects for monitoring temporal properties [5, 12, 13, 98, 145] of pro-
gram traces are examples of aspects that translate well to Yarn transducers:
These aspects have to be woven after particular sequences of events have
been observed [98]. On the language-theoretic level, rewriting systems for
graphs [11] and terms [176] are closely related to our composition approach,
which results from the combination of the Loom and Yarn transducers.

Control Encoding. The choice of encoding the current control state of the
composed automata is critical for the performance of a verifier. Our ap-
proach allows for encoding the control state of the resulting transition re-
lation in a symbolic, explicit, or a hybrid fashion.

Classical bounded model checkers [45] encode the full state space into
one (big) formula, that is, a symbolic representation of the states of com-
posed automata is used. This is achieved by instrumenting the automata of-
fline into the code, using global state variables that store the current state of
the automata [241]. The bounded model checker does not distinguish these
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control state variables from other program variables. Work in the context
of IC3 [66] has shown that a non-full symbolic encoding of the state space,
more precisely an explicit encoding of the control locations of the control-
flow automaton, leads to a significant performance benefit. Nevertheless, the
product of a set of automata is exponential in the number of automata to
compose. That is, a verifier that constructs such a product is more likely to
have to deal with an exploded abstract state space—please note that also the
control-flow automaton on that, for example, the specification automata be-
come composed with, must be included into this calculation. Existing work
only considers tracking the control state of the control-flow automaton of the
program under analysis either explicitly or symbolically. This work provides
this choice also for other types of finite-state machines that should be com-
posed during the analysis process. Our approach provides the possibility to
choose from different encodings for different parts of the state space, which
follows the idea of Lazy Abstraction [136].

In case the current control states are stored in program variables, a model
checker could always conduct a domain-type [7] analysis and identify these
state variables as variables that store a current control location or control
state, and might then use different abstract domains to track these variables.
That is, tools that consume these programs could analyze the type and roles
of different variables [7, 68, 91] and decide to encode the control state of
instrumented automata either explicitly, symbolically, or in a hybrid fashion.

4.8 summary
152

On-the-Fly Weaving This chapter has presented a holistic approach for composing analysis tasks
by weaving, also on-the-fly, that is, during the state space traversal process. We
presented a technique to encode the control location of the resulting transition
relation dynamically in a symbolic, explicit, or a hybrid fashion.153

Automata Product The combinatorial explosion of the abstract state space that results from
constructing the product of several automata—which we construct lazily—
motivated our work on composing additional transition relations—resulting
from the transitions of the automata—symbolically, and lead us to consider
encodings of control locations—or control states—that range between an ex-
plicit and a symbolic representation.154

Loom Analysis The Loom analysis can take sequences of control transitions—that is, the
Yarn—to weave from any analysis component that is executed along with it.
We introduce Yarn transducers as a means to systematically provide Yarn

155

Yarn Transducers to compose by weaving at different points in the control flow of an analy-
sis task. Yarn transducers are built on top of abstract transducers, which
demonstrates the applicability of abstract transducers for sharing syntactic
task artifacts for reuse.156

Empirical Study An empirical study demonstrates the practical applicability of our con-
cepts and techniques. We study different performance characteristics of these
techniques based on a set of scenarios that have a well-known structure and
based on a set of Linux kernel modules. We show that the different types of
control encodings are beneficial depending on the control-flow structure of
the analysis task to compose with.157

Outlook
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We restricted our discussions on applications in the context of multi-
property verification and model-driven test generation, with a focus on
safety properties, and on the composition of sequential programs. Never-
theless, our techniques, for example, the Loom, could also contribute to the
composition and analysis of concurrent systems, and it could be used for
weaving termination arguments [208], that is, conduct the program transfor-
mation that is needed for a termination analysis [77, 229].

“ The process of preparing programs for a digital computer is espe-
cially attractive, not only because it can be economically and scien-
tifically rewarding, but also because it can be an aesthetic experience
much like composing poetry or music. ”

Donald E. Knuth





5 P R E C I S I O N T R A N S D U C E R S

Keywords: Abstraction Precision, Model Construction, Precision Reuse,
Precision Transducer, Existential Abstraction, Continuous Verification

Figure 31:
A map of Innsbruck

Abstraction is the key to construct effective models of a system efficiently—
and is considered to be an essential skill in computer science [75, 168, 239].
A model is effective if it is sufficiently precise to satisfy its purpose, for ex-
ample, to reason about a property of the system. Having to model only a
few details (abstraction) about a system reduces the effort (efficiency), and
the modeling process can be finished after reaching a fixed point. The set of
facts to model about a system is called the abstraction precision. 158

Maps: Models of the WorldWe start with the creation and use of maps as the first real-world exam-
ple to discuss the process of creating abstract models and the role of the
abstraction precision. A map is created for a specific purpose and audience:
There are maps, for example, for hikers, for motorists, or maps that provide
information on specific natural resources that are available in a region. More-
over, maps can have different scales, depending on the needed granularity
of information to satisfy their purpose. The creation of maps can be cumber-
some and cause high costs. Having an existing map as a basis can reduce the
effort needed considerably, even if this other map was created for a differ-
ent purpose. That is, also an old map—as illustrated in Fig. 31—is precious
and should be kept for further use. Mental maps are another type of map, 159

Mental Mapswith a similar purpose [197]: Programmers construct and use mental maps
of source code and its functionality. Experienced programmers have a large
set of different mental maps of the source code at their disposal—and can
reuse them—to solve programming and maintenance tasks. These experts
can share their experience and mental models—especially, which details of
the source code are relevant for which purpose—to other, less experienced,
programmers, which can use this experience to become more efficient and ef-
fective in their job. Let us connect this with thoughts from the introduction of
abstract transducers in Chapter 3: We have described books—and the print-
ing press—as an approach for spreading (sharing) information: A (1) text‘s

123
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structure guides the thoughts of the reader, and (2) its semantics invites the
reader to reconsider his or her model of the world, that is, it contributes to
the process of refining his or her model of the world. Interestingly, also the
ordering in that information is provided to the reader—a form of context—
has a crucial role in perceiving information: the effects of priming and re-
cency [17, 118].160

Precision Transducers In this chapter, we propose (and share) precision transducers as a means
for software model checkers to share at which parts of the state space
which information must be modeled (abstraction precision) to reason about
a property—to prove its correctness. That is, precision transducers represent
a “mental map” that a model checker constructs to know the abstraction pre-
cision that is needed for different parts of the state space. Since an abstract
precision can contain arbitrarily complex formulas, precision transducers are
also viable for sharing correctness certificates (witnesses), which can reduce
the validation effort considerably.161

Model Checking A software model checker constructs finite models of programs with a po-
tentially infinitely large state space. A core problem in model checking is the
choice of the level of abstraction—the abstraction precision—for the abstract
model to construct from the concrete system. The resulting abstract model
must be (1) sufficiently precise such that the absence of a specification viola-
tion can be proven without false alarms, but it also has to be (2) as abstract as
possible to allow an analysis to converge and to come up with a finite model.
Coming up with the right abstraction precision for constructing an abstract
model for a given verification task effectively and efficiently is crucial for
the performance of a model checker. Therefore, we consider the abstraction
precision that a model checker has computed for a given verification task
as a precious intermediate verification result, and propose to reuse it within and
among (different) verification runs. Similar verification runs can lead to (many)
similar reasoning problems such that sharing these intermediate results for
reuse seems promising.162

CEGAR A widely used technique to refine the abstraction precision is
counterexample-guided abstraction refinement (CEGAR) [67]. It operates it-
eratively by step-wise refining the abstraction precision of the model until the
model is sufficiently precise for the reasoning task at hand. It uses infeasible
counterexamples to identify additional facts to add to the model. Such infea-
sible counterexamples can be present in the abstract model only because
the abstract model then lacks precision. The refinement iterations stop if
the algorithm does not run into infeasible counterexamples anymore. Take163

Example the following path segment of a program‘s execution as an example: Only
facts about the variable p have to be tracked, that is, the abstraction preci-
sion π = {p > 0} is sufficient for proving the call fail() infeasible.

. . . p > 0 p > 0 false 


p=443; h=&handler; [p <= 0] fail();

164

Sharing and Reuse Workflow In this chapter, we propose, evaluate, and discuss techniques for reduc-
ing the number of refinement iterations by sharing and reusing abstraction
precisions while keeping the resulting abstract model as small and parsimo-
nious as possible such that the fixed-point iteration of the model checking
algorithm converges fast. We discuss how sharing and reusing of abstraction
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precisions can influence the size of the abstract state space, and the number
of refinement iterations, and thus the performance of a verifier. Both the
reuse of abstraction precisions within a verification run, but also the reuse
among verification runs is motivated by commonalities between different
verification (sub-)tasks and the corresponding reasoning problems. Similar
solutions can be (re-)used for similar problems. Repeated computation effort
can be avoided and thus, resources—such as time, energy, and money—saved.
Our work on precision sharing and reuse is applied [36] for continuously
checking Linux kernel modules for their adherence to a set of properties that
specify the correct usage of the Linux kernel API [42, 159]. 165

Safety PropertiesPlease note that this chapter has a strong focus on the verification of safety
properties. We focus the discussions on procedures that discover, share and
reuse facts that are needed to prove the unreachability of bad states.

Contributions. This chapter is inspired by paper on “Precision Reuse for
Efficient Regression Verification” [36] but presents the following novel con-
tributions:

• Abstraction Precision. We formally define a notion of an abstraction pre-
cision, and form a lattice thereof. We distinguish between the actual
precision and a candidate precision and define the scope of an abstrac-
tion precision. Based on the notion of an elementary precision, we intro-
duce the concept of precision grinding. We introduce abstract precisions
to allow for differentiating the abstraction precision by concern.

• Precision Transducers. We present precision transducers as a flexi-
ble means for sharing abstraction precisions on precisely defined
scopes: We operationalize scoped model precisions based on precision
transducers—which is one form of an abstract transducer.

• Sharing Strategies. We demonstrate how both existing and novel strategies
for sharing abstraction precisions for reuse can be realized based on
precision transducers. A good strategy for sharing precisions aims to
balance between a small number of precision refinement iterations and
narrow precision scopes.

• Precision Synthesis. We demonstrate how precision synthesis can be
implemented based on precision transducers. Parameterized preci-
sions (precision templates) become instantiated based on the observa-
tions made while traversing the state space.

• Empirical Study. We conduct an empirical study to demonstrate the
applicability and effects of different strategies for sharing abstraction
precisions for reuse based on precision transducers. Our novel sharing
strategy that takes advantage of the expressiveness of precision trans-
ducers yields promising results. Furthermore, we present first results
for precision synthesis based on precision transducers.

Outline. We start with an elaborate characterization of the problem of dis-
covering, sharing, and reusing abstraction precisions (Sect 5.1). Which ap-
proaches are there for discovering facts to track and to refine an abstraction
precision? Do these techniques influence the potential of sharing and reuse?



126 precision transducers

Which considerations are relevant when sharing abstraction precisions? To
which extent is the size of block-abstraction problems relevant for choosing
an appropriate strategy for sharing and reuse? How is sharing different from
reusing abstraction precisions? What are the appropriate points in time of a
verification run for sharing and reuse? Section 5.2 formally defines different
notions that are relevant when dealing with abstraction precisions, for ex-
ample, an abstraction precision lattice, the equality of abstraction precisions,
and elementary abstraction precisions. Furthermore, we define the scope of
an abstraction precision and the notion of an abstract precision. Section 5.3
introduces precision transducers and a corresponding precision transducer
analysis. Section 5.6 first introduces the notion of path precision transducers
and tree precision transducers. Then, we describe how different strategies
for sharing precisions for reuse can be built on top of precision transducers.
Section 5.5 discusses how parameterized precision transducers can be used
for synthesizing abstraction precisions. Section 5.6 continues with consid-
erations that are relevant for the reuse of abstraction precisions. How can
precision transducers be integrated into the verification workflow? How to
choose from the candidates for reuse? Which filtering techniques are appro-
priate? What granularity can elements of abstraction precisions have? Sec-
tion 5.7 presents an empirical study to illustrate the practical applicability of
the concepts and techniques that we introduce in this chapter. The chapter
finishes by summarizing this and related work.
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5.1 problem characterization

Several factors determine if the process of constructing an abstract model is
well suited for efficiently and effectively conducting the verification task at
hand. We focus on the influence of the abstraction precision and its discovery,
sharing, and reuse. In the following, we take different conceptual perspec-
tives to discuss and characterize arising problems. Based on these conceptual
frameworks, we make more specific contributions throughout the chapter.

5.1.1 Block Abstraction

The idea of abstraction-based model checking [67, 70] is to model only those
details of a system that are relevant for the given reasoning task. The ab-
straction process results in summaries that describe the relevant facts—as
specified by the abstraction precision—for the reasoning task. We use the
term block abstraction problems to refer to these summarization tasks:

Definition 76: Block Abstraction Problem
The task of computing an abstraction (summary) with a given abstrac-
tion precision of a specific fraction (block) of a program and its state
space is called a block abstraction problem. A block defines a set of be-
haviors and concrete states of a program. Let D = (C,E, [[·]], 〈〈·〉〉) be
the abstract domain with the lattice E of abstract states E. Formally,
an abstraction problem (e,O,π) ∈ E× 2Op∗ ×Π is a tuple that consists
of an abstract block entry state e ∈ E, the set of block traces O, which is
a set of finite sequences of program operations, and the candidate abstrac-
tion precision π ∈ Π to use. The result of solving this block abstraction
problem is a set of abstract successor states ê ′ ⊂ E, where each of
them is the result of computing an abstraction 〈〈·〉〉π based on an ab-
straction precision π. We therefore also call these states summary states
or abstraction states. The resulting abstraction must overapproximate
the block:

(
⊔
o∈O

SP(e,o)) v
⊔
ê ′.

The operator SP computes the strongest postcondition—see Sect.2.3.4.

Figure 32 provides an illustration of how block-abstraction problems can
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Block b
Block c
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Block d

Figure 32: Block abstrac-
tion problems

be [28, 35] reflected in an abstract reachability graph. The orange graph
nodes represent abstraction states, the gray nodes represent (intermediate)
abstract states that are computed after each control-flow transition, and for
that no abstraction is computed. The set of sequences of control-flow tran-
sitions between the abstraction states correspond to the set of block traces.
The smaller the size of block abstraction problems is, the more of them are 166

Size of Abstraction Problemsthere for a given verification task, and the more abstractions of these blocks
have to be computed during the state-space exploration process.

In the implementation and formalization of the predicate analysis [35], on
which this work builds, a block abstraction problem is encoded in a form that
can be handed over to an SMT solver easily—see Sect. 2.4.4 for details of the
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analysis. A predicate block abstraction problem is a tuple (ψ,ϕ,π) ∈ F× F×Π,167

Predicate Block
Abstraction Problem where ψ is the abstraction formula that represents the initial abstract state of

the block abstraction problem, the block formula ϕ represents the semantics of
the set of program operation sequences in the block, and π is the candidate
abstraction precision for computing the summary.

Abstraction Computation. The predicate analysis [35] summarizes all rele-
vant information from a block abstraction problem by computing a predi-
cate abstraction [122, 177], based on the set of predicates from the candidate
abstraction precision π. Each of the resulting abstraction states has an ab-
straction formula ψ ′ ∈ F, which represents a set [[ψ ′]] of concrete states that
can be reached by following sequences of program operation o ∈ O starting
from one of the concrete states [[e]] that the block entry state e represents.168 "

Whenever we talk about (block) abstraction problems in the sections that
follow, we talk about predicate block abstraction problems and deal with
abstraction precisions that consist of sets of predicates. A block encoding strat-
egy [28, 35] determines the fraction of a program and its state space that
should be encoded into one block. If not stated otherwise, we assume that
Boolean predicate abstraction [177] is used to compute abstractions. Boolean
predicate abstraction provides the most precise abstraction that is possible
based on a given set of predicates. Nevertheless, its costs are high:

Problem 1 (High Abstraction Costs). The costs of computing a Boolean pred-
icate abstraction 〈〈ϑ〉〉πB of a given formula ϑ (with decidable theories) are
double exponential in the number of predicates [120, 177] in the precision π.

Abstraction Coverage. Whenever we want to prove a temporal property of
a given program, with potentially infinitely many states and behaviors, we
have to construct a finite model first.

In unbounded model checking, we create a finite model by employing ab-
straction [70], which results in an overapproximation that covers all possible
states and behaviors. This overapproximation is constructed by an algorithm
that conducts a fixed-point iteration: Whenever the algorithm reaches a new169

Fixed-Point Iteration state, it checks if this state is covered by the model that has been constructed
up to that point. The algorithm continues its state-space exploration from
newly discovered states until no new unknown states are discovered. One
example of such an algorithm is the CPA algorithm [31]—see Sect. 2.5.1. The
check for coverage is typically performed based on the inclusion relation v
of the lattice of abstract states—which is central for the fixed-point iteration.

As motivated previously, block abstraction problems are solved to sum-170

Block Summary Coverage marize fractions of a program and its state space. This is a crucial step for
unbounded software model checking, for example, to cope with loops and re-
cursion: Loop-free subgraphs (for example, loop bodies) of the control-flow
automaton are summarized [28] into abstraction states, and then, coverage
is checked between the abstraction states that summarize the subset of the
state space that has already been explored.

Example 13. Figure 33 illustrates a reachability graph that is formed of ab-
straction states (the nodes of the graph) only; each abstraction state was com-
puted by solving a block-abstraction problem. In this example, abstraction
state e1 is the initial state, and abstraction state e2 is the result of solving the
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block abstraction problem (e1,O2,π). Let the set O3 be the set of sequences
of program operations that represent a loop body, and let the set O2 be the
sequences of program operations reach this loop body. Since we assume that
the summaries that are represented by the abstraction states e2 and e3 are
loop invariant, coverage is achieved, that is, e3 v e2.

e1

e2

e3e4

e5

covered by

O2

O3O4

O5

Figure 33:
Reachability graph of
block abstractions

The information to encode into a summary is determined by the abstraction

171

Role of the
Abstraction Precision

precision π of a block-abstraction problem. Having an appropriate abstrac-
tion precision—for example, a set of predicates that can be combined by
predicate abstraction to form a loop invariant—determines the efficiency and
effectiveness of a verification procedure.

We prefer constructing models based on abstraction precisions for that
the analysis can converge to a fixed point fast. In the case of predicate abstrac-
tion, general predicates increase the chance of ending up in such abstrac-
tions. Having too specific predicates in the abstraction precision reduces this
chance considerably: A Boolean predicate abstraction 〈〈ϑ〉〉πB of a formula ϑ
is the strongest Boolean combination of a set of predicates π that is entailed
by ϑ—see Sect. 2.4.4. One of its properties is that it does not have any no-
tion of generalization, that is, it takes all given predicates into account and
does not manipulate any of them, for example, weaken, strengthen, or re-
move some of them. This characteristic is critical for precision sharing and
reuse: Having, without reason, too narrow predicates in the precision can
contribute to a diverging state space.

Example 14. Given a formula ϑ ≡ (i1 = 1)∧ (i2 = i1 + 1) to compute the
Boolean predicate abstraction 〈〈ϑ〉〉πB with precision π = {i <= 16, i = 1, i = 2}.
Each predicate is represented by a propositional variable {ρ1, . . . , ρn} based
on that we construct the AllSat problem ϑ ∧ (ρ1 ⇔ i 6 16) ∧ (ρ2 ⇔ i =

1)∧ (ρ3 ⇔ i = 2) that is used for computing the abstraction. In the end, we
get 〈〈ϑ〉〉πB ≡ ρ1 ∧ ρ3 ≡ (i = 2)∧ (i 6 16), which can be further simplified
to i = 2. That is, while there would have been a general predicate that
could have acted as a loop invariant, the abstraction procedure returned
an abstraction with the most precise predicate.

We can see from the previous example that a high precision is not always
better—the highest possible precision π> would not cause any abstraction
and result in the formula ϑ—given that ϑ is fully satisfiable and does not
contain unsatisfiable conjunctive clauses.

Problem 2 (Overspecific Predicates). A too high abstraction precision, for ex-
ample, a set of fine-grained predicates that maps to a small set of concrete
states, can reduce the performance of a verification procedure considerably
by reducing the chance of arriving on a fixed point early.

The implications for sharing and reusing predicates as elements of abstrac- 172

Implications for
Sharing and Reusetion precisions can be manifold. For example, prefer to share general predi-

cates, which are more likely to lead to a converging state-space exploration
process, reduce the scope of less general predicates, and take strategies into
account that generalize predicates before actually (re-)using them.
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5.1.2 Discover-Share-Reuse

After we have discussed how an abstraction is computed based on a given
abstraction precision—for example, a set of predicates—we now focus on
how these abstraction precisions are discovered, shared, and reused. We in-
troduce the Discover-Share-Reuse Scheme as one perspective on abstraction-
based model checking to deduce several principles for precision sharing and
reuse of abstraction precisions. Figure 34 illustrates the scheme.

Discover Share

Reuse
Adapt

Filter

Generalize

Start

Figure 34: Discover-Share-
Reuse (DSR) Scheme

Discover. The phase discover is used to identify additional facts to model
about a program to conduct the given verification task. Verification tech-
niques that rely on abstraction are dependent on procedures that discover
the facts to model for (1) ruling out spurious (infeasible) counterexamples,
and (2) converging to a fixed point in the analysis process fast (and not to
diverge), for example, by discovering appropriate loop invariants. A pro-
cedure for discovering the facts to track is said to be complete [152] if it173

Completeness of Discovery guarantees to eventually provide a refined abstraction precision that is suf-
ficiently precise to conduct a given verification task. The most primitive but
complete approach for discovering predicates is [152] to enumerate all pred-
icates (a countable set) on the parts—for example, data locations or control
locations—of a task and refine the abstraction precision by adding one more
predicate from the enumeration in each iteration.174

Approaches for Discovery Different approaches (many incomplete ones) have been proposed to dis-
cover the facts to track and are available for use: An abstraction precision can
be provided manually [122] by the verification engineer. Candidates can be
derived from branching conditions [59], infeasible program paths [51], pro-
gram path slices [150], counterexamples [67], from matching templates [153,
238], from the cone-of-influence [148], or from weakest preconditions or
strongest postconditions [25]. Some discovery techniques are only applica-
ble to constraint systems that are either unsatisfiable or satisfiable, whereas
this is not relevant for other techniques. Techniques based on Craig interpo-
lation [190] and unsat cores [132, 183] operate on unsatisfiable problems and
have a huge impact on the verification community. Abduction and the weak-
est precondition calculus [59, 183, 231] are applied to satisfiable problems
to identify relevant details or even loop invariants. Other fields of research
also studied the discovery of predicates: Predicate invention from the field
of inductive logic programming denotes the automatic process of introduc-
ing new relationships (predicates) [198]. The fields of inductive inference and
logic of generality provide additional (or auxiliary) directions to come up with
relational predicates [225]. The refinement procedure might include an accel-
eration [27] step that generalizes the predicates to track.

This work focuses on sharing and reusing abstraction precisions that175

Focus on CEGAR
with Craig Interpolation are discovered based on counterexample-guided abstraction refinement [67]

with Craig interpolation [84, 137, 190, 191], and are used for predicate ab-
straction [28, 35, 122]. We address the following problem:

Problem 3 (Number of Refinement Iterations). Several refinement iterations are
necessary until a CEGAR-based verifier has constructed an abstract model
with all the facts that are sufficient for conducting the verification task at
hand. The number of iterations increases with the number of facts to model.
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Share. Before abstraction precisions can be reused, candidates for reuse have
to be shared to the different block abstraction problems in a verification
run. An abstraction precision that either helped to solve a verification task
efficiently and effectively, or helps likely to increase the performance of a
verification run, is a precious intermediate verification result that should be
shared for reuse.

We use the term sharing to denote the decision and act, whether or not to 176

Sharingprovide an abstraction precision for a block abstraction problem in a specific
context. The same abstraction precision can be provided for multiple block
abstraction problems, within or among verification runs, and might be rele-
vant to rule out several infeasible counterexamples at different points of the
state space. The context for sharing an abstraction precision can be, for exam-
ple, a specific unwinding of a loop, a sequence of control-flow transitions,
or a specific function call stack. A sharing strategy is a systematic approach 177

Sharing Strategyto share abstraction precision for reuse and might be tightly integrated with
the precision discovery procedure.

Different sharing strategies have been proposed in the literature. Sharing
abstraction precisions as local as possible [137] helps to mitigate the state space
explosion problem, whereas sharing the same abstraction precision at all
points of the state space reduces the number of refinement iterations, but may
increase both the size of the abstract model (coverage less likely) and the
costs for abstraction computations [177]. Lazy abstraction [136] maps an ab-
straction precision to each abstract state; it aims at a parsimonious abstract
state space [137] by reducing sharing and making abstraction precisions as
local as possible. Other strategies [147] choose to use flat maps of functions
or control locations to abstraction precisions, or sets of globally shared pred-
icates, and can keep the sharing information among iterations, but cannot
express complex contexts for sharing.

Precision π1

Precision π2

Precision π3

Initial State

Task Variant 1

Figure 35: Different ab-
straction precisions among
the ARG

Example 15. A refiner that follows the pure idea of lazy abstraction [136]
keeps the refinements of abstraction precisions local to the states that have
no reachable counterparts in the real system (the last state in a sequence that
has reachable counterparts is called the pivot states), and would not share the
precision among different abstract states that are not part of the affected sub-
graph (below the pivot states). Take, for example, task variant 1 in Fig. 35:
The abstraction precision π2 would be discovered four times because the
pivot states are in different subgraphs of the ARG. In total, at least 9 re-
finements would have to take place to identify only three different sets of
facts—reflected in the abstraction precisions π1, π2, and π3—to track.

Problem 4 (Generic Sharing Mechanism Missing). There is no generic mech-
anism that allows expressing different strategies for sharing abstraction pre-
cisions for reuse. Existing approaches either allow only a flat mapping and
are rather insensitive to the context or rely (as lazy abstraction) on a copy of
the state space to not lose the context after an abstraction refinement.

This chapter introduces precision transducers that allow expressing differ-
ent sharing strategies, for example, strategies that are close to the sweet spot
between a low number of refinement iterations and a compact abstract state



132 precision transducers

space. Precision transducers provide expressiveness to share precisions de-
pending on the (call) context, the program flow of the program analysis, or
even on specific program paths, in a path-sensitive manner.

i n t n , m , i , j ; / / non det .
i n t k = 0 ;
assume (10 <= n && 10 <= m) ;
f o r ( i = 0 ; i < n ; i ++)

f o r ( j = 0 ; j < m; j ++)
k ++;

a s s e r t ( k >= 100) ;

Figure 36: Context

Example 16. Figure 36 shows a program with nested loops, for which consid-
ering the context is crucial when sharing predicates to obtain the verification
result efficiently: Considering the context reduces the time for verification
from 380 s to 30 s, and a model with 957 states instead of 39 117. See the
appendix for details on our benchmarking environment.

Reuse. The reuse of abstraction precisions can take place after they have been
shared. Different abstraction precisions can be shared as candidates for reuse.
Further processing steps, for example, filtering or generalization, might be178

Filter, Generalize applied to these candidate precisions. These steps can be necessary to keep
the abstraction costs low and to ensure the effectiveness and efficiency of the
verification process. For example, an abstraction procedure based on Boolean
predicate abstraction [28, 122] might [72] take only a subset of the shared
predicates into account to compute an abstraction. The set of predicates in
the candidate precision might be large, and many of these predicates could
be removed while still being able to achieve the same or a better verification
performance; it is not always good to have the most precise abstraction [234].

The abstraction procedure can decide to synthesize more general abstrac-
tion precisions from the candidate precisions. The generalized precision
must exclude at least the same (infeasible) counterexamples than the less
general precision to ensure progress of the verification procedure. Alterna-
tively, the procedure must provide a mechanism to detect that an abstraction
was too general and backtrack [97] to a less general abstraction precision. A
classification [7] of variables can be taken into account to choose an appro-
priate generalization (or minimization) procedure.

Problem 5 (Several Candidates for Reuse). Using the full abstraction precision
that has been shared as a candidate for computing an abstraction can lead
to an abstract model that diverges, or it can increase the cost for computing
the abstraction unnecessarily.

5.1.3 Init-Transfer-Target-Coverage

Init

Transfer

Target

Coverage

e0

e1

e2

e3

e4

e5

e6

e7

Figure 37: Init-Transfer-
Target-Coverage Scheme,
Forwards Analysis

Sharing, reuse, and the discovery of abstraction precisions can take place in
different phases of a verification run. We introduce the Init-Transfer-Target-
Coverage Scheme (ITTC) as a model for categorizing, explaining, and dis-
cussing different model checking techniques. We use this scheme to discuss
how and where discovery, sharing, and reuse of abstraction precisions can
be integrated into a verification tool. Figure 37 illustrates the schema. Please
note that our discussion of the scheme focuses on a forwards analysis, but
the scheme can also be adopted to backward analyses. The scheme models
four phases of a model construction algorithm:

Init. The init phase covers the time before the first successor state for the
initial state is computed. An initial abstraction precision might be provided or
discovered in this phase, for example, from the verification engineer, or a
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mining heuristic that is independent of the actual state-space traversal. We
use this phase [36] to provide an initial precision (transducer) for regression
verification, that is, to share the abstraction precision that was used for a
previous version of the verification task.

In the init phase of a verification run, we can use (1) information that
is provided by the user as an argument to the verifier, or (2) information
that the verifier has learned from previous verification runs and provided in
persistent storage. Let us assume that there is already a history of verification
runs for which the precisions have been stored. We can define a similarity (or 179

Task Similaritydistance) measure between different verification tasks. We use this measure
to identify the task with the highest similarity to the verification task at hand
and take its abstraction precision for the task at hand as the initial value.

An obvious distance measure can be defined based on information from
the version-control systems: We can reuse the union of precisions that were
stored for the versions that precede directly in the graph of commits, that is,
the distance is defined based on the number of edges between two versions
in the commit-graph. We take this approach for regression verification [36].

Transfer. The transfer phase covers all abstraction (summary) computations
and the exploration of (abstract) successor states. This phase is central to 180

Dynamic Precisionthe concept of dynamic precision adjustment [32] where the abstraction pre-
cision can get adjusted during the state space traversal. The transfer phase
might conduct further widenings or strengthenings [31] of abstract states,
that is, adjust the abstraction precision of abstract states and with it the ab-
straction precision of the model.

Target. The target phase covers all points in time in which a target state, which
represents a potential violation of the specification, is entered. The classical
counterexample-guided abstraction refinement [67] operates in this phase to
check if the target state is reachable, and to refine the abstraction precision
in case of spurious counterexamples. The analysis is typically resumed after
the abstraction precision has been refined and the infeasible part of the state
space removed.

Coverage. Specific techniques [59] refine the abstraction precision after the
model checking algorithm has reached a fixed point by covering all potential
states of the system under analysis. This class of techniques performs a global 181

Global Refinementrefinement, that is, the set of all reached target states, where each of them rep-
resents a potential violation of the specification, is considered for choosing
an appropriate refinement of the abstraction precisions for the next itera-
tion of the verification algorithm. Especially techniques for multi-property
verification [8] and model-driven test generation might benefit from such a
refinement approach.
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5.2 abstraction precision

Before we continue our discussions on sharing abstraction precisions for
reuse, we formally define our notion of abstraction precision and introduce
further notions that are built around the concept of abstraction precision.

5.2.1 Types of Abstraction Precisions

Precision is an established concept in program analysis and verification [32,
67, 89, 119, 136]. We provide a formal definition that reflects our perspective
on abstraction precisions:

Definition 77: Abstraction Precision
An abstraction precision (or concrete precision) π ∈ Π characterizes the
set of details of a state or system that should be maintained by an
abstraction process. The abstraction precision denotes [[π]] ⊆ C → 2C

a function that defines the set of states that are considered equiva-
lent with respect to the fraction of information to maintain. It defines
which information from a concrete state is maintained in a correspond-
ing abstract state. This corresponds to an existential abstraction [70]
and either maintains the full information or leads to an overapproxi-
mation. The set of all abstraction precisions is denoted by Π.

That is, we take a similar perspective as Nayak and Levy [202] that view
abstractions as model level mappings. They define a function π : [[B]] → [[A]],182

Related Work where [[B]] is the set of interpretations of words in a language “base” and
set [[A]] is the set of interpretations of words in a language “abstract”. A
prominent notion of precision was described by Dams, Gerth, and Grum-
berg [89]. They use the term precision to describe the information content of
an abstract model: An entity a is said to contain more information than an
entity b if their interpretations are in a subset relation, that is, iff [[b]] ⊆ [[a]].

From the definition of an abstraction precision follows the definition of
the equality of two given abstraction precisions:

Definition 78: Precision Equivalence

Two abstraction precisions π1 and π2 are said to be equivalent, that is,
π1 ≡ π2, if and only if they result in the same abstraction for all given
inputs. That is, for each state c ∈ C it is true that [[π1]](c) = [[π2]](c).

Example 17. Let’s assume that the set of concrete states C ⊆ 2X→B is defined
as a set of maps that map from data locations to bit values. Furthermore,
assume that the set of data locations X consists of the set of program vari-
ables {a,b, c} only. The precision π1 defines that the value of data location a
and b should be maintained. For a concrete state c1 = {a : 0,b : 1, c : 0}, preci-
sion π1 defines the abstraction [[π1]](c1) = {{a : 0,b : 1, c : 0}, {a : 0,b : 1, c : 1}},
that is, it results in an overapproximation that assumes any possible value
for data location c.
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Previous example makes use of a type of abstraction precision that defines
the information to maintain based on the set of data locations; we call such
a precision a data-location precision:

Definition 79: Data Location Precision
A data-location precision π ∈ ΠX defines a set of data locations for which
an abstraction procedure should maintain the full information, that is,
π ⊆ X, and [[π]] ⊆ C → 2C. The set of all data-location precisions is
denoted by ΠX.

Another important type of precision is the predicate precision:

Definition 80: Predicate Precision
A predicate precision π ∈ ΠP is an abstraction precision that is formed
as a set of predicates P, that is, π ⊆ P and [[π]] ⊆ C → 2C. The set of
all predicate precisions is denoted by ΠP. One predicate ρ : C → B is
a function on the set of concrete states C and denotes a subset [[ρ]] ⊆ C
of those—it is a Boolean formula in predicate logic.
Semantically, a predicate precision π ∈ ΠP defines an abstraction of
a given concrete state c ∈ C as the conjunction of all predicates from
the set π that evaluate to true for the state, that is, [[π]] = {(c,

∧
{ρ ∈ π :

ρ(c) = true}) | c ∈ C}.

Note that also a set of program invariants can form a predicate precision but
predicates from a predicate precision are not necessarily program invariants.

Example 18. Given the predicate precisions π1 = {b = 1, x = 2, i 6 90},
and π2 = {x = 2}, which have been used in Sect. 2.4.4 to discuss the
difference between Boolean and Cartesian predicate abstraction. The pre-
cisions are not equal to another, that is, π1 6= π2, because there exists at
least one concrete state c ∈ C for that [[π1]](c) 6= [[π2]](c). An example for
such a state is cx = {x : 2,b : 1, i : 0}. If we assume that all concrete
values are in the interval [−128, 127], then {x : 2,b : 1, i : 117} ∈ [[π2]](cx)

but {x : 2,b : 1, i : 117} 6∈ [[π1]](cx).

We distinguish between candidate precisions and actual precisions:

Definition 81: Candidate and Actual Precision
A candidate precision πc ∈ Π is shared to an abstraction procedure for
computing an abstraction. The actual precision πa ∈ Π is the abstraction
precision that the resulting abstraction actually has. A discrepancy
between candidate precision and actual precision can be the result of
adapting, filtering, or generalizing the given candidate precision.
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5.2.2 Concrete Precision Lattice

Abstraction precisions form a lattice, which is important to ensure progress
of refinement-based verification techniques:

Definition 82: Concrete Precision Lattice
The concrete precision lattice is defined by tuple � = (Π,vπ
,uπ,tπ,>π,⊥π). A pair of abstraction precisions is in the inclusion
relation vπ⊆ Π × Π, that is, (π1,π2) ∈vπ, if and only if ∀c ∈ C :

[[π1]](c) ⊇ [[π2]](c). Let c ∈ C be an arbitrary concrete state. The
join tπ : Π× Π → Π of two abstraction precisions π1 tπ π2 defines
a new abstraction precision πt that aims to maintain at least the in-
formation that is intended to be maintained by precision π1 or preci-
sion π2, that is, [[πt]](c) = [[π1]](c) ∩ [[π2]](c). The meet uπ : Π×Π → Π

of two abstraction precision π1 uπ π2 defines a new abstraction pre-
cision πu that aims to maintain the information that is intended
to be maintained by both precision π1 and π2, that is, it is the
union [[πu]](c) = [[π1]](c) ∪ [[π2]](c)—less information is maintained,
one state maps to a larger set of states. The top precision >π defines
that the full information should be maintained: [[>π]](c) = {c}. The
bottom precision ⊥π defines that no information should be maintained:
[[⊥π]](c) = C. The bottom precision is the neutral precision regarding
the join of precisions. A precision subtraction π1 \π π2 defines a new
abstraction precision π\ that aims at keeping all information that is
specified in precision π1 except if it is specified by π2. The comple-
ment ¬π of a given abstraction precision π defines the information not
to maintain, that is, [[¬π]](c) = [[π>]](c) \ [[π]](c).

Please note that lattices of predicate precisions and data-location precisions
are typically implemented as powerset lattices.

We assume that a concrete precision lattice � is one component of every183 "
abstract domain with widening, that is, an abstract domain with widening
is defined by the tuple D = (C,E, [[·]], 〈〈·〉〉, �, 〈〈·〉〉π). Whenever an abstract
domain is composed to form a product domain, or composite domain [31],
also a product of the precision lattice is constructed to form a product lattice.
Along with the work that introduced dynamic precision adjustment [32], the
notion of composite precision was introduced, but no lattice has been used
to describe the relationship between precisions.

Example 19. Given two concrete predicate precisions π1 = {a > 7} and
π2 = {a < 23}. A new precision π3 = π1 tπ π2 is the result of their join. The
resulting precision π3 = {a > 7,a < 23} maintains more information, that is,
the join denotes the intersection [[π3]](c) = [[π1]](c)∩ [[π2]](c).

The following example clarifies the difference between a lattice of
predicates—where an element in the lattice is a predicate—and our concrete
precision lattice:

Example 20. Given two predicate precisions π1 = {a > 7,a < 23} and
π2 = {a > 7∧ a < 23}. Precisions π1 and π2 are not equivalent to another:
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There exists at least one concrete state for which these precisions result in
different abstractions. An example is the state c = {a : 1} for which π2(c) = C,
whereas π1(c) = [[a < 23]].

After we have defined the notion of precision lattice, we can define the
notion of elementary precision:

Definition 83: Elementary Precision

A concrete abstraction precision πe is called elementary if there is
no other concrete abstraction precision πl that is in the inclusion
relation πl v πe but the bottom precision ⊥π. We use the sym-
bol Π4 to denote the set of non-elementary precisions, which we define
as Π4 = {π |π ∈ Π∧ πl v π∧ πl 6= ⊥π}. The symbol Π� denotes all
elementary precisions, that is, Π� = Π \Π4.

Example 21. Let ΠP be the set-based predicate precisions (which are ele-
ments of a corresponding powerset lattice), that is, each concrete abstraction
precision π ∈ ΠP is a set π ⊆ P of predicates, with π1 vπ π2 ⇒ π1 ⊆ π2.
Each predicate precisions π ∈ ΠP that consists of exactly one predicate, that
is, |π| = 1, is an elementary precision.

5.2.3 Precision Scope

Precision sharing denotes the process of providing one specific abstraction pre-
cision for different abstraction tasks, which results in the scope of an ab-
straction precision. This type of sharing reduces [36] the effort for conduct-
ing precision refinements [67] to exclude spurious counterexamples. That
is, sharing an abstraction precision then influences the complexity of the
abstraction problems that have to be solved to conduct a verification task.

Definition 84: Precision Scope

The scope of an abstraction precision π ∈ Π defines the context and the
extent of sharing the abstraction precision for reuse. The abstraction
precision is shared if the context is satisfied and as long the analysis
stays in the extent of the scope. Formally, the scope scpπ of a given
abstraction precision π denotes [[scpπ]] ⊆ Op∗ × 2Op∗ a set of pairs of
context and lookahead. That is, the precision π is shared if (σ̄, σ̂) ∈
scpπ and the analysis reaches the end of word σ̄ and the remaining
postfix ahead to process is covered by the lookahead σ̂—see Sect. 3.2.1
for details on the lookahead.

We also define the precision of the full abstract model based on scopes:

Definition 85: Scoped Model Precision

A scoped model precision π̊ denotes [[π̊]] ⊆ Op∗× 2Op∗ × (H→ 2Π) a map-
ping of particular abstraction precisions to different scopes, separated
by concern. A concern h ∈ H can be, for example, a property to check
in a verification run.
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Proposition 14. A scoped model precision has equivalent expressiveness
than mapping abstraction precisions to abstract states if the abstract reach-
ability graph is deterministic. An abstract reachability graph is called de-
terministic if there are not two more abstract successor states E ′ ⊆ E for
a given abstract state e with the same labeling, that is, if for any program
operation op ∈ Op we have | {e ′ | (e, e ′) ∈ op } | 6 1.

Proof. Mapping the abstraction precision to abstract states would be more
expressive in case of determinism if two different abstract states in the ab-
stract reachability graph would be reachable based on the same sequence
of program operations but this contradicts to the definition of deterministic
reachability graphs.

5.2.4 Abstract Precision

After we have discussed the notion of concrete abstraction precision in the last
sub-sections, we now introduce the notion of abstract precision, which aids
in following objectives:

• Clear mapping of different abstraction precisions to different concerns
to analyze: This is helpful in case the state space is separated by con-
cern to analyze at certain points. While intended to be used in future
work, already existing state-space abstraction approaches that conduct
some sort of state-space partitioning, for example, for inferring weak-
est preconditions [230, 231], could benefit.

• Possibility to disable the modeling of certain concerns: We presented the
idea of dynamically disabling the analysis for particular concerns in
our work on multi-property verification [8]. Mapping the empty set of
concrete abstraction precisions to a concern disables its analysis.

• Alternatives for concrete precisions to choose from can be provided:
This is a result of mapping a set of precisions to a concern. For this
work, we assume that at most one abstraction precision is mapped to
a concern and keep alternative precisions for future work.

Based on these objectives, we define an abstract precision as follows:

Definition 86: Abstract Precision
A abstract precision p ∈ P maps a set of concrete abstraction precisions
to each concern of a program analysis task, that is, it is a function p :

H→ 2Π. The set of all abstract precisions is denoted by P.

As we proceed in this section, we will define several operators on abstract
precisions. The formalisms that we use here to deal with (map-)lattices and
their elements are defined in Sect. 37.

Example 22. Given the set HP = {h1,h2,h3,h4,h5} of concerns that are rel-
evant for a given analysis task, and let each concern h ∈ HP ⊂ H be a
property to check (a specification is a set of properties). The abstract pre-
cision p = {(h1, {π1}), (h3,⊥P), (h4, {⊥π})} states that concern h1 should be
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tracked with precision π1, concern h2 should not be tracked because the
bottom element ⊥P is implicitly mapped to it (see the definition of a map
lattice), concern h3 is also disabled, concern h4 is enabled to be tracked with
the lowest possible precision ⊥π, and the tracking of facts for concern h5 is
also disabled.

We continue with the definition of a lattice of abstract precisions and con-
tinue with its join and meet:

Definition 87: Abstract Precision Join
The join tp : P×P→ P of a pair of abstract precisions is the pairwise
join of the represented concrete precisions, separated by concern. The
pairwise join of concrete precision sets is defined by ×t(S1,S2) =

{s1 tπ s2 | s1 ∈ S1∧ s2 ∈ S2}. That is, the concatenation of a pair p1, p2
of abstract precisions is defined as

tp(p1, p2) = {(h, p1(h)⊥ ×t p2(h)⊥) | h ∈ keys(p1)∪ keys(p2)}.

Example 23. Given the abstract precisions p1 = {(h1, {π1}), (h2, {π2}),
(h4, {π4,π5})} and p2 = {(h2, {π7}), (h3, {π3}), (h4, {π6})}. The join p1 tp p2
results in the abstract precision p3 = {(h1, {π1}), (h2, {π2 tπ π7}), (h3, {π3}),
(h4, {π4 tπ π6,π5 tπ π6})}.

Definition 88: Abstract Precision Meet
The meet up : P×P→ P of a pair of abstract precisions is the pairwise
meet of the represented concrete precisions, separated by concern. The
pairwise meet of concrete precision sets is defined by ×u(S1,S2) =

{s1 uπ s2 | s1 ∈ S1 ∧ s2 ∈ S2}. That is, the meet of a pair p1, p2 of
abstract precisions is defined as

up(p1, p2) = {(h, p1(h)⊥ ×u p2(h)⊥) | h ∈ keys(p1)∪ keys(p2)}.

The abstract precisions form a lattice:

Definition 89: Abstract Precision Lattice

The abstract precision lattice is a lattice
...
P = ml(H, pw(Π)) = (P,vp

,up,tp,>p,⊥p) over the set of abstract precisions. That is, each el-
ement of this lattice is a map from concerns to sets of concrete ab-
straction precisions. The abstract top precision >p signals to track all
concerns with full precision. The abstract epsilon transition pε signals
that all concerns are enabled for tracking but with the lowest possible
precision, that is, [[pε]] = {(h, {⊥π}) | h ∈ H}. The abstract bottom preci-
sion ⊥p signals that no concern is enabled for tracking. The definitions
of the inclusion relation vp correspond to the generic definitions for
the map lattice—see Sect. 37.
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5.3 precision transducer

This section presents precision transducers as means to share abstraction
precisions for reuse. Generally, all those finite-state machines that emit ab-
straction precisions on states or transitions can be considered to be preci-
sion transducers. A precision transducer is an operationalization of a scoped
model precision π̊. We define a precision transducer as follows:

Definition 90: Precision Transducer
A precision transducer (or π-transducer) is a transducer that emits ab-
straction precisions along given sequences of program operations. The
emitted abstraction precisions define the details to model at the dif-
ferent points of the abstract state space. Precision transducers are a
means to define the scope of abstraction precisions. We instantiate an
abstract transducer to work as a precision transducer and get the tuple

P = (Q,Din,Dout, ι0, F, δ).

The definitions of the set of control states Q, the initial transducer
state ι0, the set of final control states F, and the transition relation δ,
are equivalent to those of the generic abstract transducer—see Sect. 3.2.
The word domains for input and output are defined to provide the
functionality of precision transducers. An abstract input word maps
to a set of sequences of control-flow transitions, and an abstract output
word maps to a set of sequences of abstraction precisions:

• Input Word Domain Din. The abstract input domain is an abstract
word domain Din = (fl(G∗),

...
I , [[·]]in, 〈〈·〉〉in), with the lattice

...
I of

abstract input words. One abstract input word denotes a set of
finite sequences of control-flow transitions, which is reflected by
the semantic denotation function [[·]]in : I→ 2G

∗
. The abstraction

function 〈〈·〉〉in : 2G
∗ → I provides the inverse mapping.

• Output Word Domain Dout. The output word domain Dout =

(pr(Π∞), ...
P, [[·]]out, 〈〈·〉〉out), or also precision word domain, is an ab-

stract word domain that defines the output alphabet of control
transitions. One symbol of the output alphabet is an abstract
precision p, which denotes [[p]]out ⊆ H × Π∞ a set of concrete
words over the set of abstraction precisions Π. The denotation
function [[·]]out : P → 2H×2

Π∞
maps from a given abstract pre-

cision to a map from concerns to sets of precision words, that is,
[[p]]out = {(h, {π̄ | π1 t . . . ∈ π̂∧ π̄ = 〈π1, . . .〉 ∈ Π∞}) | (h, π̂) ∈ p}.
The abstraction function 〈〈·〉〉out : 2

H→2Π∞ → P takes the inverse
role. Emitting the abstract bottom precision ⊥π signals that the
state-space modeling process should be stopped at this point.

The infinite set of all precision transducers is denoted by P, which is a
subset P ⊂ T of abstract transducers.
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Since we use abstract precisions as abstracts words, we also must provide
means to concatenate them:

Definition 91: Abstract Precision Concatenation
The concatenation ◦p : P ×P → P of a pair of abstract precisions
is the pairwise join of the represented concrete precisions, separated
by concern. That is, the concatenation p1 ◦ p2 of a pair of abstract
precisions is equivalent to their join tπ.

To deal with precision transducer within an analysis framework, also a neu-
tral precision transducer is needed. This transducer is the neutral element
regarding the union and concatenation of precision transducers:

Definition 92: Neutral Precision Transducer
The neutral precision transducer Pε is the most abstract precision tr-
ansducer. It emits the abstract epsilon precision pε on all its tran-
sitions. This precision transducer is defined by the tuple Pε =

(Q,Din,Dout, ι0, F, δ), with the set of control states Q = {q0}, an empty
set of final states F = ∅, a transition relation with a self transition δ =
{(q0,>,q0, pε)}, and a set of initial transducer states ι0 = {(q0, pε)}.

5.3.1 Precision Transducer Analysis

We now describe an analysis for running precision transducers within the
framework of configurable program analysis [31]. A precision transducer ana-
lysis is a configurable program analysis that runs in parallel—by means of
a component of a composite analysis, see Sect. 2.5.3—to other analyses. It
performs state transitions of a precision transducer and is responsible for
instantiating and providing precisions that are emitted on the matching tr-
ansducer transition. A precision transducer analysis is defined by the tuple

DP = (DP, P, ↓T,mergeP, stopP, precT, targetT)

and is used to run a given precision transducer P = (Q,Din,Dout, ι0, F, δ).
The analysis has following specific components—the other components are
equal to those that are defined for generic abstract transducers:
Abstract Domain DP. The abstract domain DP = (C,E, [[·]], 〈〈·〉〉) is defined
based on a map lattice E = (J,>,⊥,v,t,u), with J = 2Q→P, where
each element ι ∈ J of the lattice is a transducer state. One transducer
state ι = {(q, p), . . .} ∈ J is a mapping ι : Q → P from control states to
abstract precisions. The precision transducer analysis starts with the initial
transducer state ι0 of the precision transducer P to conduct runs for.

Operator  P. The transfer relation
g
 P ⊆ J × G × J defines the set of ab-

stract successor states of an abstract transducer state ι = {(q, p), . . .} ∈ J, for a
given control-flow transition g ∈ G. To deal with ε-moves, we use the output
closure operator that maintains the set of concrete output words, similar to
a regular closure operator abstclosure∞ as defined in Sect. 3.2.3. Output of
consecutive control transitions is combined with the precision concatenation
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operator. The transfer relation P is in other respects equivalent to the trans-
fer relation T of the generic abstract transducer analysis—see Sect. 3.5.1.

Operator mergeP. The merge operator controls if two abstract states should
be combined or if they should be explored separately, and separate the state
space. We always merge: mergeP(ι, ι̂, ·) returns ιt ι̂.

Operator stopP. The stop operator stopP decides if a given abstract state is
covered by a reached state. Because mergeΠ always merges, all states can be
considered covered, that is, stopP returns always true.

The behavior of the analysis can be configured by choosing different vari-
ants of its operators. For example, varying the operator merge can configure
the analysis to operate path sensitive, or only context sensitive and flow sen-
sitive [31]. Please note that even if the precision transducer is configured
to merge all states, other analyses that run in parallel to this analysis often
disagree to this decision and no merge is performed for the composite state.
That is, precision transducers can still be executed in a path-sensitive man-
ner if the other analyses that run in parallel enforce to construct such an
abstract reachability graph.

Program analyses that run in parallel to the precision transducer analysis,
can read, filter, adapt, and (re-)use the emitted precisions in their precision
adjustment operator prec [32] for computing abstractions.

5.4 guided precision sharing

We use precision transducers to express strategies for scoping and sharing
of abstraction precisions. The objective of scoping a precision is to keep a
set of predicates as local as necessary to mitigate state space explosion (and to
keep the costs for computing abstractions low), but as wide as possible to re-
duce the number of refinement iterations. The number of abstraction refinement
iterations is a major cost factor for refinement-based model checking [36, 67].
We provide one precision not only for one specific abstraction task but for
several other abstraction tasks as well.184

Goals Precisions can be shared within and among a verification run: The same
precision might be relevant for different parts of the state space, or the ver-
ification of different variants [36] of a program. Depending on the goal of a
verification run and the structure of a verification task, different strategies
for scoping and sharing are appropriate. In software verification, the goal is
to verify as many verification tasks as possible within a given resource bud-
get, whereas in software certification the goal is to end up with compact and
readable proofs—by increasing the locality of predicates [40, 135, 149]. We185

Reuse use precision transducers to share precisions as candidates for reuse spec-
ulatively: Not all candidate precisions might contribute to an effective and
efficient abstraction process. The reuse process includes filtering, adapting,
and generalizing the shared abstraction precision—as discussed in Sect. 178.
Such heuristics can reduce adverse effects of sharing candidate precisions
too liberal, especially if the formula (to abstract) encodes only a small frac-
tion of a program.
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Figure 38: The counterexample-driven abstraction precision refinement workflow
with scoping and sharing based on precision transducers.

5.4.1 Precision Transducers from Refinements

Earlier in this chapter, we have outlined a scheme that characterizes the pro-
cess of discovering, sharing, and reusing abstraction precisions—see Fig. 34.
Furthermore, we have provided a general perspective on how the differ-
ent steps of such a process can be integrated into the overall workflow of
a model checking procedure—see Sect. 5.1.3, and Fig. 37. We now outline
how we integrate precision transducers into the analysis flow of a model
checking procedure that is based on counterexample-guided abstraction re-
finement (CEGAR) [67].

A CEGAR-based model checker iteratively refines the abstraction preci-
sion used to construct an abstract model until this model is sufficiently pre-
cise such that no more infeasible counterexamples can be found—or it stops
if one of them is feasible. The precision refinement to conduct is determined
based on information from the infeasible counterexample, for example, from
the Craig interpolants [84, 137, 190] that are available for it.

Workflow. We integrate precision transducers into this workflow as (1) data
structure to store the abstraction precision to share, we (2) abstract the preci-
sion transducers to increase the scope of sharing, and (3) use the correspond-
ing precision transducer analysis as technique to share abstraction precisions
at different points in the state-space as defined in the precision transducer.

Figure 38 illustrates the refinement workflow with precision transducers
integrated: The overall abstraction precision that is taken into account by
the model construction (and checking) procedure is determined by the pre-
cision transducer P. We start with the initial precision transducer P0. We
refine the precision transducer from iteration to iteration until we end up,
after n iterations, with the precision transducer Pn that describes a preci-
sion that is sufficient to prove the specification for the given program. The 186

refinerefinement procedure refine : L∗ → (L×Π)∗ takes as input an infeasible
program path σ̄ = 〈l0, . . . , ln〉 ∈ L∗ and returns a refinement r̄ ∈ (L×Π)∗
that assigns each position (prefixes) of the path the precision needed to rule
out this (infeasible) path [137]. From a refinement r̄, we construct an inter-
mediate precision transducer Pr that is annotated with precisions that are
sufficient to exclude the infeasible path σ̄ in the next version of the model.
Two precisions have a unique role: The bottom precision ⊥π is mapped to a 187

Precisions >π and ⊥πpoint in the path if no information prior this point is relevant to rule out the
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infeasible counterexample. The top precision >π is assigned (by convention)
if the corresponding point in the path is considered unreachable—which
is dual to the behavior of refinement procedures based on Craig interpola-
tion that emit the interpolant false for such points. The intermediate trans-
ducer is joined with the last precision transducer Pi. Before we continue
with the model checking procedure, we reduce the precision transducer and
get Pi+1 = reduce(Pi ∪ Pr). This step reduces the number of states and tran-
sitions of the transducer while maintaining the set of transductions; it is an
optimization to reduce the costs for the precision transducer analysis—see
Sect. 3.4 for details on reducing abstract transducers.188

Path Concerns Each program path σ̄ that is handed over to the refinement proce-
dure refine represents an infeasible violation of a set of properties. Since
each of these properties is a program concern, we can map a set Hσ̄ ⊆ H

of concerns (the path concerns) to the path σ̄. We map the abstraction preci-
sions that are discovered to rule out an infeasible counterexample σ̄ to the
corresponding set of concerns Hσ̄.

Path Precision Transducers. Given an infeasible program path σ̄ and the cor-
responding refinement r̄, we construct a precision transducer P(r̄) that emits
alongside the path σ̄ exactly those precisions that are needed to rule out this
infeasible counterexample. We operationalize a refinement r̄ = refine(σ̄) ∈
(L×Π)∗ as a path precision transducer P(r̄) = (Q,Din,Dout, ι0, F, δ). The set Q
of control states is constructed from the set of prefixes of the path, such
that Q = prefixes(r̄), where the empty prefix ε corresponds to the initial
state q0 ∈ Q. A one-to-one mapping of control locations to control states is
not possible because a specific control location can be found several times on
a given program path. Given a refinement r̄, pairings of prefix and abstrac-
tion precision are provided by the operator prefixes : (L×Π)∗ → 2L

∗→Π, that
is, prefixes(r̄) ⊆ (L∗ → Π). The transition relation δ describes the transition
between states that correspond to the prefixes δ = { (pre(l), v, l, p) | (l,π) ∈
prefixes(r̄)∧ [[v]] = (last(pre(l)), ·, last(l)) ∈ G∧ h ∈ Hσ̄ ∧ [[p]] = {(h, {π})} }.

Expansion to Tree Precision Transducers. We optionally conduct an expan-
sion of a refinement r̄ ∈ (L×Π)∗ from a single refinement to a set of re-
finements R ⊆ (L×Π)∗ that covers several program paths, which form an
annotated (prefix) tree. We introduce this heuristic for increasing the scope
of the abstraction precision that has to be added based on the refinement,
and thus to reduce the number of refinement iterations. The result is a tree
precision transducer P(R) =

⋃
r∈R P(r), which is a precision transducer that is

constructed as the union of the precision transducers for a set of refinements.
The expansion process is implemented in the operator expand : (L×Π)∗ →

2(L×Π)∗ , which takes as input a refinement r̄ and provides a set of refine-
ments R as its result. Figure 39 illustrates this expansion. At the heart of our
implementation of the operator expand is a flow analysis that identifies addi-
tional path segments—which are connected to the program path described
by r̄—for which an annotated precision might be equally relevant. We con-
duct a forwards-flow analysis from the first control location, for which the
precision is not equal to the bottom precision ⊥π, and collect all reachable
control locations LF ⊆ L. We conduct a backward-flow analysis from the
first location with the top precision >π that signals the unreachability of
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Figure 39: Expansion of a single refinement r̄ to a set of refinements R by identify-
ing the intersection of the control locations that are reachable forwards
and those that are reachable backwards.

this point, which results in the set LB ⊆ L. We construct the expanded set
of refinements R based on those path segments that are covered by intersec-
tion LF ∩ LB and connected to the path described by r̄. We get from a path
precision transducer P(r̄) for a refinement r̄ to a tree precision transducer
by P(expand(r̄)) = P(R).

5.4.2 Sharing Strategies

An abstract transducer emits different abstraction precisions alongside a spe-
cific set of program paths. One form of a precision transducer is a path pre-
cision transducer, which emits the abstraction precisions for exactly one pro-
gram path. Nevertheless, providing abstraction precisions to rule out only
one infeasible counterexample is inefficient since we deal with a class of
program analysis tasks that are known to be prone to the path explosion
problem—see Sect. 2.4.1. That is, this form of precision sharing would re-
quire an exponential number of precision refinement iterations. Abstracting
a precision transducer makes this process more efficient. Abstraction intro- 189

Role of Abstractionduces non-determinism [14] to a precision transducer, and the output that
was previously emitted for only one input word gets emitted for a broader
set of input words.

The most abstract instance of a precision transducer that we consider in
this work is the neutral precision transducer, as defined in Sect. 5.3. The ut-
most useful abstraction that can be computed of a given precision transducer
is the result of merging all its control states and all its transitions and with
it the emitted abstraction precisions, and finally applying an input alphabet
abstraction such that the remaining self-transition matches for all possible
inputs. We later define this form of abstraction as the global sharing strategy.
A discussion on abstracting abstract transducers can be found in Sect. 3.3.

The requirement on all approaches for abstracting abstract transdu-
cers (and with it precision transducers) is that both the set of transductions
and the accepted input language must be overapproximated. A procedure 190

Overapproximationfor abstracting a precision transducer must only ensure to overapproxim-
ate the set of transductions: We do not make use of the notion of accepted
words for precision transducers, that is, the set of final control states F is
always empty. Please note that we do not consider generalizing or filtering
of shared abstraction precisions in this step.
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Precision transducers are a powerful concept for operationalizing strate-
gies for scoping and sharing abstraction precisions. We tightly integrate this
notion into the workflow that is illustrated in Fig. 38, and define:

Definition 93: Scoping and Sharing Strategy

A scoping and sharing strategy defines the scope for that the abstraction
precisions that are discovered in a verification run become shared for
reuse. The operator scopeshare : P × (L×Π)∗ → P defines the sig-
nature of such a strategy. The operator takes two arguments: The
precision transducer P that represents the scoped abstraction preci-
sion that was used to create the present abstract model, and a refine-
ment r̄ ⊆ (L×Π)∗ that defines the abstraction precisions to add to
the resulting precision transducer P ′. To ensure the progress of the
model construction process, we require that the resulting transducer
does not lose any abstraction precision, that is, T(P ′) ⊆ T(P∪ P(r̄)).

The objectives of scoping and sharing strategies can be counterac-
tive: (1) Keeping a specific level of abstraction precision local can help to
prevent an explosion of the abstract state space. (2) Increasing the scope of
sharing an abstraction precision as much as possible reduces the number of
refinement iterations. (3) Too many facts to track can cause an explosion of
abstraction costs—which can be doubly exponential in the number of predi-
cates to track [177].

We now define several (existing and novel) strategies for scoping and shar-
ing abstraction precisions based on precision transducers. We consider only
strategies that are applicable for analysis configurations based on predicate
abstraction [20, 28, 122] and that use Craig interpolation [84, 190] to discover
new abstraction precisions (predicates). In general, any verification tech-
nique based on counterexample-guided abstraction refinement [67] could
benefit from using (or a study on) one of these strategies [36].

We define the strategies that we study based on the operator scopesharecare,
which is parameterized by the operator care:

scopesharecare(P, r̄) = reduce(P∪ care(r̄)).

The operator care : R → P takes a refinement and constructs a precision191

Operator care transducer P ′ that subsumes a given refinement r̄ and rules out the corre-
sponding infeasible counterexample. The operator reduce : T→ T reduces—
see Sect. 3.4—a given transducer, that is, it reduces the numbers of states
and transitions while keeping the resulting transducer equivalent to the in-
put; it joins, for example, all transitions between a pair of control states to
one transition if these transitions have the same abstract input word.

Global. The first published strategy for precision sharing in the context of
predicate abstraction is simple [122]: All predicates are shared in one global
set of predicates πglobal ⊆ P and are then reused for every abstraction com-
putation. This is the most efficient way to avoid refinement iterations that
discover the same predicates repeatedly for different parts of the state space.
Nevertheless, this strategy has several drawbacks: (1) details of the state
space become modeled at points in the state space where they are not rele-



5.4 guided precision sharing 147

l0 l1

l2

l3

l4

l5

l6

l7

l8

l9

p=input()
[p
]

[!p]

ext() [p
]

[!p]

mute() [p
]

[!p]

lock() [p
]

[!p]

unlock()

Figure 40: Example for that global sharing of predicates on variable p would lead to
an explosion of the abstract state space.

vant for the verification task at hand, (2) abstraction computation costs are
increased needlessly, and (3) it might result in an explosion of the abstract
state space—as illustrated by following example:

Example 24. Take the control-flow automaton in Fig. 40 as example. The task
is to verify that there is no unlock() without a previous lock(). Tracking
variable p is only (in a path sensitive manner) beginning from location l5 ∈ L
on all flows to location l8 ∈ L is sufficient for this proof—beside the current
state of a specification automaton that keeps track of the state of the lock.
A global precision sharing tracks variable p on all locations, that is, beginning
after its initialization at location l1 ∈ L: It causes the abstract state space to
explode very early needlessly.

This strategy [122] shares all predicates that have, so far, been identified to
be relevant, on each point in the state space for computing abstractions. We
use to operator careGlobal for generating a precision transducer from a given
refinement r̄. The operator is defined as careGlobal(r̄) = (Q,Din,Dout, ι0, F, δ),
with the set of control states Q = {q0}, an empty set of final states F = ∅,
a transition relation with a self transition δ = {(q0,>,q0, pr̄)}, and a set of
initial transducer states ι0 = {(q0, pr̄)}. The abstract precision pr̄ is the result
of joining all abstraction precisions from a refinement for the set of path
concernsHσ̄, that is, pr̄ = {(h,

⊔
{π | (l,π) ∈ r̄}) |h ∈ Hσ̄}. That is, the precision

transducer is the result of abstracting a path precision transducer P(r̄) by
merging all its states and transitions, and conducting an alphabet abstraction
such that the remaining transition matches for all inputs.

Counterexample Locations. Another strategy [137] is to localize precisions
based on the control locations they are mapped to in a refinement r̄ ∈
(L×Π)∗. This idea was presented in work on deriving facts to track from
proofs of unsatisfiability [137]. A corresponding precision transducer is de-
rived by the operator careLocation : (L×Π)∗ → P. Given a refinement r̄ =

〈(l1,π1), . . . , (ln,πn)〉, a call careLocation(r̄) returns a precision transducer with
the set of control states Q = {q0}, the initial transducer state ι0 = {(q0, pε)},
and a transition relation δ = { (q0, v,q0, p) | (li,πi) ∈ r̄ ∧ h ∈ Hσ̄ ∧ p =

{(h, {πi})} ∧ [[v]]in = {g |g = (l, ·, li) ∈ G} } that has a transition for each of
the control locations in the refinement.

Counterexample Functions. This strategy is similar to previous strategy
(locations) except that the precisions are mapped to all locations of a
function. A function-wide sharing [20, 191] is typically applied to reduce
the number of refinement iterations. We define the function careFunction to
produce a corresponding precision transducer. Given a refinement r̄ =

〈(l1,π1), . . . , (ln,πn)〉, a call careFunction(r̄) returns a precision transducer with
the set of control states Q = q0 and an initial transducer state ι0 = {(q0, pε)}.
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Figure 41: Given a sequence ē = 〈e0, e1, e2, e3, e4, e5, e6〉 of abstraction states
along an infeasible counterexample in the abstract reachability graph.
The refinement to eliminate this counterexample is given by r̄ =
〈(l0,π0), (l1,π1), (l2,π2), (l3,π2), (l4,π2), (l5,π3), (l6,π4)〉. The sharing
strategy Context identifies the refinement segments 1 to 3, expands these
segments, and shares corresponding abstraction precisions as soon as
the expanded segments are reached. Note that before any control loca-
tion of the second expanded segment is considered reached, a control
location of the first expanded segment must be active before.

The set of transducer transitions is defined by δ = { (q0, v,q0, p) | (li,πi) ∈
r̄∧ h ∈ Hσ̄ ∧ p = {(h, {πi})} ∧ [[v]]in = {g |g = (l, ·, lf) ∈ G∧ F(li) = F(lf)} },
where F(l) denotes the function to that the given control location l ∈ L

belongs to. That is, the resulting precision transducer is equivalent to a pre-
cision transducer that is created by merging all states of a path precision
transducer and conducting an alphabet abstraction—from a single control-
flow transition to all control-flow transitions in the same function.

Context. With the strategy Context, we describe a novel approach that aims
at reducing the number of refinement iterations while keeping abstraction
precisions as local as possible. From a given refinement r̄, we derive (using
an operator segment) a sequence of refinement segments: A new refinement
segment is started each time the abstraction precision changes alongside a
given refinement. Each control state in the resulting precision transducer
corresponds to one refinement segment. Figure 41 illustrates the segments
alongside a refinement. Each refinement segment is expanded using the ex-
pansion operator expand, which widens the scope for that the corresponding
abstraction precision is emitted—see Sect. 189, and Fig. 39.

The strategy is implemented in the operator careContext. We use the seg-
mentation operator segment : (L×Π)∗ → (I × (L×Π)∗)∗ to derive a se-
quence t̄ = 〈t1, . . . , tn〉 of pairs from a given refinement r̄, where one
pair ti = (v, s̄) consists of a start trigger condition v and a refinement seg-
ment s̄. Each pair ti ∈ t̄ has a corresponding state q = Q(ti) in the set of con-
trol states Q of the resulting precision transducer P = (Q,Din,Dout, ι0, F, δ).
The transducer starts in the initial transducer state ι0 = {(q0, pε)}, with
q0 = Q(t1). The transition relation is defined by δ = δnext ∪ δstay ∪ δstop, with

δnext =
⋃

ti=(v,s̄)∈t̄

{ (Q(ti−1), v,Q(ti), p(s̄)) }
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δstay =
⋃

ti=(v,s̄)∈t̄

{ (Q(ti−1), vexpand(s̄),Q(ti), p(s̄)) }

δstop =
⋃

ti=(v,s̄)∈t̄

{ (Q(ti−1),¬vexpand(s̄),q0, p(s̄)) }

where p(s̄) = {(h,
⊔

(l,π)∈s̄ π) |h ∈ Hσ̄} is an abstract precision that sum-
marizes all abstraction precisions along a refinement segment for the path
concerns Hσ̄, and [[vexpand(s̄)]] matches the set of control-flow transitions in
the expanded segment.

5.5 guided synthesis

An observation that we made during our work on the verification of Linux
kernel models [8, 36] was that it would be possible to save many of the re-
finement iterations of a CEGAR-based model checker if we employ some
precision synthesis (precision mining or predicate invention). A closer look
at the discovered predicates reveals that a considerable number of them re-
fer to the specification or the environment model that is woven into the pro-
gram to analyze, to form an analysis task. That is, predicates to track can be
derived directly from the specification and the environment model. Other 192

Related Workresearchers made a similar conclusion along with the work on the SLAM
project [24], which aims at verifying Windows device drivers.

We briefly outline how existing and novel approaches for precision min-
ing and synthesis can be realized based on the building blocks that are pre-
sented in this work. These building blocks include: (1) Yarn transducers, 193

Building Blockswhich provide a clear separation of the code that is related to the specifi-
cation (or the environment model) and the code of the program to check,
(2) the generic concept of abstract transducers and the corresponding ab-
stract transducer analysis, which provide means to handle parameterized
output words, for example, precision templates, and (3) techniques for fil-
tering shared abstraction precisions, which can be employed by abstraction
procedures to reduce potential adverse effects of precision sharing. Precision
synthesis can be designated to the phase Discover of our Discover-Share-
Reuse scheme—see Fig. 34 on page 130.
Approaches for invariant generation [124, 148, 156, 166] can be used to syn-
thesize abstraction precisions while a procedure for synthesizing precisions
cannot necessarily replace a procedure for invariant generation. This is be- 194

Invariant Generationcause abstraction precisions are a more generic concept—for example, a data-
location precision cannot be described as an invariant or invariant candidate.

Analyses with Precision Synthesis. Any analysis that is integrated into the
analysis process (in the form of a component of a composite analysis) can
emit arbitrary abstraction precisions for reuse. This is the universal approach
for synthesizing abstraction precisions. These shared precisions can have
various origins. By running along with the state-space exploration process,
the history of observed states and corresponding behaviors can be taken into
account, for example, to invent new abstraction precisions.

We use the term on-the-fly precision synthesis to denote a precision synthesis 195

On-the-Flyapproach that operates during the phase Transfer of an analysis—see Fig. 37
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for the ITTC scheme. The strengthening ↓ step of the CPA algorithm, which
is performed immediately after all component analyses have computed their
successor states, is most appropriate to integrate such a synthesis approach:
The information of all other analyses that are executed in parallel are acces-
sible at that point—and should be consistent to another.

Existing analyses, such as the Yarn transducer analysis (see Sect. 4.4.4) can
be extended to emit abstraction precisions for reuse. The following example196

Extended Yarn Analysis illustrates how such an extended Yarn transducer analysis produces abstrac-
tion precisions based on the matching (and possibly parameterized) transi-
tions of a Yarn transducer.

Example 25. Given a transition e
g
 {e ′} between two abstract states e to e ′,

based on the control-flow transition g = (l, fp = fopen(path, mode), l ′) ∈ G.
The Yarn transducer transition (q, v,q ′, y) ∈ δ, from the control state q to
control state q ′, with v = {$1 = fopen($?,$?)} and the parameterized out-
put word y, with y = {(·, {$1 != null})}, matches. As its result, the strength-
ening operator ↓T produces an abstract precision p, and along with it the set
of predicates {fp != null}, with the expression fp bound to parameter $1,
which is emitted as precision for reuse.

Extending the Yarn transducer analysis with functionality to synthesize ab-
straction precisions has the advantage that also dynamically created Yarn—
such as Yarn to encode the current control state of the transducer, see
Sect. 4.5—can be taken into account.

Precision Transducers from Yarn Transducers. The conceptually elegant ap-
proach to synthesize abstraction precisions based on a given Yarn transdu-
cer is to translate this transducer into a precision transducer. States and tran-
sitions of the Yarn transducer have a one-to-one correspondence in those of
the resulting precision transducer.

5.6 precision reuse

Previous sections have outlined how abstraction precisions can be shared
within a verification run. In the following, we discuss how shared candidate
precisions can be reused while mitigating potential adverse effects, and the
role of the granularity of predicates from predicate precisions for the perfor-
mance of an abstraction procedure.

5.6.1 Integration

Precision reuse is conducted whenever an abstraction should be computed,
and we have to decide on the desired level of abstraction of the outcome.
In the context of a predicate analysis, an abstraction is typically computed
based on Boolean predicate abstraction. The precision adjustment opera-
tor prec is the operator of a configurable program analysis that typically is
used to conduct an abstraction (widening) [31, 32]. We need means to pass
the abstract precisions that were shared for reuse to the operator prec.
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Algorithm 7 CPAalg++D(R0,W0), based on [31, 32]

Input: a CPA D = (D, , merge, stop, prec, target),
a set R0 ⊆ E of abstract states,
a set W0 ⊆ R0 of abstract frontier states,
where E denotes the elements of the lattice of D

Output: pair of reached abstract states and remaining abstract frontier states
Variables: a set reached ⊆ E, a set waitlist ⊆ E

1: reached := R0; waitlist :=W0
2: while waitlist 6= ∅ do
3: e := choose(waitlist)

4: for each e ′ with e (e ′, p) do

5: ê := prec(e ′, p, reached)

6: for each e ′′ ∈ reached do
7: enew := merge(ê, e ′′)
8: if enew 6= e ′′ then
9: waitlist :=

(
waitlist∪ {enew}

)
\ {e ′′}

10: reached :=
(
reached∪ {enew}

)
\ {e ′′}

11: if ¬ stop(ê, reached) then
12: waitlist := waitlist∪ {ê}
13: reached := reached∪ {ê}
14: if target(ê) 6= ∅ then
15: return (reached, waitlist)
16: return (reached, ∅)

CPA Algorithm with Abstract Precisions. The most consequent integration
of precision transducers and abstract precisions into the CPA framework
is to re-define the CPA algorithm. For example, to only hand over an ab-
stract precision between the transfer relation and the precision adjustment
operator. Algorithm 7 reflects this adjustment: The modified transfer rela-
tion  : E → 2E×P produces pairs of abstract states and abstract pre-
cisions, which are consumed by the modified precision adjustment opera-
tor prec : E×P× 2E → E. This modification removes lots of the noise that
was introduced by pairing each abstract state with an abstract precision, but
some approaches for dynamic precision adjustment [32] might not fit into
this formalization. The CPA+ algorithm [32] can be lifted to operate with ab-
stract precisions to keep the flexibility of dynamic precision adjustment. The
algorithm is lifted by changing all operators (and data structures) to operate
on abstract precisions P instead of concrete abstraction precisions Π.

5.6.2 Filtering

At some point in the analysis, an abstraction must be computed based on
a given abstraction precision π ∈ Π. This given abstraction precision is the
result of a sharing process, that is, not every detail that is asked to be mod-
eled (included in the abstract model) for can be modeled on a given point of
the state space or a modeling thereof is not relevant.
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Definition 94: Precision Filtering

Precision filtering is the act to decide on a fraction πf of a given ab-
straction precision π to solve a given block abstraction problem with,
where this fraction asks to model less information, that is πf v π. Pre-
cision filtering subtracts only elementary abstraction precision from a
given concrete abstraction precision.

Typically, the filtering process eliminates a set of elementary abstraction pre-
cisions, for example, a set of predicates, from a given precision. Not all of
these predicates might apply to the current block abstraction problem. We
employ ideas that are similar to those that are used for Craig interpolation—
see Sect. 2.4.3: Filtering of predicates based on the vocabulary that they have
in common with the block to compute the abstraction for and all blocks
that can follow when proceeding the analysis along from the abstraction
state. We illustrate this based on Fig. 32, which shows the structure of sev-
eral block-abstraction problems. Let us assume that the vocabulary of all
block-abstraction problems is known upfront—before the phase Transfer
starts. Assume that the abstraction for Block a, that is, abstract state ea ∈ E
should be computed. An abstraction formula must maintain sufficient in-
formation to exclude all spurious counterexamples (paths) on that it can be
found. That is, it could be relevant to model a predicate in an abstraction
state if it can be relevant for one of the operations that can follow in the
control flow. For our example, the common vocabulary is defined by the197

Common Vocabulary set vs = vocab(ϕa) ∩ (vocab(ϕb) ∪ vocab(ϕc) ∪ vocab(ϕd)). A block is en-
coded as a block formula, for example, Block a by the block formula ϕa.
Given a set of predicates π (a predicate precision) to filter, we derive a fil-
tered set π ′ = {ρ | ρ ∈ π∧ vocab(ρ) \ vs = ∅}, that is, no predicate must use a
vocabulary that has no full overlap with the common vocabulary vs.

Dually, the relevant vocabulary can be identified by a live-variables ana-
lysis [204], which has been conducted upfront. Then, those predicates that
refer to live variables only should be taken into account to compute the
abstraction. Please note that also SSA indices of atoms can be taken into ac-198 "
count for identifying common vocabulary, which is dual to the ’KILL’ in a
live variable analysis. We do not consider SSA indices in our implementa-
tion. Not considering the SSA indices can be seen as a form of sharing, that
is, predicates apply to a broader set of problems.

5.6.3 Grinding

The process of filtering an abstraction precision aims at eliminating a set of
elementary abstraction precisions from a given abstraction precision, before
actually reusing the filtered result for an abstraction computation. We now
discuss the granularity of elementary abstraction precisions and situations
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in that breaking them into smaller pieces can be relevant. We denote this
process as precision grinding:

Definition 95: Abstraction Precision Grinding

Abstraction precision grinding is the process of splitting up elementary
precisions into more general but again elementary precisions. The
process of grinding is implemented by a grinder, which is an opera-
tor grind : Π� → 2Π� , where Π� is the set of elementary precisions for
a particular precision lattice.

When dealing with abstraction procedures that use a predicate precision,
as defined in Sect. 5.2, also the granularity of predicate formulas that are
shared for reuse is relevant. The granularity of a predicate has influence on
costs for computing abstractions, and the check for coverage. An indicator
for the granularity of a predicate formula is the number of logical operators
that can be found in it to connect its sub-formulas. Depending on the shar-
ing and reuse scenario, choosing a different granularity of shared or reused
predicates can lead to a considerably different performance of the model
checker. In the context of a verification procedure that conducts a predi-
cate analysis [122], computes predicate abstractions [28, 35], is driven by a
CEGAR-loop [67], and that uses Craig interpolation [137, 190] to discover
new predicates, we discuss three granularity levels of predicates:

• Interpolant Atoms. The standard configuration for using Craig inter-
polants in such a verification procedure is to extract all Boolean atoms
from the interpolants and add them to the abstraction precision. The
set of Boolean atoms of a formula ϑ is denoted by atoms(ϑ) ⊆ F. That
is, this approach adds the atoms of the Craig interpolant φ to the ab-
straction precision, that is π ′ = π∪ atoms(φ).
Sharing atoms of an interpolant for predicate abstraction can reduce
the number of refinement iterations since the full interpolant might
not apply to other abstraction tasks, but separate atoms might be so.
On the other hand, the number of predicates to consider increases such
that also the cost for computing predicate abstractions increases.

• Full Interpolants. We use Craig interpolation to identify predicates that
are needed to rule out infeasible counterexamples. For this purpose,
an infeasible counterexample is represented as formula ϑ, with ϑ ≡
ϑ− ∧ ϑ+ unsat. While being an overapproximation of the reason for
infeasibility—see Sect. 2.4.3 for details on Craig interpolation—a Craig
interpolant φ ∈ F can be an arbitrary complex formula—in this case,
to overapproximate ϑ−. One approach is to add the unmodified Craig
interpolant to the abstraction precision, that is π ′ = π∪ {φ}.

Not splitting the interpolant formula maintains the relationship be-
tween its atoms, but reduces the chance to reuse this formula in other
contexts—see our discussion on filtering abstraction precisions in the
previous section. Splitting the interpolant can, on the other hand, in-
crease costs for computing Boolean predicate abstractions needlessly.
We have provided empirical evidence on this in Sect. 4.6.4 on page 105.
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• Abstraction Formulas. Sharing and reusing full abstraction formulas as
predicates is practical, for example, in the context of regression ver-
ification and the validation of correctness and error witnesses. This
approach can reduce both the number of refinement iterations and the
costs for computing predicate abstractions since no further combina-
tion of predicates is needed—which typically requires an AllSat call.

We hypothesize that smaller predicates (with less logical connectors) are bet-199

Future Work ter for reuse within a verification run, while larger predicates are better for
reuse among verification runs, on similar verification tasks—which can be
found, for example, in the context of regression verification. We test this hy-
pothesis in future work. Despite the discussed granularities, various mixed
approaches to come up with predicates of different granularities are possible,
especially for the reuse among verification runs. One approach is, for exam-
ple, to make those predicates more fine-grained that are mapped to control
locations of a program that are more likely to be impacted by changes.

5.7 empirical study

This chapter introduces precision transducers as generic means for system-
atically synthesizing and sharing abstraction precisions for reuse to create
abstract models of programs. We now present an empirical study on the
practical applicability of precision transducers for expressing different preci-
sion sharing strategies, and for precision synthesis. The replication package
that is provided along with this work—see Appendix A—contains every-
thing for reproducing the results.

5.7.1 Research Questions

We study if precision transducers are useful and applicable to real-world ver-
ification problems. To which extent can precision transducers aid a verifier
and its refinement procedure to (1) reduce the number of abstraction refine-
ment iterations, to (2) keep the abstract model as compact as possible, and
to (3) increase the overall verification performance in terms of solved veri-
fication tasks and consumed CPU time? We study the reuse of abstraction
precisions within verification runs; in earlier work [36], we have studied the
reuse of abstraction precisions among runs.

Guided Sharing. Precision transducers can be derived from refinements and
can then be used for scoping and sharing abstraction precisions. How is this
reflected in the resulting abstract model and the verifier performance?

RQ 6 (Model Construction). Can transducer-based strategies for sharing ab-
straction precisions for reuse help to keep the abstract model small while keep-
ing the number of refinement iterations low?

RQ 7 (Verifier Performance). Can transducer-based strategies for sharing ab-
straction precisions for reuse help to increase the verification performance in
terms of solved tasks and consumed CPU time?



5.7 empirical study 155

Guided Synthesis. Precision transducers can be used for the synthesis of
abstraction precisions. How can this improve the verification procedure?

RQ 8 (Synthesis Effect). Can a transducer-guided approach for precision syn-
thesis help to reduce the number of abstraction refinement iterations?

RQ 9 (Synthesis Performance). Can a transducer-guided synthesis of abstrac-
tion precisions help to increase the effectiveness and efficiency of a a verifier
in terms of solved tasks and consumed CPU time?

5.7.2 Experiment Setup

Before we describe the actual verifier configurations for that we conduct ex-
periments, we describe our case studies and the verifier settings that are
the same for all configurations. The appendix contains a description of the
benchmarking environment—see Sect. A.3 on page 169. We answer our re-
search questions based on three case studies, two of them with high practical
relevance. Each case study consists of a set of programs and a set of proper-
ties to verify, resulting in a total of 3 960 verification tasks:

Case Study BusyBox (B). BusyBox is a suite of Unix tools that is targeted
at small or embedded systems. The suite covers command-line tools, but
also tools that run as system services and provide different network services.
Our set of BusyBox verification tasks covers 30 program modules. The spec-
ification is provided by a set of 7 Yarn transducers that represent safety
properties that describe the correct usage of the POSIX API. More details of
these properties can be found in Table 12 on page 170.

Case Study Community (C). This set covers 250 randomly chosen programs
from the International Competition on Software Verification (SV-COMP’17)
that have safety properties encoded. That is, we check if an instrumented
ERROR statement, which signals an erroneous control location, is reachable.

Case Study Linux (L). This set covers 250 randomly chosen Linux kernel
modules that had been extracted from the Linux kernel using the Linux

Driver Verification toolkit [159]. Details on these tasks can be found in one
of our papers [8]. The specification that we check consists of 14 safety proper-
ties specifying correct usage of the Linux kernel API—Table 13 on page 170

describes these properties.

Verifier Configuration. Our implementation is based on CPAchecker [32, 34].
We configure a program analysis based on predicate abstraction [122] with
adjustable-block encoding [35]. The refinement is driven by spurious coun-
terexamples (CEGAR) [67] from which we derive Craig interpolants [43, 84];
the set of predicates for a precision is derived by splitting interpolants—
which are formulas in predicate logic—into their Boolean atoms. We com-
pute summaries with Boolean predicate abstraction [177] on boundaries of
function calls, and after the control-flow merged. The reachability graph is
constructed from scratch, that is, beginning from the initial abstract state e0,
after each precision refinement.
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Table 8: Performance of sharing and scoping strategies. The meanA aggregates only
those results that are solved by all (A) strategies.

B C L B C L B C L

Strategy |π|max #Refinements |reached|

Context 4 18 15 5 11 25 18 019 1 502 2 975

Function 5 19 21 6 11 79 17 278 2 039 3 412

Global 5 20 17 3 8 12 42 534 2 080 4 521

Location 5 22 18 16 34 126 17 284 2 481 3 370

B C L B C L B C L

Strategy #Solved #Solved only by CPU Time (s), medianA

Context 31 160 128 6 4 7 46 11 76

Function 27 164 48 2 32 9 320

Global 18 165 137 15 160 8.5 32

Location 18 136 34 3 36 9 460

5.7.3 Experiments

We conduct two groups of experiments to answer our research questions:

Experiments on Guided Sharing. To study transducer-based precision shar-
ing, we construct precision transducers from refinements—see Sect. 5.4.
We benchmark the configurations K1 = SH × CS, with the set of shar-
ing strategies SH = {Global, Location, Function, Context}, and the case stud-
ies CS = {BusyBox, Community, Linux}. We take the number of reached ab-
stract states |reached| and the maximal number of predicates |π|max that are
shared for each abstraction computation as indicators for the compactness of
the abstract model.

Experiments on Guided Synthesis. We implement precision synthesis as an
extension of the Yarn transducer analysis, as described in Sect. 5.5. This ap-
proach is dual to creating a parameterized precision transducer from a given
Yarn transducer. We benchmark the configurations K2 = SN × SH × CS,
with synthesis SN = {SynthOn, SynthOff} on and off, the sharing and scop-
ing strategies SH = {Global, Location, Function}, and the case studies CS =

{BusyBox, Linux}. That is, we benchmark |K2| = 12 configurations.

5.7.4 Results

We discuss the results of our study, separated by research question. Details
on the presentation of our results can be found in Sect. A.1.

RQ 6: Model Construction. RQ 6 addresses the influence of different preci-
sion sharing strategies on the size of the abstract model and the number of
refinement iterations. Small abstract models are useful, for example, to pro-
vide compact verification witnesses [149] for manual inspection—to retrace
a correctness proof—of the abstract model. A small number of refinement
iterations is essential in all those situations in that additional iterations add
considerable costs [36].
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Figure 42: Quantile plots for different precision sharing strategies

Our novel precision sharing strategy Context provides the best results re-
garding the maximum number of predicates |π|max (precision elements) per
abstract state. This indicates that a context-based sharing and scoping of
precisions based on precision transducers is well suited for ending up with
a compact abstract model. This observation is backed by the numbers on
the size of the abstract models |reached|: Except for BusyBox, where Context
is among the best three strategies, Context leads to (in mean) considerably
smaller abstract models. As expected, the strategy Global leads to the lowest
number of refinement iterations: All predicates are shared globally and do
not have to be rediscovered for different parts of the abstract model repeat-
edly. Table 8 aggregates our results.

Summary (RQ 6) Novel precision sharing strategies that are expressible
based on precision transducers can help to keep the abstract model compact
while keeping the number of abstraction refinement iterations low.

RQ 7: Verifier Performance. Research question 7 asks if there are strategies
for scoping and sharing of precisions that can solve tasks faster (CPU time),
can solve more tasks, or other tasks.

The novel strategy Context provides the most results (31 solved tasks) for
BusyBox, whereas Global can solve the most tasks for Community and Linux.
Strategy Context can solve 17 tasks that none of the other strategies can solve,
strategy Global solves 15 such tasks, strategy Location three such tasks, and
strategy Function solves two of that kind. Only strategy Context can solve
additional tasks across all case studies. The best performance improvement—
a speedup of factor 14—was obtained by strategy Context for the program
nested from the Community case study: The best other strategy has solved
the task in 430 s, whereas Context needed 60 s. Overall, the strategy Global
provides the best performance in terms of CPU time for the analysis, pri-
marily due to the lowest number of refinement iterations needed. Table 8

and Fig. 42 illustrate the results in an aggregated fashion. Table 9 provides
a comparison of the results for the strategies Context and Global on the level
of verification tasks.

Summary (RQ 7) Novel strategies, which are expressible based on preci-
sion transducers, can solve tasks—among different program categories—
for which established strategies failed. Moreover, new sharing strategies
can be more efficient for specific tasks.
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Table 9: Performance shifts for Community. Comparison of Global and Context. We
show only tasks with a shift regarding the analysis time of at least 1 in
either direction.
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Program Analysis Time (s) Shift |reached| Shift #Refinements

floppy_simpl4 44 140 2827 2489 23 65

floppy_simpl4 44 110 2848 2607 22 57

s3_clnt.blast.04 290 690 5907 9377 20 39

s3_srvr.blast.11 53 120 9545 23596 10 16

floppy_simpl3 32 67 2074 1867 18 45

s3_clnt.blast.04 43 90 5725 6695 9 23

s3_clnt.blast.03 45 94 6624 8346 9 23

s3_clnt.blast.01 58 120 7174 9093 11 27

s3_clnt.blast.02 45 90 7046 8024 9 23

s3_srvr_8 540 230 7941 3933 26 28

s3_srvr_6 600 250 8239 4034 26 28

test_locks_7 60 23 3949 1381 13 13

diamond1 160 60 794 783 50 50

test_locks_8 160 39 8881 2729 15 15

test_locks_9 480 79 19765 5421 17 17

nested 400 29 39119 958 21 21

RQ 8: Synthesis Effect. We now analyze if transducer-guided precision syn-
thesis can help to reduce the number of refinement iterations.

Our results show a massive difference in the performance gains between
the case study BusyBox and Linux. While we can observe the desired de-
cline in refinements for Linux, their number increases for almost all tasks of
the case study BusyBox. For BusyBox and the sharing strategy Global, the
median number of refinements does not change; for the sharing strategies
Function and Location, the median number of refinements more than dou-
bles when enabling precision synthesis. There is not a single case, where we
can observe a considerable decline in refinements. The results are in contrast
to those for Linux. For example, for the program net-l2tp-l2tp_ip6, precision
synthesis can reduce the number of refinements from 110 to 4 (with the strat-
egy Location). However, this is one of several extreme cases. In the median,
precision synthesis reduces the number of refinements from 1 to 0, regard-
less of the scoping and sharing strategy. Table 10 and Table 11 provide the
results for the case study Linux on the level of verification tasks: Enabling
precision synthesis is beneficial for the majority of the tasks and reduces the
number of refinements considerably.

Summary (RQ 8) Our results show that precision synthesis can reduce the
number of refinements considerably for certain verification tasks.
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Table 10: Performance shifts for Linux if precision synthesis is active and sharing
strategy Function enabled. We show only tasks with a shift for the analysis
time of at least 1 in either direction.

N
o

Sy
nt

he
si

s

Sy
nt

he
si

s

N
o

Sy
nt

he
si

s

Sy
nt

he
si

s

N
o

Sy
nt

he
si

s

Sy
nt

he
si

s

Program Analysis Time (s) Shift |reached| Shift #Refinements

net-l2tp-l2tp_ip6 15 35 3121 3378 2 4

net-wan-sbni 43 21 4922 4922 0 0

oss-uart6850 16 6 1692 1221 8 0

tty-nozomi 33 13 11394 8882 3 0

net-wireless-ray_cs 57 16 13429 13375 5 0

usb-gadget-function-u_serial 180 48 116692 119060 2 0

char-mwave-mwave 170 17 4726 7082 24 0

snd-aloop 290 9 7653 4278 27 0

Table 11: Performance shifts for Linux if precision synthesis is active and sharing
strategy Global enabled. We show only tasks with a shift for the analysis
time of at least 1 in either direction.
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net-ethernet-smsc-epic100 34 12 7420 6779 1 0

fs-coda-coda 40 14 5874 3092 7 1

memstick-core-mspro_block 48 12 8384 7876 1 0

block-paride-pg 440 79 5437 5466 6 1

snd-aloop 79 9 4804 4278 2 0

char-mwave-mwave 330 17 5112 7082 17 0

RQ 9: Synthesis Performance. The last question focuses on the influence of
precision synthesis on the performance of a verifier: Does transducer-guided
precision synthesis result in faster verification runs or more solved tasks?

For the case study BusyBox, our results would suggest that precision syn-
thesis does not work at all. Not only do we lose about half of the results
for each sharing and scoping strategy, but also do the remaining tasks need
more time to complete. Positive speedup is only achieved for single tasks.
The least efficient, but most effective strategy here is Location, with a me-
dian speedup of 0.5. For Linux, we obtain a different picture: Each of the
scoping and sharing strategies yields more results if precision synthesis is en-
abled (Global: 82, Function: 57 and Location: 78 additional results). Also, the
speedup gained by enabling transducer-guided precision synthesis is positive:
With a peak speedup of 64 for the strategy Function, where precision synthe-
sis reduces the analysis CPU time of the program sound-drivers-snd-aloop
from 640 s to 10 s. In the median, however, only a moderate speedup can be
achieved (Global: 1.2, Function: 1.2, Location: 1.2).

Summary (RQ 9) The performance of synthesis depends on the case study.
While the performance of precision synthesis based on precision trans-
ducers suffers for BusyBox, both efficiency and effectiveness are increased
considerably for Linux.
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5.7.5 Discussion

Our results demonstrate that precision transducers are a useful and practi-
cal concept for software verification. Novel sharing strategies that are made
expressible based on precision transducers can solve tasks for which es-
tablished strategies fail. The performance of the sharing and scoping strat-
egy Global was surprising because we would have expected that the costs
for predicate abstraction would explode in many cases. At least for our ver-
ifier configuration and the set of benchmark programs, results suggest that
reducing the number of refinement iterations seems to be one of the best
ways to gain performance in terms of time for a verification run. Neverthe-
less, the promising results of our novel strategy Context witness that there
are strategies that become expressible with the introduction of our preci-
sion transducers and that make verifiers more effective in terms of solved
tasks. Expanding the scope of precisions based on statistics on refinements
could be one way to go [147] in the future. In general, we observe that the
chosen strategy for scoping and sharing has a massive influence on the per-
formance of a verification approach. That is, the chosen strategy should be
at least a controlled variable in empirical studies on abstraction-based ver-
ification techniques! For precision synthesis, the results heavily depend on
the case study: Linux supports our hypothesis that precision synthesis can
make verification more effective and efficient by reducing the number of re-
finements; this conclusion is not possible based on the results for BusyBox.
While we were able to come up with exciting results, we consider them to be
only the start of a series of studies on transducer-guided synthesis and shar-
ing of abstraction precisions. The concept of precision transducers provides
a perspective that brings problems of sharing, scoping, and synthesizing of
precisions into the focus, and thus, the problem of balancing the number of
refinement iterations and the size of the abstract model.

5.7.6 Threats to Validity

Several threats to validity have to be considered. The complexity of verifi-
cation tasks—pairs of programs and specification—can have, as our results
indicate, a substantial influence on the efficiency and effectiveness of a ver-
ifier configuration. We would need a sampling strategy that could derive a
set of tasks that are representative of the whole population. The verification
of Linux modules has a high practical relevance, thus studying approaches
on them is important. Our set of BusyBox modules is quite small, but the
properties we check are considerably different from those of the Linux ker-
nel modules. Furthermore, not all verification tasks allow the same degree
of abstraction, whereas the Linux and BusyBox tasks allow to abstract away
many details; smaller tasks—as found in the set of SV-COMP tasks—tend to
have a higher percentage of relevant statements or memory locations. A ma-
jor factor that influences the performance of scoping and sharing strategies
is the size of blocks that should get summarized by abstraction computa-
tions: For larger blocks, more of the shared predicates might apply; smaller
blocks tend to cause more refinement iterations. Possible configurations [35]
of block sizes range from computing an abstraction after each program op-
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eration to computing abstractions only on loop heads or the n-th unrolling
of a loop—or even larger blocks [28, 35]. A crucial factor for refinement-
based techniques is the procedure for discovering facts to track. An infeasi-
ble counterexample can be ruled out by different sets of predicates, whereas
these predicates can be distributed differently along the infeasible program
path. Different strategies for scoping and sharing might be preferable de-
pending on the distribution of facts to track in the control flow. Our refine-
ment procedure depends on Craig Interpolation and the heuristics that are
implemented in the solver to derive interpolants. We have conducted our
experiments with a predicate analysis; other abstract domains may provide
different results.

5.8 related work

We now discuss work that is related to the contributions of this chapter. One
central contribution is the concept of precision transducers, a concept based
on abstract transducers for synthesizing, scoping, and sharing precisions.

Abstraction Precision. We provide a formalization of abstraction precision
and different notions that build on this formalization: a precision lattice,
precision equality, candidate and actual precision, and the notion of an el-
ementary precision. Furthermore, we define the notion of precision scope
and introduce the notion of abstract precision to allow for concern-specific
abstraction precisions. Nevertheless, the term precision is well-established in
the literature to describe the information content [89] of an abstract model.
The term precision is applied in the program analysis and verification com-
munity, mostly in an informal fashion [32, 67, 119, 136]. The formalization
that is closest to our notion of abstraction precision was provided by Nayak
and Levy [202]: They define a model level specification that specifies how a
set of abstract interpretations is derived from another set of interpretations.

Automata-Aided Abstraction. A restricted form of precision transducers had
been presented in terms of interpolant automata [133]. States of interpolant
automata are annotated with inductive invariants—for example, Craig inter-
polants [84]—thus their language is the set of correct program traces. Instead,
precision transducers aid abstraction-based techniques, such as predicate ab-
straction [122, 177], by providing predicates—which are not necessarily in-
ductive invariants—as precision. Besides emitting precisions for reuse, pre-
cision transducers do not stipulate any restrictions of the accepted language,
and they are independent of the abstract domain of the program analysis. So,
every interpolation automaton is a precision transducer, but not vice versa!
Interpolant automata and the related concept of trace abstraction are closely
related to the IMPACT [191] approach, whereas precision transducers can be
seen as their counterpart for predicate abstraction.

Precision transducers provide a perspective that brings the problems of
sharing, scoping, and synthesizing of abstraction precisions into the focus,
and thus, the problem of keeping the number of refinement iterations small,
and the resulting abstraction as minimal as possible. We instantiate the con-
cept of precision transducers in terms of abstract transducers.
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Discovery and Synthesis. Abstraction-based model checking techniques
rely on procedures that identify facts about a program to track—i.e., the
precision—such that the correctness regarding a specification can be proved.
Relevant techniques range from using an user-provided precision [20, 122],
(informed) guessing [105], reuse from previous verification runs [36], to
more systematic approaches, such as using Craig interpolation [137, 191],
UNSAT cores [165], or computing weakest preconditions [147]. Another tech-
nique to infer predicates are templates [238]; parameterized precision trans-
ducers can be considered to be annotated with such templates. Precision
transducers can provide context-dependent templates, that is, they provide
different templates depending on the state of program analysis. Precision tr-
ansducers can be derived directly from a formal specification—which might
be already given as a set of automata—to reduce the number of specification-
related refinement iterations. The possibility of mining predicates (or preci-
sion elements) on-the-fly was already discussed earlier [32].

Scoping and Sharing. Precision transducers are a means to implement differ-
ent strategies for sharing abstraction precisions for reuse in different scopes.
This concept is independent of a specific abstract domain and separates pre-
cision sharing clearly into a cohesive building block of a model checker. It is
a step towards a generic abstraction refinement procedure.

Precision transducers consummate the idea of lazy abstraction [136] to
share a precision depending on the context, that is, the same program frag-
ment might be represented in different parts of the abstract state space, but
can be modeled with different levels of precision. The state-space exploration
algorithm that was proposed along with lazy abstraction uses one data struc-
ture (an ARG) to represent both the state space and the abstraction precisions
in the different parts. This interwinding of different types of data adds addi-
tional complexity to the algorithm: The state-space graph of each preceding
iteration must be maintained in memory to be able to not lose the mapping
of abstraction precisions into the different parts of the state space. Precision
transducers overcome this limitation by providing a data structure for ab-
straction precisions that is independent of those of the state space.

Literature discusses a number of strategies for scoping and sharing pred-
icates for predicate abstraction: Early approaches use all predicates glob-
ally [122]. Local sharing has been proposed [137] to reduce the costs for
predicate abstraction—Craig interpolation is used to localize predicates.
Function-wide sharing [20, 191] has been applied to reduce the number of
refinement iterations. To find the balance between reducing the number of re-
finement iterations and costs for abstraction computations, a heuristic [147]
for automatically escalating the scope of predicates has been proposed. Pre-
cision transducers are an expressive concept to describe and control context-
dependent sharing and scoping of abstraction precisions. The fact that pre-
cision transducers specify languages of refinements makes our approach re-
lated to techniques that take several counterexamples into account [242] to
come up with a precision refinement.

Task Artifact Reuse. With precision transducers, we provide a means for
systematically sharing abstraction precisions within and among verification
runs, for example, for incremental verification or regression verification. In
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our previous work on precision reuse [36] we evaluated precision reuse
among verification runs for regression verification of Linux device drivers. In
another work [29], we proposed to reuse error witnesses among verification
runs, for example, to validate them.

There is a large body of work on reusing task artifacts among verifica-
tion runs. These approaches reuse state-space graphs [33, 135, 182], con-
straint solving results [248, 253], function summaries [233], or counterexam-
ple traces [44]. The reuse of correctness proofs and error witnesses has been
proposed [63] for formal regression verification of hardware. An interesting
approach to identify reusable artifacts for a given reasoning problem is to
use hash values [129]. A more general fashion of reuse is to store and reuse
canonicalized constraint-solver queries and the corresponding results [248].

5.9 summary
200

Formal FoundationWe started by providing a formal definition of abstraction precisions. Based on
this definition, we provide concepts such as an abstraction precision lattice,
an elementary precision, the precision scope, and the notion of an abstract
precision. Building on this foundation, we presented precision transducers, a 201

Precision Transducersclass of abstract transducers that emit abstraction precisions as output. Preci-
sion transducers have several applications in the context of automatic program
analysis, but also other fields: Scoping and sharing of abstraction precisions,
synthesis of program invariants candidates, and program comprehension. We
study two use cases, for which we present a set of novel techniques: Guided 202

Guided Precision Sharingprecision scoping and sharing, and guided precision synthesis. Our results
203

Guided Precision Synthesis
highlight the importance of a well-chosen strategy for sharing and scoping
abstraction precisions for the performance of a verifier, and the research
that is conducted based on them. This work provides a new framework
for formalizing different strategies for the reuse of abstraction precisions.
The framework supports both sharing and reuse within a verification run
and among different runs. We provided evidence on the usefulness of tech- 204

Empirical Evidenceniques built on the concept of precision transducers: Precision transducers,
helped us to solve verification tasks, for that traditional verification tech-
niques failed. Predicate discovery, sharing, and reuse is an active area of
research [93], and many new important questions arise with each work.

“ The sublime in art is the attempt to express the infinite without
finding in the realm of phenomena any object which proves itself
fitting for this representation. ”

Georg Wilhelm Hegel
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This work was motivated by the problem of repeated, similar, computational,
and manual efforts in the creation of syntactic and semantic task models.

Parts. The control-flow structure of an analysis task is represented by its 205

Syntactic Task Modelssyntactic task model. We describe the creation of a syntactic task model as
the composition from several syntactic task artifacts. A syntactic task artifact
is, for example, a control-flow relation that represents a full program, a pro-
gram component, an aspect, or a function thereof. Chapter 4 presented Yarn

transducers as a means for representing and sharing syntactic task artifacts
and the Loom as means for reusing them to compose the syntactic model of
an analysis task. 206

Semantic Task ModelsA semantic model is constructed to reason about the actual behavior and
states of a program (which is represented by its syntactic model). Since a
program can exhibit infinite states and behaviors, a finite abstraction thereof 207

Abstractionmust be constructed to make sound statements, for example, to prove that a
program adheres to a specification. Only that fraction of information about 208

Abstraction Precisionthe state space of a program is maintained in the abstraction, which is rele-
vant for the reasoning task at hand. The set of facts about the program (its
states, and behaviors) to model is called the abstraction precision. Chapter 5

presented precision transducers as a means for sharing abstraction precisions,
to define which information from the different parts of a state-space should
be maintained to conduct an analysis task. 209

Words and LanguagesBoth, a syntactic task model and a semantic task model can be described
as a set of words over corresponding alphabets. A letter of the alphabet of
the syntactic task model is a program operation, for example, a variable as-
signment, or a guard (assume) [94]. A letter from the alphabet of a semantic
task model can be a concrete state the program can have [189]. This per-
spective motivated us to present an automata-theoretic approach for sharing
task artifacts along with adequate mechanisms for reusing those. Chapter 3

presented abstract transducers as the common conceptual foundation for sys-
tematically sharing abstract entities for reuse. Abstract transducers are a new
type of machine with unique semantics that required the design of new al-
gorithms to provide the operations known for automata.

165
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Methodology. While the work covers topics from different sub-disciplines210

Common Formalism of computer science (formal methods, theory of computation, programming
languages, algorithms and data structures, software engineering), we stick
to a common formalism for all of our contributions, among all chapters—
or discuss the relationships between the different perspectives or dual no-
tions. Where necessary, the work introduces new theoretical foundations
and formalisms or extends existing ones. Differences to concepts that can
be found in the literature are discussed where appropriate and correspond-
ing references are given. To present and implement our program analysis
techniques, we build on the CPA framework [31, 32] and the corresponding211

CPA tool CPAchecker [34], which strictly implements the CPA formalism. CPA
builds on abstract interpretation [80] and adds configurable operators to ex-
press different program analysis approaches.212

Empirical Evidence To support our claims and to show the applicability of our concepts
and techniques, we provided empirical evidence based on various experi-
ments. The experiments were conducted on thousands of verification tasks.
The tasks include real-world problems (Linux), community-agreed bench-
marks (SV-COMP), and handcrafted scenarios. The scenarios have a well-
known control-flow structure and data dependencies and help to arrive
at fundamental insights into the performance characteristics of a model
checker.213

Replication Package Along with this work, we provide a replication package with all tool config-
urations, the tool implementations, verification tasks, and the raw results.

Practicality. The projects and papers that were conducted along with this
thesis had a considerable practical impact. Especially our work in collabo-214

Linux Verification ration with the Linux Verification Center1 (LDV), which resulted in several
papers, among two [8, 36] with the author of this work. The performance
gain that is obtained by precision reuse helped to identify bugs [36] in the
Linux kernel and resulted in corresponding patches. Our lightweight speci-
fication and weaving approach [8] was well-received by the LDV team and
reduced the upfront instrumentation effort. One aim of the empirical studies
that were conducted for this work was to illustrate the practical applicability
of the novel techniques that are presented.

1 http://linuxtesting.org

http://linuxtesting.org
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To make our results convenient to reproduce, we provide a replication pack-
age that includes the verification tasks of all case studies, the tool configura-
tions, the raw results, and the full source code of our implementation. Frac-
tions of this replication package have already been published along with our
previous papers [8, 36]—where these artifacts have been evaluated positively by
the corresponding conferences and their artifact evaluation committees. The
replication package can be found on the supplementary Web page of the
thesis: https://andreas.stahlbauer.net/thesis/.

a.1 performance and its presentation

Our empirical studies have a strong focus on the performance of different
analysis configurations. We characterize the performance of an analysis con-
figuration by the efficiency and effectiveness that it provides for a given set
of analysis tasks. In the majority of the cases, an analysis configuration is the
configuration of a verifier and we use the term verifier configuration. 215

Efficiency and EffectivenessWe measure the efficiency of a verifier configuration by the (CPU) time
spent to solve a given verification task—or a set of thereof. We measure the
effectiveness of a verifier configuration in terms of solved verification tasks,
that is, the number of verification tasks for which the verifier (in the partic-
ular configuration) was able to provide a result (verification verdict) within
the given resource bounds.

The CPU time for analysis excludes the time for parsing the program,
constructing the control-flow automaton, and other initialization steps. In 216

Analysis CPU Timesome cases we aggregate only results of tasks that were solved by all ap-
proaches; we indicate this with the index A on the measure. We report all
time measures with two significant figures, for example, 723.8296 s is reported 217

Significant Figuresas 720 s, and 1.42941 s is reported as 1.4 s.

a.1.1 Performance Shift

We introduce the notion of performance shift. Given a performance measure,
and two values v1, v2 ∈ R for a particular performance measure for two
analysis configurations c1 and c2. The performance shift is in favour of the left
configuration c1 if v1 < v2, and it is in favour of the right configuration c2
if v1 > v2. We define and use the function shift : R×R→ R as follows:

shift(v1, v2) =


(v1/v2) − 1 if v1 > v2
(v2/v1) + 1 if v1 < v2
0 otherwise

.
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The performance shift can be plotted with standard plots, such as box
plots or violin plots, while ensuring that visual distances match to perfor-
mance differences. An established approach to compare the performance
between two performance measures is to compute the speedup with the func-
tion speedup(v1, v2) = v1/v2. Speedup differences are, compared to perfor-
mance shifts, harder to assess based on standard plotting techniques; we
illustrate this in Fig. 43. It is valid to compute the arithmetic mean of perfor-
mance shifts, which is not the case for speedups.

Performance
 Shift

Speedup

10

0

10

Figure 43: Visual dif-
ference in plotting the
pairs of performance mea-
sures {(1, 2), (2, 1), (4, 1),
(1, 4), (8, 1), (1, 8), (1, 16),
(16, 1)} as box plots of
(a) the performance shifts
and (b) the speedups.

a.1.2 Sensitivity Plot

In this work, we evaluate various analysis configurations regarding their per-
formance on a set of analysis tasks with different characteristics. We present
sensitivity plots as a systematic way to study the impact of different configu-
ration parameters. Before we describe this type of plot in detail, we introduce
formalisms that are relevant in this context.

An analysis configuration is a tuple k = (v1, . . . , vn) of configuration
arguments (parameter values, or configuration values) for a correspond-
ing list 〈k1, . . . ,kn〉 of configuration parameters. An analysis configuration is
called partial if some of the parameters are not bound to a specific value. We
call an analysis configuration sensitive to a value for a specific configuration
parameter (the variable under sensitivity analysis) if its alternation leads to
a considerable difference in the observable performance.

A sensitivity plot illustrates the sensitivity of a set of analysis configurations
to the change of one particular parameter. Given a list of analysis configura-
tions Kp = 〈k1, . . . ,kn〉, with ki = (v1, . . . , vm), that should be studied based
on a sensitivity plot. The plot illustrates the performance shift regarding a
particular performance measure if the studied parameter ki is changed from
its base value vb to a specified parameter value vs. Figure 44 shows such a
sensitivity plot with annotations that explain the different parts of the plot.

a.2 implementation

Along with this replication package, we provide the implementation of our
techniques as open source, under Apache 2.0 licence. Our tool builds on the
CPA framework [31, 32] and uses CPAchecker [34] as its foundation.

A threat to validity of our experiments is the possible presence of bugs
in the tool implementation, solvers, or libraries. At some point, we had to
work on a separate branch of the code to ensure stable results and to al-
low efficient modifications of the framework itself. Our code base does not
reflect the latest bug fixes and optimizations that can have an influence on
the performance and the soundness of the different analysis components.
Nevertheless, we have tried to ensure the correctness and soundness of the
implementation as much as possible, especially to guarantee the correctness
of the results for handcrafted scenarios and examples.
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Figure 44: Sensitivity plot and its components

The formalisms that we use to describe our concepts and techniques
evolved and generalized while writing this thesis, and are not yet fully re-
flected in the tool versions that were used to conduct the experiments.

a.3 benchmarking environment

We carefully control variables of our experiment setup. The machines, on
which we conduct our experiments, are based on a NUMA shared memory
architecture; we therefore bind the CPU cores to their local memory banks to
ensure reliable performance measures. If not stated otherwise, we limit the
process CPU time for each verification run to 900 s and its memory to 15GB.
Since our verifier is written in Java, we configure the JVM such that the
effect of the Just-In-Time (JIT) compiler is reduced to a minimum by forcing
the JVM to compile the full bytecode during its startup; the initial heap
size is at the maximum (10GB). We use MATHSAT5 [65] as the default SMT
solver and JavaBDD for representing abstraction formulas (summaries that
are the result of abstraction computations) as BDDs—which reduces costs
for coverage checks [177].

Each experiment was conducted on a homogeneous set of machines. We
use two different sets of homogeneous machines: One set with Intel Xeon E5-
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Table 12: The list of checked POSIX safety properties. The full POSIX docu-
mentation can be found at https://pubs.opengroup.org/onlinepubs/
9699919799/.

Property Description

File State Only valid file handles must be accessed by stdio functions.

File Limit A process must have open a limited (5) number of file handles.

Dir State Only valid directory handles must be accessed.

Dir Limit A process must have open a limited (5) number of directory handles.

Division No calculation must result in a division by zero.

Socket Only valid socket descriptors must be passed as arguments.

AddrInfo Only valid address descriptors must be passed as arguments.

2650 v2 CPUs and 128GB of RAM, and another set with Intel Xeon E5-2620
v4 CPUs and 256GB of RAM. The performance characteristics can vary dra-
matically on other machines, with faster or slower RAM, larger or smaller
caches, or a different CPU architecture. We reduced the effects of other pro-
cesses or users on the machine as much as possible by using dedicated bench-
marking machines that were used exclusively by the author of this work.

https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/


A.3 benchmarking environment 171

Table 13: List of LDV safety properties. More details on the API functions can be
found in the Linux kernel documentation: https://www.kernel.org/doc/
htmldocs/kernel-api/. Table taken from [8].

Property Description

08_1a Each module that was referenced with module_get must be released by
module_put.

10_1a Each memory allocation that gets performed in the context of an interrupt
must use the flag GFP_ATOMIC.

32_1a The same mutex must not be acquired or released twice in the same process.

43_1a Each memory allocation must use the flag GFP_ATOMIC if a spinlock is held.

68_1a All resources that were allocated with usb_alloc_urb must be released with
usb_free_urb.

68_1b Each DMA-consistent buffer that was allocated with usb_alloc_coherent must
be released by calling usb_free_coherent.

77_1a Each memory allocation in a code region with an active mutex must be pe-
formed with the flag GFP_NOIO.

101_1a All structs that were obtained with blk_make_request must be released by
calling blk_put_request afterwards.

106_1a The modules gadget, char, and class that were registered with usb_

gadget_probe_driver, register_chrdev, and class_register must be unreg-
istered by calling usb_gadget_unregister_driver, unregister_chrdev and
class_unregister correspondingly in reverse order of the registration.

118_1a Reader-writer spinlocks must be used in the correct order.

129_1a An offset argument of a find_bit function must not be greater than the size
of the corresponding array.

132_1a Each device that was allocated by usb_get_dev must be released with
usb_put_dev.

134_1a The probe functions must return a non-zero value in case of a failed call to
register_netdev or usb_register.

147_1a RCU pointer/list update operations must not be used inside RCU read-side
critical sections.

https://www.kernel.org/doc/htmldocs/kernel-api/
https://www.kernel.org/doc/htmldocs/kernel-api/
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