Bachelor’s Thesis

Which Atoms Confuse Whom: A
Comparative Eye Tracking Study In
Program Comprehension

Andi Keraj
December 22, 2025

Advisors:
Annabelle Bergum Chair of Software Engineering

Norman Peitek ~ Chair of Software Engineering

Examiners:
Prof. Dr. Sven Apel Chair of Software Engineering

Prof. Dr. Vera Demberg Chair of Computer Science and Computational Linguistics

Chair of Software Engineering
Saarland Informatics Campus
Saarland University

UNIVERSITAT
DES
SAARLANDES

Andi Keraj: Which Atoms Confuse Whom: A Comparative Eye Tracking Study In Program Compre-
hension, © December 2025

Erklarung Statement

Hiermit erklare ich, dass ich die vorliegende Arbeit selbststindig und ohne die Beteiligung
dritter Personen verfasst habe, und dass ich keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt habe. Alle Stellen der Arbeit, die wortlich oder sinngemafs aus
Verbffentlichungen oder aus anderweitigen fremden Auferungen entnommen wurden, sind
als solche kenntlich gemacht. Insbesondere bestatige ich hiermit, dass ich bei der Erstellung
der nachfolgenden Arbeit mittels kiinstlicher Intelligenz betriebene Software (z. B. ChatGPT)
ausschlieSlich zur Textiiberarbeitung/-korrektur und zur Code-Vervollstindigung und
nicht zur Bearbeitung der in der Arbeit aufgeworfenen Fragestellungen zu Hilfe genommen
habe. Alle mittels kiinstlicher Intelligenz betriebenen Software (z. B. ChatGPT) generierten
und/oder bearbeiteten Teile der Arbeit wurden kenntlich gemacht und als Hilfsmittel
angegeben. Ich erkldre mich damit einverstanden, dass die Arbeit mittels eines Plagiatspro-
grammes auf die Nutzung einer solchen Software tiberpriift wird. Mir ist bewusst, dass der
Verstofs gegen diese Versicherung zum Nichtbestehen der Priifung bis hin zum Verlust des
Priifungsanspruchs fithren kann.

I hereby declare that I have written this thesis independently and without the involvement
of third parties, and that I have used no sources or aids other than those indicated. All
passages taken directly or indirectly from publications or other external sources have
been identified as such. In particular, I confirm that I have used Al-based software (e.g.,
ChatGPT) exclusively for the following permitted sub-tasks: text rewriting /revision and code
completion , and not to address or formulate the main research questions of the thesis. All
parts of the thesis that were generated and/or edited using Al-based software (e.g., ChatGPT)
have been disclosed and documented in accordance with the documentation requirements. I
agree that the thesis may be checked using plagiarism detection software, including checks
for the use of such software. I am aware that any violation of this declaration may result in
failing the examination and lead to losing the right to be examined.

Saarbriicken,

(Datum Date) (Unterschrift Signature)

Einverstindniserklirung (optional) Declaration of Consent (optional)

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veroffentlicht wird.

I agree to make both versions of my thesis (with a passing grade) accessible to the public by
having them added to the library of the Computer Science Department.

Saarbriicken,

(Datum Date) (Unterschrift Signature)

iii

Abstract

Writing and understanding code are two fundamental skills every developer must mas-
ter. Although both are important, understanding and comprehending written code is a
cognitively demanding process. This process becomes more difficult when the code is
misinterpretable due to confusing code patterns known as "atoms of confusion". Research
shows that these patterns have a negative effect on developers’ program comprehension, at
times being the cause of security risks and serious system failures.

In our study, we compare the effect of different categories of atoms of confusion by ana-
lyzing eye-tracking data gathered from participants. We found that atoms of the categories
conditional operators and pre/post in/decrement cause a significant increase in Area of
Interest (AOI) fixation count, regressions, and AOI fixation duration when compared to other
categories. This is a result of an increased visual and cognitive effort when presented with
such atoms.

We investigate whether experience in programming plays a role in the confusion caused
by the atoms. We discover that atoms of categories, conditional operators, scope indentation,
and variable reassignment have the same effect on participants, independent of the experi-
ence. We found no statistically significant difference in the observed visual effort from the
participants.

On the other hand, novice participants fixated much more on the code and on the A0,
focusing longer and regressing back to the AOI when encountering atoms in the pre/post
in/decrement category.

Furthermore, we found a statistically significant difference between expert and interme-
diate participants in the observed number of AOI fixations and regression. Intermediate
participants resulted in significantly lower AOI fixation counts and regressions compared to
experts.

We explore the possibility of predicting the presence of an atom in code snippets by
making use of machine learning. We train three machine learning classification models *,
and we evaluate their performance on test data. We found that, the SvM performed the best
out of the three models, achieving a higher accuracy of predictions.

1 Soft margin Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Random Forest

Contents

1 Introduction
1.1 Goalof thisThesis
2 Background
2.1 Program Comprehension
2.2 Atomsof Confusion
2.2.1 Categories of Atoms of Confusion
23 EyeTracking
3 Related Work
3.1 Quantitative Studies
3.2 Qualitative studies L
3.3 Eye-tracking Studies o L oo
4 Methodology
4.1 ResearchQuestions
4.2 Data Preparation and Manipulation
4.2.1 Description of Existing Dataset
4.2.2 Analysis Procedure for RQ1: Categories of Atom of Confusion
4.2.3 Analysis Procedure for RQ2: Programmer Expertise
4.2.4 Analysis Procedure for RQs3: Prediction of Atom of Confusion
5 Results
5.1 Results for RQ1: Categories of Atom of Confusion.
5.2 Results for RQ2: Programmer Expertise
5.2.1 Conditional Operators
5.2.2 Pre/PostIn/Decrement
5.2.3 Scope Indentation 00 oL
52.4 TypeConversion
5.2.5 Variable Reassignment
5.3 Results for RQ3: Prediction of Atom of Confusion
6 Discussion
6.1 RQz1: Categories of Atom of Confusion
6.2 RQ2: Programmer Expertise
6.3 RQ3: Prediction of Atom of Confusion.
7 Threats to Validity
7.1 Internal Validity
7.2 External Validity 0.
7.3 Construct Validity o o
8 Conclusion

O N3 O+

e

11
11
12
12
13
14
14
17
17
22
23
24
27
28
29
30
33
33
34
35
41
41
41
42
43

vii

viii

CONTENTS

Statement on the Usage of Generative Digital Assistants

Bibliography

45

47

List of Figures

Figure 3.1 Timeline of related work on Atoms of Confusion (AOC) and code
comprehension. Lo o Lo L oo 7
Figure 5.1 Violin plot depicting the distribution of the fixation count for each
category 18
Figure 5.2 Violin plot depicting the distribution of total fixation count in AOI
per AOC category e 20
Figure 5.3 Distribution of AOI total fixation duration by AOC category. 21
Figure 5.4 Distribution of AOI total regressions by AOC category. 22
Figure 6.1 Confusion matrix of the Soft Margin SVM. 1 corresponds to a snippet
that does not contain an atom and 0 otherwise. 36
Figure 6.2 Confusion matrix of the XGBoost model. 1 corresponds to a snippet
that does not contain an atom and 0 otherwise. 37
Figure 6.3 Confusion matrix of the Random Forest model. 1 corresponds to a
snippet that does not contain an atom and 0 otherwise. 38
(]
List of Tables
Table 4.1 Example of fixation eye-tracking data for participant 7 on snippet
"4-0bf-vo". L L 13
Table 4.2 Total fixation counts for all participants by AOC category. Note: Not
all participants are displayed to keep the table readable. 14
Table 4.3 Data metrics for participants with intermediate experience on snip-
pets in the Confusing Boolean with Arithmetic category. 15
Table 5.1 Significant differences between pairs from Dunn’s post-hoc test on
fixation counts by AOC category 19
Table 5.2 Significant differences between pairs from Dunn’s post-hoc test on
fixation counts in AOI by AOC category 19
Table 5.3 Significant pairs from Dunn’s post-hoc test on total fixation duration
in AOlby AOC category 20

ix

Table 5.4

Significant pairs from Dunn’s post-hoc test on total regressions in

AOLby AOC category 21
Table 5.5 Dunn'’s Test result p-values between pairs of the experience levels in
total fixationcount. Lo 23
Table 5.6 Dunn’s Test result p-values between pairs of the experience levels in
total AOI duration. 24
Table 5.7 Dunn'’s Test result p-values between pairs of the experience levels in
total fixationcount. L Lo 25
Table 5.8 Dunn’s Test result p-values between pairs of the experience levels in
total AOI fixationcount. L ... 25
Table 5.9 Dunn’s Test result p-values between pairs of the experience categories
in total duration fixating in AOL 26
Table 5.10 Dunn’s Test result p-values between pairs of the experience categories
in total regressioncount. L L L L 26
Table 5.11 Dunn’s Test result p-values between pairs of the experience categories
in total regressioncount. L L L. 27
Table 5.12 Dunn'’s Test result p-values between pairs of the experience levels in
total AOI fixationcount. L. 28
Table 5.13 Dunn’s Test result p-values between pairs of the experience levels in
total AOI duration. L 29
Table 5.14 Evaluated performance of the trained models 31
Listings
2.1 Arithmetic operatorsbinding 0 0L, 5
2.2 Omitted curly braces L o 5
2.3 Mis-indentation L 5
2.4 Conditional Operators 5
2.5 Post-increment. o Lo 6
26 Typeconversion e 6

Acronyms

ACRONYMS

AOC Atoms of Confusion

I0CCC International Obfuscated C Code Contest
GCC GNU Compiler Collection

AOI Area of Interest

SVM Support Vector Machine

XGBoost Extreme Gradient Boosting

X1

Introduction

Program comprehension is a crucial aspect in the field of software development and
maintenance. Understanding and extending upon code written by other developers is a very
common activity in the professional world of code development. It is frequently seen that
code in software projects contains code patterns that cause confusion [13]. These confusing
code patterns are known as AOC [12].

AOC are small patterns that have been empirically validated to be difficult to hand-evaluate
by developers [11]. They are very prevalent in software programs and projects, where they
occur on average once every 23 lines [13]. AOC are usually a result of bad programming
practice, but sometimes are also encouraged by coding standards [12]. The presence of AOC
in code causes obstruction in the ability of developers to understand and comprehend the
code [9-11, 13, 25]. It has been shown that such patterns hinder program comprehension,
and when the AOC are removed from code, there is an increase in hand evaluation accuracy
by 50% [12].

AOC not only hinder the developer’s understanding of the program but also introduce
bugs and faulty software implementations. These bugs can result in millions of dollars
worth of damage. Examples like Apple’s “goto fail” SSL bug [4] allowed for an SSL man-
in-the-middle vulnerability for all OSX and iOS devices. Furthermore, Ariane 5’s crash
and explosion [17] was caused by a floating point overflow bug that resulted in a $500
million crash. Such failures are not caused by faulty algorithms or malfunctioning systems,
but rather very isolated, small errors at a semantic level that come from confusing and
unintuitive constructs [12]. Avoiding these confusing lines of code allows for better program
comprehension, fewer bugs, lower maintenance costs, and potentially preventing disasters
like Ariane 5.

When it comes to program comprehension, eye-tracking methods are prevalent in many
studies and research regarding the topic [1, 29, 31]. Eye-tracking metrics such as fixation
count, fixation duration, and regression have been widely used in program comprehension
research. These metrics are used to extract information regarding reading patterns [30],
cognitive load [23], and task complexity [7]. When AOC are present in code, there is an
increase in gaze transitions by 36.8% [10], suggesting that the atom is often the centre of
attention as the subjects try to comprehend what the atom does or calculates. We also
leverage these metrics to explore and investigate the research questions of this study.

Introduction

1.1 Goal of this Thesis

The goal of this thesis is to investigate the effects of AOC on programmers’ comprehension,
focus, and understanding of the program by analyzing eye movement patterns and fixations
on the code. While other studies conlcude that AOC hinder program comprehension and
cause confusion to participants [9—12], there is a limited understanding of how different
atoms cause different levels of confusion. In this thesis, we investigate which atoms inflict
more fixations, longer gaze durations, and more regressions. Additionally, we determine
whether previously identified atoms are inherently confusing due to their constructs or if
they cause confusion due to the lack of knowledge or experience with the programming
language. Comparing the eye movement behavior between novices and experts, we make
the distinction between the confusion that originates from unfamiliarity and that caused by
a complex construct.

By combining eye-tracking data with participants” performance metrics and demographic
data, this thesis contributes by providing a deeper understanding of which atoms are
problematic and more severe, for whom, and why. The benefit of these insights will allow
for better programming practices, identification of new AOC, and code writing tools to
minimize and avoid the occurrences of such confusing patterns.

Background

In this chapter, we provide information on important definitions and relevant content to this
thesis. In section Section 2.1, we explain what program comprehension is, how it is defined,
and how it was used in previous research. In section Section 2.2, we provide information on
what AOC are, and we provide examples of such atoms. Section Section 2.3 of this chapter
explains key eye-tracking terminologies.

2.1 Program Comprehension

Program comprehension is a key activity in understanding how a software system or
a part of it works. Comprehension is a very time-consuming task where it is reported
that developers spend about half their time comprehending programs during software
maintenance [26].

Many studies have investigated the factors that affect developers’ program comprehension,
taking into account various measures that reflect the level of comprehension [1, 3, 22,
29, 37]. However, it is found that different measures that are used to analyze program
comprehension do not correlate with each other.

In a study regarding the definition of program comprehension, Wyrich [43] states that
since the dawn of research in program comprehension, there is no universally agreed-upon
definition of program comprehension. The lack of a definition for such an important and
researched term has led researchers to come up with different definitions. Shneiderman [38]
for example, defines program comprehension as "the recognition of the overall function of
the program, an understanding of intermediate level processes including program organiza-
tion and comprehension of the function of each statement in a program". Pennington [32]
states that "comprehension involves the assignment of meaning to a particular program, an
accomplishment that requires the extensive application of specialized knowledge". Many
other researchers have made their own definitions of program comprehension. This leads
to the usage of different measures for analyzing program comprehension, and hence, it is
often the case that they are not comparable.

In the paper, Wyrich [43] formulates a definition for source code comprehension instead
of program comprehension to distinguish code comprehension from other objects in the
diverse field of program comprehension. The definition is the following:

Definition 1 Source code comprehension describes a person’s intentional act and degree of
accomplishment in inferring the meaning of code.

Background

Experience in Code Reading

Experience is a critical factor in a developer’s ability to understand and write code efficiently.
Many studies use years of experience [2, 19], education level [16, 27], or employment status
[21] as an indicator for a developer’s level of expertise. While these measures are logical to
use, another measure of evaluating the knowledge and programming proficiency is efficacy.

Peitek et al. [29] introduced efficacy as an alternative measure to years of experience
or education level. The research concluded that traditional experience measures do not
accurately reflect program comprehension and writing skills, but instead, efficacy is a more
viable and accurate option. Efficacy is evaluated based on the fraction of the number of
correct tasks participants complete and the time it takes for completion [29].

2.2 Atoms of Confusion

AOC are small patterns empirically validated to be difficult to understand and hand-evaluate
by developers [11]. AOC are vastly present in big projects [13]. In many studies regarding
AOC, the initial set of atoms have been picked from the International Obfuscated C Code
Contest (I0CCC). The code snippets are designed in such a way that they intentionally
cause confusion to the developers. While some of the atoms obtained from 10CCC may
not represent real-life programs, they demonstrate patterns that do cause confusion to
developers in real life.

2.2.1 Categories of Atoms of Confusion

In this section, we will describe and show some of the AOC categories considered in our
study. The categories of atoms that we consider are the ones that are found and discussed
by Gopstein et al. [12].

Post-increment Listing 2.5 shows a small code snippet containing a variable assignment
of V1 and R with an arithmetic statement. The confusing element in this snippet is that it is
easy to overlook the fact that, first, the value of V1 and 1 will be added together, and only
then will V1 be incremented. The value of R will be equal to 8.

Mis-indentation Indentation is a very important component in the semantics of the
program. Listing 2.3 shows a code snippet which contains multiple if and else statements.
In the snippet, we notice that the else statement belongs to the first if clause. This is not
the case because the curly braces indicate that the else statement belongs to the nested if
case, which can lead to incorrect evaluation of this program if not carefully inspected. This
discussion assumes a brace-based language (e.g., C, Java), where indentation is not part of
the formal syntax. In contrast, in languages such as Python, mis-indentation directly changes
the program’s control flow rather than only reducing developers” program comprehension.

2.2 Atoms of Confusion

Conditional operators Conditional operators are very important in control flow variables
and constructs. Using multiple conditional operators in a statement while omitting paren-
theses can be confusing when evaluating a code snippet. Listing 2.4 shows the initializations
of three boolean variables. In the next statement, we have the assignment of a variable to a
Boolean statement. Here, it is unclear in which order the &&, !, and the || operators bind,
which affects the evaluation of the statement.

Omitted curly braces Curly braces are important indicators of identifying statements
that are part of for-loops,while-loops, and if clauses. They allow us to distinguish between
statements that are part of these constructs and statements that are not. Listing 2.2 shows a
for loop iterating over a variable v1. It is unclear if both of the R + 4 statements belong to
the for loop or only one of them. This affects the end value of R.

Arithmetic operators binding Operator binding can sometimes be unclear when it comes
to mathematical statements in programming languages. Listing 2.1 shows the binding of the
variable R to the statement 3 + 9/3. The lack of parentheses makes this snippet confusing,
as the developers cannot be sure which operand is evaluated first. This yields two different
results, which impact the understanding of the program by the developer.

Type conversion It is very common to convert an integer type to a float type (e.g., convert
3 to 3.0). What is not very common is converting an integer type to a byte. Listing 2.6 shows
a variable assignment V1 to 288, and in the second line, we notice that this variable is cast
to a byte. This line might cause confusion, as the developer viewing this code snippet might
not know exactly what this line does. In Java, a byte is an 8-bit signed integer with a range
of —128 to 12. Since the value of V1 is out of range for a byte, when it is cast to a byte, it
will overflow using modulo 256 arithmetic. This will result in the value of R = 32.

Listing 2.1: Arithmetic operators binding Listing 2.2: Omitted curly braces
int R; int R = 4;
R=3+9/ 3; for (int V1 = 0; V1 < 3; V1++) R++; R++;
Listing 2.3: Mis-indentation Listing 2.4: Conditional Operators
int V1 = 2; boolean V1 = false;
int V2 = 8; boolean V2 = true;
int R = 5; boolean V3 = true;
if (V1 > 0) { boolean R = (V1 && !'V2 || V3);
if (V2 > 0) {
R=R+ 2;
} else {
R=R+ 4;
}

}

Background

Listing 2.5: Post-increment Listing 2.6: Type conversion
int V1 = 7; int V1 = 288;
int R =1 + V1++; int R = (byte) V1;

2.3 Eye Tracking

Eye tracking is a powerful method that is used to study how programmers comprehend
code [6, 40]. It provides crucial information in measuring visual attention and cognitive
processing of programmers when observing a piece of code [18]. By analyzing where and
how long and often a subject looks at a specific part of the code, it is possible to infer
what parts of the code are mentally demanding [39]. To make this inference, the following
eye-tracking metrics are used:

* Fixations: In eye tracking, a fixation is a period of time during which the gaze of an
individual is relatively still, allowing them to process information at a specific point
in space. The average fixation duration during code reading varies depending on the
task assigned to the subjects, but typically a duration threshold of 100-200 ms is used
to identify potential fixations [35].

* Saccades: Saccades are fast eye movements that shift the center of gaze from one part
of the visual field to another. Saccades are very fast, and they can reach speeds up to
700 degrees/s [36].

* Regressions: Regressions in code reading refer to backwards eye movements, where
the participants” eyes move back to previously fixated areas of interest in code. A high
number of regressions during a code reading task indicates confusion and difficult
code comprehension [9].

Related Work

In this chapter, we discuss and present previous work on atoms of confusion. We present the
results and findings of the studies relevant to our work. We provide a timeline in Figure 3.1
of the key research on atoms of confusion throughout the years.

|

Gopstein et al. [12] Oliveira et al. [10] ‘ Langhout and Aniche [20] Bergum et al.[3]
FSE 2017 SBES 2020 ICPC 2021 2024
Gopstein et al. [13] Gopstein et al. [11] Costa et al. [40]
MSR 2018 FSE 2020 2023

[Quantitative study} [Qualitative study] [Eye-tracking study]

Figure 3.1: Timeline of related work on AOC and code comprehension.

3.1 Quantitative Studies

In one of the first studies on AOC, Gopstein et al. [12] conducted a controlled experiment,
where participants were asked to hand-evaluate a set of code snippets with atoms and the
clarified counterparts of each code snippet. They found that the error rate in code snippets
with atoms was higher than in the clarified counterparts. They concluded that the mean
correctness rate increased by more than 50% between code snippets with atoms and clarified
code snippets [12].

In a different study, Gopstein et al. [13] found evidence that AOC are vastly prevalent
in big software projects like the Linux kernel or GNU Compiler Collection (GCC). In these
programs, AOC occur on average once every 23 lines. Additionally, in lines where an AOC is
present, it is 1.13 times more likely to include comments than lines of code with no AOC.
This evidence clearly tells us that AOC hinder code and their presence causes a significant
decrease in program comprehension.

Although it is made clear that AOC negatively affect program understanding and com-
prehension, many previous studies were performed on subjects who are undergraduate

Related Work

students with limited experience in programming [12, 40]. This is an important fact to
consider as the participants of these studies might not have sufficient knowledge regarding
the programming language to understand complex constructs in detail.

Medeiros et al. [25] conducted a study investigating the presence of "misunderstanding
code patterns” in 50 C open-source projects such as Apache, OpenSSL, and Python.

They found more than 109 thousand occurrences of 12 distinct atoms. The AOC that they
included in the study involve Multiple Initializations, Conditional Operator, Initialization in
Conditions, Assignment as Value, Pointer Arithmetic, Post/Pre Increment, Operator Precedence,
Dangling Else, Logic as Control Flow, Comma Operator, Reversed Subscript.

They conducted a survey that included questions regarding the experience of developers
with the atoms considered in the study. The survey was sent to 701 developers, and a total
of 97 developers completed it. Their findings show that among the 12 atoms proposed in the
survey, most of the developers agree that 6 out of 12 atoms might cause misunderstandings.

3.2 Qualitative studies

Gopstein et al. [11] performed a qualitative study on the effect of AOC on participants’
program comprehension. They discovered that evaluating the correct output of an obfuscated
program does not necessarily mean that the participant understood the program. They
grouped the subjects’ errors into four categories:

¢ Unfamiliarity: the subject had never seen the code construct before.

¢ Misunderstanding: the subject is aware of the construct, but has an incorrect mental
model of the construct.

¢ Language transfer: the subjects make incorrect assumptions based on knowledge from
other programming languages.

¢ Attention: the subject applies correct semantics, but forgets or ignores an important
piece of the computation.

While previous studies conducted research on AOC in C programming snippets, Langhout
and Aniche [20] used Java code snippets to perform their study.

Their experiment involved 132 Computer Science students and 14 AOC, which were
derived from Gopstein et al. [12] work. The code snippets were translated to Java and made
to be as similar to the version in C as possible, while also having clarified counterparts for
each atom.

They found that participants are 4.6 up to 56 times more likely to make mistakes in code
snippets affected by 7 out of 14 atoms. Furthermore, when faced with both versions of
the code snippets, the participants stated that the code snippets affected by the atom of
confusion were more confusing and/or less readable in 10 out of 14 studied atoms.

3.3 Eye-tracking Studies

3.3 Eye-tracking Studies

Eye-tracking methods and metrics are used to analyze the effects of confusing code on
participants” viewing of the code snippets. Oliveira et al. [10] conducted a study asking
participants to evaluate the output of three programs with AOC and three programs without
AOC. By using an eye tracker to capture eye movement data, they observed an increase of
36.8% in gaze transitions in programs with atoms. They found that, in the presence of an
atom, the time required to understand code correctly increased by 43.02%.

Silva da Costa et al. [40] performed a study using eye-tracking on 128 novices where
the participants were tasked with evaluating the output of code snippets in Java, C, and
Python. They concluded that on clarified code snippets, the completion time and number of
attempts was reduced by 38.6% and 28% respectively. This result provides further evidence
that AOC negatively impact programmers understanding and comprehension.

These findings add another dimension to the research regarding AOC. While it is certain
that atoms cause confusion and negatively affect comprehension among programmers,
it should be considered that this confusion might arise from insufficient knowledge or
experience with the programming language in the case of novices. We claim that, while
some atoms may not be confusing to programming experts and developers, they cause
confusion to novices (due to unfamiliar syntax or constructs).

Methodology

In this chapter, we introduce and discuss the main research questions of this thesis, along
with the motivation behind them. Further in the following sections, we introduce the
data, what it comprises, and how we utilize it in our investigation to answer the research
questions.

4.1 Research Questions

This thesis answers the following research questions:
| RQ1: Do certain atoms cause more confusion than others, and if so, which ones?

Prior research has revealed that atoms hinder comprehension of participants looking at
the programs [3, 9—12]. In these studies, atoms are often treated uniformly; however, some
atoms can take more effort to comprehend or cause more confusion than other atoms. This
extra effort causes participants to revisit the atoms more often and fixate for longer. By
investigating which atoms require more visual attention and cognitive effort, while also
taking into account the time and correctness of the code snippets” evaluation, we are able to
distinguish which atoms cause more confusion to participants. This allows us to prioritise
avoiding certain patterns that cause a higher level of confusion, to enhance readability and
maintainability.

RQ2: Do novices and experts experience different levels of confusion when encountering
the same atom?

Previous eye-tracking studies have concluded that experts are naturally able to compre-
hend code at a much faster rate when compared to novices [29, 30]. Experts tend to read
code less linearly and, by utilising prior knowledge and experience, they can scan code
more selectively and efficiently. Novices, on the other hand, often read code more linearly,
focusing on each line of code and its surface-level syntax. In some cases, atoms can appear
confusing to novices, not because of a misleading construct, but because they are unfamiliar
or not experienced enough with the programming language [11]. Analysing and finding
a difference in eye movement behaviour between experts and novices can reveal whether
certain atoms are confusing only to groups of people, when accounting for programming
experience.

11

12

Methodology

RQ3: How accurately do confusion measurement metrics predict the likelihood of an
atom being present in a code snippet?

In eye-tracking, metrics such as fixation duration are widely used in research as a measure
of cognitive load [39]. Typically, when participants exhibit a higher fixation duration, fixation
count on a particular element of the code shows that participants experience a higher
cognitive load to understand and process the confusing atom. As demonstrated in previous
studies [10, 40], atoms of confusion cause a significantly higher error rate in code evaluation
among subjects, and in some cases, participants choose to give up on the evaluation task.
We investigate the relationship between visual attention, error making, completion time,
and correctness. Evaluating whether there is a correlation between these metrics and the
participants” errors helps us identify new atoms and their level of impact.

4.2 Data Preparation and Manipulation

4.2.1 Description of Existing Dataset

This thesis builds upon the dataset introduced by Bergum et al. [3]. The eye-tracking data
was recorded using a Tobii Pro Spectrum with a sampling rate of 1200 HZ, and calibration
was done for each participant to ensure high accuracy. The data is already preprocessed and
discussed in detail in the paper by Bergum et al. [3]. Additionally, we explain important
procedures we follow to analyse the data.

The eye-tracking data is structured as follows: For each participant, the data is separated
into different files based on the name of the snippet from which the data was gathered.
An example of such data can be seen in Table 4.1. The file contains a timestamp of the
fixation start and the fixation end. It contains the location of the fixation in the x and y axes
as well as the radius of the fixation. In addition to these metrics, we have data regarding
the duration of each fixation of the participant, the snippet name corresponding to these
fixations, and the condition of the snippet. This condition indicates whether the snippet
contains an AOC or not.

In addition to the raw eye-tracking data, there are two other data files. One contains
demographic data of the participants, such as age group, gender, profession, years of
programming, contact with different programming languages, and recent programming
activity.

The other data file contains behavioural data of all participants, with information such
as the start and end of the fixation, the total fixation duration for the snippet, the snippet
name, and the answer that the participant gave for the snippet.

To work with the data, we made use of the Pandas v2.3.3 package [44] implemented in
Python. We state the steps taken for each research question.

4.2 Data Preparation and Manipulation 13

Table 4.1: Example of fixation eye-tracking data for participant 7 on snippet "4-obf-vo".

start end x y radiusx radiusy duration OSnippet Participant Condition
73891 73955 619.01 290 0.71 1.58 0.64 4-obf-vo 7 confusing
739.57 739.88 704.20 343 0.35 0.30 0.31 4-obf-vo 7 confusing
740.06 740.80 594.93 290 1.14 1.44 0.74 4-obf-vo 7 confusing
741.15 741.65 756.40 343 1.59 0.47 0.50 4-obf-vo 7 confusing
741.66 74221 70535 343 1.55 0.39 0.55 4-obf-vo 7 confusing
74222 74327 768.37 343 1.11 0.70 1.05 4-obf-vo 7 confusing
74345 743.68 67221 343 0.45 0.81 0.23 4-obf-vo 7 confusing
743.69 74416 677.86 343 1.60 2.27 0.47 4-obf-vo 7 confusing
744.17 744.62 766.32 343 0.52 0.83 045 4-obf-vo 7 confusing

4.2.2 Analysis Procedure for RQ1: Categories of Atom of Confu-

sion

| RQ1: Do certain atoms cause more confusion than others, and if so, which ones?

To answer this research question, we statistically compare eye-tracking metrics like fixation
count, AOI fixation count, AOI fixation duration, and regressions between each AOC category.
To make this comparison, we derive these metrics from the existing eye-tracking data for
each AOC category.

First, we iterate through the data of each participant and each snippet, calculating the
metrics respectively. We create a dataframe for each metric where we list for each participant
the corresponding value for that metric for each snippet. If a participant does not have any
data for a specific snippet, we assign "NaN" to that entry.

The metrics are calculated in the following way:

Fixation count - the total fixation count on the whole snippet, calculated by taking the
length of the data for the respective participant and snippet.

AOI fixation count - the total count of fixations that fall within the area of intereste (AOI),
i.e the atom of confusion. Knowing the borders of the AOIs in pixels, we filter the fixation
data to include only those entries whose fixations fall within this AOL

AOI fixation duration - With the filtered data, we sum the duration of each fixation in the
AOI to get the total duration.

Regressions in AOI - By definition, regressions are eye movements that go against the
normal reading order [5]. They are described as backtracking fixations. Given a time stamp
and location in the x and y axes in the data, we identify fixations that are an outcome of
participants performing regressions. Taking the total number of regressions allows us to use
this metric.

14

Methodology

We group by AOC category in each dataframe, which results in a total count for each
participant for the given AOC category. An example data frame on the total fixation count is
shown in Table 4.2.

Table 4.2: Total fixation counts for all participants by AOC category.
Note: Not all participants are displayed to keep the table readable.

AOC Category 003 004 005 007 008 009 010 011 012 013 014

Conditional operators 9 132 61 68 80 217 119 200 52 132 132
Variable reassignment 31 48 39 79 39 88 47 29 92 84 37

Type conversion 6 39 42 70 22 0 45 23 31 31 O
Pre/postindecrement 76 54 126 136 51 110 183 199 75 99 115
Scope indentation 144 136 197 175 87 361 329 348 123 194 238

By utilizing the Shapiro-Wilk test [34], we confirm that the distribution of the data is not
normal, meaning that we need to conduct the Kruskal-Wallis test [24] as a non-parametric
version of One-Way Anova to look for significant differences in the group. These statistical
tests are available in the Python library Scipy v1.13.1 [42].

4.2.3 Analysis Procedure for RQ2: Programmer Expertise

RQ2: Do novices and experts experience different levels of confusion when encountering
the same atom?

Having access to the demographic data of the participants, we separate the participants
into three groups based on years of experience in programming: novice, intermediate, and
expert.

We conduct a separate analysis on these groups for each of the five AOC categories.
We store the data for novices, intermediates, and experts in separate dataframes for each
category. An example of such a dataframe is shown in Table 4.3.

Having the data structured in this way allows us to run statistical tests to check for
normality, equality of variances, and significant differences between the experience groups
on each metric.

4.2.4 Analysis Procedure for RQ3: Prediction of Atom of Confu-

sion

RQ3: How accurately do confusion measurement metrics predict the likelihood of an
atom being present in a code snippet?

4.2 Data Preparation and Manipulation

Table 4.3: Data metrics for participants with intermediate experience on snippets in the Confusing
Boolean with Arithmetic category.

Data Metrics Intermediate 005 012 013 016 017 024 106

Total Count Intermediate 61.00 52.00 132.00 37.00 92.00 100.00 67.00
Total Count in AOI Intermediate 53.00 39.00 82.00 25.00 77.00 74.00 35.00
Total Duration in AOI Intermediate 23.67 2826 4756 9.85 35.67 43.08 22.19
Total Duration Intermediate 2714 3324 67.88 1457 4124 56.65 39.17
Total Regressions Intermediate 22.00 10.00 32.00 7.00 28.00 32.00 11.00

Predicting whether a snippet contains an atom of confusion or not is a binary classification
problem [15]. Therefore, we trained multiple machine learning models to find one that
yields the best result.

In order to make predictions on the data, we train a machine learning model and evaluate
its performance. We start by choosing metrics to use as features on which we train our
machine learning model. The features that we use in our model are the following: fixation
count, mean fixation duration, AOI fixation count, regressions in AOI, duration in AO]I,
completion time, and correctness. The variable we want to predict is the variant, which
corresponds to 1 if the snippet does not contain an atom of confusion and 0 if it does. One
row of these entries corresponds to the data derived from one participant on a specific
snippet. The features are normalised, and the data is split into train and test data. The test
data represents 30% of the whole dataset. To train and fit the models, we use scikit-learn
v1.7.2 package [28]. The models that we fit are the following:

SVM with the radial basis function. The soft margin SVM features two hyperparameters:
C and 7. The C parameter controls how much the model is penalized when a misclassi-
fication occurs. The smaller C is, the more points are misclassified, hence leading to an
underfit, and the bigger C is, the fewer points get misclassified with a potential to overfit
[14]. v controls how much an observation influences the decision boundary. As -y increases,
the decision boundary becomes more non-linear since every observation influences the
boundary, and as it decreases, the fit becomes more linear.

To find the optimal values for the mentioned hyperparameters, we followed a nested
cross-validation approach. We cross-validate over possible values for C and v to pick the best
hyperparameters for our data. The set of possible values for v = [100,10,1,0.1,0.01, 0.001]
and C = [0.1,1,10, 100, 1000, 10000]. For our model, the optimal values for the hyperparam-
eters chosen by cross-validation are C = 10 and y = 0.1.

Next, we perform cross-validation on 10 folds of data, training the model on 9 folds of
data, and testing on the left-out fold.

XGBoost is an ensemble method that combines multiple weak models to form a stronger
model [8]. XGBoost takes numerous parameters that are required to train the model. We
shortly define each parameter:

15

16

Methodology

¢ Max depth: Indicates the maximum depth of the tree. Increasing this value yields
a more complex model, which is more likely to overfit. For our model, we picked
max_depth = 8.

* Learning rate: Determines the rate at which the boosting algorithm learns from
each iteration. Lower value indicates slower learning, as it scales down the contribu-
tion of each tree in the ensemble, preventing overfitting. For our model, we picked
learning_rate = 0.003.

¢ Alpha: L1 regularization parameter on weights. Increasing « will make the model
more conservative. For our model, we picked a« = 7.

* N estimators: Specifies the number of trees to be built in the ensemble. Adding
too many trees to the ensemble can lead to overfitting. For our model, we picked
n_estimators = 1000.

¢ Gamma: Controls the minimum amount of loss reduction required to make a further
split on a leaf node. A lower value means XGBoost will stop earlier, but may not find the
best solution. A higher value means the model continues training longer, potentially
finding better solutions, but might lead to overfitting. For our model, we picked
v =0.1.

We performed a randomized cross-validation search to find the parameters that yield the
best results for our data. XGBoost returns the best estimator, which we use to fit the data and
evaluate the performance of the model.

Random Forest Random forest is an ensemble method that combines the predictions of
multiple decision trees to produce a more accurate and robust result. We set the following
parameters for our model:

¢ Max depth: Indicates the maximum depth a tree is allowed to reach. For our model,
we picked max_depth = None. None means the nodes are expanded until all leaves
are pure or until all leaves contain less than two samples.

¢ Criterion: The function to measure the quality of a split. For our model, we picked
the gini criterion.

¢ Max features: The number of features to consider when looking for the best split. For

our model we picked max_depth = \/|features|.

To train the random forest classifier, we took a similar approach as the SVM. We performed
a nested cross-validation; the inner cross-validation is used to pick the best values for the
parameters, whereas the outer cross-validation is used to train the model on 9 folds of data
and test it on 1 fold. This yields 10 accuracy scores, of which we took the average. We used
the Gini criterion as the function that measures the quality of a split; the square root of the
number of features was used to consider when looking for the best split, and a depth of 8
was chosen as the maximum depth for the trained trees.

Results

In this chapter, we present the results and findings from our data analysis.

5.1 Results for RQ1: Categories of Atom of Confusion

Previous research on AOC studies the impact of atoms on the program comprehension of
participants, accounting for the atoms uniformly, and analyzing their effect as a whole. It is
reasonable to believe that some atoms require more attention and a higher concentration to
understand.

This question aims to identify which atoms require a higher level of comprehension from
participants to understand the construct. We present statistical results for each AOC category,
analyzing eye tracking metrics such as the total fixation count, the fixation count in the AO]J,
the duration spent fixating in the AOI, and the total regressions in the AOL

RQ1: Do certain atoms cause more confusion than others, and if so, which ones?

We computed descriptive and inferential statistics on the relevant eye-tracking metrics to
test for significant differences between the AOC categories.

17

18

Results

350

300

ool

Conditional operators Variable reassignment Type conversion Pre/postindecrement Scope indentation

AoC Category

Total Fixation Count
- N N
(€2 o n
o o o

-
o
o

Figure 5.1: Violin plot depicting the distribution of the fixation count for each category

Total Fixation Count Figure 5.1 shows the distribution of the total fixation count for
each AOC category.

The scope indentation category has the widest spread of the total fixations and reaches the
highest values among the other categories. This is a reflection of the test results obtained
from Dunn’s test, where this category differs consistently from the others. Furthermore, the
variable reassignment and type conversion categories have a narrower spread, with the fixation
values being closer and more consistent with each other.

We then performed the Kruskal-Wallis test on the Total Fixation Count metrics across
the five AOC categories, reporting a p-value of < 0.001, which indicates a high statistical
significance. The Kruskal-Wallis test reports if there is a statistically significant difference
between groups, but it does not describe which groups significantly differ from each other.
To reveal which groups significantly differ from each other, we conduct a post-hoc Dunn’s
test with Bonferroni adjustment.

Results show that the conditional operators category differs significantly in fixation counts
from three other categories, i.e Variable reassignment, type conversion, and scope indentation.

5.1 Results for RQ1: Categories of Atom of Confusion 19

Table 5.1: Significant differences between pairs from Dunn’s post-hoc test on fixation counts by AOC

category
AOC Category 1 AOC Category 2 p-value
Conditional operators ~ Variable reassignment 0.038
Conditional operators ~ Type conversion <0.001
Conditional operators ~ Scope Indentation 0.042
Variable reassignment Pre/post in/decrement 0.043
Variable reassignment Scope Indentation <0.001
Type conversion Pre/post in/decrement ~ <0.001
Type conversion Scope Indentation <0.001
Pre/post in/decrement Scope Indentation 0.036

Moreover, variable reassignment significantly differs from pre/post in/decrement and scope
indentation, with the same being true for type conversion as well. The important thing to note
here is that scope indentation differs consistently from the other categories. Table 5.1 shows
the p-values associated with statistically significant differences between the groups.

Table 5.2: Significant differences between pairs from Dunn’s post-hoc test on fixation counts in AOI
by AOC category

AOC Category 1 AOC Category 2 p-value
Conditional operators ~ Variable reassignment <0.001
Conditional operators ~ Type conversion <0.001
Conditional operators ~ Scope indentation <0.001
Variable reassignment Pre/post in/decrement 0.015
Type conversion Pre/post in/decrement <0.001
Pre/post in/decrement Scope indentation 0.021

AOI Fixation count Following the same approach, we performed statistical tests on the
total fixation count in the AOI for each AOC category. Table 5.2 reflects the results of the test.

Conditional operators differ significantly in terms of AOI fixation count from variable reas-
signment, type conversion, and scope indentation. Pre/pos in/decrement differs significantly from
variable reassignment, type conversion, and scope indentation.

20

Results

- - - -
~ o N (4] ~
(9] o [$)] o [$)]

Fixation Count in AOI

(92}

?‘A.‘o

Conditional operators Variable reassignment Type conversion

AoC Category

Pre/postindecrement Scope indentation

Figure 5.2: Violin plot depicting the distribution of total fixation count in AOI per AOC category

Depicting the distribution of the data in a violin plot yields some interesting results.
Figure 5.2 shows the distribution of the data.

Conditional operators category has by far the widest spread of the data. Contrasting with the
previous plot, when taking into account only fixation in AOI, the scope indentation category
has a very narrow spread, with the values centering closer around the median.

Table 5.3: Significant pairs from Dunn’s post-hoc test on total fixation duration in AOI by AOC

category
AOC Category 1 AOC Category 2 p-value
Conditional operators ~ Variable reassignment 0.002
Conditional operators ~ Type conversion < 0.001
Conditional operators ~ Scope indentation < 0.001
Variable reassignment Pre/post in/decrement 0.008
Type conversion Pre/post in/decrement 0.003
Pre/post in/decrement Scope indentation < 0.001

AOI total duration Similar to the previous metrics, we performed the Kruskal-Wallis Test
and Dunn’s post hoc test to find significant differences between the AOC categories. Table 5.3
shows the results of the test. The category of conditional operators differs significantly from

5.1 Results for RQ1: Categories of Atom of Confusion

the other three categories. This is a consistent difference when taking into account the
significance of the previous metrics.

Moreover, confusing Variables and type conversion differ significantly from pre/post in/decre-
ment. Pre/post in/decrement differs significantly from scope indentation.

100

il

Conditional operators Variable reassignment Type conversion Pre/postindecrement Scope indentation

AoC Category

Duration in AOI

o

Figure 5.3: Distribution of AOI total fixation duration by AOC category.

Analyzing the plot in Figure 5.3, we notice that conditional operators and pre/pos in/decrement
have the widest spread of the data points and reach the highest values. The other categories

have a narrower spread, with scope indentation having the highest concentration of data in a
small region.

Table 5.4: Significant pairs from Dunn’s post-hoc test on total regressions in AOI by AOC category

AoC Category 1 AoC Category 2 p-value
Conditional operators Variable reassignment < 0.001
Conditional operators Type conversion < 0.001
Type conversion Pre/post in/decrement 0.008
Type conversion Scope indentation 0.001

Regressions in AOI Performing the Dunn’s post hoc test on the regression total count of
the categories, we got the following results:

The conditional operators category differed significantly in regression counts from variable
reassignment and type conversion categories. Additionally, the type conversion category differed

21

22

Results

significantly in regression counts from pre/post in/decrement and scope indentation categories.
These results are depicted in Table 5.4.

-‘lA“

Conditional operators Variable reassignment Type conversion Pre/postindecrement ~ Scope indentation

AoC Category

an [«2] ~ o]
o o o o

Regressions in AOI
w H
o o

N
o

Figure 5.4: Distribution of AOI total regressions by AOC category.

Comparing the distribution plots of the regressions in AOI for each category, there are a
few things to note. The distribution of the observations for the conditional operators category
has the widest spread and values reaching the highest compared to the other categories. The
other categories have a wider shape around the median, indicating that most observations
are centered around this area. The type conversion category has the lowest median and values
out of all categories, indicating little regression. The violin plot Figure 5.4 reflects these
results.

5.2 Results for RQ2: Programmer Expertise

Experience plays an important role in the ability to comprehend and understand code [29,
30]. With experience, we get more familiar with the language and with its constructs. An
individual who is not familiar with the language might express confusion even with code
that is well-written and not confusing.

With this research question, we answer the question of whether experience plays a role
in the comprehension of AOC. We analyze each of the five categories of AOC on four eye
tracking metrics.

RQ2: Do novices and experts experience different levels of confusion when encountering
the same atom?

5.2 Results for RQ2: Programmer Expertise

5.2.1 Conditional Operators

Total fixation count Looking at the total fixation counts of each experience level, novices
had the highest count with a total of 1225 fixations across all snippets in the category, and
an average of 24 fixations. Interestingly, experts have the second highest count of fixations
at a total of 1189 and an average of 17.7 fixations. The intermediate level has the lowest
total count of fixations at 541 but an average closer to experts at 15 fixations. Thus, there
is a substantial difference in total fixations and average between novices and intermediate
participants.

Table 5.5: Dunn’s Test result p-values between pairs of the experience levels in total fixation count.

Category 1 Category 2 p-value

Expert Intermediate 0.636
Expert Novice 0.199
Intermediate Novice 0.018

These results are supported by our statistical tests. The Kruskal-Wallis test results in a
p-value of 0.019, indicating statistically significant differences. The results of the subsequent
Dunn’s test revealed no statistically significant differences between expert-intermediate
participants and expert-novice participants (p = 0.636 and p = 0.199, respectively). Whereas,
between intermediate-novice groups, there is a statistically significant difference in fixation
counts (p = 0.018).

Table 5.5 displays the associated p-values between each experience group.

AOI fixation count For novices, 759 fixations across all snippets fell in the AOI with an
average count of 14.8 fixations per participant per snippet; Intermediate participants have a
total of 385 fixations in the AOI and with a lower average of 10.7, meanwhile experts have a
total of 852 fixations in the AOI with an average of 12.7 fixations per participant.

Even though there seems to be a big difference in total fixations between intermediate par-
ticipants and the other levels of experience, these differences are not statistically significant,
as shown by the Kruskal-Wallis test result with a p-value p = 0.11.

Total fixation duration in AOI In total, novices spent 413 seconds fixating on the AOL
On average, the total duration of the fixations is 8 seconds. Intermediate participants fixated
for about half the time of novices at 210 seconds and with a lower average of 5.8 seconds.
For experts, the total time spent fixating in the AOI is closer to that of novices at 398 seconds,
but an average similar to intermediate participants at 5.9 seconds.

These results are not statistically significant as evaluated by Dunn’s post hoc test (see
Table 5.6)

23

24 Results

Table 5.6: Dunn’s Test result p-values between pairs of the experience levels in total AOI duration.

Category 1 Category 2 p-value

Expert Intermediate 1.000
Expert Novice 0.101
Intermediate Novice 0.091

Total regression count Examining the regression totals in the AOI, we observe similar
values across the three groups.

Novices have a total of 262 regressions with an average of 5.4 per participant. Intermediate
participants have a total of 142 regressions in the AOI, but with an average of 4.5. Experts
reached a total of 287 regressions with an average of 4.4 regressions.

These resulting values are close between the groups, and performing the Kruskal-Wallis
test resulted in a p-value of p = 0.489, which is statistically insignificant.

Summary For snippets containing atoms of the conditional operators, the level of experience
does not influence the observed confusion, since we largely find no effect regarding our eye
tracking metrics.

While there is a statistically significant difference in the total count of fixations between
novice-intermediate participants, the other metrics yield no statistical significance. This
especially includes the AOI metrics such as total count, duration, and regressions in AOL.

5.2.2 Pre/Post In/Decrement

Total fixation count For snippets in the pre/post in/decrement AOC cateogry we observe the
following results: Novices fixated on the snippet for a total of 1269 fixations with an average
of 19.2 fixations; Intermediate participants fixated significantly less, having a total of 691
fixations and an average of 11.9 fixations; experts have 1070 total count of fixations with an
average of 14 fixations. We observe a statistically significant difference between novices and
intermediate participants as there is a 54% decrease in fixation counts. Furthermore, even
though not as strong, we see a difference between novices and experts in total count aswell.

The results of the test between experts and novices found a p-value of p = 0.022, indicating
that there is a statistically significant difference in fixation counts between these groups.
Moreover, there is such a significant difference between intermediate and novice participants
with a p-value of < 0.001.

5.2 Results for RQ2: Programmer Expertise

Table 5.7: Dunn’s Test result p-values between pairs of the experience levels in total fixation count.

Category 1 Category 2 p-value

Expert Intermediate 0.404
Expert Novice 0.022
Intermediate Novice <0.001

AOI fixation count Novices displayed the highest result, reaching a total of 652 fixations
in the AOI, with a mean count of 9.8. Similar to the previous metric, intermediate participants
have the lowest total AOI fixation count at 339 fixations with an average of 5.8 fixations.
Finally, experts lie between the two groups with 584 total AOI fixations and 7.6 average.

These trends suggest that novices and experts analyse and focus on the AOI more often
than intermediate participants.

The statistical results from performing Dunn’s test show that these results are not random(
Table 5.8).

There is a statistically significant difference between novices and intermediate participants(p <

0,001), indicating that novices consistently focus more on the AOI than intermediate partici-
pants. Although not as strong, there is a statistically significant difference between experts
and intermediate participants with a p-value of 0.01.

Table 5.8: Dunn’s Test result p-values between pairs of the experience levels in total AOT fixation
count.

Category 1 Category 2 p-value

Expert Intermediate 0.016
Expert Novice 0.106
Intermediate Novice < 0.001

Total fixation duration in AOI Observing the time spent fixating on the AOI part of the
snippet, novices once again, had the highest total duration at 438.7 seconds with a mean
fixation of 6.6 seconds. Experts show the second-highest total fixation duration in the AOI at
363.2 seconds and an average of 4.7 seconds per participant per snippet. Lastly, with the
lowest total duration, intermediate participants had a total of 209.6 seconds and an average
of 3.6 seconds. Intermediate participants spent the least amount of time fixating on the AO]J,
similarly to the previous metrics.

The statistical results Table 5.9 give us insights into the pairwise differences between the
groups.

We discovered a statistically significant difference in total fixation duration between
novice and intermediate participants (p < 0.001). Moreover, we found a significant differ-
ence between novices and experts (p = 0.006), while the difference between experts and
intermediate participants is insignificant(p = 0.3).

25

26

Results

These results suggest a different behavior in how long it takes novices to perceive and
understand confusing constructs compared to experts and intermediate participants.

Table 5.9: Dunn’s Test result p-values between pairs of the experience categories in total duration
fixating in AOL

Category 1 Category 2 p-value

Expert Intermediate 0.326
Expert Novice 0.006
Intermediate Novice < 0.001

Total regression count The results of the total regression count metric show statistically
significant pairwise differences between the groups. The highest number of total regressions
in the AOI was achieved by novices, with a total of 161 regressions into the AOI with a
mean of 2.8 regressions per participant per snippet. Experts are second, with a total of 152
regressions and a lower average of 2.6 regressions. Intermediate participants had the lowest
total of regressions in the AOI at 67 regressions and an average of 1.97 regressions in the
AOL We discover that experts and novices have a similar count and average of regressions,
while the metrics for the intermediate participants are noticeably lower.

Looking at the statistical results of the pairwise differences between the categories,
intermediate participants differ significantly from novices (p = 0.023) and experts (p = 0.03)
in regression counts in the AOI. Meanwhile, no statistically significant difference was found
between experts and novices. This lack of difference is also noted when comparing the totals
and averages of these two groups.

Table 5.10: Dunn’s Test result p-values between pairs of the experience categories in total regression
count.

Category 1~ Category 2 p-value

Expert Intermediate 0.030
Expert Novice 1.000
Intermediate Novice 0.023

Summary For confusing snippets in the post/pre in/decrement category, we notice a few
things. Across the four eye tracking metrics that we analysed, in two of them (Total fixation
count and total fixation duration in AOI), we found a statistically significant difference
between novices and the other two levels of experience, where novices consistently pro-
duced the highest values and averages, indicating a higher cognitive load when processing
these code snippets. In the other two metrics (AOI fixation count and regressions in AOI),
intermediate participants differed significantly from the other two levels of experience. They
achieved the lowest values out of the three groups.

5.2 Results for RQ2: Programmer Expertise

5.2.3 Scope Indentation

The statistical analysis for snippets in the scope indentation AOC category found no statistically
significant results for any of the metrics except total regression count; however, we discuss
the metrics below:

Total fixation count For the expert category, we recorded the highest total fixation count
at 1983 fixations, but they achieved the lowest average per participant per snippet at 24.2
fixations. Second is the novice category with 1891 total fixations, but the highest average at
30.5 fixations. Similar to previous snippet categories, intermediate participants achieved the
lowest total fixation count at 1239 fixations, but with an average closer to experts at 25.2.
The results of the Kruskal-Wallis test found no statistically significant difference between
the groups (p = 0.11)

AOI fixation count Taking into consideration only the fixations falling in the AOI, experts
had the highest count of fixations at 354, with an average of 4.6 fixations per participant per
snippet. Novices followed in second at 290 fixations with an average of 4.7 fixations. Finally,
intermediate participants had the lowest AOI total and average at 165 and 3.6, respectively.

Performing the Kruskal-Wallis test, we found no statistically significant differences
between any of the three groups.

Total fixation duration in AOI Experts resulted in the highest total duration spent
fixating in the AOI at 157.8 seconds, with an average of 2.1 seconds. Novices fixated on the
AOI for a total of 138 seconds and an average of 2.2 seconds per participant per snippet.
Finally, intermediate participants spent a total of 85 seconds fixating on the AOI with an
average of 1.8 seconds.

Similarly to the previous metrics, we found no statistically significant difference between
the three groups for this metric (p = 0.6).

Total regression count When it comes to regressions in the AOI, experts resulted in
the highest total at 203 regressions and an average of 3 regressions per participant per
snippet. Novices had a total of 143 regressions and an average of 2.6 regressions. Finally,
intermediate participants had a total of 81 regressions and an average of 2 regressions.
Performing Dunn’s post hoc test, we found a statistically significant difference only
between expert and intermediate participants with a p-value of p = 0.03 (see Table 5.11)

Table 5.11: Dunn’s Test result p-values between pairs of the experience categories in total regression
count.

Category 1~ Category 2 p-value

Expert Intermediate 0.031
Expert Novice 1.000

Intermediate Novice 0.205

27

28

Results

summary Although we found a statistically significant difference in the total regression
count between intermediate and expert participants, this metric alone does not allow us to
draw any conclusion or make any implications about whether the same snippet category
causes a different level of confusion between participants with different levels of experience.

5.2.4 Type Conversion

Total fixation count Intermediate participants scored the lowest total fixation count
across all snippets in the category at 212 fixations with an average of 11.7 fixations per
participant per snippet. Novices had a higher total count of fixations at 306 fixations with
an average of 15.3 fixations per participant per snippet. Experts had the highest total count
of the 3 experience levels at 351 fixation total. The resulting average per participant per
snippet was evaluated at 14.6 fixations.

The results of the Kruskal-Wallis test discovered no statistically significant difference
between the total fixation counts between any of the experience groups (p = 0.4)

AOI fixation count Observing the total fixations in the AOI for all snippets in the category,
novices achieved a total of 166 fixations with an average of 8.3 fixations per snippet. Experts
had the highest total count at 270 fixations. Finally, intermediate participants had the lowest
total at 98 fixations and a low average of 5.4 fixations per snippet.

There is a notable difference in AOI total fixations between experts and intermediate
participants. This difference is discovered to be statistically significant by the statistical
results of Dunn’s test with a p-value of 0.006 (see Table 5.12).

Table 5.12: Dunn’s Test result p-values between pairs of the experience levels in total AOI fixation
count.

Category 1 Category 2 p-value

Expert Intermediate 0.006
Expert Novice 0.347
Intermediate Novice 0.391

Total fixation duration in AOI Intermediate participants fixated on the AOI for a total of
60.5 seconds across all snippets, and on average, they spent 3.3 seconds per snippet fixating
in the AOI Novices fixated on the snippets” AOI for a total of 134.7 seconds, while experts
had the highest total duration of 285.2 seconds and an average of 11.8 seconds per snippet.

The results of the statistical test follow the same trend as the previous metrics. There
is a notable difference in the total duration spent fixating in the AOI between experts and
intermediate participants. The associated p-value to this difference is < 0.001; meanwhile,
we found no statistically significant difference between intermediate-novice and expert-
novice pairs (see Table 5.13).

5.2 Results for RQ2: Programmer Expertise

Table 5.13: Dunn’s Test result p-values between pairs of the experience levels in total AOI duration.

Category 1 Category 2 p-value

Expert Intermediate < 0.001
Expert Novice 0.277
Intermediate Novice 0.095

Total regression count Intermediate participants had the lowest count of regressions in
the AOI across all snippets, with a total of 19 regressions and an average of 1.7 regressions
per snippet. The second-highest value was achieved by novices with a total of 39 regressions
across all snippets and an average of 2.8 regressions per snippet. Finally, novices had the
highest total count of regressions in the AOI, with a total of 91 regressions and an average
of 4.5 regressions per snippet.

The results of Dunn’s post hoc test demonstrate a statistically significant difference
between experts and intermediate participants, with a p-value of p = 0.002. No such
significance was found between any other experience level pairs.

Summary There is a noticeable difference in the eye-tracking data between experts and
intermediate participants. Intermediate participants consistently scored the lowest values in
all of the above metrics, but the significant results that we found concerned mainly the AO],
that is, the atom of confusion.

Taking into account solely the eye-tracking data, we state that expert participants focused
longer on the AOJ, as indicated by the long fixation duration times.

Based on the regression count, they backtracked to the AOI much more often than inter-
mediate participants. Experts gave the wrong answer 23 out of 27 times, while intermediate
participants gave the wrong answer 20 out of 21 times.

These metrics suggest that experts experience a higher cognitive load when comprehend-
ing the AOC compared to intermediate participants.

5.2.5 Variable Reassignment

We found no statistically significant differences between pairwise experience levels for
snippets in the variable reassignment category. Nevertheless, we provide descriptive statistics
regarding each eye-tracking metric below:

Total fixation count We recorded 525 total fixations across all snippets in the category for
participants in the novice level, with an average of 12.5 fixations per snippet. Intermediate
participants had a total of 480 fixations with an average of 11.1 fixations per snippets and
experts resulted in a total of 579 fixations across all snippets and an average of 11.5 fixaions
per snippet.

Performing the Kruskal-Wallis test, we found no statistically significant difference between
any of the experience levels, resulting in a p-value of p = 0.8

29

30

Results

AOI fixation count Taking into account only fixations in the AOI, novice participants had
a total of 263 fixations and 6.2 fixations on average per snippet. Intermediate participants
had a total of 212 fixations across all snippets, with an average of 4.9 fixations per snippet.
Lastly, experts resulted in 326 total fixations and an average of 6.5 fixations per snippet.

Performing the Kruskal-Wallis test, we found no statistically significant difference between
any of the experience levels, resulting in a p-value of p = 0.2

Total fixation duration in AOI Novices fixated for a total of 141.6 seconds across all snip-
pets in the category, with an average fixation time of 3.4 seconds per snippet. Intermediate
participants fixated for a total of 134.9 seconds and averaged 3.1 seconds per snippet. Expert
participants had a total fixation duration of 196.7 seconds and an average of 3.9 seconds per
snippet.

Performing the Kruskal-Wallis test, we found no statistically significant difference between
any of the experience levels, resulting in a p-value of p = 0.5

Total regression count For the final eye-tracking metric, we found a total of 96 regressions
across all snippets for novices with an average of 3.3 regressions per snippet. Intermediate
participants had a total of 56 regressions with an average of 2 regressions per snippet, and
experts had a total of 93 regressions across all snippets and an average of 2.8 regressions
per snippet.

Performing the Kruskal-Wallis test, we found no statistically significant difference between
any of the experience levels, resulting in a p-value of p = 0.5

Summary We found no statistically significant difference between the experience levels
when comprehending snippets of the variable reassignment AOC category. These results
indicate that there is no effect on the observed confusion of the participants depending on
their experience level.

5.3 Results for RQ3: Prediction of Atom of Confusion

A previous study found that AOC cause an increase in gaze transitions and time of comple-
tion [10]. Such effects in the eye-tracking and behavior data have the potential to reveal a
systematic pattern in the data, which can allow us to determine whether or not an atom is
present in the code.

In order to identify such patterns, we train a machine learning model on our existing
dataset. We present the results of the various machine learning models we trained and the
evaluated performance for each model.

RQ3: How accurately do confusion measurement metrics predict the likelihood of an
atom being present in a code snippet?

The goal of our machine learning models is to predict the variants of the snippets. The
variant of a snippet is 1 if the snippet does not contain an atom of confusion and 0 otherwise.

[

5.3 Results for RQ3: Prediction of Atom of Confusion

We train the model on 7 features’ and we split the data into train and test data. The training
set makes up 70% of the data, and the test set makes up 30% of the data. We normalized
the data before using it to train the models.

We evaluate the models on 451 data-points, where 230 data-points correspond to snippets
that do not contain an atom of confusion, and the rest of 221 data points contain an atom of
confusion. The evaluated performance on the hold-out set is shown below Table 5.14:

Table 5.14: Evaluated performance of the trained models

Model Accuracy Recall Precision F1 score

Soft margin SVM 0.6408 0.8788 0.6024 0.7148
XGBoost 0.6319 0.7532 0.6148 0.6770
Random forest 0.6275 0.6580 0.6307 0.6441

Evaluated on the hold-out set, we conclude that out of the trained models, the soft margin
SVM model performed better compared to the other models in terms of accuracy, producing
a correct label for 64% of the test data.

Furthermore, SVM scored the highest recall (0.8788). It indicates that this model performed
the best in correctly predicting whether snippets do not contain an atom. This means that
the SVM model is most sensitive to positive instances.

Moreover, SVM has the highest F1 score (0.714), implying a better balance between
precision and recall.

XGBoost performed slightly worse than the SVM but better than the Random Forest,
producing a correct label for 63% of the data. XGBoost elevates the value of precision (0.6148),
implying that when it predicts a positive instance, it is more likely to be correct compared
to the other models.

The random forest model scored similar values to XGBoost in accuracy of predictions (~
63%) but achieved the highest precision score (0.6307). The recall score (0.6580) is much
lower compared to XGBoost and SVM, making it the least sensitive to positive instances.

Overall, the Soft Margin sVM offers a higher performance in accuracy of predictions
and is superior when it comes to predicting actual positive instances and yielding a more
balanced performance. Taking into account these metrics, we can say that the Soft Margin
SVM achieves the best performance in predicting whether a snippet contains an atom of
confusion or not.

An important thing to note is that while these models do not achieve a high predicting
performance due to the inconsistent nature of human comprehension, all the models achieve
a better predicting performance over chance and by simply guessing whether a snippet
contains an atom or not.

Features used to train the model: fixation count, mean fixation duration, AOI fixation count, regressions in AOI,
duration in AOI, completion time, and correctness

31

Discussion

In this thesis, we explore and analyze the effects of atoms of confusion on the program
comprehension of participants. We do this by utilizing eye-tracking data, which is widely
used in the area of research. Such data provides insights into the behavior of participants
when comprehending code or natural language.

In this chapter, we provide an interpretation of the results for each research question in
order to give a thorough answer to each one of them.

6.1 ROQu: Categories of Atom of Confusion

| RQ1: Do certain atoms cause more confusion than others, and if so, which ones?

We analyze the five grand categories of AOC: Conditional Operators, Variable Reassignment,
Type Conversion, Pre/Post increment, and Scope Indentation across different eye tracking metrics.
The statistical analysis we performed for each eye-tracking metric revealed one common
result: The conditional operators category and the pre/post increment category consistently
differed the most from the other categories.

The violin plots demonstrate that these two categories most often have the widest spread,
and reach the highest values and medians in the data. The spread of the values indicates
inconsistency in how participants perceive the atoms.

In metrics that isolate the AOI like AOI fixation count, AOI fixation duration, and regres-
sions, these two categories have the highest counts and values. A high fixation count and
fixation duration indicate that participants spent a significant amount of time focusing on
the AOI area, perhaps trying to understand what the confusing part of the snippet evaluates
to.

A reason why these two categories received the most attention compared to others is
due to the nature of their constructs. Taking an example of an increment operator, we have
two possible options: pre-increment and post-increment. One increments the value before
used in an expression, and the other increments the value after used in an expression.
Although simple when the construct appears alone, when combined with arithmetic and/or
assignment to variables, the construct becomes more complex, making it harder to hand-
evaluate or comprehend [11].

When it comes to conditional operators, a similar problem may occur [11]. When a statement
contains multiple conditional operators without the necessary parentheses, it gets too
complex to understand how the operators bind, and even then, evaluating the results of
each conditional statement causes confusion and longer comprehension times.

33

34

Discussion

In the study of Silva da Costa et al. [9], they found that snippets with atoms of the type
"operator precedence" significantly increased the number of total fixations, regressions, and
fixation duration. In our study, we have referred to this category as conditional operators.
While our study focused on finding which category of atoms causes the most confusion, Silva
da Costa et al. [9] focused on analyzing the difference between clarified counterparts. Our
results align with those of Silva da Costa et al.[9] in a way that conditional operators (operator
precedence in their study) had a significantly higher number of fixations, regressions, and
fixation duration.

Further research would include analyzing conditional operators and pre/post in/decrement
categories further, perhaps dividing the snippets into sub-categories to find whether certain
types of constructions cause an increase in the eye-tracking measures used in our study.
This will help to narrow down the constructs that make participants and developers more
prone to making errors.

In a real-life setting, our results indicate that educators should refrain from using and
creating code that includes atoms of the conditional operators and pre/post in/decrement category.
The presence of these atoms in teaching material will significantly increase the visual effort
required from students to understand these atoms.

6.2 RQ2: Programmer Expertise

RQ2: Do novices and experts experience different levels of confusion when encountering
the same atom?

It is reasonable to believe that experience plays an important role in how fast and
correctly developers comprehend code. Previous eye-tracking studies have concluded that
participants with a higher level of experience can comprehend code at a much faster rate
when compared to participants with less experience [29, 30].

We separated the participants in our study based on their experience level, and we
analyzed the eye-tracking data to find out how atoms of confusion affect the eye behavior
of the participants when encountering them.

For AOC categories, such as conditional operators, scope indentation, and variable reassignment,
we found no significance between the experience levels in the observed confusion on metrics
that isolate the atom of confusion. We found significant results for the pre/post in/decrement
and type conversion categories, which we will discuss here.

It is important to note that the AOI of snippets belonging to the type conversion AOC
category takes up the largest area of the snippet.

When encountering snippets of pre/post in/decrement category, the results show that
novices consistently produced the highest values in total fixations and focused the longest
in the AOI area compared to intermediate and expert participants. They achieved the highest
average and total with respect to these metrics, whereas intermediate participants, although
not significant, had the lowest average and lowest total out of the three levels of experience.

This result can be credited to the fact that novices, due to the lack of experience and
familiarity with code, are required to focus on every keyword and statement of the snippet.
They need all the pieces of the snippet to produce some mental model of what the snippet

6.3 RQ3: Prediction of Atom of Confusion

does to evaluate and understand it. This justifies the high fixation count across the snippet
and the long fixation duration times.

For the type conversion category, by analyzing the eye tracking metrics, we found that
intermediate participants and experts had a significant difference in the AOI fixation count
and the number of regressions in the AOL In both metrics, intermediate participants achieved
the lowest total count and the lowest average.

One may expect that experts would produce the lowest values out of the other experience
levels, but there is one aspect to consider. As mentioned before, novices tend to read more
linearly, focusing on each line and on the surface-level syntax due to their lack of experience,
familiarity, or overall knowledge about the programming language [11, 29, 30]. On the other
hand, experts read code less linearly, utilizing prior knowledge and experience, and being
able to scan code more selectively [29, 30], which results in lower fixation and regression
counts.

Intermediate participants can be a combination of both. Having some experience and
knowledge about the language allows them to skip certain parts of the code. Their knowl-
edge might come to an end when encountering more complex constructs to which they
don’t pay attention, resulting in lower values for the respective eye-tracking metrics.

We found no significance in the accuracy of the answers between any of the groups. This
measure does not draw any conclusion regarding the confusion caused to the participant.
This was also concluded by Gopstein et al. [11], where it is stated that providing a correct
answer does not imply (mis)understanding the snippet.

We used the years of experience with programming languages as our measure of experi-
ence, which might not represent the true experience and overall code comprehension skills
[29]. Feature research can include measures such as the one introduced by Peitek et al. [29],
where they use efficacy as a measure of programming skill level. This could yield more
contrasting results between groups of different efficacy levels.

6.3 ROQ3: Prediction of Atom of Confusion

RQ3: How accurately do confusion measurement metrics predict the likelihood of an
atom being present in a code snippet?

The aim of this research question was to determine, based on eye-tracking and behavior
data, whether we can predict the presence of an atom of confusion in a code snippet. We
trained multiple classification models, and we evaluated their performance on a hold-out
set.

The Soft Margin SVM offers a higher predictive performance compared to XGBoost and Ran-
dom Forest. It achieves a superior Accuracy and Recall score (0.6408 and 0.8788, respectively)
while also offering the best balance between recall and precision.

In Figure 6.1, we display the confusion matrix of the Soft Margin SVM. The model correctly
predicted the absence of an atom of confusion 203 out of 231 times, indicating that this
model is very sensitive to positive instances. It correctly predicted the presence of an atom
of confusion 86 times, and it has produced a false result 134 times. The model performs
worse in predicting snippets that contain an atom of confusion.

35

36

Discussion

- 200

- 180

- 160

- 140

- 120

True label

- 100

- 80

- 60

Predicted label

Figure 6.1: Confusion matrix of the Soft Margin SVM. 1 corresponds to a snippet that does not contain
an atom and 0 otherwise.

The XGBoost model achieved a higher 111 correct classifications for snippets that did
contain an AOC compared to the SVM. Predicting correct classification for snippets that
do not contain an AOC is a more difficult task for XGBoost, with 174 correct predictions as
compared to 203 correct predictions of the SVM. These results can be seen in Figure 6.2

6.3 RQ3: Prediction of Atom of Confusion 37

- 160

- 140

- 120

True label

- 100

- 80

Predicted label

- 60

Figure 6.2: Confusion matrix of the XGBoost model. 1 corresponds to a snippet that does not contain
an atom and 0 otherwise.

Finally, the Random Forest model achieved the best performance in predicting correct
classifications for snippets that contained an atom of confusion, with a total of 131 out of
220 correct predictions. The model performed poorly in predicting the absence of an AOC in
the snippets, with 152 correct predictions and 79 incorrect predictions Figure 6.3.

38

Discussion

- 150

- 140

- 130

- 120

True label

- 110

- 100

-90

Predicted label

-80

Figure 6.3: Confusion matrix of the Random Forest model. 1 corresponds to a snippet that does not
contain an atom and 0 otherwise.

The evaluation metrics of the models indicate that the SVM achieves the best performance
out of the three trained models. Generally, this would be the model of choice to use, but in
the scope of our research question, we want to know how well we can predict the presence
of the atom. Under these circumstances, the Random Forest model performs the best as
it has the highest number of true negatives and the lowest false positives (i.e., correctly
predicting if a snippet contains an atom, and predicting the absence of an atom when the
atom is actually present).

A limiting factor to the performance of the models can be the size of the dataset [33,
41]. Models trained on small datasets tend to overfit the training data, hence producing
results that do not represent the true data. To mitigate this risk of overfitting, we performed

6.3 RQ3: Prediction of Atom of Confusion

cross-validation on different values for the hyperparameters of the models. This allows us to
choose the best hyperparameters for our models and data to reduce the risk of overfitting.

To this end, future work may include increasing the participant size by conducting
additional experiments, which would add to the existing dataset.

The existing dataset contained a rating that the participants gave to the snippets. The
rating data consists only of "hard" and "easy". In future experiments, introducing a Likert
scale for the difficulty of the snippet could potentially improve the models when used as a
feature to make the predictions.

Our best machine learning model, the SVM, was able to predict the presence or absence of
an atom in the code with 64% accuracy. Although this accuracy is not high by most machine
learning models, our model predicts better than chance. Potentially, with a larger dataset,
we can train a better model with higher accuracy. In a setting where we are only concerned
with predicting the presence of an atom, our Random Forest model performed the best with
a precision score of 0.6307.

These results have provided meaningful insights into the effects of atoms of confusion in
program comprehension. Our results serve as a basis for future work in investigating and
revealing which atoms cause the most confusion and to whom.

39

Threats to Validity

In this chapter, we discuss the possible threats and issues with our results and findings of
the study.

7.1 Internal Validity

The code snippets that represent the atom candidates in this study contain variables with
non-descriptive names like R, V1, and V2. This naming is used because the snippets are
short and isolated. Giving the variables meaningful names may introduce bias in the end
result. Nevertheless, non-descriptive names reduce comprehension of the program [37],
which adds a layer of noise in our data.

To categorize participants in experience levels, we used the years of experience as a mea-
sure. This might not truly represent the participants” programming skills, and specifically,
programming skills in Java. The demographic data gathered from participants contains 1 if
the participant had contact with Java and 0 otherwise. This does not reflect the participants’
confidence in Java, which might affect the results of our analysis.

7.2 External Validity

The snippets in our dataset are constructed in the Java programming language. The
experiments and the data gathered during the experiments originate from these snippets.
This means that the research questions, hypotheses, findings, and results in this thesis
cannot be generalized to other programming languages. This is due to the difference in
syntax, semantics, flow of the program, and logic of writing between different programming
languages. For example, in languages such as Python, indentation plays a role in the
control flow of programs. Indentation is part of the syntax, so atoms of the category scope
indentation behave in different ways depending on how the atom is indented and possibly
produce errors.

The set of atoms used in this study does not objectively include all possible atoms of
confusion in Java, nor do they include all the categories. This means other atoms like reverse
subscript or pointer arithmetic are not covered in this thesis, and therefore the results do not
apply to these categories.

The participants in this study are predominantly university students at Bachelor’s or
Master’s levels. Their programming experience, problem-solving, and familiarity with code

41

42

Threats to Validity

might differ significantly from those of professional developers in industry settings. The
findings in this study may not be generalizable to real-world, professional developers.
Our machine learning models have been trained on eye-tracking data gathered from
snippets that are constructed in Java. They might not generalize and provide valuable
predictions for eye-tracking data gathered from snippets of other programming languages.

7.3 Construct Validity

Prior eye-tracking studies on atoms of confusion [9, 10, 40] measure confusion by comparing
the increase in eye-tracking measures between clarified snippets and their obfuscated
counterparts. This comparison allows the eye-tracking metrics to be interpreted relative to a
baseline, not confused eye-behavior.

As our study focuses on comparing types of obfuscated code snippets of different
categories, there is no explicit baseline that represents non-confusion. The reported eye-
tracking measures depict relative differences between atoms of confusion. Therefore, the
results of these metrics may not allow for a direct conclusion about how much more
confusing one atom is compared to another.

Conclusion

In this thesis, we analyzed the effects of the atoms of confusion on the participants” program
comprehension by analyzing different eye-tracking metrics. More precisely, we compared
how much different categories of atoms of confusion affect the eye behavior of participants.
We analyzed the effect these atoms have on participants separated by experience in coding
to reveal whether atoms cause confusion only to a certain group of participants. We trained
and evaluated three machine learning classification models to assess, based on eye-tracking
and behavior data, whether code snippets contain an atom of confusion or not. This provides
a foundation for future research to explore the capabilities of machine learning in assessing
the quality of code and potentially detecting new atoms that have not been considered
before.

By analyzing the total fixation count, AOI fixation count, AOI fixation duration, and
regressions, we were able to compare which categories of atoms caused more confusion
to participants and to which experience levels. Overall, we found that snippets of the
conditional operators and pre/post in/decrement category caused the longest fixation
times, the most fixations in the AOI, and the most regressions. We observed a total AOI
fixation count of 1996 fixations for the conditional operators category and 1575 total fixations
for the pre/post in/decrement category. This corresponds to an increase of more than double
the fixations of the closest category, which is the scope indentation category, with 809 AOI
fixations.

When factoring in the participants’ level of experience, we found no statistically significant
difference in the observed confusion for categories: conditional operators, scope indentation,
and variable reassignment. Experience does not play a role in the confusion caused by
these snippet categories. For snippets in the categories of pre/post in/decrement and
type conversion, we found that novices produced significantly higher AOI fixation counts
and regressions compared to intermediate participants. Whereas experts had significantly
higher AOI fixation counts, fixation duration in AOI, and regressions in AOI compared to
intermediate participants, which produced the lowest values.

Utilizing the eye-tracking and behavior data, we trained three machine learning classi-
fication models to predict the presence or absence of an atom in the snippets. Our best
performing model, the SVM, achieved an accuracy score of 64%, which improves signifi-
cantly over chance and guessing.

Future work shall include a deeper analysis of the subcategories of AOC. Analyzing
what form of atoms for each category causes more confusion will help in narrowing down
and finding which atoms are more severe in causing confusion and hindering program
comprehension.

43

44

Conclusion

Including other experience measures, such as efficacy [29], confidence in the knowledge
of the programming language will allow for better separation between participants in
experience levels. This separation might yield even better insights into how participants of
different experience levels behave when encountering AOC.

Finally, future work shall include the gathering of more eye-tracking data by expanding
the participant count. Having a greater data set might help improve the accuracy of the
machine learning models. This will allow us to identify confusing code and perhaps atoms
that have not been considered yet to be confusing.

Statement on the Usage of Generative
Digital Assistants

For this thesis, the following generative digital assistants have been used: We have used
ChatGPT as a writing assistant. We have used it only to the extent of improving language
clarity and, on some occasions, for paraphrasing. We have never prompted ChatGPT to
generate full sections or paragraphs. All ideas, methods, and research questions are our
own.

We used Microsoft Copilot for code generation. It never generated full code files or
sections, but rather short lines of code, as a way to speed up the coding process.

We are aware of the potential dangers of using these tools and have used them sensibly
with caution and with critical thinking.

45

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]
[9]

[10]

Magdalena Andrzejewska and Agnieszka Skawiniska. “Examining students’ intrin-
sic cognitive load during program comprehension—An eye tracking approach.” In:
International Conference on Artificial Intelligence in Education. Springer. 2020, pp. 25-30.

Roman Bednarik. “Expertise-dependent visual attention strategies develop over time
during debugging with multiple code representations.” In: International Journal of
Human-Computer Studies 70.2 (2012), pp. 143-155.

Annabelle Bergum, Anna-Maria Maurer, Norman Peitek, Regine Bader, Axel Meck-
linger, Vera Demberg, Janet Siegmund, and Sven Apel. “Unexpected but informative:
What fixation-related potentials tell us about the processing of ambiguous program
code.” In: arXiv preprint arXiv:2412.10099 (2024).

Mike Bland. “Finding more than one worm in the apple.” In: Commun. ACM 57.7 (July
2014), 58—64. ISSN: 0001-0782.

Robert Booth and Ulrich Weger. “The function of regressions in reading: Backward
eye movements allow rereading.” In: Memory cognition 41 (Aug. 2012).

Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. “Analysis of code reading to
gain more insight in program comprehension.” In: Proceedings of the 11th Koli Calling
International Conference on Computing Education Research. Koli Calling "11. Koli, Finland:
Association for Computing Machinery, 2011, 1—9. 1SBN: 9781450310529.

Siyuan Chen, Julien Epps, Natalie Ruiz, and Fang Chen. “Eye activity as a measure
of human mental effort in HCIL.” In: Proceedings of the 16th international conference on
Intelligent user interfaces. 2011, pp. 315-318.

Tiangi Chen. “XGBoost: A Scalable Tree Boosting System.” In: Cornell University (2016).

José Aldo Silva da Costa, Rohit Gheyi, Fernando Castor, Pablo Roberto Fernandes de
Oliveira, Marcio Ribeiro, and Baldoino Fonseca. “Seeing confusion through a new lens:
on the impact of atoms of confusion on novices” code comprehension.” In: Empirical
software engineering 28.4 (2023), p. 81.

Benedito De Oliveira, Mdrcio Ribeiro, José Aldo Silva Da Costa, Rohit Gheyi, Guil-
herme Amaral, Rafael de Mello, Anderson Oliveira, Alessandro Garcia, Rodrigo
Bonifacio, and Baldoino Fonseca. “Atoms of confusion: The eyes do not lie.” In:
Proceedings of the XXXIV Brazilian Symposium on Software Engineering. 2020, pp. 243—
252.

47

48

Bibliography

[11]

[22]

[23]

[24]

Dan Gopstein, Anne-Laure Fayard, Sven Apel, and Justin Cappos. “Thinking aloud
about confusing code: A qualitative investigation of program comprehension and
atoms of confusion.” In: Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 2020,
pp- 605-616.

Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K-C
Yeh, and Justin Cappos. “Understanding misunderstandings in source code.” In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 2017,
Pp- 129-139.

Dan Gopstein, Hongwei Henry Zhou, Phyllis Frankl, and Justin Cappos. “Prevalence
of Confusing Code in Sotware Projects.” In: (2018).

Trevor Hastie. The elements of statistical learning: data mining, inference, and prediction.
2009.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. In: An introduction
to statistical learning. New York, NY, USA: Springer, 2013. ISBN: 9781461471370.

Ahmad Jbara and Dror G Feitelson. “How programmers read regular code: a con-
trolled experiment using eye tracking.” In: Empirical software engineering 22 (2017),
PP- 1440-1477.

Jean-Marc Jézéquel and Bertrand Meyer. “Design by Contract: The Lessons of Ariane.”
In: IEEE Computer 30 (Jan. 1997), pp. 129-130.

Jozsef Katona. “Clean and dirty code comprehension by eye-tracking based evaluation
using GP3 eye tracker.” In: Acta Polytechnica Hungarica 18.1 (2021), pp. 79-99.

Thomas D LaToza, David Garlan, James D Herbsleb, and Brad A Myers. “Program
comprehension as fact finding.” In: Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. 2007, pp. 361-370.

Chris Langhout and Mauricio Aniche. “Atoms of Confusion in Java.” In: 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC). 2021, pp. 25—
35-

SeolHwa Lee, Andrew Matteson, Danial Hooshyar, SongHyun Kim, JaeBum Jung,
GiChun Nam, and HeuiSeok Lim. “Comparing programming language comprehen-
sion between novice and expert programmers using eeg analysis.” In: 2016 IEEE 16th
international conference on bioinformatics and bioengineering (BIBE). IEEE. 2016, pp. 350—
355-

Stanley Letovsky and Elliot Soloway. “Delocalized plans and program comprehen-
sion.” In: IEEE software 3.3 (1986), p. 41.

Jung-Chun Liu, Kuei-An Li, Su-Ling Yeh, and Shao-Yi Chien. “Assessing perceptual
load and cognitive load by fixation-related information of eye movements.” In: Sensors
22.3 (2022), p. 1187.

Thomas W MacFarland and Jan M Yates. “Kruskal-Wallis H-test for oneway analysis
of variance (ANOVA) by ranks.” In: Introduction to nonparametric statistics for the
biological sciences using R. Springer, 2016, pp. 177-211.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

Bibliography

Flavio Medeiros, Gabriel Lima, Guilherme Amaral, Sven Apel, Christian Késtner,
Marcio Ribeiro, and Rohit Gheyi. “An investigation of misunderstanding code patterns
in C open-source software projects.” In: Empirical Software Engineering 24 (2019),
pp. 1693-1726.

Roberto Minelli, Andrea Mocci, and Michele Lanza. “I know what you did last

summer-an investigation of how developers spend their time.” In: 2015 IEEE 237d
international conference on program comprehension. IEEE. 2015, pp. 25-35.

Patrick Peachock, Nicholas Iovino, and Bonita Sharif. “Investigating eye movements
in natural language and c++ source code-a replication experiment.” In: Augmented
Cognition. Neurocognition and Machine Learning: 11th International Conference, AC 2017,
Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings,
Part I 11. Springer. 2017, pp. 206-218.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning in Python.”
In: Journal of Machine Learning Research 12 (2011), pp. 2825-2830.

Norman Peitek, Annabelle Bergum, Maurice Rekrut, Jonas Mucke, Matthias Nadig,
Chris Parnin, Janet Siegmund, and Sven Apel. “Correlates of programmer efficacy
and their link to experience: A combined EEG and eye-tracking study.” In: Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2022, pp. 120-131.

Norman Peitek, Janet Siegmund, and Sven Apel. “What drives the reading order of
programmers? an eye tracking study.” In: Proceedings of the 28th international conference
on program comprehension. 2020, pp. 342—353.

Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, Johannes C Hofmeister,
and André Brechmann. “Simultaneous measurement of program comprehension with
fmri and eye tracking: A case study.” In: Proceedings of the 12th ACM/IEEE international
symposium on empirical software engineering and measurement. 2018, pp. 1-10.

Nancy Pennington. “Stimulus structures and mental representations in expert com-
prehension of computer programs.” In: Cognitive psychology 19.3 (1987), pp. 295-341.

Joseph Prusa, Taghi M Khoshgoftaar, and Naeem Seliya. “The effect of dataset size
on training tweet sentiment classifiers.” In: 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA). IEEE. 2015, pp. 96—102.

S. 5. SHAPIRO and M. B. WILK. “An analysis of variance test for normality (complete
samples)t.” In: Biometrika 52.3-4 (Dec. 1965), pp. 591—-611. ISSN: 0006-3444.

Dario D Salvucci and Joseph H Goldberg. “Identifying fixations and saccades in
eye-tracking protocols.” In: Proceedings of the 2000 symposium on Eye tracking research &
applications. 2000, pp. 71-78.

Jeffrey D. Schall. “Frontal Eye Fields.” In: Encyclopedia of Neuroscience. Ed. by Marc D.
Binder, Nobutaka Hirokawa, and Uwe Windhorst. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 1635-1638. ISBN: 978-3-540-29678-2.

49

50

Bibliography

[37]

Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeister, Till Riedel,
and Michael Beigl. “Descriptive compound identifier names improve source code
comprehension.” In: Proceedings of the 26th Conference on Program Comprehension. ICPC
’18. Gothenburg, Sweden: Association for Computing Machinery, 2018, 31—40. ISBN:
9781450357142.

Ben Shneiderman. “Measuring computer program quality and comprehension.” In:
International Journal of Man-Machine Studies 9.4 (1977), pp. 465—478.

Mina Shojaeizadeh, Soussan Djamasbi, and Andrew Trapp. “Density of Gaze Points
Within a Fixation and Information Processing Behaviour.” In: vol. 9737. July 2016,
PP 465-471. ISBN: 978-3-319-40249-9.

José Aldo Silva Da Costa and Rohit Gheyi. “Evaluating the Code Comprehension of
Novices with Eye Tracking.” In: Proceedings of the XXII Brazilian Symposium on Software
Quality. 2023, pp. 332—341.

Margarita Sordo and Qing Zeng. “On sample size and classification accuracy: A

performance comparison.” In: International Symposium on Biological and Medical Data
Analysis. Springer. 2005, pp. 193—201.

Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python.” In: Nature Methods 17 (2020), pp. 261-272.

Marvin Wyrich. “Source Code Comprehension: A Contemporary Definition and
Conceptual Model for Empirical Investigation.” In: arXiv preprint arXiv:2310.11301
(2023).

The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb. 2020.

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Goal of this Thesis

	2 Background
	2.1 Program Comprehension
	2.2 Atoms of Confusion
	2.2.1 Categories of Atoms of Confusion

	2.3 Eye Tracking

	3 Related Work
	3.1 Quantitative Studies
	3.2 Qualitative studies
	3.3 Eye-tracking Studies

	4 Methodology
	4.1 Research Questions
	4.2 Data Preparation and Manipulation
	4.2.1 Description of Existing Dataset
	4.2.2 Analysis Procedure for RQ1: Categories of Atom of Confusion
	4.2.3 Analysis Procedure for RQ2: Programmer Expertise
	4.2.4 Analysis Procedure for RQ3: Prediction of Atom of Confusion

	5 Results
	5.1 Results for RQ1: Categories of Atom of Confusion
	5.2 Results for RQ2: Programmer Expertise
	5.2.1 Conditional Operators
	5.2.2 Pre/Post In/Decrement
	5.2.3 Scope Indentation
	5.2.4 Type Conversion
	5.2.5 Variable Reassignment

	5.3 Results for RQ3: Prediction of Atom of Confusion

	6 Discussion
	6.1 RQ1: Categories of Atom of Confusion
	6.2 RQ2: Programmer Expertise
	6.3 RQ3: Prediction of Atom of Confusion

	7 Threats to Validity
	7.1 Internal Validity
	7.2 External Validity
	7.3 Construct Validity

	8 Conclusion
	 Statement on the Usage of Generative Digital Assistants
	 Bibliography

