
Analysis Strategies for
Configurable Systems

Alexander von Rhein

June 9, 2016

Dissertation zur Erlangung des Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

eingereicht an der Fakultät für Informatik und Mathematik
der Universität Passau

Dissertation submitted to
the Department of Informatics and Mathematics of

the University of Passau
in Partial Fulfillment of Obtaining

the Degree of a Doctor in the Domain of Science

Betreuer / Advisor:
Prof. Dr. Sven Apel

Externe Gutachterin / External Examiner:
Prof. Dr. Stefania Gnesi

Die Dissertation wurde eingereicht am:
09.11.2015

The dissertation was submitted on:
12/09/2015

Unterschrift / Signature:

Alexander von Rhein

ii

Abstract

A configurable system enables users to derive individual system variants based
on a selection of configuration options. To cope with the often huge number of
possible configurations, several analysis approaches (e.g., for verification of con-
figurable systems) implement different strategies to account for configurability.

One popular strategy—often applied in practice—is to use sampling (i.e.,
analyzing only a subset of all system variants). While sampling reduces the
analysis effort significantly, the information obtained is necessarily incomplete
as some variants are not analyzed. A second strategy is to identify the common
parts and the variable parts of a configurable system and analyze each part
separately (called feature-based strategy). As a third strategy, researchers have
begun to develop family-based analyses. Family-based approaches analyze the
code base of a configurable system as a whole, rather than the individual variants
or parts of the system, this way exploiting similarities among individual variants
to reduce analysis effort. Each of these three strategies has advantages and
disadvantages, which might even prevent its application (e.g., the family-based
strategy typically needs much main memory).

The goal of this thesis is to enable the efficient analysis of configuable
systems, even if existing strategies fail (e.g., the family-based strategy, because
of memory limitations). To this end, we designed a framework that models
the key aspects of configurable-system analysis strategies, independent of their
implementation and of the analyses techniques (e.g., type checking or model
checking). Guided by our model, we developed a number of analysis strategies
for configurable systems. To learn about advantages and disadvantages of
individual strategies, we compared these in a series of empirical studies.

In particular, we developed and evaluated a model-checking analysis and
a data-flow analysis for configurable systems. One of our key findings is that
family-based analysis outperforms most sampling heuristics with respect to
analysis time, while being able to make definite statements about all variants of
a configurable system. Furthermore, we identified advantages and disadvantages
of analysis strategies and how to mitigate them by combining strategies.

In our endeavor, we identified two key problems that are common to
configurable-system analyses, and we developed supporting techniques to solve
them. These techniques are general and are applicable beyond our research.
In particular, we developed presence-condition simplification and variability
encoding. Presence-condition simplification provides a simple method to reduce
the size of the output or the internal data structure of configurable-system

analyses. Variability encoding provides a means for transforming compile-time
variability to run-time variability, which enables many family-based analyses.

Our key contributions are the model of analysis strategies for configurable
systems and the corresponding empirical comparisons of strategies. Our find-
ings are backed by empirical studies, which helped broaden the community
knowledge on analyses of configurable systems (indicated by citations). For
these evaluations, we prepared several subject systems, which have also been
used already by other researchers. Furthermore, we developed several analy-
sis tools and demonstrated their feasibility in practical application scenarios
based on code from, for example, the Linux kernel. Our tools are based on
variability-aware optimizations that enable levels of scalability on configurable
systems that were not possible with other tools before.

ii

Acknowledgements
Writing a dissertation in computer science is a long and arduous endeavor,
which requires the help of many persons. I am deeply appreciative of the
many individuals who have supported my work and continually encouraged me
through the writing of this dissertation.

Foremost, I would like to express my sincere gratitude to my advisor Sven
Apel for his patience, motivation, and immense knowledge. Without his
guidance the research and writing of this thesis would not have been possible.
I cannot imagine having a better advisor and mentor for my dissertation.

I would also like to thank Stefania Gnesi, who agreed to review my thesis,
although she knew it would be more than 200 pages to read. Stefania also
introduced me to the difference between a bisimulation proof and a trace-
equivalence proof.

In the same way, I want to thank Thorsten Berger, Christian Kästner and
Thomas Thüm. We collaborated on several research papers and our discussions
helped me understand the bigger picture of my work, directed us to new
research questions, and improved my scientific writing. I want to thank my
fellow students Kathrin, Olaf, Philipp, and Severin who accompanied me since
I enrolled at the university for the first time.

I want to thank my working group at Passau for a wonderful time. Espe-
cially, I want to thank Sergiy Kolesnikov, for many discussions about language
grammar and presentation of results. We shared our office during my 5 years of
doctoral study and had a lot of recreational trips to the ice cream vending ma-
chine in that time. I want to thank my friends and colleagues for proofreading
my thesis and for general support: Alex Grebhahn, Jörg Liebig, Stefan Löwe,
Norbert Siegmund, Andreas Simbürger, and Andreas Stahlbauer. Furthermore,
I want to thank Eva Reichhart for her invaluable administrative support.

A huge part of the tool support for this thesis has been implemented by
student assistants. In particular, I want to thank Florian Garbe for his tireless
work on Hercules, Andreas Buchecker for his experiments with various model-
checking strategies, and Niklas Schalck Johansson and Mikael Mark Hardø for
the implementation of Sifta.

Last but not least, I want to thank my family. My grandmothers Anni
and Orla cooked delicious bavarian meals once a week and made me feel at
home in Passau. My parents Elisabeth and Volker, my sister Nadja and my
partner Melli shared happy moments and motivated me when times were bad
(especially after rejected papers).

iii

Contents

1 Introduction 1
1.1 Problem and Motivation . 1
1.2 Contributions . 5
1.3 Research Methodology . 8
1.4 Outline . 9

2 Background 11
2.1 Configurable Software Systems 11

2.1.1 Terms and Running Example 12
2.1.2 Binding Times . 15
2.1.3 Implementation Mechanisms 17
2.1.4 Examples of Configurable Systems 20

2.2 Software Analysis . 22
2.2.1 Type Checking . 24
2.2.2 Testing . 24
2.2.3 Software Model Checking 25
2.2.4 Taint Propagation . 27

2.3 Configurable-Systems Analysis 27
2.3.1 Computational Problems in Variability-aware Analysis . 29
2.3.2 Variant-based Strategy 31
2.3.3 Sample-based Strategy 32
2.3.4 Feature-based Strategy 33
2.3.5 Family-based Strategy 35
2.3.6 Combined Strategies . 37

iv

CONTENTS

3 The Product-Line–Analysis Model 39
3.1 The PLA Cube . 40
3.2 Formal Definition of the PLA Model 43
3.3 Categorizing Existing Analyses 49
3.4 Related Work . 53
3.5 Summary and Outlook . 54

4 Presence-Condition Simplification 57
4.1 Application Scenarios . 59

4.1.1 Reporting Analysis Results 60
4.1.2 Simplification of Variability Annotations 60
4.1.3 Variability-Model Generation 62

4.2 Problem Formalization . 63
4.3 Algorithms . 65
4.4 Evaluation . 68

4.4.1 Subject Systems and Experiments 69
4.4.2 Experiment Setup . 72
4.4.3 Results . 73
4.4.4 Threats to Validity . 78

4.5 Related Work . 79

5 Variability Encoding 83
5.1 Description and Use Case . 84

5.1.1 A Practical Application Scenario 84
5.1.2 The Need for a Formal Correctness Proof 87

5.2 A Formal Model of Variability Encoding 88
5.2.1 Featherweight Java (FJ) 89
5.2.2 Colored Featherweight Java (CFJ) 90
5.2.3 Featherweight Simulation Java (FJsim) 92
5.2.4 Generation of Variants and Variant Simulators 96

5.3 Behavior Preservation . 98
5.3.1 A Trace Semantics for FJsim Programs 99
5.3.2 Proof of Behavior Preservation 99

5.4 Variability Encoding Beyond Featherweight Java 106
5.5 Experience with Variability Encoding 112

5.5.1 Variability Encoding in Java 113
5.5.2 Variability Encoding in C 115

5.6 Related Work . 121

v

CONTENTS

6 Family-based Model Checking 125
6.1 Explicit-State Model Checking of Variant Simulators 127
6.2 Variability-aware Model Checking of Variant Simulators 130

6.2.1 Presence Conditions . 131
6.2.2 Path Joining . 132
6.2.3 Variability Pruning . 135
6.2.4 Incorporating the Variability Model 138

6.3 Implementation . 140
6.4 Evaluation of Variability-aware Model-Checking Extensions . . . 141
6.5 Evaluation of Family-based Model Checking 144

6.5.1 Subject Systems . 146
6.5.2 Behavior Specification 147
6.5.3 Sampling Approaches . 148
6.5.4 Experiment Setup . 149
6.5.5 Results . 150
6.5.6 Discussion . 150
6.5.7 Threats to Validity . 153

6.6 Combining Family-based and Variant-based Model Checking . . 155
6.6.1 Analysis Strategy . 156
6.6.2 Generating Partitionings for the Evaluation 157
6.6.3 Evaluation . 159

6.7 Related Work . 164

7 Inter-App Data-Flow Analysis in Android Systems 165
7.1 Motivation and Scenario . 166
7.2 Background . 168

7.2.1 Android Apps and the Intent Mechanism 168
7.2.2 Intra-App, Inter-Component Communication 169
7.2.3 Inter-App Communication 169
7.2.4 Limitations of Existing Tools 171

7.3 Representing Inter-App Data Flows 172
7.3.1 Design Considerations 173
7.3.2 DidFail’s Representation 174
7.3.3 Variability-aware Representation 174

7.4 Implementation . 175
7.5 Evaluation . 178

7.5.1 Accuracy: Experiment 1 179
7.5.2 Scalability: Experiments 2–4 183

7.6 Threats to Validity . 188
7.7 Related Work . 190

vi

CONTENTS

8 Concluding Remarks and Future Work 193
8.1 Summary . 193
8.2 Contributions . 194
8.3 Impact . 197
8.4 Future Work . 198

9 Appendix 224

vii

List of Figures

2.1 Tree-based feature model of the printing-device system 14
2.2 Compile-time options in sqlite3 16
2.3 A module-based, feature-oriented implementation of the printing-

device system . 18
2.4 A variant of the printing-device system 19
2.5 Ifdef-based printing-device system and a variant 20
2.6 Interaction example in the E-Mail system 21
2.7 Type dependencies in the printing-device example 28
2.8 Reduced and unreduced binary decision diagrams 30
2.9 A variant simulator of the printing-device product line covering

the features BasicPrinter and Duplex 36

3.1 The PLA cube . 40
3.2 Examples of operator combinations in the PLA model 47
3.3 Simplified notation for recurring analysis patterns 49
3.4 Pattern of the analysis of Li et al. [LKF05] 50
3.5 Pattern of the analysis of Siegmund et al. [SKK+12] 51
3.6 Visualization of an analysis by Kästner et al. [KOE12] 52
3.7 Family-based, variant-based, and sample-based model checking

(described in Section 6.5) . 55
3.8 Model checking with a variant-based and family-based strategy

(described in Section 6.6) . 55
3.9 Different strategies for analysis of large sets of Android apps

(described in Section 7.4) . 56

4.1 Nested variability annotations with redundancy 61

viii

LIST OF FIGURES

4.2 Extended feature model of the printing-device system 62
4.3 Illustration of presence-condition simplification 64
4.4 Reduction factors for Experiment 1 73
4.5 Time for simplification in Experiment 1 74
4.6 Experiment results in Experiment 4 76
4.7 Scalability results in Experiment 5 77

5.1 Source code of Bug1 from the Variability Bug Database . 86
5.2 Variability encoding and behavior preservation 88
5.3 The syntax of FJ [Pie02] . 90
5.4 Evaluation rules of FJ [Pie02] 90
5.5 CFJ program for method print(f,b) of the printer driver 92
5.6 The syntax FJsim adds to FJ 93
5.7 Typing rules, auxiliary functions, and evaluation rules of FJsim 94
5.8 Example evaluation with super references 95
5.9 Variant generation rules, adopted from Kästner et al. [KATS12] 97
5.10 Variant-simulator generation rules 98
5.11 Generation of transition systems 100
5.12 The weak bisimulation property 101
5.13 Concept of proof in presence of overriding methods 102
5.14 Optional method overloading with inheritance in Java 108
5.15 Method overloading with optional parameters in Java 108
5.16 Interaction of variability encoding and environment functions in

C . 109
5.17 Optional field shadowing in C 111
5.18 Exponential explosion in variability encoding of Busybox . . . 116
5.19 Statistics of variability encoding in Busybox 117
5.20 Results of the comparison of TH3 tests on variants and simulators120

6.1 Running example to describe model checking 126
6.2 Reachability graph of the example program 128
6.3 Reachability graph of the example program with presence condi-

tions . 131
6.4 Reachability graph of the example program with presence condi-

tions and merging . 134
6.5 Example reachability graph with variability pruning 137
6.6 Code and reachability graph of a simulator with variability model138
6.7 SPLverifier toolchain . 140
6.8 Improvement of simulator verification with variability-aware

model-checking extensions . 143
6.9 Illustration of the evaluated analysis strategies 145

ix

LIST OF FIGURES

6.10 Example specification of the E-Mail system 148
6.11 Comparison of verification times 151
6.12 Defect recall and sample rate of the sample-based strategies . . 151
6.13 Defect recall versus fractions of verification time 152
6.14 Fractions of verification steps and verification time using late

splitting and early joining . 153
6.15 Detection efficiencies of different verification strategies 154
6.16 Illustration of the analysis strategies 155
6.17 Example partitioning of the printing-device configuration space 156
6.18 Verification time and maximum memory consumption of veri-

fication based on configuration-space partitions (E-Mail and
Elevator) . 160

6.19 Verification time and maximum memory consumption of veri-
fication based on configuration-space partitions (Mine Pump
and ZipMe) . 161

7.1 Inter-app communication example 170
7.2 Detailed example of inter-app communication 171
7.3 Example of a basic and a variability-aware inter-app flow repre-

sentation . 175
7.4 Sifta’s inter-app analysis . 177
7.5 Illustration of the evaluated analysis strategies 178
7.6 Results for Sifta and DidFail on IccRE 185
7.7 Incremental setup for Experiment 4 187
7.8 Frequencies of presence-condition sizes in the data-flow graph . . 188

9.1 Task-loading times with different BDD library sizes 226

x

List of Algorithms

4.1 Presence-condition simplification: Brute-Force (simpBF) . . . 66

6.1 Basic breadth-first model-checking algorithm 129
6.2 Breadth-first model-checking algorithm with path joining 133
6.3 Breadth-first model-checking algorithm with path joining and

variability pruning . 136

9.1 Restrict (simpBDD) . 225

xi

List of Tables

2.1 Results of feature-based type checking 34
2.2 Presence conditions during family-based type checking 37

3.1 Operators of the Product-Line–Analysis model 45

4.1 Subject systems for presence-condition simplification 70
4.2 Reduction factors in Experiment 2 75

5.1 TH3 test results for variability encoding on SQLite 119

6.1 Overview of subject systems . 146
6.2 Partitionings of configuration spaces 158

7.1 IACBench test cases . 179
7.2 Results of Experiment 1: Accuracy evaluation 181

9.1 Overview of the Linux bugs in the Variability Bug Database . . 229

xii

List of Abbreviations

ASE International Conference on Automated Software Engineering

BDD Binary Decision Diagram

HVC Haifa Verification Conference

ICSE International Conference on Software Engineering

JLAMP Journal of Logical and Algebraic Methods in Programming

PLA cube Product-Line–Analysis Cube

PLA model Product-Line–Analysis Model

VAMOS International Workshop on Variability Modelling of
Software-Intensive Systems

xiii

CHAPTER 1

Introduction

1.1 Problem and Motivation

Software plays an essential role in the modern world. National infrastructure,
transportation, communication, finance, and entertainment depend on reliable
software. Even though software is often invisible, it has real effects on our daily
life, especially if a system does not work as expected.

In the 1960s, it became clear that large-scale software must be developed
by teams rather than individuals and in a structured process [NR69]. Since
then many software-engineering techniques and processes, such as the waterfall
model and scrum, have been introduced to keep up with the increasing demand
for more complex and powerful systems.

The key challenges for software engineering are the increasing diversity of
application domains, demands for more reliable software, and reduced develop-
ment times [Som10]. For example, the Linux operating system (Linux kernel)1
is used in many different application scenarios, from embedded systems in cars
and planes to servers and desktop computers. This diversity of application
scenarios requires not only a single variant of the system, but a family of
many different Linux kernel variants, which must be developed and maintained
simultaneously. Supporting many variants of a system is usually in conflict
with reducing development time (and cost) and with providing a high level of
system reliability.

1https://www.kernel.org/

1

https://www.kernel.org/

1.1. PROBLEM AND MOTIVATION

Software product lines (or more general, configurable systems) address these
key challenges by reusing software artifacts across system variants. Configurable
systems provide dedicated configuration options—corresponding to system fea-
tures—that control aspects of the system behavior and functionality. The
configuration options of a configurable system control variability in the system
implementation. To build a system variant, a user chooses one value for each
configuration option, corresponding to the desired application scenario and,
thereby, resolves the configuration-related variability in the system. Config-
urable systems often have huge numbers of variants, which leads to scalability
problems when a developer wants to assure a property for every variant (e.g.,
all variants implement a given specification correctly). For this thesis, we de-
veloped, evaluated, and compared different approaches for configurable-system
analysis, and we identified strategies for efficient analyses for highly config-
urable systems. Our goal is to enable the efficient analysis of highly configurable
software systems.

As a motivating example for the practical use of configurable systems, we
discuss how configurable systems are used in practice. Several well known com-
panies, such as Eurocopter, Bosch, Nokia, Philips, and Siemens have developed
and used configurable systems successfully [DH09; vLSR07; WSA+15]. Often
configurable systems are implemented in domains with rich variability, such as
avionics, automotive, financial software, mobile phones, medical systems, and
network management.the NH90

system
Dordowsky and Hipp [DH09] described the development

of variants of the NH90 helicopter. At the time of their writing, the helicopter
was produced in 23 variants for 14 nations. Each customer had her own re-
quirements, which were modelled as sets of features. One important project
limitation was the non-disclosure requirement between customers. A feature
that is developed for one customer must not be included in the package delivered
to other customers. This implies that one cannot just pack all features and
select dynamically which should be used. Instead, the variants of the system
must contain exactly the requested functionality.

the Linux kernel As another example of a highly configurable system, we discuss the Linux
kernel in more detail. Maintained by over 7800 individual engineers from almost
800 different companies, it is one of the largest and most active open-source
software projects in existence [CKM12; SSSS07]. It has been in development
for over 20 years and it is highly configurable. The number of configuration
options in the Linux kernel has risen from 4752 (June 2005) to 13 165 (April
2013) [PPB+15]. The options allow users to configure variants of the kernel
according to their application scenario. For example, the kernel supports
more than 60 different hardware platforms. Furthermore, the kernel contains
subsystems, such as network protocols and file systems, which can be configured

2

CHAPTER 1. INTRODUCTION

by the user. Finally, the biggest subsystem contains the drivers, which allow
the kernel to support a vast amount of different hardware devices.

feature-
interaction
problem

The huge number of variants in configurable systems, such as the NH90 or
Linux, leads to defects that occur only in some of the variants and are therefore
hard to detect. To avoid such configuration-dependent defects, configurable-
system developers and designers spend much effort to find and document
feature dependencies [ABKS13]. For example, in the NH90, choosing an
advanced navigation computer might require a bus system that is able to
handle higher data throughput. If dependencies between features have not
been documented, the features can still interact and change system behavior in
potentially undesired ways. A feature interaction between two features causes
a changed, possibly unexpected or undesired system behavior (behavioral
defect) [ABKS13]. The behavior can be observed only in variants in which
both features are present, and it cannot easily be deduced from the behaviors
of the individual features involved. If only one or none of the features is
present, the interaction behavior does not arise. For example, an intelligent
door-locking feature in a car might well interact with a feature that controls
lighting and with another feature that detects and responds to a car crash.
Ideally, the safety feature (unlock doors after crash) should take precedence over
the security feature (door locking). But if this interaction is publicly known,
a thief might intentionally hit a parking car to trigger the crash sensor and
unlock the doors [Dom12]. So, the developers must either develop a dedicated
routine that deals with this specific interaction or they must forbid that the
crash sensor and door-locking features are chosen together. In general, it is
often difficult to predict how features will interact and how to resolve detected
feature interactions.

analysis
challenges

The car example illustrates that feature interactions can cause misbehavior.
In software systems, feature interactions can cause a whole range of problems,
including compile errors (e.g., due to wrong types), undesired run-time be-
havior, or even performance bugs. Each interaction might occur in only a
few variants, which makes the interaction hard to detect. To detect and fix
such problems, developers in practice use software-analysis techniques, such
as type checking and model checking. For example, the NH90 system is based
on safety-critical avionics software; they must be qualified against many strict
regulations concerning safety, security, and verification [WSA+15]. There are
documents that guide certification authorities on the approval of safety-critical
airborne software (e.g., the RTCA DO-178B standard [DO-178B]). One rec-
ommendation in these guidelines is that dead code (code that can never be
reached in any execution) is required to be completely removed [DBT11]. There
are well-known techniques to eliminate dead code in traditional single-variant

3

1.1. PROBLEM AND MOTIVATION

programs [ALSU06]. However, in a configurable system, code might be dead
only in some variants [Tar13], which requires specialized analyses that eliminate
code only from those variants in which it is unreachable. Other requirements in
the NH90 are that the systems must not crash due to memory exhaustion and
that subsystems meet their real-time deadlines [DBT11]. Such requirements
usually need to be proved with automatic verification techniques (e.g., model
checking or theorem proving).

There are several strategies to apply standard software-analysis techniques
to configurable systems. A naive approach is to apply traditional analyses by
configuring and building every variant and analyzing the variants in isolation
(variant-based strategy). Each variant is a program without variability, so
applying this strategy is quite simple, since it requires no modification of the
existing analysis tools. However, a real-world configurable system may have
a high number of variants. A system with 33 optional, independent features
has more variants than there are humans on our planet. Generating all these
variants is infeasible, not to mention analyzing them. In large systems, such as
the Linux kernel, with thousands of features, it is even difficult to compute
how many valid configurations the system has [Lie15].

variability-
aware

analysis

Consequently, applying traditional analyses to each variant of a configurable
system does not scale. However, there are properties specific to configurable
systems that help us to avoid a full analysis of all variants. For example, many
parts of the code are shared among many variants. This sharing is caused by
the very goal of configurable-system engineering: reuse as many artifacts as
possible between variants to reduce development effort. This goal typically
leads to many variants of configurable systems that share substantial common
parts. The family-based approach, analyzes the entire system family at once,
which often implies that common parts are analyzed only once. Usually, family-
based analyses are variability-aware, which means that the implementation is
optimized to exploit common parts and reuse analysis results for these parts
across the analysis of individual variants. We have developed this idea in various
variability-aware family-based approaches [ASW+11; AvRW+13; LvRK+13].

Another approach is to reduce the number of analyzed configurations using
a sampling strategy: a traditional (not variability-aware) analysis runs on a
selected, representative subset of configurations. The crux is how to select a
good sample set. It must be small enough to avoid the combinational explosion
of the naive strategy (i.e., too many variants to analyze), but large enough to
cover as many different use cases as possible. Depending on the goal of the
analysis and the system (e.g., Linux) one might want to use implementation
knowledge and, for example, cover all platform variants (e.g., x86 and arm), at
least, once.

4

CHAPTER 1. INTRODUCTION

Yet another strategy is to analyze every feature in isolation [LKF02a;
TAK+14]. Such feature-based analyses can be applied even if only part of
the system is known (in an open-world scenario). However, feature-based
analyses can detect only defects that are caused by individual features, not by
interactions. We develop an analysis approach that mitigates this disadvantage
by combining the feature-based and family-based strategies.

thesis goal
and focus

Overall, our goal is to enable the efficient analysis of highly configurable
software systems. In particular, we address the question of how program analy-
ses (e.g., data-flow analysis and model checking) can be applied to configurable
software systems. We developed, evaluated, and compared different approaches
for configurable-system analysis. We focus on the analysis of software im-
plementation artifacts with automatic tools as opposed to manual analysis,
analysis of feature-design documentation, or analysis of hardware–software
systems such as NH-90. Compared to analysis of design documentation (e.g.,
UML diagrams), analysis of the final implementation artifacts (e.g., source
code) has the potential for reliable statements about the final variants of a
system that are delivered to end-users. Furthermore, we focus on software
implementation artifacts, because systems with configurable hardware (e.g.,
cars) are very expensive to analyze. One either needs many different variants of
the hardware or a configurable simulator of the hardware [LALL09; OSC+14].

1.2 Contributions

In this thesis, we present different contributions concerning the analysis of
configurable systems. Most contributions have been published in conferences,
journals or workshops that are considered first-grade in our field of research
(such as ICSE, ESEC/FSE, or ASE). Our contributions contain technical
insights, practical tool implementations, empirical evaluations, formalisms, and
several subject systems used in experiments. Our techniques have already been
reused in related publications and tools [BLB+15; KvRE+12; Mei14]. Analysis
tools used in practice could be improved based on our technical contributions
and experiment results. In this section, we give a short overview of the main
contributions.
• We present the product-line analysis (PLA) model [vRAK+13], a
model that covers the spectrum of configurable-system analysis. It de-
scribes basic analysis strategies for configurable systems, and it guides
developers to combine these strategies to derive more efficient ones. Based
on the PLA model, we proposed and implemented several different analy-
ses for configurable systems and we discuss them in the context of the
PLA model. We demonstrate the usefulness of the model by taking

5

1.2. CONTRIBUTIONS

a closer look at existing analysis approaches and by classifying them
according to our model. In the light of our model, key ideas that make
these approaches efficient become apparent. We further used the model as
a driver to devise new analysis strategies, which we discuss in this thesis.
• Our technical contributions include two fundamental techniques: presence-

condition simplification and variability encoding. Presence-condition
simplification [vRGA+15] is a method for reducing the size of expres-
sions (presence conditions) that denote when a certain artifact is present
in a variant. The method can improve variability representation in source
code, in reports from analysis tools, and in data structures of analy-
sis and transformation tools. We formally describe presence-condition
simplification and refer to existing algorithms from different researchers.
We evaluated these algorithms in different application scenarios, such as
simplification of presence conditions in internal data structures in the tool
TypeChef.2 The results of our evaluation show that presence-condition
simplification can be used to improve tool output and data structures.
Based on our work, presence-condition simplification has been integrated
in the main branch of TypeChef.
• Variability encoding is a technique that encodes the compile-time
variability of a configurable system in terms of load-time variability
in a corresponding variant simulator. We use variant simulators to
efficiently run variability-aware analyses (e.g., Chapter 6). In a simulator,
configuration options are encoded as global variables that can be set at
program start. Variability encoding ensures behavior preservation. This
means that the behavior of a variant simulator and the behavior of a
variant derived at compile time are equivalent if the global variables of
the simulator and the configuration options of the variant are set to the
values. Variability encoding enables us to change the binding time of
configuration options from compile time to load time. This is relevant in
practice as similar approaches are used in industrial contexts (e.g., in the
development of Mercedes passenger cars [BW09], cf. Section 5.6).
We present a formal definition of variability encoding based on a subset
of Java and give a formal proof that variability encoding is behavior
preserving. Based on this formal work, we implemented Hercules, a
tool that provides variability encoding for C systems that express and
control variability with the C preprocessor. We evaluated Hercules
by testing it on real-world systems, such as Linux and SQLite.3 The

2A tool for variability-aware parsing and type checking of compile-time–configurable
systems [KGR+11].

3https://www.sqlite.org/

6

https://www.sqlite.org/

CHAPTER 1. INTRODUCTION

result is that Hercules can correctly encode variability except for a
few special situations, which we discuss separately. We also implemented
variability encoding for module-based configurable Java systems in the
tool FeatureHouse [AKL13].
• We developed and evaluated an approach for variability-aware model
checking and implemented it on top of two software-model-checking
tools.4 We published our model-checking implementations in the tool
suite SPLverifier [AvRW+13]. Our variability-aware model-checking
approach uses variability encoding to generate variant simulators for
the analyzed systems; it uses variability-aware optimizations to improve
the model-checking process on the simulators. We evaluated this opti-
mized, variability-aware model-checking approach and compared it to
variant-based and sample-based approaches. Our evaluation is partly
based on configurable-systems that we implemented based on community
specifications [Hal05; KMSL83; PR01]. These systems have been used by
other researchers in many related publications since then [Bey15; BLB+15;
Mei14]. Our evaluation shows that variability-aware model checking with
our extensions is faster than variant-based and sample-based approaches.
However, verification of variant simulators also consumes more main
memory than variant-based verification, because simulators comprise
more functionality than system variants.
To mitigate this problem, we developed and evaluated a set of strategies
that are partly variant-based and partly family-based, guided by our
PLA model. We partitioned the set of all configurations of a subject
system to generate multiple variant simulators that simulate mutually
exclusive variant sets. Then, we compared verification of these partition-
based simulators against other verification strategies. Our results show
that a combination of strategies (family-based and variant-based in this
case) can improve analysis performance. In particular, the combined
strategies were faster than the variant-based strategy and consumed less
main memory than the family-based strategy.
• Guided by the PLA model, we developed an approach that combines the

feature-based and family-based strategies to improve data-flow analysis
between Android apps. Applications on an Android device can
often access private user data and apps can also communicate with
other apps, which induces a potential for data-flow leaks. Leaks might
involve several apps that pass on private data before it is leaked to,

4The tools are jpf-bdd [vRAR11], an extension to the model checker
Java Pathfinder [VHB+03], and a similar unnamed implementation in the model
checker CPAchecker [BK11].

7

1.3. RESEARCH METHODOLOGY

for example, untrusted internet services. For instance, an app that has
sufficient rights to obtain a password could pass it to another app, which
sends it somewhere on the internet. As Android users can choose
which apps they want to install on their devices, this scenario is highly
configurable (apps are like features), and variability-aware approaches
promise good results. We implemented an approach that models this
app-analysis scenario as a data-flow problem and reports potentially
malicious data leaks. Our approach first analyzes all considered apps in
isolation (feature-based) and then combines the feature-based information
to build a global communication graph (family-based). We evaluated
our implementation on a set of 51 935 Android apps. Our evaluation
shows that our variability-aware analysis scales much better than similar
analyses that do not consider variability.

1.3 Research Methodology

empirical
results

In most studies that lead to this thesis, we conducted empirical research. We
formulated research questions such as “Is family-based verification more efficient
than variant-based verification? (Chapter 6)” Based on such questions, we
phrased our hypotheses and implemented tools needed to answer the question
(family-based verification and variant-based verification in this case). Based on
the initial experiment results, we developed theories on which general principles
or properties result in good or bad performance of different tools. Then, we
chose a representative set of case studies and evaluated the theories based on
the tools and the case studies. Such theories can then guide the improvement of
analysis tools. This research method is an adaption of the Goal-Question-Metric
approach [BCR94]. We define an evaluation goal (“Improve the performance of
model checking for configurable systems.”), a more precise question (“What is
the influence of sharing between variants on model checking?”), and a metric
that allows measument in an experiment (“maximum consumed main memory”
or “execution time”).

theoretical
results

Besides empirical research methods, we also developed models to formalize
and study observations and theories gained in experiments. For example,
we observed in initial experiments that family-based verification outperforms
variant-based verification (Chapter 6). However, it was not obvious whether
the results could be generalized, because the central transformation in our
approach, variability encoding, might not be correct on programs that are
more difficult than our case studies. To mitigate this problem, we formally
defined variability encoding and proved that the process correctly encodes
variant behavior (Chapter 5). Furthermore, we discussed how programming

8

CHAPTER 1. INTRODUCTION

languages such as Java and C deviate from our formal definition and how these
differences affect variability-encoding correctness.

1.4 Outline
In Chapter 2, we provide a background on common concepts on which we build
the thesis. In particular, we give an overview of the concepts of configurable
systems. Furthermore, we outline software analysis and basic strategies for
configurable-system analysis. In Chapter 3, we describe the PLA model and
discuss different combinations of basic analysis strategies. In Chapter 4, we
present our work on presence-condition simplification, a problem that touches
many areas of research on configurable systems. Chapter 5 describes our work
on variability encoding, a technique we used to implement the family-based
analysis strategy. Chapter 6 discusses our implementation of family-based
model checking and our evaluation of this strategy in comparison to alternative
strategies. We also describe an evaluation of analysis strategies that combine
variant-based and family-based verification and how these strategies perform
in comparison to each other. In Chapter 7, we discuss a combination of the
feature-based and family-based analysis strategies in a practical setting; we
implement a taint analysis for Android applications to detect private-data
leaks in a large set of Android apps.

supplementary
website

Several chapters of this thesis rely on experimental research. There-
fore, the documentation of our experiments is important to enable replication
studies and studies that build on our results. We provide a supplementary web-
site http://www.fosd.net/vonRhein/ to support such studies. The website
contains experiment documentation, setup details, and results.

9

http://www.fosd.net/vonRhein/

CHAPTER 2

Background

This chapter provides a conceptual background to the thesis, including selected
topics of configurable systems and software analysis. This chapter is not
intended to present an exhaustive overview and motivation of the respective
research areas. Instead, we present a short, condensed introduction of necessary
key concepts. For complete coverage of the research areas, we refer to key
textbooks in the following sections.

Section 2.1 presents background information on configurable sys-
tems [ABKS13; CE00]. Section 2.2 presents different static software-analysis
techniques: type checking [Pie02], testing [CDS07], software model check-
ing [CGP99], and taint propagation (a data-flow analysis technique) [HCF05].
Section 2.3 describes software analyses for highly configurable systems and
introduces different strategies used for improving analysis efficiency [TAK+14].

2.1 Configurable Software Systems

In this section, we discuss configurable systems, related concepts, and tools.
First, we introduce the basic ideas and goals driving configurable systems in
Section 2.1.1. We use a small, configurable printing-device system as a running
example. In Section 2.1.2 we discuss different binding times for configuration
options. Then we discuss how configurable systems can be implemented
in practice (Section 2.1.3). We conclude with an overview of examples of
configurable systems that we developed for our experiments and that we reused
throughout this thesis (Section 2.1.4).

11

2.1. CONFIGURABLE SOFTWARE SYSTEMS

2.1.1 Terms and Running Example

A configurable system is a system that can be tailored to fulfill different
roles in different environments and application scenarios. A product line is a
similar concept with a slightly different focus. The Carnegie Mellon Software-
Engineering Institute (SEI) describes a software product line as follows1:

A software product line (SPL) is a set of software-intensive systems
that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way.

The concept of a feature is at the core of this definition. This concept is
inherently hard to define as it captures, on the one hand, intentions of the stake-
holders of a product line, and on the other, design- and implementation-level
concepts [ABKS13]. In this thesis, features capture design- and implementation-
level decisions that are part of the software construction phase. A feature is a
characteristic or end-user-visible behavior of a software system.

product lines vs.
configurable

systems

Product lines focus on the fact that features are reused between vari-
ants and that a mapping from features to implementation assets is part of
the software-engineering process. Ideally, features are planned during the
requirements-engineering phase of the software life cycle and are later mapped
to specific, configurable parts of the implementation [ABKS13; CN01; CE00].
A configurable system is a system that can be configured at some point in time.
In configurable systems, we do not focus on how the software has been planned.
In the end, software product lines with many variants shall be implemented as
configurable software systems and the same analysis concepts can be applied.

When describing concepts or experiments in this thesis, we use the terms
configurable systems (with configuration options) or product lines (with features)
depending on which fits better in the concrete case. If a technique is used
primarily in the context of highly-configurable systems (e.g., Linux), we use
configurable systems. If a technique is used primarily in the context of product-
line research, we use product lines. However, our research is in principle
applicable to both worlds.

printing-device
example

Next, we introduce the printing-device system as a running example of
a configurable system. We use this toy example throughout the thesis to
illustrate problems and solution approaches. In practice, a similar, larger
configurable system has been implemented for Hewlett Packard printers by the
Owen Firmware Cooperative [TCO00].

The printing-device system consists of features that implement different
printing and scanning functionalities. Variants of the system might represent

1http://www.sei.cmu.edu/productlines/

12

http://www.sei.cmu.edu/productlines/

CHAPTER 2. BACKGROUND

drivers for a family of printers. Some of the printers provide functionalities
such as scanning or duplex printing and some do not (e.g., for cost reduction).
To avoid potential implementation bugs and to keep the binary size of the
driver small, variant of the driver include only the functionality that is also
supported by the respective printer hardware.

The configurable printing-device system has five features: BasicPrinter, Du-
plex, Color, Scan, and Copy. BasicPrinter provides core printing functionalities:
single-side printing, a user interface, protocols to connect to the printer, etc.
The feature Duplex enables automatic double-side printing. Color allows to
print with colors. Scan allows users to use the scan hardware of some printers.
Copy (which requires feature Scan) allows users to duplicate documents.

features vs.
configuration
options

Configurable systems and product lines are centered on the concept of
configuration options and features. Configuration options allow users to control
settings and functionalities of the system. The controlled aspects might lead
to externally visible behavior or not (e.g., colored output versus a buffer
size). Features represent functionalities of a system that are of interest to
a stakeholder. They can be mapped to actual implementation artifacts. In
product lines, features are often implemented using configuration options. We
focus on features that are mapped to configuration options and we assume that
all configuration options in our subject systems correspond to a feature. In
systems where features can be mapped to source code, we also use the name
of the feature to refer to this source code. A feature can be mandatory (it
has to be enabled in all variants) or optional (its selection is not fixed). A
feature can also depend on whether other features are enabled or disabled. In
the printing-device example, BasicPrinter is mandatory, Duplex, Color, Scan,
and Copy are optional, and Copy depends on Scan.

By choosing values for configuration options, a user builds a configuration
of the configurable system according to its desired application. Given a con-
figuration and the system implementation, the corresponding variant (also
called product) of the system can be derived with tools such as Feature-
House [AKL13]. The behavior and properties of the variant correspond to the
chosen configuration.

feature
dependencies

Often the user is limited in the ways she can select features due to dependen-
cies among them. These dependencies are defined in a variability model (also
called feature model [ABKS13; CE00; KCH+90]). For example, the printing-
device system does not allow users to choose the feature Copy unless Scan is
chosen, too. A configuration that conforms to the variability model is called
a valid configuration. A configuration contains choices on all configuration
options (each is either selected or deselected). Therefore, a configuration corre-
sponds to exactly one variant of the configurable system. A configuration Φ

13

2.1. CONFIGURABLE SOFTWARE SYSTEMS

BasicPrinter Duplex Scan Color

Copy

Printer

Mandatory
Optional
Abstract
Concrete

Figure 2.1: A tree-based variability model of the printing-device system

can be written as a propositional expression with one satisfying assignment
(e.g., Φ = BasicPrinter ∧¬Duplex ∧Color ∧ Scan ∧Copy). The set of all valid
configurations defines the configuration space of the system.

The set of all variants that are derived from valid configurations is also
called the system family. Every system variant in the family is supposed to
satisfy the system’s specification. That means that each variant could be built
and deployed for a customer. A main motivation of this thesis is the fact that
it is very difficult to ensure that this assumption holds on a given configurable
system.

There is a number of different notations for variability models. The standard
notations are feature models [ABKS13; CE00; KCH+90] and propositional logic
formulae. Feature models are useful if the model is intended to be read by a
user. For example, if a user is supposed to configure a variant of a configurable
program, she might want to know about constraints between the features. In
this case, the variability model should be shown in one of several well-known
tree-based notations such as a feature model. Figure 2.1 shows a feature model
of the printing-device system. The circles on the feature boxes denote optional
and mandatory features. The tree hierarchy denotes dependencies between
features. This model contains an abstract feature, Printer, which is not mapped
to code artifacts. It is used only for structuring the variability model. Concrete
features are mapped to code artifacts.

Propositional logic formulae are better suited when the variability model
needs to be processed by tools [Ber13; CW07; Men09]. A Boolean vari-
able in a formula corresponds to one feature and states whether the feature
is included in a variant. In our example, the variability model is Φ̂ with
Φ̂ = BasicPrinter ∧ (Copy → Scan). The feature BasicPrinter is mandatory

14

CHAPTER 2. BACKGROUND

and the feature Copy depends on feature Scan. In case of non-Boolean fea-
tures (with more than two possible settings) [PNX+11], the concept can
be extended such that propositions over integer values are allowed (e.g.,
print_quality = 600dpi).

Large configurable systems in practice, such as Linux, often use dedicated
languages to state feature dependencies. Due to the size and modular structure
of Linux, propositional logic and feature models would not scale. Linux uses
the Kconfig language to define dependencies between configuration options.
A Kernel Configurator guides the user through the configuration process
based on the Kconfig files.

2.1.2 Binding Times

Configuration choices can be bound at different points of time (binding times)
during the application build process. In large configurable systems usually
three binding times for configuration options are used: compile time, load time,
and run time. For example, choosing on which operating system an application
should run is a fundamental choice. In most cases, the operating system is
known and therefore chosen at the start of the configuration process (compile
time). Code that would be needed for alternative operating systems is not
included in the running system, which improves efficiency. Another example is
in which display resolution a graphical user interface should be displayed. The
value of this option changes relatively often as users move to different display
devices or connect their computers to projectors. Therefore, this option should
be chosen as late as possible (e.g., at load time or at run time). An option
that can be reconfigured after it has been chosen once has a dynamic binding
mode, which improves flexibility [CE00]. For example display resolutions can
be reconfigured at run time.

The different binding times are relevant in this thesis because our experi-
ments show that analyses are more efficient if variability is handled as part of
the analysis instead of being handled in a preprocessing step. Based on this
insight, we develop an approach to transform compile-time options to load-time
options (Chapter 5). This transformation enables efficient analysis techniques
based on load-time variability (Chapter 6).

sqliteBecause the printing-device system is too small to illustrate useful examples
for different binding times, we use the SQLite2 database engine as illustrative
example to describe all three binding times in the next paragraphs. SQLite is
a program that manages a database. During its run time SQLite allows the
user to manipulate a database with SQL queries and modification commands.

2http://sqlite.org/

15

http://sqlite.org/

2.1. CONFIGURABLE SOFTWARE SYSTEMS

94825 /∗ Shared library endings to try if zFile cannot be loaded as written ∗/
94826 static const char *azEndings[] = {
94827 #if SQLITE_OS_WIN
94828 "dll"
94829 #elif defined(__APPLE__)
94830 "dylib"
94831 #else
94832 "so"
94833 #endif
94834 };

Figure 2.2: An example of compile-time options in the sqlite3 amalgation
version 3.8.1

compile-time
configuration

Compile-time options are configuration options that are chosen by the user
before the application is compiled (e.g., the target operating system). Variability
implemented with compile-time options is also called static variability. The
values of such options cannot be changed afterwards. In SQLite, compile-time
variability is implemented with ifdef preprocessor directives. For example,
Figure 2.2 shows an excerpt of sqlite3.c that determines the target operating
system. Depending on the operating system, different file-name suffixes are
expected for shared libraries (“dll” for Windows, “dylib” for Apple systems,
“so” for unix). Variable code is enclosed in #if <condition> and #endif tokens
where <condition> is a logic constraint on configuration options. #elseif <condition>
(or #elif <condition>) and #else denote alternative code blocks.3 In ifdef-based
systems, users can define values for each configuration option. We say that a
option is enabled if it has been defined to a non-zero value. If an option has
been defined as zero or not defined at all, it is disabled.

The preprocessor removes all code that is enclosed by annotations for which
the conditions are not satisfied. Therefore, the choice of the operating system
cannot be reverted after ifdefs are processed. There are many implementation
techniques that resolve variability before compilation, such as mixins [Bat04],
superimposition [AL08], aspect-oriented programming [KLM+97], or conditional
compilation (e.g., ifdefs). The advantage of most compile-time variability
techniques is that they avoid overhead at run time, since variability is removed
before compilation. Also, for example ifdefs, allow to modify almost any token
in the source code conveniently (including data types).

load-time
configuration

If an option should be selectable after the application has been compiled
and installed, it is not possible to resolve its variability before compilation. For

3 #ifdef <option> is a shorthand for the command #if defined <option> which determines
whether an option has been defined in a configuration. We use the term ifdef to refer to the
concept of preprocessor directives.

16

CHAPTER 2. BACKGROUND

some options, it is desirable to delay the choice until the application is started
(load time); later, the values for such options can be fixed. These options are
load-time options. Load-time options are usually implemented as command-line
parameters or via configuration files. SQLite offers many parameters that can
be specified when starting the program. An example is the -echo parameter,
which causes the program to log each run-time command (e.g., SQL query) to
the console before it is executed.

run-time
configuration

Run-time configuration is necessary if the value of the option can be chosen
only at run time or if it must be changeable at run time. Run-time options are
often more expensive in terms of computation time or maintenance costs than
compile-time or load-time options. Enabling or disabling an option at run time
might require modifying values in different modules that depend on the enabled
or disabled option. In SQLite, run-time options can be configured with either
SQL commands or SQL-like PRAGMA commands. As an example, we use
the PRAGMA locking_mode command from SQLite.4 The option influences how
SQLite handles database locking. If set to NORMAL, the database is unlocked
after each write command and other database users (database connections)
can write. If the option is set to EXCLUSIVE, the lock is held by one database
connection until that connection is closed. The user can change the value of
the locking_mode PRAGMA at run time. In this case, changing the value of the
option is cheap because no data (e.g., the database stored on disk) has to be
modified during the value change.

2.1.3 Implementation Mechanisms

There are two main mechanisms for implementation of configurable software
systems: module-based variability, where feature implementations are separated
in modules and annotation-based variability, where feature implementations
are marked with variability annotations in source-code files [ABKS13]. Both
mechanisms are used in the subject systems of our experiments.

module-based
variability

Figure 2.3 shows an excerpt of the configurable printing-device driver
implemented in Java with module-based variability. Each of the features is
implemented in a separate code module and, in this example, each module
contains parts of the Printer class. Variants of the configurable system are
generated by combining the modules that correspond to selected features.
There are different possible composition semantics for module-based variability,
such as mixins [Bat04], superimposition [AL08], or aspect-oriented program-
ming [KLM+97]. In this example, we choose superimposition as implementation
technique. Composition of each printer variant starts with the BasicPrinter

4http://www.sqlite.org/pragma.html#pragma_locking_mode

17

http://www.sqlite.org/pragma.html#pragma_locking_mode

2.1. CONFIGURABLE SOFTWARE SYSTEMS

Feature BasicPrinter
1 class Printer {
2 void print(Page p) {
3 ... // basic printing
4 }
5 void print(Page front, Page back) {
6 printMulti(front, back);
7 }
8 void printMulti
9 (Page front, Page back) {
10 ... // print both pages on one sheet
11 }
12 }

Feature Duplex
13 class Printer {
14 void print(Page front, Page back) {
15 printDuplex(front, back);
16 }
17 void printDuplex
18 (Page front, Page back) {
19 ... // duplex printing
20 }
21 }

Feature Color
22 class Printer {
23 void print(Page p) {
24 if (p.isColored()) {
25 ... // color printing
26 } else { original(p); }
27 }
28 }

Feature Scan
29 class Printer {
30 // scanning of one page
31 public Page scan() {
32 ...
33 }
34 }

Feature Copy
35 class Printer {
36 // scans a page and prints it
37 public void copy() {
38 print(scan());
39 }
40 }

Figure 2.3: Excerpt from a FeatureHouse-based implementation of the
printing-device system (module-based and feature-oriented). The class declara-
tions of Duplex, Color, Scan, and Copy refine the corresponding declaration of
BasicPrinter.

feature. Each feature that is added in the composition process refines existing
implementation components (fields, methods) if they have the same name and
type. For example, the method print(Page) of feature BasicPrinter is refined
by print(Page) of feature Color. The superimposition approach we use in the
example introduces a new keyword, original. By using this keyword refining
implementations can call the refined implementations and thus add function-
ality to the refined features. In the printing-device system (Figure 2.3) the
implementation of print(Page) in feature Color optionally calls (Line 26) the
original implementation (which resolves to print(Page) in feature BasicPrinter).

superimposition Figure 2.4 shows a variant composed based on a valid configuration. The
variant contains the features BasicPrinter, Duplex, and Scan. The variant has
been derived from the feature modules shown in Figure 2.3 using the super-
imposition mechanism. Superimposition starts with one feature (BasicPrinter
in our example) and iteratively merges the source code with the code of other

18

CHAPTER 2. BACKGROUND

1 class Printer {
2 // basic printing method
3 public void print(Page p) {
4 ...
5 }
6 void print(Page front, Page back) {
7 printDuplex(front, back);
8 }
9 public void printDuplex
10 (Page front, Page back) {
11 ... // duplex printing
12 }

13 // scanning of one page
14 public Page scan() {
15 ...
16 }
17 // scans one page and prints it
18 public void copy() {
19 print(scan());
20 }
21 }

Figure 2.4: A variant of the printing-device system including features Ba-
sicPrinter, Duplex, Scan, and Copy

chosen features. In the example, it first combines BasicPrinter with Duplex and
then combines the result with Copy. The resulting code is shown in Figure 2.4.
Method print(Page,Page) from feature BasicPrinter is not included in the variant,
because it has been refined during composition by the method from feature
Duplex with the same signature. For more details, we refer to a description of
the exact composition semantics for superimposition [AL08; ALMK10].

annotation-based
variability

Another approach for static variability is to have all code in one code base
and add annotations to selected parts of the code. The annotations contain
propositional logic constraints. Each annotated code fragment is included in the
variant only if the constraint is satisfied by the chosen configuration. Annotation-
based variability can be implemented using tools such as the C preprocessor
(ifdef annotations) or CIDE [KAK08]. In CIDE, features are mapped to colors
and each element of a program’s abstract syntax tree (AST) can be colored
to bind it to a feature. An evaluation has shown that source-code background
colors mapped to features improve program comprehension [FKA+13]. The C
preprocessor is based purely on lexical annotations. Variability is resolved using
the C preprocessor and the derived variant is usually given to a C compiler
afterwards. However, the preprocessor is independent of the C language and
works with any text-based artifacts that do not interfere with its keywords.
Figure 2.5a shows our running example using ifdef directives. Features are
represented by configuration options used in ifdef conditions (lines 3, 14, and
20). In contrast to the superimposition approach, ifdef directives allow to
make any token of the host language optional (e.g., keywords like private or
function parameters). Figure 2.5b shows a variant with features BasicPrinter
and Duplex derived from the ifdef implementation.

19

2.1. CONFIGURABLE SOFTWARE SYSTEMS

1 class Printer {
2 void print(Page p) {
3 #ifdef Color
4 if (p.isColored()) {
5 ... // color printing
6 }
7 #else
8 ... // basic printing
9 #endif
10 }
11 void printMulti
12 (Page front, Page back) {
13 ... // print both pages on one sheet
14 }
15 #ifdef Duplex
16 void printDuplex
17 (Page front, Page back) {
18 ... // duplex printing
19 }
20 #endif
21 void print(Page front, Page back) {
22 #ifdef Duplex
23 printDuplex(front, back);
24 #else
25 printMulti(front, back);
26 #endif
27 }
28 }

(a) Excerpt from an ifdef implementa-
tion of the printing-device system

1 class Printer {
2 void print(Page p) {
3

4

5

6

7

8 ... // basic printing
9

10 }
11 void printMulti
12 (Page front, Page back) {
13 ... // print both pages on one sheet
14 }
15

16 void printDuplex
17 (Page front, Page back) {
18 ... // duplex printing
19 }
20

21 void print(Page front, Page back) {
22

23 printDuplex(front, back);
24

25

26

27 }
28 }

(b) A variant including BasicPrinter
and Duplex

Figure 2.5: An ifdef-based implementation and a variant of the printing-device
system. Blank lines in the variant illustrate the code that has been removed by
preprocessing.

2.1.4 Examples of Configurable Systems

In this section, we introduce three configurable systems we used in case studies
throughout the thesis. The described systems are well known and used in the re-
search community [BLB+15; CCH+11; CHSL11; Hal05; Mei14; PR01; SvRA13].
We introduce the systems here to avoid repeating the introduction in different
chapters. Based on system specifications and designs by others, we implemented
C and Java versions of the systems. The designs and specifications of these
three configurable systems have been used before to assess configurable-system
verification (for example by Classen et al. [CCH+11; CHSL11]). Our imple-
mentations have since been used as benchmarks by other researchers [Bey15;
BLB+15; Mei14], so they are a contribution to the research community by
themselves. The systems are implemented with module-based variability (su-
perimposition with FeatureHouse) and they are available online from the

20

CHAPTER 2. BACKGROUND

decrypt forward

Alice Charlie

encrypt

Bob

Figure 2.6: Interaction example in the E-Mail system. An encrypted mail
from Bob to Alice is forwarded (unencrypted) to Charlie.

SPL2go database.5 These systems are very small in comparison to real-world
configurable systems such as the Linux kernel. However, they are ideal for
evaluating variability-aware analyses before investing the effort necessary to
make the analyses applicable to real-world systems such as the Linux kernel.
The systems capture essential patterns of configurable systems which can be
thoroughly studied with different analysis strategies.

E-Mail system The E-Mail system models a configurable e-mail communi-
cation system comprising 40 variants. It is based on specifications of features
and feature interactions by Hall [Hal05]. The system has 9 features, which
provide functionality such as encryption, forwarding, and signatures. The
system also has interactions between features; for example, feature encrypt
encrypts all outgoing e-mails and specifies that the text from the e-mails must
not be sent in plain text in future communications. However, feature forward is
unaware of this specification and forwards the decrypted e-mail to another user
as illustrated in Figure 2.6. This is a typical example for an interaction between
features, which we detect with variability-aware verification (Chapter 6).

Elevator system The Elevator system is a simplified model of a passenger
elevator, based on designs by Plath and Ryan [PR01]. The model has 6 features
and 20 variants. Features enable, for example, priority service for a special
floor or stopping when the elevator is empty. Like the E-Mail system, the
elevator system has several interactions between features. For example, the
priority-service feature enforces that the elevator goes directly to the special
floor if it is called there. Even if there are passengers in the elevator car, it does
not stop. This behavior violates several specifications for the normal elevator
behavior (e.g., elevator doors must open when the car is at a floor with a
requested stop). Of course this violation is intented from the view point of the
priority-service feature. However, in practice, developers of different features
are not necessarily aware of each other, so similar interactions can occur in
practice, too.

5http://spl2go.cs.ovgu.de/

21

http://spl2go.cs.ovgu.de/

2.2. SOFTWARE ANALYSIS

Mine-Pump system The mine-pump system is based on work in the
CONIC project [KMSL83]. The system simulates a water pump in a min-
ing operation. The pump must keep the bottom of a mine shaft dry. Its
operation is regulated by environmental conditions. For example, it must stop
pumping when there is combustible methane gas in the mine. Features of the
system are, for example, sensors for gas and water detection. The system has
5 features and 64 variants. The code base of the system is smaller than that
of the E-Mail and Elevator systems, which makes it very well suited for
preliminary experiments with variability-aware tools.

2.2 Software Analysis

Software analyses are techniques that take a given software implementation and
extract high-level information from it. In this thesis, we address the question
of how program analyses can be applied to configurable systems with a very
large number of variants. We focus on analysis techniques that go beyond
merely extracting statistics, such as the number of code lines or the Halstead
code complexity metric [Hal77]. Instead, we focus on techniques that try
to make statements about the program behavior: model checking, and taint
propagation.

In this thesis, we adapted model checking and taint propagation for appli-
cation on highly-configurable systems. In this chapter, we describe, in addition
to model checking and taint propagation, the analysis techniques type checking
and testing. Type checking has been extended to configurable systems by other
researchers (e.g., [AH10; DCB09; KATS12; KOE12; KvRHA13; LvRK+13]).
We use type checking in illustrative examples (e.g., Table 2.2 on page 37) to
show basic concepts of configurable-system analysis. Furthermore, we describe
our extension of the type system of a simple programming language in Chap-
ter 5. We use testing in Section 5.5.2, to show that our tool Hercules correctly
encodes program behavior on a specific test suite.

analysis goals Model checking and testing assert that the run-time behavior of a program
satisfies its specification. Type checking asserts that no type errors can occur at
program run time (as far as the language allows to assert this statically). Taint
propagation can be used to assert that private information that is queried by a
program (e.g., passwords) are not leaked to the public (e.g., internet servers).
Generally, all considered techniques focus on prevention of faulty program
behavior. By reduction to the halting problem, one can prove that finding
all possible run-time errors in an arbitrary program is undecidable [Dav58].
However, one can still give approximate answers or limit the set of possible
input programs and, therefore, focus on checking specialized specifications.

22

CHAPTER 2. BACKGROUND

Actually, the difference between the goals of type checking, testing and model
checking lies in the specifications that are checked, which are discussed in the
following sections (Section 2.2.1, Section 2.2.2, and Section 2.2.3).

analysis
performance

Software analyses are typically characterized by their goals, their limitations,
and their performance characteristics. In our experiments, we compared analy-
ses with the same goals and limitations based on their different performance
characteristics. Performance is typically measured in terms of computation
time needed to finish the analysis, and the maximum amount of main memory
needed during the analysis. From theoretical computer science, it is known that
often computation time can be reduced if more memory is available and vice
versa (space–time tradeoff ; e.g., [Oec03]). The discussed analyses are usually
implemented with a focus on optimizing the computation time, because main
memory is easier to get than more time. We do not discuss the space-time
tradeoff any further, because it is well known in computer science.

analysis
accuracy

Another property of analyses is the accuracy of the analysis results. Given
a set of analysis subjects (e.g., systems or system variants), and analysis results
on these subjects, we divide the set of subjects, in four partitions (assuming
that each subject has one or no defect):

TP true positive The set of subjects where a real defect was detected by
the analysis.

TN true negative The set of subjects without defect where no defects
were detected.

FP false positive The set of subjects without defect where (false) de-
fects were reported by the analysis (a.k.a. type I er-
ror [AF96]).

FN false negative The set of subjects where a real defect was missed by
the analysis (a.k.a. type II error [AF96]).

Based on these definitions, we define the properties precision and recall of an
analysis as precision = |TP |

|TP |+|FP | and recall = |TP |
|TP |+|FN | [RP06]. Precision and

recall of an analysis can be used to predict the quality of analysis results of
future experiments with similar subjects. A high precision means that the
analysis reports only few false positive results. A high recall means that few
defects are missed.

section
overview

We discuss different analysis techniques in the next sections. In particular,
we discuss type checking (Section 2.2.1), testing (Section 2.2.2), software model
checking (Section 2.2.3), and taint propagation (Section 2.2.4). In our work, we
show how different analysis strategies can be applied to make these techniques
applicable to configurable systems with a high number of variants.

23

2.2. SOFTWARE ANALYSIS

2.2.1 Type Checking

Pierce [Pie02] states that

A type system is a tractable syntactic method for proving the ab-
sence of certain program behaviors by classifying phrases according
to the kinds of values they compute.

The definition emphasizes that phrases in the program code (e.g., variable
names and function names) are classified. A type system assigns a type to each
variable and function in the program and checks whether each usage of the
variable or function is valid for its type.

Pierce further explains that type checking can guarantee that well-typed
programs are free from type errors at run time. Depending on the language, type
checking can protect from low-level faults such as missing function definitions,
but also from errors that occur when a variable is used in an unintended way.
For example, a program variable x can hold different values during the execution
of a program. A type is a characterization of the set of values a variable can
hold. Consider a variable x of type int that is supposed to hold only integer
values. A type error occurs if there is a statement in the program that assigns
a non-integer value to x or uses x in any way that requires a non-integer value.

type checking
in this thesis

We use type checking in two chapters of this thesis: First, we use it to
illustrate analysis strategies for configurable systems in Section 2.3. Second, we
extended the statically-typed language FJ [Pie02] with new language constructs
to implement load-time variability (Section 5). The resulting new language is
still statically type safe.

2.2.2 Testing

Software testing is a process, or a series of processes, designed to
make sure computer code does what it was designed to do and that
it does not do anything unintended. Software should be predictable
and consistent, offering no surprises to users. [MS04]

In software testing, a given test suite (a set of test cases) is used to execute
a system under test and to check its behavior. Each test case consists of the
input to the system (e.g., parameters or user input) and the expected behavior
of the system. During test execution, the system is fed with the input and the
visible behavior of the system is compared to the expected behavior. If the
visible behavior during the test matches the expected behavior in each test
case, the system passes the test case. The specification checked with testing
is that one run of the program shows the expected program behavior. One
problem with testing is that, if the visible behavior of the program is influenced

24

CHAPTER 2. BACKGROUND

by non-determinism, a test case might pass or fail without obvious reasons.
This makes it very difficult to work with the test results.

testing
configurable
systems

A good test suite executes behavior that is representative for the intended
usages of the system. The difficulty of building such a test suite for a sys-
tem without configuration options is multiplied when considering configurable
systems. A test suite for a configurable system should cover all relevant sys-
tem behavior in all relevant system configurations [CDS07]. The crux is to
determine whether a certain behavior can be guaranteed to stay the same in
different variants. For such behavior, one test case can ensure the behavior
in multiple variants and, therefore, reduce the size of the test suite and the
time for test-suite execution. For example, an approach to efficient test-suite
generation for configurable systems [BLB+15] reuses the concepts we developed
for family-based model checking (Chapter 6). In this thesis, we used an existing
test suite for SQLite to evaluate our tool Hercules for variability-encoding
(Section 5.5.2).

2.2.3 Software Model Checking

Model checking is an automatic technique for verifying finite state
concurrent systems. [CGP99]

state-space
exploration

A model-checking algorithm explores a system’s state space. In its basic
form, a state space is a structure that consist of all states (e.g., a set of
variable assignments) that a system can reach, and all transitions that the
system can make between those states. During state-space exploration, the
algorithm checks each path through the state space against a given behavior
specification. When all paths have been explored and none of them violates
the given specification, then the system is proven to be safe concerning the
specification. Model checking verifies that all possible runs of the program
show the expected program behavior (or it gives an example run that shows
different behavior).

state-space
generation

In software model checking the state space is generated based on the
implementation of a software system. The state of a running program is defined
by different data structures: the call stack stores the hierarchy of function
calls, the heap stores field values, and the program counter stores a reference to
the currently executed statement. Ideally, each state in the state space would
faithfully represent these data structures. In practice, it is often impossible
to generate all states at this level of detail. Infinite loops in a program can
lead to non-terminating program paths and to an infinite state space. One
popular technique to handle such infinite state spaces is bounded model checking
which, for example, limits the length of explored program paths and ignores

25

2.2. SOFTWARE ANALYSIS

defects that occur beyond this limit. Even without infinite loops, growing
complexity of a system leads to an exponential growth of the state space. For
example, a Boolean variable in the system accounts for a duplication of the
number of states, in the worst case. Even in small programs, this can lead
to a combinatorial state-space explosion [CKNZ12]. To avoid this explosion,
modern software model-checking tools use two main optimizations:

First, they use on-the-fly state-space generation [FMJJ92]. States are
generated only when they are reached during the exploration and unreachable
states are not considered at all. Second, they use abstraction to generate
and explore an abstract state space. Generated abstract states usually do not
contain exact or complete information about the elements of the stack or the
heap. Instead, a set of concrete states can be represented by one abstract state
such that the size of the abstract state space is reduced. This approach can be
further optimized by lazy abstraction, where the level of abstraction is adjusted
for different parts of the state space, driven by the model checker [HJMS02].

limitations Software model checking suffers from some limitations that restrict its
applicability to arbitrary programs. However, if it can be applied, the reward
is a proof of the system’s correctness, which might be worth the investment.
The main limitation is the state-space explosion discussed above. Additionally,
software model checking requires that the order in which paths are explored
has no influence on the concrete states in the paths. Consider a side effect in
an execution path A that is not covered by the model checker; for example
the closing of a network connection. Once the end of one execution path A is
reached, another, previously unexplored, alternative path B should be explored.
If path execution of path B depends on the network connection, the reachable
states in this path are different than they would have been if B had been
explored first. This means that each exploration step must be deterministic,
which is difficult to achieve if the system is based on an environment that
has a modifiable state (e.g., network communication or file access). To allow
the model checker to capture the environment state too, the environment has
to be modelled as part of the system [TDP03]. In an extreme case, some
statements modify the behavior of statements in the program itself (e.g., using
Java reflection) and the program source code must be part of the states. Due
to these difficulties software model checking is usually limited to systems that
do not use network communication, file writing, or reflection.

software model
checking in this

thesis

We used model checking in Chapter 6: We extended two software model
checking tools (CPAchecker [BK11] and Java Pathfinder [VHB+03]) such
that they perform well on configurable systems. We describe these extensions
in detail and we compared the performance of several strategies for verification
of configurable systems (Chapter 6).

26

CHAPTER 2. BACKGROUND

2.2.4 Taint Propagation

Taint propagation is a static, data-flow analysis technique that determines how
a certain input value to a program is used during its execution.

taint mode
in Perl

The origin of the technique is the taint mode in the Perl programming
language [WCO04]. The taint mode protects the computer from malicious
program input. When in taint mode, perl marks data originating from outside
the program (e.g., user input and environment variables). The language
prevents such data from being used as parameter to sensitive functions, such as
running local commands on the computer. Similar techniques have also been
implemented for other programming languages, such as Java [HCF05].

privacy
protection

Besides protecting the computer from malicious input, taint propagation
can also be used to protect private user data from being misused. The idea is to
mark (taint) private data, such as a password, once it enters the analyzed system.
Then, all variable values that originate from this data through combination or
copying are also tainted. Once a tainted value is used in a potentially unsafe
function, such as an unsecure internet connection, a privacy breach is found.

taint propagation
in this thesis

We used taint propagation in a study where we tried to find privacy data
breaches in the communication between apps in the mobile-phone operating
system Android (Chapter 7). We designed an approach that makes taint
propagation scalable using techniques developed for other configurable-system
analyses (e.g., presence conditions).

2.3 Configurable-Systems Analysis

analysis of
configurable
systems

Configurable systems are used in security relevant domains such as avionics,
automotive products and medical systems. We give a short recapitulation of
the NH90 helicopter example described in the introduction. The NH90 project
has two goals that are of particular interest here. The first goal is that each
customer receives only code that is used in the respective system configuration.
This requires, at least, a dead-code analysis for each relevant system variant.
The second requirement is that all variants must fulfill certain specifications
concerning memory usage or real-time deadlines. These project goals show that
software analyses play an important role in configurable systems in practice.

The huge number of variants of configurable systems promotes a system
design where features have as little impact on each other as possible. If a
system developer can guarantee that features do not interfere with each other,
it would suffice to test some configurations, such that each feature is covered
at least once. Unfortunately, feature interactions can be very subtle and they
are generally hard to rule out. Many feature interactions occur between two

27

2.3. CONFIGURABLE-SYSTEMS ANALYSIS

Feature BasicPrinter
1 class Printer {
2 void print(Page p) {
3 ...
4 }
5 }

Feature Color
6 class Printer {
7 void print(Page p) {
8 ...
9 }
10 }

Feature Scan
11 class Printer {
12 public Page scan() {
13 ...
14 }
15 }

Feature Copy
16 class Printer {
17 public void copy() {
18 print(scan());
19 }
20 }

require print(..)

require scan()

Figure 2.7: Type dependencies in the printing-device example

features (pair-wise interaction or first-order interaction), but also interactions
between more than two features (higher-order interactions) are possible and
might be even harder to detect.

The research community has developed many analyses for configurable-
systems which take variability in configurable systems into account (variability-
aware). Such analyses need to reason about variability in the systems and
efficiently represent variability in data structures. We use example type de-
pendencies from the printing-device system as illustration in the next sections.
Figure 2.7 shows the type dependencies of the feature Copy. The feature
requires that some other feature implements a function print(..) with one
parameter and that a feature implements function scan(). Furthermore, the
parameter of print must have the same type as the return type of scan. If one
of these requirements is not met in a variant, the variant has a type error. In
the printing device system, print(Page) is implemented in BasicPrinter and
in Color, and scan() is implemented in feature Scan. Therefore, the feature
Copy depends on the presence of features BasicPrinter and Scan (which is
documented in the variability model). To use the example as illustration for
different analysis strategies, we assume, in Sections 2.3.2–2.3.5, that these
dependencies have been omitted in the variability model.

28

CHAPTER 2. BACKGROUND

In Section 2.3.1, we give a short overview over two common techniques used
for reasoning about variability-induced constraints in analyses. Confronted with
code reuse between variants and interactions between features, several strategies
for efficient analysis of configurable systems have been developed. Then, we
describe the four basic analysis strategies based a survey paper [TAK+14].
We illustrate the strategies with our running example (printing system) in
Sections 2.3.2–2.3.5. Finally, we discuss combinations of these strategies, also
based on the survey, in Section 2.3.6 [TAK+14].

2.3.1 Computational Problems in
Variability-aware Analysis

Variability-aware analyses have been developed to deal with very large configu-
ration spaces. These analysis approaches are aware of variability in the system
and exploit commonalities among variants. Exploiting commonalities allows
such approaches to be more efficient on configurable systems than approaches
without variability-awareness.

To deal with variability, analysis tools must have efficient means for repre-
sentation and processing of constraints on configuration options. For example,
an analysis might determine that a failure occurs in a system if a certain
combination of options is set. Then it must validate that this combination
can be selected by a user, according to the system’s variability model. If users
cannot select the combination, the error does not need to be reported.

Typically, constraints on configuration options are expressed as propositional
logic expressions. In the printing device system, we might want to represent
the condition for the absence of the Printer class to make sure we do not build
variants without the class. The class is implemented in all features, so the
expression is φ = ¬BasicPrinter ∧ ¬Copy ∧ ¬Scan ∧ ¬Color ∧ ¬Duplex .

Now, we would want to check if there is a valid variant in which the class is
absent. The variability model of the printing device system is denoted by Φ̂ps

with Φ̂ps = BasicPrinter ∧ (Copy → Scan). We use the function sat to check if
there are variants without a Printer class: sat(φ∧ Φ̂ps) returns true iff there is a
variable assignment A under which φ and Φ̂ps hold (i.e., ∃A : A |= φ∧ Φ̂ps). In
our example, no such variable assignment exists. To implement this sat check
in analyses, developers typically use SAT solvers or BDD libraries.

SAT was the first known NP-complete problem, as proven by Stephen
Cook in 1971 and Leonid Levin in 1973. Since then many efficient heuristic
tools have been developed that enable us to solve practical SAT problems fast.
We do not describe SAT solving in more detail, but we refer to a reference
handbook [BHvMW09].

29

2.3. CONFIGURABLE-SYSTEMS ANALYSIS

c

s s

b b b b

true false false false true false true false

c

s s

b b b b

true false false false true false true false

(a) Unreduced BDD

c

b

s

true false

c

b

s

true false

(b) Reduced BDD

Figure 2.8: Two BDDs that represent the function (¬c ∨ (c ∧ s)) ∧ b. The
solid (dashed) lines represent the true (false) values of the variables. All paths
leading to the terminal true are satisfying assignments for the function.

Another approach to the SAT problem is offered by Binary Decision Dia-
grams (BDDs) [Bry92], which are less common and warrant a more detailed
discussion. A BDD is a data structure that represents a Boolean function.
The function is stored in a compressed format that also enables efficient logic
operations on the function. In comparison to SAT solvers, BDDs typically
require more time when doing operations on an expression (and, or, etc.) but
they are faster in executing SAT checks.

As an example for a BDD, consider the Boolean function f(c, s, b) =
(¬c ∨ (c ∧ s)) ∧ b, in which c, s, and b are Boolean variables representing
the features Copy, Scan, and BasicPrinter. The function represents all valid
configurations of the printing-device system (the features Duplex and Color
are optional). The truth table of this function is eight lines long. Alternatively,
as shown in Figure 2.8a, one could represent the truth value of f by means of a
diagram with root node c and two outgoing edges (one representing the value
true for c and the other the value false), each of which lead to a nodes for s,
and similarly with the last variable b. The eight leaves of this diagram represent
the truth values of f . This diagram can be simplified (i.e., reduced) by merging
redundant nodes and by removing redundant tests [BRB91]. Figure 2.8b shows
the Reduced Ordered Binary Decision Diagram (ROBDD) representing f .
Notice how the ROBDD for f only has five nodes (instead of fifteen for the
non-reduced diagram). This reduction in size is one of the key factors for the
efficient manipulation of Boolean functions using ROBDDs.

ordered BDDs If the order of variables is kept fixed (hence the “ordered” in the name),
it is possible to combine ROBDDs of different functions by means of Boolean
operators in polynomial time. We refer to Bryant’s seminal work [Bry92] for

30

CHAPTER 2. BACKGROUND

more details on the reduction algorithm and for other operations on ROBDDs.
In the remainder of the thesis, we use the term BDD instead of ROBDD, as all
the diagrams are considered to be reduced and ordered.

Unfortunately, even reduced and ordered BDDs may still have an exponential
size in the number of Boolean variables used. The size can be reduced by
optimizing the order of variables in the BDD, but finding the best variable
ordering is an NP-complete problem. Despite the theoretical problems, it has
been shown [CGP99] that BDDs offer an efficient mechanism for the exploration
of large state spaces in practice.

In our example, the BDD in Figure 2.8b could be used for different interesting
tasks. In configurable systems, we might be interested in whether there is a
configuration possible with this constraint (SAT check). There exists such a
configuration if there is a path in the BDD leading from the root to the true
terminal. Another question would be how many configurations are possible
with the constraint. In the unreduced BDD (Figure 2.8a), each configuration
corresponds one of the three true terminals in the graph.6 In the reduced
BDD (Figure 2.8b), we also have to count the number of paths leading to the
true terminal, but we have to weight each path with the number of variables
which are not used on the path. The left path (c − b − true) does not contain
the node s , so it counts for two configurations, resulting in a total number of
three configurations. Both operations (checking satisfiability and computing
the number of satisfying assignments) can be computed very efficiently in BDD
libraries [Bry92].

2.3.2 Variant-based Strategy

A simple approach to run analyses on variable software systems is to generate
and analyze all valid variants. Normally, the generated variants are expressed in
a general purpose programming language, so one can use off-the-shelf analysis
tools. We call this approach variant-based, because it analyzes all variants
isolated from each other. The approach is exhaustive in the sense that it
guarantees that all variants of the system are analyzed. The strategy is also
known as the product-based strategy [TAK+14] or as the product-by-product
strategy [BLB+15].

scalabilityThe approach has two drawbacks: First, the analysis has to consider all valid
variants of the system. For large systems, it is even impossible to enumerate
all valid configurations, so this strategy is confined to systems having little
variablity. Second, the variant-based strategy generates many similar variants

6For this example, we do not consider the Duplex feature, which would double the number
of configurations.

31

2.3. CONFIGURABLE-SYSTEMS ANALYSIS

and it has to analyze similar code or behavior repeatedly. In a type analysis of
our example, the basic printing method of feature BasicPrinter would be type
checked in all variants, although it is always identical. We would find the type
error described in Figure 2.7 in all variants which do contain feature Copy but
not feature Scan. With increasing number of options, the number of variants
rises fast. In the E-Mail system, a benchmark used throughout the thesis, 9
options give rise to 40 variants. For the Linux kernel with over 13 000 options
in release (v3.9, April 2013) [PPB+15], it is even impossible to determine the
number of variants, not to speak of generating them.

2.3.3 Sample-based Strategy

As the variant-based strategy is often not feasible, many real-world configurable
systems in practice are analyzed only on a selected subset of all variants (called
the sample set) [NL11; OMR10]. We name this general stategy sample-based.
In the type checking example of the printing-device system (Figure 2.7 on
page 28), we would find type errors if (and only if) the sample set contains a
variant with Copy and without Scan. The key question in the sample-based
strategy is what variants to include in the sample set. There are many possible
approaches of which we discuss some next.

interaction-based
sampling

We assume that generated sample sets are used to search for feature
interactions. Therefore, our sampling strategies aim to generate sample sets
that cover as many feature interactions as possible. For example, if we focus on
finding all first-order interactions we would want to cover all pairs of features at
least once in the sample set. This is the pair-wise sampling strategy [LOGS12;
PSK+10]. Assuming F is the set of features, then a simple requirement for a
basic pair-wise sample set would be that for each valid pair of features f1 and
f2 in F there is at least one configuration in the sample in which the features
are enabled. If isValid : F × F → B is the function checking if two features
can be enabled together (feature model). This requirement can be formalized
as ∀f1, f2 ∈ F : isValid(f1, f2) → (∃v ∈ sample_set : (f1 ∈ v ∧ f2 ∈ v)). The
type error in the printing-device system (Figure 2.7) is caused by an interaction
of the features Scan and Copy, so it can be found with pair-wise interaction
sampling.

The above requirement for pair-wise sample sets ensures that all valid pairs
of features are covered, but it is far from perfect. First, it is very imprecise.
For a system without constraints between features, the configuration in which
all features are enabled would fulfill the requirement. Such a degenerated
sample set is often undesired because it ignores possible negative interactions.
A negative interaction occurs if a feature has to be deactivated to trigger the
interaction. This can be fixed by ensuring coverage of all four combinations

32

CHAPTER 2. BACKGROUND

((f1, f2), (¬f1, f2), (f1,¬f2), and (¬f1,¬f2)) in which features can interact.
Second, the requirement accepts a very broad range of solutions. One possible
fix would be to require that the sample set contains one of the smallest config-
urations for each pair of features. The size of a configuration could be defined
as the number of enabled features. Even with this restriction, the sampling
strategy can still be ambiguous and the problem of generating minimal test sets
has been shown to be NP-complete [LT98]. Our experience is that sampling
requirements should not be overrestricted because deriving sampling sets for
large configurable systems gets even harder then.

Pair-wise sampling might also find higher-order interactions by chance if
the interaction occurs in a variant in the sample set. However, the approach
does not guarantee that all interactions between, for instance, three features
are found. To guarantee triple-wise interaction coverage, the approach must be
extended such that all triples (f1, f2, f3) of features and (optionally) also their
negative combinations are covered. In our experience, this approach quickly
leads to large sample sets that are, again, infeasible to generate and to analyze.
Such large sample sets diminish the advantage of sampling (fewer variants to
analyze) over the variant-based strategy.

The main disadvantage of the sample-based strategy, however, is that the
analysis can never guarantee that the entire configurable program is free from
defects or errors (the analysis is not exhaustive). A second disadvantage is that
similarities between variants are ignored (just as in the variant-based strategy).

2.3.4 Feature-based Strategy

A common problem with the variant-based and sample-based strategies is that
similarities between variants are not used for optimization. The feature-based
strategy avoids this problem by analyzing the features’ implementation directly.

The main idea behind a feature-based analysis is to divide the entire analysis
task such that each sub task targets a single feature. Then, the results of the
sub tasks are aggregated and global knowledge about the entire configurable
system is inferred. On this abstract level, the concept is similar to other
divide-and-conquer algorithms such as merge sort.

In a practical implementation of this strategy, the main advantage would
be that the per-feature analysis can abstract from the concrete feature imple-
mentations. Per-feature analysis would extract exactly the information that is
of value during the aggregation. As an example, we describe a feature-based
analysis [KvRHA13] of our printing-device system (Figure 2.7). The analysis
does a type-check of each feature separately, such that it finds type errors that
are caused by the feature itself (e.g., the feature declares an integer variable
and uses it as a String). Furthermore, it generates for each feature a set of

33

2.3. CONFIGURABLE-SYSTEMS ANALYSIS

Table 2.1: Results of feature-based type checking on the printing-device system.
T1 and T2 are generic types. Copy imposes only the constraint that the
parameter of print must be compatible to the return type of scan.

Feature Requires Provides

BasicPrinter Type Page void print(Page)
Color Type Page void print(Page)
Scan Type Page Page scan()
Copy T1 print(T2), T2 scan() void copy()

program elements (functions, fields and classes) that are defined by the feature
and a set of program elements that are required by the feature.

For our example, these sets are shown in Table 2.1. The features Ba-
sicPrinter, Color, and Scan each provide a function and require that some
other feature defines a type Page which is used as parameter/return type.
Feature Copy provides function Copy and requires that other features define
functions print and scan. In a next step (not feature-based), one would use
the requires and provides information to generate dependencies between the
features. In our example, we would infer the type-correctness constraint φ
with φ = (Copy → (BasicPrinter ∨Color))∧ (Copy → Scan). Next, we would
check whether there are valid configurations which would have a type error.
Such configurations have to be valid according to the variability model Φps and
violate the inferred constraint φ: sat(Φps ∧¬φ). If we use the variability model
from Section 2.1.1 then there are no such configurations.

The main problem of an analysis with a feature-based part is that the
implementation of this part is very specific to the analysis and to the analyzed
system. The feature-based part of the analysis must extract exactly the
information required by the later aggregation part. Furthermore, the feature-
based part should not require information from other features. After these
considerations, a feature-based analysis can be seen as a form of preprocessing
that encodes and filters the information of each feature for later analysis. A
second problem is that the per-feature information generated by the feature-
based analysis still has to be combined to gain global information. To implement
this combination step, one has to choose a strategy to combine per-feature
information. On this abstract level, one has to choose between the variant-
based, sample-based, or family-based strategies again. One advantage of the
feature-based strategy is that it can be applied in open-world scenarios where
only part of the implementation is available. If only a subset of features is
available, they can be analyzed, making assumptions about other features that

34

CHAPTER 2. BACKGROUND

are not available. In business scenarios where parts of source code might be
protected by non-disclosure agreements, this is a huge advantage over the other
strategies, which are limited to closed-world scenarios where the entire code
base is known.

2.3.5 Family-based Strategy

The main problem of the variant-based and sampling strategies is that com-
monalities between variants are not exploited in the analysis. The family-based
approach to this problem is to move the resolution of variability in the analysis
process. Usually, features are chosen and variability is bound before the actual
analysis tool (e.g., a verification tool or a type checker) is started. In a family-
based approach, the variability remains such that the tool is able to process
and reason about multiple variants of the system at the same time.

Family-based vs. variability-aware In literature, the concepts of family-
based analyses and variability-aware analyses have not been clearly sepa-
rated [ABKS13; TAK+14]. Often the terms are used to as synonyms. We
interpret the terms literally as two orthogonal concepts:
• A family-based analysis reasons about the entire family of systems (all
variants) in one run. The main analysis tool (e.g., a model-checking
tool) does not need to be aware of the variability that it processes. For
example, the basic analysis approach which we extend in Chapter 6, is
an off-the-shelf model checking tool that is not aware of variability in
configurable systems. In Section 6.4, we use it to verify variant simulators
that each represent all variants of a system (family-based).
• A variability-aware analysis is aware of the concepts of features and

dependencies between them. It uses sharing of code between variants to
optimize analysis performance. Often the concept is used to optimize
family-based analyses, but it could also be used in other strategies. For
example, a variant-based analysis is variability-aware if it reuses analysis
results between analyzed variants. This example analysis could store and
reuse control-flow graphs for functions that occur in multiple variants.

Implementation approaches Typically, there are two approaches to imple-
ment a family-based analysis: First, one can transform the static variability to
another form of variability which exisiting analyses can handle. For example,
one can transform ifdef options to load-time program parameters which can be
handled by standard analyses. Second, one can extend a program analysis such
that it is able to cope with the additional static variability constructs (this

35

2.3. CONFIGURABLE-SYSTEMS ANALYSIS

Variant simulator {BasicPrinter, Duplex}
1 class Printer {
2 static boolean _FeatureDuplex_enabled;
3 // basic printing method
4 public void print(Page p) {
5 ...
6 }
7 public void printDuplex(Page front, Page back) {
8 if (_FeatureDuplex_enabled) {
9 //code from Duplex feature
10 } else {
11 print(front);
12 ... // ask user to turn and re−insert page
13 print(back);
14 }
15 }
16 }

Figure 2.9: A variant simulator of the printing-device product line covering the
features BasicPrinter and Duplex

analysis is family-based and variability-aware). Both approaches have been
explored by researchers, often for verification or testing of highly configurable
systems [AvRW+13; CCS+13; CHL+14; KKB12; LTP09]. Both approaches
have in common that the analysis is applied to the whole system family at the
same time. We illustrate both approaches in the following paragraphs.

Program transformation To illustrate the approach of transforming static
variability, we show a family-based verification analysis. It first generates
a variant simulator based on the configurable system. Static variability in
the system is transformed to load-time variability (variability encoding). For
example, Figure 2.9 shows a part of a simulator for the printing-device system.
The simulator contains a variable for each encoded feature. In the example,
we can use the feature variable _FeatureDuplex_enabled to control whether
a variant with or without Duplex is simulated. As simulators use standard
language constructs to express variability (if statements), they can be analyzed
by standard verification tools. To verify all variants of the simulator we
can force the verification tool to consider all possible values for the feature
variables (this is explained in more detail in Chapters 5 and 6). To improve
over earlier approaches in which variability encoding was done manually [PR01],
we developed automatic tools for variability encoding (Chapter 5).

36

CHAPTER 2. BACKGROUND

Table 2.2: Presence conditions during family-based type checking. A program
element (e.g., void copy()) is defined in all configurations in which its presence
condition (Copy) is satisfied.

Program Element Presence Condition

class Printer BasicPrinter ∨ Color ∨ Scan ∨ Copy
void print(Page) BasicPrinter ∨ Color
Page scan() Scan
void copy() Copy

Variability-aware analysis extension We illustrate the approach of ex-
tending existing analyses, we show a basic family-based type-checking analysis
using the type error in the printing-device system (Figure 2.7). A family-based
type-checking analysis could be implemented in a two-phased approach: First,
it would build a map of program element names to conditions that must be
met such that the elements are defined (presence conditions). Second, it would
analyze type dependencies in the code (e.g., function copy depends on function
scan) and generate type-correctness constraints from the function’s presence
conditions. These constraints are shown in Table 2.2. In this case, the con-
straint would be identical to the constraint φ inferred in the feature-based
analysis 2.3.4.

Comparison to other strategies The results of different comparative stud-
ies show that family-based analyses are often more efficient than variant-based
and sample-based analyses [AvRW+13; CCS+13; CHL+14; KKB12; LTP09].
However, they require more implementation effort as either subject systems
need to be transformed or the analysis has to be extended. We discuss detailed
comparisons of the family-based strategy with other strategies in Chapter 6
and Chapter 7.

2.3.6 Combined Strategies

We discussed variant-based, sample-based, feature-based, and family-based
analysis strategies. In practice, analysis strategies often combine these basic
strategies to benefit from their advantages. In their survey paper [TAK+14]
Thüm et al. discuss four simple combinations of these basic strategies: feature-
product-based analyses, feature-family-based analyses, family-product-based anal-
yses, and feature-family-product-based analyses. In each case, the name encodes
which basic strategies are used and in which order they are applied.

37

2.3. CONFIGURABLE-SYSTEMS ANALYSIS

For example, a feature-product-based analysis consists of two phases, similar
to the type-checking analysis described in Section 2.3.4 on the printing-device
system: First, the features are analyzed in isolation and, second, the properties
that could not be checked feature-based are analyzed for each variant. This two-
phase approach has three advantages. First, one can reuse information gained in
the feature-based phase to speed up the variant-based phase. Second, as variant-
based strategies often suffer from scalability problems, it is recommendable to
do as much work as possible in the feature-based phase and thereby speed up
the entire analysis. Third, this strategy can be applied in open-world scenarios
where part of the features are not known. If such features are disclosed for the
analysis at a later point, they can be easily added.

Thüm et al. conducted a literature survey to determine whether combined
strategies are used in research. They found many approaches that use one of
the first three combined strategies (feature-product, feature-family, or family-
product) [TAK+14]. However, currently, there is no approach that combines
all three basic strategies (feature-family-product-based analyses). They note
that future work should analyze and discuss the feasibility of this strategy in
more detail.

Our impression is that, when designing a new analysis for configurable sys-
tems, one might be overwhelmed by possible development directions. Besides
the configurable-system analysis strategies, one also has to consider implemen-
tation details of the analyses (e.g., type checking, theorem proving, or model
checking). To make it easier to combine strategies and to predict advantages
of certain combinations, we developed the product-line analysis (PLA) model
and its visualization, the PLA cube. The PLA model allows free combination
of the basic strategies for configurable-system analysis. It serves as illustration
for possible combinations and as basis for research on feasibility of different
combinations. We introduce the PLA model in Chapter 3.

38

CHAPTER 3

The Product-Line–Analysis Model

This chapter shares material with the publication “The PLA Model: On the
Combination of Product-Line Analyses” in VAMOS’2013 [vRAK+13].

In Section 2.3, we discuss three basic strategies for the analysis of con-
figurable systems. Each strategy has advantages and disadvantages. The
variant-based strategy is easy to implement, but does not scale for configurable
systems with many independent features. The sample-based strategy improves
over this scalability issue, but its analysis results are necessarily not exhaustive
with respect to the configuration space. The family-based strategy is efficient
and analyzes all variants, but requires variability-aware analysis tools.

There is evidence that combining strategies allows developers to exploit
the advantages of multiple strategies in an analysis. For example, Siegmund
et al. [SKK+12] developed an approach for predicting non-functional proper-
ties of variants using feature-based and sample-based strategies. Kästner et
al. [KOE12] developed a type-checking approach that uses the feature-based
and family-based strategies. In these approaches, the combination of strategies
either improves performance compared to the variant-based strategy, or it
makes the analysis feasible in the first place (when a variant-based analysis
would not scale).

To better understand and compare the merits of combining strategies, we
introduce the Product-Line–Analysis Model (PLA model) [vRAK+13]. The
model is a formal framework for describing basic analysis strategies and combi-
nations thereof. It guides analysis developers to compare existing strategies
and design new strategies. Simple combinations of the strategies of Section 2.3

39

3.1. THE PLA CUBE

A

B

C

D

E

F G

H

Variant-based

Single
variant

Feature-based
processing

Family-based

Sampling

Variability encoding

Feature
grouping

Figure 3.1: The PLA cube – visualization of the space of possible combinations
of analysis strategies for configurable systems

have also been discussed by Thüm et al. [TAK+14] Our model goes beyond
and enables (1) more complex combinations and (2) strategy discussions based
on a common, formally defined vocabulary.

The term “PLA model” stems from the focus on product lines in the original
publication, but the model is applicable to configurable systems in general.

3.1 The PLA Cube

The Product-Line–Analysis Cube (PLA cube) is a visual representation of the
PLA model. Each point in the cube represents a different analysis strategy.
One key insight that underlies the design of the PLA model (and the PLA cube)
is that the choice between basic strategies (e.g., variant- and feature-based) is
not a black-and-white one. Instead, strategies can be combined in various ways.
A strategy could for example combine features into groups and analyze these
groups with a variant-based strategy (even though a group of features, such as
Copy and Duplex, does not necessarily form a valid variant).

Such ranges of strategy combinations form three dimensions that give rise
to the PLA cube, which is illustrated in Figure 3.1. The dimensions of the
cube are (1) feature grouping, (2) variability encoding, and (3) sampling. End-
points of the ranges include the pure variant-based, feature-based, family-based
strategies and an extreme sample-based strategy, which analyzes only a single
variant. In between, the strategies are combined to smaller or larger extents
(cf. Figure 3.1).

40

CHAPTER 3. THE PRODUCT-LINE–ANALYSIS MODEL

We begin our discussion of the PLA cube with point A and then describe
the dimensions feature-grouping, variability encoding, and sampling. Point A
represents variant-based analyses, and we use it to describe how analyses along
the three dimensions differ from these basic analyses. In point A, all variants
are built and analyzed separately (as discussed in Section 2.3.2).

feature
grouping

The feature-grouping dimension (e.g., range E–A) represents the granularity
and size of feature combinations that are considered during analysis. For
example, in point A whole variants are analyzed and analyses in point E
consider only single features in isolation (pure feature-based). The range
between A and E represents analyses that strategically group features to
form compound units (not necessarily whole valid variants) and analyze these
units as a whole. Examples include collecting metrics of code associated
with individual features or certain intra-procedural static analyses that can
operate on isolated code snippets [TAK+14]. Some software analyses depend
on executable programs or search for feature interactions. Such analyses are
difficult to implement on groups of features which might have dependencies on
features that are not included in the group. To check for feature interactions,
we could use a feature-based step to extract “feature interfaces”. In the next
step, we would check whether the interfaces fit each other (linker check, [AH10;
LKF05]). Examples are analyses that search for critical feature interactions
among combinations of certain subsets of features.

variability
encoding

The variability-encoding dimension (e.g., range A–D) represents the ex-
tent to which variability is preserved and used during an analysis. Going
from point A to point D, analyses encode some variability choices in the
analyzed artifacts instead of analyzing different variants arising from these
choices. Point D represents the family-based approach that encodes all features,
information on variability, and valid configurations into one analysis subject
that simulates all variants of the configurable system (e.g., for verification
as discussed in Chapter 6). As the simulator contains information about all
variants, only a single analysis pass (e.g., model checking) is necessary. To
implement a family-based analysis, we need an analysis tool that can handle the
variability information in the simulator. Some tools such as model checkers can
handle the variability out-of-the-box by an exhaustive state-space exploration
(e.g., [ASW+11]), but in other cases, a special analysis tool might be needed.
In the range in between A and D, the analysis divides the configurable system
in several subsystems and builds a smaller simulator for each subsystem. This
way, still the whole configurable system is covered, but the simulators are
smaller. Analyzing a smaller simulator will require fewer computing resources
than analyzing an exhaustive simulator (simulating all variants). For example,
we can use smaller simulators where an analysis of an exhaustive simulator

41

3.1. THE PLA CUBE

would exceed main memory. We can also analyze multiple simulators in parallel
to save time. In the printing-device system we could, for example, build a
simulator with the Duplex feature and one without. Then we would analyze
both simulators in parallel.

Analyses on the bottom plane of the cube (plane A–D–E–H) combine
feature grouping and variability encoding. Such analyses group features to
form compound units and analyze these units with a family-based analysis.
Compared to a pure family-based analysis, this approach results in smaller
simulators. Each simulator could yield, for example, an interface for a part of
the system. The interfaces would still contain variability information which
makes the interfaces more compact compared to variant-based interfaces. A
family-based example result for the group of features Scan and Copy is that
feature Copy requires that method print(Page) is implemented. For comparison,
a variant-based result with the same information is that the combination
{Scan,Copy} requires print(Page) and the combination {¬Scan,Copy} also
requires print(Page).

sampling The sampling dimension (e.g., range A–B) represents analyses that analyze
only a subset of a system’s configuration space (the analysis is not exhaustive).
The subset of the configuration space, which is subject to analysis, determines
where the analysis is located along the sampling dimension. For the printing-
device system (Section 2.1.1), we might use domain knowledge and decide
that only variants with feature Duplex have to be analyzed, as other variants
are currently not requested by customers. So, only 6 of 12 variants must be
analyzed, saving roughly half of the analysis time (compared to an exhaustive
variant-based analysis; point A). However, sampling means that not all valid
variants are considered, which may influence the conclusions one can draw from
the analysis results (e.g., we may have missed a bug). Extreme cases of the
sampling dimension are “all valid variants” (A) and “a single variant only” (B).
When domain knowledge cannot be used for sampling, one can resort to sampling
heuristics (e.g., pair-wise sampling) which select a representative subset of the
variants.

Sampling can be combined with variability encoding or feature grouping–or
with both dimensions, which has not been considered in previous work [TAK+14].
For illustration, we start with an analysis that uses feature groups and analyzes
them with a family-based approach (variability encoding). Now, we limit the
analyzed feature groups such that they do not cover all variants of the system.
For example, in the printing-device system, we could choose to include Duplex
in all of the feature groups. This example shows a sampling approach because
we would only cover half of the variants of the system. Alternative sampling
approaches, such as pair-wise or triple-wise sampling, could be implemented

42

CHAPTER 3. THE PRODUCT-LINE–ANALYSIS MODEL

by limiting the family-based analyses on the feature groups. For example, the
analysis could skip situations which require more than two features to occur.
The described analysis is represented by a point in the middle of the cube. If we
choose to cover only a small fraction of the variant space, select small feature
groups and use a family-based analysis, the analysis would be represented by a
point near to G. If we choose to cover nearly all variants, with feature groups
that are nearly as large as variants and analyze them variant-based, then the
point would be near to A.

The remaining points of the cube (F, C, and H) also represent strategies
which use the dimensions to smaller or larger extent. We do not claim that all
corners of the cube are useful in practice. For example using a family-based
analysis on single features, point H, is probably not sensible. However, there
are useful strategies on the ranges between these points.

Some of the described analyses do not consider interactions between features.
For example, feature-based type checking provides type errors, type definitions
and type requirements for each feature. Each reported type error is based
on the code of one feature (e.g., a feature declares a variable as Integer and
uses it as an array). The definitions and requirements are lists of types,
which are provided by the feature, and which must be provided by other
features, respectively. Whether all requirements are actually provided in all
variants cannot be determined by a feature-based analysis. To detect feature
interactions, a subsequent analysis (e.g., family-based) is required to compare
the requirements gained by the first analysis. This second analysis would be
represented by a second point in the cube.

3.2 Formal Definition of the PLA Model

Next, we develop a formal definition of the PLA model. In our model,
variability-aware analyses consist of various steps that either combine fea-
tures (integration step), or process features or feature combinations to produce
a result (processing step). The model defines an algebra of expressions that
represent compound analyses (i.e., combinations of integration and processing
steps). We define four operators that can be used recursively to build complex
expressions. The operators are based on the dimensions of the PLA cube and
denote integration and processing steps. We introduce the operators for two
purposes: first, to give abstract descriptions of existing complex analyses and,
second, to develop and describe new analyses. Furthermore, we describe briefly
our experience with the tradeoffs of each operator.

The operators are general in the sense that they can be used to describe
any configurable-system analysis. However, they are not complete; to describe

43

3.2. FORMAL DEFINITION OF THE PLA MODEL

complex analyses, the operators are extended by textual descriptions. The
model helps to describe and illustrate the core concepts of the analyses.

In the description, we use the concepts of a partial configuration and a
partial variant. Partial configurations are selections of features that do not
yield a valid configuration, but which can be extended to a valid configuration
by enabling or disabling additional features. For example, in the printing-
device system (Section 2.1.1), the partial configuration with features Copy and
Base enabled can be extended to a valid configuration by enabling feature
Scan. A partial variant is a system generated based on the choices of a partial
configuration. The system may not be compilable (e.g., it might miss references
to code implemented in other features), and it might still contain variability
(e.g., ifdefs on which no choice has been made).

Operators Overall, we define four operators that work either on basic features
or on the results of other operators, as illustrated in Table 3.1. We call the
input and output items of operators objects. For example, an object could
be a system variant, a feature, a program with ifdef variability (some of the
variability may be resolved), or a variant simulator.

The fixed combinator (ρ) takes two objects and combines them to a
(partial) variant, in which both objects are fixed. In the resulting variant,
both objects are always activated and cannot be deactivated any more. If the
objects contain variability (e.g., two existing variant simulators), the variability
is preserved in the result (e.g., a composed variant simulator). An example of
the fixed combinator is the composition of two feature modules using a code
generator, such as FeatureHouse [AKL09]. The result contains the artifacts
from both operands, as shown in Figure 2.4, page 19. Normally, features cannot
be extracted from the result of a fixed combination. Our experience is that,
implementing an analysis that uses only the fixed combinator is relatively
easy, because the analyzed object contains little or no variability. This allows
reusing existing tools which are not variability aware. The downside is that
one needs to build and analyze many variants (exponential explosion) to cover
the configuration space. We use solid lines leading to a circle as visual notation
for the fixed combinator. The circle is filled iff the resulting object contains
variability.

The variability combinator (ν) takes two objects and a feature model,
and combines the objects into a single one. The combinator retains variability
information according to the given feature model. The resulting object is a
simulator in which each operand can be switched on and off at a later point in
time (e.g., as in Figure 2.9, page 36 at run time). An analysis that uses only
the variability combinator with the variability model of the system produces

44

CHAPTER 3. THE PRODUCT-LINE–ANALYSIS MODEL

Table 3.1: Operators of the PLA model. Filled circles denote artifacts which
contain variability. C and S denote the set of partial variants and simulators,
respectively. F is the set of features, and M is the set of propositional logic
formulas on F. S is the set of (partial) feature selections. For a detailed
discussion of the signatures, we refer to our original publication of the PLA
model [vRAK+13].

Operator Visual Definition Signatures

Fixed combinator ρ ρC(A1, A2, . . .) ρC : Cn → C
ρS(A1, A2, . . .) ρS : Sn → S

Variability combinator ν ν(A1, . . . , An,m) ν : ((C ∪ S)n ×M)→ S

Variability restriction † †C(A, sel) †C : (S× S)→ C
†S(A, sel) †S : (S× S)→ S

Processing step τ τ(A)
τC : C→ Cn
τS : S→ Sn

Operator Description

Fixed combinator Combines all operands into a new
object, where the operands are fixed

Variability combinator Generates a variable object from operands
(variable or fixed) with variability model m ∈M

Variability restriction
Restricts the variablity according to
a feature selection sel ∈ S
The sink circle is unfilled iff no variability remains

Processing step
Applies a processing step to a fixed or variable object;
the results are fixed or variable depending on
the input object

one simulator that includes the variability of the entire configurable system.
However, one could also use the variability combinator with a limited variability
model, generating a simulator for a part of the system. For example, instead
of using the variability model Φ̂ of the printing-device system, we could use
the limited variability model Φ̂ ∧ Duplex to simulate only variants with the
feature Duplex. Our experience is that the analysis of simulators is efficient,
because the analysis examines shared parts only once [AvRW+13; LvRK+13].
However, the analysis of a simulator is more expensive than the analysis of a
single variant, which can cause problems with limited system resources such
as main memory [AvRW+13]. We use dashed lines as visual notation for the
variability combinator. The lines lead to a filled circle representing an object
with variability information.

45

3.2. FORMAL DEFINITION OF THE PLA MODEL

The operator variability restriction (†) is used when existing variability
needs to be fully or partially eliminated. The operator takes one argument that
contains variability (e.g., a variable piece of code or a variant simulator) and
restricts it according to a given feature selection. A well-known example of this
operator is the C preprocessor cpp. If one applies cpp to a configurable system
that contains features implemented with ifdef directives, cpp eliminates all
directives and leaves only the code that correspond to a given feature selection.
Another application of variability restriction is to limit model checking of a
configurable system to a subset of its configurations (e.g., [tBFGM15]). The
variability-restriction operator has essentially the same tradeoffs as the fixed
combinator: relatively simple analysis of each resulting object, but to achieve
full coverage, potentially many objects have to be analyzed. In contrast to
the fixed combinator, which combines multiple objects, variability restriction
takes one object with variability and restricts variability. In the visual notation
the variability-restriction operator is denoted by a solid line leading from a
filled to a filled or unfilled circle, depending on whether the result still contains
variability information.

The operator processing step (τ) represents an analysis or a pre-processing
step that is performed on objects (features or combined structures). The
processing step produces results that can, again, be aggregated with other
transformation operators. An example processing step takes a feature’s source
code and filters the code for some properties. For example, we might verify
that a Linux driver correctly uses the spinlock protocol, which ensures mutual
exclusive access to resources. A spinlock is a data structure that can be
passed to function spin_lock and spin_unlock to obtain or release the lock.
When analyzing whether the locking infrastructure is used correctly (e.g., no
consecutive locking calls), we are interested only in the calls to the spin_lock
and spin_unlock functions. So, we can write a processing step that filters
these calls from the source code. The filtered features are then processed
with other operators. The main analysis can be executed more efficiently,
when uninteresting information has been filtered out as early as possible. Our
experience is that the efficiency of the processing step depends on whether it is
applied to an object with or without variability and whether the analysis tool
is variability-aware (e.g., see Section 6.5). That is, the tool can recognize parts
of the analyzed object that are not influenced by variability and analyze these
parts only once. We use a box as visual notation for a processing step.

46

CHAPTER 3. THE PRODUCT-LINE–ANALYSIS MODEL

B

D

S

C

B

D

S

C

(a) Variant-based

B

D

S

C

B

D

S

C

(b) Family-based

B

D

S

C

B

D

S

C

(c) Feature-based
and Family-based

Figure 3.2: Three possible operator combinations for the printer system (features
are abbreviated with first letter). The operators are always applied from left
to right.

Combination of operators The four operators can be combined to form
complex and powerful analyses that leverage the advantages of several operators
while reducing the disadvantages. Next, we illustrate three example analysis
patterns (Figure 3.2), which could be used in the analysis of the printer system
(Section 2.1.1).

• The pattern in Figure 3.2a creates all variants by applying the fixed
combinator in a brute-force fashion and analyzes the resulting variants
individually. This variant-based approach leads to many analysis runs. It
corresponds to point A in the PLA cube.

• The pattern in Figure 3.2b uses the variability combinator to generate a
variant simulator incorporating all features. The analysis of the simulator
requires special tools that can cope with the variability information. The
variant simulator captures the behavior of all variants and therefore it
might get very large and costly to analyze. This family-based approach
corresponds to point D in the PLA cube.

• The pattern in Figure 3.2c applies a processing step on each feature before
combining the results with the variability combinator. This can lead to a
small simulator that can be analyzed more efficiently. For example, we
can use the processing step to filter interesting functions (e.g., locking
and unlocking). The simulator would be much smaller and contain only

47

3.2. FORMAL DEFINITION OF THE PLA MODEL

the locking behavior that we are interested in. However, implementing
this analysis pattern requires three tools: an abstraction mechanism for
filtering, a tool to combine the abstraction results into a simulator, and
a tool that can analyze the abstract simulator. Few off-the-shelf tools
provide these functionalities, so this analysis requires special tools. The
implementation effort causes a higher upfront investment for the right
analysis pattern than for the left or the middle one. This approach
combines a feature-based step with family-based analysis and, therefore,
it is represented by points E and D in the PLA cube.1

Sampling by combining operators Using the operators, sampling can be
accomplished in several ways:
• When using the fixed combinator ρ, a sample set can be build by con-

structing only some valid variants. For example, τ(ρ(BasicPrinter , Scan))
is a sampling analysis of the printer system based only on the variant in
which BasicPrinter and Scan are enabled.
• The variable combinator ν has a feature selection that determines the

variability model of the resulting object. This feature selection is used to
restrict the analyzed variants to a sample set of interesting configurations.
To this end, a restricted variability model that allows only the interesting
configurations is used as operand. If only processing steps on features
are used, then sampling can be accomplished by analyzing only a subset
of features.

Notational sugar We noticed two patterns that occur in many analysis
descriptions. Given that they are quite cumbersome to draw, we introduce
notational sugar that can be used as a shortcut. The first pattern is the
generation of all valid variants from a given set of features. In our model, this
pattern is expressed by multiple applications of the fixed operator (shown in
Figure 3.2a). As shortcut, we denote this pattern by a trapezoid, as shown
in Figure 3.3a. The second pattern is the application of a sampling heuristic
where only a subset of all valid variants are generated. We denote this pattern
by a reversed trapezoid shape that reflects that only few variants are generated,
as shown in Figure 3.3b.

1Point H represents an analysis that uses the family-based strategy in each feature(-group).

48

CHAPTER 3. THE PRODUCT-LINE–ANALYSIS MODEL

(a) Generate all variants (b) Generate a sample set of variants

Figure 3.3: Simplified notation for recurring analysis patterns for configurable
systems. The notation in Figure 3.3a represents the generation of all valid
variants and the notation in Figure 3.3b represents the generation of a subset
of all valid variants (sampling).

3.3 Categorizing Existing Analyses

In this section, we categorize existing analyses by means of our formal model,
to demonstrate the capabilities of our model for systematic description and
comparison of analyses for configurable systems. Our experience is that it was
relatively easy to express these high-level descriptions of complex variability-
aware analyses using our model.

Configurable-system verification with variability encoding In the
past, the verification of functional properties of configurable systems was
often limited to the verification of abstract models or to the verification of a
sample set of variants. In recent years, several researchers [ASW+11; CHSL11;
CHS+10; KATS12; TSAH12] have developed analysis techniques that can
be summarized as variability-encoding techniques (Chapter 5). They aim at
encoding the functional behavior of all valid system variants in one variant
simulator and use model checking or theorem proving to verify the simulator
correctness. If the simulator can be proved correct, then all variants satisfy
the functional properties. Features that are unknown when the simulator is
generated cannot be included subsequently, so this is a closed-world approach.

In terms of our model, the techniques use a variability combinator to build
the simulator and then use a processing step for model checking (Figure 3.2b).
In the work of Classen et al. [CHSL11; CHS+10] and Thüm et al. [TSAH12], the

49

3.3. CATEGORIZING EXISTING ANALYSES

Interface extraction
and preliminary analysis

...

Interface

Combining
interfaces
(sampling)

Interface-combination
analysis

A

B

C

D
E

F G

H

Variant-based

Feature-based
processing

Figure 3.4: Pattern of the analysis of Li et al.[LKF05] and the corresponding
points in the cube. In the first step, all features are analyzed and interfaces of
the features are extracted (feature-based, point E). Then, selected combinations
of these interfaces are analyzed to find critical feature interactions (point on
plane A–B–F–E). The dashed lines between the figures indicate which point
corresponds to which set of processing steps.

first step was done manually, whereas we used an automatic combination tool
(Chapter 5 and Chapter 6). In terms of our model, both analysis approaches
are expressed by the schema shown in Figure 3.2b, and they are located on
point D in the PLA cube (Figure 3.1).

Modular verification of configurable systems Li et al. [LKF05] used
modular verification to check the correctness of features in an open-world setting.
In an open world, features are developed in isolation, possibly by different
teams, which are not aware of each other. For example, when extending a
framework, plug-in developers may not know about all other plug-ins in the
system [ABKS13]. Yet, the features (and plug-ins) have to satisfy specifications
when working together. To prove feature compatibility, Li et al. have used
a feature-based processing step, in which they analyze individual features
and extract interfaces. During this processing step, they already search for
specification violations in the features. Then, the feature-based interfaces are
aggregated in a combination step (fixed combination). In most cases, only two
feature-interfaces are combined, so the results are not necessarily variants. The
resulting abstractions of feature combinations are analyzed to detect feature
interactions that cause violations of the the configurable-system specifications.
This approach incurs less effort than analyzing all concrete variants or all
concrete combinations of features. This analysis approach can be expressed in
our model as shown in Figure 3.4. The analysis uses two sub analyses. The first

50

CHAPTER 3. THE PRODUCT-LINE–ANALYSIS MODEL

...

10 s

20 s

120 s

140 s

10 s

20 s

Minimal product with F

Product with
dependencies of F

Maximal product with F

Maximal product without F

B

F

X

Z

Figure 3.5: Pattern of the analysis of Siegmund et al. [SKK+12]. F denotes
the feature under analysis, B is the base variant F depends on, and X to Z
are all other features. The circles with bold frame denote variants that contain
feature F.

sub analysis is feature-based (point E in the cube). The second sub analysis is
analyzing a sample set of groups of feature interfaces. It is represented by a
point on the plane A–B–F–E.

Detection of non-functional feature interactions Siegmund et
al. [SKK+12] developed an analysis technique to automatically detect fea-
ture interactions based on performance measurements. In this context, a
feature interaction between two features is a change in application performance
that is only measured when both features are present. For example, a feature F
contributes a minimum of 10 seconds to the total run time of a system. Another
feature X has no influence on the run time when used without F. However,
in each variant which contains both, F and X, they interact and consume 20
seconds. For their analysis, Siegmund et al. used a combination of feature-based
and variant-based sampling strategies, which is shown in Figure 3.5. In the
PLA cube (Figure 3.1), it is located on the plane between points A, B, F and
E, because grouping and sampling are combined. The analysis determines
whether there is an interaction between feature F and any other feature in the
configurable system, and it calculates the set B of features that F depends
on. Then, it measures the performance of, (1) the variant that contains only
the features B, and (2) the variant that contains the features F and B. The
difference between these measurements is used as prediction for the performance

51

3.3. CATEGORIZING EXISTING ANALYSES

Parsing Type checking

Type errors

Module
interface

Type errors

Module
interface

Linker check
AST with
variability
information

X

Y

A

B

C

D
E

F G

H

Variant-based Family-based

Figure 3.6: Visualization of an analysis by Kästner et al. [KOE12] and the
corresponding point in the cube. X and Y denote the files under analysis. Both
files contain variability information (in ifdef annotations). The analysis executes
parsing and type checking on the files and then checks the compatibility of the
inferred type interfaces.

of F. In this example, the influence which the feature F has on performance
is estimated to be 10 seconds. To detect interactions, the analysis builds
another pair of variants that contain more features (again the only difference
between the variants is F). If the difference between the measurements of the
second pair (20 seconds in this example) is different from the first pair, then
there exists an interaction between F and some other feature. The analysis
is sample-based, because it uses a systematically chosen set of four variants.
To determine which features do interact, one can systematically evaluate more
pairs of variants [SKK+12].

Variability-aware type checking Kästner et al. [KOE12] developed an
analysis for type checking of large annotation-based systems in C. The authors
used the analysis to determine type- and linker errors in Busybox. The
analysis can be expressed in terms of our formal model as shown in Figure 3.6.
Each file contains C code with variability annotated in cpp directives. As first
step, Kästner et al. parse and type-check each file separately using the family-
based strategy. For each file, this yields an abstract syntax tree (AST), an
intermediary representation of the hierarchical syntactic structure of the code
file [ALSU06]. The ASTs are then type checked separately. The type checking
step reports possible type errors and generates a type interface (imported
and exported symbols) of the file. As each file of the Busybox system uses
only part of the configuration options, this step is based on feature groups (a
group of features per file). In the second step, the type interface is checked for
compatibility with type interfaces of other files (linker check). The analysis uses
a fixed combinator (interface combination) on objects containing variability.

52

CHAPTER 3. THE PRODUCT-LINE–ANALYSIS MODEL

In terms of the cube, the parsing and type-checking step uses a family-based
analysis on feature-groups and it is represented by a point between D and H.
The second step (dependency checking between files) is a family-based and
represented by point D.

3.4 Related Work

The PLA model is based on three basic analysis strategies (feature-based,
variant-based, and family-based), which have been documented in a recent
literature survey [TAK+14]. This survey also discusses simple combinations of
the strategies, but it does not take the step to formalize them in a coherent
model, such as the PLA model. Furthermore, the survey discusses which types
of configurable-system analyses have been published and, more importantly,
how they are compared to other strategies. In our research, we showed that
the family-based strategy often outperforms variant-based and sample-based
strategies. We assume that this efficiency is the reason why most publications
that were considered in the survey publish family-based strategies. However,
almost a third of all considered approaches rely on generating all variants,
which is infeasible on large configurable systems. This suggests that our model
might be useful to raise the awareness of complexity problems and possible
solutions.

The survey of Thüm et al. [TAK+14] also contains an overview of pub-
lications that compare different strategies. In many studies, a particular
(optimized) strategy is compared against an unoptimized variant-based strategy
(e.g., [CEW14; CHS+10; CCP+12]) or a sample-based strategy (e.g., [AvRW+13;
LvRK+13]). The main conclusion of the survey is that the field of configurable-
system analysis is broad and diverse. Some strategies have been used very
often (most notably the family-based strategy) and other strategies are under-
represented (e.g., the feature-based strategy).

Interestingly, there is evidence that even sampling does not scale to very
large configurable systems. In a study, Liebig et al. generated sample variants of
very large configurable systems (e.g., Linux) to compare sample-based analyses
against family-based analyses [LvRK+13]. They used different coverage criteria,
such as code coverage or pair-wise coverage, to generate the sample sets. It
turned out that the generation of the sample sets required significant effort and
time compared to the actual analysis. In many cases the family-based analysis
was faster than the generation of the sample variants. Furthermore, the sample
sets, by design, only covered a very small part of the configuration space of the
configurable systems.

53

3.5. SUMMARY AND OUTLOOK

3.5 Summary and Outlook

The PLA model is a guide line for researchers investigating configurable-system
analysis. It is build on reoccurring patterns that we identified in analyses
for configurable systems. We demonstrated the usefulness of the model for
the comparison of analyses by means of existing configurable-system analyses
(Section 3.3). Our initial experience with the model suggests that it is helpful
for the description of complex analyses. Of course the model is rather abstract
as we do not focus concrete sampling heuristics or implementation mechanisms
(e.g., module-based or annotation-based variability). Despite the numerous
points in the cube which we illustrate with examples, most of the cube is
unexplored.

Consequently, one interesting next step is to investigate different planes
on (and in) the cube to establish how combinations of the dimensions influ-
ence analysis performance (e.g., run time, efficiency or memory consumption).
Existing studies have mainly compared two or three strategies against each
other. However, to isolate the effects of different combinations of strategies, one
would choose a representative set of strategies along the investigated dimen-
sions. Comparison of these strategies (in the same environments such as case
studies, implementation frameworks, etc.) would yield insights how analysis
performance evolves when dimensions are used and combined to more or less
extent. For example, one could develop an analysis that combines either all
pairs, or all triples of features to feature groups and runs type checking on
these groups. The type checking could be done variant-based, which would
place the analysis on plane A–E–F–B. Alternatively, the analysis could be run
family-based (plane D–H–G–C).

In this thesis, we explore some parts of the cube, however it is beyond the
scope of this thesis to provide complete experimental coverage of the cube.
Instead we focus on interesting and promising points which we summarize in
the following paragraphs (illustrated by Figures 3.7, 3.8, and 3.9).

Variant-based, family-based, and sample-based model checking We
developed an approach for family-based model checking, which we describe in
Chapter 6. We evaluated our approach against variant-based and sample-based
model checking (Section 6.5). In this evaluation, we explore several dimensions
of the cube as illustrated in Figure 3.7: Our family-based model-checking
approach is represented by point D and we compare it to the variant-based
strategy (point A) and to three different sample-based approaches (between
points A and B). Our evaluation shows that family-based model checking is
more efficient than variant-based and sample-based model checking.

54

CHAPTER 3. THE PRODUCT-LINE–ANALYSIS MODEL

A

B

C

D
E

F G

H

Variant-based

Single
variant

Family-based

Figure 3.7: Family-based, variant-based, and sample-based model checking
(described in Section 6.5)

A

B

C

D
E

F G

H

Variant-based Family-based

Figure 3.8: Model checking with a variant-based and family-based strategy
(described in Section 6.6)

Combining family-based and variant-based model checking To ex-
plore range A–D of the cube, we implemented a model checking approach
that is based on a partitioned family of system variants (Section 6.6). Each
partition of the family represents a set of variants which is encoded in a variant
simulator. Each simulator is then verified and, together, the partition-based
results yield correctness information for the entire system.

As each system family can be partitioned in many possible ways, we evalu-
ated all possible partitioning strategies for a set of example systems. Therefore,
our evaluation represents the whole range of strategies from point A to point D
(illustrated in Figure 3.8). Our evaluation (Section 6.6.3) shows that combined
strategies lead to lower memory consumption (compared to the family-based
strategy) and faster verification (compared to the variant-based strategy).

55

3.5. SUMMARY AND OUTLOOK

A

B

C

D
E

F G

H

Variant-based Family-based

First step (Sifta and DidFail)

DidFail

Sifta

Sifta on partitions

Figure 3.9: Different strategies for analysis of large sets of Android apps
(described in Section 7.4)

Analyzing large sets of Android apps In Section 7.4, we describe an
analysis that applies feature-based processing to Android apps and analy-
ses the results in a family-based fashion (Figure 3.9, points E and D). We
implemented this analysis is implemented in our tool Sifta [vRBS+15]. We
compared this feature-based and family-based analysis with a related analysis
that uses the same feature-based step, but then uses a variant-based strategy
(DidFail [KFB+14], points E and A). Furthermore, we improved our analysis
by applying it’s second, family-based step on partitions of the app set. Each
partition represents a groups of apps and therefore, this strategy is represented
by the green point in Figure 3.9. This improvement reduces the main memory
needed during the analysis and makes it applicable to very large sets of apps
(51 935 apps in our experiment, Section 7.5.2).

56

CHAPTER 4

Presence-Condition Simplification

This chapter shares material with the publication “Presence-Condition Simpli-
fication in Highly Configurable Systems” in ICSE’2015 [vRGA+15].

In the studies that lead to this thesis, we designed, implemented and
evaluated several analyses for configurable systems (e.g., Chapters 6 and 7). In
variability-aware analyses, presence conditions are usually of central importance
because they denote in which configurations interesting situations (e.g., a
defect) occur. However, we experienced that presence conditions are often
very complex. In fact, they are often more complex than necessary because
they contain redundant or uninteresting information. In this chapter, we
describe this problem formally and present a solution called presence-condition
simplification. We also present the results of our evaluation of three algorithms
for presence-condition simplification on real-world use cases and subject systems.
All three algorithms have been introduced by other researchers in different
fields of computer science.

In our work on variability-aware verification, we found many presence con-
ditions denoting conditions for detected defects in analyzed systems (described
in Section 6.2). For example, our tool SPLverifier (described in Chapter 6)
reports the following defect in the E-Mail system (cf. Section 2.1.4):

1 Specification 11 violated on condition
2 encrypt && decrypt && keys &&
3 ((sign && verify && base && autoresponder) ||
4 (!sign && !verify && base && autoresponder))

57

When receiving this verdict, a user has to understand how the defect occurs and
which configuration options contribute to the defect before working on fixing it.
Simplifying the presence condition and identifying the responsible options help
in fixing the defect [AvRW+13]. A closer inspection of this example reveals
that the defect is caused by an interaction of only two options, encrypt and
autoresponder. All other parts of the presence condition (e.g., encrypt requires
keys) are redundant because they are already implied by the variability model.
The model-checking process introduces such redundant parts because, as an
optimization, it analyzes only configurations that are valid with respect to the
variability model (cf. Section 6.2.4). A desirable simplification of the presence
condition is to identify encrypt and autoresponder as the sole cause of the
defect and to “hide” the redundant parts. In our example, the simplified report
is as follows:

1 Specification 11 violated on condition
2 VariabilityModel && (encrypt && autoresponder)

A straightforward way to simplify a presence condition is to find the smallest,
but equivalent expression. This problem is known as the minimum-equivalent-
expression problem [BU11; HS11]. Although finding a minimal equivalent
expression might reduce the size of the presence condition, the minimal equiv-
alent expression is still larger than necessary. One reason for unnecessarily
large expressions is that variability-aware analyses, such as our model-checking
approach (Section 6.2), typically consider only configurations satisfying the
variability model. Thus, the variability model is often an integral part of every
reported presence condition, even though the condition describes only a local
situation or fact. Since the variability model must be satisfied globally, this
information obfuscates the presence condition.

Our goal is to simplify a given presence condition such that it becomes
smaller and can be used instead of the original presence condition. We explicitly
do not aim to preserve equivalence of the simplified and the original presence
condition. In the example above, we want to remove the constraints already
enforced by the variability model from the presence condition and show only
the rest to the user. This rest must be satisfied in addition to the variability
model to reach the situation of interest (e.g., it identifies the source of the
defect).

problem
definition

To this end, we introduce the presence-condition-simplification problem
and present a formal definition of the problem. We are interested in a function
simp(p, m) such that the expression p′ = simp(p, m) is equivalent to the
presence condition p under all assignments that satisfy the context m of the
presence condition: m⇒ (p′ ⇔ p). In addition to this invariant, the size of p′
should be as small as possible (we define a size measure in Section 4.2). The

58

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

presence condition p and the context m are Boolean expressions, and we require
that p is embedded in m, which means that p is evaluated only if m is satisfied.
A simplification function ’simp’ receives two Boolean expressions p and m and
returns a Boolean expression.

Besides simplification of presence conditions in tool reports, there are many
other application scenarios such as the simplification of ifdef preprocessor
directives and the simplification of cross-tree-constraints in feature models. We
included these scenarios in our evaluation (Section 4.4). Based on our work,
presence-condition simplification has been integrated in the variability-aware
analysis tool TypeChef [KGR+11].

solution
algorithms

We developed a brute-force algorithm as solution for the presence-condition-
simplification problem (simpBF in Section 4.3). However, this algorithm has
an exponential complexity, so we cannot use it in realistic application scenar-
ios. Instead, we identified and adopted three heuristic algorithms from the
area of circuit optimization. We apply these algorithms to solve the presence-
condition-simplification problem (although the solutions are not guaranteed to
be optimal). To the best of our knowledge, the algorithms have not yet been
applied to the simplification of presence conditions before. The first algorithm,
Restrict [CBM90], is based on BDDs [Bry92]. The second and third algo-
rithms are solutions for two-level logic minimization: the Quine-McCluskey
algorithm [McC56; Qui52] and the Espresso algorithm [BSMH84]. We discuss
the algorithms and how they are adopted in Section 4.3.

To compare the three algorithms and to explore their feasibility and effec-
tiveness for presence-condition simplification, we ran a series of experiments on
three application scenarios and 29 subject systems (Section 4.4). We evaluated
processing time and size reduction of presence conditions for the three algo-
rithms. Our results show that presence-condition simplification can achieve
substantial improvements in reasonable time for various realistic application
scenarios. For example, in an experiment where we simplified analysis results
of family-based verification (E1, Section 4.4.1), one simplification algorithm
(simpBDD) reduced the size of presence conditions by 59%, on average. Further-
more, we analyzed how the simplification algorithms scale with the increasing
complexity of the input expressions. We provide a replication package for our
experiments and further detailed results on the supplementary website.

4.1 Application Scenarios

Although the application domain is much broader, we are particularly interested
in presence-condition simplification in the context of developing and analyzing
highly configurable systems. Next, we illustrate three application scenarios.

59

4.1. APPLICATION SCENARIOS

4.1.1 Reporting Analysis Results

Variability-aware analyses often report the condition under which certain
events or states occur as presence conditions. Recall the example presence
condition from the chapter introduction. The presence condition is reported
by SPLverifier (Chapter 6,[AvRW+13]) for a violation of a specification in
the E-Mail system. Such violations indicate either an incomplete variability
model, which should be fixed to prevent defective configurations, or a defect in
the system.

Since SPLverifier verifies only configurations that satisfy the variability
model, which is standard in variability-aware analyses [TAK+14], the reported
presence conditions may contain facts that are already implied by the variability
model. This mix of defect condition with variability-model constraints hinders
understanding and pinning down the source of a defect. Even though the E-
Mail system has only nine configuration options, the reported defect conditions
are often unnecessarily complicated. The defect conditions we encountered
for the E-Mail system have between 5 and 17 literals. As shown in the
introduction, we yield a presence condition containing only 2 instead of 11
literals1 for the presence condition shown on page 57:

1 Specification 11 violated on condition
2 VariabilityModel && (encrypt && autoresponder)

4.1.2 Simplification of Variability Annotations

Variability annotations are directives in a system’s source code that conditionally
include or exclude parts of the code (cf. Section 2.1.3). We focus on two
implementation mechanisms for variability annotations: conditional inclusion of
files in build scripts and #if preprocessor directives (described in Section 2.1.3).
Figure 4.1 shows an example of both mechanisms used together, taken from the
Linux kernel v3.4. Figure 4.1a shows an excerpt of the Makefile in the kernel
directory. It states that the object file of lockdep.c is included if option LOCKDEP
is enabled. Figure 4.1b shows an excerpt of file lockdep.c, which contains several
#if directives.

nested
variability

Observe that, in the example, the innermost #if directive (Figure 4.1b,
Line 1301) is enclosed by two conditions: the #if condition in Line 826 and the
condition from the Makefile. The conjunction of both enclosing conditions is the
context of the condition in Line 1301: m = (LOCKDEP ∧ PROVE_LOCKING) and

1We do not count the variability model as a literal because users know that it is enforced.
We added it to the simplified presence condition for the sake of completeness.

60

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

32 ...
33 obj−$(LOCKDEP) \
34 += lockdep.o
35 ...

(a) Excerpt from
kernel/Makefile

826 #if defined(PROVE_LOCKING)
827 ...
1301 #if defined(TRACE_IRQFLAGS)
1302 && defined(PROVE_LOCKING)
1303 ...
1674 #else
1675 ...
1688 #endif
1689 ...
2146 #endif

(b) Excerpt from kernel/lockdep.c

Figure 4.1: Nested variability annotations with redundancy

p = (TRACE_IRQFLAGS∧ PROVE_LOCKING). Using presence-condition simplifica-
tion, we can remove the redundant term PROVE_LOCKING from the condition of
the inner preprocessor directive without changing the behavior of any variant
of the Linux kernel: simp(p, m) = TRACE_IRQFLAGS.

Admittedly, the expressions involved in this example are relatively simple,
so a developer might be aware of the redundancy and leave it for documentation.
Still, in more complex cases, simplification can be more effectful, especially
because it is also beneficial for tools working on the code to ease automatic
reasoning.

Automatic code analysis of systems with ifdef variability is difficult be-
cause the preprocessor directives can be interleaved with normal C code in
complicated ways. The tool TypeChef [KGR+11] solves this problem by
providing a variability-aware parser for C code with ifdef directives. It is used
in many research projects [KvRE+12; LvRK+13], which would benefit from
presence condition simplification. TypeChef resolves preprocessor directives
and macros, and it generates an abstract syntax tree (AST), preserving the vari-
ability induced by ifdef directives. Technically, nodes in the AST are annotated
with the presence conditions that correspond to the ifdef directives. Due to
approximation in the parsing process (e.g., macro expansion) [KGR+11], these
presence conditions are often an overapproximation of the actual presence condi-
tions and contain redundancy. We can make the AST generated by TypeChef
more concise by simplifying the presence conditions with their context (presence
conditions of ancestors in the AST conjoined with the presence condition of
the file), which improves the performance of subsequent analyses, such as type
checking or data-flow analysis [LvRK+13].

61

4.1. APPLICATION SCENARIOS

BasicPrinter Duplex Scan Color

Copy

Printer

Mandatory
Optional
Abstract
Concrete

Copy⇒ Color Duplex⇒ BasicPrinter

Figure 4.2: Extended feature model of the printing-device system

4.1.3 Variability-Model Generation

A variability model can be expressed in different encodings. In this work, we
use Boolean expressions, but other scenarios require richer representations, such
as feature models by Kang et al. [KCH+90]; Figure 4.2 shows a representation
of the feature model of an extended version of the printing-device system.

Such a model contains a hierarchy that shows dependencies between the
configuration options (child–parent implication). For example, selecting option
Copy implies selecting its parent Scan. Constraints that cannot be encoded
in the hierarchy are written as separate cross-tree constraints. For example,
the dependency from Copy to Color is expressed as cross-tree constraints (we
introduced this dependency as illustration).

If a variability model is given as a Boolean expression (for instance, when
extracted from source code [SLB+11]), it is sometimes desirable to transform
it into a visual model for presentation. There are a number of approaches
(e.g., [SLB+11]) that synthesize a hierarchy (shown as tree in Figure 4.2) and
constraints between siblings in the hierarchy. All constraints that cannot
be encoded in the hierarchy or as sibling constraints are added as cross-tree
constraints.

If the cross-tree constraints are still complex, it is advisable to simplify them
using the hierarchy and the sibling constraints as context. That is, the cross-tree
constraints should not restate the dependencies covered by the hierarchy or the
sibling constraints. For example, the cross-tree constraint Duplex⇒ BasicPrinter
in Figure 4.2 is redundant as this dependency is already documented in the
tree (BasicPrinter is mandatory). Given the hierarchy constraints h, the sibling
constraints s, and the cross-tree constraints ctc, we can simplify the cross-tree

62

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

constraints with simp(ctc, h ∧ s). The result of simplification can replace the
original cross-tree constraints, because the context of hierarchy and sibling
constraints always hold.

4.2 Problem Formalization
As said previously, the function simp(p, m) takes two arguments: a presence
condition p and a context m. The goal is to represent the relevant information
in p as concise as possible. Information is relevant if it cannot be derived from
the context of p. The input parameters and the result of the simplification are
Boolean expressions. We explore the problem and the described algorithms
(Section 4.3) only in the configurable-systems context, even though they are not
limited to this area (the algorithms are applied on general Boolean expressions
which are used in many areas of computer science).

non-tautology
context

We assume that the context m is available and holds significant information
on the situations in which p can be evaluated. If it is not available, or if it
represents a tautology, then we have to assume that all information in p is
relevant to identify the situation or fact that p represents. In this case, the only
possibility to improve the presentation of p is to generate a minimum equivalent
expression for p [BU11; HS11]. However, in the scenarios that we focus on,
usually a substantial, non-tautology context is available (e.g., a variability
model).

Presence conditions are meant to be evaluated only if the context m holds.
The information encoded in a presence condition p is essentially the set of
implicates of p.2 Elements of this set can be categorized as follows: An
implicate of p is either (1) also an implicate of m or (2) not an implicate of
m. Implicates in group 1 are redundant and can be dropped because they are
already implied by the context. Some implicates in group 2 are implied by
elements of group 2 conjoined with m and are therefore also redundant. If
we can extract the essential, non-redundant elements of group 2 and present
them as a replacement for p, this would be sufficient, because the context m
guarantees that the implicates in group 1 are satisfied. Hence, we do not search
for an equivalence-preserving function, but we aim at removing implicates from
p if they are redundant with respect to m and if they increase the size of p.

The set diagram in Figure 4.3 illustrates the relationship between p, m, and
simp(p, m) in terms of the configuration space of a configurable system. The
white rectangle m represents the set of all valid configurations. The rectangle
p represents the set of configurations denoted by the presence condition. p

2An implicate of an expression p is an expression that is implied by p. For example, A∨B
is an implicate of A ∧B because (A ∧B)⇒ (A ∨B).

63

4.2. PROBLEM FORMALIZATION

Context m

Presence condition p

Simplified presence condition simp(p,m)

Figure 4.3: Illustration of presence-condition simplification. Each point on
the plane represents a configuration. The crosshatched area denotes the
overlapping of the area of p and simp(p, m) . The simplified presence
condition can include configurations that are not included in the context if it
helps reducing the size of the condition.3

encloses only configurations that are in m. Also, p is (often) smaller than
m because it specifies a certain local condition within the global space of
configurations. The rectangle simp(p, m) represents the simplified presence
condition. It encloses all configurations of p, but also configurations outside
of m, if it helps to remove implicates from the expression (i.e., if it reduces
the size of p). The objective is that the area of simp(p, m) represents a more
concise expression than p.

Formally, the invariant of simp(p, m) is:

m⇒ (simp(p, m)⇔ p) (4.1)

This invariant states that, in the context ofm, the expressions p and simp(p, m)
are logically equivalent. Therefore, we can use simp(p, m) as replacement for
p, provided that m holds.

Equation 4.1 is a sufficient condition for the correctness of replacing all
occurrences of p in the context m by simp(p, m). In the simplest case,
simp(p, m) = p would be a valid solution. However, our goal is to sim-
plify p. So, we define an objective function stating that simp(p, m) must be
minimal according to a given measure size:

∀x :
(
m⇒ (x⇔ p)

)
⇒
(
size(simp(p, m)) ≤ size(x)

)
(4.2)

Defining a general measure for the size of Boolean expressions is not reason-
able as it depends on the application scenario. In the application scenarios we

3A condition that includes more configurations can be smaller in size than a condition
with more implicates.

64

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

are interested in (cf. Section 4.1), conciseness of expressions is most important,
because they are usually presented to the user. In other cases, expressions
are used to generate hardware circuits, for which other optimization goals are
needed (driven by hardware cost or minimization of signal run times).

In practice, we have to compare formulas given in notations with different
constraints (e.g., CNF, DNF, or BDD) because different simplification algo-
rithms (described in Section 4.3) have different input and output formats. To
avoid bias of different notations, we focus on the complexity of the encoded
formula. To this end, we convert all expressions to a canonical normal form
before comparison. As canonical form, we choose a reduced if-then-else normal
form (derived from BDDs) that contains only ∧, ∨, and ¬ as operators.

After the expressions are converted to the same notation, there are several
possible size measures for comparison. We choose the number of occurrences
of literals as size measure because it represents the total expression length
and is not influenced, for instance, by lengths of variable names. So, for the
remaining sections of this chapter, we define the measure size(y) as the number
of occurrences of literals in the string representation of an expression y in
canonical form. For expression y = (A ∧B) ∨ (¬A ∧C), size(y) = 4 (B,C, and
twice A).

We also evaluated the number of operators and the number of nodes in
a BDD representation as alternative size measures, but observed no major
deviations in our experiments (cf. Section 4.4). In their work on the minimum-
equivalent-expression problem, Hemaspaandra and Schnoor [HS11] have also
used the number of occurrences of literals and the number of operators. We
decided against measures such as the depth of an AST of the formula, because
a CNF/DNF representation would always have depth 2, which renders the
measure useless for our purpose.

4.3 Algorithms

In this section, we introduce four algorithms solving the presence-condition-
simplification problem: Brute-Force (simpBF), Restrict (simpBDD),
Espresso (simpE), and Quine-McCluskey (simpQC). simpBF finds an
optimal solution, but it iterates over all possible solutions, which is inefficient.
The other three algorithms employ heuristics to reduce computational effort
while still satisfying the invariant of Equation 4.1.

Except for the very simple simpBF algorithm, we did not develop the solution
algorithms ourselves and treat them as black boxes. Therefore we limit our
description of the algorithms to basic facts and refer to detailed descriptions in
textbooks for further details.

65

4.3. ALGORITHMS

Algorithm 4.1: Brute-Force (simpBF)

Data: Expr p, Expr m
Result: Expr min
min = p;
for clause_set ∈ P(clauses(CCNF(p))) do

s =
∧

(clause − Set);
if
(
m =⇒ (s⇔ p)

)
∧
(
size(s) < size(min)

)
then min = s;

end
return min

Naive solution The Brute-Force (simpBF) algorithm enumerates all im-
plicates of p as shown in Algorithm 4.1. Technically, it uses the clauses of the
canonical conjunctive normal form (CCNF) of p. Then, it builds the powerset
of these clauses. For each element of the powerset, the algorithm tests whether
it satisfies Equation 4.1 and therefore qualifies as a solution. From all possi-
ble solutions, the algorithm selects an optimal solution according to the size
measure.

The CCNF has 2n clauses for n configuration options. Therefore, the size
of the powerset of the set of clauses is 22n , and we have to iterate through the
entire set. Due to its computational complexity, we cannot use simpBF in our
experiments.4 However, we use it as theoretical baseline for the complexity of
the optimal solution of presence-condition simplification.

BDD simplification The second algorithm was first described by Coudert
and Madre [CBM90] in 1989 as the Restrict algorithm (simpBDD). The
Restrict algorithm takes two expressions p and m represented as BDDs
and generates a third BDD c = simpBDD(p,m) that satisfies the invariant of
Equation 4.1 [CBM90]. Basically, Restrict compares branches of the BDDs
p and m recursively and projects p to BDD nodes that occur only in p and not
in m. The algorithm is intended to minimize the number of nodes in the BDD
representation of simpBDD(p,m). This is in line with our optimization goal, but
as the algorithm uses heuristics, it does not always generate optimal results. In
the original publication of the algorithm [CBM90], it is described only in prose.
Therefore, we illustrate the algorithm with a pseudocode implementation that
we provide in the Appendix (page 224), due to its size. For further details, we
refer to the original publication [CBM90] and to the supplementary website.

Like many other BDD algorithms, simpBDD is a polynomial-time graph-
manipulation algorithm (if caching is used). In the worst case, the size of the
graph may be exponential in the number of the variables, which renders the

4Our implementation works for up to four configuration options.

66

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

algorithm also exponential in the number of variables. However, in practice,
many useful Boolean functions have compact BDD representations [GPFW97].

Two-level logic minimization The third solution is to transform the prob-
lem of presence-condition simplification into a two-level-logic-minimization prob-
lem [CS02], which can be solved with the Quine-McCluskey and Espresso
algorithms (simpQC and simpE). The attribute “two-level” arises from the
fact that input expressions are expected in DNF, and a DNF has two levels
(the global level with ∨ operations and the clause level with ∧ operations).
Two-level logic minimization receives an expression f and a second expression
dc, which represents a don’t-care set. The expressions divide the entire space of
option assignments into three partitions: (1) the set of assignments for which
f ∧ ¬dc is satisfied, called the ON set, (2) the set of assignments for which
¬f ∧ ¬dc is satisfied, called the OFF set, and (3) the DC set for which dc is
satisfied. The result of two-level logic minimization is a simplified version of f .

Mapped to our problem, expression f represents the presence condition p.
DC describes variable assignments for which the result simpE(p, m) need not
be equivalent to p. In our case, these are all variable assignments that are not
valid in the context (¬m). That is, DC is the piece of information needed for
minimization. So, the setup f ≡ p and dc ≡ ¬m satisfies Equation 4.1.

Quine-
McCluskey

Two-level logic minimization can be exact or heuristics-based. An exact
algorithm determines the minimal set of prime implicants needed to represent f
without respecting dc. It can be solved with the Quine-McCluskey algorithm,
which has exponential time complexity (the problem it solves is NP-hard). In a
nutshell, the algorithm starts with computing all prime implicants for the union
of the ON and DC sets. Finding the smallest set of these prime implicants
that still cover f is basically a set-covering problem, which is NP-hard.5 The
algorithm uses reduction techniques and a branch-and-bound strategy to solve
this problem [CS02].

EspressoFor performance, several heuristics have been developed. The most promi-
nent heuristic-based algorithm is the Espresso algorithm [CS02], which utilizes
a local search without generating all prime implicants. It is composed of three
main operations: expand, reduce, and irredundant. The operations expand and
reduce are applied to improve the current term during optimization, and the
operation irredundant is used to get out of a local minimum. In our experi-
ments, we evaluated the Espresso algorithm, denoted with simpE, and the
Quine-McCluskey algorithm, denoted with simpQC . For further details on
the algorithms, we refer to an overview paper [CS02].

5The decision version of set covering is NP-complete and the optimization version is
NP-hard [CSRL01; KV07].

67

4.4. EVALUATION

4.4 Evaluation

We evaluated simpBDD, simpE, and simpQC guided by two research questions:
RQ1 Is presence-condition simplification able to reduce the size of presence

conditions with a known context substantially?
RQ2 How does the processing time of the algorithms simpBDD, simpE, and

simpQC scale to complex simplification tasks?
We evaluated these research questions on the application scenarios described

in Section 4.1 on, overall, 29 example configurable systems. As a measure of
simplification (RQ1), we compared the number of occurrences of literals in the
expression before and after simplification (see Section 4.2). To ensure a fair
comparison, we transformed the results generated by the simpE and simpQC
algorithms to BDDs after the algorithms have terminated. This step ensures
that the compared result strings are compact and have the same variable order.
Such comparison would not be required in a practical application and therefore
we do not include the time needed for this transformation in our measurement.

The processing time (RQ2) is measured per simplification task. Preliminary
experiments showed that in simpBDD, most time is consumed while building
the BDDs representing the expressions (presence condition and context); the
actual simplification operation is very fast (cf. Appendix, page 226). For simpE
and simpQC , we could not measure loading and simplification of the expressions
separately. To ensure fairness, we did not call simpBDD on in-memory BDDs,
but wrote the expressions to a file, invoked simpBDD in a new process, and
measured the time for that process to terminate. This time includes parsing
the presence condition and context, and writing the result expression.

In total, we designed five experiments, E1 through E5. To evaluate research
question RQ1, we needed sets of Boolean presence conditions and contexts from
different application scenarios and configurable systems. We obtained these
sets from different research projects which we discuss in Section 4.4.1. E1 and
E2 represent variations of the “Reporting Analysis Results” application scenario.
E3 and E4 apply the “Simplification of Variability Annotations” scenario to
source code and to the internal code representation in TypeChef, respectively.

To evaluate research question RQ2, we needed a setting where we can
flexibly control the size of the problem. We chose to evaluate this question with
the “Variability-Model Generation” scenario and used the SPLOT6 variability-
model generator [MBC09] to create simplification tasks. In the generator, we
can increase the number of generated variables and therefore generate harder
problems. We used these generated tasks in E5 to evaluate the processing-time
performance of the algorithms.

6http://www.splot-research.org/

68

http://www.splot-research.org/

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

4.4.1 Subject Systems and Experiments

We used a diverse set of subject systems from various sources to evaluate the
different applications of presence-condition simplification. For systems that
we use in the application scenario “Reporting Analysis Results” (in E1 and
E2), we ensured that a variability model is available as context. For the other
application scenarios, no variability model is necessary. Table 4.1 gives an
overview of the systems and in which experiments they are used. The table also
shows the maximum number of configuration options in presence conditions
or contexts that occurred in the experiments on these systems. The number
differs between application scenarios (e.g., SQLite in E1 and E3) and it can
influence the difficulty of simplification tasks (e.g., simpE and simpQC have
timeouts on some tasks of SQLite in E1). The experiments 1–5 are described
next.

Classification of variants (E1) The first application scenario is based on
an approach that estimates non-functional properties (footprint, response time,
etc.) of the variants of a configurable system [SRK+13]. Experiments evaluating
the approach typically generated huge datasets containing presence conditions.
For E1, we used the following systems from previous work [SKK+12; SRK+13;
SvRA13]: Apache, E-mail, h264, and LLVM (prediction of response time per
variant), and Linked List, PKJab, SNW, SQLite, and ZipMe (prediction
of binary footprint per variant). Presence conditions in this scenario identify
system configurations for which the prediction accuracy is low, possibly due
to unknown interactions among configuration options. Presence-condition
simplification is useful for pinpointing such cases of low accuracy to a smaller
number of options such that further investigation is possible. We used presence
conditions for seven different levels of prediction accuracy and simplified all of
them separately using the corresponding variability model as context.

Reporting defect locations (E2) For our second experiment, we used
data from a study in which we evaluated the performance of variability-aware
model checking (see Section 6.5, [AvRW+13]). During experiments, we found
many defects in the subject systems that occur only under certain presence
conditions. We used the E-mail and Elevator systems [AvRW+13; CHSL11;
Hal05]; standard benchmarks which we also used in other chapters of this
thesis.7 The presence conditions of defects and the variability model are given
as textual Boolean expressions. An example for the defect location scenario is

7Comparable systems from the variability-aware model-checking evaluation (Section 6.5)
cannot be used because they have no defects (AJStats and ZipMe), because all variants
are defect (GPL), or because the variability model is too simple (Mine Pump).

69

4.4. EVALUATION

Table 4.1: Subject systems. The column “Exp.” denotes in which experiments
we used the systems. The columns “Max. Options” and “Max. size” denote
the maximum number of options in and the maximum size of presence con-
ditions and contexts in the experiments. These statistic depends on what
presence conditions and contexts represent (e.g., tool reports in E1 versus
ifdef annotations in E3).

System Version Domain Exp. Max. Options Max. size

Apache 2.2 Web Server E1 10 227
2.4.6 Web Server E3 5 5

Berkeley DB 6.0.20 Database E3 6 21
Busybox 1.22.1 Utilities E3 28 28
Cherokee 1.2.101 Web Server E3 3 3
Elevator 1.0 Simulation E2 5 10
E-mail 1.0 Simulation E1 10 88

1.0 Simulation E2 9 22
Freebsd 9.1.0 Operating System E3 14 96
Gimp 2.8.6 Image Manipulation E3 4 9
Gnumeric 1.10.15 Spreadsheet E3 3 5
Gnuplot 4.6.3 Graph Generation E3 6 12
H264 0.85.1448 Video Encoding E1 17 970
Libxml2 2.9.0 XML Toolkit E3 8 17
Linked list 1.0 Datastructure E1 19 1512
Linux 2.6.33.3 Operating System E3 24 44

2.6.33.3 Operating System E4 14 468
Linux 3.4 Operating System E3 24 206
LLVM 2.7 Compiler E1 12 1067
Openvpn 2.3.2 Networks E3 11 27
Parrot 5.0.0 Virtual Machines E3 2 2
Postgresql 9.3.0 Database E3 5 13
Qemu 1.6.1 Virtual Machines E3 15 54
Sendmail 8.14.7 Email Routing E3 6 6
SNW 1.0 Simulation E1 27 4531
SPLOT models (generated) Variability Models E5 60 9931305
SQLite 3.7.0.4 Database E1 87 93106

3.8.0.2 Database E3 6 21
Subversion 1.8.1 Version Control E3 5 11
Vim73 73 Editor E3 10 16
Xfig 3.2.5b Image Manipulation E3 6 9
Xterm 296 Terminal E3 12 23
ZipMe 1.0 Data Compression E1 9 43

70

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

the output of the SPLverifier tool given in Section 4.1.1. We simplified the
defect presence conditions and evaluated the performance of the simplification
algorithms.

Annotation Simplification (E3) To evaluate the simplification potential
for variability annotations, we used several configurable software systems
with #if directives and applied simplification to the #if conditions (scenario
described in Section 4.1.2). For our experiments (see Section 4.4.3), we used 21
configurable systems, including the Linux kernel.

The context of #if conditions in these projects has two components: the
conditions of enclosing #if directives and the condition under which the respec-
tive file will be included in the project, as described in Section 4.1. In projects
that use KConfig, we used the tool KBuildMiner [BSCW10; BSL+10] to
extract the conditions in which source files are used. For the others, we assumed
that each file is used in all configurations. We extracted #if conditions in
source files with the Predator tool [TDS+14]. Predator also provides the
hierarchy of #if conditions, such that we can generate for each #if condition a
context consisting of the conjunction of the enclosing #if conditions and the
file condition. Given these pairs of #if conditions and contexts, we apply the
simpBDD, simpE and simpQC algorithms and measure how often the conditions
could be improved to evaluate the potential for presence-condition simplifica-
tion. We skipped pairs for which #if conditions or contexts are tautologies or
contradictions because then simplification is impossible.

AST-annotation simplification (E4) In this experiment, we analyzed the
variability-aware ASTs generated by TypeChef [KGR+11]. Each generated
AST node has a presence condition. Due to difficulties in parsing C code
with #if directives (e.g., undisciplined annotations and macro expansion), the
resulting presence conditions are often larger than the conditions written in
the source code [KGR+11]. For simplification, we generated a context for each
presence condition p by building the conjunction m of all presence conditions
on the path from p to the root node of the AST. Then, we applied simplification
of p in the context m and evaluated the reduction in the size of the presence
conditions. Again, we did not simplify if p orm is a tautology or a contradiction.
Even though simplification optimizes only an internal representation here, it
can affect processing time. Furthermore, presence conditions are visible to
users (1) as part of reports, (2) as debugging info, and (3) if the AST is
printed again after some modification (e.g., automatic, variability-aware code
refactoring [LJG+15]).

71

4.4. EVALUATION

Cross-tree-constraint simplification (E5) To evaluate the scalability po-
tential of presence-condition simplification, we used the variability-model gener-
ator from the SPLOT repository [MBC09] for generating test variability models.
Each model comprises hierarchy, grouping, and cross-tree constraints given
in CNF. This is the same setup as in the final step of the variability-model
generation scenario (Section 4.1).

As scaling factor, we used the number of configuration options of the gener-
ated models. We generated sets of 10 variability models with 20/30/40/50/60
configuration options (50 models in total). For each model, we simplified the
cross-tree constraints using the hierarchy and sibling constraints as context.
All constraints are given in CNF, so we apply the FORCE algorithm [AMS03]
to optimize the BDD variable ordering. The more compact representation is
beneficial for simpBDD, but also for simpE and simpQC .

4.4.2 Experiment Setup

For our experiments, we used existing implementations of the algorithms.8 We
provide links to the tools on the supplementary website. We also tried to use
Scherzo, a newer tool for two-level logic minimization, however, we were
not able to apply it to presence-condition simplification because of technical
problems and missing documentation.

All experiments were executed on an Intel Xeon machine (8 cores with
2.93GHz) with Ubuntu 12.04. Regarding parallelization, we have not observed
that more than one core was used in the experiments. In all experiments,
simplification has been executed in a JVM with 4GB of RAM. We set the
timeout for the simplification algorithms in all experiments to 60 seconds
(the usual response time was much lower). In the experiments E1–E4, we
encountered only 12 timeouts, (7 with simpE and 5 with simpQC). All timeouts
occurred while simplifying presence conditions of SQLite (E1). For variability-
annotation simplification (E3), we used scripts to call the external analysis
tools (e.g., TypeChef). The tool output was aggregated and later simplified.

During the experiments, we measured the processing time of the algorithms
and the number of literals (size) in the expressions before and after simplification.
For each simplification, we compared the size of the original presence condition
p and the simplified presence condition simp(p, m). For these comparisons, we
defined the reduction factor as

size
(
simp(p, m)

)
/size(p)

8simpBDD is available as function net.sf.javabdd.BDD.simplify(BDD) in the JavaBDD
library, simpE is available in the Espresso tool, and simpQC is also implemented in Espresso
as a revised version of the original Quine-McCluskey algorithm.

72

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

Figure 4.4: Reduction factors for the classification of variants (E1)

In some cases, the size of the supposedly simplified expression was larger
than the size of the original expression. This can happen because some of
the algorithms rely on heuristics. Such cases are easy to detect and we just
used the original expression as result instead of the generated expression. In
such cases, we logged that simplification did not improve the expression size
(the reduction factor is 1). For example, in the 175 simplification tasks of
Experiment 1, simpE and simpQC failed to reduce the expression size in 29
and 38 cases, respectively. simpBDD improved all 175 expressions. To provide
a ground truth, we would need to iterate over all solutions (i.e., apply the
Brute-Force algorithm). However, due to the complexity of the problem,
Brute-Force does not scale for any of our experiments.

4.4.3 Results

Classification of variants (E1) Figure 4.4 shows the reduction factors we
observed for presence conditions for inaccurate performance predictions (cf.
Section 4.4.1) per subject system. A lower reduction factor indicates a better
simplification result. Each boxplot covers all experiments per algorithm and
subject system. Figure 4.4 shows that (1) the number of literals is generally
much lower after simplification and that (2) simpBDD generates slightly better
results, on average, than simpE and simpQC , as confirmed by paired Mann-
Whitney tests (p-values below 0.001 for both tests). These results confirm RQ1:
For this application scenario and the considered systems, there is significant
simplification potential, and the algorithms are able to simplify the presence

73

4.4. EVALUATION

Figure 4.5: Time for simplification in a quantile plot (E1); a point (x, y) in the
plot states that the x-th fastest simplification with the respective algorithm
took y milliseconds; the right-most x value indicates the number of solved tasks;
the y axis has a logarithmic scale

conditions substantially. Furthermore, we observe that for some systems, the
reduction factors are very similar across all algorithms (Apache, Linked list,
LLVM, and ZipMe). For the other systems, we observe diverse reduction
factors. We could not establish a reason for this effect and attribute it to
unknown differences between the subject systems.

Figure 4.5 shows the time needed for simplification in a quantile plot. A
quantile plot shows the number of presence conditions (x-axis) that can be
solved with runtimes below a given value (y-axis) per algorithm. For example,
the point (150, 110) in graph simpE in the plot states that the 150-th fastest
simplification with simpE took 110ms and there were 149 simplification tasks
that took 110ms or less with simpE. This means that for each algorithm, the
“easy” tasks are shown on the left of the plot. If a plot does not extend to
the maximum value of the x axis, this means that the remaining tasks were
timeouts (cf. simpQC and simpE).

The plot shows how the algorithms scale when tasks get harder to solve
using the same simplification tasks as in Figure 4.4; the time for simpQC and
simpE is negligible for easy tasks but increases with harder tasks; simpBDD
needs between 350ms and 500ms in most cases, however, it can solve more
problems than simpQC and simpE. Note that in our setup simpBDD requires
startup time for setup of the BDD, which dominates the processing time. A
closer investigation showed that most of the startup time of simpBDD is spent

74

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

Table 4.2: Reduction factors for defect location reporting (E2)

simpBDD simpE simpQC
Elevator 0.39 0.37 0.37
E-Mail 0.22 0.14 0.14

for loading the presence condition and context as BDDs (at least 320ms). The
actual simplification took less than 2ms in each case. The startup time can be
influenced by reducing the initial number of nodes in the BDD. We evaluate
and discuss this further in the Appendix (page 226).

Reporting defect locations (E2) In E2, we evaluated simplification of
presence conditions reported during verification of E-Mail and Eleva-
tor [AvRW+13] (cf. Section 6.5). Note that E-Mail and Elevator are
the same systems as in E1, but the considered presence conditions represent
very different facts: In E1, the presence conditions represent the prediction ac-
curacy of the non-functional property prediction approach [SKK+12; SvRA13].
In E2, the considered presence conditions point to configurations in which speci-
fications of the configurable systems are violated, as identified by SPLverifier
(Chapter 6).

Table 4.2 shows the average reduction factor per case study and algorithm.
All three algorithms achieved significant improvements of the simplified expres-
sions in terms of the reduction factors, providing further evidence for RQ1.
Overall, the reduction factors are very similar for all algorithms; the results for
the E-Mail system are better than for the Elevator. This is probably due
to the internal structure of the case studies and the nature of the defects. The
maximum time measured for simplification was 320ms.

Variability-annotation simplification (E3) In E3, we evaluated the po-
tential for simplification of ifdef conditions in source code. Overall, we found
only few situations where our approach could improve the presence conditions.
For detailed results of the experiment, we refer to the supplementary website.
With all three algorithms and in all systems except gnuplot (3.7%) and libxml2
(3.2%), we could improve only less than 2% of the parsable, non-trivial presence
conditions.9 If we could not parse the conditions, this was usually due to
non-Boolean configuration options. Most situations for which we could improve
the conditions are rather simple, similar to the example shown in Figure 4.1 on
page 61.

9 Of 301 520 presence conditions, 277 297 could be parsed and of these 128 869 were
non-trivial.

75

4.4. EVALUATION
0

1
0
0

2
0
0

3
0
0

4
0
0

●

●

before after

(a) Presence-condition sizes before/after simplification

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

●

(b) Reduction factor

Figure 4.6: Experiment results for the TypeChef AST simplification on Linux
(E4)

The Experiment 3 shows that our approach can be applied to variability
annotations, but there is only little potential for simplification in the considered
systems. The ifdef conditions in the analyzed systems do not contain much
redundancy, which indicates a good code quality. So the expectation stated in
RQ1 is not confirmed by E3.

AST-annotation simplification (E4) To evaluate the simplification po-
tential in ASTs as generated by TypeChef, we modified TypeChef such that
it applies simplification to all presence conditions generated as AST annotations.
In particular, we analyzed the AST presence conditions generated for Linux
2.6.33.3 (the actual subject of E4 is TypeChef, not Linux, so one version is
sufficient). Figure 4.6 shows the results by means of violin plots. A violin plot
is a boxplot with a rotated kernel density plot on each side. In our case, the
width of the density plots show the relative number of presence conditions of a
certain size (Figure 4.6a) and the relative number of simplification tasks with
a certain reduction factor (Figure 4.6b).

In total, we found 25 580 099 non-trivial presence conditions in the AST
of Linux’s code base. Figure 4.6a shows that most of these have less than
100 literals. However, there is a substantial number of presence conditions
that have an extremely large number of literals. After simplification (shown
data generated with simpBDD), the conditions have less than 50 literals. Fig-
ure 4.6b shows the reduction factors observed with simpBDD (the results are
similar for simpE and simpQC). For most presence conditions, we achieved
extreme improvements, which leads us to two conclusions confirming RQ1:
(1) TypeChef introduces many redundancies during parsing, because we did

76

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

Figure 4.7: Scalability of simplification algorithms shown in a quantile plot
(E5), similar to the quantile plot in Figure 4.5

not observe similar sizes for Linux in E3, and (2) simplification can remove
those redundancies from the AST.

Cross-tree-constraint simplification (E5) To evaluate the scalability of
simpBDD, simpE, and simpQC (RQ2), we ran experiments with synthetic feature
models of different sizes (see scenario “Cross-Tree-Constraint Simplification”).
Figure 4.7 shows the time needed for simplification of the cross-tree constraints
in a quantile plot. It supports the general result of E1: simpBDD has a higher
processing time for simple tasks (again, consider BDD setup time), but it can
solve more tasks and is faster than simpE and simpQC when it comes to harder
tasks. simpQC performs better than simpE, which was not to be expected,
because it is an earlier algorithm solving the same problem. We were not able
to run a complete evaluation for larger problem sizes, because the computation
of the input files for simpE and simpQC is very expensive for harder problems.
When evaluating presence-condition simplification on 10 problem instances
with 150 options, simpBDD still needs only 9ms, on average (when the BDD is
already loaded in memory). In summary, the answer to RQ2 is that simpBDD
has a high minimum processing time (500ms) but scales better than the other
algorithms.

Discussion As a summary of our evaluation, we answer the research questions
based on the results of our experiments. RQ1 asks whether presence-conditions
is able to reduce the size of presence conditions significantly. Our experiments

77

4.4. EVALUATION

(E1, E2, and E4) showed that there is significant simplification potential
in presence conditions in practical application scenarios. Furthermore, the
experiments showed that the three algorithms achieve significant reduction in
the size of the presence conditions. The result of E4 is an exception to this
conclusion. We found only little simplification potential in the ifdef annotations
in source code, which indicates a good code quality.

Our second research question, RQ2, asks how the processing time of
simpBDD, simpE and simpQC scales to complex simplification tasks. E5 showed
that simpBDD scales better than simpE and simpQC . For loading and simpli-
fication of presence conditions with up to 60 configuration options, simpBDD
needs less than 10 seconds. Our experiments (E1 and E5) also showed that
simpBDD has a high minimum processing time of about 500ms. A closer inves-
tigation (Appendix, page 226) showed that most of the startup time is spent for
loading the presence condition and context as BDDs (at least 320ms). Once
the presence condition and the context are loaded as BDDs in memory, the
actual simplification takes less than 2ms in each simplification task of E5.

4.4.4 Threats to Validity

A threat to construct validity is that there is no generally accepted measure
for the simplicity of Boolean expressions. This is a problem that is not specific
to our work; in general, it is difficult to define such a measure. We have tried a
number of different measures and observed similar results, so we expect our
observations to hold with other sensible measures. In addition, we tried to
use a ground truth for the minimal size measure in our experiments. However,
deriving the ground truth, even on small problems, requires an infeasible amount
of computation. Hence, we focus on the comparison between the algorithms.

Another threat to internal validity is that we used existing tools to compare
the algorithms, so we rely on that the tools actually implement the algorithms
correctly. Still, we verified that each simplification result satisfies the invariant
of Equation 4.1.

A threat to the external validity—as always—is the problem of selection of a
representative set of subject systems and application scenarios. To mitigate this
threat, we selected a diverse set of application scenarios and subject systems.
Our assumption that simplification can significantly improve presence-condition
size holds in all these scenarios, except for variability-annotation simplification.

A threat to the external validity is that we can only handle Boolean options.
However, it has been shown that the majority of presence conditions in large
configurable systems (e.g., kernels of Linux and FreeBSD) can be expressed
using only propositional expressions [BSL+10], and that the large majority of
options in configurable systems software is Boolean [BSL+13]. Even if parts of

78

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

the context cannot be expressed with Boolean options, a partial context can
be used for simplification.

Even though the majority of our subject systems and application scenarios
are real, our approach is certainly limited with respect to very large presence
conditions. We tried larger problem instances in Experiment 5. However,
for one variability model with 100 options, we had to generate an input file
for simpE with 637GB (condition encoded as DNF). For very large presence
conditions, the simplified presence condition will probably still be quite large,
so it is questionable whether simplification is even useful in such cases. We
argue that even if the result expression is still large, every bit of size reduction
helps if the result is used as input to an analysis tool. If a user interprets the
(still large) result, the user might use tools such as dependency graphs. Such
graphs are simpler once redundant information is removed by simplification.

4.5 Related Work

Simplification of presence conditions in the context of highly configurable
systems has not been investigated before. However, work on variability-model
analysis and the extraction of presence conditions is related.

Variability-model analysis aims at analyzing properties of variability models
(e.g., consistency) or of sets of models (e.g., relationships between models)—to
assure correctness and to support evolution and configuration of systems. A
common operation is to calculate differences between two variability models.
This problem has been explored before [Ach11; CW07; TBK09] and it is closely
related to ours: Simplification of a presence condition p with a context m is
similar to removing m’s information from p and returning the remainder. In
general, computing differences (diffs) between two entities a and b involves
two tasks: stripping the information of a from b and vice versa. Thus, a
diff is a pair of sub-comparisons. The main difference to our simplification
problem is that a diff has to be exact. That is, all the information of b is
removed from a and only the remainder is presented to the user. Therefore,
applying model-differencing methods on presence conditions has fewer means
to influence the size of the presence condition. Our problem formulation gives
us more leverage: Information that is contained in p and m can either remain
in simp(p, m) or be removed. We use this leverage to make simp(p, m) smaller
and more readable.

Off-the-shelf reasoners, such as BDD libraries or SAT solvers, are used for
reasoning about Boolean expressions. Scalability experiments [Men09; MWC09;
MWCC08] show that SAT solvers are more scalable than BDDs for most
analyses on feature models. However, BDDs are efficient for analyses that rely

79

4.5. RELATED WORK

on enumerating configurations; they are known to scale up to models with 2000
features [MWC09]. In our experiments, simpBDD exhibited a better scalability
than simpE and simpQC , but for smaller models and presence conditions.
We are not aware of any SAT-based algorithm applicable to our problem
(besides simpBF and similar brute-force approaches). However, investigating
the feasibility of using a SAT solver would be valuable future work.

Various researchers have extracted and analyzed presence conditions in
the context of highly configurable systems. Presence conditions have been
extracted using static analysis from build systems [BSCW10; NH13] and using
dynamic analysis by compiling individual system variants [DTSL12]. All these
pieces of work illustrate the importance of complex presence conditions to
realize the mapping between the variability model and implementation. In fact,
presence conditions in source code and other artifacts are means to maintain the
variability model by establishing a balance between constraints residing in the
model and in other artifacts. Our experiments (in particular E3) have shown
that the size of presence conditions in real systems is moderate, suggesting that
such systems are relatively well maintained.

The Explain algorithm is a BDD-based algorithm that is used in interactive
configuration of configurable-systems [Sub05]. Given a variability model and a
(partial) configuration p of the system, it allows users to query why a certain
configuration option x is implied or hidden from the selection (e.g., because it
is implied by previous choices). Explain generates a minimal set of option
choices in p that imply a fixed value for x (or that x is still variable). In
difference to presence-condition simplification, Explain reports only one set
of variable assignments (it boils down to a shortest-path problem). So, even
though Explain and simpBDD are used in the context of configurable-systems
and both use BDDs, they are quite different algorithms used for different
problems.

We found two publications in which approaches similar to presence-condition
simplification are discussed (although not in the configurable-systems do-
main): The first publication (from 1979) introduces “simplification by context”
with a problem description that is equivalent to presence-condition simplifica-
tion [vLS79]. As solution to the problem, they propose syntactic substitution
rules that are applied on the condition. For example, a condition A ∧ B,10
would be simplified to A iff B is implied by the context. In our experiments,
such situations occurred only in the simplest presence conditions. More often
simplification potential is caused by dependencies or redundancies between
the operands, which would be ignored by such simple substitution rules. The
second publication describes Simplify(g, C) similar to presence-condition sim-

10A and B are placeholders for more complex expressions that may share variables.

80

CHAPTER 4. PRESENCE-CONDITION SIMPLIFICATION

plification, and states that it “is implemented using standard propositional
operators available in Binary Decision Diagram libraries” [DLvL15]. Despite
a personal communication with the authors, we were not able to determine
whether they used the Restrict algorithm.

In our search for simplification algorithms, we have also looked at several re-
search areas related to BDDs and two-level-logic minimization. In particular de-
composable negation normal forms [DM02; HD05], semantic tableaux [DAg99],
and minimization of propositional formulae [Lib05] appeared promising at first
sight, but in the end, we have not found algorithms applicable to our problem
(except for simpBDD, simpE, and simpQC).

81

CHAPTER 5

Variability Encoding

This chapter shares material with the publication “Variability Encoding: From
Compile-Time to Load-Time Variability” in JLAMP’2015 [vRTS+16].

Before we evaluate different strategies for the analysis of configurable system,
we need to develop means to implement the strategies. For the variant-based
strategy, almost no effort is required, because the analysis subjects (variants)
are normal, non-configurable systems. Such systems can usually be analyzed
with off-the-shelf tools. For the sample-based strategy, sample sets have to be
generated. This topic has already been covered extensively by other researchers
(e.g., [NL11; OMR10]). The remaining task, which we address here, is to
implement the family-based strategy.

In this chapter, we introduce variability encoding, an automatic process that
generates a variant simulator from a configurable system. The process encodes
the compile-time variability (static) of the configurable system as load-time
variability (dynamic) in the variant simulator. One important property of
variability encoding is that the resulting simulator can simulate the behavior
of any variant (on an abstract level), called behavior preservation. Behavior
preservation allows us to use simulators in family-based analyses of configurable
systems and, based on the analysis results, make statements about all variants
(Chapter 6).

We first describe variability encoding informally and describe a family-based
analysis as example use case (Section 5.1). Then, we define variability encoding
based on the simple, formal programming language Featherweight Java
(FJ) [Pie02] (Section 5.2). Based on the formal definitions, we prove that

83

5.1. DESCRIPTION AND USE CASE

variability encoding preserves the behavior of all variants (Section 5.3). As
our formal proof is necessarily limited to FJ, we also discuss how elements of
mainstream languages, such as Java and C, interfere with variability encoding.
This discussion is based on example code snippets (Section 5.4) and on our
experience implementing variability encoding for Java and C (Section 5.5).
Finally, we give an overview of related work (Section 5.6).

5.1 Description and Use Case

Variability encoding is a process that encodes compile-time variability of a
configurable system in load-time variability. Compile-time configuration options
are encoded with global program variables, and static configuration choices
(e.g., ifdefs) are encoded with conditional statements in the target language
(if statements). Classen et al. [CHSL11] and Post and Sinz [PS08] have used
approaches that are similar to variability encoding. However, their encoding
was done manually, whereas we developed a tool for automatic variability
encoding that can be applied to large code bases.

A variant simulator that has been generated with variability encoding can
be used in different variability-aware analyses. For example, we used simulators
for verification (see Chapter 6), test-case generation [BLB+15], and prediction
of non-functional properties of variants [SvRA13].

To illustrate the use of variability encoding, we present a practical applica-
tion scenario in Section 5.1.1. Then, we explain why a formal proof of behavior
preservation in variability encoding is critical for our application scenarios
(Section 5.1.2).

5.1.1 A Practical Application Scenario

In this section, we describe an application of variability encoding using sample
code from the Linux kernel. In particular, we use code from the Variability
Bug Database [ABW14], a collection of real bugs that were found in the
Linux kernel and that occur only in certain configurations. For each bug, the
database contains an executable program slice that represents the core of the
bug in a comprehensive, self-contained way. The programs in the database
have been simplified to provide a minimal, comprehensive, and self-contained
scenario for the corresponding bug.

For the purpose of this example, we used model checking to verify programs
from the bug database. We show that the model checker automatically identified
the bug in exactly those configurations that are documented in the database.

84

CHAPTER 5. VARIABILITY ENCODING

We selected bugs from the Variability Bug Database, based on three
criteria:
• The corresponding program must be compilable (e.g., no variability-

dependent type errors). Otherwise, the program has no defined behavior
and model checking is not possible.
• Our model checker must be able to find the bugs. For example, our model

checker sometimes cannot track function pointers when they are passed as
parameters between functions. We excluded bugs that use functionality
which is not covered by our model checker.
• We focus on code that includes at least two different ifdef options (reflected

by a bug presence condition with at least two options). Most challenges
in variability encoding are caused by interactions between configuration
options, which can only occur if multiple options are used.

We inspected all 43 Linux kernel bugs in the database and found three bugs
matching our criteria. All other bugs in the database have either presence
conditions with only one configuration option, require pointer tracking, or have
type errors. We provide a list with all bugs and our analysis verdict in the
appendix (page 227).

The first selected bug (Bug11) causes a call the Linux BUG() macro,
if configuration option VLAN_8021Q is disabled and option IPV6 is enabled.
Therefore, the presence condition for the bug is IPV6 ∧ ¬VLAN_8021Q. We
include the code of Bug1 for illustration (Figure 5.1a).

The second bug (Bug22) causes an uninitialized return value. The bug’s
presence condition is NETPOLL∧¬IPV6. The third bug (Bug33) causes a call of
an uninitialized function pointer. Its presence condition is ARCH_OPAM3∧¬PM.
We don’t show the code of the second and third selected bug because they are
quite similar to Bug1 in length and complexity.

We used our tool Hercules (Section 5.5.2) to transform the ifdef vari-
ability in the bug programs to load-time variability (shown in Figure 5.1b).
Configuration options are represented with global variables (feature variables).
The feature variables are initialized with return values of the special function
__VERIFIER_nondet_int(). This function is assumed to return an arbitrary value
of type int [Bey15]. In our case, this assumption implies that all four combina-
tions of id2i_config_ipv6==0 or id2i_config_ipv6!=0 and id2i_config_vlan_8021q==0
or id2i_config_vlan_8021q!=0 are reachable in the program. In variability-encoded
configurable systems, this corresponds to covering all valid configurations.

The syntactic structure of the code is largely preserved by variability encod-

1http://vbdb.itu.dk/#bug/linux/d549f55
2http://vbdb.itu.dk/#bug/linux/e39363a
3http://vbdb.itu.dk/#bug/linux/63878ac

85

http://vbdb.itu.dk/#bug/linux/d549f55
http://vbdb.itu.dk/#bug/linux/e39363a
http://vbdb.itu.dk/#bug/linux/63878ac

5.1. DESCRIPTION AND USE CASE

1 #include <assert.h>
2 #include <stdbool.h>
3 #include <stdlib.h>
4 #ifdef CONFIG_VLAN_8021Q
5 void∗ vlan_dev_real_dev() {
6 return NULL;
7 }
8 #else
9 void∗ vlan_dev_real_dev() {
10 assert(false); // (3) ERROR
11 return NULL;
12 }
13 #endif
14 #if defined(CONFIG_IPV6) ||
15 defined(CONFIG_VLAN_8021Q)
16 static int ocrdma_inet6addr_event() {
17 vlan_dev_real_dev(); // (2)
18 return 0;
19 }
20 #endif /∗ IPV6 and VLAN ∗/
21 int main(int argc, char∗∗ argv) {
22 #if defined(CONFIG_IPV6) ||
23 defined(CONFIG_VLAN_8021Q)
24 ocrdma_inet6addr_event(); // (1)
25 #endif
26 return 0;
27 }

(a) Original source code of Bug1

1 ...
2 int id2i_config_ipv6;
3 int id2i_config_vlan_8021q;
4 extern int __VERIFIER_nondet_int();
5 void id2i_init() {
6 id2i_config_vlan_8021q =
7 __VERIFIER_nondet_int();
8 id2i_config_ipv6 =
9 __VERIFIER_nondet_int();
10 }
11 void ∗_5_vlan_dev_real_dev() {
12 return ((void ∗) 0);
13 }
14 void ∗_6_vlan_dev_real_dev() {
15 (0 ? ((void) 0) : __assert_fail(...);
16 return ((void ∗) 0);
17 }
18 static int ocrdma_inet6addr_event() {
19 if (((id2i_config_vlan_8021q))) {
20 _5_vlan_dev_real_dev();
21 }
22 if ((((! id2i_config_vlan_8021q)))) {
23 _6_vlan_dev_real_dev();
24 }
25 return 0;
26 }
27 int main(int argc , char ∗∗argv) {
28 id2i_init();
29 if ((((! id2i_config_vlan_8021q) &&
30 id2i_config_ipv6) ||
31 id2i_config_vlan_8021q)) {
32 ocrdma_inet6addr_event();
33 }
34 return 0;
35 }

(b) Source code of a variant simulator for
Bug1

Figure 5.1: Original and variability encoded source code of Bug1 from the
Variability Bug Database. The program path causing the bug is annotated
with comments in the original code. The simulator was generated with our tool
Hercules (Section 5.5.2). Vertical bars show which functions and statements
in the original code (left) correspond to which functions and statements in the
simulator (right).

86

CHAPTER 5. VARIABILITY ENCODING

ing. The largest structural difference is caused by function vlan_dev_real_dev.
In the original code (Figure 5.1a), it is defined in two variants. One variant
of the function contains the assertion that causes the program to fail. During
variability encoding, Hercules duplicates this function and issues new names
for both duplicates (_5_vlan_. . . and _6_vlan_. . .). The prefixes _5_ and _6_
encode the presence conditions VLAN_8021Q and ¬VLAN_8021Q for the function
variants. Other changes compared to the original code are caused by macro
expansions (NULL, assert). These are done automatically by the parser on which
Hercules is based.

For verification of the generated programs, we used the model checker
CPAchecker with extensions that allow special handling of the feature vari-
ables. These extensions are described in more detail in Chapter 6. Essentially,
the extensions enable CPAchecker to explore the program execution in all
valid configurations and issue a summarized result.

After verification of Bug1, CPAchecker reported ErrorSummary:
!id2i_config_vlan_8021q@0 & id2i_config_ipv6@0, which exactly corresponds to
the bug presence condition IPV6 ∧ ¬VLAN_8021Q reported in the bug database.
Similarly, for Bug2 and Bug3, CPAchecker reported error summaries that
exactly correspond to the presence conditions stated in the bug database.

Even though the programs are simple, this experiment indicates that the
combination of variability encoding and model checking can be effectively
used to identify defects in real programs and report precise defect presence
conditions. Furthermore, it shows in a limited setting that variability encoding,
as implemented in Hercules, can correctly encode the ifdef variability of
real-world programs (see Section 5.5.2 for a larger evaluation).

5.1.2 The Need for a Formal Correctness Proof

Variability encoding has been used in several research projects and enabled
considerable analysis speedups compared to variant-based analysis [ASW+11;
AvRW+13; SvRA13]. In these projects, and in the previous example, the
subject systems used simple language features, so we could safely assume that
the generated code preserved the behavior of the original code and that the
subsequent analyses were valid. However, to this end, it is not obvious how
to implement variability encoding correctly in the presence of other language
features, such as inheritance, overriding, or switch statements. Variability
encoding is a complex program transformation and in practice even relatively
simple automatic refactoring engines cannot preserve behavior in the presence
of variability [LJG+15]. To improve our understanding of variability encoding,
we decided to approach behavior preservation in variability encoding formally.
We define variability encoding based on a small, formal language that already

87

5.2. A FORMAL MODEL OF VARIABILITY ENCODING

CFJ program p
(compile-time variability)
with variability model Φ̂

and code base ∆

πΦ

FJ program
(single variant,
no variability)

σ

FJsim program
(variant simulator,

load-time variability)

exec(πΦ)

exec(σ|Φ)

Equivalent functional
behavior for all valid
configurations Φ?

πΦ := derive(∆,Φ)

σ := encode(∆, Φ̂)
Φ

Figure 5.2: Variability encoding and behavior preservation

contains many language features that we deem problematic (e.g., method
overriding), and we prove behavior preservation in this setting. Then, we discuss
how other language features can be dealt with (e.g., switch-case statements).

5.2 A Formal Model of Variability Encoding
In this section, we develop a formal model of variability encoding. We illustrate
the process of variability encoding and the property of behavior preservation
between variants and the corresponding variant simulator in Figure 5.2. We use
Φ̂ to denote a variability model, Φ to denote a configuration and φ to denote
a presence condition. Given a configurable program p with variability model
Φ̂ and code base ∆, we use weak bisimulation to prove that the execution of
any variant πΦ (generated with configuration Φ) and the variant simulator σ,
limited to Φ4, yields the same observable behavior (Section 5.3). This proof
shows the soundness and completeness of variability encoding with respect to
the configuration space (i.e., all the behavior of all variants is subsumed in
the simulator). In particular, we derive the variant πΦ with derive(∆,Φ) and
encode the variant simulator σ with encode(∆, Φ̂) (both functions are defined
in Section 5.2.4). With exec(πΦ) and exec(σ|Φ) we denote the execution of
variant and variant simulator assuming configuration Φ, respectively. In terms
of the PLA model (Chapter 3), variability encoding is an implementation of
the variability combinator (ν) and a variant simulator σ is an element of the
set S.

4We set the simulator’s feature variables to the option values in configuration Φ.

88

CHAPTER 5. VARIABILITY ENCODING

Our model of variability encoding supports all language constructs of FJ,
including classes, methods, fields, inheritance, dynamic type casts, and method
overriding. Note that FJ does not support method overloading. If a method m
has a certain signature, all other methods named m in the inheritance hierarchy
must have exactly the same signature [Pie02, p. 257, Valid method overriding].
In Section 5.4, we discuss how allowing overloading as in Java would affect
variability encoding. Essentially, variability in our model is implemented by
optional methods (either included or excluded from the code) and variable
method bodies (alternatives for the default method body).

In Section 5.2.1, we give an overview of FJ, which is the base language
for our formal model. Then, we describe Colored Featherweight Java
(CFJ) [KATS12], which we use to represent compile-time configurable programs
(Section 5.2.2). Then, we introduce the language FJsim, which we use to
represent variant simulators (Section 5.2.3). Finally, we define how variants
and variant simulators are derived from CFJ programs (Section 5.2.4).

5.2.1 Featherweight Java (FJ)

FJ is a functional subset of Java with a precise syntax definition, a sound type
system, and evaluation rules [Pie02]. We focus on the definitions relevant to
our model. In the following description, we use a short notation for lists: a
denotes a list of syntax elements. Sequences of field declarations, parameter
names, and method declarations are assumed to contain no duplicates. For
example, the parameter list of a method definition is denoted as (C x), which
expands to (C1 x1, . . . , Cn xn) .

Figure 5.3 shows the syntax rules of FJ including rules for class and method
declarations and terms, such as field accesses and method invocations. The
syntax does not include an assignment operator; fields are only assigned once in
the constructor. It also does not contain conditional (e.g., if) or loop constructs
(e.g., while). A method body consists of only a single return statement with a
term that may contain other nested terms. FJ supports the keyword super only
as first statement in constructor bodies. Despite its limitations, FJ is Turing
complete, as one can encode the Lambda calculus in FJ [Pie02].

An FJ program consists of a class table CT and a start term init. The
evaluation of a program begins with the start term, which is similar to the
main method in Java. We assume that there is a special variable this, but that
this is never used as the name of a formal parameter of a method declaration.
It is considered to be implicitly bound in every method declaration. During
evaluation, this is substituted with a representation of the object that would be
referenced by this in Java (Figure 5.4, E-InvkNew).

Figure 5.4 gives the small-step operational semantics of FJ. The evaluation

89

5.2. A FORMAL MODEL OF VARIABILITY ENCODING

Syntax

P ::= (L, t) program
L ::= class C extends C { C f; K M } class declaration
K ::= C (C x) { super(x); this.f=f; } constructor declaration
M ::= C m (C x) { return t; } method declaration
v ::= values:

new C(v) object creation
t ::= terms:

x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C)t cast

Figure 5.3: The syntax of FJ [Pie02]

fields(C) = C f

(new C(v)).fi → vi
(E-ProjNew)

C <: D

(D)(new C(v))→ new C(v)
(E-CastNew)

mbody(m,C) = (x, t0)

(new C(v)).m(u)→
[x 7→ u, this 7→ new C(v)] t0

(E-InvkNew)

congruence rules are omitted

Figure 5.4: Evaluation rules of FJ [Pie02]

rules are designed to be conform as much as possible with Java. For example,
the rule E-InvkNew defines method-call resolution. During evaluation, a
start term (new C(v)).m(u) is evaluated using E-InvkNew. This rule applies
alpha-equivalent substitution ([x 7→ y] t0) replacing occurrences of x in t0 with
y. The term (new C(v)).m(u) is evaluated to the body t0 of method m with
substitutions of the keyword this and of uses of formal parameters. The result of
this evaluation step is a new term. The term is a fully evaluated value (new C(v)),
or further evaluation steps can be applied to the term. A class inheritance
relation, in which class C extends class D, induces a subtype relation C <: D.

5.2.2 Colored Featherweight Java (CFJ)

As the source language for variability encoding, we use CFJ [KATS12], which
extends FJ with support for compile-time variability using presence conditions
attached to program elements. A CFJ program has an initial term and a set

90

CHAPTER 5. VARIABILITY ENCODING

of classes that are, in fact, nested term structures with presence conditions
on some terms. These structures are isomorphic to abstract syntax trees with
presence conditions on nodes, which is a canonical representation of compile-
time variability [KAK09; KGR+11]. Given a configuration Φ, we can derive a
variant (an FJ program) from a CFJ program. This derivation is, basically, done
by checking for all program elements5 e whether their presence conditions φe

are satisfied (sat(φe∧Φ)) and removing all elements with unsatisfied conditions.
The function derive is formally defined in Section 5.2.4.

variability
restrictions

We restrict variability in CFJ such that only complete methods and
method bodies can be variable. Also, a method name can be used only once per
class. This restriction significantly improves the readability of the definitions
and the behavior-preservation proof. The described restrictions are no severe
limitations to the applicability of our approach as one can always transform
more fine-grained variability, such as optional parameters, to our restricted
version of CFJ [KGR+11; LKA11]. For example, alternative method imple-
mentations can be expressed as alternative expressions in the return statement
(e.g., return (!feature_A ? "default": "alternative");). To prove behavior
correctness for a language with more fine-grained variability, one would need
to prove either that the translation from this language to our model preserves
behavior or that variability encoding works correctly on the language with
fine-grained variability. Both is well beyond the scope of this thesis, however,
we discuss informally how to handle fine-grained variability in some program
elements (e.g., optional program variables) in Section 5.4.

A CFJ program consists of a representation of the code base
(CT ,AT ,MT , init) and a variability model Φ̂. The code base consists of a
class table CT , an annotation table AT , a metaexpression table MT , and
a start term init. The class table and start term are structures as in FJ
(Section 5.2.1).

The variability information of a CFJ program is defined in terms of an
annotation table AT and a metaexpression table MT . The annotation table AT
contains a presence condition for each program element defining in which
configurations (i.e., system variants) the program element is present. The
metaexpression table MT contains for each variable program element a either
an alternative program element a1 or the empty program element • (denoting
that there is no alternative). Correspondingly, AT contains a presence condition
for each alternative program element. Alternatives such as a1 = MT (a) can
again have alternatives a2 = MT (a1). During variant derivation, for each
program element a, MT is used to recursively search an alternative ai for

5Program elements are, for example, class, field, and method declarations, method calls,
and field references.

91

5.2. A FORMAL MODEL OF VARIABILITY ENCODING

1 class Printer {
2 void print(Page f, Page b) {
3 return printMulti(f, b);
4 }
5 void printDuplex
6 (Page f, Page b) { ... }
7 // other methods omitted
8 }

MT (printMulti(f, b)) = printDuplex(f,b)

AT (printDuplex(f, b)) = Duplex

AT (void printDuplex(...){...}) = Duplex

Figure 5.5: CFJ program for method print(f,b) of the printer driver; AT entries
with condition true are omitted; arrows illustrate the relation between the code
and corresponding entries in AT and MT .

which AT (ai) is satisfied by the configuration of the derived variant. If such
an alternative is found, it substitutes a. We formally define how variants are
generated from CFJ programs in Section 5.2.4. We assume that references in
AT and MT to program elements are always unambiguous. Figure 5.5 illustrates
how the printer driver can be represented in CFJ. References are illustrated
with arrows. Expression printMulti(f,b) in Line 3 is replaced by printDuplex(f, b) iff
feature Duplex is selected. In this case, the declaration of method printDuplex is
included during program generation, too (its AT entry is Duplex). For more
information on CFJ, we refer to Kästner et al. [KATS12].

5.2.3 Featherweight Simulation Java (FJsim)

We introduce FJsim as the target language of our model of variability encoding
(CFJ is the source language). FJsim does not support compile-time variability,
but load-time variability. FJsim also supports access of superclass methods
with the super keyword as in Java. The keyword super is necessary to correctly
implement method-call resolution in the presence of optional methods. The
keyword super and the capability for load-time variability is only used in variant
simulators (not in configurable programs or in program variants).

An FJsim program consists of a representation of the code base (CT , init)
and a configuration Φ. The configuration is set at load time to simulate only a
certain variant. Figure 5.6 shows the syntax of FJsim. Similar to keyword this in
FJ, we assume that there is a special variable named super that it is never used
as the name of a formal parameter of a method declaration. It is considered to
be implicitly bound in every method declaration. During evaluation, super is
substituted with a method-lookup-annotation term that states in which class
the lookup for the super method should start.

Finally, FJsim provides a conditional-execution construct called feature
choice. The feature-choice construct uses a presence condition over feature

92

CHAPTER 5. VARIABILITY ENCODING

Syntax

t ::= . . . terms:
(φ ? t : t) feature choice
t.@C.m(t) method-lookup annotation

Figure 5.6: The syntax FJsim adds to FJ. φ denotes a presence condition.
@C.m() denotes that the lookup for method m is started in class C.

variables to select one of two alternative terms at run time. The selection is
made depending on configuration Φ, which has been fixed at load time, though.

Syntax At the syntax level, our extensions require two additional terms:
First, we introduce the ternary operator presence condition ? then : else with a
similar semantics as in Java. During evaluation of a ternary operator, its
presence condition φ is evaluated with respect to the given configuration Φ (i.e.,
sat(φ ∧ Φ) means that the presence condition is satisfiable in configuration Φ).
Second, we introduce the syntax construct t.@C.m(t) which denotes that the
lookup for method m is started in class C (and may continue in superclasses of C).
When the method is executed, t is used as this. We use the syntax extension to
model the method-lookup strategy as known from super in Java. In the variant
simulator, super provides support for accessing overridden methods in subject
programs. The syntax extension t.@C.m(t) is necessary as a term starting with
super does not contain information on which class it is embedded in (and where
method lookup should start) [Pie02].

Typing Figure 5.7 shows the typing rules, auxiliary functions and evaluation
rules we introduce for FJsim. The upper part of the figure shows typing rules
for typing feature choices, as well as rules for typing the superclass lookup. The
expression Γ ` t : C denotes that the term t is of type C in context Γ, which
maps bound variables to types. T-VarEnc enforces that the terms in the
then and else branches of a feature choice have the same type. T-SuperRef
enforces that one of the superclasses actually implements the method referred
to in a call with lookup annotation. All other typing rules are identical to the
rules of FJ [Pie02] and omitted for brevity.

Evaluation The lower part of Figure 5.7 shows the evaluation rules that
FJsim adds to FJ. The evaluation rule E-InvkNewSuper resolves references
to superclasses ((new C(. . .)).@D) and searches for a method implementation in
the superclass D. The keyword super itself is already handled earlier, during the

93

5.2. A FORMAL MODEL OF VARIABILITY ENCODING

Typing

Γ ` t0 : C Γ ` t1 : C

Γ ` (φ ? t0 : t1) : C
(T-VarEnc)

CT (E) = class E . . . {. . . Fm(G f){. . .}}
D <: E Γ ` t : C C <: D Γ ` a : H H <: G

Γ ` t.@D.m(a) : F
(T-SuperRef)

x : C, this : C0, super : D ` t0 : E1 E1 <: C1

CT (C0) = class C extends D{. . .}
override(m,D,C→ C1)

Γ ` C1 m(C x){return t0; } OK in C0
(Method Typing, replaces rule from [Pie02])

Auxiliary functions

CT (C0) = class C0 extends D{C f; KM}
Bm (B x){return t; } ∈ M

mbody(m,C0) = (x, [super 7→ this.@D] t)

CT (D) = class D extends E{C f; KM}
C <: D C 6= D m ∈ M

hasSuperImpl(C,m)

Evaluation

sat(φ ∧ Φ)

(φ ? t0 : t1)→ t0
(E-VarEnc-En)

sat(¬φ ∧ Φ)

(φ ? t0 : t1)→ t1
(E-VarEnc-Dis)

mbody(m,D) = (x, t0)

(new C (v)).@D.m(u) →
[x 7→ u, this 7→ new C (v)] t0

(E-InvkNewSuper)

Figure 5.7: The typing rules, auxiliary functions, and evaluation rules FJsim
adds to FJ; φ denotes a presence condition, Φ a configuration.

call to the auxiliary function mbody , which we redefined in Figure 5.7. The
redefined mbody function replaces super used in a class C with this.@D where D is
the superclass of C. A method call (new C(. . .)).@D.m(. . .) executes the method m
from class D on the object new C(. . .). Figure 5.8 shows an example evaluation
of super and motivates why we need the @D notation to correctly evaluate super.

In Figure 5.8b, the initial term (newC ()).m() is evaluated using the standard
rule E-InvkNew [Pie02] and mbody(m,C) = this.@D.m(). It substitutes this with
new C() resulting in the term (newC ()).@D.m(), which is then evaluated with

94

CHAPTER 5. VARIABILITY ENCODING
cl
as
sX

ex
te
nd

sO
bj
ec
t{

D
d;

X
(D

d)
{t
hi
s.
d=

d;
}

} cl
as
sE

ex
te
nd

sO
bj
ec
t{

X
m
()
{

re
tu
rn

ne
w
X
(t
hi
s)
;

}
} cl
as
sD

ex
te
nd

sE
{

X
m
()
{

re
tu
rn

su
pe
r.
m
()
;

}
} cl
as
sC

ex
te
nd

sD
{

X
m
()
{

re
tu
rn

su
pe
r.
m
()
;

}
}

(a
)
P
ro
gr
am

ne
w
X
(n
ew

C
()
)

(n
ew

C
()
).
@
E.
m
()

(n
ew

C
()
).
@
D
.m

()

(n
ew

C
()
).
m
()

(b
)
E
va
lu
at
io
n
w
it
h

m
et
ho

d-
lo
ok

up
an

no
ta
ti
on

E
-I

n
v
k
N

ew
Su

pe
r

w
it
h
m
bo
dy

(m
,E

)

E
-I

n
v
k
N

ew
Su

pe
r

w
it
h
m
bo
dy

(m
,D

)

E
-I

n
v
k
N

ew
w
it
h
m
bo
dy

(m
,C

)

(n
ew

C
()
).
su
pe
r.
m
()

(n
ew

C
()
).
m
()

(c
)
In
co
rr
ec
t
ev
al
ua

ti
on

w
it
ho

ut
m
et
ho

d-
lo
ok

up
an

no
ta
ti
on

E
-I

n
v
k
N

ew
w
it
h
(n
ai
ve
)

su
pe
r
ha

nd
lin

g
an

d
m
bo
dy

(m
,D

)

E
-I

n
v
k
N

ew
w
it
h
m
bo
dy

(m
,C

)

F
ig
ur
e
5.
8:

A
n
ex
am

pl
e
of

co
rr
ec
t
ev
al
ua

ti
on

of
su
pe
r
re
fe
re
nc
es

in
F
Js

im
(b
)
an

d
in
co
rr
ec
t
ev
al
ua

ti
on

in
F
Js

im
w
it
ho

ut
m
et
ho

d-
lo
ok

up
an

no
ta
ti
on

s
(c
)

95

5.2. A FORMAL MODEL OF VARIABILITY ENCODING

E-InvkNewSuper; this in newX(this) is again substituted with new C(). The
resulting term (newC ()).@E.m() is then evaluated to (newX ((newC ()))). If we would
not insert the @D annotation, we could not know in which superclass to start
searching for implementations of method m. In this case, we might select the
implementation from D (the superclass of the this object) again and generate
an (incorrect) endless loop (cf. Figure 5.8c).

The evaluation rules E-VarEnc-En and E-VarEnc-Dis define how feature
choices are evaluated. The evaluation of an FJsim program is deterministic,
as the configuration Φ used for evaluation of the feature choices has only one
satisfying assignment. This way, in each step evaluating a feature choice, either
E-VarEnc-En or E-VarEnc-Dis is applied. As stated earlier, our model of
load-time variability guarantees that each configuration has only one satisfying
assignment, so no variability remains during the actual execution of an FJsim
program (Section 2.1.1). If we would not enforce this property, both evaluation
rules might be applicable to the same term (the presence condition φ and its
negation ¬φ would be satisfiable) and the program behavior would be non-
deterministic. When variant simulators are analyzed, for example with a model
checker, this non-determinism helps to explore identical execution paths from
many variants simultaneously as we discuss in Section 5.5 and in Chapter 6.

5.2.4 Generation of Variants and Variant Simulators

Generation of variants Variant generation derives an FJ program from an
CFJ program based on a given configuration Φ. Kästner et al. formalized the
generation of variants [KATS12]. In Figure 5.9 we show the relevant subset of
these rules.

The function derive takes a CFJ program (CT ,AT ,MT , init, Φ̂) and a valid
configuration Φ. It returns a corresponding variant implemented in FJ (the
program is also an FJsim program without feature choices and super calls). It
uses the auxiliary functions 444 ·<<<, � ·�, and [[·]]. These functions transform
a single CFJ syntax element (class, method, term) into an FJ syntax element.
Function 444 ·<<< traverses the elements of the program recursively and invokes
the derivation of term variants. Function � ·� chooses between alternative
program elements according to the given configuration Φ by iterating alter-
natives defined in MT . For example, � MT (printMulti(f,b)), printDuplex(f,b) �
selects between printMulti(f,b) and its alternative printDuplex(f,b) in Figure 5.5.
Function [[·]] removes program elements if their presence condition is not
satisfied. For example, the method definition of printDuplex is eliminated in
[[void printDuplex(Page f, Page b) {...}]] iff its presence condition in AT is not satis-
fied.

96

CHAPTER 5. VARIABILITY ENCODING

derive : (CFJ program,Configuration) → FJ program
derive((CT ,AT ,MT , init, Φ̂),Φ) = (444(range(CT), init)<<<)

444<<< : CFJ term → FJsim term
444v<<< = v (G.1)
444t.f<<< = 444t<<<.f (G.2)

444t.m(t)<<< = 444t<<<.m(444t<<<) (G.3)
444new C(t)<<< = new C(444t<<<) (G.4)

444C m(C x){ return t; }<<< = C m(C x) { return � MT (t), t � ; } (G.5)
444class C extends D {C f; K M}<<< = class C extends D {C f; K444[[M]]<<<} (G.6)

444(L, t)<<< = (444L<<<, t) (G.7)

�� : CFJ term×CFJ term→ FJsim term

� t1, t2 � =

444t1<<< t1 6= •, sat(Φ ∧ AT (t1))

� MT (t1), t2 � t1 6= •, ¬sat(Φ ∧ AT (t1))

444t2<<< t1 = • (otherwise)

[[]] : CFJ term→ FJsim term

[[a]] =

{
a sat(Φ ∧ AT (a))

• otherwise

Figure 5.9: Variant generation rules, adopted from Kästner et al. [KATS12];
lists are processed element-wise, e.g., [[t1, t2, . . . , tn]] = [[t1]], [[t2]], . . . , [[tn]]; •
denotes the empty program element and 444 •<<< = • ; range(CT) denotes all
class definitions in class table CT .

Variant-simulator generation The generation of variant simulators is sim-
ilar to the generation of variants. The main differences are that, the target
language is FJsim and that instead of removing optional program elements, we
encode this variability by means of feature choices. For example, the expres-
sion printMulti(f,b) and its alternative printDuplex(f,b) in Figure 5.5 are encoded as
(Duplex ? printDuplex(f,b): printMulti(f,b)) in FJsim. Figure 5.10 shows the definition
of function encode. Function encode generates a variant simulator in FJsim for
a given CFJ program (CT ,AT ,MT , init, Φ̂). Function encode uses the auxiliary
functions 444 ·<<< and � ·�, which we redefine in Figure 5.10. The figure also
defines function [[t]]C, where C denotes the class containing the term t. The
omitted cases of 444 ·<<< are the same as in Figure 5.9. Function � t1, t2 �
iterates through all alternatives of term t1, introducing feature choices. It uses

97

5.3. BEHAVIOR PRESERVATION

encode : CFJ program → FJsim program
encode(CT ,AT ,MT , init, Φ̂) = (444(range(CT), init)<<<, Φ̂)

444<<< : CFJ term → FJsim term
. . .

444class C extends D {C f; K M}<<< = class C extends D {C f; K444[[M]]C<<<} (G.6)
. . .

�� : CFJ term×CFJ term→ FJsim term

� t1, t2 � =

AT (t1) ?444t1<<< :� MT (t1), t2 � t1 6= • ∧ sat(Φ̂ ∧AT (t1))

� MT (t1), t2 � t1 6= • ∧ ¬sat(Φ̂ ∧AT (t1))

444t2<<< t1 = • (otherwise)

[[]]C : CFJ method definition→ FJsim method definition

[[a]]C =

D m(C x) { return a = D m(C x) { return t; }

(AT (a) ?444t<<< : super.m(C x)); } sat(Φ̂ ∧AT (a)) hasSuperImpl(C,m)

D m(C x) { return super.m(C x); } a = D m(C x) { return t; }

¬sat(Φ̂ ∧AT (a)) hasSuperImpl(C,m)

D m(C x) { return444t<<<; } a = D m(C x) { return t; }

sat(Φ̂ ∧AT (a)) ¬hasSuperImpl(C,m)

a otherwise

Figure 5.10: Variant-simulator generation rules. � ·� introduces feature
choices, if multiple terms are feasible. For brevity, we omit the propagation of
AT , MT , and Φ̂.

the default term t2 as innermost else case. All functions employ the variability
model Φ̂ instead of a configuration Φ, so that variable parts are only dropped if
their presence condition is not satisfiable in Φ̂. Function [[·]]C handles optional
methods. The function introduces a call to the same method in a superclass
of C if there exists a variant in which the currently generated method is not
present. In this case, a call to the current method will execute the superclass
method in the variant. We model this behavior in the variant simulator using
the keyword super.

5.3 Behavior Preservation

Many applications that use variability encoding depend on the fact that variabil-
ity encoding preserves the behavior of the simulated variants. This includes, in
particular, all control-flow sensitive applications, such as verification [ASW+11;
AvRW+13; TSAH12] or testing [KvRE+12]. In this section, we prove the

98

CHAPTER 5. VARIABILITY ENCODING

behavior-preservation property for variability encoding based on our model of
Section 5.2. As the key result of this chapter, our proof guarantees that a vari-
ant simulator can be used for behavioral analysis of the variants it simulates. It
shows that the execution of a variant simulator and the corresponding variants
exhibit the same observable behavior, as illustrated in Figure 5.2.

In particular, we prove that the behavior of each variant of a configurable
system is weakly bisimilar to the variant simulator, if the variant simulator is
executed with the variant’s configuration. We use weak bisimulation [Mil99] as
proof technique to show that each execution trace in a variant is represented
by a trace in the variant simulator with the configuration that corresponds to
the variant. We use the weak form of bisimulation to allow the occurrence of
additional feature-choice transitions in the simulator. Next, we define a trace
semantics for FJsim programs in Section 5.3.1, which we use to prove behavior
preservation in Section 5.3.2.

5.3.1 A Trace Semantics for FJsim Programs

We introduce a trace semantics for FJsim that encodes the run-time semantics
defined by the evaluation rules (Figures 5.4 and 5.7). This way, the behavior of
a program is represented as a transition system, which is better suited for our
bisimulation proof than the source code representation. In particular, we model
the run-time behavior of a variant πΦ and a variant simulator σ. Using function
genTS (CT , t) of Figure 5.11, we define the transition system of a program
p = (CT, init,Φ) as genTS(CT, init). The generated system is a labeled transition
system (S, T,PC), where S is the set of states, T is the set of transitions
(T ⊆ S × PC × S), and PC is the set of presence conditions. States in the
transition system represent FJsim terms, and transitions represent evaluation
steps that rewrite one term into another. Presence conditions are propositional
formulas over variables in the set of configuration options. Transitions are
labeled with presence conditions that have to hold during evaluation in order
to proceed with the respective evaluation step. A trace is a sequence of states
of the transition system starting in the initial state (term init). Each trace
represents an execution path in the corresponding FJsim program. Function
genTS recursively processes all terms of an FJsim program, and adds states
and transitions for each term to the transition system. The generation for
transition systems for FJ programs (system variants) is defined analogous.

5.3.2 Proof of Behavior Preservation

We assume that all valid variants of a given CFJ program with code base ∆ are
well typed with respect to the variability model Φ̂ [KATS12], as the behavior of

99

5.3. BEHAVIOR PRESERVATION

genTS : (FJsim CT,FJsim term)→
Transition system (States, Transitions, Presence conditions)

ge
n
T
S

(C
T
,t

)

=

Termination case (if t is a value)
({v}, ∅, ∅) t = v

TS-ProjNew t = ((new C(v)).fj) and
({t, vj}, {(t, true, vj)}, {true}) fj ∈ fields(C) and vj ∈ v

TS-CastNew

({t, t′}, {(t, true, t′)}, {true}) d genTS (CT , t′) t = (D)(new C(v)) and
with t′ = new C(v) C <: D

TS-InvkNewSuper

({t, t′}, {(t, true, t′)}, {true}) d genTS (CT , t′) t = (new C (v)).@D.m(u)

with t′ = [x 7→ u, this 7→ new C(v)] t0 and
mbody(m,D) = (x, t0)

TS-InvkNew

({t, t′}, {(t, true, t′)}, {true}) d genTS (CT , t′) t = ((new C(v)).m(u)) and
with t′ = [x 7→ u, this 7→ new C(v)] t0 mbody(m,C) = (x, t0)

TS-VarEnc-En and TS-VarEnc-Dis

({t, t0}, {(t, φ, t0)}, {φ})d t = (φ ? t0 : t1)

({t, t1}, {(t,¬φ, t1)}, {¬φ})d
genTS (CT , t0) d genTS (CT , t1)

Cases for congruence rules are omitted

Figure 5.11: Definition of function genTS for the generation of a transition
system (States , Transitions , Presence Conditions) from an FJsim program.
For legibility, we define the join operation d on transition systems (S, T,PC) and
(S ′, T ′,PC ′) as follows: (S, T,PC)d (S ′, T ′,PC ′) = (S ∪S ′, T ∪T ′,PC ∪PC ′).

ill-typed variants is undefined [Pie02]. To prove that the behavior of all variants
is preserved by the corresponding variant simulators (i.e., that variability
encoding is sound), we create a variant πΦ with function derive(∆,Φ) for every
configuration Φ. The generated variant πΦ = (CT Φ, init, true) has a class table
CT Φ, which is constructed with the function encode of Figure 5.9 and a start
term init. The corresponding variant simulator σ = (CT σ, init, Φ̂) is generated
using function encode(∆, Φ̂) of Figure 5.9 and Figure 5.10. Hence, the variant
simulator σ and the variant πΦ are constructed from the same configurable
code base ∆, and the execution of both programs, σ and πΦ, starts with the
term init.

We generate the transition systems for the variant πΦ and the variant

100

CHAPTER 5. VARIABILITY ENCODING

pi

sΦ sσ

s′Φ s′σ

∗
(sΦ, sσ) ∈ RID

(s′Φ, s
′
σ) ∈ RID

pii

sΦ sσ

s′Φ s′σ

∗
(sΦ, sσ) ∈ RID

(s′Φ, s
′
σ) ∈ RID

Figure 5.12: The weak bisimulation property has two sub-properties pi and pii.
The sub-properties prove the existence of dashed relations and states assuming
solid ones.

simulator σ as defined in Section 5.3.1. The transition system for variant πΦ is
denoted with (SΦ,→Φ,PC) and derived by genTS (CTΦ, init), where SΦ is the
set of states of the system, PC is the set of labels (i.e. presence conditions) on
the transitions, and →Φ is the set of transitions (→Φ ⊆ SΦ × PC × SΦ).

The transition system for variant simulator σ is denoted with (Sσ,→σ,PC)
and derived by genTS (CTσ, init). When we execute the simulator σ with
configuration Φ, we use the corresponding projection of the transitions from
→σ: →σ|Φ = {(s, pc, s′) ∈ →σ|sat(Φ∧AT (pc))}. This corresponds to execution
of a simulator in a real execution environment that evaluates the presence
conditions of feature choices with respect to a configuration. For clarity, we
denote states from the variant transition system with sΦ and s′Φ, and states
from the variant-simulator transition system with sσ and s′σ. If it is clear from
the context, we omit the subscripts in the transition relations →Φ and →σ|Φ.

Based on these definitions, Figure 5.12 illustrates the weak bisimulation
property we want to prove.6 RID is the simulation relation, which relates states
of the variant transition system to states of the variant-simulator transition
system. In our proof, we use the syntactic equality of terms in FJsim as
simulation relation. For two states sΦ and sσ, (sΦ, sσ) ∈ RID holds, iff the
terms represented by sΦ and sσ are equal. This is possible because each FJ
term is by definition also an FJsim term. The weak bisimulation property has
two sub-properties (pi and pii), which must both be proved. Property pi states
that, for each direct successor state s′Φ of sΦ, there exists a state s′σ in the
variant-simulator transition system that is related to the state s′Φ of the variant

6 We choose the weak bisimulation property over the often weaker weak-trace-equivalence
property because both properties are equal in our case. Bisimulation and trace equivalence
are different iff a state can have two equally-labeled outgoing edges leading to different states.
Such behavior often occurs in the context of concurrent execution. In our transition system,
an FJsim term is always evaluated with a specific evaluation rule yielding exactly one term
(assuming a valid configuration Φ).

101

5.3. BEHAVIOR PRESERVATION

class X extends Object {}
class E extends Object {Xm() { return φ4 ? newX() : . . . ; } }

class D extends E {Xm() { return φ3 ? . . . : super.m() ; } }

class C extends D {Xm() { return φ1 ? . . . : (φ2 ? . . . : super.m()) ; } }

newC().m()

Figure 5.13: Proof concept in presence of overriding methods. The initial term
(bottom) is evaluated as shown by the arrows. We prove existence of the dashed
arrows in Case 3 of Theorem 1 and existence of the solid arrows in Lemma 1.

transition system with (s′Φ, s
′
σ) ∈ RID , and that s′σ is a successor state of sσ.

Property pii states that, for each successor state s′σ of sσ, there exists a state s′Φ
in the variant-simulator transition system that is related to the state s′σ of the
variant transition system, with (s′Φ, s

′
σ) ∈ RID , and that s′Φ is a successor state

of sΦ. In weak bisimulation, s′σ does not need to be a direct successor to sσ; in
our case there may be a number of auxiliary states in between that evaluate
feature choices. We denote such a sequence of states linked by consecutive
transitions with sσ

∗→s′σ. A sσ
∗→s′σ sequence starts with an evaluation rule from

normal FJ and continues with zero or more applications of the new FJsim
evaluation rules (E-VarEnc-En, E-VarEnc-Dis, or E-InvkNewSuper).

A particularly interesting part of the proof is how we prove correctness in
the presence of overriding methods. We moved a corresponding part of the
proof to Lemma 1, to simplify understanding. Figure 5.13 shows an example
for how the lemma is used. It shows four classes of a variant simulator and
a term (newC()).m() that is evaluated. The classes C, D, and E implement
method m. The term (newC()).m() is evaluated as shown in the figure if the
presence conditions φ1, φ2, and φ3 are not satisfiable, and φ4 is satisfiable in
a configuration Φ. In this case, term (newC()).m() evaluates to term newX(),
defined in E. As a consequence, the transition system of the variant simulator
must contain a path from (newC()).m() to newX(), which may contain auxiliary
states. We prove the existence of this path in two steps. First, Lemma 1
proves that the intra-method dispatch among alternative implementations is
resolved correctly (solid arrows in Figure 5.13). Second, Case 3 in the proof
of Theorem 1 shows that the steps from overriding to overridden methods are
evaluated correctly (dashed arrows in Figure 5.13).

102

CHAPTER 5. VARIABILITY ENCODING

Lemma 1. Given (1) a configuration Φ, (2) the method body return t; of a
method m(x) in class C, and (3) that a call (newC(v)).m(u) is type correct in
Φ, there exists a chain of consecutive states t

∗→ . . . that either evaluate t (i)
to a term tΦ that has a presence condition satisfied by Φ and is one of m’s
alternative implementations in C, or (ii) to (new C(v)).@D.m(u) if no such term
tΦ exists and a superclass of C implements m. This evaluation sequence uses
only the rules TS-VarEnc-En and TS-VarEnc-Dis.

Proof. We use induction over the number of feature choices n in term t to prove
Lemma 1. The induction hypothesis is that each subterm of t evaluates to tΦ
(Case i) or to (new C(v))@D.m(u) (Case ii) if it is annotated with a presence
condition satisfied in Φ and has n or less feature choices . In both cases, the
resulting term does not contain the keyword super. In Case (i), the term is a
part of the CFJ program and as such cannot use super. In Case (ii), super has
been substituted with a super reference (this.@..) when the method body was
loaded with the function mbody .

There are two base cases (n = 0) which correspond to cases (i) and (ii) in
Lemma 1. In Base Case (i), t is one of the alternative implementations of m.
In this case, the presence condition AT (t) must be satisfied by Φ, otherwise
a call to m is not well typed. In Base Case (ii), t is an invocation of m in the
direct superclass of C. Therefore, t equals (new C(v))@D.m(u), and there exists
an implementation of m in some superclass of C, because the call is well typed.
The base cases are exclusive; a given term can satisfy either (i) or (ii).

In the inductive step n→ n+ 1, t′1 is a feature choice t′1= (φ ? tφ : t¬φ). The
subterms tφ and t¬φ have n or less feature-choice terms. From the definition of
genTS (Figure 5.11, TS-VarEnc-En and TS-VarEnc-Dis), we know that
the variant-simulator transition system contains the transitions tr from t′1 to tφ
and tr ′ from t′1 to t¬φ (with the presence conditions φ and ¬φ, respectively).
Either φ is satisfied by configuration Φ (i.e., sat(φ ∧ Φ)) or the negation ¬φ is
satisfied by Φ. Exactly one of φ or ¬φ is satisfied, because Φ is a configuration,
and as such has a fixed value for each configuration option. The code that is
invoked if φ is satisfied is encoded in tφ and the code that is invoked if ¬φ is
satisfied is encoded in t¬φ (function � ·�, Figure 5.10). First, we consider the
case where φ is satisfied under configuration Φ. Our version of CFJ enforces
that feature choices can only occur as the outermost terms in return statements
(alternatives are only allowed for method bodies, cf. Section 5.2.2). Thus, if the
result of this evaluation step tφ is not a feature choice, it does not contain any
further variability and one of the base cases applies. Otherwise, the resulting
term tφ is a feature choice. This means, tφ has the same syntactic form as t′1 in
the beginning of the induction step and it is shorter than t′1 (has one feature
choice less). Therefore, we can apply the induction hypothesis. If ¬φ is satisfied

103

5.3. BEHAVIOR PRESERVATION

under configuration Φ the proof is analogous. In each step of the evaluation
E-VarEnc-En or E-VarEnc-Dis is applied.

The induction shows that there is a sequence of consecutive states
(t, t2, . . . , tn) in the variant-simulator transition system that evaluate t to a
non-feature-choice term tn with tn either being a term with a satisfied presence
condition (Case (i)) or a call to an implementation of m in a superclass (Case
(ii)). The chain is finite because the term becomes smaller in each iteration
as long as the evaluated term is a feature choice. Therefore, the induction
hypothesis and the lemma holds.

Theorem 1. Given a CFJ code base ∆ with a variability model Φ̂ and a
start term init, a configuration Φ, the simulation relation RID (term equal-
ity), a variant πΦ = (CTΦ, init, true) = derive(∆,Φ), a variant simulator
σ = (CTσ, init, Φ̂) = encode(∆, Φ̂), which is executed with Φ, and the correspond-
ing transition systems (SΦ,→,PC Φ) = genTS (CTΦ, init) and (Sσ,→,PC σ) =
genTS (CT σ, init) , then the weak bisimulation property holds:

∀sΦ ∈ SΦ,∀sσ ∈ Sσ with (sΦ, sσ) ∈ RID :

(pi) ∀s′Φ with sΦ→s′Φ : ∃s′σ ∈ Sσ such that (sσ
∗→ s′σ and (s′Φ, s

′
σ) ∈ RID)

and
(pii) ∀s′σ with sσ

∗→s′σ : ∃s′Φ ∈ SΦ such that (sΦ→ s′Φ and (s′Φ, s
′
σ) ∈ RID)

Proof. We prove the two properties of bisimulation (pi and pii) separately.
Property pi We prove pi with a case distinction over the construction rules

used to generate the transition (sΦ→s′Φ), according to the definition of the
transition systems (Figure 5.11). Overall, there are eleven cases. However, we
omit cases handling congruence rules and focus on the cases of the six evaluation
rules shown in Figures 5.4 and 5.7. The omitted cases are very similar to Case
1 shown below. For a complete proof, we refer to the supplementary material
attached to our JLAMP paper [vRTS+16].
Case 1 (TS-ProjNew): As the transition (sΦ, true, s′Φ) has been gener-

ated with TS-ProjNew (Figure 5.11), fj is a field in class C of variant πΦ

(fj ∈ fields(πΦ, C)). Thus, there is a valid configuration Φ, in which the field
is present in the program. The variant simulator generation rules, in partic-
ular G.2 (Figure 5.9 and Figure 5.10), ensure that the field is also present in
the variant simulator: fj ∈ fields(σ, C). The definition of genTS (Figure 5.11,
TS-ProjNew) ensures that there is a transition (sσ→s′σ) with s′σ = fj . There-
fore, s′Φ and s′σ represent the same terms and (s′Φ, s

′
σ) ∈ RID holds.

Case 3 (TS-InvkNew): Let sΦ = (new C(v)).m(u). Method m in πΦ must
have been generated with variant generation rule G.5 of Figure 5.9. It is
important to note that v and u are lists of values (values cannot be evaluated
any further). Let t0 be the body of method m in the variant πΦ. As the method

104

CHAPTER 5. VARIABILITY ENCODING

body is included in πΦ with Rule G.5, we can conclude that the configuration
Φ implies the presence condition AT (t0) and s′Φ = t0. As sΦ is in simulation
relation to sσ, we know that sσ = (new C(v)).m(u). From the definition of genTS
(Figure 5.11, TS-InvkNew), we infer (1) that →σ|Φ contains a transition
tr1 = (sσ→ ([x 7→ u, this 7→ new C(v)]t′1)) with mbody(σ,m, C) = t′1 and (2) that
tr1 has the presence condition true.

We use induction over the number of superclasses of C in simulator σ to prove
that sΦ and sσ evaluate to the same term. In the base case, class C is a direct
subclass of Object. Object does not implement any methods [Pie02]. Because
each variant is well typed, term sΦ is also well typed, and we can apply Lemma
1 with configuration Φ. The application of Lemma 1 shows that there exists
a list of consecutive states (sσ, t2, . . . , tn) in the variant-simulator transition
system that evaluate sσ to either a term tn with a presence condition satisfied
by Φ or to a call of m in a superclass. As C does not have superclasses (other
than Object), we know that sσ evaluates to tn with tn = s′σ and (s′Φ, s

′
σ) ∈ RID .

The evaluation step sσ → t2 applies evaluation rule E-InvkNewSuper. All
subsequent evaluation steps, until tn is reached, apply rules TS-VarEnc-En
or TS-VarEnc-Dis which concludes the base case of the induction.

In the inductive step, C has n+ 1 superclasses, including Object. The term
sΦ is an invocation of method m on class C and the invocation is well typed in
variant πΦ, because either C has an implementation of m in the variant πΦ or
the method invocation is dispatched to an implementation of m in a superclass.
If C itself has an implementation, Lemma 1 shows that there is a chain of states
in σ from sσ to s′σ. As s′σ is the first alternative implementation of m that
satisfies the configuration Φ, s′σ is in simulation relation to s′πΦ . If C does not
have an implementation of m in the variant πΦ, Lemma 1 shows that there is
a chain of states in simulator σ from sσ to (new C(v))@D.m(u). This chain uses
only TS-VarEnc-Dis. This new expression invokes method m in the direct
superclass D of C. Because v and u are values, the next evaluation rule must
be TS-InvkNewSuper. D has n superclasses, so we can apply the induction
hypothesis, which states that the call of m on D evaluates to the same term as
sπΦ in variant πΦ.

Therefore, s′Φ = t0, s′σ = tn, and (s′Φ, s
′
σ) ∈ RID . So, there exists a state

s′σ ∈ Sσ, such that (s′Φ, s
′
σ) ∈ RID and a sequence of transitions (sσ

∗→s′σ). The se-
quence starts with TS-InvkNew followed by applications of TS-VarEnc-En,
TS-VarEnc-Dis, and TS-InvkNewSuper, which concludes Case 3.
Case 4 and Case 5 (TS-VarEnc-En and TS-VarEnc-Dis): None of the

rules for variant generation (Figure 5.9, G.1–G.8) can generate a feature choice.
Therefore, the variant πΦ cannot contain terms to which rules TS-VarEnc-en
and TS-VarEnc-dis may apply. Therefore, Case 4 and Case 5 cannot occur.

105

5.4. VARIABILITY ENCODING BEYOND FEATHERWEIGHT JAVA

Case 6 (TS-InvkNewSuper): None of the rules for variant generation
(Figure 5.9, G.1–G.8) can generate a super term. Therefore, the variant πΦ

cannot contain terms to which rule TS-InvkNewSuper applies and thus
Case 6 cannot occur. This concludes the proof of property pi of the bisimulation
property.

Property pii To prove the second sub-property of bisimulation (property
pii), we have to do a similar case distinction as for the first property (pi). Case
1 ((TS-ProjNew) can be proven analogous to pi. We focus on Cases 4, 5, and
6. All other cases can be proven analogous to the the cases for pi given in the
supplementary material attached to our JLAMP paper [vRTS+16].

Case 3 (TS-InvkNew) is interesting because we have to show that the
simulator cannot evaluate to any states that are not present in a variant,
except for states with ternary operators or the @D annotation. Given a term
sΦ = (new C(v)).m(u) with (sΦ, sσ) ∈ RID and a state s′σ with (sσ

∗→s′σ), we
must show that the variant contains a state s′Φ with (s′Φ, s

′
σ) ∈ RID . Inter-

estingly, s′σ is the only state in the sequence (sσ
∗→s′σ) that can be present in

SΦ. All intermediary states between sσ and s′σ are evaluated with the rules
TS-VarEnc-En, TS-VarEnc-Dis, or TS-InvkNewSuper and, therefore,
contain ternary operators or the @D annotation, which cannot occur in a vari-
ant. As a result, evaluation in the simulator deviates exactly as far from the
variant evaluation as necessary to simulate the correct variant behavior. sσ
evaluates to s′σ assuming configuration φ, and the argumentation of Case 3 in
the proof of property pi shows that s′σ is equal to the state that sΦ evaluates
to in the variant. Therefore, variant πΦ has a state s′Φ with (s′Φ, s

′
σ) ∈ RID and

a transition (sΦ → s′Φ), which concludes Case 3.
Cases 4, 5 and 6 (TS-VarEnc-En, TS-VarEnc-Dis, and

TS-InvkNewSuper) are not relevant, as the given states sΦ and sσ are in
simulation relation RID and sΦ cannot contain ternary operators or the @D
annotation. This concludes property pii and the bisimulation proof.

5.4 Variability Encoding Beyond FJ

For the purpose of developing a formal proof, we limited our model of variability
encoding as well as the considered languages to a small subset of Java. However,
variability encoding is meant to be performed on real programs written in
languages such as Java or C. Even for such complex languages it is always
possible to build variant simulators trivially using duplication. One can just
build every valid program variant and, at program start, dispatch between these
variants. However, analysis of such variant simulators is inefficient because

106

CHAPTER 5. VARIABILITY ENCODING

similarities among variants cannot be exploited (equivalent to variant-based
analysis, see Section 5.5). So, the question arises how additional language
concepts of Java and C affect our model (which enables sharing among variants)
and our proof of behavior preservation of variant simulators.

As modelling the full set of language features of Java or C is infeasible, we
discuss a selection of language constructs that are problematic for variability
encoding (e.g., method overloading, optional program variables, and field
shadowing). We show how to deal with these constructs on concrete examples.
We express the variability in the examples using ifdef directives, because they
facilitate a compact notation with fine-grained variability. In most examples, we
have to resort to local code duplication as a workaround to solve the variability-
encoding challenges. This results in code fragments that are not shared among
variants any more. However, in our experience with real applications, the
code blowup introduced by these duplications can be kept locally and the
most of the code is still shared, as we discuss in Section 5.5. In some cases
the variability-encoding challenges and solutions may seem trivial, but it is
important to discuss these basic situations before attempting to implement
variability encoding in a more complex language. The overarching goal is still
that a variant simulator weakly bisimulates all variants. That is, in addition to
feature switches, it executes only statements that are equivalent to statements
of the variant that is currently simulated.

Method overloading Java allows programmers to define multiple methods
with the same name in a class iff the signatures of the methods differ (different
number or types of parameters). Method overloading is not supported in FJ,
and thus neither in CFJ and FJsim. Adding method overloading to CFJ leads
to two challenges for variability encoding:

1. In combination with inheritance, methods may overload methods defined
in other classes of the inheritance hierarchy. If the overloading method
is optional, a simulator generated with the rules of Section 5.2.4 could
execute the wrong method.

2. Alternative methods in one class can have identical signatures in the
simulator if we allow annotation of single parameters with presence
conditions. If this situation is not handled, variability encoding can
generate simulators that are not well typed.

overloading and
inheritance

Figure 5.14a shows a situation where method overloading and inheritance
is combined. Class Y implements method m(B) and inherits an implementation
of m(A) from class X. This is a case of overloading because both methods
are callable on objects of type Y. The Java run-time environment decides

107

5.4. VARIABILITY ENCODING BEYOND FEATHERWEIGHT JAVA

1 class A {}
2 class B extends A {}
3 class X { A m(A a) {...} }
4 class Y extends X {
5 #if (Opt1)
6 A m(B b) {return new A();}
7 #endif
8 }
9

10 (new Y()).m(new B());

(a) Problem: Optional method
overloading with inheritance

1 class A {}
2 class B extends A {}
3 class X { A m(A a) {...} }
4 class Y extends X {
5 A m(B b) {
6 return Opt1 ? new A() : super.m(b);
7 }
8 }

(b) Solution: Introduce super also for over-
loaded methods.

Figure 5.14: Optional method overloading with inheritance in Java

1 class A {
2 int x = 0;
3 #if (Opt1 && Opt2)
4 int m() {return 0;}
5 #endif
6 int m(
7 #if (Opt1)
8 int x
9 #endif
10) { return x+1; }
11 }

(a) Problem: Method overloading
with optional parameters

1 class A {
2 int x=0;
3 int m() { return Opt1 && Opt2 ? 0 :
4 (Opt1 ? x+1 : intErr()); }
5 int m (int x) {
6 return Opt1 ? x+1 : intErr();
7 }
8 int intErr() { throw new Error(); }
9 }

(b) Solution: Duplication of the expression
Opt1? x+1 : intErr()

Figure 5.15: Method overloading with optional parameters in Java

which method to choose depending on the type of the given parameter. The
given situation is even more complex because the method implemented in Y is
optional and B is a subclass of A. This means that (new Y()).m(new B()) resolves
to the implementation of m in Y if Opt1 is satisfiable and to the implementation
in X otherwise. We have to model this behavior when designing the variant
simulator. A straightforward approach would be to apply method renaming
and generate feature switches at all call sites. However, using super, we have
a more elegant solution for this problem. Figure 5.14b shows a simulator
where we alternatively execute the code from Y or use super to call the method
from X. This solution can be implemented in our formalism by altering the
premise m ∈ M in the hasSuperImpl(C, m) rule from Figure 5.7, such that it
also considers methods that overload m.

108

CHAPTER 5. VARIABILITY ENCODING

1 struct str {
2 int x;
3 #if (Opt1)
4 int y;
5 #endif
6 } str;
7 int f() {
8 return sizeof (str);
9 }

(a) Problem: Run-time system

1 struct str_noOpt1 {
2 int x;
3 } str_noOpt1;
4 struct str_Opt1 {
5 int x;
6 int y;
7 } str_Opt1;
8 int f() {
9 return Opt1 ? sizeof (str_Opt1)
10 : sizeof (str_noOpt1);
11 }

(b) Solution: Duplication of the struct str

Figure 5.16: Interaction of variability encoding and environment functions in C

colliding
method
signatures

As to the second problem, if we allow overloading and optional parameters,
as shown in Figure 5.15a (Line 8), signatures are not unique any more, even
within a single class declaration. The code in Figure 5.15a contains two
implementations of method m. The first method implementation (Line 4) is
present only if the options Opt1 and Opt2 are enabled. The second method
implementation (Lines 6–10) is always present, but has two alternative variants:
If Opt1 is enabled, an optional parameter is present; if Opt1 is disabled, the
parameter is missing. So, in the latter case, the second method definition has
the same signature as the first method definition. All configurations of the
configurable program are well typed, and all variants of the method are used in
some configurations, so we must include both methods in the variant simulator.
However, as the methods have the same signature, we have a signature conflict
if we just copy them to the simulator. To solve this signature conflict, we
duplicate the code of the second method and insert it into the first method
(Figure 5.15b). The code duplicates are guarded with corresponding presence
conditions. Although this solution leads to code clones, we avoid the complex
task of identifying and modifying all call sites of the methods.

Optional program variables We do not support optional fields in our
model. However, program variables (fields and local variables) may be optional
in real-world applications.

Figure 5.16a shows a program that contains a struct with one or two integer
variables, depending on the configuration. We need to include both variables
in the variant simulator, because both are used in, at least, one configuration.
The program also contains a function that returns the size of this struct. If Opt1
is not enabled, the function returns the size of one integer; if Opt1 is enabled, it

109

5.4. VARIABILITY ENCODING BEYOND FEATHERWEIGHT JAVA

returns the size of two integers. However, as we have to include both integers
in the variant simulator, the function always returns the size of two integers
and, therefore the behavior of the variants is not preserved.

There are two possible solutions of this problem. One solution (shown
in Figure 5.16b) is to rename and duplicate the struct definition. In this
solution, we also have to modify references to the struct and add feature
choices, such that the use always refers to the correct struct implementation.
For more complex instances of the problem, this leads to an exponential
code blowup and complex variant simulators. An alternative solution is to
transform all expressions that are affected by system functions that cannot
be changed (such as sizeof). The transformed sizeof expression for our example
would be (Opt1 ? 2∗sizeof(int) : sizeof(int)). In scenarios with more variables,
the transformed expression grows exponentially with the number of variables,
similar to the previous solution. Both presented solutions (struct duplication
and transformation of struct usages) have limitations in practice and have to
be applied depending on the case at hand. The same problem occurs with
direct memory access in C via pointer arithmetic and with reflection in Java.
In both cases, either a case-specific solution has to be found or code has to be
duplicated.

Alternative types We do not allow static variability of return types of
functions or types of variables or parameters. However, this is possible in
languages such as Java or C, with ifdef directives. We can, for example, declare
a variable with alternative types, such as #if (Opt1) int #else double #endif x;.
The variable x is either of type int or of type double. All valid variants of this
configurable program are well typed [AKGL10].

When building a variant simulator for this example, we cannot statically
determine the type of the variable. As the different types may not have
a common supertype, we have to include both possibilities in the variant
simulator. Therefore, we have to duplicate the variable declaration. Each
location at which the variable is used must be modified such that the used
variable variant depends on the selected configuration option. In extreme cases,
if each variant has a different type for the variable, we have to introduce a
variable for each configuration. However, according to our experience, this
situation is very rare. A similar problem occurs if method signatures are
variable (e.g., variability in method modifiers). Further similar examples are
struct or enum definitions in C, generics, annotations, exceptions in method
declarations, and class declarations (e.g., variable inheritance with alternative
extends clauses) in Java.

110

CHAPTER 5. VARIABILITY ENCODING

1 int m() {
2 int x = 0;
3 for (int i = 0; i < 10; i++) {
4 #if Opt1
5 int x = 1;
6 #endif
7 x++;
8 }
9 return x;
10 }

(a) Problem: Field shadowing

1 int m() {
2 int x = 0;
3 for (int i = 0; i < 10; i++) {
4 int y = 1;
5 (Opt1 ? y++ : x++);
6 }
7 return x;
8 }

(b) Solution: Variable renaming

Figure 5.17: Optional field shadowing in C

Field shadowing A further problem with optional program variables is
shadowing [TSAH12]. As an example, assume that we define two local variables
in different scopes with the same name, but one of the variables is optional
depending on configuration option Opt1 (Figure 5.17a). Consequently, Opt1
influences to which program variable an identifier in the inner scope refers to.
In our example, method m either returns 0 or 11. Hence, optional shadowing
needs to be handled in variability encoding; one solution is to rename one of the
program variables and duplicate all statements that contain the identifier (see
Figure 5.17b). Shadowing may also co-occur with other language constructs,
such as inner classes. Instead of renaming, we can consider all these cases
(other than variable shadowing) as code smells and suggest to forbid them,
because code with optional shadowing may be hard-to-understand and may
cause faults in configurable programs anyway.

Concurrency In our model of variability encoding, we ensure that each state-
ment and therefore each access to potentially shared data of the configurable
program is either guarded with presence conditions or duplicated. There are
two problems that occur in variability encoding of concurrent programs: (1)
code executed during class initialization can sometimes not be enclosed in if
statements (e.g., field initializations) and (2) feature-choice statements might
slow down threads with much variable code more than others. To handle the
first problem, we move code that initializes optional data structures (e.g., fields)
to constructors and guard them with presence conditions there. This way,
only code of one variant (and feature choices) is executed and other variants
cannot interfere. The configuration of all feature variables is selected and fixed
from the beginning of the execution of the variant simulator. All threads are
executed with the same configuration and execute the behavior of the variant,
including possible interactions between the threads. These interactions also

111

5.5. EXPERIENCE WITH VARIABILITY ENCODING

include synchronizations on shared variables. The second problem can be solved
by using an execution engine that explores all possible thread interleavings
such as a model checker for concurrent programs. If multiple variants in a
variant simulator with concurrency are analyzed at the same time (e.g., with
a model checker), the analysis tool has to ensure that program states from
different variants do not get mixed up and produce formerly unreachable states.
Other common pitfalls of concurrent programs, such as breaking atomicity,
shared mutable states, transactions, livelocks, and deadlocks, can be dismissed
because a thread execution path in a simulator accesses the same variables
(in the same order) as the corresponding path in the variant plus immutable
feature variables.

Non-functional properties Concerning non-functional properties (e.g., per-
formance, memory consumption, or response time), a variant simulator behaves
differently than a variant. The implementation of variability encoding ensures
that the variant simulator executes statements that would be executed in the
variant and additionally executes guard statements. Therefore, in theory, the
only difference in executed statements should be the evaluation of presence
conditions and the loading of classes which do not occur in the variant but are
necessary in the simulator. Code for the instantiation of such classes can also
be guarded. Depending on the system and its granularity, there may be many
feature choices and the evaluation of presence conditions may also be expensive.
The code overhead of variant simulators naturally influences non-functional
properties such as binary size and time for program setup. To accurately
predict non-functional properties of a variant based on the performance of the
variant simulator [SvRA13], the prediction technique must take this overhead
into account.

5.5 Experience with Variability Encoding

In this section, we give an overview of our work in applying variability encoding
in analyses of configurable systems. We also summarize our experience with
implementing variability encoding for real languages and systems. Our formal
proof of behavior preservation (Section 5.3) strengthens the results of these
projects. It increases confidence that the implementations of variability encoding
used in these projects also preserve behavior (even though the implementations
are much more complex).

112

CHAPTER 5. VARIABILITY ENCODING

5.5.1 Variability Encoding in Java

Variability encoding has been used for testing, verification, and performance
modelling of configurable Java programs.

Testing For testing of configurable systems, Kästner et al. [KvRE+12] built
an interpreter for Java-based systems with ifdef variability on top of the tool
TypeChef [KGR+11]. The idea is to parse the ifdef variability as if it was run-
time variability (similar to variant simulators). Then, the program is executed
with a fixed test input, but without fixing the feature variables; once a feature
choice is reached, the interpreter executes both branches. The interpreter aims
at visiting execution paths as few times as possible, still covering the executions
of all variants, which can reduce testing time substantially.

Bürdek et al. [BLB+15] used variability encoding to efficiently generate test
suites for configurable systems. They used a variability-aware extension of the
test-case generator CPA/Tiger [BHTV13] on variant simulators that have
been generated with FeatureHouse [AKL09]. Given a set of test goals that
should be covered (e.g., statement coverage or branch coverage), the approach
generates a variability-aware test suite. The test suite contains a set of test
cases which each have a presence condition stating on which variants they can
be run. Furthermore, for each combination of test cases and test goals, the test
suite has a presence condition stating in which variants the test case covers the
test goal. Based on this information, one can generate a test plan that contains
a minimal set of test cases and variants on which they need to be executed to
cover all test goals in all variants. The evaluation shows that variability-aware
test case generation generates far less test cases than a variant-based approach.

Verification We used variability encoding for model checking configurable
systems which we discuss in Chapter 6 [ASW+11; AvRW+13]. For the experi-
ments, we selected three configurable Java programs that served as benchmarks
for the community before and that provide functional specifications violated by
some variants. To identify the violations, we constructed a variant simulator per
configurable program using FeatureHouse [AKL13], and we verified the vari-
ant simulator using the software model checker Java Pathfinder [VHB+03].
The experiments showed that analyzing the variant simulator is substantially
faster than checking all variants individually [AvRW+13]. Also, analyzing the
variant simulator was as precise for correctness checking as the analysis of all
variants.

In a work on deductive verification of configurable programs, Thüm
et al. [TMB+14; TSAH12] applied variability encoding not only to the config-
urable Java code, but also to the corresponding specifications, which have been

113

5.5. EXPERIENCE WITH VARIABILITY ENCODING

written in an extension of the Java Modelling Language (JML). Much
like for programs, a configurable JML specification may give rise to different
variants, depending on the configuration, which needs to be taken into ac-
count during verification. Technically, this approach transforms a configurable
JML specification to a corresponding specification simulator (a.k.a. meta-
specification [TSAH12]), which is similar to creating a variant simulator for a
configurable Java program. Verifying the variant simulator using the theorem
prover KeY, the authors observed considerable speedups compared to the
verification of all variants, and the resulting proofs for the variant simulator
have a similar complexity as the proofs for variants [TSAH12].

An interesting property of variant simulators is that existing verifiers for
run-time variability can be reused as-is for compile-time variability. This
property was exploited by verifying compile-time configurable programs with
the theorem prover KeY [TMB+14] and the software model checker Java
Pathfinder [AvRW+13] (Chapter 6). The results showed that the combination
improves efficiency and effectiveness at the same time [AvRW+13; TMB+14].

Performance modelling Siegmund et al. [SvRA13] used variability encoding
to quantify the effects of individual features on the run time of the variants
of a configurable program. Using FeatureHouse, they constructed variant
simulators for a set of configurable Java programs, with (non-variable) test
cases. Based on these tests, they executed the variant simulators with a normal
Java run-time environment, and they measured how much time was spent
in each method and in which context the method was called. Using this
information, they built a performance model per configurable program that
allowed them to estimate the performance contribution of individual features
and feature interactions, without creating and measuring each program variant
individually.

Summary In all of these approaches, variability encoding plays a central
role in reducing analysis or measurement effort. As in all cases variability
has been implemented with feature modules (cf. Section 2.1.3), most of the
variability stems from method refinements resulting in alternative method
bodies, which are easy to encode in variant simulators. Notably, none of the
problems discussed in Section 5.4 occurred in the respective case studies, which
suggests that coarse-grained variability mechanisms, such as feature modules,
sufficiently facilitate variability encoding.

114

CHAPTER 5. VARIABILITY ENCODING

5.5.2 Variability Encoding with C

In a parallel line of research, we developed the tool Hercules, an extension of
TypeChef with functionality for variability encoding of large-scale configurable
C programs that use the C preprocessor to implement compile-time variability.
In the motivating section of this chapter, we describe a practical application
scenario of Hercules (Section 5.1.1). We used Hercules to generate variant
simulators for code slices of the Linux kernel and used a model-checking tool
to verify these simulators. In this section, we present (1) a short description of
variability encoding in Hercules, (2) an evaluation of the code size of variant
simulators compared to ifdef code (overhead), and (3) an evaluation of behavior
preservation of Hercules based on the configurable system SQLite.

Variability encoding in Hercules The process of constructing variant
simulators for C programs with preprocessor directives is much more challenging
than for feature modules in Java, because of very fine grained variability.7
Preprocessor-induced variability in C programs occurs frequently at the level
of field declarations and type definitions [LAL+10; LKA11]. At this granularity,
dynamic variability cannot be directly encoded in C (if statements are allowed
only in method bodies). Therefore, one has to duplicate field declarations
and type definitions and embed expressions that use them into conditional
statements (i.e., feature choices), as we have illustrated in various examples in
Section 5.4. As a further challenge, C does not support method overloading, so
a variant simulator for a C program, similar to the example in Figure 5.15a on
page 108, requires more code duplication to represent all configurations !Opt1,
Opt1 && !Opt2, and Opt1 && Opt2. As a result, one has to introduce new method
names for each duplicate and modify all calls to the method correspondingly.
Furthermore, we identified several language features of C that required special
attention in our implementation:
• Type declarations. Since the C preprocessor is often used to imple-

ment portable code (e.g., for different hardware architectures or operating
systems), ifdef directives often implement variability at the level of type
definitions (e.g., choosing between types u32 and u64). Similar to the han-
dling of alternative method types (Section 5.4), one has to create multiple
variants of type definitions that are included in different configurations.
• Jump labels and goto statements. C code allows to annotate every
line in a method with a jump label and jump to this label using goto
statements. Both, labels and goto statements, can be enclosed in ifdef
directives. In particular, labels that are defined in multiple positions

7Our Java subject systems are implemented with superimposition [AL08] in Feature-
House [AKL09], where variability is usually at function level (coarse-grained).

115

5.5. EXPERIENCE WITH VARIABILITY ENCODING

1 char params[] =
2 "−a\0" + "−o\0"
3 #if (FIND_NOT)
4 "!\0"
5 #endif
6 #if (DESKTOP)
7 "−and\0"+ "−or\0"
8 #if (FIND_NOT)
9 "−not\0"
10 #endif
11 #endif
12 "−print\0"
13 #if (FIND_PRINT0)
14 "−print0\0"
15 #endif
16 ... // 49 additional lines of
17 ... // code with string literals
18 ;

Figure 5.18: Exponential explosion in variability encoding of Busybox

in alternative configurations are problematic because we cannot include
more than one alternative in the simulator (label identifiers must be
unique). We encode such labels by renaming them and by inserting
feature switches at the corresponding goto statements.
• Switch statements. Large C programs such as SQLite often include

methods for parsing user input. Such parsers are often implemented with
switch statements where each case corresponds to a command or token.
Often entire cases are optional, depending on whether the user selects
support for a functionality. If the functionality is not chosen these cases
are handled by a default case. A Hercules-generated variant simulator
must provide both possible control flows and ensure that always the
correct control flow is executed. In addition to this situation, (optional)
break and continue statements can further increase complexity of the control
flow. We realized variability encoding of such situations by inserting jump
labels and goto statements in the variant simulator.

Summarized, we often used code duplication and renaming of identifiers
in Hercules to solve variability-encoding problems. However, we also en-
countered extreme patterns with very many variants that require manual
intervention. We would like to illustrate one extreme variability pattern that
we encountered in systems such as the Linux kernel, SQLite and the Busybox
tool suite [LvRK+13]. In Figure 5.18, we show a variable declaration (taken
from Busybox) storing a string for the evaluation of command-line parameters.

116

CHAPTER 5. VARIABILITY ENCODING

Before Variability Encoding Overhead

Typedefs 128 617 0
Structs/Unions 85 096 612
Enums 24 891 0
Global Variables 29 614 101
Methods 14 825 548
Forward Declarations 726 115 2 120

Figure 5.19: Statistics of variability encoding in Busybox; program elements
before variability encoding and additional elements (overhead) introduced by
duplications; summarized over all files

The string itself is variable, as its substrings are annotated with 21 features.
In the worst case, this implementation requires the generation of 221 different
string variants to be included in the corresponding variant simulator, which
is infeasible in practice. The only way to solve this problem is to compute
the desired string variant at run or load time using a manually implemented
function that resembles the compile-time computation for generating the string
variants. However, this extreme pattern occurs infrequently compared to other
patterns that can be handled without duplication by variability encoding.

Overhead introduced by Hercules We conducted an experiment to
evaluate how often patterns that require code duplication occur, and how
much code overhead Hercules generates. The results of this experiment are
shown in Figure 5.19. Overall, we found that variability encoding is feasible
for real-world C programs. The relatively low amount of code duplication
indicates the feasibility of the overall approach, because a variant simulator
without sharing cannot be analyzed faster than analyzing all of its variants.
We measured how often code duplication is necessary when building variant
simulators for Busybox. In particular, we measured the number of program
elements before variability encoding and how many additional program elements
(overhead) arise from expressing this variability in the variant simulator, as
shown in Figure 5.19. The statistic represents 518 C files and the included
header files.8 5 of the 518 transformed files still contain patterns of extreme
variability, such as the one shown in Figure 5.18 which need to be handled
manually. As a key result, we found that the number of additional elements
that we need to generate in code duplications is always below 4%. Hence, the
generated overhead in terms of source-code expansion from variability encoding
is negligible.

8We skipped 1 C-file due to type errors in the transformation result.

117

5.5. EXPERIENCE WITH VARIABILITY ENCODING

Behavior preservation of Hercules Hercules is a complex, evolving
program that is based on TypeChef, which is also a complex and steadily
evolving system. It would be ineffective to attempt a behavior-preservation
proof for Hercules. Instead, we conducted an experiment with a real-world
system, showing that Hercules preserves variant behavior in most cases.

We used Hercules to generate variant simulators for SQLite and set
the feature variables, such that one specific variant is simulated (each feature
variable is set to 0 or 1). Then, we tested the configured simulator and the
corresponding variant using the test suite TH39 for SQLite. If the test results
are equal, we assume that Hercules correctly encoded the variability of the
variant.

hypothesis Our hypothesis is that Hercules can encode the variability of SQLite and
its test suite TH3 such that testing the generated simulator (with a configura-
tion Φ) yields the same result as testing the variant built with configuration Φ.

subject system For testing, we focused on variability induced by 23 configuration
options. We disabled options, such as SQLITE_OMIT_SUBQUERY and
SQLITE_OMIT_VIEW, which disable functionality that is required by tests in
the TH3 test suite. We generated configurations for feature-wise and pair-wise
coverage of these options (23 and 11 configurations, respectively).

In TH3, a test case is generated from a folder of test specifications and a test
configuration (not to be confused with the configuration of ifdef options; test
configurations set, for example, cache sizes). For our experiment, we excluded
(1) stress tests, which would not have scaled due to the number of variants
that we test, (2) a test that prints the current system time, which makes result
comparison impossible, and (3) a test that stores its test script in a very large
struct with 100 ifdefs and 33 554 432 variants. Furthermore, we excluded a test
configuration that focuses on filesystems that only support short filenames.10
We selected 12 folders with test specifications and 25 test configurations from
the TH3 test suite. From each folder and each test configuration, we generated
a test case. Each test case sequentially executes several test specifications.
We ran each test case for each feature-wise and pair-wise configuration in
a simulator and in the corresponding variant and compared the results. In
total, these are 6900 comparisons for the feature-wise configurations and 3300
comparisons for the pair-wise configurations. In each comparison, we checked
whether the test result in the variant is equal to the result in the simulator.

manual
preparation

We encountered one pattern of extreme variability in the SQLite source
code that we had to encode manually. SQLite has a global array azCompileOpt

9https://www.sqlite.org/th3/
10The 8.3 filename scheme was enforced in old versions of DOS whereas we use UNIX for

our experiments.

118

https://www.sqlite.org/th3/

CHAPTER 5. VARIABILITY ENCODING

Table 5.1: Comparison of TH3 test results for variability encoding on SQLite

Test result Number of tests
Feature wise Pair wise

Same test results Full coverage No failed tests 4629 1662
Failed tests 1368 819

Partial coverage No failed tests 56 9
Failed tests 84 209

Different test results Full coverage 161 273
Partial coverage 602 326

Timeout 0 2

that stores the names of all enabled configuration options (very similar to
the pattern shown in Figure 5.18). The contents of the array are determined
at compile time using 105 ifdef statements, leading to 67 108 864 variants of
this declaration, which makes duplication infeasible. Furthermore, we cannot
directly encode these ifdefs because if statements are not allowed in array
declarations. Therefore, we manually moved the array initialization to a new
method that is called at the beginning of the main function. We also checked
that the array is not referenced in other initialization statements, which would
be executed before the main function. We provide the setup and results of this
experiment on the supplementary website, however, we can not include the
TH3 test suite due to its proprietary license.

We summarize the results of our experiment in Table 5.1 and in Figure 5.20.
The table shows that the variant-simulators and variants generate the same
test result in 88 (feature wise) and 81 (pair wise) percent of all test cases. This
result indicates that, for most test cases, we correctly encode variant behavior,
which confirms our hypothesis.

Some of the test cases terminated with segmentation faults or other irregular
test terminations. Such faults occur, for example, if a test specification, that
is part of a test case, tries to execute code that is not included in a system
variant. If a test terminates with a segmentation fault, we cannot execute
test specifications that would be executed after the fault, so our test does
not cover the entire set of specifications in the test case. However, we argue
that this is a problem in the TH3 test suite which only partially documents
dependencies of test specifications on configuration options. We indicate tests
that did not execute all test specifications with “partial coverage” in Table 5.1
and Figure 5.20.

Furthermore, there are tests which generate different results in a variant
and a simulator. We manually inspected several of these tests and we found
several reasons for different behavior:

119

5.5. EXPERIENCE WITH VARIABILITY ENCODING

Feature wise Pair wise

Same test results

N
u
m

b
e
r

o
f
te

s
ts

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

Feature wise Pair wise

Different test results
N

u
m

b
e
r

o
f
te

s
ts

0

500

1 000

Same test results
 Full coverage, no failed tests
 Partial coverage, no failed tests
 Full coverage, failed tests
 Partial coverage, failed tests

Different test results
 Full coverage
 Partial coverage

Figure 5.20: Results of the comparison of TH3 tests on variants and simulators.
Timeouts do not show because of the scaling.

• Test cases sometimes print execution times, memory sizes or even memory
addresses in error messages. Such values are very likely different in
different executions of the same program. Therefore we cannot reproduce
such behavior with a simulator and the variant behavior is different from
the simulator behavior. We identified several statements in TH3 and
SQLite where such values are printed and replaced them with default
strings. This solution fixed some cases with different results, but for some
cases we could not identify the responsible statements.
• Some test cases seem to have non-deterministic behavior. We fixed the
order in which test specifications are executed in a test case, but if a
test, for example, spawns parallel threads different behavior could be
generated. In such cases, we cannot show correctness of simulators with
testing.
• We identified undocumented dependencies of test cases on configura-

tion options. For example, some tests used CAST expressions to convert
values between different data types. One of the configuration options,
SQLITE_OMIT_CAST disables support for such expressions and conse-
quently these tests fail. For this reason, we excluded the configuration
option SQLITE_OMIT_CAST from our experiment, but we cannot rule

120

CHAPTER 5. VARIABILITY ENCODING

out that other similar errors exist in our experiment setup. The undocu-
mented dependencies that we identified suggest that TH3 was not tested
with a large number of different configurations, which increases the value
of our experiment and explains some results.

Threats to validity Our choice of sample configurations and test cases
threatens the internal validity of our experiment results. We covered only a
very small fraction of the possible SQLite configurations, and we excluded test
cases such as the stress tests. However our evaluation covers a large part of the
code of SQLite and a very diverse and realistic set of problems to variability
encoding.

We used testing as an approximate means to compare the behavior of
variants and simulators. Of course, this approach cannot prove behavior
preservation, which threatens our internal validity. However a formal proof
would require more expensive approaches (e.g., model checking) to explore and
compare all possible (perhaps non-deterministic) execution paths of variants and
simulators. Our results show that variability encoding generates a simulator
that, in the vast majority of cases, generates the same test results as the
corresponding variant.

We discovered and corrected several defects in our experiment setup, such
as hidden dependencies between test cases and configuration options. We
cannot rule out that similar bugs still exists, and these may affect our results.
Correcting some of these bugs would mean complex modification of SQLite
source code, which, for itself, would threaten internal validity.

Our experiment is based on one configurable system and it is not clear
whether Hercules would generate similar results for other systems. However,
SQLite is a real-world database engine that is used in many production systems
and we used the official TH3 test suite for SQLite. Furthermore, this is the
first experiment that evaluates the correctness of variability encoding on a
large-scale configurable system.

5.6 Related Work

The importance of formal foundations for configurable programs has been
recognized before [Hey12; SH11; TAK+14]. There are several publications
that define and refine formal definitions of systems with variability [AtBFG10;
DKB14; FG07; GLS08; Kap12] and also prove behavioral equivalence [FUB06;
Loc12] between different configurable program representations. However, to
the best of our knowledge, we are the first to define variability encoding based
on a canonical representation of the syntax and semantics of the configurable

121

5.6. RELATED WORK

program, and not starting from abstract representations, such as transition
systems. This is an important aspect because, in practice, configurable pro-
grams are not implemented with transition systems or state machines, but
in programming languages, such as C using ifdef directives. Therefore, it
is important to investigate the effect of different language constructs on the
correctness of variability encoding.

There are several publications in which formal representations for config-
urable programs are defined and discussed. Gruler et al. [GLS08] propose
PL-CCS based on the process algebra Calculus of Communicating Sys-
tems (CCS). Kapus [Kap12] proposes the language TLA+ based on featured
transition systems [CCS+13]. Fischbein et al. [FUB06], Asirelli et al. [AtBFG10],
and Fantechi et al. [FG07] discuss formal languages based on modal transition
systems. These formalisms (especially the modal transition systems) are similar
to the transition systems we used in Section 5.3.1. Fischbein et al. [FUB06] also
use a variant of bisimulation to prove that their modal transition system cor-
rectly models the behavior of the system variants. In contrast to our work, all
these formalisms rely on a graph-based representation of configurable programs,
and they do not discuss programming language constructs.

Gnesi and Petrocchi [GP12] define the Controlled Language for Software
Product Lines (CL4SPL). It is designed to be used by engineers of config-
urable programs and to be translated to executable languages for automated
verification. This work is similar to ours in that they offer a language in
which developers can express variability and verify that the implementation
satisfies its specifications. However, this language is quite far from common
programming languages and no proof for the correctness of the transformation
is given.

Erwig and Walkingshaw propose the choice calculus [EW11] as fundamental
representation of software variation, which has been extended and used for
various scenarios such as type inference [CEW12]. In our work, we depend
on formal rules that model the behavior of Java. Unlike CFJ, the choice
calculus is not bound to any mainstream language, and therefore does not
encode variability in the host language, as we do.

Midtgaard et al. [MBW14] developed a formal framework to derive
variability-aware static analyses from standard static analyses. They prove that
the variability-aware part of analyses adapted with their framework is correct
by construction. The overall goal of their research is the same as ours, but our
proof for variability encoding enables the reuse of existing analyses without
further adaption. A similar approach is proposed in SPLLIFT [BTR+13], a
tool for automatic transformation of analyses that are phrased in the IFDS
framework [RHS95]. However, IFDS supports only a certain class of data-flow

122

CHAPTER 5. VARIABILITY ENCODING

analyses and other static analyses such as type checking and model checking
cannot be expressed as data-flow analyses.

There are several other publications [AKGL10; BDS13; DCB09] in which
researchers define frameworks for compile-time variability and variant gener-
ation based on Java. They formally define syntax and typing rules as well
as how variants are derived from a configurable program. They also show
that the derivation process preserves type correctness. However, they do not
use variability encoding or other load-time variability mechanisms. As type
correctness is a requirement for behavioral analysis, we see this work on type
checking and others (e.g., [KATS12]) as premise to variability encoding.

Classen et al. [CHSL11] and Post and Sinz [PS08] used approaches that
are similar to variability encoding. Classen et al. developed a verification
engine based on featured transition systems (fts), which represent control-flow
graphs with presence conditions on edges. As input language, they use the
language fSMV [PR01], which is based on Promela, and encodes variability
with the conditional language constructs of Promela. fSMV programs are
automatically loaded as fts and verified. Post and Sinz manually encoded
variable statements of Linux device drivers with guarding conditional state-
ments and verified the resulting variant simulator. Both approaches rely on
manual encoding of variability; correctness proofs are not available.

Beuche and Weiland [BW09] Matlab-Simulink models with support for
different binding times. Users can move configuration options from one binding
time (e.g., compile time) to another one (e.g., run time) and the model is
automatically modified accordingly. Their tool chain is used in a project for
production code development of Mercedes passenger cars, which emphasizes the
practical relevance of binding-time transformation. In difference to this project,
we only support transformation from compile-time configuration options to
run-time configuration options. However, our approach focuses on common
mainstream programming languages, which enables a broad set of application
scenarios such as software model checking of configurable systems (Chapter 6).

123

CHAPTER 6

Family-based Model Checking

This chapter shares material with the following publications:

• “Domain Types: Abstract-Domain Selection Based on Variable Usage” in
HVC’2013 [ABF+13],

• “Strategies for Product-Line Verification: Case Studies and Experiments”
in ICSE’2013 [AvRW+13], and

• “Detection of Feature Interactions using Feature-Aware Verification” in
ASE’2011 [ASW+11].

In this chapter we present our approach of efficient, family-based model
checking of configurable systems. Our approach relies on a modular, two-step
process: First, we use variability encoding (Chapter 5) to generate variant
simulators representing all behavior of all variants of analyzed systems. Be-
cause we use standard language concepts to encode variability in simulators
(conditional statements), standard tools can be used to analyze simulators. In
the second step, we use a model-checking tool to verify that the generated
simulators satisfy all specifications of the respective systems. If the model
checker can prove this property, all variants satisfy their specifications, too
(given that variability encoding preserves variant behavior, Chapter 5).

variability-aware
model checking

For model checking of simulators, we can use off-the-shelf model-checking
tools, which will generate valid verdicts given enough time and memory. How-
ever, usually efficiency can be improved with optimizations for configurable-
system analysis. We call such optimizations variability-aware because they
use knowledge about how variability is encoded in simulators. Variability-
aware optimizations make off-the-shelf tools “aware” of the static variability

125

1 int x,y;
2 #if A
3 x=1;
4 #else
5 x=0;
6 #endif
7 #if B
8 y=1;
9 #else
10 y=0;
11 #endif
12 y=10/(x+y);
13 ...

(a) Ifdef example code

1 boolean A=nondet();
2 boolean B=nondet();
3 int x,y;
4 if (A) {
5 x=1;
6 } else {
7 x=0;
8 }
9 if (B) {
10 y=1;
11 } else {
12 y=0;
13 }
14 y=10/(x+y);
15 ...

(b) Variability-encoded example code

Figure 6.1: Running example to describe model checking

encoded in the simulators. Both model-checking approaches (with and with-
out variability-aware optimization) are family-based because they analyze one
simulator instead of all variants separately.

In this chapter we describe how model-checking tools can be made variability-
aware. We extended two concrete model checkers: Java Pathfinder [VHB+03]
(extension jpf-bdd [vRAR11]) and CPAchecker [BK11]. Both tools allow
relatively clean, focused extensions using their plugin-oriented architectures.

running
example

Figure 6.1 shows our running example for the description of the model
checking extensions. The program is written with ifdef directives and has
different behavior depending on the feature selection. It has two configuration
options (A and B) and four variants. The variant in which both options are
disabled contains a division-by-zero error: x and y are set to zero in lines 5 and
10 and therefore the divisor of the division in line 12 is zero (lines referring to
Figure 6.1a). Figure 6.1b shows a simulator for the example generated with
variability encoding. In the simulator, the feature variables are initialized to an
unknown value by calling the nondet function; we discuss this in Section 6.1. We
use the running example to illustrate our descriptions of explicit-state model
checking and of our extensions. However, application of the extensions is of
course not limited to the running example.

chapter
structure

We begin with illustrating explicit-state model checking of variant simulators
and the problems occurring in this approach (Section 6.1). As explicit-state
model checking is a well-established technique, Section 6.1 does not contain novel

126

CHAPTER 6. FAMILY-BASED MODEL CHECKING

technical contributions. Based on the problems identified during the explicit-
state section, we introduce variability-aware model checking in Section 6.2. In
Section 6.4, we describe an evaluation of the performance of family-based model
checking with and without our variability-aware extensions. In Section 6.5, we
discuss an evaluation of family-based model checking in comparison to variant-
based and sample-based model checking strategies. In Section 6.6, we present a
set of strategies that combine family-based and variant-based verification. We
discuss an evaluation of these strategies and show that they improve over the
basic family-based and variant-based strategies.

6.1 Explicit-State Model Checking of
Variant Simulators

Among the various model checking approaches, explicit-state model checking
is the simplest approach [CGP99]. Therefore it is suited well as basis for the
description of our extension. As our extension is modular, it can relatively
easily be applied to other model checking approaches such as symbolic model
checking.

explicit-state
model checking

When verifying a program, a software model checker constructs a reacha-
bility graph in which each node represents a concrete state (or a set of concrete
states1) that the program can reach during execution. In explicit-state model
checking, the concrete values of variables are stored in the states. Typically,
each state contains a map from variable names to variable values. Figure 6.2
shows a reachability graph for the variant simulator of the running example.
Each node in the figure maps the five variables pcounter , A, B , x , and y to
values. The variable pcounter represents the program counter, which represents
the instruction in the program that is executed in the next evaluation step. For
simplicity, the values of the pcounter variable refer to the line numbers in the
variability-encoded program (Figure 6.1b). Furthermore, A and B are Boolean
variables, mapped to values T for true and F for false. The value ? is the
unknown value. It denotes that the current state does not contain information
on the value of a variable. We initialize the feature variables A and B with ?,
to allow the model checker to explore all variants of the program.

state-space
exploration

To verify a program, a software model checker explores its state space.
Algorithm 6.1 shows a basic breath-first algorithm for building and exploration
of such a state space. The algorithm is based on the reached_set , which
stores the states that were already visited, and the wait_queue, which stores

1A reachability graph in which nodes can represent more than one concrete state is
abstract.

127

6.1. EXPLICIT-STATE MODEL CHECKING OF VARIANT SIMULATORS

pcounter 7→ 4

A 7→ ?
B 7→ ?
x 7→ 0

y 7→ 0
pcounter 7→ 9

A 7→ T

B 7→ ?
x 7→ 1

y 7→ 0

pcounter 7→ 9

A 7→ F

B 7→ ?
x 7→ 0

y 7→ 0

pcounter 7→ 14

A 7→ T

B 7→ T

x 7→ 1

y 7→ 0

pcounter 7→ 14

A 7→ T

B 7→ F

x 7→ 1

y 7→ 1

pcounter 7→ 14

A 7→ F

B 7→ T

x 7→ 0

y 7→ 1

pcounter 7→ 14

A 7→ F

B 7→ F

x 7→ 0

y 7→ 0

pcounter 7→ 15

A 7→ T

B 7→ T

x 7→ 1

y 7→ 10

pcounter 7→ 15

A 7→ T

B 7→ F

x 7→ 1

y 7→ 5

pcounter 7→ 15

A 7→ F

B 7→ T

x 7→ 0

y 7→ 10

pcounter 7→ 15
Division by Zero

Figure 6.2: Reachability graph of the example variant simulator. T and F
represent the Boolean values for true and false.

the states that need to be explored further. The exploration starts with an
initial state q0 that corresponds to the first statement of the program (e.g.,
initialization or main function). The algorithm adds q0 to the wait_queue
and to the reached_set . Then, it takes states from the wait_queue until it
is empty. For each state v, it checks whether v violates a specification given
for the system (Line 5) and then computes all successor states of v (based on
a CFG of the system, which is not shown in Algorithm 6.1). Each successor
state that has not been reached before is then added to the wait_queue. When
all states from the wait_queue have been explored, the algorithm returns the
reached_set , representing the state space of the verified system.

Next, we discuss how the reachability graph in Figure 6.2 is constructed
using Algorithm 6.1. In the initial state shown in Figure 6.2, the program
counter refers to Line 4 of the program, which is a feature choice on variable A.
Because A is unknown in the state, two different following states are possible
(Line 6 in Algorithm 6.1) and the exploration splits. To reduce the size of the

128

CHAPTER 6. FAMILY-BASED MODEL CHECKING

Algorithm 6.1: Basic breadth-first model-checking algorithm. Function
hasNoPropertyViolations(v) returns true if a system specification is vio-
lated in state v and function direct_succ(v) computes the states that are
reachable from v in one step.

Data: initial state q0

Result: Set reached_states
1 add(reached_states, q0)
2 enqueue(wait_queue, q0)
3 while ¬ empty(wait_queue) do
4 let v := dequeue(wait_queue)
5 if hasNoPropertyViolations(v) then
6 foreach w ∈ direct_succ(v) do
7 if w 6∈ reached_states then
8 add(reached_states, w)
9 enqueue(wait_queue, w)

10 end
11 end
12 end
13 return reached_states

graph, we omit some nodes which have non-divergent behavior.2 The next path
divergence happens in the next step on variable B . At the end of this small
exploration, the frontier of the reachability graph3 has four states. One of these
states has a division-by-zero error. We can reconstruct how to reproduce this
error in the simulator by examining the values of the variables in the error state,
where both feature variables (A and B) are mapped to F. Therefore, configuring
the simulator with both feature variables set to F instead of ? will lead directly
to this error. Because of the construction of the simulator (Chapter 5), we can
infer that the same error would occur in the variant where features A and B are
disabled.

state-merging
prevented by
feature
variables

While this example illustrates how variant simulators can be analyzed with
standard model-checking approaches, the analysis is not efficient. The perfor-
mance (execution time and memory consumption) of a model checking approach
is directly influenced by the size of the generated reachability graph [CGP99].
The example reachability graph shows that a new sub-graph is generated after
each choice of a previously unknown variable. Typically, model-checking tools

2For example, lines 1 to 3 contain variable initializers. Their effect is subsumed by the
initial state in the reachability graph.

3 The frontier of the reachability graph is the set of nodes that need to be explored further
(stored in the wait_queue in Algorithm 6.1). It is the frontier of the explored region of the
state space. In our example graphs, the lowermost states form the frontier.

129

6.2. VARIABILITY-AWARE MODEL CHECKING OF VARIANT
SIMULATORS

try to reduce the size of the state space by merging states that represent the
same variable values.4 When exploring the state space of a simulator, the value
maps for states in different sub-graphs are always different in their assignments
of the feature variables. As an example, consider the feature choice on variable
A in Figure 6.2. After the feature choice, the variable is mapped to T in the
left sub-graph and to F in the right sub-graph. States from the sub-graphs can
never be merged because of these different values for A and because the value
of A is never changed in subsequent states. If all feature variables are used
on all exploration paths, the reachability graph has at least as many leaves
(termination states) as the configurable system has variants. This is a large
problem for scalability of simulator-based verification.

6.2 Variability-aware Model Checking of
Variant Simulators

We introduce a variability-aware extension of model checking that focuses on
optimizing the state-space exploration of variant simulators. Our extension uses
symbolic model-checking [JM09] for the compact representation of variablity
during verification. In particular, we use BDDs to represent variability, which
has already been done in previous work on configurable systems [CHSL11]
(but not on Java/C source code) and in previous work on verification of
non-configurable software (e.g., [BS13]).

The size of state spaces has been long recognized as a main problem of
model checking, and many optimizations have been developed to reduce the set
of states that must be explored. Example optimizations include partial-order
reduction, symbolic representations, or counter-example–guided abstraction
refinement [CGJ+03; CGP99]. Our optimizations have the same goal (e.g.,
reducing state space) and use in part the same methods (e.g., abstraction
and symbolic representation), however, our optimizations are targeted to the
specifics of configurable-systems. Such systems introduce additional complexity
in the form of static variability (or feature variables in simulators) and we
develop optimizations to deal with this complexity.

properties of
variant

simulators

When verifying simulators we have the advantage of knowing how simulators
are constructed. The feature variables in simulators are constrained in several
ways: First, they are always Boolean variables, second, they are only used in
conditions of if-statements, third, they are only read and never written (except
for the unknown initialization), and fourth, they are never used in combination

4 Other model checking techniques also allow to merge states even if they are not identical
(e.g., if an abstract state subsumes all concrete states represented by another abstract state).

130

CHAPTER 6. FAMILY-BASED MODEL CHECKING

pcounter 7→ 4

pc 7→ true
x 7→ 0

y 7→ 0
pcounter 7→ 9

pc 7→ A

x 7→ 1

y 7→ 0

pcounter 7→ 9

pc 7→ ¬A
x 7→ 0

y 7→ 0

pcounter 7→ 14

pc 7→ A ∧B
x 7→ 1

y 7→ 0

pcounter 7→ 14

pc 7→ A ∧ ¬B
x 7→ 1

y 7→ 1

pcounter 7→ 14

pc 7→ ¬A ∧B
x 7→ 0

y 7→ 1

pcounter 7→ 14

pc 7→ ¬A ∧ ¬B
x 7→ 0

y 7→ 0

pcounter 7→ 15

pc 7→ A ∧B
x 7→ 1

y 7→ 10

pcounter 7→ 15

pc 7→ A ∧ ¬B
x 7→ 1

y 7→ 5

pcounter 7→ 15

pc 7→ ¬A ∧B
x 7→ 0

y 7→ 10

pcounter 7→ 15

pc 7→ ¬A ∧ ¬B
Division by Zero

Figure 6.3: Reachability graph of the example program with presence conditions.
In each state, pc denotes the presence condition of the state.

with non-feature-variables. This narrow usage profile of feature variables
enables us to develop model-checking extensions that focus on optimizing the
representation of feature variables.

extension
structure

To introduce the variability-aware extension for simulator-based model
checking, we introduce four successive optimizations. First, we use presence
conditions to represent values of feature variables (Section 6.2.1). Second, we
represent the presence conditions in a symbolic component of each state of the
reachability graph to allow state merging (Section 6.2.2). Third, in Section 6.2.3,
we discuss an optional extension that allows us to exclude variants from the
search process (e.g., if we have already found defects for a variant). Fourth, we
describe how we include the variability model of a subject system in the search
process to avoid exploring states that do not belong to valid system variants
(Section 6.2.4). We describe the optimizations one after another and argue for
each why it does not compromise the correctness of the model checking result.

6.2.1 Presence Conditions

The special properties of feature variables (e.g., boolean and read-only) dis-
tinguish them from other program variables. These properties allow us to

131

6.2. VARIABILITY-AWARE MODEL CHECKING OF VARIANT
SIMULATORS

group the feature variables and handle them with a different, more efficient
data structure than normal program variables. We choose BDDs as data struc-
ture because they allow for very efficient handling of functions over Boolean
variables. Figure 6.3 shows how we move the handling of feature variables
from the explicit map to a predicate-based data structure (also called symbolic
representation). We introduce a special variable pc in each state. In each
state, pc maps to a Boolean function over the feature variables. The function
represents the presence condition that must be satisfied such that the state
can be reached during program execution. For example, in Figure 6.3 the
error state (division-by-zero error) is only reached if A and B are set to false,
represented by the presence condition ¬A∧¬B . In a reachability graph that is
generated with presence conditions (e.g., Figure 6.3), each state has a symbolic
part and an explicit part. The symbolic part contains pc, stored in a BDD, and
the explicit part contains all other variables, stored in a map.

It is important that the introduction of presence conditions only modifies
how states are stored. It does not require a change of the standard algorithm
(Algorithm 6.1) and it does not change semantics of the model checking process.
Each node of the reachability graph stores exactly the same information as
it would without presence conditions, but using a different data structure.
Therefore, this modification does not affect correctness of verdicts generated
by the model checker. It also does not decrease the number of nodes in the
graph, so we cannot expect verification speedup.

6.2.2 Path Joining

To achieve a performance improvement, we combine the presence-condition
extension with a modification of how paths are joined during state-space
exploration. In explicit-state model checking (partial) program path are joined
when a path ends in a state that is already covered by other explored states
(Line 7 in Algorithm 6.1). Normally, coverage means that the information
stored in the states is equal. We weaken this requirement such that paths are
joined even if only the explicit part of the states is equal. The symbolic part of
the states may be different.

Algorithm 6.2 shows a pseudocode implementation of this extension, based
on Algorithm 6.1. Based on our presence-condition extension (Section 6.2.1) a
state w in Algorithm 6.2 has an explicit component we and a presence-condition
component wpc. Lines 1 to 6 of the algorithms remain unchanged. In Line 7,
we test, for each direct successor state w, whether there is an already explored
state with the same explicit component. If there is no such state, we add w to
the reached_set and to the wait_queue for further exploration. If there is a
state z with we = ze, we can join the program paths leading to these states. If

132

CHAPTER 6. FAMILY-BASED MODEL CHECKING

Algorithm 6.2: Breadth-first model-checking algorithm with path join-
ing. The rectangle marks the part that is changed with respect to Algo-
rithm 6.1.

Data: initial state q0

Result: Set reached_states
1 add(reached_states, q0)
2 enqueue(wait_queue, q0)
3 while ¬ empty(wait_queue) do
4 let v := dequeue(wait_queue)
5 if hasNoPropertyViolations(v) then
6 foreach w ∈ direct_succ(v) do
7 if ¬∃ z ∈ reached_states : ze = we then
8 add(reached_states, w)
9 enqueue(wait_queue, w)

10 else
11 let z ∈ reached_states with ze = we

12 if zpc 6=⇒ wpc then
13 // new state is not completely covered by existing state
14 let zpc := wpc ∨ zpc
15 if z 6∈ wait_queue then
16 // explore the state again
17 enqueue(wait_queue, z)
18 end
19 end
20 end
21 end
22 end
23 return reached_states

the presence condition of zpc implies wpc, w is already fully covered by z and
all states that could be reached from w are also reachable from z. However, if
zpc does not imply wpc, then w identifies configurations that are not covered by
z. In this case, we increase the set of configurations of z. We set its presence
condition to the disjunction of w′pc and z′pc (Line 14). The joint state z is an
abstract state that represents both; it can be reached by satisfying wpc or by
satisfying zpc. Because the configurations newly covered by z have not been
explored, we add z to the wait_queue.

Figure 6.4 shows the effect of the path-joining extension on the example
reachability graph. The frontier of the reachability graph (Figure 6.4) is one
node smaller than the previous reachability graph (Figure 6.3). Our evaluation
(Section 6.5) shows that this effect has a large impact on verification of larger
systems.

133

6.2. VARIABILITY-AWARE MODEL CHECKING OF VARIANT
SIMULATORS

pcounter 7→ 4

pc 7→ true
x 7→ 0

y 7→ 0
pcounter 7→ 9

pc 7→ A

x 7→ 1

y 7→ 0

pcounter 7→ 9

pc 7→ ¬A
x 7→ 0

y 7→ 0

pcounter 7→ 14

pc 7→ A ∧B
x 7→ 1

y 7→ 0

pcounter 7→ 14

pc 7→ (A ∧ ¬B) ∨ (¬A ∧B)

x 7→ 1

y 7→ 1

pcounter 7→ 14

pc 7→ ¬A ∧ ¬B
x 7→ 0

y 7→ 0

pcounter 7→ 15

pc 7→ A ∧B
x 7→ 1

y 7→ 10

pcounter 7→ 15

pc 7→ (A ∧ ¬B) ∨ (¬A ∧B)

x 7→ 1

y 7→ 5

pcounter 7→ 15

pc 7→ ¬A ∧ ¬B
Division by Zero

Figure 6.4: Reachability graph of the example program with presence conditions
and merging

late splitting
and early
joining

The performance improvement of variability-aware model checking with
respect to variant-based and sample-based model checking (checking variants
separately) is based on the concepts of late splitting and early joining. Late
splitting means that common prefixes of paths are analyzed in union as long as
possible. This concept is also used in all discussed model checking approaches
on the simulator (Figures 6.2,6.3, and 6.4). For example, the root node in the
graph is only processed once instead of once per variant. Early joining means
that paths are joined as soon as possible (during state-space exploration), which
is achieved with our symbolic, path-joining extension (Figure 6.4).

correctness We have to show that our path-joining extension does not affect the
correctness of the verdicts generated by the model checker. More precisely, each
concrete program state in a reachability graph without path joining must be
represented by a state in the graph with path joining and the conditions under
which the states are reachable must be equivalent. The same requirement must
be valid in the other direction. In essence, this requires a trace-equivalence
proof. At an abstract level, our path-joining extension is very similar to other,
well-established symbolic model-checking approaches which also use symbolic
data structures (e.g., BDDs) to represent reachable states [CGP99; Cla11].

134

CHAPTER 6. FAMILY-BASED MODEL CHECKING

Therefore, we skip the proof and provide an informal argumentation instead.
First, we have to show that each abstract state (e, (pc1 ∨ pc2)) represents all
reachable concrete states with explicit component e that would occur without
our extension and that it represents only these concrete states. This is given by
construction, as the model-checking algorithm joins all reachable states with
explicit component e and uses the disjunction of presence conditions as joint
presence condition. Second, given an abstract state a = (e, pc), we have to show
that all abstract states a′ = (e′, pc ′) that are direct successors of a represent
concrete states that are direct successors of a’s concrete states. If outgoing
transitions from a are no feature choices, this is trivial, as presence conditions
are not used in the transition. If the outgoing transition is a feature choice e.g.,
on presence condition pc2, we generate two successor states (e, pc ∧ pc2) and
(e, pc∧¬pc2). These new states represent exactly the concrete states that would
be generated from a in the unmodified model-checking approach. Therefore
our variability-aware extension preserves correctness of the verification verdict.

6.2.3 Variability Pruning

Variability pruning is a model-checking extension that allows us to further
reduce the number of analyzed states in the reachability graph. After we
determined that a variant has a defect, we continue exploration of the state-
space. Furthermore, we prune the state space such that the defective variant is
not analyzed any more.

This optimization is based on the assumption that the goal of verification
is to find at most one defect per variant of the system. The aim of software
verification is usually to prove correctness of a program and if one counterex-
ample (showing incorrectness) is found, the analysis stops (i.e., after detecting
a property violation in Line 5 of Algorithm 6.2). In variant-based analysis,
this approach detects one defect for each defective variant (separately). In
simulator-based verification, the presence condition pcdefect of the defect identi-
fies variants in which the defect occurs. However, there might be more defective
variants whose defects are on other program paths. Therefore, simulator-based
verification that stops after the first defect can produce a weaker verdict than
variant-based verification (the verdict makes no statement about variants not
identified by pcdefect). One goal of this chapter is to compare the family-based
strategy against the variant-based strategy (Section 6.5). To enable an accurate
comparison we have to ensure that both strategies generate comparable results
(one defect for each defective variant).

continue after
counterexample

To make simulator-based verification detect defects in all variants, we
configure the model checker such that it does not stop after the first counterex-
ample, but keeps exploring the reachability graph. We already implemented

135

6.2. VARIABILITY-AWARE MODEL CHECKING OF VARIANT
SIMULATORS

Algorithm 6.3: Breadth-first model-checking algorithm with path join-
ing and variability pruning. The rectangles mark the parts that are
changed with respect to Algorithm 6.2.

Data: initial state q0

Result: Set reached_states
1 global-constraint := true
2 add(reached_states, q0)
3 enqueue(wait_queue, q0)
4 while ¬ empty(wait_queue) do
5 let v := dequeue(wait_queue)
6 if hasNoPropertyViolations(v) then
7 foreach w ∈ direct_succ(v) do
8 if sat(wpc ∧ global-constraint) then
9 if ¬∃ z ∈ reached_states : ze = we then

10 add(reached_states, w)
11 enqueue(wait_queue, w)
12 else
13 let z ∈ reached_states with ze = we

14 if zpc 6=⇒ wpc then
15 // new state is not completely covered by existing state
16 let zpc := wpc ∨ zpc
17 if z 6∈ wait_queue then
18 // explore the state again
19 enqueue(wait_queue, z)
20 end
21 end
22 end
23 end
24 end
25 else
26 global-constraint := global-constraint ∧ ¬vpc
27 end
28 end
29 return reached_states

Algorithms 6.1 and 6.2 such that they continue after finding a counterexample.
This configuration leads to the problem that we would explore a state (e, pc)
even if we had already found defects in all variants represented by presence
condition pc. Thus, we cannot prove correctness of any variant by exploring
the state (e, pc) and we should avoid this unnecessary exploration effort.

variability
pruning

Our solution for this problem is to introduce a functionality that allows to
place additional constraints on the explored presence conditions. Constraints
can be added at each point during the exploration of the search space. Al-

136

CHAPTER 6. FAMILY-BASED MODEL CHECKING

pc 7→ true
. . .

pc 7→ true
input 7→ 1. . .

pc 7→ true
input 7→ 0. . .

pc 7→ E

input 7→ 1
Division by Zero

pc 7→ ¬E
input 7→ 1. . .

pc 7→ E

input 7→ 0. . .

pc 7→ ¬E
input 7→ 0. . .

global-constraint := ¬E

Figure 6.5: Example reachability graph with variability pruning. The global
constraint ¬E is set after the division-by-zero error is found.

gorithm 6.3 shows the model-checking algorithm with this extension. We
introduce an additional variable global-constraint in Line 1. If a state violates
a system specification (Line 6), we add the negation of the presence condition
of this state to the global constraint (Line 27). In the further search, we only
explore states which satisfy this constraint (Line 8).

We use constraints to limit which variability is explored in the search space
as illustrated in Figure 6.5. In the example, the first path splitting is not
done because of feature variability, but because of a user input. User input
is an example for nondeterministic input which forces the model checker to
explore multiple paths. In each path, the model checker encounters a feature
choice on feature E, which leads to a frontier of four states in total. One of
the states with presence condition E has a division-by-zero error. Therefore
part of the verification verdict is that all variants with feature E enabled have
a division-by-zero defect. Then, the state-space-exploration continues for the
remaining states and we prune the further exploration with the constraint ¬E.
This enables us to focus on exploring variants for which we have not detected
defects so far. In the example, we skip exploring the right state with pc 7→ E
because the presence condition E is already covered by the first detected defect.

multiple
defect-presence
conditions

If we find more defects with presence conditions pc1, pc2, . . . , pcn , we build
the global constraint ¬pc1∧¬pc2∧ . . .∧¬pcn as the conjunction of negations of
all defect presence conditions. The state-space exploration stops when all states
with presence conditions satisfying the global constraint have been explored.
Then, exactly one defect has been found for each defective variant, which is
equivalent of the set of all verdicts generated by variant-based model checking.

137

6.2. VARIABILITY-AWARE MODEL CHECKING OF VARIANT
SIMULATORS

1 class Printer {
2 static boolean _FeatureDuplex_enabled=nondet();
3 static boolean _FeatureBasicPrinter_enabled=nondet();
4 static boolean _FeatureCopy_enabled=nondet();
5 static boolean _FeatureScan_enabled=nondet();
6 public static boolean variability_model() {
7 return _FeatureBasicPrinter_enabled &&
8 (!_FeatureCopy_enabled ||
9 _FeatureScan_enabled)
10 }
11 public void printDuplex(Page front, Page back) {
12 if (_FeatureDuplex_enabled) {
13 //code from Duplex feature
14 } else {
15 //alternative code
16 }
17 }
18 ...
19 public static void main(String[] args) {
20 if (variability_model()) {
21 printDuplex(...); //execute test case
22 }
23 }
24 }

(a) Variant simulator with variability model

pc 7→ true
. . .

pc 7→ B
. . .

pc 7→ B ∧ C
. . .

pc 7→ B ∧ (C→ S)
. . .

Program
Termination

. . .

B

C

S

¬B

¬C

¬S

(b) Reachability graph

Figure 6.6: Code and reachability graph of a simulator of the printing-device
system with variability model. The function gb() assigns unknown values to
the feature variables. This forces the model checker to explore both possible
values (true and false) when a feature variable is read. In the reachability graph,
we encode features by their first letter.

6.2.4 Incorporating the Variability Model

Variability models of configurable systems typically limit the configuration
space such that only a fraction of all combinations of configuration values
represent valid configurations. In model checking of variant simulators, we use
this information to limit the state space that needs to be explored. We limit the
state space such that only presence conditions belonging to valid configurations
are explored.

To achieve this limitation, we include the variability model in the variant
simulator. Figure 6.6a shows a variant simulator of the printing device example
with the variability model encoded in Line 7. The conditional statement in
Line 20 ensures that only valid variants are simulated. At the beginning of

138

CHAPTER 6. FAMILY-BASED MODEL CHECKING

verification, each feature variable is assigned an unknown value and, therefore,
the model checker has to explore both possible values for each feature variable.
The conditional statement ensures that each execution path that does not
represent valid configurations terminates immediately. The corresponding
reachability graph (Figure 6.6b) shows that this encoding generates a state
with presence condition B∧ (C→ S), which is the variability model. This state
is the “entry point” of all execution paths that explore the functionality of the
configurable system.

An alternative approach to handle inclusion of the variability model would
be to inject the model in the first state of the exploration (instead of starting
the exploration with pc 7→ true). However, this would require another extension
of the model checking tool that would be specific to configurable systems. We
chose to encode the variability model in the source code (Figure 6.6). This is
a more flexible approach as it allows us to verify simulators with off-the-shelf
model checkers that are not aware of the encoded (static) variability.

Both approaches include the variability model in the presence conditions of
the reachability graph. This limits the reachability graph to valid configurations
and therefore optimizes the model checking process. However, it also leads
to presence conditions that are more complex than necessary. For example,
consider that model checking discovers an error (e.g., division by zero) in the
lowermost state in Figure 6.6b. The model checker reports that this error
occurred under condition B∧ (C→ S), because that is the presence condition of
the state. Ideally, we would expect the report that the error occurs in all valid
configurations. This is exactly the problem described and solved with presence-
condition simplification (Chapter 4). Using presence-condition simplification,
we could report that the error occurs in all configurations that satisfy condition
VariabilityModel ∧ true.

alternative to
presence-
condition
simplification

As alternative solution for this problem, to avoid presence-condition sim-
plification, we could introduce a second presence condition in all states of the
reachability graph. We would initialize it with true after the variability-model
conditional statement has been processed (lowermost state in Figure 6.6b).
When values of feature variables are chosen during the model-checking process,
we would update it exactly like the normal presence condition. If an error is
found, we would report this new presence condition because it does not contain
parts of the variability model that are not relevant for the error path. We
implemented this alternative approach in a branch of our extension of the model
checker Java Pathfinder [VHB+03] (jpf-bdd [vRAR11], branch CustomChoice-
Tracking). Although this extension lets us avoid presence condition simplification,
we do not use it in our experiments because it introduces additional overhead
(one additional BDD operation per executed feature choice).

139

6.3. IMPLEMENTATION

Configurable
system

Module-based
system

(Java or C)

Specification

ifdef-based
system
(C)

Specification

Variant simulator

boolean A;
if (A)
...

}

Specification

FeatureHouse

Hercules

Variant Simulator
with Specification

boolean A;
if (A)
...
assert(...);

}

Specification
weaving

Verdict

Verification

Figure 6.7: SPLverifier toolchain. The tool chain begins with the source
code of a configurable system. We generate a variant simulator for the system,
weave the system’s specification, and verify it with model checking. If the
system satisfies it’s specification, the model checker generates a verdict for the
system’s correctness.

6.3 Implementation

Based on our work on variability encoding and the model checking exten-
sions (Section 6.2), we developed a tool chain for configurable-system ver-
ification, called SPLverifier. It contains tools for variability encoding
(FeatureHouse [AKL09] and Hercules, Section 5.5), specification weaving
(AspectJ and ACC) and Java Pathfinder and CPAchecker for model
checking (discussed in the following paragraphs). We provide links to the tools
and to SPLverifier on the supplementary website. Figure 6.7 illustrates the
verification workflow. It has three steps: variability encoding, specification
weaving, and verification. We explain variability encoding in depth in Chapter 5.
Specification weaving and verification are discussed in the following paragraphs.

Specification weaving In our subject systems, specifications are imple-
mented in aspects (Aspect-Oriented Programming [KLM+97]). Some systems
have multiple specification aspects that can be woven in the source code to
check the specification. For example, the E-Mail system has a specification
stating that e-mails that are forwarded must be encrypted in certain situations.
The corresponding specification aspect contains an assertion that checks this

140

CHAPTER 6. FAMILY-BASED MODEL CHECKING

property on every forwarded e-mail. This assertion is woven into the system
before verification (further details in Section 6.5.2).

We use existing tools for specification weaving: ACC 5 for C code, and
AspectJ 6 for Java code. We provide further details on the supplementary
website.

Verification We implemented the model-checking optimizations de-
scribed in Section 6.2 as extensions to the model checking tools Java
Pathfinder [VHB+03] (for Java programs) and CPAchecker[BK11] (for
C programs). Both tools the verification of safety properties by means of
explicit-state and symbolic model checking. Furthermore, both tools enable
extensions using a plugin-oriented architecture.

We extended both tools with our variability-aware model checking optimiza-
tions (Sections 6.2). For Java Pathfinder, we bundled our implementation
in the jpf-bdd extension [vRAR11]. For CPAchecker, our implementation
is available in the CPAchecker distribution. It can be enabled using the
configuration -explicitAnalysis-featureVars.

Both, Java Pathfinder and CPAchecker, implement verification of
safety properties as opposed to liveness properties.7 A safety property asserts
that no bad states are reachable during program execution (e.g., a division-by-
zero error). A liveness property asserts that a good state is reached infinitely
often (e.g., “each process will enter its critical section infinitely often”) [BK08].
Liveness properties are much harder to verify as they require the analysis to
generate a verdict on a system that might never terminate (endless loop). In
our experiments, we focus on subject systems which terminate after a given
number of steps and we verify only safety properties.

6.4 Evaluation of Variability-aware
Model-Checking Extensions

In this section, we describe an evaluation of the effect of our variability-aware
extensions on the performance of family-based model checking. We compare the
performance of family-based model checking with and without the previously
described extensions (Section 6.2).

5http://www.aspectc.org/
6http://eclipse.org/aspectj/
7 CPAchecker also implements analyses that can verify liveness properties, depending

on the implementation of the subject system. However, we focus on safety properties.

141

http://www.aspectc.org/
http://eclipse.org/aspectj/

6.4. EVALUATION OF VARIABILITY-AWARE MODEL-CHECKING
EXTENSIONS

In other sections of this chapter (Sections 6.5 and Section 6.6.3), we describe
evaluations comparing family-based model checking against other strategies.
However, in this section we focus family-based model checking and evaluate
the variability-aware extensions.

The evaluation is based on the model checker Java Pathfinder [VHB+03]
and jpf-bdd [vRAR11] (implementing the variability-aware extensions). As
subject systems, we used simulators for configurable systems that do not contain
defects. This way, we ensured that both verification approaches need to explore
the same concrete state space.

Hypothesis Our hypothesis is that the variability-aware extensions (presence
conditions and path joining) improve performance over standard verification of
variant simulators. We expect this due to a reduction of the explored state space.
The third improvement, variability pruning, is not used in this experiment,
because the subject systems contain no defects.

Subject systems As subject systems, we selected the E-Mail system, the
Elevator system, the configurable graph library GPL, and the compression
tool ZipMe. These four configurable systems have been used before to assess
configurable-system verification and we describe them in more detail in Sec-
tion 6.5. We used the Java implementations of the systems and ensure that
each simulator is free of defects.8 In defective systems, a direct comparison of
the approaches would not be possible because early aborts (after a defect is
found) would blur the picture.

Experiment setup For the evaluation, we used the Java branch of our tool
chain for configurable-system verification, called SPLverifier: For variability
encoding, we used FeatureHouse [AKL09]. For model checking, we used the
tool Java Pathfinder [VHB+03] (revision 2 of version 8) and the jpf-bdd
extension [vRAR11] (revision 107). jpf-bdd uses breath-first search (BFS) to
explore the state space instead of depth-first search (DFS), which is the default
in Java Pathfinder.9 To show that the choice of algorithm is not responsible
for the performance difference, we evaluated the standard Java Pathfinder
with DFS and BFS. All experiments have been run with 7000MB main memory.

8We de-activated the specification-checking code in the E-Mail and Elevator systems.
GPL and ZipMe contain no defects.

9 We use BFS in jpf-bdd because verification of configurable systems (with jpf-bdd)
generates many mergeable states along different paths. After merging they would have to be
re-explored, therefore it is better to merge early (more likely with BFS than with DFS).

142

CHAPTER 6. FAMILY-BASED MODEL CHECKING

Figure 6.8: Improvement of simulator verification with variability-aware model-
checking extensions

Results timeFigure 6.8 shows the results of our experiment. The left plot shows
the time needed to verify correctness of the subject systems with the different
verification approaches. On all systems Java Pathfinder with jpf-bdd
needed significantly less time that the standard model checker with BFS or
DFS.

statesThe middle plot shows how many states were generated during the verifi-
cation. In the E-Mail, GPL, and ZipMe systems, our extensions reduces the
state space significantly allowing for faster exploration. In GPL and ZipMe
the size of the state space is reduced by over 99%. In the E-Mail system, the
effect is smaller, which is probably due to input parameters of the system that
are not influenced by feature variables. These parameters guide which settings
in the system are activated or deactivated and which e-mails are sent. As these
settings are not reflected by feature variables, they force state separation even
with our variability-aware extension. The differences between jpf-bdd and
Java Pathfinder in the plot are similar to the time differences in the left
plot, which indicates that the state space is one cause for the time difference.

main memoryThe right plot shows that our extension consumes more memory than
standard Java Pathfinder in the E-Mail and Elevator systems. However,
it consumes less memory in GPL and ZipMe. This result shows that that
our extension increases the size of each state (we add an additional BDD to
each state). Even though the BDDs are stored efficiently in a BDD library
(data structures shared between BDDs), each state consumes more memory
than in standard Java Pathfinder. In the E-Mail and Elevator systems,

143

6.5. EVALUATION OF FAMILY-BASED MODEL CHECKING

this leads to a high memory consumption of jpf-bdd because these systems
generate large state spaces. In GPL and ZipMe, the optimizations of jpf-bdd
reduce the state space so much that this reduction overlays the effect of larger
states.

conclusion This small experiment has shown that variability-aware model checking
improves over standard model checking of variant simulators. We extended this
line of research to general programs in a publication that we do not discuss in
detail here [ABF+13]. We extended the presence condition and path joining
algorithms to general variables (in addition to feature variables) and also in-
cluding linear arithmetic (instead of just Boolean operations). In this extended
research topic, we first analyzed subject programs to sort variables according to
their usage (domain type) and handle them with BDD-based extensions when-
ever appropriate. The domain-type analysis, the extended implementations,
and experiments are documented in a research paper [ABF+13]. The outcome
of these experiments was, similar to the experiment described in this section,
that variables which are used in special ways (e.g., feature variables) should be
handled with specialized approaches (e.g., BDDs).

These results show that our variability-aware extensions (presence conditions
and path joining) improve the performance of family-based model checking
compared to the off-the-shelf model checker. Therefore, we use family-based
model checking with the extensions in our comparison of family-based, variant-
based and sample-based model checking in the following section.

6.5 Evaluation of Family-based Model Checking

To evaluate the performance of family-based model checking, we have designed
an experiment that compares family-based, sample-based and variant-based
model checking. Figure 6.9 shows how the model-checking strategies are
represented in the PLA model.

Sample-based and family-based strategies both promise to significantly
decrease verification time, either by analyzing only a subset of variants, or
by sharing analysis results among variants. To learn about the trade-offs, we
compared the strategies in terms of their verification performance and their
ability to detect defects; we use the variant-based strategy as a base line.

hypotheses Our hypotheses are:
• The family-based strategy is faster than the variant-based strategy because

of the effects of late splitting and early joining.
• The sample-based strategies are faster than the family-based strategy
(the fewer variants are checked, the less time is needed for verification),
but may miss defective variants.

144

CHAPTER 6. FAMILY-BASED MODEL CHECKING

(a) Variant-based strategy (b) Family-based strategy

(c) Sample-based strategies (feature-wise,
pair-wise, and triple-wise sampling)

A

B

C

DE

F G

H

Variant-based

Single
variant

Family-based

(d) Analysis strategies represented in the
PLA cube

Figure 6.9: Illustration of the evaluated analysis strategies

• The family-based strategy consumes more verification time than sampling,
but is exhaustive.

measurement
definitions

To compare the strategies, we define the sample rate and the defect recall.
The definitions are based on a configurable system with the set V of variants
and the set Vd of defective variants, and on an analysis strategy focusing on
a subset Vf of variants. The sample rate is defined as the relative number of
variants chosen: sample rate = |Vf |/|V|; the defect recall is the relative number
of defective variants chosen: defect recall = (|Vf ∩ Vd|)/|Vd|.

With regard to the sample-based strategy, we are interested in the tension
between sample rate and defect recall and in their influence on verification time.
For the family-based strategy, we are interested in the factors that influence
verification performance. Especially, we want to explore whether late splitting
and early joining are the driving factors for the speedups observed by us and
others using family-based strategies. We quantify the number of verification
steps that are saved due to sharing parts of paths among variants during the
analysis.

For the experiments, we collected and prepared six case studies, which
exceed the case studies used in previous work on configurable-system verification
substantially, in terms of volume and complexity (Sect. 6.7). This corpus of
case studies is also meant to serve as a benchmark suite in further work, which
is a valuable contribution to the community.

145

6.5. EVALUATION OF FAMILY-BASED MODEL CHECKING

Table 6.1: Overview of subject systems

System Language LOC Features Specs Variants

E-Mail Java 1233 9 9 40
C 258 9 9 40

Elevator Java 1046 6 9 20
C 877 6 6 20

Mine Pump Java 580 7 5 64
C 279 7 5 64

AJStats Java 13 393 20 2 200
GPL Java 1405 18 2 42
ZipMe Java 3636 8 1 10

6.5.1 Subject Systems

As subject systems for our evaluation, we selected six configurable systems that
have been used as benchmarks in the configurable-system community before.
In Table 6.1, we summarize relevant information on all case studies.

We selected three configurable systems that have been used before to assess
configurable-system verification, and developed implementations in C and Java.
We also provide information on these systems in Section 2.1.4.
• The E-Mail system of Hall [Hal05] models an e-mail communication

suite. It provides several features, such as encryption, automatic forward-
ing, and e-mail signatures, which can be activated or deactivated.
• The Elevator system has been designed by Plath and Ryan [PR01]. It

is an elevator model that is extensible by various features such as stopping
if the elevator is empty or priority service for a special floor.
• The mine-pump system is based on work in the CONIC
project [KMSL83]. It simulates a water pump in a mining operation,
including several features that vary the pump’s behavior. The pump
keeps the bottom of the mine shaft dry, but must be deactivated if the
mine contains combustible methane gas.

Based on the respective original systems, we created for each system a C and a
Java implementation, obtaining six implementations in sum. Note that the re-
spective Java and C implementations may differ in details. Although we aimed
at comparability, the differences of the languages as well as the corresponding
support of the model-checking tools forced us to diverge from a common imple-
mentation schema (e.g., the explicit-value analysis of CPAchecker did not
yet support arrays and structures).

146

CHAPTER 6. FAMILY-BASED MODEL CHECKING

Additionally, we selected three existing configurable Java systems from
the FeatureHouse repository. 10 All of them have been developed for other
purposes. The primary selection criterion was that the Java code could be
processed properly by Java Pathfinder.
• AJStats is a set of source-code–analysis tools providing several features

to tailor the analysis process, for example, recognizing various syntactic
program structures. It has been developed by Apel to explore the use of
AspectJ [Ape10].
• GPL is a configurable graph library developed by Lopez-Herrejon and
Batory [LB01], as a standard problem for the evaluation of product-
line techniques. It allows a programmer to tailor graph data structures,
including optional support for weighted and directed edges as well as
different traversal strategies and algorithms.
• ZipMe is an open-source zip compression library for Java ME. It has
been refactored into a configurable system by Kuhlemann [KBA09]. It
includes features for computing check-sums and different compression
techniques.

simulation of
real-world
systems

Note that, although the subject systems are implemented in C and Java,
the implementations comprise only the key functionalities of the configurable
systems. In this sense, the implementations model respective real-world config-
urable systems.

6.5.2 Behavior Specification

For the configurable systems E-Mail, Elevator, and Mine Pump, we adapted
the original specifications, which have been distributed with their models.
Mostly, the specifications concern domain-specific safety properties, such as
that encrypted e-mails are never transferred in plain text, the elevator must
refuse to operate if the maximum weight is exceeded, or the mine pump must
be deactivated when methane gas is detected. Furthermore, all three case
studies contain defects (documented by the original authors) violating, at least,
one specification.

feature-based
specification

In our case studies, individual features come with their own specification(s),
expressed in the form of assertions that indicate erroneous executions, or by
automata that are woven into the code in the form of assertions [ASW+11].

In Fig. 6.10, we show the specification of feature Encrypt of the E-Mail
system expressed as an automaton: When the client receives an encrypted
e-mail (Lines 7–9), the status (encrypted or not) of the message is stored into a
field (Line 8) that has been attached as a shadow to the email structure (Line 4).

10http://fosd.net/fh/

147

http://fosd.net/fh/

6.5. EVALUATION OF FAMILY-BASED MODEL CHECKING

1 automaton EncryptSpec {
2 // introduce an auxiliary field to store the state of an e-mail
3 introduction {
4 shadow struct email { int in_encrypted; };
5 }
6 // if an e-mail is encrypted when entering the system...
7 before void incoming(_: struct client ∗, msg: struct email ∗) {
8 msg−>in_encrypted = isEncrypted(msg);
9 }
10 // ...it must be encrypted as well when leaving the system
11 after void outgoing(_: struct client ∗, msg: struct email ∗) {
12 if (msg−>in_encrypted && ! isEncrypted(msg)) { fail; }
13 }
14 }

Figure 6.10: Automaton-based specification of feature Encrypt of the E-Mail
system [ASW+11]

When an e-mail that was encrypted leaves the system (Lines 11–13), it must
still be encrypted; if not, the e-mail client reaches an error state flagged by fail
(Line 12).

For the configurable systems AJStats, GPL, and ZipMe, we included
proper specifications based on domain knowledge (two for AJStats, two for
GPL, and one for ZipMe). For example, the GPL implementation contains a
function that builds a minimum spanning tree for a given graph. Our specifi-
cation checks whether the resulting tree is really a valid minimum spanning
tree. The systems AJStats and ZipMe do not contain defects; for GPL, we
used defects introduced by others [CCR10]. Table 6.1 shows the number of
specifications per case study.

6.5.3 Sampling Approaches

To compare family-based verification against sample-based verification, we
choose feature-wise, pair-wise, and triple-wise as concrete sampling heuristics
that select a subset of all valid variants. The heuristics are based on n-wise
sampling of feature combinations, where n is the order of feature interactions
that are covered at least by the sample set:

for each subset {f1, . . . , fn} ⊆ F of n features,
select a minimal variant p with f1 ∈ p ∧ . . . ∧ fn ∈ p

where F is the set of features of the configurable system and ‘minimal variant’
refers to a valid variant with the smallest possible number of enabled features.

148

CHAPTER 6. FAMILY-BASED MODEL CHECKING

pair-wise
sampling

For n = 2 (pair-wise), all binary feature interactions can be detected. While
this heuristic reduces the number of variants to be generated and analyzed
significantly (from an exponential number, in the worst case, to a polynomial
number), interactions between more than two features can be missed—so the
analysis is not exhaustive. In our experiments, we also used two other sampling
heuristics: single-wise (n = 1) and triple-wise (n = 3).

Our sampling algorithm does not guarantee to cover all negative interactions.
For example, for a system with two features f1 and f2 it does not guarantee
that there is a variant in the pair-wise sample set where f1 is enabled and
f2 is disabled. However, in our experiment, we manually checked that all
negative interactions are covered in our sample sets. Furthermore, our sampling
approach generates sample sets with variants that contain few features. In our
subject systems, this lead to smaller variants which is beneficial for software
verification.

related workThe n-wise sampling heuristics are inspired by previous work on feature-
interaction detection [CM06; JWEG07; PR98; SRK+13]; they are tailored
to pin down execution paths of individual feature interactions, without being
distracted by other features (i.e., they aim at small sample variants). Alternative
sampling heuristics that are used in configurable-system testing [OMR10] and
bug finding [TLD+11] have different characteristics and tradeoffs.

6.5.4 Experiment Setup

We performed all experiments on a Ubuntu 11.10 system that has an Intel
i7-2600 CPU with 3.4GHz, 8 cores, and 16GB RAM. We used the SPLverifier
tool chain for module-based configurable systems. For feature composition and
variability encoding, we used FeatureHouse [AKL09]. For model checking,
we used the CPAchecker [BK11] (revision 5540; branch “explicit”) for C,
and Java Pathfinder [VHB+03] (revision 635) with jpf-bdd [vRAR11]
(revision 23) for Java.

For each subject system, we created:
1. all variants (variant-based strategy),
2. sample sets that cover all (a) single-wise, (b) pair-wise, and (c) triple-wise

feature combinations, and
3. a corresponding variant simulator using variability encoding (family-based

strategy).
The overall goal of the verification tasks is to identify all defective variants

(which violate the specification of one feature, at least) of the given configurable
system. That is, for each specification, we have to run a sequence of verification
tasks: for the variant-based and sample-based strategies, one verification task

149

6.5. EVALUATION OF FAMILY-BASED MODEL CHECKING

per (selected) variant; for the family-based strategy, one verification task for
the variant simulator.

For the variant-based and sample-based strategies, we terminated the veri-
fication task after detecting a violation, and continued with the next variant
to be checked. For the family-based strategy, we determined which variants
contributed to the detected violation, and proceeded with the exploration of the
remaining state space that was not associated with these variants as discussed
in Section 6.2.

The composition time for our subject systems is negligible compared to
the verification time, thus we compared the verification times only (including
the generation of counterexamples). That is, we measured five values for each
specification to be checked (variant-based, single-wise, pair-wise, triple-wise,
family-based). Additionally, for the sample-based strategies, we determined
what percentage of defective variants has been identified (i.e., the defect recall),
and we logged what percentage of variants has been checked.

6.5.5 Results

In Fig. 6.11, we illustrate the relative verification times of using the sample-based
and the family-based strategies for each subject system, compared to the variant-
based strategies (whose time defines the 100%). As expected, sample-based
and family-based strategies can improve verification performance significantly
compared to a variant-based strategy (except for triple-wise sampling in ZipMe,
which effectively selects all possible variants): single-wise by 75%, pair-wise by
60%, triple-wise by 33%, and family-based by 73%, on average.

The family-based strategy is in many cases faster than most of our sampling
heuristics; for six subject systems, it outperforms even single-wise sampling.
Note that, using a sample-based strategy, we may find only a fraction of all
defective variants. In Fig. 6.12, we provide sample rate and defect recall (side
by side, for later comparison) for the different sampling heuristics. The defect
recall for AJStats and ZipMe is omitted because they do not contain defects.
All raw data of this experiment is available in our ICSE publication [AvRW+13]
and on the supplementary website.

6.5.6 Discussion

We divide our discussion into three parts, regarding (1) the sample-based
strategy, (2) the family-based strategy, and (3) a comparison of the two.

Sample-based strategy We consider how the defect recall is related to the
time that is actually needed for verification. Ideally, the goal is to achieve a high

150

CHAPTER 6. FAMILY-BASED MODEL CHECKING
V

e
ri

fi
c
a
ti
o
n
 t
im

e
 i
n
 p

e
rc

e
n
t

0
2
0

4
0

6
0

8
0

1
0
0

Variant−based

Single−wise

Pair−wise

Triple−wise

Family−based

E−Mail

(Java)

E−Mail

(C)

Elevator

(Java)

Elevator

(C)

Mine pump

(Java)

Mine pump

(C)

AJStats

(Java)

GPL

(Java)

ZipMe

(Java)

Figure 6.11: Comparison of average verification times; variant-based strategy
defines the 100%

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defect recall

Single−wise

Pair−wise

Triple−wise

Sample rate

Single−wise

Pair−wise

Triple−wise

E−Mail

(Java)

E−Mail

(C)

Elevator

(Java)

Elevator

(C)

Mine pump

(Java)

Mine pump

(C)

AJStats

(Java)

GPL

(Java)

ZipMe

(Java)

Figure 6.12: Defect recall and sample rate of the sample-based strategies
(AJStats and ZipMe do not contain any defect)

defect recall and a low verification time, compared to the variant-based strategy.
In Fig. 6.13, we show for each sample-based verification of our experiments
the defect recall and the corresponding time fraction. The higher the defect
recall is for a given time fraction that is needed for verification, the better is
the sampling heuristic. In our experiments, the triple-wise sampling heuristic
has a high defect recall, as compared to the time spent for verification; the
ratio between defect recall and fraction of verification time is large in many
cases (cf. Fig. 6.12). We get back to this ratio when we compare sample-based
and family-based strategies.

151

6.5. EVALUATION OF FAMILY-BASED MODEL CHECKING
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Defect recall

Single−wise

Pair−wise

Triple−wise

Time fraction

Single−wise

Pair−wise

Triple−wise

E−Mail

(Java)

E−Mail

(C)

Elevator

(Java)

Elevator

(C)

Mine pump

(Java)

Mine pump

(C)

AJStats

(Java)

GPL

(Java)

ZipMe

(Java)

Figure 6.13: Defect recall versus fractions of verification time (AJStats and
ZipMe do not contain any defect)

Family-based strategy For the family-based strategy, it is more difficult
to explain the observed verification times. In our experiments, we observed
speedups of up to thirty times (Mine Pump), compared to a variant-based
strategy.

A key question—which has not been answered in previous work—is whether
late splitting and early joining are the driving factors for the observed speedups,
or whether other effects such as internal optimizations in the model checker
or technical issues play a dominant role. Hence, we instrumented jpf-bdd
to quantify the verification steps saved due to late splitting and early joining.
Specifically, for each transition t ∈ T (where T is the set of transitions in
the configurable system), we computed the number of instructions that it
contains (cost Ct) and in how many variants Pt it would have been executed.
Then

∑
t∈T Ct ∗ (Pt − 1) is the number of verification steps (i.e., executed

instructions) that are saved due to late splitting and early joining.
In Fig. 6.14, we illustrate the fraction of verification steps (in rela-

tion to the verification steps needed without late splitting and early join-
ing) and the fraction of verification time that the family-based strategy
needs (in relation to the variant-based strategy). Although the data
points are not on the dotted line, a statistical analysis reveals that the
fraction of verification steps and the fraction of verification time corre-
late (Pearson’s product-moment correlation: cor = 0.84, p � 0.05).
This correlation suggests that the principles of late splitting and early joining
can explain similarity within configurable systems (i.e., the amount of shared
instructions could be used as similarity degree). However, the time consumed
by join operations depends on the size of the BDDs—a factor that causes the
deviations in Fig. 6.14.

152

CHAPTER 6. FAMILY-BASED MODEL CHECKING

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fraction of verification steps

F
ra

c
ti
o
n
s
 o

f
ve

ri
fi
c
a
ti
o
n
 t
im

e

●

E−Mail

Elevator

Mine pump

AJStats

GPL

ZipMe

Figure 6.14: Fractions of verification steps and verification time using late
splitting and early joining; correlation coefficient: 0.84 (p� 0.05)

Family-based vs. sample-based strategies Our experimental data sug-
gest that both the family-based strategy and the sample-based strategies
outperform the variant-based strategy in terms of verification performance.
But which strategy is superior? We cannot compare solely their verification
times, but we have to take into account that, for sample-based strategies, the
defect recall decreases with the sample rate. Hence, we compared the strategies
with regard to detection efficiency, which we define as the ratio between defect
recall and the time fraction (both in relation to the variant-based strategy):
detection efficiency = defect recall/time fraction. A verification strategy with
a detection efficiency of one is similarly efficient as the variant-based strategy.

In Fig. 6.15, we show the detection efficiencies for all our experiments,
grouped by subject systems. It reveals that the family-based strategy is the
most detection-efficient strategy. (The notion of detection efficiency can of
course not be applied to AJStats and ZipMe, which do not contain any
defect.) Of the sample-based strategies, only triple-wise sampling exceeds in
some cases the detection efficiency of variant-based verification. The fact that
the family-based strategy is mostly superior—in terms of detection efficiency—
over our sample-based heuristics is one of the main results of our experiments.

6.5.7 Threats to Validity

The kind and distribution of defects threatens internal validity, because they
affect the defect recall. If defects occur only if many features interact, then
sampling heuristics such as pair-wise are only of limited use. However, the

153

6.5. EVALUATION OF FAMILY-BASED MODEL CHECKING
D

e
te

c
ti
o
n
 e

ff
ic

ie
n
c
y
 (

lo
g
 s

c
a
le

)
0
.5

1
.0

2
.0

5
.0

2
0
.0

Variant−based

Single−wise

Pair−wise

Triple−wise

Family−based

E−Mail

(Java)

E−Mail

(C)

Elevator

(Java)

Elevator

(C)

Mine pump

(Java)

Mine pump

(C)

GPL

(Java)

Figure 6.15: Detection efficiencies of different verification strategies (AJStats
and ZipMe omitted because they do not contain any defect)

systems under investigation contained only defects that occur within single
features or among pairs of features, which reflects what is known about the
distribution and probability of feature interactions [CM06; KMMR00; POS+12].

Much like the kind and distribution of defects, several other characteristics
of a configurable system influence the benefits of the individual strategies.
For example, the number and distribution of dependencies among features
(as documented in the feature model) can have an influence on the sample
and defect recall; the degree of code sharing among variants can influence the
potential for late splitting and early joining; the granularity of variability may
have an effect on the efficiency of join operations (based on BDDs). Further
work should develop proper feature-model or code measures to predict the
benefits of sample-based and family-based strategies and possibly combinations
thereof.

The choice of the subject systems threatens external validity. Hence, we
selected as many subject systems as we were able to locate, including standard
benchmarks that condense the state-of-the-art in the field. But the tool chain
that we used, as well as the availability of configurable systems that contain
specifications and that are amenable to model checking, were limiting factors.
Nevertheless, for the first time, a substantial set of different subject systems
written in different languages has been considered for evaluating strategies of
configurable-system verification.

154

CHAPTER 6. FAMILY-BASED MODEL CHECKING

C

D

S

C

D

S
Partition ¬C

Partition C

(a) Family-based strategy with two
configuration-space partitions

A

B

C

DE

F G

H

Variant-based Family-based

(b) Analysis strategies represented in
the PLA cube

Figure 6.16: Illustration of the evaluated analysis strategies

6.6 Combining Family-based and Variant-based
Model Checking

The results from the previous section have shown that family-based model
checking has a higher detection efficiency than variant-based verification. How-
ever, the variant simulators were larger than any of the variants. Furthermore,
we discussed (informally) that verification of simulators typically consumed
more main memory than verification of a variant. In the evaluation part of
this section we provide numbers showing this fact (Section 6.6.3). The memory
consumption of family-based verification might limit its applicability on subject
systems with many variants or on machines with low available main memory.

In this section, we discuss how this limitation of the family-based strategy
can be mitigated using a combination of model-checking strategies based on
the PLA model. We evaluated how combined strategies perform in comparison
to basic strategies such as the family-based and variant-based strategy.

partition-based
analysis

We describe a set of analysis strategies where each strategy is represented
by a point between points A and D on the PLA cube. For each strategy, we
partition the configuration space of a configurable system and analyze each par-
tition with a variability-encoded simulator. The rationale behind this strategy
is that all variants are covered by one of the simulators while each simulator is
cheaper to analyze than the simulator that covers all variants. Furthermore,
the smaller simulators can be verified in parallel processes (similar to variants
in the variant-based strategy). Each strategy represents an exhaustive analysis
of all variants of the system, because each variant is covered in each strategy
by exactly one partition.

This section provides an initial study into how combination of strategies in-
fluences analysis performance. For this initial study, we focus on model checking

155

6.6. COMBINING FAMILY-BASED AND VARIANT-BASED MODEL
CHECKING

scan ∧ copy

scan ∧ ¬copy

¬scan ∧ copy

¬scan ∧ ¬copy

Figure 6.17: Example partitioning of the printing-device configuration space.
The circle represents the configuration space and the black dots represent
different configurations. The partition ¬scan ∧ copy is empty because the
system has no variants with copy and without scan.

of Java systems using the tools and subject systems we describe in Sections 6.5.
We evaluated all possible analysis strategies between points A and D (Fig-
ure 6.16b) for four different subject systems. Figure 6.16a shows how an
example strategy with two partitions of the printing-device example is repre-
sented with PLA operators. In a first step, we partition the configuration space.
We build two simulators (filled circles in Figure 6.16a); one for simulating
all configurations with feature Copy (C) and one simulating all configuration
without Copy. In a second step, we verify the simulators separately.

The study sheds light on a fundamental question for model checking of
configurable systems: Can we use combinations of strategies to improve the
efficiency (run time, main-memory requirements, and defect coverage) compared
to basic strategies such as family-based and variant-based model checking?

In Section 6.6.1, we describe the set of analysis strategies that we focus on in
this evaluation. In Section 6.6.2, we describe how we generate our experiment
setup and which subject systems we use. In Section 6.6.3, we discuss our
evaluation and its results.

6.6.1 Analysis Strategy

We explore model checking strategies on the lower front edge of the cube
(range A–D). In addition to verifying a simulator for the complete system (D)
and verifying all variants (A), we partition the configuration space and verify
each partition with a dedicated simulator.

For example, Figure 6.17 shows a partitioning of the configuration space of
the printing-device system based on the features scan and copy. Each partition
has a constraint (e.g., scan ∧ ¬copy) and it contains all valid configurations in
which the constraint is satisfied. The constraints are mutually exclusive and,
together, cover the whole configuration space. Therefore each configuration is

156

CHAPTER 6. FAMILY-BASED MODEL CHECKING

covered by exactly one partition. The partition ¬scan ∧ copy is empty because
the variability model of the printing-device system prohibits configurations
with copy and without scan.

To verify partitions of a system, we generated a variant-simulator for each
non-empty partition (three simulators in the example) and used model checking
to verify the simulators. In Section 6.6.3, we discuss how we applied this
strategy to the E-Mail, Elevator, Mine Pump, and ZipMe systems from
Chapter 6. Based on the results, we evaluated how efficiency of the verification
strategy changes if more (smaller) or less (larger) partitions are used. The
number of partitions determines which point in the PLA cube represents the
analysis:
• If we use only one partition, the strategy is equivalent to the family-based

strategy (point D).
• If we use as many partitions as possible (one variant per partition), the

strategy is equivalent to the variant-based strategy (point A).
• If we use partitions with more than one and less than all variants, the

strategy is represented by a point between A and D.

6.6.2 Generating Partitionings for the Evaluation

The performance of a partition-based strategy depends on the number of
partitions and their size. Therefore we decided to evaluate all possible partitions
of the subject system’s configuration spaces, to completely cover range A–D.

In the following paragraphs we describe the algorithm that we use to generate
partitionings for our experiment and how the complexity of this algorithm limits
our choice of subject systems. The complexity of the algorithm stems from the
fact that it needs to generate all partitionings. Generating one partitioning is
much simpler and can also be applied on larger subject systems.

Partition generation algorithm To generate all possible partitionings of a
subject system’s configuration space, we first computed the powerset of the set
of features of the system. For example, the powerset of the the printing-device
features has 32 entries:

{}, {BasicPrinter}, {Duplex}, . . . , {BasicPrinter ,Duplex}, . . .

From each entry, we computed constraints for partitions. For example entry
{BasicPrinter ,Duplex} yields the constraints

BasicPrinter ∧ Duplex , BasicPrinter ∧ ¬Duplex ,

¬BasicPrinter ∧ Duplex , and ¬BasicPrinter ∧ ¬Duplex

157

6.6. COMBINING FAMILY-BASED AND VARIANT-BASED MODEL
CHECKING

Table 6.2: Partitionings of configuration spaces. The number of partitionings
is determined by the number of features and by constraints imposed by the
variability model. We cannot provide a listing of the partitionings here, due to
their size.

System Features Variants Number of partitionings

E-Mail 9 40 64
Elevator 6 20 32
Mine Pump 7 64 64
ZipMe 8 10 17

Next, we filtered constraints that represent empty partitions (e.g., the third
and fourth constraint in the example). Furthermore, we filtered constraints
that represent equal sets of configurations.11 Then we generated simulators
for the remaining constraints. Each partitioning of the configuration space
(generated from one entry of the powerset), corresponds to a set of simulators,
and to one analysis strategy in range A–D. For each strategy, we verified all
simulators, measured how long verification takes and how much memory is
consumed (maximum). We discuss the evaluation in Section 6.6.3.

Subject systems In this evaluation, we focus on selected subject systems
from our evaluation of family-based model checking (Section 6.5). We selected
the E-Mail, Elevator, Mine Pump, and ZipMe systems. We excluded
AJStats and GPL because of their large feature sets (20 and 18 features), which
would cause scalability problems for our partitioning-generation algorithm. In
particular, the generation of the powerset of features is infeasible for such
large feature sets. Generating one partitioning and running the corresponding
strategy would also work for AJStats and GPL. However, to cover all strategies
in range A–D, we need all partitionings which is unrealistic for these systems.
For each system, we verified one specification that is applicable to all variants
(some specifications require specific features which would be inadequate in this
experiment).

Table 6.2 lists the number of different strategies for each subject system.
These strategies include one pure family-based strategy (one partition, point D)
and one pure variant-based strategy (one partition per variant; point A).

11This can occur in systems with larger variability models. For example, in the E-Mail
system, features encrypt and decrypt imply each other, yielding identical partitions.

158

CHAPTER 6. FAMILY-BASED MODEL CHECKING

6.6.3 Evaluation

We evaluated how family-based and variant-based verification performs in
comparison with the verification of multiple simulators that cover mutually
exclusive sets of variants. We used the strategies generated as described in the
previous section and verified the simulators of each strategy independently. Each
strategy represents an exhaustive analysis of all variants of the system, because
each variant is covered by exactly one partition of each strategy. Therefore,
each strategy detects all defects and detection- and sample rates (cf. Section 6.5)
are identical for all strategies. To compare the strategies, we measured the
time needed for sequential verification of all simulators of a strategy and the
maximum amount of main memory needed during the verification.

In each verification run, we used a simulator with all features of the system
(as in the family-based approach). We limited the simulator such that only
variants in the partition are verified and the model checker ignores all other
code.12

Hypothesis Our hypothesis is that the combining the family-based and
variant-based strategies yields improves performance compared to the pure
strategies. In particular, we hypothesize (1) that combined strategies are faster
than the variant-based strategy and (2) that they consume less memory than
the family-based strategy.

System setup We ran the experiment on a Ubuntu 14.04 workstation with
four cores (Intel Xeon Processor X3470 @ 2.93GHz). For model checking, we
used the tool Java Pathfinder [VHB+03] (revision 1147 of version 6) and the
jpf-bdd extension [vRAR11] (revision 101). Each verification run was allowed
a maximum of 4GB RAM. There were no out-of-memory errors or otherwise
aborted verification runs.

Results Figure 6.18 and Figure 6.19 show the results of our experiments. In
each plot, we aggregated strategies by the number of used simulators (equal to
the number of partitions) and show them with one boxplot. For example, in
the run-time plot of Figure 6.18a, the run times of all verification strategies
that use 8 simulators is shown in one boxplot. In each plot, the boxplots are
ordered by the number of simulators used. The left-most strategy uses only one
simulator (family-based strategy). The right-most strategy uses one simulator
per variant (corresponding to the variant-based strategy).

12 Given the constraint c of a partition, we inserted an additional guard if (c) to the
body of the system’s main function (cf. Section 6.2.4).

159

6.6. COMBINING FAMILY-BASED AND VARIANT-BASED MODEL
CHECKING

Number of partitions in strategy

M
a
x
im

u
m

 m
e
m

o
ry

 i
n
 M

B

●

1 2 3 4 5 6 8 10 12 16 20 24 32 40

5
0
0

1
5
0
0

2
5
0
0

Number of partitions in strategy

T
o
ta

l
ru

n
 t
im

e
 i
n
 s

● ●●

●

1 2 3 4 5 6 8 10 12 16 20 24 32 40

0
1
0
0

3
0
0

(a) E-Mail

Number of partitions in strategy

M
a
x
im

u
m

 m
e
m

o
ry

 i
n
 M

B

●

1 2 3 4 5 6 8 10 12 16 20

6
0
0

1
0
0
0

1
4
0
0

Number of partitions in strategy

T
o
ta

l
ru

n
 t
im

e
 i
n
 s

1 2 3 4 5 6 8 10 12 16 20

0
5
0

1
0
0

(b) Elevator

Figure 6.18: Verification time and maximum memory consumption of verifi-
cation based on configuration-space partitions for the case studies E-Mail
and Elevator. Each boxplot represents strategies with the same number
of partitions/simulators. The y-axes in the memory-consumption plots are
truncated (without removing results). Dotted lines mark the family-based (left;
one partition) and variant-based (right) strategies.

160

CHAPTER 6. FAMILY-BASED MODEL CHECKING

Number of partitions in strategy

M
a
x
im

u
m

 m
e
m

o
ry

 i
n
 M

B

●

1 2 4 8 16 32 64

6
0
0

1
2
0
0

1
8
0
0

Number of partitions in strategy

T
o
ta

l
ru

n
 t
im

e
 i
n
 s

●●

1 2 4 8 16 32 64

0
1
0
0

2
0
0

3
0
0

(a) Mine Pump

Number of partitions in strategy

M
a
x
im

u
m

 m
e
m

o
ry

 i
n
 M

B

1 2 3 4 5 6 8 10

2
0
0
0

6
0
0
0

Number of partitions in strategy

T
o
ta

l
ru

n
 t
im

e
 i
n
 s

1 2 3 4 5 6 8 10

0
2
0
0

4
0
0

(b) ZipMe

Figure 6.19: Verification time and maximum memory consumption of verifica-
tion based on configuration-space partitions for the case studies Mine Pump
and ZipMe. As in Figure 6.18, each boxplot represents strategies with the same
number of partitions/simulators. The y-axes in the memory-consumption plots
are truncated (without removing results). Dotted lines mark the family-based
(left; one partition) and variant-based (right) strategies.

161

6.6. COMBINING FAMILY-BASED AND VARIANT-BASED MODEL
CHECKING

The plots in the left columns of Figure 6.18 and Figure 6.19 show the
maximum memory consumed during the verification of all simulators of a
strategy (sequentially; we did not verify simulators in parallel). For example, the
plot shows that using only one simulator (family-based strategy) consumes much
more memory than using one simulator per variant (variant-based strategy),
which is a motivation for this evaluation. More general, the plot shows that using
more simulators usually means that a strategy consumes less memory. This
result was expected, as more simulators mean that each simulator represents
a smaller part of the configuration space. Therefore the state space that is
generated during model checking is smaller and consumes less memory. Even
though there are techniques for efficient storage of the state space [EP05;
Hol97], it still is the main driver for memory consumption in model checking.
Of course there are exceptions to this observation: for example, the memory-
consumption plot of Figure 6.18b shows that some outlier strategies with 4
simulators consumed less memory than selected strategies with 8 simulators.
The reason for this exception probably lies in the design of the Elevator
system. For example, if one particular data structure in the system requires
much memory during verification, it would be beneficial to choose partitions
such that the structure is verified in only one partition.

The plots in the right columns of Figure 6.18 and Figure 6.19 show the time
needed for the verification of all simulators of a strategy. Usually strategies
with more simulators need more time than strategies with less simulators. This
result is supported by the results of our experiments in Section 6.5. However,
there are exceptions to this rule. For example, in the ZipMe system almost
all strategies need less time than the pure family-based strategy. There are
several possible reasons for a deviation between ZipMe and the other systems:
First, ZipMe does not have any defective variants such that no program paths
terminate “early”. Second, ZipMe reads from files, and depending on features,
uses archiving algorithms and computes checksums. It is plausible that a
simulator that has to switch between expensive algorithms is harder to verify
than several simulators that each verify one algorithm. However, the purpose
of our evaluation is to determine whether the combination of variant-based and
family-based verification improves performance. It is beyond the scope of this
experiment to evaluate the effects of different configurable-system properties
on the simulator performance. Such evaluation would require a much broader
set of subject systems.

Discussion Coming back to our initial question of whether combinations of
strategies can improve efficiency compared to basic strategies, our experiment
has shown that partition-based verification indeed often improves efficiency.

162

CHAPTER 6. FAMILY-BASED MODEL CHECKING

In most strategies, the consumed memory was lower than in the family-based
strategy and the verification time was lower than in the variant-based strategy.
The experiment has also shown some outliers to this result, which imply that
one cannot easily predict performance of verification approaches. In particular,
it is difficult to predict how a given configuration-space partitioning would
influence verification performance.

In our evaluation, we were limited to configurable systems with 9 or less
features because generation and comparison of all partitionings suffers from an
exponential blowup with larger numbers of features. However, this does not
mean that our results do not apply to configurable systems with more features.
In fact, a larger future study could test our results on real-world systems by
building and comparing a selected (small) set of partitionings.

rating
partitionings

To further investigate which partitionings improve verification performance,
we tried to isolate properties of partitionings that achieved especially good or
bad results. For example, we identified partitionings that used only features
that do not have dependencies on other features. For such features, the number
of variants that include the feature is the same as the number of variants
without the feature. Therefore, such partitionings should in theory induce
simulators of roughly equal size because each simulator covers an equal size of
the configuration space. However, our experiment data does not support this
theory. Similar properties, such as trying to distribute lines of code uniformly
between simulators of partitionings, did not yield substantially better-than-
average results, either.

Determining which partitionings are beneficial under which circumstances
(e.g., subject system and verification tool) remains future work. We showed
that strategies which combine variant-based and family-based strategies are
better than the basic strategies. Determining which properties in subject
systems increase this advantage requires a more thorough study with more
subject systems. Such study would go beyond the scope of this thesis where
we predominantly want to show that combinations of strategies are beneficial.
However, the example strategies in this section can easily be implemented in
other verification tools. For example, the model checker FMC [tBFGM15]
can verify simulators (of labelled transition systems) and allows to limit them
to a subset of configurations before verification. It could be used to explore
partition-based verification in a more controlled setting than it is possible with
software model checking of real-world systems.

163

6.7. RELATED WORK

6.7 Related Work
In this section we discuss related work that applies verification approaches
to configurable systems. Other related work is discussed in Chapter 5 (other
uses of variability encoding) and in Chapter 3 (comparisons of different anal-
ysis strategies). For a comprehensive overview on strategy comparisons, we
recommend a survey report [TAK+14].

The family-based strategy has been used in several model-checking ap-
proaches [ASW+11; AtBFG11; CHSL11; CHS+10; Gru10; LTP09; PS08;
tBdV14]. It has been shown that substantial performance gains are possi-
ble [ASW+11; CHSL11; CHS+10]: for example, an average speedup of two was
observed [CHSL11; CHS+10], by using a family-based strategy, compared to the
variant-based strategy (and a speedup of sometimes two orders of magnitude if
using BDDs for feature variables). Different related tools (e.g., SNIP [CHSL11;
CHS+10], VMC [tBGM15; tBM14], FMC [tBFGM15], and ABC [vRBS+15]),
have been developed for family-based model checking of transition-system
models of configurable systems. These tools implement similar model-checking
optimizations, however they focus on verification of transition systems where
we focus on verification of Java and C source code. In particular VMC uses
a family-based strategy which is very similar to ours: VMC uses a transfor-
mation similar to our variability encoding: The verified system is given as
modal transition system and the specification in v-ACTL [tBM14] (both allow
variability annotations). VMC transforms the artifacts doubly-labeled tran-
sition systems with ACTL [dNV90] specifications. The transformed artifacts
can then be verified using existing model checkers. In difference to our work,
which focuses on source code artifacts, they focus on automata-based models of
configurable systems. A recent addition to VMC allows users to define input
models in which integer-valued data can be passed between automata states,
which improves potential for realistic case studies [tBFG14].

The family-based strategy has been combined with other verification
approaches, for example with counterexample-guided abstraction refine-
ment [CGJ+03]. It has been shown that this combination can improve the
performance of verification of labelled transition systems [CHL+14]. In future
work, counterexample-guided abstraction refinement could be applied similarly
to our software-model-checking approach.

Feature-based verification, which aims at verifying features as far as pos-
sible in isolation to minimize the verification effort upon feature composi-
tion [LKF02b; LBL11; MRKN13], was not considered in our comparative
experiments because practical verification tools and corresponding case studies
were not available.

164

CHAPTER 7

Inter-App Data-Flow Analysis in Android Systems

This chapter shares material with the publication “Lifting Inter-App Data-Flow
Analysis to Large App Sets” [vRBS+15].

In this chapter, we discuss how the feature-based and family-based strategies
can be used for scalable analysis of communication between apps in an An-
droid mobile-device. We implemented an analysis of communication between
Android apps that is able to detect leaks of private information. To make
the analysis scale to sets of thousands of Android apps, we implemented a
two-step process that regards apps as features of a mobile device: First, a
feature-based strategy analyzes each app in isolation and extracts information
on usage of private data and on inter-app communication; Second, we use a
family-based strategy to analyze communication of private data across multiple
apps, based on the information gained in the first step. To optimize the perfor-
mance of the second step, it can be run on partitions of the app set in parallel.
This partition-based version of the second step combines the feature-based
and family-based strategies. At the core of the second step (with and without
partitions) lies a variability-aware data structure, which is responsible for the
improved scalability. Analysis strategies that are targeting configurable systems
are not typically used in the app-communication analysis domain, so this is a
novelty in itself.

In Section 7.1, we introduce the problem of inter-app data leaks in the
Android ecosystem and motivate our analysis. In Section 7.2, we provide
background on Android apps, of data leaks between apps, and how leaks
can be detected with existing tools. In Section 7.3, we describe the variability-
aware data structure for representing inter-app data flows. In Section 7.4

165

7.1. MOTIVATION AND SCENARIO

we describe our implementation as a combination of a feature-based and a
family-based analysis, and how these strategies are represented in the PLA
cube. In Section 7.5, we describe our evaluation of the implementation based
on various community benchmarks. Finally, we discuss threats to validity of
our results in Section 7.6 and related work in Section 7.7.

7.1 Motivation and Scenario

The growing popularity and adoption of mobile devices—such as smartphones
and tablets—has led to a tremendous rise of mobile apps. The size of Google’s
Play store increased from 70 000 apps in July 2010 to more than 1.6 million
apps in July 2015 [App15b]. By January 2014, Apple’s app store offered more
than one million apps [App14] and had a yearly revenue of $10 billion. The
large number of apps available and the increasing diversity of mobile devices
lead to very different sets of apps installed on mobile devices today.

Privacy of data in mobile devices is an increasing concern. While apps often
process private data, such as passwords, device identifiers, or position data,
they also commonly possess unlimited access to communication channels, which
may lead to leaks of private data. To prevent leaks of private data, mobile
operating systems employ a range of methods, such as encapsulation of apps,
dedicated communication mechanisms (e.g., Android Intents), a permission
system for accessing sensitive data, and manual review of apps before they are
added to the app store. Additionally, various analysis techniques have been
developed to detect so-called tainted data flows—flows of data from private
sources to untrusted public sinks inside an app [ARF+14; LBB+15].

inter-app leaks Yet, as apps are allowed to communicate with each other, a combination
of apps can create a private-data leak even if individual apps are considered
safe [CPGW11; PWM+11; SBG+13]. For instance, an app could read the
device’s current location and send it—accidentally or maliciously—to a second
app, which then forwards it via the Internet to an untrusted party. Such
scenarios are hard to detect as they could in principle involve a chain of many
apps [KFB+14]. Malicious apps can even intercept or eavesdrop on unsecured
communication between apps.

The presence of critical inter-app data flows depends on the set of apps
installed on a device. Consider an accidental private-data leak, where an
app sends private information (e.g., a picture) to apps that can display it.
If multiple target apps are installed, most systems display a choice dialog,
possibly creating awareness for a potential private-data leak. When only
one alternative, potentially malicious app is present, communication occurs
without user interaction. Consequently, all possible combinations of apps

166

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

of a given set would need to be verified to detect inter-app leaks, whether
accidental or malicious. Even without finding actual leaks, detecting apps or
app combinations that forward data among apps is important, because such
apps have a high risk to be exploited for realizing data leaks.

scalabilityUnfortunately, inter-app data-flow analysis is expensive and does not scale
well to larger app sets or even to a whole app store. There are two reasons
for the poor scalability: First, many apps send and receive standard message
types, which leads to substantial numbers of flows; second, the representation
of flows is prone to a combinatorial explosion in the number of apps, since
many apps send similar messages (many apps are also cloned or use common
code [MAN+14; VGN14]). So, installing a new app may double the number of
inter-app flows.

Recent taint-analysis tools for Android [ARF+14; KFB+14; LBB+15;
WROR14] are reasonably precise in detecting critical data flows, tackling all the
peculiarities of Android apps (e.g., permissions, Android API, intents), but
they do not scale well to large sets of apps. We argue that the limitation mainly
lies in the representation of inter-app data flows that does not explicitly consider
variability [BPT+14]—an app can be installed or not, thereby influencing the
global data flows that exist. Instead of duplicating detected flows, variability
inside flows should be modeled explicitly. We view apps as features of an
Android device and adopt the feature-based and the family-based strategy
discussed in Chapter 3, which incorporate variability to reduce redundancies
and avoid a combinatorial explosion. In the context of this thesis, our analysis
serves as an example of how configurable-system analysis strategies can be used
to enable large-scale analyses.

We present a variability-aware approach for large-scale inter-app data flow
analysis implemented in our tool Sifta. Our approach aims at analyzing
inter-app communication, before concrete combinations of apps are installed by
a customer. The long-term vision is to move analysis from the mobile device
to the app store, checking all possible combinations of apps. Furthermore, the
underlying data structure is designed in a way that allows incremental analysis,
avoiding the re-calculation of data flows when new apps are added.

Our approach relies on a graph-based data structure representing flows
annotated with presence conditions that denote the presence and absence of
apps. We extended and combined existing tools that analyze data flows inside
individual apps (feature-based), to use and aggregate their results creating a
graph that efficiently represents inter-app communication (family-based). We
traverse this graph to search for inter-app data flows that propagate private
data (standard taint-propagation analysis). We demonstrate the scalability
of our approach on two third-party benchmarks and a set of 51 935 analyzed

167

7.2. BACKGROUND

real-world apps we mined from the Google Play app store (details on the mining
process in Section 7.6). At the same time, our tool maintains an accuracy that
is similar to existing tools focusing on intra-app analysis, likewise evaluated
with two third-party benchmarks and with our own benchmark IACBench
(available on the supplementary website).

To support the steady growth of app stores, our tool supports an incremental
generation of the inter-app communication graph: When new apps are added or
changed, the graph can be updated with information for such apps, instead of
generating a new graph. We also use the incremental generation to implement a
family-based analysis on app groups (feature groups) which enables experiments
on a machine with otherwise insufficient main memory (Section 7.5.2). This
analysis strategy is represented by a point between D and H in the PLA cube
(Chapter 3). It shows that, in this scenario, combination of strategies enables
analyses that were not possible otherwise.

Sifta, links to all other tools, and information on how to replicate our
results are available on the supplementary website.

7.2 Background
Next, we introduce app communication in Android and discuss existing anal-
ysis strategies and their limitations. We distinguish between inter-component
communication—when components inside one app communicate—and inter-app
communication—when components of different apps communicate.

7.2.1 Android Apps and the Intent Mechanism

Android apps are delivered in so-called Android application packages (APKs)
and consist of multiple components that communicate with each other. Com-
ponents can be GUI elements (activities), shown to the user, or non-visible
elements that process or store information (services, broadcast receivers, and
content providers). Components have a dedicated lifecycle and are encapsulated.
They communicate via dedicated messages, called intents1, both for intra-app
(inter-component) and inter-app communication. Intents contain various pieces
of data, such as routing and payload information.

Intents can be explicit or implicit. The former identify the target component
directly using its fully qualified name. The latter describe the minimal capabil-
ities a target component needs to fulfill, which are then matched against the
maximal capabilities of components defined in intent filters. Such capabilities

1Other means of communication (e.g., shared files, native code) exist, but are outside of
our scope.

168

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

could be the ability to show a URL or to display an image of a certain type.
If multiple components of installed apps qualify, Android displays a choice
dialog and lets the user select. Usually, intents pass information to other
components. However, they can also query information (e.g., user information
from a data-storage component), initiating an information flow back to the
intent source.

7.2.2 Intra-App, Inter-Component Communication

Intent-based communication is the primary mechanism for data exchange
between components inside an app (intra-app communication). For example,
an activity could send data entered by the user to a service that stores or
processes the data. Here, an explicit intent is typically used, since the receiving
component should be unambiguously identified.

Analysis of inter-component communication inside an app is important to
detect data flows that leak private data by accident (without intention of the
developer). For example, a developer of a popular Android app might want
to analyze her own app to confirm that private user data are not passed to
third-party components used in the app. In this intra-app scenario, the set of
components is known.

Several analysis tools address this scenario. One comparatively precise tool is
IccTA [LBB+15], which relies on FlowDroid [ARF+14] and Epicc [OMJ+13].
IccTA composes all components of an app into one “super” component encoding
all the flows. A challenge is to connect components—that is, mapping intent
calls of one component to incoming intents of another component. Therefore,
the parameters of an intent object, which is dynamically instantiated at run
time, need to be known and matched to intent filters. For this purpose,
Epicc performs a static analysis to retrieve the intent parameters. Once the
“super” component is created, it is analyzed with FlowDroid, a precise inter-
procedural data-flow analysis tool. The intra-component data flows reported
by FlowDroid connect sources and sinks, which are Android API methods,
intent calls, or incoming intents.

7.2.3 Inter-App Communication

Communication between apps is realized using the same intent-based mechanism
as for intra-app communication. The main difference is that the set of installed
apps is not pre-determined. An implicit intent can be processed by different
apps (e.g., different e-mail clients) in different mobile-device configurations,
with different implications for data privacy.

169

7.2. BACKGROUND

GPS Location
ReaderApp

MaliciousApp
Untrusted

party

FitnessApp

Intent with
GPS location

User choice

Loc

Figure 7.1: Inter-app communication example, where GPS location information
is forwarded to untrusted receivers. Large rectangles represent apps, small
rectangles represent intent filters, and the ellipse represents an intent.

Figure 7.1 shows a simple inter-app communication. The LocationReaderApp
reads the current location from the GPS device and sends it via an intent (Loc).
If installed, each of the two apps FitnessApp and MaliciousApp can receive
the intent (determined by their intent filters, shown as little rectangles). If the
latter obtains the data, they are forwarded over the Internet to an untrusted
third party.

insufficient
permission

system

Similar scenarios have been reported in the literature [BR14; CPGW11;
KFB+14; PWM+11; SBG+13]. Ideally, Android’s permission system should
prevent apps from accessing private data without user consent. However, An-
droid permissions are not sufficient as commonly stated in the literature (see
Section 7.7). In our scenario in Figure 7.1, MaliciousApp does not have the
permission to read GPS data directly from the Android API. However, it can
receive the intent that is sent from LocationReaderApp, which contains (among
other information) the private GPS data. Receiving this intent requires no spe-
cial permission. Once MaliciousApp receives an intent from LocationReaderApp,
it extracts the GPS data and leaks it to the internet. It does not matter whether
LocationReaderApp sends the data out via any intent, or has a component that
is accessible via an intent, and whether both happens accidentally or whether
the app was maliciously developed to enable this scenario. This problem is
generally known as permission re-delegation [CPGW11; PWM+11] (a variant
of the confused-deputy problem [Har88]).

Analyzing inter-app communication is important for maintainers of app
stores or pools. It is desirable to ensure that each possible combination of apps
respects privacy of user data and that no inter-app data-flow leak exists. In
this chapter, we show that analysis strategies for configurable-systems can help
to make such analyses feasible for large sets of apps. Even without actual leaks,
it is desirable to identify high-risk apps that forward data [vRBS+15], which in
combination could be exploited for private-data leaks in the future.

170

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

implicit intent
action: send

category: default

implicit intent
action: send

category: default

explicit intent

implicit intent
action: send

category: default

Figure 7.2: Detailed example of inter-app communication

An app-store scenario is more complex than intra-app communication, since
apps can be present or absent on a device (resulting in different global flows—
this is why we pursue a variability-aware approach). Furthermore, apps are
regularly added, removed, and updated. Thus, analysis results of inter-app
communication should be kept updated after each change in the pool, ideally,
without the need of an expensive re-analysis of the entire pool. We pursue
an incremental approach (described in Section 7.4) to avoid this expensive
re-analysis.

To analyze inter-app communication, one could, in principle, use tools that
have been developed for intra-app analysis, because these communication types
both rely on intents. For example, DidFail [KFB+14] uses FlowDroid to
obtain data flows within each component in each app. Based on the intent
parameters obtained with another tool, called Epicc, DidFail connects the
possible outgoing intents to intent receivers and builds a global communication
graph involving all apps.

7.2.4 Limitations of Existing Tools

Both IccTA and DidFail rely on the fact that the set of components is
known, invariable, and rather small. IccTA’s approach would cause scalability
problems when inter-app communication is analyzed, as the generated “super”-
component easily becomes large, with many—likely redundant—flows. But
the IccTA developers focus on intra-app communication in their experiments
anyway [LBB+15]. In contrast to IccTA, DidFail addresses inter-app commu-
nication explicitly. Yet, it stores detected flows in a list-like data structure that
is not variability-aware. As a result, DidFail does not exploit redundancies
between the flows, harming scalability.

171

7.3. REPRESENTING INTER-APP DATA FLOWS

To understand how a larger app set can influence the number of flows,
consider the following thought experiment, illustrated in Figure 7.2. We
build a scenario based on the three apps of Figure 7.1: LocationReaderApp
obtains private data, sending them with a valid intent to FitnessApp. However,
MaliciousApp can also receive the intent—its presence establishes a data flow
to an untrusted network receiver outside the phone. MaliciousApp has the
permission to access the Internet, but not to obtain GPS data from the Android
API. Furthermore, we extend the scenario slightly, adding (1) a typical internal
data flow between two components inside FitnessApp and (2) another accidental
leak from FitnessApp to MaliciousApp, so that we have two leaks from a private
source to a public sink.

Now, consider a larger scenario, where we have an additional alternative
app for each of the three apps. The alternative apps have roughly the same
functionality (the same data sources and sinks, and the same intents), but
they are implemented by different developers. In this scenario, the number
of flows increases: for example, both variants of LocationReaderApp can send
information to both variants of MaliciousApp. Now, there are 12 leaks in total.
In general, the number of flows has a cubic growth in the number of apps
of each kind, which shows that an efficient inter-app analysis has to exploit
redundancies between flows. Even though this thought experiment shows an
extreme example, our experiments (Section 7.5.2) showed results for DidFail’s
scalability that are similar the results of the thought experiment.2 A key insight
is that the problem lies in the representation of the underlying graph and of
the flows. DidFail does not address sharing between apps or redundancies
between flows.

The limitations of existing tools motivated us to develop our own tool, called
Sifta, that addresses these challenges when analyzing inter-app communication.
We reused parts of DidFail’s code, but completely re-implemented the graph
synthesis and the identification of tainted data flows.

7.3 Representing Inter-App Data Flows

The communication between Android components is typically analyzed in two
steps. First, information on individual apps (e.g., using a static code analysis)

2 Our experiments are based on the DidFail variant published at the SOAP work-
shop [KFB+14]. In a more recent publication, the authors describe an improvement of
DidFail [BFK+15], however the focus of the improvement seems to be DidFail’s accu-
racy, not its scalability. Therefore our analysis of DidFail’s scalability does still hold even
though the accuracy of the new DidFail version is better than suggested in our experiments
(Section 7.5.1).

172

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

is collected and stored in a suitable data structure. Because we consider apps
as features of an Android device, this is a feature-based step. Second, the
stored data is analyzed. This second step is family-based, because the data
flows for the entire configurable system is stored in a single data structure.
This two-step process avoids the need to deal with app internals (e.g., source
code) in the second step. The key factor is how to abstract from app internals
and how to store the abstracted data. In the next sections, we discuss which
data from apps and intents we consider, we discuss how the data is represented
in a basic data structure (reflecting the structure used by DidFail [KFB+14]),
and we introduce our lifted, variability-aware data representation.

7.3.1 Design Considerations

To represent app communication in the graph, we need to keep the information
necessary to determine whether an intent can be accepted by a given component.
Android makes this decision based on an intent’s metadata and on a component’s
intent filter. An intent is defined by its sender component, an action key, a list
of categories, and a mime type.3 An intent filter is defined by the component for
which it controls incoming intents, by a list of action keys, a list of categories,
and a list of mime types. Based on this information, Android matches intents
with intent filters to deliver the intent to a component [DB12].

In Android, private data originate either from system API calls (e.g.,
location data) or from the user (e.g., a password entered in a text field).
Likewise, to send data to untrusted receivers (private sinks), one has to call
API functions (e.g., to send SMS, open network connections, or write into log
files). To identify such private sources and public sinks, we rely on lists with
API function signatures from previous work [ARB13].

Based on these definitions, we can build an inter-app data-flow graph. We
chose a directed graph as representation, in which a node represents either a
start or end point of a potentially critical data flow, that is, from a private
source to a public sink, or an intent that forwards information. In this graph, we
already abstract from many implementation details of the apps. For example,
we do not consider sources of non-private data (e.g., the current time). Edges
represent apps that receive and process intents, receive data from private
sources or/and forward data to public sinks. We chose this node–edge mapping
to avoid dangling edges and because intents are the central entities of inter-app
communication.

3The mime standards define content types (e.g., JPEG, GIF, or AVI) of data attached to
communication messages. They are used in e-mail and http protocols. Clients use the mime
type to determine how attached data should be opened.

173

7.3. REPRESENTING INTER-APP DATA FLOWS

7.3.2 DidFail’s Representation

Next, we define a graph data structure that is used by DidFail and that
is not variability-aware. We denote the set of all components of apps with
Comp, the set of all intents with Int , the set of all private source with Priv ,
and the set of all public sinks with Pub. The graph is defined as a set VDF

of nodes with VDF ⊆ Int ∪ Priv ∪ Pub and a set EDF of directed edges with
EDF ⊆ VDF×VDF×Comp. VDF contains all intents, private sources, and public
sinks. For each component comp that receives data from a private source or
intent src and that delivers data to an intent or public sink sink , the set of
edges contains the triple (src, sink , comp) ∈ EDF . A path through the graph
represents a potential data flow from a private source through a number of
components (possibly across multiple apps) to a public sink.4

Recall our thought experiment from Section 7.2.4: With an increasing num-
ber of apps, the graph quickly becomes very large and its generation expensive.
The reason is that often different apps have (partly) similar functionality. For
example, they receive data from the same sources (Int or Priv) and send data
to the same sinks (Int or Pub). Thus, the graph has many edges that differ only
in the app component, such as the edges (a, b, c1) ∈ EDF and (a, b, c2) ∈ EDF .
Figure 7.3a shows an example with two flows of private data (GPS location
and private key) to a public sink (Internet). The second edges of the flows have
the same source (Intent1) and the same sink (Intent2), and only differ by the
inner component (middle edges).

7.3.3 Variability-aware Representation

In Sifta, we represent flows within and across apps in a variability-aware
fashion. The difference is that each edge in the graph is annotated with a
presence condition (condition for it’s presence in the system). This presence
condition is a predicate over the (optional) apps in the pool. Each path in the
graph represents a variational flow corresponding to multiple concrete flows
(e.g., flows in the DidFail representation).

We define the set of edges such that each edge holds a set comps of compo-
nents (or, equivalently, a predicate over Comp): EVA ⊆ VDF ×VDF ×P(Comp).
Instead of mapping each edge to a component, we now map each edge to a
set of components (or, equivalently a predicate over component identifiers).
The semantics is that an edge (a, b, comps) is present in the graph (or on the
mobile device) iff one of the components in comps is installed. Finally, since

4The flow is only a potential flow, as our analysis is static and can produce false positives
(as taint analysis in general).

174

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

GPS location

Intent1

Intent2

Internet

AppA

AppC

AppE

Private key

Intent1

Intent2

Internet

AppB

AppD

AppE

(a) Basic (DidFail)

GPS location

Intent1

Intent2

Internet

AppA

AppC ∨ AppD

AppE

Private key

AppB

(b) Variability-aware (Sifta)

Figure 7.3: Example of a basic and a variability-aware inter-app
flow representation

a component is automatically present when its app is installed, we only store
app names on edges (instead of component names).

Figure 7.3b shows the same scenario as Figure 7.3a, but using our variability-
aware representation. The two edges from Intent1 to Intent2 are replaced by
one, which has a presence condition denoting which components need to be
installed to enable the flow.

The variability-aware representation is efficient when the app set contains
many inter-app flows that share common parts (intents or partial flows). Such
sharing can be caused by common intents used by many apps (e.g., intents
the ACTION_VIEW action key) or by code in differently named components that
process information in the same way (e.g., through code duplication [MAN+14;
VGN14]).

7.4 Implementation

We implemented our approach in the tool Sifta. It is based on code from
DidFail. Sifta extends DidFail with concepts discussed in Section 7.3.3 and
additionally introduces handling of services and broadcast receivers, which are types
of Android components that are not covered in DidFail.

two-phase
approach

Sifta uses a two-phase approach. In the first phase, it uses the tools Flow-
Droid and Epicc to analyze one app at a time (feature-based). FlowDroid
generates information on (i) which intents contain private information and (ii)
which information from intents is sent to public sinks of an app. Epicc provides
detailed information on the data of the intents, which is necessary to match

175

7.4. IMPLEMENTATION

them to intent filters of other apps (see Section 7.3.1). The second, family-
based phase of Sifta implements intent matching procedures as described in
the Android API to generate an inter-app data-flow graph, as described in
Section 7.3.3. Furthermore, the second phase runs a simple taint-propagation
analysis on the generated graph to detect inter-app privacy leaks. This phase
uses the FlowDroid and Epicc output from the first phase and the manifest
files of the apps, containing details on intent filters (see Section 7.3.1). In
addition to DidFail’s matching criteria, Sifta implements matching of mime
types as specified in the Android API. Finally, note that the first phase
may fail (cf. Section 7.5.2) on real-world apps, often because FlowDroid
or Epicc hit timeouts. Improving these third-party tools is well beyond the
scope of this thesis. Also, some failures are to be expected, because we use
static-analysis tools on real-world apps that might actively prevent analysis
by code obfuscation. Still, our two-phase design allows us to easily use results
from other tools in the first phase.

Paths in the variability-aware graph represent multiple private-data leaks
when edges have alternative apps (i.e., a presence condition with more than
one app). In contrast to presence conditions in configurable-system analysis
(Chapter 4), presence conditions in the graph are simple (disjunctions), such
that we do not need SAT queries to generate the graph or to derive feasible
flows from it.

incremental
generation

Furthermore, we implemented an incremental graph-generation procedure—
a functionality that we needed experiments with large sets of apps (e.g., 51 935
apps in Section 7.5.2). Since the main computation effort lies in the first
phase, we support reuse of already computed partial results. This functionality
of Sifta enables us to use the second phase of the analysis on groups of
apps (feature groups) and enable analysis of larger app sets as discussed
in Section 7.5.2. We support reuse of two types of intermediate results, as
illustrated in Figure 7.4. The apps AppA and AppB are analyzed for the first
time. Two other apps were analyzed before (results from phase 1 are reused),
and two old graphs with information about more apps exists already. In the
first phase, AppA and AppB are analyzed by FlowDroid/Epicc. In the
second phase, Sifta uses the newly generated results and the reused results
and integrates them with the existing graphs. In the end, Sifta produces an
updated graph containing all the edges of the old graphs and the new edges
introduced by the new apps.

This persistence and reuse of results enables Sifta to analyze large-scale,
evolving sets of apps in short time. If only few apps change, Sifta does not
need to analyze the entire set of apps from scratch, but can reuse old results,
if they are still valid (when the apps have not changed). To update a graph,

176

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

Phase 1
(FlowDroid/Epicc)

Phase 2
(Sifta)

AppA

AppB

I-A

I-B

I-C

I-D

Old graphs
with presence conditions

New graph
with presence conditions

Source1 → Sink2

in apps A ∨ C
Source2 → Intent1 → Sink2

in apps D ∧ (C ∨B)
. . .

Figure 7.4: Sifta’s inter-app analysis. IA, IB, IC and ID represent intermediary
results generated by the first phase. IC and ID are reused from a previous run
of the analysis. The intermediary results are added to the old graph, which is
also reused from a previous analysis run.

we would remove all apps for which we have updated information (delete the
app from all presence conditions), and then integrate the FlowDroid/Epicc
results for the updated apps.

taint
propagation

Once the communication graph has been generated, it can be used in
various ways. An example, which we implemented in Sifta, is a standard
taint analysis that reports all paths from sources to sinks in the graph. To
generate all paths through the graph, we use a depth-first exploration algorithm
on every source node of the graph. Source nodes in the graph correspond
to actions that query private data and sinks correspond to actions that send
data over potentially unsecure connections. Therefore, paths correspond to
potentially malicious data flows. This analysis is a taint-propagation analysis
as the (tainted) private data is forwarded along the path until it reaches a sink.
The apps on edges along the path constitute the presence condition of the data
flow.

177

7.5. EVALUATION
P
ar
ti
ti
on

1
P
ar
ti
ti
on

2

Phase 1 Phase 2

(a) Family-based strategy on
partitions of the app set

A

B

C

DE

F G

H

Variant-based Family-based

First step
(Sifta and DidFail)

DidFail

Sifta

Sifta on partitions

(b) Analysis strategies represented in the PLA cube

Figure 7.5: Illustration of the evaluated analysis strategies

Relation to the PLA model Figure 7.5a illustrates how the analysis strate-
gies of Sifta and DidFail are represented in the PLA model. Each analysis
strategy consists of two steps which are represented by two points in the PLA
cube. The first step of each strategy is a feature-based analysis where each
app is analyzed in isolation (with FlowDroid and Epicc). This step is
represented by point E in Figure 7.5b.

In its second step, DidFail combines the information from the first phase
and builds leak flows across app boundaries. However, it does not exploit
sharing between these flows, so this is essentially a variant-based analysis
(point A, marked red in Figure 7.5b). Sifta supports two alternative modes for
the second phase. In its basic mode, it analyzes the information from the first
phase in a family-based strategy (marked blue in Figure 7.5b), sharing common
subpaths in a variability-aware data structure. For large app sets, graph
generation with this strategy becomes expensive (e.g., memory consumption,
cf. Section 7.5). In such cases Sifta allows to partition the app set and run
the second phase on each partition separately (also in parallel). Figure 7.5a
illustrates this family-based and feature-group based strategy (point between
D and H, marked green in Figure 7.5b). Once graphs for all partitions have
been generated, Sifta merges them and generates a global communication
graph representing all apps.

7.5 Evaluation

In a series of experiments, we evaluated the accuracy and scalability of our
approach. We compared Sifta to the other state-of-the-art tools DidFail and
IccTA. Our primary goal is to evaluate whether the variability-aware analysis
strategies of Sifta improve scalability over the other tools. However, we also

178

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

Table 7.1: IACBench test cases

Test case Description

B
as

ic

startActivity intent from Activity to Activity via startActivity
startService intent from Activity to Service via startService
bindService intent from Activity to Service via bindService
sendBroadcast intent from Activity to BroadcastReceiver via sendBroadcast
sendOrderedBroadcast intent from Activity to BroadcastReceiver via sendOrderedBroadcast

A
dv

an
ce

d

multipleIntents two identical intents originating from the same source and targeting
the same sink

loop intent from Activity to Activity, but the first Activity can also receive
its own intent, creating a loop

intentChain intent from Activity1 to Service, to Activity2, to Activity3, back to
Activity2 (result), to BroadcastReceiver

identicalIntentFilter intent sent to three different components (Activity, Service,
BroadcastReceiver), each of which has the same intent filter

have to show that the accuracy of Sifta is comparable to state-of-the art tools;
otherwise the value of Sifta’s results would be unclear.5

In Section 7.5.1, we discuss our evaluation of the accuracy of Sifta on
benchmark sets comprising a total of 44 test cases with inter-component and
inter-app leaks (Experiment 1). Yet, accuracy is only a necessary condition
and highly relies on the underlying data-flow–analysis tools we use.

The potential leaks we detected in real-world apps can be used to inspect
and fix apps. While this work is orthogonal to our approach, our graph can be
used to identify high-risk apps that enable many flows as we demonstrate in a
related publication [vRBS+15].

7.5.1 Accuracy: Experiment 1

In the first experiment, E1, we measured the accuracy of our approach by
calculating precision and recall of detected leaks using a ground truth of
established, third-party community benchmarks and our own hand-crafted
benchmark. To understand the accuracy that is currently achievable with
state-of-the-art tools, we compare our results to those obtained by IccTA and
DidFail. Overall, we analyzed three different sets of apps:
• IACBench contains 9 app sets (two apps per set) created by us to cover

basic (intents with and without results, comprising activities, services, and
broadcast receivers) and advanced (e.g., loops, intent chains) inter-app
flows. We show details of the IACBench tests in Table 7.1.

5Without an accuracy evaluation, a (very fast) random-result generator would also be
acceptable.

179

7.5. EVALUATION

• ICC-Bench6 contains 9 apps developed by the authors of Aman-
droid [WROR14] with intra-app flows.
• DroidBench7 comprises 23 apps testing inter-component communication
(provided by the IccTA authors [LBB+15]) and 3 sets of apps testing
inter-app communication (provided by the DidFail authors [KFB+14])
among many more apps not relevant for our approach.

Our own benchmark IACBench contains test cases with undesired data
flows via implicit intents across apps from the source TelephonyManager.getDeviceId
to the sink Log.i. IACBench is available on our supplementary website. For
the third-party benchmarks ICC-Bench and the parts of DroidBench that
we used for our evaluation, we refer to the literature: Amandroid [WROR14],
DidFail [KFB+14], and IccTA [LBB+15].

All benchmarks comprise apps developed to test whether analysis tools
capture the specific means of communication. The apps are much smaller and
cleaner than real apps and are, thus, ideal to compare the accuracy of different
tools.

Hypothesis In this experiment, we compare the results of Sifta on the test
benchmarks against the results of IccTA and DidFail. Our hypothesis is that
Sifta achieves the same result as IccTA and DidFail on most tests.

Methodology and setup We ran Sifta and DidFail on all benchmarks and
measured precision and recall. While Sifta focuses on inter-app communication,
it can still analyze intra-app flows. Thus, we do not only compare against
DidFail, but also against IccTA, which is specialized on inter-component,
intra-app communication. Consequently, we can run IccTA only on the
ICC-Bench and DroidBench-ICC benchmarks, not on IACBench.

We ran the experiment on a Ubuntu 14.04 workstation with an Intel Xeon
Processor X3470 @ 2.93GHz. Timeouts and memory consumptions were not
an issue for these rather small test cases.

Results Table 7.2 shows precision and recall of Experiment 1. Next, we
discuss the different benchmarks, emphasizing on the test cases where Sifta
produces worse results than DidFail or IccTA.

IACBench focuses on inter -app communication. Thus, we could not
evaluate IccTA on this benchmark. Sifta solved all tests correctly. DidFail
cannot be applied to four test cases, because it lacks support for Services or
Broadcasts.

6Obtained from the authors of Amandroid.
7http://github.com/secure-software-engineering/DroidBench/

180

http://github.com/secure-software-engineering/DroidBench/

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

Table 7.2: Results of Experiment 1: Accuracy evaluation (IccTA results
according to [LBB+15])

benchmark test case DidFail Sifta IccTA

IACBench startActivity + + n/a
(basic) startService n/i + n/a

bindService n/i + n/a
sendBroadcast n/i + n/a
sendOrderedBroadcast n/i + n/a

(advanced) multipleIntents + + n/a
loop + + n/a
intentChain 	 + n/a
identicalIntentFilter + + n/a

ICC-Bench Explicit1 	 + +
Implicit1 + + +
Implicit2 + + +
Implicit3 + + +
Implicit4 + + +
Implicit5 + 	 +
Implicit6 + 	 +
DynRegister1 	 	 +
DynRegister2 	 	 	

DroidBench startActivity1 	 + +
(ICC) startActivity2 	 + +

startActivity3 	 + +
startActivity4 ⊕ ⊕ −
startActivity5 ⊕ − −
startActivity6 − ⊕ −
startActivity7 − ⊕ ⊕
startActivityForResult1 	 + +
startActivityForResult2 	 	 +
startActivityForResult3 	 	 +
startActivityForResult4 	 + +
startService1 n/i + +
startService2 n/i + +
bindService1 n/i + +
bindService2 n/i 	 +
bindService3 n/i 	 +
bindService4 n/i + +
sendBroadcast1 n/i + +
stickyBroadcast1 n/i + +
insert1 	 + +
delete1 	 + +
update1 	 + +
query1 	 + +

(IAC) sendBroadcast1 n/i + n/a
startActivity1 + + n/a
startService1 n/i + n/a

true positive: + (analysis reported an existing leak)
false positive: ⊕ (analysis reported a leak that does not exist)
true negative: − (no leak and no leak reported)
false negative: 	 (analysis misses an existing leak)
not applicable: n/a (intra-app tool on inter-app scenario)
not implemented: n/i (DidFail on services or broadcasts)

181

7.5. EVALUATION

On some apps in the ICC-Bench benchmark set, Sifta failed to report
private-data leaks. In particular, in the test cases Implicit5 and Implicit6,
Sifta reported no flows, while DidFail correctly reported them. The reason
is a limitation of the underlying tool Epicc and of DidFail, which ignores the
faulty Epicc output. In both cases, the flows are enabled by mime types set on
the intent objects in the code (Intent.setDataAndType). Apparently, Epicc does
not handle this function as it does not include the mime type in its output.
Based on this output, Sifta assumes that no mime type is given and the intent
does not match the intent filter in the test case. DidFail does not implement
a test for mime types and therefore correctly reports a flow. Furthermore,
in the test cases DynRegister1 and DynRegister2, intent filters are registered
dynamically and not declared in the manifest file. Epicc does not find such
intent filters, which are therefore not visible to Sifta or DidFail. IccTA
fails to detect the leak in DynRegister2 because the app uses string operations,
which cannot be parsed by IccTA [LBB+15].

DroidBench is a much larger benchmark that tests many possible com-
munication paths. Table 7.2 shows that Sifta reports correct results on 75%
of the test cases. This is much more often than DidFail (43%), but not as
often as IccTA (94%). The test case startActivity4 has an intent that uses
an URI scheme (http:) that is not listed in the test’s intent filter. Therefore,
the intent does not match the filter. Sifta does not test for URI schemes,
because this information is not provided by Epicc and FlowDroid. The tests
startActivity6 and startActivity7 check whether information retrieval from an
intent is handled correctly. In these tests, an intent with private information
is accepted by an intent filter, but instead of the private information, other
information is retrieved from the intent. The information available to Sifta
contains no details on which information is retrieved from an intent. As long
as the intent with private information is accepted and information from that
intent is sent to a public sink, Sifta reports a flow. The bindService test cases
transfer private data via an intent to a service that logs the private data. In the
bindService2 and bindService3, FlowDroid did not report that an intent is
sent, therefore the flow is invisible to Sifta. The tests startActivityForResult2
and 3 failed because Sifta cannot handle some aspects of the return communi-
cation in startActivityForResult intents. We intentionally omitted these aspects
for scalability reasons (see Section 7.5.2). Finally, the inter-app communication
tests (IAC) of DroidBench were all solved correctly by Sifta.

These results demonstrate that our variability-aware tool Sifta produces
more accurate results than DidFail. Yet, it is less accurate than IccTA,
which was to be expected as IccTA, for each test, combines all components
and analyzes them in one run. Sifta has to rely on the necessarily filtered

182

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

information gained in separate per-component analyses, but this is exactly the
lever that enables large-scale inter-app analysis.

Surprisingly, Sifta has some wrong results where DidFail’s results are
correct. This is not caused by Sifta’s graph reduction (which does not influence
the set of reported flows), but by additional matching criteria (for the mime
types, cf. Section 7.4) that we implemented.

Hypothesis discussion The hypothesis of Experiment 1 is that Sifta re-
ports the correct result on most benchmarks. For the IACBench tests, Sifta
is correct in all cases. On some tests of the ICC-Bench and DroidBench
benchmarks, Sifta reports false results. However the majority of results is still
correct (6 of 10 tests and 19 of 26 tests, respectively). Therefore, Experiment 1
confirms our hypothesis, even though IccTA achieves a higher accuracy on
intra-app tests.

7.5.2 Scalability: Experiments 2–4

In this section, we describe our evaluation of how configurable-system strate-
gies influence scalability of inter-app communication analysis. We compared
DidFail, which uses a feature-based and a variant-based strategy but is not
variability-aware, with our variability-aware tool Sifta, which uses the same
feature-based strategy as DidFail and combines it with a family-based strategy
on feature-groups. We assume that a scalability difference between Sifta and
DidFail is mainly caused by the different strategies because Sifta’s imple-
mentation is based on code of DidFail and both tools use the same underlying
tools, programming languages, and input files. To evaluate the scalability of
Sifta and DidFail, we used three sets of real-world apps:8

• Experiment 2 (E2): IccRE is a set of 523 real apps coming with IccTA.
These apps leak private user data through inter-component (and intra-app)
communication [LBB+15].
• Experiment 3 (E3): MalGenome is a set of 1260 real apps published
by the Android Malware Genome Project [ZJ12]. They are known to
be malicious, 51.1% harvest user data, not necessarily using inter-app
communication.
• Experiment 4 (E4): GooglePlaySet is a set of 172 779 apps that
we randomly downloaded from Google Play, covering various categories
and developers. We sought to obtain popular apps that are likely to
communicate (see Section 7.6, for details about the download process).

8 We could not use these apps in the accuracy evaluation (Section 7.5.1) because we don’t
have baseline results on inter-app communication in these app set.

183

7.5. EVALUATION

According to an online statistic on the Google Play Store[App15a], there
were 1 500 411 free apps in the Play Store as of Sept. 16, 2015. Our
GooglePlaySet accounts for over a tenth of these apps, which is a
very large set, compared to related studies.

Hypothesis Our hypotheses for experiments 2, 3, and 4 are (1) that Sifta
has a better scalability than DidFail and (2) that Sifta scales to a large sets
of apps such as our GooglePlaySet.

Methodology and setup In E2, we compared Sifta against DidFail,
however, given DidFail’s scalability limitations, we were not able to use it in
E3 and E4.

We ran E2 on a Ubuntu machine with AMD Opteron 6386 SE @ 2,8 GHz
(32 Cores) and 100GB reserved RAM. Because DidFail and Sifta are both
based on the data-flow information generated by FlowDroid and Epicc, we
ran this pre-analysis separately. First, FlowDroid and Epicc analyzed all
IccRE apps with a timeout of 10 minutes. This pre-analysis generated results
for 324 of the 523 apps because of timeouts and because some apps did not use
inter-app communication. Then, we let DidFail and Sifta build the data-flow
graphs based on this output. For both tools, we measured the time needed
both to generate the graphs and to report detected critical flows. To evaluate
the scalability of DidFail and Sifta, we generated subsets of increasing size
from the IccRE app set. We ran DidFail and Sifta on each subset (without
reusing results from smaller subsets).

For E3 and E4 (MalGenome and GooglePlaySet), given their size, we
switched to a cluster of 17 nodes, each with an Intel Xeon E-5 2690v2 CPU @
3,0GHz (10 cores and 2 hyperthreads per core). We allowed the FlowDroid
and Epicc processes to use up to 6GB RAM and set timeouts at 20 minutes
for each process.

Experiment 2 (IccRE) Figure 7.6 shows the results of the scalability
experiment on IccRE. Even for only five apps, Sifta generates the data-flow
graph faster than DidFail. For larger app sets, the difference between the tools
gets larger (speedup of up to 7620). We stopped the experiment for DidFail
after analyzing the app set with size 100, as the effect was clear.

A closer look at the output of DidFail and Sifta reveals the reason for
this difference in scalability. For the app set with size 100, DidFail generates
a data-flow graph with 1610 nodes and 51 709 edges. Sifta’s graph has only 51
nodes and 96 edges—illustrating the effectiveness our our compressed variability-
aware representation. Even for the largest app set with 324 apps, Sifta’s

184

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

Ti
m

e
fo

r fl
ow

 g
en

er
at

io
n

(s
ec

, l
og

 s
ca

le
)

Number of apps in app set (log scale)

1
10

10
0

1
00

0

5 10 50 100

ᴅɪᴅꜰᴀɪʟ
Sɪꜰᴛᴀ

Figure 7.6: Results for Sifta and DidFail on IccRE. Both axes have a
logarithmic scale.

graph has only 66 nodes. This result shows that there is large potential for
storing inter-app data-flow graphs more compact without losing information.
Our variability-aware approach achieves this compression and enables efficient
analysis of inter-app communication on large app sets.

Experiment 3 (MalGenome) We analyzed the MalGenome benchmark
set only with Sifta (DidFail does not scale to this size). The analysis ran
in two phases: In the first phase, FlowDroid and Epicc ran on each of
the 1260 apps. This phase is computationally very expensive. It took about
50 hours (sum across all cluster cores). This phase failed on 421 of the 1260
apps due to 20-minute timeouts or other errors outside Sifta. In the second
phase, we applied Sifta to generate a global graph of inter-app and intra-app
communication. This generation took only 26 seconds. We had to drop 9
further apps due to parsing errors on the FlowDroid or Epicc output.

The resulting graph contained 283 flows representing 839 apps. 248 flows
are intra-app flows that go directly from a private source to a public sink. These
would also be found by other tools that focus on intra-app communication.
However, we also found 35 flows that involve two or more apps and therefore
cannot be found with intra-app analysis. The maximum number of apps
annotated on an edge is 220 (average is 10), which means that we have a high
degree of sharing in the graph. If we would use a tool like DidFail, which
is not variability aware, it would produce 220 clones of this edge instead of a
single edge. This shows the benefit of our representation even if there are no
inter-app data leaks.

185

7.5. EVALUATION

Experiment 4 (GooglePlaySet) To evaluate the scalability of Sifta
on an even larger app set, we downloaded 172 779 apps from the Google Play
store. We then used Sifta to analyze inter-app communication and to build
the data-flow graph. Next, we report on the time needed to execute Sifta and
on characteristics of the generated graph.

The first phase of Sifta (running FlowDroid and Epicc) was executed
on the AMD Opteron Cluster that we also used for E2. This phase generated
results for 51 935 of the initial 172 779 apps. The others mainly failed due to
FlowDroid timeouts. This phase of the analysis took 1704 days (4.6 years)
in total (sum of the times consumed by cluster nodes). We set a timeout of
20 minutes each for FlowDroid and for Epicc. The rather low yield of
this phase can be explained by the fact that we rely on research tools and
apply them to very diverse set of real-life apps. Although FlowDroid is one
of the most precise tools for data-flow analysis of Android apps [ARF+14],
improving it to an industrial strength is an effort that was not taken yet.

Next, we collected the results generated by the first phase and ran the
second phase of Sifta, to generate the global variability-aware data-flow graph.
We executed this phase on the previously described Intel Xeon workstation,
because it has not been parallelized so far. We first tried running the graph
generation for all apps at once, however the machine’s main memory was not
sufficient. After loading less than half of the apps, the process already used
more than 5.7GB. Instead, we used the incremental, feature-groups–based
graph-generation strategy of Sifta (cf. Section 7.4): We partitioned the results
of the first phase into four sets and generated the graph in four steps, as shown
in Figure 7.7. We generate a graph for each partition of the app set and then
merge these graphs. With this incremental approach, the graph generation
took 12 minutes, and each step used less than 3.5GB RAM. This success of
the incremental strategy demonstrates the advantage of using a family-based
strategy based on feature-groups as opposed to a pure family-based strategy.

Overall, the graph contains 126 205 potential, variational flows from a
private source to a public sink. The graph has 1387 nodes and 5848 edges. The
maximum flow length is 8: 5154 of the flows pass through 8 apps before leaking
private information. The edge’s presence conditions contain an average of 32
(median 3) apps. The maximum of 14 164 apps has an edge that represents
a set of intra-app data flows from Bundle.getBoolean to Bundle.putBoolean. This
makes sense as these very common API methods can be used to read/write
data from/to Bundle objects, which are the payload of intents. Figure 7.8
shows the frequency of presence condition sizes (number of unique apps) in the
graph. It shows that these sizes lie between 10 and 200 apps for many edges.
That is, each of these edges would be repeated 10 to 200 times in a graph that

186

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

Phase 1
(FlowDroid/Epicc)

Phase 2
(Sifta)

AppA

AppB

AppC

AppD

AppE

AppF

. . .

AppN

I-A

I-B

I-C

I-D

I-E

I-F

. . .

I-N

Figure 7.7: Incremental setup for E4. We chose this setup due to memory
limitations when building the graph from all apps at once. In the figure,
partitions consist of two apps only; in our experiment each partition had a
quarter of the 51 935 apps.

does not tap into this sharing potential. For such large app sets, it would be
infeasible to generate and store such a graph without variability awareness.

Discussion Experiment 2 showed that Sifta generates the data-flow graph
faster than DidFail (speedup of up to 7620). Furthermore, Figure 7.6 suggests
that the performance difference between Sifta and DidFail increases with the
number of analyzed apps. This confirms our the first hypothesis (Sifta has a
better scalability than DidFail). We assume that the scalability difference is
due to the variability-aware family-based strategy of Sifta, as this is the main
implementation difference to DidFail.

Our second hypothesis, is that Sifta scales to large app sets such as the
GooglePlaySet. Experiment 4 confirms that Sifta can generate an inter-

187

7.6. THREATS TO VALIDITY

●

●

●

●●
●●

●●
●●

●
●●

●●
●●
●
●
●
●
●
●
●●●
●
●●●

●

●●●
●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●
●
●
●
●
●
●

●

●
●

●●
●

●

●●

●
●

●

●●●●

●
●
●
●

●

●●

●

●

●

●

●●●●●

●●

●

●●

●●

●

●
●
●
●

●
●

●

●●●●

●●
●
●

●

●●

●●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●●

●●●●

●

●

●

●●

●

●●

●

●●

●

●●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ● ●●1
5

5
0

5
0

0

Degree of sharing: number of apps per edge / size of presence conditions (log scale)

F
re

q
u

e
n

c
y
 (

lo
g

 s
c
a

le
)

1 10 100 1 000 10 000

Figure 7.8: Frequencies of presence-condition sizes illustrating the reason for
sharing in inter-app flows. The graph shows how often different numbers of
apps on edges in the graph occur. Both axes have a logarithmic scale.

app data-flow graph involving 51 935 apps in 12 minutes (using a family-based
strategy on groups of apps). Interestingly, a pure family-based strategy does
not scale to the size of this app set. The success of our strategy suggests that
the approach can be applied to even larger app sets (e.g., the whole Google
Play Store) by adding more app groups. The bottleneck for building a graph
of the Play Store would be the composition of the graphs for app groups (last
step in Figure 7.7). This step is not computationally expensive, however the
whole graph is stored in main memory at some point.

7.6 Threats to Validity

External validity The external validity of our evaluation depends on the
choice of (i) the app benchmark sets and on (ii) the tools which we compare
Sifta.

ICC-Bench and DroidBench are established third-party benchmarks
used also in other studies. To evaluate accuracy, we also created IACBench
to include test cases not covered by ICC-Bench and DroidBench, espe-

188

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

cially advanced communication scenarios, such as loops, intent chains, and
recognition of multiple identical intents. IACBench is publicly available at
our supplementary website. To evaluate scalability, we go beyond existing
benchmarks in this area (IccRE with 523 and MalGenome with 1260 apps)
by analyzing 51 935 real-world apps from Google Play.

Empirical studies on real-world apps are commonly prone to the app-
sampling problem [MHJ+15]. In fact, obtaining a truly random sample of
apps of an app store is almost impossible due to the store’s size. However,
this problem does not apply to our evaluation, since we do not aim at such
a representative sample. Instead, we sought to obtain apps that are likely to
communicate. Our strategy was to start with one of the most popular apps,
facebook, to scan its Play store website, and follow links to apps listed under
“similar” and “more from developer”. This process was continued, allowing us
to download apps across various app categories. Yet, the strategy targeted
apps that are likely to communicate, leading to a dataset suitable to evaluate
Sifta’s scalability. The mining script and the list of apps are available on our
supplementary website.

In our accuracy and scalability experiments, we compared Sifta to two
state-of-the-art tools for intra-app (IccTA) and inter-app communication
analysis (DidFail). Further tools exist for intra-app analysis (e.g., Permis-
sionFlow [SBG+13], CHEX [LLW+12]), but we chose the most recent and
mature tool IccTA, focusing specifically on analyzing data flows. Although
IccTA is more precise than Sifta, this limitation is acceptable, given that our
focus is on Sifta’s scalability. Achieving more precision is possible, but requires
significant effort for creating an industry-strength tool. For scalability, our
comparison is limited to DidFail, as the only other tool supporting inter-app
communication.

Internal validity In Sifta, we implemented the matching of intents to
receiving components, which is essentially a re-implementation of the Android
systems’ intent-matching algorithm. For this purpose, we relied on Android’s
documentation. Yet, a threat to validity is that we did not implement all (pos-
sibly undocumented) corner cases of intent matching or that we mis-interpreted
the documentation. However, our results show that Sifta agrees with IccTA
on most ICC benchmark test cases, which indicates proper matching.

In our experiments, we found that FlowDroid reports many false-positive
flows on real apps (experiments 3 and 4). Usually, these arise from private data
being stored in class fields and intents being instantiated in the same class. We
looked at several of these flows manually: The private data are visible to the code
that generates the intent, but is not attached to the intent. FlowDroid reports

189

7.7. RELATED WORK

a flow in these situations. After consulting with a FlowDroid developer,
we implemented a filter that removes such flows from FlowDroid’s output.
For similar reasons, we filter intent results and intents with empty actions.
However, this introduces a threat of removing too many flows. Still, we argue
that missing a few true positives is better than reporting thousands of false-
positive leaks, which would render the analysis useless. We only used this
filtering in experiments 3 and 4, which aimed at scalability anyway.

7.7 Related Work
In this section, we discuss related work that analyzes Android apps and
communication between apps. Our variability-aware data-flow representation
and analysis has various applications in software engineering (build secure apps,
prevent accidental flows) and security analysis (detect private-data leaks or
high-risk apps) [vRBS+15].

Privacy leaks in mobile apps Privacy leaks inside and across mobile apps
have been extensively studied [BR14]. Several researchers argue that the
permission system used in Android is insufficient to prevent tainted data
flows. For instance, permissions are too coarse-grained [NKZ10; OMEM12]
and surprisingly rarely used in practice [OMJ+13] (only 5% of the publicly
accessible components are protected). Furthermore, apps often ask for more
permissions than are actually used [PCH+11], giving rise to accidental leaks.

Enck et al. [EOMC11] studied 1100 popular Android apps, analyzing
their use of libraries and misuse of private information. They found that
apps often access personal information, such as the IMEI number, often com-
bined with account information. Many apps also heavily use of advertisement
libraries [MNA+15], forcing acquisition of many permissions.

Data-flow analysis of Android apps To the best of our knowledge, our
approach is the first to effectively scale inter-app data-flow analysis to large
app sets.

Apart from DidFail, many tools focusing on intra-app communication exist.
Yet, most stop at component boundaries, such as PermissionFlow [SBG+13],
which does not incorporate intents and their flows, or FlowDroid [ARF+14],
which we use for our component analysis. Some tools can track data flows
across components. The most notable intra-app, but inter-component analysis
tools are Amandroid [WROR14] and IccTA [LBB+15]. We explained the
difference between Sifta and IccTA already in Section 7.2. Amandroid
is similar in accuracy to IccTA [LBB+15], and also resolves flows across

190

CHAPTER 7. INTER-APP DATA-FLOW ANALYSIS IN ANDROID
SYSTEMS

components (using its own points-to analysis, where we use Epicc). We
considered Amandroid for our accuracy experiments, but were not able to
execute it. However, Amandroid targets only intra-app analysis (as confirmed
by the developers).

All these tools differ in their accuracy and how they handle the peculiarities
of Android, such as the main Android library and native calls. Our approach
can use different underlying tools, and leverage them to create highly compressed
data-flow graphs effective in identifying tainted data flows.

Finally, dynamic analysis tools such as TaintDroid [EGH+14] track data
flows across applications at run time. While these conceptually provide the
highest accuracy, they are limited by the dynamic analysis, not being able to
confirm the absence of tainted flows. Most importantly, they can only analyze
fixed sets of apps.

191

CHAPTER 8

Concluding Remarks and Future Work

We give a summary of the topics and results of this thesis in Section 8.1.
Subsequently, we summarize our contributions per chapter in Section 8.2 and
discuss their scientific and practical impact in Section 8.3. We conclude with
an outline of ongoing and future research directions in Section 8.4.

8.1 Summary

Configurable systems often have a huge number of variants, which makes
analysis of all variants individually very expensive. In this thesis, we developed
and compared strategies for the efficient analysis of configurable systems.
Our results show that the family-based strategy is often more efficient than
alternative strategies and that it can be improved even further by combining it
with, for example, a variant-based strategy.

The Linux kernel has over 13 165 configuration options [PPB+15], giving
rise to billions of different configurations. As configurable systems are used in
critical applications, such as avionics or operating systems, certain properties,
such as type correctness and other system specifications, need to be ensured
for all variants. In traditional software-system engineering, this is ensured
with program analysis and testing. For configurable systems, such methods
can be directly applied when one analyzes and tests each variant separately
(brute-force, variant-based approach). In the presence of large configuration
spaces, however, this approach does not scale.

193

8.2. CONTRIBUTIONS

For large configurable systems, researchers developed several specialized
analysis strategies: Sampling strategies analyze and test a selected subset of the
system variants. This implies that some defects can be missed, but scalability
is improved. Feature-based strategies perform separate analyses for code that
belongs to different configuration options. This approach, by design, misses
interactions between options, but it avoids the combinatorial complexity of
building system configurations. Family-based strategies combine all variants of
a configurable system into one analysis subject and analyze this subject in one
run. The approach resolves system variability at a late point (in the analysis)
and, therefore, can benefit from commonalities between variants of the system.

thesis goal The goal of this thesis is to enable efficient analysis of highly configurable
software systems. We addressed the question of how program analyses (e.g.,
data-flow analysis and model checking) can be applied to configurable software
systems. To this end, we developed the PLA model for describing analysis
strategies for configurable systems (Chapter 3). The PLA model covers the four
basic analysis strategies (variant-based, sampling, feature-based, and family-
based) and various combinations of them. Based on the model, we discussed
advantages and disadvantages of different combinations of basic strategies.
Furthermore, we took first steps to explore the model by implementing several
analysis strategies and by comparing their performance with each other. Our
evaluations have shown that, depending on the analyzed configurable system
and the type of analysis (e.g., type checking or model checking), choosing
a good analysis strategy is critical for analysis performance. The results of
the family-based and variant-based strategies cover all variants whereas the
results of a sample based strategy are incomplete because only part of the
variants is analyzed. Furthermore, the family-based strategy is often faster
than the sampling and variant-based strategies. However, the analysis can
consume more main memory than the sampling and variant-based strategies. A
family-based analysis backed by a variability-aware data structure can enable
analysis in settings with very large subject systems (Chapter 7). By combining
the family-based and, for example, the variant-based strategy, one can improve
analysis performance even further (Section 6.6).

8.2 Contributions

PLA model In Chapter 3, we introduced the Product-Line Analysis (PLA)
Model. In comparison to a previous model by Thüm et al. [TAK+14], the
PLA model includes more complex combinations of strategies. Furthermore,
we introduced the PLA cube, an illustrative, visual representation of the PLA
model. Each point in the cube represents an analysis strategy for configurable

194

CHAPTER 8. CONCLUDING REMARKS AND FUTURE WORK

systems. The model (and the cube) form the basis for the evaluation of
configurable-system analysis strategies that we began in this thesis. The model
guided our analysis design and helped us to optimize strategies.

Presence-condition simplification Presence conditions are used in many
configurable-system analyses to denote in which configurations certain sit-
uations (e.g., type errors) occur or certain system elements (e.g., function
implementations) are involved. Presence conditions are often more complex
than necessary, for example because presence-condition complexity has not
been considered during analysis development. In Chapter 4, we defined the
problem of presence-condition simplification formally. The key idea is to use
context information (e.g., the variability model) to reduce the size of presence
conditions. As a result, the reduced presence conditions are easier to understand
for users and their usage improves analysis’ performance. We identified three
algorithms, Restrict [CM92], Quine-McCluskey [McC56; Qui52], and
Espresso [BSMH84] that can be used for presence-condition simplification. In
a series of experiments, we evaluated the different algorithms with respect to
their effectiveness, processing time, and their potential in different application
scenarios. In our experiments, we found considerable potential for simplification
of presence conditions in many real use cases (e.g., performance prediction or
defect reporting). Our experiments show that the algorithms are suited well for
simplification and that size reduction factors are usually better with Restrict
than with Quine-McCluskey or Espresso. Concerning scalability, we have
shown that Restrict can handle larger problems than Quine-McCluskey
or Espresso. Resulting from our work, presence-condition simplification has
been integrated already in the analysis tool TypeChef.1

Variability encoding In Chapter 5, we presented variability encoding, an
automatic code transformation of compile-time configurable code into load-time
configurable code. The result of the transformation is a variant simulator, which
includes the functionality of all system variants. We use variant simulators, for
example, in family-based model checking (Chapter 6). We formally defined
variability encoding and proved that generated simulators correctly simulate
the behavior of all variants. Furthermore, we presented a tool, Hercules, that
implements variability encoding for C programs with preprocessor directives.
We evaluated the accuracy of Hercules based on the configurable data-base
management system SQLite and its test suite TH3. Our results show that
Hercules correctly encodes the variability of over 80% of the variants and
tests we executed. This is an impressive result, given the complexity of the

1http://ckaestne.github.io/TypeChef/

195

http://ckaestne.github.io/TypeChef/

8.2. CONTRIBUTIONS

setup and implementation of TH3 and SQLite, which caused many false errors
in our evaluation. Simulators that were generated with variability encoding,
have enabled various family-based analyses [ASW+11; AvRW+13; BLB+15;
KvRE+12; Mei14; SvRA13] in the configurable-systems research.

Family-based model checking We implemented an efficient, family-
based software-model-checking approach for configurable systems by ex-
tending the software model checkers CPAchecker (for C programs) and
Java Pathfinder (for Java programs). Our model-checking approach is
based on isolating presence conditions in states of the reachability graph that
is generated by a model checker. We represent the presence conditions of the
states in binary decision diagrams. This representation allows us to implement
several optimizations that make the model-checking process more efficient for
configurable systems. We implemented this optimization as extensions for
CPAchecker and Java Pathfinder. We described the model-checking
optimization and our implementation in Chapter 6. We demonstrated that the
optimization improves performance in comparison to off-the-shelf versions of
the model checkers.

Utilizing our optimized family-based model-checking approach, we evaluated
and compared the performance of family-based, sample-based, and variant-
based model checking. Our evaluation is partly based on subject systems that
we implemented based on system specifications from other researchers [Hal05;
KMSL83; PR01]. All subject systems are publicly available, and some have
already been used by other researchers [Bey15; BLB+15; Mei14]. Our results
show that family-based model checking reduces verification time by 73%,
compared to variant-based model checking, while delivering the same level of
information on defects of the configurable system. Model checking based on
configuration sampling is faster, but may miss defects.

Our evaluation of family-based model checking shows that it is faster than
variant-based model checking. However, it typically consumes more main
memory because larger programs are verified. To show how this problem can be
mitigated, we explored combinations of family-based and variant-based model
checking strategies (Section 6.6), guided by our PLA model. In a nutshell,
we partitioned the set of variants of a configurable system and verified each
partition in a separate simulator. We evaluated how such analyses perform
in comparison to the pure family-based and pure variant-based strategies.
Our results show that combining basic strategies has potential to reduce the
disadvantages one experiences when using only family-based or variant-based
strategies. Furthermore, it shows the potential of the PLA model for guiding
the development of efficient analysis strategies for configurable systems.

196

CHAPTER 8. CONCLUDING REMARKS AND FUTURE WORK

Inter-application data-flow analysis Private-data leaks on mobile devices
are a growing concern, as more and more consumers use smart phones and
apps get more powerful. In Chapter 7, we described our extension of a tool
that builds a data-flow graph for communication between Android apps. Our
extension is based on the fact that each considered app can be installed or
not (like a feature). In this view, a mobile Android device is a configurable
system. Our main contribution to the tool is a variability-aware data structure
that enables us to scale the graph generation to 51 935 apps, which is much
more than other tools can handle at this time. The generated graph can be
used to detect potentially malicious data flows and give valuable information
for a manual review of the apps that contribute to malicious data flows. In
terms of the PLA model, the tool we extended implements a variant-based
analysis. We modified the tool by integrating a family-based analysis based on
a variability-aware data structure that improves scalability. Furthermore, we
extended the analysis such that it, optionally, uses the family-based strategy
on groups of apps (which corresponds to a combination of the family-based and
feature-based strategies in the PLA model). This combined strategy enabled
us to generate the graph for our set of 51 935 apps on a machine where the
pure family-based strategy failed due to memory limits.

8.3 Impact

We discuss the impact of our work on the research community and on practice
separately.

Impact on research We established a model representing combinations of
basic analysis strategies of configurable systems (Chapter 3). In combination
with other work on configurable-system analysis (e.g., [TAK+14]), the PLA
model provides an overview of advantages and disadvantages of individual
analysis strategies, how strategies are used in practice, and which combinations
of strategies promise good analysis performance. The PLA model is meant to
serve as a common basis for the development of advanced analysis strategies
by the research community.

Presence-condition simplification (Chapter 4) and variability encoding
(Chapter 5) have impact beyond our own research. Presence-condition sim-
plification provides a simple method to improve the output or the internal
data structure of configurable-system analyses. It is already adopted in the
tool TypeChef, which is used for type checking, variability encoding (exten-
sion Hercules), and refactoring (extension Morpheus [LJG+15]) of large
configurable systems (e.g., SQLite and Linux).

197

8.4. FUTURE WORK

Variability encoding provides a relatively simple means for transforming
compile-time variability to run-time variability, which enables many family-
based analyses [AvRW+13; BLB+15; KvRE+12; SvRA13]. Our formal definition
and our proof of behavior preservation increases confidence in the correctness
of variability encoded simulators and suggest their use in analyses.

Our implementations and evaluations of analyses of configurable systems
(Chapters 6, 7, and especially Section 6.6) serve as examples for the exploration
of the PLA cube. Our evaluations helped to broaden the community knowledge
base on analyses of configurable systems. Based on the PLA model, we showed
how different analysis strategies influence analysis performance and how the
model can be explored in future work.

Impact on practice The impact of this thesis on practice is mainly repre-
sented by our tools (Hercules, SPLverifier, and SIFTA) and our evalua-
tions. Even though our tools are research prototypes and do not have industry-
level quality, the corresponding evaluations (Sections 5.1.1, 5.5.2, 6.5 and 7.5)
show that the tools can, in principle, be applied to analyze real-world con-
figurable software systems. These tools could also serve as blueprints for
industry-level re-implementations.

Furthermore, we had contact with a corporate research group at Bosch who
expressed interest in using Hercules for variability encoding of configurable
systems with static variability. In particular, they planned to use variability
encoding for analyses (similar to our experiments in Chapters 5 and 6) and
to enable customers to choose configuration options at load-time without
re-compilation of the system.

8.4 Future Work
Our work lays the foundation for different research directions in the area of
analysis of configurable software systems. In the following paragraphs, we
highlight some promising directions.

PLA-model exploration In this thesis, we developed, evaluated, and com-
pared several analysis strategies and discussed how they are represented in
the PLA model. This work could be extended by a systematic exploration of
additional regions in the PLA cube (similar to our evaluation in Section 6.6).
This would provide further insights on which (combinations of) strategies are
efficient in which application scenarios and for which subject systems. For
example, one could explore the effect of different sampling strategies on a
family-based model-checking approach (range C–D in the PLA cube) with

198

CHAPTER 8. CONCLUDING REMARKS AND FUTURE WORK

different software systems (different in system size, feature size, and number of
features).

Another possible direction is to use models of software (e.g., labelled transi-
tion systems instead of Java/C source code) as subject systems, because at
this level, system differences (e.g., size and variability) are easier to control.
For example, one could use a model checker for labelled transition systems to
extend our evaluation of the family-based strategy on configurable-system par-
titions (range A–D in the PLA cube, Section 6.6). This way, one could explore
partition-based verification in a more controlled setting than it is possible with
software model checking. The goal of such study could be to determine which
properties of partitionings (e.g., similarity of partitions) improve performance
of the partition-based verification approach.

Presence-condition simplification In our work on presence-condition sim-
plification, we identified three algorithms that can be used in practice. However,
these algorithms do not scale for extremely large inputs. For example, when
a scenario requires using the Linux variability model as context, the algo-
rithms do not scale (in Chapter 4, the application scenarios in which we used
Linux did not involve its variability model). It is highly desirable to come
up with algorithms for presence-condition simplification that cover problem
sizes at the scale of the Linux variability model. Furthermore, our evaluation
should be extended to more subject systems and additional application sce-
narios for presence-condition simplification. We consider presence-condition
simplification a very useful tool, which has likely more application scenarios in
configurable-system research than we identified so far.

Variability encoding We have shown that variability encoding and Her-
cules can be applied to code from real-world systems, such as Linux and
SQLite. In future work, Hercules should be applied to other configurable
systems, which could then be verified to that they are safe in all variants. Even
though we have reached a relatively stable development state, new subject
systems will probably lead to discovery of new bugs in our implementation.
Real-world C code can be very complex to analyze and therefore, it would be
much, but rewarding, work to harden Hercules to industry-level or implement
its concepts in a industry-level tool. Furthermore, implementation of variability
encoding for other programming languages, such as C++ or ADA might be
interesting. For example, avionics systems are often implemented in ADA and
need to be verified rigorously [WSA+15], which could be made easier with
variability encoding and family-based verification.

199

8.4. FUTURE WORK

Family-based model checking The extensions for variability-aware, family-
based model checking that we described in Chapter 6 can, in principle, be
combined with other model-checking optimizations. It would be desirable to use
our extension in concert with novel model-checking optimizations to verify large-
scale real-world systems. For example, a recent project [KT14] enabled model
checking on a large number of applications in the debian package-management
system. They automatically extracted source code from the packages and veri-
fied interesting properties, such as valid memory accesses, absence of arithmetic
overflow, or absence of not-a-number in floating point operations. Combining
this automatic approach and family-based model checking on configurable sys-
tems, such as Busybox or SQLite, would potentially discover many valuable,
configuration-dependent defects. Such bugs would be difficult to obtain with
traditional, sample-based verification because they occur only in some variants.

Inter-app communication We showed that our tool Sifta is able to gener-
ate an inter-app communication graph for 51 935 Android applications. Based
on this graph, we implemented a light-weight analysis that reports potential
private-data leaks. However, the graph has more potential: It could be used
for more advanced netwok analysis methods, such as centrality measures and
community detection. These methods can give important insights in the graph
structure (e.g., groups of apps that collaborate) which could be used, for ex-
ample, to organize app stores. Another example would be to compute the
minimum cut of the graph. This cut identifies the minimum number of apps
that must be removed to prevent any data flows from private sources to public
sinks and thereby to prevent leaks of private user data.

200

Bibliography

[ABW14] I. Abal, C. Brabrand, and A. Wąsowski, “42 Variability Bugs in
the Linux Kernel: A Qualitative Study”, in Proceedings of the
International Conference on Automated Software Engineering
(ASE), ACM, 2014, pp. 421–432.

[Ach11] M. Acher, “Managing Multiple Feature Models: Foundations,
Language and Applications”, PhD thesis, Université Nice-Sophia
Antipolis, 2011.

[ALSU06] A. V. Aho, M. S. Lam, R. Sethi, and J. Ullman, Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 2006.

[AMS03] F. A. Aloul, I. L. Markov, and K. A. Sakallah, “FORCE: A
Fast and Easy-to-Implement Variable-Ordering Heuristic”, in
Proceedings of the Great Lakes Symposium on VLSI, ACM, 2003,
pp. 116–119.

[And97] H. R. Andersen, “An Introduction to Binary Decision Diagrams”,
Lecture Notes, available online at http://www.cs.unb.ca/
~gdueck/courses/cs4835/bdd97.pdf, accessed March 3, 2014,
1997.

[AF96] T. W. Anderson and J. D. Finn, The New Statistical Analysis
of Data. Springer-Verlag, 1996.

[Ape10] S. Apel, “How AspectJ is Used: An Analysis of Eleven AspectJ
Programs”, Journal of Object Technology, vol. 9, no. 1, pp. 117–
142, 2010.

201

http://www.cs.unb.ca/~gdueck/courses/cs4835/bdd97.pdf
http://www.cs.unb.ca/~gdueck/courses/cs4835/bdd97.pdf

BIBLIOGRAPHY

[ABKS13] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-
Oriented Software Product Lines – Concepts and Implementation.
Springer-Verlag, 2013.

[ABF+13] S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. von
Rhein, “Domain Types: Abstract-Domain Selection Based on
Variable Usage”, in Proceedings of the Haifa Verification Con-
ference (HVC), Springer-Verlag, 2013, pp. 262–278.

[AH10] S. Apel and D. Hutchins, “A Calculus for Uniform Feature
Composition”, ACM Transactions on Programming Languages
and Systems, vol. 32, no. 5, 19:1–19:33, 2010.

[AKGL10] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Type
Safety for Feature-Oriented Product Lines”, Automated Software
Engineering, vol. 17, no. 3, pp. 251–300, 2010.

[AKL09] S. Apel, C. Kästner, and C. Lengauer, “FeatureHouse:
Language-Independent, Automated Software Composition”, in
Proceedings of the International Conference on Software Engi-
neering (ICSE), IEEE, 2009, pp. 221–231.

[AKL13] S. Apel, C. Kästner, and C. Lengauer, “Language-Independent
and Automated Software Composition: The FeatureHouse
Experience”, IEEE Transactions on Software Engineering, vol.
39, no. 1, pp. 63–79, 2013.

[AL08] S. Apel and C. Lengauer, “Superimposition: A Language-
Independent Approach to Software Composition”, in Proceedings
of the International Symposium on Software Composition (SC),
vol. 4954, Springer-Verlag, 2008, pp. 20–35.

[ALMK10] S. Apel, C. Lengauer, B. Möller, and C. Kästner, “An Algebraic
Foundation for Automatic Feature-Based Program Synthesis”,
Science of Computer Programming, vol. 75, no. 11, pp. 1022–
1047, 2010.

[ASW+11] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer, “De-
tection of Feature Interactions using Feature-Aware Verification”,
in Proceedings of the International Conference on Automated
Software Engineering (ASE), IEEE, 2011, pp. 372–375.

[AvRW+13] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer,
“Strategies for Product-Line Verification: Case Studies and Ex-
periments”, in Proceedings of the International Conference on
Software Engineering (ICSE), IEEE, 2013, pp. 482–491.

202

BIBLIOGRAPHY

[App15a] AppBrain, Free vs. paid Android apps, http://www.appbrain.
com/stats/free- and- paid- android- applications, (ac-
cessed September 17, 2015), 2015.

[App15b] AppBrain, Number of available applications in the Google
Play Store from December 2009 to July 2015, http://www.
statista.com/statistics/266210/number-of-available-
applications - in - the - google - play - store/, (accessed
September 24, 2015), 2015.

[App14] Apple, App Store Sales Top $10 Billion in 2013, http://www.
apple.com/pr/library/2014/01/07App-Store-Sales-Top-
10-Billion-in-2013.html, (accessed October 16, 2015), 2014.

[ARB13] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A Tool for the
Fully Automated Classification and Categorization of Android
Sources and Sinks”, University of Darmstadt, Tech. Rep. TUD-
CS-2013-0114, 2013.

[ARF+14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Pre-
cise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps”, in Proceedings of the Inter-
national Conference on Programming Languages Design and
Implementation (PLDI), ACM, 2014, pp. 259–269.

[AtBFG10] P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi, “A Logi-
cal Framework to Deal with Variability”, in Proceedings of the
International Conference on Integrated Formal Methods (IFM),
Springer-Verlag, 2010, pp. 43–58.

[AtBFG11] P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi, “A Model-
Checking Tool for Families of Services”, in Proceedings of the
Joint International Conference on Formal Techniques for Dis-
tributed Systems (FORTE/FMOODS), Springer-Verlag, 2011,
pp. 44–58.

[BK08] C. Baier and J. Katoen, Principles of Model Checking. MIT
Press, 2008.

[BCR94] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Ques-
tion Metric Approach”, in Encyclopedia of Software Engineering,
Wiley, 1994.

[Bat04] D. Batory, “Feature-Oriented Programming and the AHEAD
Tool Suite”, in Proceedings of the International Conference on
Software Engineering (ICSE), IEEE, 2004, pp. 702–703.

203

http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html
http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html
http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html

BIBLIOGRAPHY

[Ber13] T. Berger, “Variability Modeling in the Real–An Empirical Jour-
ney from Software Product Lines to Software Ecosystems”, PhD
thesis, Universität Leipzig, 2013.

[BPT+14] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki,
A. Wasowski, and S. She, “Variability Mechanisms in Software
Ecosystems”, Information and Software Technology, vol. 56, no.
11, pp. 1520–1535, 2014.

[BSCW10] T. Berger, S. She, K. Czarnecki, and A. Wąsowski, “Feature-
to-Code Mapping in Two Large Product Lines”, Department of
Computer Science, University of Leipzig, Tech. Rep., 2010.

[BSL+10] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. Wąsowski,
“Feature-to-Code Mapping in Two Large Product Lines”, in Pro-
ceedings of the International Software Product Line Conference
(SPLC), ACM, 2010, pp. 498–499.

[BSL+13] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki,
“A Study of Variability Models and Languages in the Systems
Software Domain”, IEEE Transactions on Software Engineering,
vol. 39, no. 12, pp. 1611–1640, 2013.

[BDS13] L. Bettini, F. Damiani, and I. Schaefer, “Compositional Type
Checking of Delta-oriented Software Product Lines”, Acta Infor-
matica, vol. 50, no. 2, pp. 77–122, 2013.

[BW09] D. Beuche and J. Weiland, “Managing Flexibility: Modeling
Binding-Times in Simulink”, in Proceedings of the European
Conference on Model Driven Architecture–Foundations and Ap-
plications (ECMDA-FA), Springer-Verlag, 2009, pp. 289–300.

[Bey15] D. Beyer, “Software Verification and Verifiable Witnesses (Re-
port on SV-COMP 2015)”, in Proceedings of the International
Conference on Tools and Algorithms for the Construction and of
Analysis Systems (TACAS), Springer-Verlag, 2015, pp. 401–416.

[BHTV13] D. Beyer, A. Holzer, M. Tautschnig, and H. Veith, “Information
Reuse for Multi-goal Reachability Analyses”, in Proceedings of
the European Symposium on Programming (ESOP), Springer-
Verlag, 2013, pp. 472–491.

[BK11] D. Beyer and M. Keremoglu, “CPAchecker: A Tool for Config-
urable Software Verification”, in Proceedings of the International
Conference on Computer Aided Verification (CAV), Springer-
Verlag, 2011, pp. 184–190.

204

BIBLIOGRAPHY

[BS13] D. Beyer and A. Stahlbauer, “BDD-Based Software Model Check-
ing with CPAchecker”, in Proceedings of the Doctoral Work-
shop on Mathematical and Engineering Methods in Computer
Science (MEMICS), Springer-Verlag, 2013, pp. 1–11.

[BR14] N. A. Bidani and M. V. Raffay, “A Systematic Literature Re-
view of Mobile Inter-Application Security”, Master’s thesis, IT
University of Copenhagen, 2014.

[BHvMW09] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Hand-
book of Satisfiability, ser. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009, vol. 185.

[BTR+13] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and
M. Mezini, “SPLLIFT – Statically Analyzing Software Product
Lines in Minutes Instead of Years”, in Proceedings of the In-
ternational Conference on Programming Languages Design and
Implementation (PLDI), ACM, 2013, pp. 355–364.

[BRB91] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient imple-
mentation of a BDD package”, in Proceedings of the Design
Automation Conference (DAC), IEEE/ACM, 1991, pp. 40–45.

[BSMH84] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen,
and G. D. Hachtel, Logic Minimization Algorithms for VLSI
Synthesis. Kluwer, 1984.

[Bry92] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered
Binary-Decision Diagrams”, ACM Computing Surveys, vol. 24,
no. 3, pp. 293–318, 1992.

[BU11] D. Buchfuhrer and C. Umans, “The Complexity of Boolean For-
mula Minimization”, Journal of Computer and System Sciences,
vol. 77, no. 1, pp. 142–153, 2011.

[BLB+15] J. Bürdek, M. Lochau, S. Bauregger, A. Holzer, A. von Rhein,
S. Apel, and D. Beyer, “Facilitating Reuse in Multi-goal Test-
Suite Generation for Software Product Lines”, in Proceedings
of the International Conference on Fundamental Approaches to
Software Engineering (FASE), Springer-Verlag, 2015, pp. 84–99.

[BFK+15] J. Burket, L. Flynn, W. Klieber, J. Lim, W. Shen, and W.
Snavely, “Making DidFail Succeed: Enhancing the CERT Static
Taint Analyzer for Android App Sets”, Software Engineering
Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-
2015-TR-001, 2015.

205

BIBLIOGRAPHY

[CCR10] I. Cabral, M. B. Cohen, and G. Rothermel, “Improving the Test-
ing and Testability of Software Product Lines”, in Proceedings
of the International Software Product Line Conference (SPLC),
Springer-Verlag, 2010, pp. 241–255.

[CM06] M. Calder and A. Miller, “Feature Interaction Detection by
Pairwise Analysis of LTL Properties: A Case Study”, Formal
Methods in System Design, vol. 28, no. 3, pp. 213–261, 2006.

[CEW12] S. Chen, M. Erwig, and E. Walkingshaw, “An Error-Tolerant
Type System for Variational Lambda Calculus”, in Proceedings
of the International Conference on Functional Programming
(ICFP), ACM, 2012, pp. 29–40.

[CEW14] S. Chen, M. Erwig, and E. Walkingshaw, “Extending Type
Inference to Variational Programs”, ACM Transactions on Pro-
gramming Languages and Systems, vol. 36, no. 1, 1:1–1:54, 2014.

[CPGW11] E. Chin, A. Porter Felt, K. Greenwood, and D. Wagner, “Analyz-
ing Inter-application Communication in Android”, in Proceedings
of the International Conference on Mobile Systems, Applications,
and Services (MobiSys), ACM, 2011, pp. 239–252.

[CGJ+03] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-Guided Abstraction Refinement for Symbolic
Model Checking”, Journal of the ACM, vol. 50, no. 5, pp. 752–
794, 2003.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
Press, 1999.

[CKNZ12] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model
Checking and the State Explosion Problem”, in Tools for Prac-
tical Software Verification, Springer-Verlag, 2012, pp. 1–30.

[CKL04] E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking
ANSI-C Programs”, in Proceedings of the International Con-
ference on Tools and Algorithms for the Construction and of
Analysis Systems (TACAS), Springer-Verlag, 2004, pp. 168–176.

[Cla11] A. Classen, “Modelling and Model Checking Variability-Intensive
Systems”, PhD thesis, University of Namur, Belgium, 2011.

[CCH+11] A. Classen, M. Cordy, P. Heymans, P.-Y. Schobbens, and A.
Legay, “SNIP: An Efficient Model Checker for Software Product
Lines”, PReCISE Research Center, University of Namur, Tech.
Rep. P-CS-TR SPLMC-00000003, 2011.

206

BIBLIOGRAPHY

[CCS+13] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay,
and J.-F. Raskin, “Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and their Applica-
tion to LTL Model Checking”, IEEE Transactions on Software
Engineering, vol. 39, no. 8, pp. 1069–1089, 2013.

[CHSL11] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Sym-
bolic Model Checking of Software Product Lines”, in Proceedings
of the International Conference on Software Engineering (ICSE),
ACM, 2011, pp. 321–330.

[CHS+10] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin, “Model Checking Lots of Systems: Efficient Verification
of Temporal Properties in Software Product Lines”, in Proceed-
ings of the International Conference on Software Engineering
(ICSE), ACM, 2010, pp. 335–344.

[CN01] P. Clements and L. M. Northrop, Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2001.

[CDS07] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction Testing of
Highly-configurable Systems in the Presence of Constraints”, in
Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA), ACM, 2007, pp. 129–139.

[CKM12] J. Corbet, G. Kroah-Hartman, and A. McPherson, Linux Kernel
Development, http://go.linuxfoundation.org/who-writes-linux-
2012, 2012.

[CCP+12] M. Cordy, A. Classen, G. Perrouin, P.-Y. Schobbens, P. Hey-
mans, and A. Legay, “Simulation-Based Abstractions for Soft-
ware Product-Line Model Checking”, in Proceedings of the In-
ternational Conference on Software Engineering (ICSE), ACM,
2012, pp. 672–682.

[CHL+14] M. Cordy, P. Heymans, A. Legay, P.-Y. Schobbens, B. Dawagne,
and M. Leucker, “Counterexample guided abstraction refinement
of product-line behavioural models”, in Proceedings of the In-
ternational Symposium on Foundations of Software Engineering
(FSE), ACM, 2014, pp. 190–201.

[CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, In-
troduction to Algorithms. McGraw-Hill Higher Education, 2001.

207

BIBLIOGRAPHY

[CBM90] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Syn-
chronous Sequential Machines Based on Symbolic Execution”, in
Proceedings of the International Workshop on Automatic Verifi-
cation Methods for Finite State Systems, Springer-Verlag, 1990,
pp. 365–373.

[CM92] O. Coudert and J. C. Madre, “Implicit and Incremental Compu-
tation of Primes and Essential Primes of Boolean Functions”, in
Proceedings of the Design Automation Conference, IEEE, 1992,
pp. 36–39.

[CS02] O. Coudert and T. Sasao, “Two-level Logic Minimization”, in
Logic Synthesis and Verification, Kluwer, 2002, pp. 1–27.

[CE00] K. Czarnecki and U. Eisenecker, Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, 2000.

[CW07] K. Czarnecki and A. Wąsowski, “Feature Diagrams and Logics:
There and Back Again”, in Proceedings of the International
Software Product Line Conference (SPLC), IEEE, 2007, pp. 23–
34.

[DAg99] M. D’Agostino, “Tableau Methods for Classical Propositional
Logic”, in Handbook of Tableau Methods, Springer-Verlag, 1999,
pp. 45–123.

[DLvL15] C. Damas, B. Lambeau, and A. van Lamsweerde, “Generating
Process Models in Multi-View Environments”, in Dependable
Software Systems Engineering, ser. NATO Science for Peace and
Security Series - D: Information and Communication Security,
IOS Press, 2015, pp. 105–127.

[DM02] A. Darwiche and P. Marquis, “A Knowledge Compilation Map”,
Artificial Intelligence Research, vol. 17, pp. 229–264, 2002.

[Dav58] M. Davis, Computability and Unsolvability. Dover Publications,
1958.

[dNV90] R. de Nicola and F. Vaandrager, “Action Versus State Based
Logics for Transition Systems”, in Proceedings of the LITP Spring
School on Theoretical Computer Science on Semantics of Systems
of Concurrent Processes, Springer-Verlag, 1990, pp. 407–419.

[DCB09] B. Delaware, W. R. Cook, and D. Batory, “Fitting the Pieces
Together: A Machine-Checked Model of Safe Composition”, in
Proceedings of the International Symposium on Foundations of
Software Engineering (FSE), ACM, 2009, pp. 243–252.

208

BIBLIOGRAPHY

[DB12] S. Dienst and T. Berger, Static Analysis of App Dependencies in
Android Bytecode, Tech. note, available at http://informatik.
uni-leipzig.de/~berger/tr/2012-dienst.pdf, 2012.

[DTSL12] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D.
Lohmann, “A Robust Approach for Variability Extraction from
the Linux Build System”, in Proceedings of the International
Software Product Line Conference (SPLC), ACM, 2012, pp. 21–
30.

[Dom12] A. L. Dominguez, “Detection of Feature Interactions in Automo-
tive Active Safety Features”, PhD thesis, University of Waterloo,
2012.

[DBT11] F. Dordowsky, R. Bridges, and H. Tschope, “Implementing a
Software Product Line for a Complex Avionics System”, in Pro-
ceedings of the International Software Product Line Conference
(SPLC), IEEE, 2011, pp. 241–250.

[DH09] F. Dordowsky and W. Hipp, “Adopting Software Product Line
Principles to Manage Software Variants in a Complex Avionics
System”, in Proceedings of the International Software Product
Line Conference (SPLC), Carnegie Mellon University, 2009,
pp. 265–274.

[DKB14] C. Dubslaff, S. Klüppelholz, and C. Baier, “Probabilistic Model
Checking for Energy Analysis in Software Product Lines”, in Pro-
ceedings of the International Conference on Modularity (MOD-
ULARITY), ACM, 2014, pp. 169–180.

[EGH+14] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L. Cox, J.
Jung, P. McDaniel, and A. Sheth, “TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on
Smartphones”, Transactions on Computer Systems, vol. 32, no.
2, 5:1–5:29, 2014.

[EOMC11] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study
of Android Application Security”, in Proceedings of the USENIX
Annual Technical Conference (USENIX ATC), USENIX Associ-
ation, 2011, pp. 21–21.

[EW11] M. Erwig and E. Walkingshaw, “The Choice Calculus: A Repre-
sentation for Software Variation”, ACM Transactions on Software
Engineering and Methodology, vol. 21, no. 1, pp. 1–27, 2011.

209

http://informatik.uni-leipzig.de/~berger/tr/2012-dienst.pdf
http://informatik.uni-leipzig.de/~berger/tr/2012-dienst.pdf

BIBLIOGRAPHY

[EP05] S. Evangelista and J.-F. Pradat-Peyre, “Memory Efficient State
Space Storage in Explicit Software Model Checking”, in Proceed-
ings of the International SPIN Workshop, Springer-Verlag, 2005,
pp. 43–57.

[FG07] A. Fantechi and S. Gnesi, “A Behavioural Model for Product
Families”, in Proceedings of the European Software Engineering
Conference and the International Symposium on the Founda-
tions of Software Engineering (ESEC/FSE): Companion Papers,
ACM, 2007, pp. 521–524.

[FKA+13] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R.
Dachselt, M. Papendieck, T. Leich, and G. Saake, “Do back-
ground colors improve program comprehension in the #ifdef
hell?”, Empirical Software Engineering, vol. 18, no. 4, pp. 699–
745, 2013.

[FMJJ92] J.-C. Fernandez, L. Mounier, C. Jard, and T. Jéron, “On-the-fly
Verification of Finite Transition Systems”, Formal Methods in
System Design, vol. 1, no. 2-3, pp. 251–273, 1992.

[FUB06] D. Fischbein, S. Uchitel, and V. Braberman, “A Foundation for
Behavioural Conformance in Software Product Line Architec-
tures”, in Proceedings of the Workshop on the Role of Software
Architecture for Testing and Analysis (ROSATEA), ACM, 2006,
pp. 39–48.

[GP12] S. Gnesi and M. Petrocchi, “Towards an Executable Algebra
for Product Lines”, in Proceedings of the International Software
Product Line Conference (SPLC), ACM, 2012, pp. 66–73.

[Gru10] A. Gruler, “A Formal Approach to Software Product Lines”,
PhD thesis, Technical University of Munich, 2010.

[GLS08] A. Gruler, M. Leucker, and K. Scheidemann, “Modeling and
Model Checking Software Product Lines”, in Proceedings of the
International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS), Springer-Verlag, 2008,
pp. 113–131.

[GPFW97] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, “Algorithms for
the Satisfiability (SAT) Problem: A Survey”, in DIMACS Series
in Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, 1997, pp. 19–152.

210

BIBLIOGRAPHY

[HCF05] V. Haldar, D. Chandra, and M. Franz, “Dynamic Taint Propaga-
tion for Java”, in Proceedings of the Annual Computer Security
Applications Conference (ACSAC), IEEE, 2005, pp. 303–311.

[Hal05] R. J. Hall, “Fundamental nonmodularity in electronic mail”,
Automated Software Engineering, vol. 12, no. 1, pp. 41–79, 2005.

[Hal77] M. H. Halstead, Elements of Software Science (Operating and
Programming Systems Series). Elsevier, 1977.

[Har88] N. Hardy, “The Confused Deputy (or Why Capabilities Might
Have Been Invented)”, ACM Operating Systems Review, vol. 22,
no. 4, pp. 36–38, 1988.

[HS11] E. Hemaspaandra and H. Schnoor, “Minimization for General-
ized Boolean Formulas”, in International Joint Conference on
Artificial Intelligence (IJCAI), AAAI, 2011, pp. 566–571.

[HJMS02] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy
Abstraction”, in Proceedings of the International Symposium on
Principles of Programming Languages (POPL), vol. 37, ACM,
2002, pp. 58–70.

[Hey12] P. Heymans, “Formal Methods for the Masses”, in Proceedings
of the International Software Product Line Conference (SPLC),
ACM, 2012, p. 4.

[Hol97] G. J. Holzmann, “State Compression in SPIN: Recursive In-
dexing And Compression Training Runs”, in Proceedings of the
International SPIN Workshop, 1997.

[HD05] J. Huang and A. Darwiche, “On Compiling System Models
for Faster and More Scalable Diagnosis”, in Proceedings of the
Conference on Artificial Intelligence (AAAI), MIT Press, 2005,
pp. 300–306.

[JWEG07] P. Jayaraman, J. Whittle, A. M. Elkhodary, and H. Gomaa,
“Model Composition in Product Lines and Feature Interaction
Detection Using Critical Pair Analysis”, in Proceedings of the
International Conference on Model-Driven Engineering, Lan-
guages, and Systems (MODELS), Springer-Verlag, 2007, pp. 151–
165.

[JM09] R. Jhala and R. Majumdar, “Software Model Checking”, ACM
Computing Surveys, vol. 41, no. 4, 21:1–21:54, 2009.

211

BIBLIOGRAPHY

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) Feasibility
Study”, Carnegie Mellon University, Tech. Rep. CMU/SEI-90-
TR-21, 1990.

[Kap12] T. Kapus, “Specifying System Families with TLA+”, in Proceed-
ings of the International Conference on Software Engineering,
Parallel and Distributed Systems, and Proceedings of the Inter-
national Conference on Engineering Education (WSEAS), World
Scientific, Engineering Academy, and Society, 2012, pp. 98–103.

[KAK09] C. Kästner, S. Apel, and M. Kuhlemann, “A Model of Refactoring
Physically and Virtually Separated Features”, in Proceedings of
the International Conference on Generative Programming and
Component Engineering (GPCE), ACM, 2009, pp. 157–166.

[KAK08] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in Soft-
ware Product Lines”, in Proceedings of the International Con-
ference on Software Engineering (ICSE), ACM, 2008, pp. 311–
320.

[KATS12] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type Checking
Annotation-Based Product Lines”, ACM Transactions on Soft-
ware Engineering and Methodology, vol. 21, no. 3, 14:1–14:39,
2012.

[KGR+11] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Oster-
mann, and T. Berger, “Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation”, in Proceedings
of the International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), ACM,
2011, pp. 805–824.

[KOE12] C. Kästner, K. Ostermann, and S. Erdweg, “A Variability-Aware
Module System”, in Proceedings of the International Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), ACM, 2012, pp. 773–792.

[KvRE+12] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Ren-
del, and K. Ostermann, “Toward Variability-Aware Testing”, in
Proceedings of the International Workshop on Feature-Oriented
Software Development (FOSD), ACM, 2012, pp. 1–8.

212

BIBLIOGRAPHY

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. V. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Programming”,
in Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Springer-Verlag, 1997, pp. 220–242.

[KKB12] C. Kim, S. Khurshid, and D. Batory, “Shared Execution for
Efficiently Testing Product Lines”, in Proceedings of the Interna-
tional Symposium on Software Reliability Engineering (ISSRE),
IEEE, 2012, pp. 221–230.

[KFB+14] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “An-
droid Taint Flow Analysis for App Sets”, in Proceedings of the
International Workshop on the State of the Art in Java Program
Analysis (SOAP), ACM, 2014, pp. 1–6.

[KMMR00] M. Kolberg, E. Magill, D. Marples, and S. Reiff-Marganiec, “Re-
sults of the Second Feature Interaction Contest”, in Proceedings
of the Workshop on Feature Interactions in Telecommunications
and Software Systems (ICFI), IOS Press, 2000, pp. 311–325.

[KvRHA13] S. Kolesnikov, A. von Rhein, C. Hunsen, and S. Apel, “A Com-
parison of Product-based, Feature-based, and Family-based
Type Checking”, in Proceedings of the International Conference
on Generative Programming: Concepts & Experience (GPCE),
ACM, 2013, pp. 115–124.

[KV07] B. Korte and J. Vygen, Combinatorial Optimization: Theory
and Algorithms. Springer-Verlag, 2007.

[KMSL83] J. Kramer, J. Magee, M. Sloman, and A. Lister, “CONIC: An
Integrated Approach to Distributed Computer Control Systems”,
Computers and Digital Techniques, vol. 130, no. 1, pp. 1–10, 1983.

[KT14] D. Kroening and M. Tautschnig, “Automating Software Analysis
at Large Scale”, in Proceedings of the Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science
(MEMICS), Springer-Verlag, 2014, pp. 30–39.

[KBA09] M. Kuhlemann, D. Batory, and S. Apel, “Refactoring Feature
Modules”, in Proceedings of the International Conference on
Software Reuse (ICSR), Springer-Verlag, 2009, pp. 106–115.

[LTP09] K. Lauenroth, S. Toehning, and K. Pohl, “Model Checking of
Domain Artifacts in Product Line Engineering”, in Proceedings of
the International Conference on Automated Software Engineering
(ASE), IEEE, 2009, pp. 269–280.

213

BIBLIOGRAPHY

[LT98] Y. Lei and K.-C. Tai, “In-Parameter-Order: A Test Generation
Strategy for Pairwise Testing”, in Prodceedings of the Inter-
national Symposium on High-Assurance Systems Engineering
(HASE), IEEE, 1998, pp. 254–261.

[LKF02a] H. Li, S. Krishnamurthi, and K. Fisler, “Interfaces for modular
feature verification”, in Proceedings of the International Confer-
ence on Automated Software Engineering (ASE), IEEE, 2002,
pp. 195–204.

[LKF05] H. Li, S. Krishnamurthi, and K. Fisler, “Modular Verification of
Open Features Using Three-Valued Model Checking”, Automated
Software Engineering, vol. 12, no. 3, pp. 349–382, 2005.

[LKF02b] H. Li, S. Krishnamurthi, and K. Fisler, “Verifying Cross-cutting
Features as Open Systems”, in Proceedings of the International
Conference on Software Engineering (ICSE), ACM, 2002, pp. 89–
98.

[LBB+15] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA:
Detecting Inter-Component Privacy Leaks in Android Apps”, in
Proceedings of the International Conference on Software Engi-
neering (ICSE), IEEE, 2015, pp. 280–292.

[Lib05] P. Liberatore, “Redundancy in Logic I: CNF Propositional For-
mulae”, Artificial Intelligence Research, vol. 163, no. 2, pp. 203–
232, 2005.

[Lie15] J. Liebig, “Analysis and Transformation of Configurable Sys-
tems”, PhD thesis, University of Passau, Germany, 2015.

[LAL+10] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An
Analysis of the Variability in Forty Preprocessor-Based Software
Product Lines”, in Proceedings of the International Conference
on Software Engineering (ICSE), ACM, 2010, pp. 105–114.

[LALL09] J. Liebig, S. Apel, C. Lengauer, and T. Leich, “RobbyDBMS: A
Case Study on Hardware/Software Product Line Engineering”, in
Proceedings of the International Workshop on Feature-Oriented
Software Development (FOSD), ACM, 2009, pp. 63–68.

[LJG+15] J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer, “Mor-
pheus: Variability-Aware Refactoring in the Wild”, in Proceedings
of the International Conference on Software Engineering (ICSE),
IEEE, 2015, pp. 380–391.

214

BIBLIOGRAPHY

[LKA11] J. Liebig, C. Kästner, and S. Apel, “Analyzing the Discipline
of Preprocessor Annotations in 30 Million Lines of C Code”, in
Proceedings of the International Conference on Aspect-Oriented
Software Development (AOSD), ACM, 2011, pp. 191–202.

[LvRK+13] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and
C. Lengauer, “Scalable Analysis of Variable Software”, in Pro-
ceedings of the European Software Engineering Conference and
the International Symposium on the Foundations of Software
Engineering (ESEC/FSE), ACM, 2013, pp. 81–91.

[LBL11] J. Liu, S. Basu, and R. Lutz, “Compositional Model Checking
of Software Product Lines using Variation Point Obligations”,
Automated Software Engineering, vol. 18, no. 1, pp. 39–76, 2011.

[Loc12] M. Lochau, “Model-Based Conformance Testing of Software
Product Lines”, PhD thesis, TU Braunschweig, 2012.

[LOGS12] M. Lochau, S. Oster, U. Goltz, and A. Schürr, “Model-based
pairwise testing for feature interaction coverage in software
product line engineering”, Software Quality Journal, vol. 20, no.
3–4, pp. 567–604, 2012.

[LB01] R. Lopez-Herrejon and D. Batory, “A standard problem for
evaluating product-line methodologies”, in Proceedings of the
International Conference on Generative and Component-Based
Software Engineering (GCSE), Springer-Verlag, 2001, pp. 10–24.

[LLW+12] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically
Vetting Android Apps for Component Hijacking Vulnerabilities”,
in Proceedings of the Conference on Computer and Communica-
tions Security (CCS), ACM, 2012, pp. 229–240.

[MHJ+15] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The
App Sampling Problem for App Store Mining”, in Proceedings of
the Conference on Mining Software Repositories (MSR), IEEE,
2015, pp. 123–133.

[McC56] E. J. McCluskey, “Minimization of Boolean functions”, Bell
System Technical Journal, vol. 35, no. 5, pp. 1417–1444, 1956.

[Mei14] J. Meinicke, “VarexJ: A Variability-Aware Interpreter for Java
Applications”, Master’s thesis, University of Magdeburg, 2014.

[Men09] M. Mendonça, “Efficient Reasoning Techniques for Large Scale
Feature Models”, PhD thesis, University of Waterloo, 2009.

215

BIBLIOGRAPHY

[MBC09] M. Mendonça, M. Branco, and D. Cowan, “S.P.L.O.T.: Software
Product Lines Online Tools”, in Proceedings of the Interna-
tional Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), ACM, 2009, pp. 761–
762.

[MWC09] M. Mendonça, A. Wąsowski, and K. Czarnecki, “SAT-based
Analysis of Feature Models is Easy”, in Proceedings of the Inter-
national Software Product Line Conference (SPLC), SEI, 2009,
pp. 231–240.

[MWCC08] M. Mendonça, A. Wąsowski, K. Czarnecki, and D. Cowan, “Effi-
cient Compilation Techniques for Large Scale Feature Models”,
in Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), ACM, 2008,
pp. 13–22.

[MBW14] J. Midtgaard, C. Brabrand, and A. Wąsowski, “Systematic
Derivation of Static Analyses for Software Product Lines”, in Pro-
ceedings of the International Conference on Modularity (MOD-
ULARITY), ACM, 2014, pp. 181–192.

[MRKN13] J.-V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane,
“Compositional Verification of Software Product Lines”, in Pro-
ceedings of the International Conference on Integrated Formal
Methods (IFM), Springer-Verlag, 2013, pp. 109–123.

[Mil99] R. Milner, Communicating and Mobile Systems: The Pi-Calculus.
Cambridge University Press, 1999.

[MAN+14] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger,
and A. E. Hassan, “A Large Scale Empirical Study on Software
Reuse in Mobile Apps”, IEEE Software, vol. 31, no. 2, pp. 78–86,
2014.

[MNA+15] I. J. Mojica, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. E. Hassan, “On Ad Library Updates in Android Apps”, IEEE
Software, 2015, preprint, accepted for publication.

[MS04] G. J. Myers and C. Sandler, The Art of Software Testing. John
Wiley & Sons, 2004.

[NH13] S. Nadi and R. Holt, “The Linux Kernel: A Case Study of Build
System Variability”, Journal of Software: Evolution and Process,
2013.

216

BIBLIOGRAPHY

[NKZ10] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime
Constraints”, in Proceedings of the Symposium on Information,
Computer, and Communications Security (ASIACCS), ACM,
2010, pp. 328–332.

[NR69] P. Naur and B. Randell, Eds., Software Engineering: Report
of a Conference Sponsored by the NATO Science Committee,
Retrieved November 12, 2014, from http://homepages.cs.
ncl.ac.uk/brian.randell/NATO/nato1968.PDF, Scientific
Affairs Division, NATO, 1969.

[NL11] C. Nie and H. Leung, “A Survey of Combinatorial Testing”, ACM
Computing Surveys, vol. 43, no. 2, 11:1–11:29, 2011.

[OMJ+13] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. Le Traon, “Effective Inter-Component Communication
Mapping in Android with Epicc: An essential Step Towards Holis-
tic Security Analysis”, in Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), USENIX Association,
2013, pp. 543–558.

[Oec03] P. Oechslin, “Making a Faster Cryptanalytic Time-Memory
Trade-Off”, in Proceedings of the International Cryptology Con-
ference (CRYPTO), Springer-Verlag, 2003, pp. 617–630.

[OSC+14] G. Ofenbeck, R. Steinmann, V. C. Cabezas, D. Spampinato, and
M. Püschel, “Applying the Roofline Model”, in Proceedings of
the IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), IEEE, 2014, pp. 76–85.

[OMEM12] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Seman-
tically Rich Application-centric Security in Android”, Security
and Communication Networks (SCN), vol. 5, no. 6, pp. 658–673,
2012.

[OMR10] S. Oster, F. Markert, and P. Ritter, “Automated Incremental
Pairwise Testing of Software Product Lines”, in Proceedings of
the International Software Product Line Conference (SPLC),
Springer-Verlag, 2010, pp. 196–210.

[PNX+11] L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarnecki,
and A. Wąsowski, “A Study of Non-Boolean Constraints in a
Variability Model of an Embedded Operating System”, in Pro-
ceedings of the International Software Product Line Conference
(SPLC), ACM, 2011, pp. 1–8.

217

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

BIBLIOGRAPHY

[PPB+15] L. Passos, J. Padilla, T. Berger, S. Apel, K. Czarnecki, and
M. T. Valente, “Feature Scattering in the Large: A Longitudinal
Study of Linux Kernel Device Drivers”, in Proceedings of the In-
ternational Conference on Modularity (MODULARITY), ACM,
2015, pp. 81–92.

[POS+12] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. L.
Traon, “Pairwise Testing for Software Product Lines: Comparison
of Two Approaches”, Software Quality Journal, vol. 20, no. 3–4,
pp. 605–643, 2012.

[PSK+10] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon,
“Automated and Scalable T-wise Test Case Generation Strategies
for Software Product Lines”, in Proceedings of the International
Conference on Software Testing, Verification and Validation
(ICST), IEEE, 2010, pp. 459–468.

[Pie02] B. C. Pierce, Types and Programming Languages. MIT Press,
2002.

[PR01] M. Plath and M. Ryan, “Feature Integration using a Feature
Construct”, Science of Computer Programming, vol. 41, no. 1,
pp. 53–84, 2001.

[PR98] M. Plath and M. Ryan, “Plug-and-Play Features”, in Proceedings
of the Workshop on Feature Interactions in Telecommunications
and Software Systems (ICFI), IOS Press, 1998, pp. 150–164.

[PCH+11] A. Porter Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android Permissions Demystified”, in Proceedings of the Confer-
ence on Computer and Communications Security (CCS), ACM,
2011, pp. 627–638.

[PWM+11] A. Porter Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission Re-delegation: Attacks and Defenses”, in Proceedings
of the USENIX Annual Technical Conference (USENIX ATC),
USENIX Association, 2011, pp. 22–22.

[PS08] H. Post and C. Sinz, “Configuration Lifting: Verification meets
Software Configuration”, in Proceedings of the International
Conference on Automated Software Engineering (ASE), IEEE,
2008, pp. 347–350.

[Qui52] W. V. Quine, The Problem of Simplifying Truth Functions.
Mathematical Association of America, 1952.

[RP06] P. Rechenberg and G. Pomberger, Informatik-Handbuch. Carl
Hanser Verlag, 2006.

218

BIBLIOGRAPHY

[RHS95] T. Reps, S. Horwitz, and M. Sagiv, “Precise Interprocedural
Dataflow Analysis via Graph Reachability”, in Proceedings of
the International Symposium on Principles of Programming
Languages (POPL), ACM, 1995, pp. 49–61.

[DO-178B] RTCA DO-178B Software Considerations in Airborne Sys-
tems and Equipment Certification. RTCA/EUROCAE Std. ED-
12B/DO-178B, 1992.

[SBG+13] D. Sbîrlea, M. G. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar,
“Automatic detection of inter-application permission leaks in
Android applications”, IBM Research and Development, vol. 57,
no. 6, 10:1–10:12, 2013.

[SH11] I. Schaefer and R. Hähnle, “Formal Methods in Software Product
Line Engineering”, IEEE Computer, vol. 44, no. 2, pp. 82–85,
2011.

[SLB+11] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki,
“Reverse Engineering Feature Models”, in Proceedings of the
International Conference on Software Engineering (ICSE), IEEE,
2011, pp. 461–470.

[SKK+12] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake, “Predicting Performance via
Automated Feature-Interaction Detection”, in Proceedings of
the International Conference on Software Engineering (ICSE),
IEEE, 2012, pp. 167–177.

[SRK+13] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S.
Apel, and S. Kolesnikov, “Scalable Prediction of Non-functional
Properties in Software Product Lines: Footprint and Memory
Consumption”, Information and Software Technology, vol. 55,
no. 3, pp. 491–507, 2013.

[SvRA13] N. Siegmund, A. von Rhein, and S. Apel, “Family-Based Per-
formance Measurement”, in Proceedings of the International
Conference on Generative Programming: Concepts & Experience
(GPCE), ACM, 2013, pp. 95–104.

[SSSS07] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O.
Spinczyk, “Is The Linux Kernel a Software Product Line?”,
in Proceedings of the International Workshop on Open Source
Software and Product Lines (SPLC-OSSPL), 2007.

[Som10] I. Sommerville, Software Engineering. USA: Addison-Wesley,
2010.

219

BIBLIOGRAPHY

[Sub05] S. Subbarayan, “Integrating CSP Decomposition Techniques and
BDDs for Compiling Configuration Problems”, in Proceedings
of the International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Opti-
mization Problems (CPAIOR), Springer-Verlag, 2005, pp. 351–
365.

[Tar13] R. Tartler, “Mastering Variability Challenges in Linux and
Related Highly-Configurable System Software”, PhD thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg, 2013.

[TDS+14] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann, “Static Analysis of Variability in System Software:
The 90,000 #ifdefs Issue”, in Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), USENIX Association,
2014, pp. 421–432.

[TLD+11] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero,
“Configuration Coverage in the Analysis of Large-scale System
Software”, ACM Operating Systems Review, vol. 45, no. 3, pp. 10–
14, 2011.

[tBdV14] M. H. ter Beek and E. P. de Vink, “Using mCRL2 for the Analysis
of Software Product Lines”, in Proceedings of the Workshop on
Formal Methods in Software Engineering (FormaliSE), ACM,
2014, pp. 31–37.

[tBFG14] M. H. ter Beek, A. Fantechi, and S. Gnesi, “Challenges in Mod-
elling and Analyzing Quantitative Aspects of Bike-Sharing Sys-
tems”, in Proceedings of the International Symposium on Leverag-
ing Applications of Formal Methods, Verification, and Validation
(ISOLA), Springer-Verlag, 2014, pp. 351–367.

[tBFGM15] M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, “Using
FMC for Family-Based Analysis of Software Product Lines”, in
Proceedings of the International Software Product Line Confer-
ence (SPLC), ACM, 2015, pp. 432–439.

[tBGM15] M. H. ter Beek, S. Gnesi, and F. Mazzanti, “From EU Projects
to a Family of Model Checkers - From Kandinsky to KandISTI”,
in Software, Services, and Systems - Essays Dedicated to Martin
Wirsing on the Occasion of His Retirement from the Chair of
Programming and Software Engineering, Springer-Verlag, 2015,
pp. 312–328.

220

BIBLIOGRAPHY

[tBM14] M. H. ter Beek and F. Mazzanti, “VMC: Recent Advances and
Challenges Ahead”, in Proceedings of the International Software
Product Line Conference (SPLC), ACM, 2014, pp. 70–77.

[TAK+14] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A
Classification and Survey of Analysis Strategies for Software
Product Lines”, ACM Computing Surveys, vol. 47, no. 1, 6:1–
6:45, 2014.

[TBK09] T. Thüm, D. Batory, and C. Kästner, “Reasoning About Edits to
Feature Models”, in Proceedings of the International Conference
on Software Engineering (ICSE), IEEE, 2009, pp. 254–264.

[TMB+14] T. Thüm, J. Meinicke, F. Benduhn, M. Hentschel, A. von Rhein,
and G. Saake, “Potential Synergies of Theorem Proving and
Model Checking for Software Product Lines”, in Proceedings of
the International Software Product Line Conference (SPLC),
ACM, 2014, pp. 177–186.

[TSAH12] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel, “Family-Based
Deductive Verification of Software Product Lines”, in Proceedings
of the International Conference on Generative Programming and
Component Engineering (GPCE), ACM, 2012, pp. 11–20.

[TDP03] O. Tkachuk, M. B. Dwyer, and C. S. Pǎsǎreanu, “Automated
Environment Generation for Software Model Checking”, in Pro-
ceedings of the International Conference on Automated Software
Engineering (ASE), Elsevier, 2003, pp. 116–129.

[TCO00] P. Toft, D. Coleman, and J. Ohta, “A Cooperative Model for
Cross-divisional Product Development for a Software Product
Line”, in Proceedings of the International Software Product Line
Conference (SPLC), Kluwer, 2000, pp. 111–132.

[vLSR07] F. J. van der Linden, K. Schmid, and E. Rommes, Software
Product Lines in Action. Springer-Verlag, 2007.

[vLS79] A. van Lamsweerde and M. Sintzoff, “Formal Derivation of
Strongly Correct Concurrent Programs”, Acta Informatica, vol.
12, no. 1, pp. 1–31, 1979.

[VGN14] N. Viennot, E. Garcia, and J. Nieh, “A Measurement Study of
Google Play”, in Proceedings of the International Conference on
Measurement and Modeling of Computer Systems (SIGMET-
RICS), ACM, 2014, pp. 221–233.

221

BIBLIOGRAPHY

[VHB+03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
Checking Programs”, Proceedings of the International Confer-
ence on Automated Software Engineering (ASE), vol. 10, no. 2,
pp. 203–232, 2003.

[vRAK+13] A. von Rhein, S. Apel, C. Kästner, T. Thüm, and I. Schaefer,
“The PLA Model: On the Combination of Product-Line Analy-
ses”, in Proceedings of the International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), ACM, 2013,
pp. 73–80.

[vRAR11] A. von Rhein, S. Apel, and F. Raimondi, “Introducing Bi-
nary Decision Diagrams in the Explicit-State Verification of
Java Code”, http://www.infosun.fim.uni- passau.de/
cl/publications/docs/JPF2011.pdf, presented at the Java
Pathfinder Workshop, 2011.

[vRBS+15] A. von Rhein, T. Berger, N. Schalck Johansson, M. Mark Hardø,
and S. Apel, “Lifting Inter-App Data-Flow Analysis to Large
App Sets”, Department of Computer Science and Mathematics,
University of Passau, Tech. Rep. MIP-1504, Sep. 2015.

[vRGA+15] A. von Rhein, A. Grebhahn, S. Apel, N. Siegmund, D. Beyer, and
T. Berger, “Presence-Condition Simplification in Highly Config-
urable Systems”, in Proceedings of the International Conference
on Software Engineering (ICSE), IEEE, 2015.

[vRTS+16] A. von Rhein, T. Thüm, I. Schaefer, J. Liebig, and S. Apel, “Vari-
ability Encoding: From Compile-Time to Load-Time Variability”,
Journal of Logical and Algebraic Methods in Programming, vol.
85, no. 1, pp. 125–145, 2016.

[WCO04] L. Wall, T. Christiansen, and J. Orwant, Programming Perl: 3rd
Edition. O’Reilly, 2004.

[WROR14] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A Precise
and General Inter-component Data Flow Analysis Framework
for Security Vetting of Android Apps”, in Proceedings of the
Conference on Computer and Communications Security (CCS),
ACM, 2014, pp. 1329–1341.

[WSA+15] A. Wölfl, N. Siegmund, S. Apel, H. Kosch, J. Krautlager, and
G. Weber-Urbina, “Generating Qualifiable Avionics Software:
An Experience Report”, in Proceedings of the International Con-
ference on Automated Software Engineering (ASE), preprint,
accepted for publication, IEEE, 2015,

222

http://www.infosun.fim.uni-passau.de/cl/publications/docs/JPF2011.pdf
http://www.infosun.fim.uni-passau.de/cl/publications/docs/JPF2011.pdf

BIBLIOGRAPHY

[ZJ12] Y. Zhou and X. Jiang, “Dissecting Android Malware: Charac-
terization and Evolution”, in Proceedings of the Symposium on
Security and Privacy (SSP), IEEE, 2012, pp. 95–109.

223

CHAPTER 9

Appendix

Pseudocode of the Restrict Algorithm

In Chapter 4, we used the Restrict algorithm [CM92] for presence condition
simplification (simpBDD). In the original publication of the algorithm, it is
described only in prose and, therefore, we decided to provide the pseudocode
here. Algorithm 9.1 shows our implementation of the Restrict algorithm,
enhanced with a cache to achieve polynomial run-time complexity (also sug-
gested in the original publication [CM92]). The implementation is equivalent
to a pseudocode implementation in a set of lecture notes on binary decision
diagrams [And97]. In the evaluation (Section 4.4) we actually used the native
Restrict implementation from the JavaBDD library for efficiency reasons.
The pseudocode presentation of Restrict uses some functions that are com-
monly used in publications about BDDs. We introduce these functions in the
following paragraph.

An expression f stored in a BDD has the structure (x ∧ fx) ∨ (¬x ∧ f¬x)
where x is a single Boolean variable. fx and f¬x are expressions that are implied
by x and ¬x, respectively. fx and f¬x are again stored in BDD form unless
they are tautologies (true) or contraditions (false). We denote an expression
stored in a BDD with ite(x, fx, f¬x). The BDD for the expression in Figure 2.8b
on page 30 is ite(c, fc, f¬c) = (c ∧ fc) ∨ (¬c ∧ f¬c) where fc and f¬c are again
BDDs. We denote the “top” variable of a given BDD f with var(f) (c in
the example). When comparing variables, we follow the variable ordering
(c < s < b in the example). The sub-trees of expression f are denoted with

224

CHAPTER 9. APPENDIX

Algorithm 9.1: Restrict (simpBDD)

Data: BDD p, BDD m, Table Cache
Result: BDD c

1 if Cache(p,m) 6= NIL then return Cache(p,m)
2 else
3 if p = false then r ← false
4 else if m = false ∨m = true then r ← m
5 else if p = true then
6 r ← ite((var(m), low(u),Restrict(p, high(m))))
7 else if var(p) = var(m) then
8 if low(p) = false then r ← Restrict(high(p), high(m))
9 else if high(p) = false then

10 r ← Restrict(low(p), low(m))
11 else
12 r ← ite(var(p),Restrict(low(p), low(m)),
13 Restrict(high(p),high(m)))

14 end
15 else if var(p) < var(m) then
16 r ← ite(var(p),Restrict(low(p),m),Restrict(high(p),m))
17 else
18 r ← ite(var(m),Restrict(p, low(m)),Restrict(p, high(m)))
19 end
20 Cache(p,m)← r
21 return r
22 end

high(f) and low(f). An expression f that is stored in a BDD can be denoted
with ite(var(f), high(f), low(f)).

The Restrict algorithm (simpBDD in Chapter 4) takes two expressions:
p (the presence condition) and m (the context) represented as BDDs and
generates a third BDD x = Restrict(p,m), that satisfies the invariant of
Equation 4.1 on page 64 [CBM90].

Restrict traverses BDDs p and m in parallel and builds the result BDD p′

with p′ = Restrict(p,m). Based on local comparisons of p and m, Restrict
is either called recursively on sub-problems or the recursion is terminated. To
achieve polynomial run-time complexity, we added a cache that stores already
computed results for sub-problems. For further details, we refer to the original
publication [CBM90].

Like many other BDD operations, Restrict is a polynomial-time graph ma-
nipulation algorithm (when caching is used). As said before, in the worst case,
the size of the graph may be exponential in the number of the variables, which
also renders the algorithm exponential in the number of variables. In our experi-
ence, BDDs were usually much smaller, but we have no hard evidence on this.

225

●
●

● ●
● ● ● ● ● ● ● ●

●

● ●
● ●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

0 10 20 30 40 50

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Size of simplification problems

T
im

e
 f
o

r
B

D
D

 l
o

a
d

in
g

 (
m

s
)

●
● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
● ●

●
●

●
● ●

●
●

●
●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

30 million nodes
15 million nodes
5 million nodes
1 million nodes

Figure 9.1: Times for simplification-task loading with different numbers of
initial nodes in the BDD library (based on Experiment 5 4.4). The plot is
truncated at 2000ms to show more details. The distances between the truncated
points are similar to the shown points (but some are at 10 000ms).

Reducing the Startup Time of the
simpBDD Algorithm

One of the results of our evaluation of presence-condition simplification is that
the simpBDD algorithm has a significantly higher startup time compared to
simpE and simpQC . We did further experiments to investigate the cause for
this. In particular, we investigated how the initial number of nodes in the BDD
library influences the startup time. A BDD library organizes many BDDs in
a shared graph-based data structure. Upon initialization of the BDD library
the user has to specify an initial number of nodes and a number of nodes that
is used for re-organization (as a cache). In earlier experiments with BDDs
(see Section 6.5) we experienced that re-organization can consume a significant
amount of time. Therefore we set the initial number of nodes rather high to
avoid re-organization and its influence on the measured run time.

In the experiment of Chapter 4, we set the initial number of nodes to 30
million.1 To investigate the startup time, we repeated Experiment 5 (Section 4.4)

1We also tried larger values but got out-of-memory errors due to the experiment’s limitation
to 4GB RAM.

226

CHAPTER 9. APPENDIX

with 1 million, 5 million, 15 million, and 30 million initial nodes. Simplification
of a presence condition with simpBDD is done in three phases: (1) the presence
condition and the context are parsed from a file, (2) the presence condition
is simplified, and (3) the simplified condition is written to a file. The BDD
library is initialized in the first phase. Figure 9.1 shows the time consumed by
the first phase with different numbers of initial nodes. In each call of simpBDD
the times for the simplification and result writing phases were below 2ms and
10ms, respectively.

The results from our experiment show that the initial number of nodes in the
BDD library influences the costs for startup of the simpBDD algorithm. Fewer
nodes mean that the BDD library has to reserve and initialize less memory and
the presence condition and context are loaded faster. The results also show
that the time for the simplification can be neglected. This makes sense as in
BDDs, the main work is done during loading of the presence condition and
the context in BDDs (many AND and OR operations). Once this is done, the
simplification operation has a computational cost en par with AND and OR.

This experiment shows that simpBDD could be optimized for a simplification
task by initializing the BDD library with an initial number of nodes that is
just enough to accomondate the condition and context. However, it is difficult
to estimate the number of necessary nodes precisely.

Verifying Bugs of the Variability Bug Database

To illustrate the practical use of our tool Hercules, we inspected real-world
bugs from the Variability Bug Database. The database contains known
bugs from different real-world systems. Each listed bug is related to configura-
tion options and only causes bug behavior in certain configurations. We looked
at the 43 bugs that are listed for the Linux kernel. For each bug, the database
contains a description and simplified code that can be used to reproduce the
bug.

We used the bugs to illustrate an application of Hercules, namely program
verification with model checking. We used Hercules to encode the variability
in the bug’s source code in a variant simulator. Then, we used the model
checking tool CPAchecker to verify the simulator. If both tools perform as
expected, the model checker finds the bug and reports it’s presence condition
(cf. Chapter 6). The reported presence condition should be the same as the
condition given in the bug description. We focus on CPAchecker as a model
checking tool because it is able to report the bug’s presence condition using
our extension described in Section 6.2. Competing model checkers such as
CBMC [CKL04] cannot do this out-of-the-box.

227

For each bug, we evaluated whether we can apply model checking in the
first place, and whether CPAchecker is able to find the bug. We evaluated
the bugs based on 3 criteria:
• The bugs must require at least two configuration options to be enabled or

disabled. In code with only one configuration option, variability encoding
is often trivial.
• The bugs must be executable, otherwise CPAchecker cannot verify the

code. This excludes bugs that are based on type- and syntax errors.
• The bugs must not require precise modelling of the heap or of system
functions. We used two model checking configurations implemented in
CPAchecker, valueAnalysis and predicateAnalysis. Both configurations
do not support precise modelling of the heap or of system functions.

Figure 9.1 shows the results of our evaluation. We filtered most bugs based
on the three criteria. For some bugs we had to limit variability which render
the bug uninteresting. For example, in bug 657e964, we had to enable one
(of two) options because of syntax errors. Several other bugs were rejected
because CPAchecker was unable to detect the bug even in the variant
(without variability). The bugs rely on pointer which are passed between
several functions (often the pointers refer to uninitialized memory). The
CPAchecker configurations that we used do not implement pointer tracking
in most situations.

In the end, we found three bugs in which the tool chain of Hercules and
CPAchecker is applicable and reports the bug with the expected presence
condition. This evaluation shows that Hercules can be used on real-world
programs and that the tool chain can be used to detect real-world variability-
dependent bugs.

228

CHAPTER 9. APPENDIX
T
ab

le
9.
1:

O
ve
rv
ie
w

of
th
e

L
in

u
x
bu

gs
in

th
e
V
ar
ia
bi
lit
y
B
ug

D
at
ab

as
e.

E
ac
h
bu

g
de
sc
ri
pt
io
n
ca
n
be

ac
ce
ss
ed

at
ht

tp
:/

/v
bd

b.
it

u.
dk

/#
bu

g/
li

nu
x/

<B
ug

ID
>
w
he
re

<B
ug

ID
>
is

su
bs
ti
tu
te
d
w
it
h
th
e
ID

of
th
e
bu

g.

B
u
g
ID

T
y
p
e

R
es
u
lt

R
ea
so
n

60
e2
33
a

b
u
ff
er

ov
er
fl
ow

N
ot

tr
ie
d

F
ir
st

d
eg
re
e
in
te
ra
ct
io
n

f3
d
83
e2

b
u
ff
er

ov
er
fl
ow

N
ot

tr
ie
d

E
ve
ry

li
n
e
of

co
d
e
h
as

th
e
er
ro
r
p
re
se
n
ce

co
n
d
it
io
n
;
va
ri
ab

il
it
y
en
co
d
in
g
tr
iv
ia
l

8c
82
96
2

b
u
ff
er

ov
er
fl
ow

N
ot

tr
ie
d

U
sa
ge

of
m
al
lo
c
es
se
n
ti
al

fo
r
b
u
g;

w
ou

ld
b
e
ig
n
or
ed

b
y

C
P
A

ch
ec

k
er

80
9e
66
0

d
ea
d
co
d
e

N
ot

tr
ie
d

D
ea
d
co
d
e;

n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

d
7e
97
11

d
ou

b
le

lo
ck

N
ot

tr
ie
d

F
ir
st

d
eg
re
e
in
te
ra
ct
io
n

ae
24
9b

5
as
se
rt
io
n
v
io
la
ti
on

F
ai
l

D
ep

en
d
s
on

fu
n
ct
io
n
m
em

se
t
an

d
m
em

or
y
h
an

d
li
n
g.

C
P
A

ch
ec

k
er

ig
n
or
es

th
is
.

09
88
c4
c

as
se
rt
io
n
v
io
la
ti
on

N
ot

tr
ie
d

F
ir
st

d
eg
re
e
in
te
ra
ct
io
n

65
7e
96
4

as
se
rt
io
n
v
io
la
ti
on

H
er

cu
le

s
an

d
C

P
A

ch
ec

k
er

ok
,
n
ot

in
te
re
st
in
g

H
ad

to
fi
x
on

e
(o
f
tw

o)
op

ti
on

b
ef
or
e

H
er

cu
le

s
ru
n
d
u
e
to

co
m
p
il
e
er
ro
r

d
54
9f
55

as
se
rt
io
n
v
io
la
ti
on

H
er

c
u
le

s
an

d
C

P
A

c
h
ec

k
er

o
k

63
87
8a
c

as
se
rt
io
n
v
io
la
ti
on

H
er

c
u
le

s
an

d
C

P
A

c
h
ec

k
er

o
k

e1
fb
d
92

in
co
m
p
at
ib
le

ty
p
e

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

d
6c
7e
11

in
co
m
p
at
ib
le

ty
p
e

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

c7
08
c5
7

in
d
ex

ou
t
of

b
ou

n
d
s

N
ot

tr
ie
d

R
eq
u
ir
es

p
oi
n
te
r
ar
it
h
m
et
ic

an
d
m
em

or
y
m
o
d
el
li
n
g
(a
rr
ay

b
ou

n
d
s)

21
8a
d
12

m
em

or
y
le
ak

N
ot

tr
ie
d

A
rr
ay
-O

u
t-
O
f-
B
ou

n
d
s;

n
ot

ch
ec
ke
d
b
y

C
P
A

ch
ec

k
er

e6
8b

b
91

m
u
lt
ip
le

d
efi

n
it
io
n
s

N
ot

tr
ie
d

F
u
n
ct
io
n
d
efi

n
ed

m
u
lt
ip
le

ti
m
es
;
T
y
p
e
er
ro
r,

n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

0d
c7
7b

6
n
ot

en
ou

gh
m
em

or
y

N
ot

tr
ie
d

M
em

or
y
al
lo
ca
ti
on

;
er
ro
rs

ca
n
n
ot

b
e
fo
u
n
d
w
it
h
ou

t
m
em

or
y
m
o
d
el
li
n
g

1f
75
8a
4

n
ot

en
ou

gh
m
em

or
y

N
ot

tr
ie
d

M
em

or
y
al
lo
ca
ti
on

;
er
ro
rs

ca
n
n
ot

b
e
fo
u
n
d
w
it
h
ou

t
m
em

or
y
m
o
d
el
li
n
g

62
52
54
7

n
u
ll
d
er
ef
er
en
ce

N
ot

tr
ie
d

P
oi
n
te
r
tr
ac
k
in
g
n
ec
es
sa
ry

76
b
ae
eb

n
u
ll
d
er
ef
er
en
ce

N
ot

tr
ie
d

P
oi
n
te
r
tr
ac
k
in
g
n
ec
es
sa
ry

ee
3f
34
e

n
u
ll
d
er
ef
er
en
ce

N
ot

tr
ie
d

P
oi
n
te
r
tr
ac
k
in
g
n
ec
es
sa
ry

f7
ab

9b
4

n
u
ll
d
er
ef
er
en
ce

F
ai
l

C
P
A

ch
ec

k
er

re
p
or
ts

to
o
m
an

y
in
fe
as
ib
le

p
at
h
s

51
fd
36
f

n
u
m
er
ic

tr
u
n
ca
ti
on

N
ot

tr
ie
d

P
ro
b
le
m

is
co
n
ve
rs
io
n
b
et
w
ee
n
64
-b
it

in
t
an

d
32
-b
it

in
t.

C
P
A

ch
ec

k
er

ig
n
or
es

th
is
.

0f
8f
80
9

ou
t
of

b
ou

n
d
s
re
ad

N
ot

tr
ie
d

P
oi
n
te
r
tr
ac
k
in
g
n
ec
es
sa
ry

91
ea
82
0

ou
t
of

b
ou

n
d
s
re
ad

N
ot

tr
ie
d

D
ep

en
d
s
on

fu
n
ct
io
n
m
em

se
t
an

d
m
em

or
y
h
an

d
li
n
g.

C
P
A

ch
ec

k
er

ig
n
or
es

th
is
.

47
2a
47
4

sy
sf
s
ap

i
v
io
la
ti
on

H
er

cu
le

s
an

d
C

P
A

ch
ec

k
er

ok
,
b
u
t
n
ot

in
te
re
st
in
g

H
ad

to
fi
x
on

e
(o
f
tw

o)
op

ti
on

(x
86
)
b
ef
or
e

H
er

cu
le

s
ru
n
d
u
e
to

co
m
p
il
e
er
ro
r

f4
8e
c1
d

u
n
d
ec
la
re
d
id
en
ti
fi
er

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

66
51
79
1

u
n
d
ec
la
re
d
id
en
ti
fi
er

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

65
15
e4
8

u
n
d
efi

n
ed

sy
m
b
ol

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

7c
60
48
b

u
n
d
efi

n
ed

sy
m
b
ol

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

2f
02
c1
5

u
n
d
efi

n
ed

sy
m
b
ol

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

24
2f
1a
3

u
n
d
efi

n
ed

sy
m
b
ol

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

30
e0
53
2

u
n
in
it
ia
li
ze
d
va
ri
ab

le
F
ai
l

P
oi
n
te
r
tr
ac
k
in
g
n
ec
es
sa
ry
;
eff

ec
ti
ve
ly

on
ly

on
e
co
n
fi
gu

ra
ti
on

op
ti
on

in
co
d
e

b
c8
ce
c0

u
n
in
it
ia
li
ze
d
va
ri
ab

le
N
ot

tr
ie
d

F
ir
st

d
eg
re
e
in
te
ra
ct
io
n

e3
93
63
a

u
n
in
it
ia
li
ze
d
va
ri
ab

le
H

er
c
u
le

s
an

d
C

P
A

c
h
ec

k
er

o
k

In
se
rt
ed

co
d
e
fo
r
va
ri
ab

le
in
it
ia
li
za
ti
on

an
d
(l
at
er
)
ch
ec
k
if
va
lu
e
w
as

ov
er
w
ri
tt
en

7a
cf
6c
d

u
n
in
it
ia
li
ze
d
va
ri
ab

le
N
ot

tr
ie
d

P
oi
n
te
r
tr
ac
k
in
g
n
ec
es
sa
ry

1c
17
e4
d

u
n
in
it
ia
li
ze
d
va
ri
ab

le
F
ai
l

P
oi
n
te
r
tr
ac
k
in
g
n
ec
es
sa
ry

36
85
5d

c
u
n
u
se
d
va
ri
ab

le
N
ot

tr
ie
d

U
n
u
se
d
va
ri
ab

le
;
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g

6e
2b

75
7

u
se

af
te
r
fr
ee

N
ot

tr
ie
d

M
em

or
y
al
lo
ca
ti
on

an
d
m
em

or
y
co
p
y
in
g;

n
ot

h
an

d
le
d
in

C
P
A

ch
ec

k
er

d
53
0d

b
0

vo
id

p
oi
n
te
r
d
er
ef
er
en
ce

N
ot

tr
ie
d

D
er
ef
er
en
ce

of
vo

id
p
oi
n
te
r;

b
u
g
is

al
re
ad

y
d
et
ec
te
d
b
y
th
e
co
m
p
il
er

20
8d

89
8

as
se
rt
io
n
v
io
la
ti
on

N
ot

tr
ie
d

F
ir
st

d
eg
re
e
in
te
ra
ct
io
n

eb
91
f1
d

as
se
rt
io
n
v
io
la
ti
on

N
ot

tr
ie
d

E
rr
or

ca
u
se
d
b
y
m
em

or
y
al
lo
ca
ti
on

;
n
ot

h
an

d
le
d
in

C
P
A

ch
ec

k
er

22
1a
c3
2

w
ri
te

on
re
ad

on
ly

F
ai
l

R
ea
d
p
ro
te
ct
ed

m
em

or
y
;
n
ot

h
an

d
le
d
in

C
P
A

ch
ec

k
er

e6
7b

c5
1

w
ro
n
g
n
u
m
b
er

of
fu
n
ct
io
n
ar
g.

N
ot

tr
ie
d

T
y
p
e
er
ro
rs
,
n
ot

in
te
re
st
in
g
fo
r
m
o
d
el

ch
ec
k
in
g;

F
ir
st

d
eg
re
e
in
te
ra
ct
io
n

229

http://vbdb.itu.dk/#bug/linux/60e233a
http://vbdb.itu.dk/#bug/linux/f3d83e2
http://vbdb.itu.dk/#bug/linux/8c82962
http://vbdb.itu.dk/#bug/linux/809e660
http://vbdb.itu.dk/#bug/linux/d7e9711
http://vbdb.itu.dk/#bug/linux/ae249b5
http://vbdb.itu.dk/#bug/linux/0988c4c
http://vbdb.itu.dk/#bug/linux/657e964
http://vbdb.itu.dk/#bug/linux/d549f55
http://vbdb.itu.dk/#bug/linux/63878ac
http://vbdb.itu.dk/#bug/linux/e1fbd92
http://vbdb.itu.dk/#bug/linux/d6c7e11
http://vbdb.itu.dk/#bug/linux/c708c57
http://vbdb.itu.dk/#bug/linux/218ad12
http://vbdb.itu.dk/#bug/linux/e68bb91
http://vbdb.itu.dk/#bug/linux/0dc77b6
http://vbdb.itu.dk/#bug/linux/1f758a4
http://vbdb.itu.dk/#bug/linux/6252547
http://vbdb.itu.dk/#bug/linux/76baeeb
http://vbdb.itu.dk/#bug/linux/ee3f34e
http://vbdb.itu.dk/#bug/linux/f7ab9b4
http://vbdb.itu.dk/#bug/linux/51fd36f
http://vbdb.itu.dk/#bug/linux/0f8f809
http://vbdb.itu.dk/#bug/linux/91ea820
http://vbdb.itu.dk/#bug/linux/472a474
http://vbdb.itu.dk/#bug/linux/f48ec1d
http://vbdb.itu.dk/#bug/linux/6651791
http://vbdb.itu.dk/#bug/linux/6515e48
http://vbdb.itu.dk/#bug/linux/7c6048b
http://vbdb.itu.dk/#bug/linux/2f02c15
http://vbdb.itu.dk/#bug/linux/242f1a3
http://vbdb.itu.dk/#bug/linux/30e0532
http://vbdb.itu.dk/#bug/linux/bc8cec0
http://vbdb.itu.dk/#bug/linux/e39363a
http://vbdb.itu.dk/#bug/linux/7acf6cd
http://vbdb.itu.dk/#bug/linux/1c17e4d
http://vbdb.itu.dk/#bug/linux/36855dc
http://vbdb.itu.dk/#bug/linux/6e2b757
http://vbdb.itu.dk/#bug/linux/d530db0
http://vbdb.itu.dk/#bug/linux/208d898
http://vbdb.itu.dk/#bug/linux/eb91f1d
http://vbdb.itu.dk/#bug/linux/221ac32
http://vbdb.itu.dk/#bug/linux/e67bc51

	Introduction
	Problem and Motivation
	Contributions
	Research Methodology
	Outline

	Background
	Configurable Software Systems
	Terms and Running Example
	Binding Times
	Implementation Mechanisms
	Examples of Configurable Systems

	Software Analysis
	Type Checking
	Testing
	Software Model Checking
	Taint Propagation

	Configurable-Systems Analysis
	Computational Problems in Variability-aware Analysis
	Variant-based Strategy
	Sample-based Strategy
	Feature-based Strategy
	Family-based Strategy
	Combined Strategies

	The Product-Line–Analysis Model
	The PLA Cube
	Formal Definition of the PLA Model
	Categorizing Existing Analyses
	Related Work
	Summary and Outlook

	Presence-Condition Simplification
	Application Scenarios
	Reporting Analysis Results
	Simplification of Variability Annotations
	Variability-Model Generation

	Problem Formalization
	Algorithms
	Evaluation
	Subject Systems and Experiments
	Experiment Setup
	Results
	Threats to Validity

	Related Work

	Variability Encoding
	Description and Use Case
	A Practical Application Scenario
	The Need for a Formal Correctness Proof

	A Formal Model of Variability Encoding
	Featherweight Java (FJ)
	Colored Featherweight Java (CFJ)
	Featherweight Simulation Java (FJsim)
	Generation of Variants and Variant Simulators

	Behavior Preservation
	A Trace Semantics for FJsim Programs
	Proof of Behavior Preservation

	Variability Encoding Beyond Featherweight Java
	Experience with Variability Encoding
	Variability Encoding in Java
	Variability Encoding in C

	Related Work

	Family-based Model Checking
	Explicit-State Model Checking of Variant Simulators
	Variability-aware Model Checking of Variant Simulators
	Presence Conditions
	Path Joining
	Variability Pruning
	Incorporating the Variability Model

	Implementation
	Evaluation of Variability-aware Model-Checking Extensions
	Evaluation of Family-based Model Checking
	Subject Systems
	Behavior Specification
	Sampling Approaches
	Experiment Setup
	Results
	Discussion
	Threats to Validity

	Combining Family-based and Variant-based Model Checking
	Analysis Strategy
	Generating Partitionings for the Evaluation
	Evaluation

	Related Work

	Inter-App Data-Flow Analysis in Android Systems
	Motivation and Scenario
	Background
	Android Apps and the Intent Mechanism
	Intra-App, Inter-Component Communication
	Inter-App Communication
	Limitations of Existing Tools

	Representing Inter-App Data Flows
	Design Considerations
	DidFail's Representation
	Variability-aware Representation

	Implementation
	Evaluation
	Accuracy: Experiment 1
	Scalability: Experiments 2–4

	Threats to Validity
	Related Work

	Concluding Remarks and Future Work
	Summary
	Contributions
	Impact
	Future Work

	Appendix

