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40 Years of Designing Code Comprehension Experiments:

A Systematic Mapping Study
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The relevance of code comprehension in a developer’s daily work was recognized more than 40 years ago.

Consequently, many experiments were conducted to find out how developers could be supported during

code comprehension and which code characteristics contribute to better comprehension. Today, such studies

are more common than ever. While this is great for advancing the field, the number of publications makes it

difficult to keep an overview. Additionally, designing rigorous code comprehension experiments with human

participants is a challenging task, and the multitude of design options can make it difficult for researchers,

especially newcomers to the field, to select a suitable design.

We therefore conducted a systematic mapping study of 95 source code comprehension experiments

published between 1979 and 2019. By structuring the design characteristics of code comprehension studies,

we provide a basis for subsequent discussion of the huge diversity of design options in the face of a lack of

basic research on their consequences and comparability. We describe what topics have been studied, as well

as how these studies have been designed, conducted, and reported. Frequently chosen design options and

deficiencies are pointed out to support researchers of all levels of domain expertise in designing their own

studies.
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1 INTRODUCTION

Developers spend a lot of time understanding source code, i.e., finding meaning behind individual
lines of code, to be able to work with it. Estimates of the average working time invested in source
code comprehension range from 30 to 70% [30, 70]. Accordingly, there is great motivation among
researchers to optimize this process through scientific research. This effort can be seen in the
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establishment of the International Conference on Program Comprehension (ICPC),1 which
celebrated its 30th anniversary in 2022.

While some researchers investigate how source code can be written more comprehensibly,
others analyze which contextual factors and individual characteristics influence code compre-
hension. However, this is not as simple as it may sound: Designing code comprehension studies
with human participants is hard. Even though some recommendations exist, they are largely a
collection of arguments and considerations based on personal experience [13] or refer on a more
abstract level to guidelines for general research methods like controlled experiments [23, 66].

As a result, every researcher currently designs, conducts, and reports their code comprehension
study quite differently. For example, the differences in design begin with the concrete tasks given
to the participants in a study, i.e., whether they only need to read code, fix a bug, or even extend the
code. Differences continue with the way in which the success of code comprehension is quantified,
e.g., via the time required to solve a task, correctness in comprehension questions, subjective self-
assessments by the participants, or psycho-physiological measurements [34].

We consider a certain diversity in study designs to be essential in good scientific practice, as
complex research questions should be approached from different angles. Currently, however, this
leads to two major issues: First, it creates uncertainty when designing a new study, as it is not
clear from the multitude of code comprehension studies what the majority of the program com-
prehension community currently agrees on as valid study designs [50, 53]. This makes it especially
difficult for novice researchers to get familiar with this field. Second, different study results are dif-
ficult to compare, let alone to incorporate into meta-analyses, in which study results are to be
synthesized [27, 65].

To address these issues, we present a systematic mapping study (SMS) that reveals the
state-of-the-art in the design of code comprehension studies, and thus serves as a proxy for
what the community currently considers acceptable study designs. This analysis helps to reduce
uncertainty if researchers simply follow the major tendencies among existing peer-reviewed
studies on a certain topic when designing a code comprehension experiment. Furthermore, our
SMS discusses shortcomings in existing study designs and suggests ways to improve the state-of-
the-art in the design and reporting of code comprehension studies. This should also make it easier
to compare different studies in the future. The contributions of our work are therefore as follows:

— A synthesis of differences and similarities in more than 15 study design characteristics of
bottom-up code comprehension experiments, including an analysis of the research topics
studied and the threats to validity discussed.

— A discussion of recurring issues in the design and reporting of code comprehension exper-
iments, focusing on common design difficulties and those circumstances that make it hard
to compare different studies. This discussion results in concrete proposals for improving the
design and reporting of code comprehension experiments with human participants.

— A publicly available dataset with a comprehensive list of 95 studies published between
1979 and 2019 that measured bottom-up code comprehension with human participants. The
dataset includes extracted design characteristics for each study.

With a vast landscape of information ahead, here is a quick roadmap to guide you through the
article: Section 2 discusses what we mean by source code comprehension, describes a concrete
example of a code comprehension experiment, and presents related work. Section 3 explains our
methodological approach to finding and analyzing code comprehension experiments and their
design characteristics. We also introduce our specific research questions in this section. Section 4

1https://www.program-comprehension.org/
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presents a detailed analysis of the design characteristics. In Section 5, we invite the reader to a
discussion of the results before concluding in Section 6 with five action items that we should
address as a code comprehension research community moving forward.

2 BACKGROUND AND RELATED WORK

In this section, we describe necessary foundations regarding code comprehension research and
point out related work on the design of code comprehension experiments.

2.1 Source Code Comprehension

The cognitive process of code comprehension is still fairly unexplored. Researchers in the field
have a rough idea of what is meant when talking about comprehensible code or performance in
code understanding. However, a definition of the construct, let alone a comprehensive cognitive
model, has not yet been established to the extent that primary studies would rely on it in their
design. As a result, what is measured is often implicitly defined by how it is measured, e.g., by the
number of correctly answered questions about a C function or the time required to find a bug.

Nonetheless, there are starting points on which we can build to define the scope of this work. For
example, ISO/IEC 25010 describes a quality model for defining individual quality characteristics
of a software product. The quality attribute most related to code comprehensibility in this model
is perhaps analyzability, which is defined as: “Degree of effectiveness and efficiency with which
it is possible to assess the impact on a product or system of an intended change to one or more
of its parts, or to diagnose a product for deficiencies or causes of failures, or to identify parts
to be modified” [20]. This definition has some overlap with frequently used participant tasks in
code comprehension studies. However, it remains at a level of granularity that does not explicitly
address that source code may need to be understood for all described intentions and what it means
to have understood source code.

Boehm et al. [6] provide a more concrete definition of understandability in this regard in their
early work on quantitative evaluation of software quality: “code possesses the property of under-
standability to the extent that its purpose is clear to the reviewer. This implies that variable names
or symbols are used consistently, code modules are self-describing, control structure is simple or
conforms to a prescribed standard, etc.” The first sentence of Boehm et al.’s definition is the one
that will guide us in this work. The understandability of source code can be measured by how clear
the purpose of the code is to the reader. The second part of the definition provides some examples
of code characteristics that would help improve comprehensibility. These are common hypotheses
that are the subject of the primary studies we will consider in our mapping study.

In this work, we furthermore limit ourselves to the investigation of studies in which participants
had to understand a set of concrete lines of code to infer the intentions behind the code at a
higher level of abstraction. This process is usually referred to as bottom-up comprehension [33, 37].
The counterpart to this is called top-down comprehension, a process in which developers refine
hypotheses based on domain knowledge and documentation until the knowledge can be mapped
to concrete code segments [46]. Using the works of Brooks [8] and Soloway and Ehrlich [56],
O’Brien et al. [33] further distinguish top-down comprehension into expectation-based and
inference-based comprehension, where the difference can be roughly summarized as whether bea-
cons [43, 63] in the code confirm or trigger a developer’s (pre-generated) hypotheses. For a more
in-depth discussion, including these subtle differences, we refer to the work of O’Brien et al. [33].

We focus on one type of comprehension process, which is bottom-up code comprehension, be-
cause there is enough reason to assume that different approaches are based on different cognitive
models and, accordingly, study designs for different cognitive models are not necessarily compa-
rable in nature. In Section 3.1.2, we present more details about our criteria for including papers
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in our mapping study, and already in Section 2.2 below, we show a concrete example of a code
comprehension experiment that would be included.

Related Terms. Now that we have a rough definition of comprehension, we explain how we
use and distinguish certain related terms in the remainder of the article. First, we consider code
comprehension studies as a subset of program comprehension studies. If we look at the plethora
of topics published at the International Conference on Program Comprehension, then it becomes
clear that researchers are not only concerned with the comprehensibility of source code, but also,
e.g., with the comprehensibility of software architectures, documentation, and diagrams.

Second, like some of our peers in the field of program comprehension as well as text comprehen-
sion, we consider understandability and comprehensibility as synonyms, i.e., choosing one over
the other is “purely a matter of linguistic variation” [25].

Third, comprehensibility in this context is a property of source code. Comprehension, however,
is the act or performance of making sense of code. Studies that intend to provide insights into the
influence of a treatment on the comprehensibility of code usually first measure comprehension,
i.e., how well a participant understood source code under certain conditions. The data collected
can then be used to draw conclusions about the comprehensibility of the code.

Finally, comprehensibility, readability, and legibility are different constructs, and the program
comprehension community is starting to distinguish these more explicitly.2 Code can be legible and
readable due to being presented in a certain way and using familiar keywords. However, readable
code does not necessarily have to be understood by the reader. In both code and text comprehen-
sion, there is evidence that comprehensibility and readability do not necessarily correlate [7, 55].
In our mapping study, we restrict ourselves to studies in which code had to be understood.

2.2 A Concrete Example of a Code Comprehension Experiment

Let us take this opportunity to get a better sense of what a code comprehension experiment with
human participants can look like, i.e., the kind of study that is interesting for our mapping study.
For this purpose, we exemplarily review the paper by Hofmeister et al. [19], who investigated the
research question how identifier name length and semantics affect code comprehension (spoiler:
words as identifier names are superior to letters and abbreviations in terms of comprehension
speed).

After the authors motivated the problem, they needed to make a whole series of design
decisions. First, how should the independent and dependent variables be measured, i.e., what is
the operationalization of code comprehension? In this example, code comprehension performance
was measured as the time required to successfully identify a defect in a presented code snippet. The
identifier naming style was either “Word,” “Abbreviation,” or “Letter.” Furthermore, each partici-
pant saw 6 snippets from a pool of 18 snippet variants. The authors created the snippets themselves
to ensure that they could ultimately answer the research question. Their preferred experiment par-
ticipants were professional C# developers, who were recruited via Twitter, Xing, and technology
industry conferences. Developers participated in the experiment via an online platform.

At this point, we covered only about a third of the key design decisions Hofmeister et al. [19]
discussed in their paper. All these decisions, e.g., how to measure comprehension, participant sam-
pling strategy, comprehension task design, code snippet selection, remote experiment conduct, and
so on, could have been made differently. We do not know how easy it was for the authors to make
these decisions. But we can infer from the detailed rationales for individual design decisions that
these decisions were not made lightly following their gut instinct.

2Conscious distinction can be seen, e.g., in the call for this year’s EMSE special issue on “code legibility, readability, and

understandability” at https://tinyurl.com/EMSECfP
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Table 1. Overview of Related Survey Work in the Program Comprehension Field

Secondary study What they did What we do in comparison

Oliveira et al. [34] Study of 54 comprehensibility,
readability, and legibility papers.
Focus on task and response
variables. Subsequent mapping to
Bloom’s learning taxonomy.

Study of more design aspects. Strict
focus on studies in which code had
to be understood (not, for example,
only read). However, we build on
their task and measure classification.

Schröter et al. [45] Study of 540 ICPC papers
(2006–2016). Focus on terminology
of evaluation, threats to validity.

Study of more design aspects over a
larger time period (1979–2019). No
restriction to a single venue. Instead,
restriction to those studies where
code snippets need to be understood.

Siegmund and
Schumann [52]

Study of 385 program
comprehension studies with human
participants (2001–2010). Focus on
confounding factors.

We build on their categorization of
confounders in our threats to
validity analysis, which is only one
of many design aspects we look at.

It will become apparent in our systematic mapping study that different researchers make such
decisions differently. Since we are not the first to address differences in design decisions of code
comprehension studies, we summarize what we build on in the following Section 2.3.

2.3 Designing Code Comprehension Studies

In 2007, Di Penta et al. [11] proposed a working session to collaboratively launch empirical pro-
gram comprehension studies. Their motivation was that the design of such studies was complex
due to the “large space of decisions” and that the community had to discuss what the best practices
were.

In recent years, the debate about the design of program comprehension studies, which had
subsided meanwhile, gained momentum again. In 2016, Siegmund [50] suggested, based on a
survey of program committee members at major software engineering venues, that the reason for
the few new program comprehension studies may still be that “empirical evaluations of program
comprehension (and human factors in general) are difficult to conduct.”

In 2021, Feitelson [13] published a series of “considerations and pitfalls in controlled experiments
on code comprehension.” For different design decisions like selecting code to be comprehended or
the concrete comprehension tasks, the paper describes how these decisions can affect the results
of a study and exemplarily points to primary studies that implemented specific design decisions.
We believe that Feitelson’s work [13] is a valuable pragmatic approach for guiding researchers in
the design of code comprehension experiments by compiling intuitive knowledge. Our work will
provide the necessary empirical data on how prevalent certain design decisions, and thus certain
pitfalls, actually are.

Some publications on the analysis of existing program comprehension studies already exist (find
a summary in Table 1). Oliveira et al. [34] model program comprehension as a learning activity and
map typical tasks of empirical human-centric studies on readability and legibility to an adaptation
of Bloom’s taxonomy of educational objectives. Their goal is to identify the cognitive skills that
are most frequently tested in readability and legibility studies. We are particularly interested in
their classification of commonly used tasks and measures, as we use it as a basis for our own
classification of comprehension tasks. Their data show that participants in readability and legibility
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studies most often have to provide information about the code, and correctness is favored as a
response variable.

Schröter et al. [45] conducted a literature review of 540 ICPC papers published between 2006
and 2016. They addressed three questions, namely, what the primary studies examined in the
context of program comprehension, what terminology they used to describe the evaluation (e.g.,
empirical study, user study), and whether they reported threats to validity. Their investigation
revealed that source code and program behavior are the most frequently addressed parts of program
comprehension studies at ICPC. Moreover, researchers would use “a diverse and often ambiguous
terminology to report their evaluation.” Finally, they found that the number of empirical studies
reporting threats to validity has increased in recent years. This study complements our work very
well, since it deals with program comprehension studies in a broader scope and conducts similar
investigations as we do. Yet, we analyze the topic more deeply and consider numerous other study
design features, as—according to their comment on potential future work—Schröter et al. [45]
themselves intended “to analyze in more detail how evaluations on software comprehension are
performed, for example, regarding typical evaluation tasks and comprehension measurement.”

Related to the analysis of threats to validity is a literature survey by Siegmund and Schumann
[52] that compiles a catalog of confounding parameters discussed in program comprehension stud-
ies. Their survey includes papers from 13 journals and conferences over a period of 10 years and
results in 39 confounding parameters. In our systematic mapping study, we will use the resulting
categories of confounders as a basis to categorize discussed threats to validity in code comprehen-
sion studies. We will come back to this in more detail in Section 4.8.

In addition to the secondary studies described above, several primary studies address specific
aspects of the design of code comprehension studies and provide evidence for consequences of cer-
tain design decisions. This started almost 40 years ago with studies on the differences of certain
task designs [9, 18]. Over the years, this line of research was extended with studies on the compara-
bility of different comprehension measures [1, 42, 47, 71], the influence of cognitive biases on sub-
jective and objective code comprehension measures [68, 69], and the actual influence of suspected
confounding variables such as intelligence, expertise, or code length [7, 15, 57, 62]. All of these
studies finally culminated in the current discussions about capturing psycho-physiological data to
better understand program comprehension [12, 51, 60]. While these primary studies all contribute
to informed decision-making on individual design aspects, our mapping study reviews multiple
design characteristics in their entirety and examines interactions between individual aspects.

In summary, designing code comprehension studies has interested the research community for
many decades, and yet a detailed, comprehensive study to capture the actual state of past and
current study characteristics is lacking. We fill this gap with a systematic mapping study.

3 METHODOLOGY

A systematic literature review (SLR) focuses on synthesizing the available evidence for a
topic [26]. Conversely, a systematic mapping study (SMS) is a different type of secondary study
with a focus on summarizing the conducted research on a certain topic to provide structure [39].
Unlike in SLRs, quality-based exclusion is therefore usually not important in an SMS [40], as the
goal is to describe and map what topics were investigated in what way. Since this is well suited to
our objective, we decided to follow the SMS methodology. The research questions that guided us
in our study on experiments about bottom-up source code comprehension are as follows:

RQ1 How can the studies be classified in terms of their relationship to code comprehension?
RQ2 What are differences and similarities in the design characteristics of the studies?
RQ3 What are differences and similarities in the reporting characteristics of the studies?
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Fig. 1. Schematic representation of the research methodology.

RQ4 Which issues and opportunities for improvement are evident in the design and reporting
of the studies?

The answer to RQ1 is intended to provide insights into what research concerns the primary
studies address. The focus, however, is not on a possible synthesis of evidence, but on the classi-
fication of the research topics as well as their relationship to the code comprehension construct,
e.g., whether a certain influence on code comprehension was investigated or, conversely, whether
the influence of code comprehension on a certain construct was investigated.

RQ2 forms the core of this work. The answer to this question provides comprehensive insights
into the unclear status quo of the design of code comprehension studies. RQ1–RQ3 were systemat-
ically addressed using the methodology described in the following subsections. The data obtained
are analyzed in Section 4 and form the basis for a subsequent discussion of RQ4 in Section 5. This
discussion should improve the quality of code comprehension studies in the medium term and
should immediately result in concrete proposals for improving the design and reporting of code
comprehension studies. The following subsections explain our approach to searching and select-
ing relevant literature, as well as to data extraction and analysis. An overview of the methodology
is depicted in Figure 1.

3.1 Search and Selection Process

We designed our search strategy as a pure snowballing approach, following Wohlin’s guide-
lines [64]. Beginning with a start set of relevant papers known to us, the referenced as well as
referencing literature was reviewed for a set of inclusion and exclusion criteria. This process is
called backward and forward snowballing, and it is repeated on newly included literature. We
stopped the literature search after two iterations of backward and forward snowballing, as we
approached saturation.

Snowballing is known to researchers who are familiar with systematic literature studies. Of-
ten, however, a database search with predefined search strings is performed before snowballing
to identify an initial set of relevant papers. We refrained from doing so, as a thematically broad
literature search via databases leads to a high number of non-relevant search results and thus to
considerable effort. Searching for all papers that measure bottom-up source code comprehension
in some way would have to cover a wide range of research topics and would lead to very generic
and extensive search terms. We consider snowballing with a reasonable start set to be more tar-
geted and efficient. Furthermore, there is evidence that snowballing is similarly effective as and
usually more efficient than database searches [4, 21, 64].

3.1.1 Start Set. We build our tentative start set on the results of a recent literature search
by Muñoz Barón et al. [31], who searched for program comprehension datasets at the source
code level. Similar to ours, their study searched for empirical studies that measured source
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code comprehension with human participants, but in a final step filtered for those that had
published their dataset. They then continued working with these datasets to validate a code
comprehensibility metric. Muñoz Barón et al. [31] identified a total of 10 code comprehension
datasets, whose associated papers we use as tentative start set for our study. Nine of the 10 papers
meet our inclusion criteria (see Section 3.1.2). The one excluded paper was a pilot study for
another study in the start set and was therefore considered a duplicate. Wohlin stresses that “there
is no silver bullet for identifying a good start set” [64]. However, he describes characteristics that
a good start set should meet, and we will briefly discuss them.

Since Muñoz Barón et al. [31] conducted a broad database search to find relevant literature, the
start set fulfills the criterion of covering different communities and the criterion of containing
keywords that are closely related to our research questions. The titles of the papers cover a vari-
ety of potential clusters related to program comprehension: program comprehension in general,
code and software readability, physiological measures related to program comprehension, code
understandability, and code complexity.

A further criterion requires that the start set covers different publishers, publication years,
and authors. The nine papers in the start set were published in IEEE TSE (5), ACM ESEC/FSE
(2), and Springer EMSE (2) between 2003 and 2019. Three of the journal papers are extensions
of previously published research papers at the International Conferences on Automated

Software Engineering (ASE), Software Analysis, Evolution and Reengineering (SANER),
and Program Comprehension (ICPC). The nine papers were authored by 39 distinct
authors.

Finally, a good start set “should not be too small” [64]. While nine papers seems to be a small
number, the papers in the start set have been cited about 400 times and refer to about 500 papers.
Hence, already after the first snowballing iteration, we will have screened about 900 papers.

3.1.2 Inclusion and Exclusion Criteria. During the search process, a paper was included in the
final dataset only if it met all the inclusion criteria (I) and none of the exclusion criteria (E):

I1 Reports an empirical study with human participants.
I2 Measures bottom-up source code comprehension.
I3 Published before 2020.
I4 Published in a peer-reviewed journal, conference, or workshop.
E1 Is not available in English.
E2 Is a meta-study on code comprehension experiments.
E3 Is a replication without substantial modification.
E4 Is a duplicate or extension of an already included paper.

Inclusion criteria I1 and I2 ensured that a paper was within the scope of this work. Examples of
code comprehension studies that do not meet I1 include those that only analyze existing data (see,
e.g., References [41, 58]). I2 was only fulfilled if the quality or performance of a participant in
understanding code was measured (not, for example, how participants proceed in understanding
code, as in, e.g., References [3, 28]). Of all the criteria, I2 represents the one that was the most
challenging to evaluate, because primary studies to date rarely define the construct under investi-
gation, and we will later see that authors use different terms for the same construct. To evaluate
this inclusion criterion, we read the entire paper unless it could already be clearly excluded based
on the abstract. We also emphasize that in evaluating I2, we focused on the authors’ intent and
only rarely judged at this stage of our study whether the chosen task design of a primary study
can actually measure understanding. If we could not find any explicit indication that the primary
study was intended to measure code comprehension and at the same time the task design was not
explicit in this respect, then we did not include the primary study.
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Table 2. Extracted Data Items

Category Data Items Used to Answer

Included Papers DOI, APA citation, publication year, venue

Study Themes study category RQ1

Construct Naming construct name RQ3

Study Designs research method and experiment design RQ2, RQ3

Participant
Demographics

#participants, demographics RQ2, RQ3

Setting and Materials #snippets per participant, snippet pool size, code
snippet source, snippet selection criteria, remote vs.
onsite, paper vs. screen, programming languages

RQ2, RQ3

Comprehension Tasks
and Measures

comprehension tasks, construct measures RQ2, RQ3

Reported Limitations limitations RQ2, RQ3

The rationale for restricting our search to papers published before 2020 (I3) was that we started
our literature search in early 2020 and that this constraint would increase the reproducibility and
extensibility of our approach. Including only peer-reviewed literature (I4) served the purpose of
quality assurance. Thus, our dataset contains only primary studies whose methodology has been
considered sound by at least a few members of the community.

A paper was excluded if it was inaccessible to us due to a language barrier (E1), if it was a
meta-study (E2), or if the design of the study was similar to that of an already included one
because it was a replication, duplicate, or extension (E3 and E4). We added E3 and E4 to avoid
possible bias in the quantitative analysis of the data. Even with extensions, the original study
designs are rarely modified, which means that inclusion of the original study and the extension
would cause the specific design decisions to be considered twice in the analysis. Regarding the
impact of E3, we identified only one replication that would have met our inclusion criteria, namely,
Fucci et al. [16].

The set of papers resulting from the search and selection process is characterized in detail in
Section 4.1. In total, we included 95 papers. The 9 papers in the start set led us to 41 relevant papers.
On these 41 papers, we again performed a snowballing iteration, which yielded 45 more relevant
papers. The ratio of newly included literature to literature screened in this second snowballing
iteration was 1.2% (compared to 4.6% in the first iteration), which made us confident to assume
a saturated dataset at this point. We therefore stopped searching for relevant literature after the
second iteration.

3.2 Data Extraction and Analysis

Before data extraction, all data items to be extracted were defined with a description as precise as
possible. In addition to DOI, APA citation, publication year, and venue, 17 additional columns were
filled in a spreadsheet for each of the 95 included papers to characterize different aspects of the
study design. The extracted data items are listed in Table 2. The results are presented according
to the same data item categories in Section 4 under subsections of identical names. The holistic
results for RQ1–RQ3 are then used to answer RQ4 in the Discussion section.

The first two authors independently performed the extraction for all papers in the start set (9)
and the first snowballing iteration (41). In several meetings, each extracted cell was then reviewed
for agreement and, if necessary, a consensus was reached through discussion. Over time, we thus
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established a strong understanding of the literature and difficulties in the extraction process. This
four-eyes principle was highly time-consuming but led to greater certainty that the papers exam-
ined were correctly understood and that no relevant details were overlooked.

In the second snowballing iteration, each of the first two authors extracted half of the 45 newly
added papers. Items about which one was unsure were subsequently examined by the other. The
same applied to papers where one of us came to the conclusion during extraction that the study
should actually be excluded. Such a decision was never made alone. In the supplemental materials,
we transparently indicate which papers were extracted by which author(s).

After extracting the design characteristics for all 95 papers, the data were analyzed both
quantitatively and qualitatively. Some data items such as publication date, number of study partic-
ipants, and used programming language could for the most part be analyzed without further data
transformation. Other data items such as the study themes and comprehension tasks first had to be
classified using thematic analysis [10], since the diversity of these data was unknown at the time
of data extraction. Finally, there were items for which we extracted descriptive quotations that we
first labeled and then analyzed by category building. Examples of such data items are the criteria
for code snippet selection and threats to validity discussed by the authors of the primary studies.

3.3 Data Availability

Following open science principles [29], we publicly disclose the dataset of 95 studies together with
the extracted data items [67]. The dataset3 details which studies were included in which step and
which studies were extracted by which authors. In addition, we publish a large part of our data
analyses, which can be used, e.g., to trace how characteristics of each individual study design were
labeled and categorized in specific analyses.

3.4 Threats to Validity

Our methodological approach has a few limitations that are relevant for the interpretation of the
results and that we would therefore like to point out in advance.

In the search and selection process, we restricted ourselves to papers published before 2020.
This was to maintain replicability, as our systematic literature search began in 2020. Our results
will show a trend that a large proportion of included papers were published in recent years. Accord-
ingly, we should assume that some relevant papers were also published in 2021 and 2022, which
may have different design characteristics. We consider it worthwhile to conduct a similar mapping
study again as early as 2026 to capture the latest trends in designing code comprehension studies.

Inclusion criterion I2 required a subjective judgment on whether a primary study intended to
measure bottom-up source code comprehension. We prioritized avoiding false positive inclusion
decisions over avoiding false negative ones. We aimed for a dataset that included only studies
meeting our criteria with a high level of certainty, possibly resulting in the incorrect exclusion
of some papers. On a related note, no search process can claim complete coverage of all relevant
studies, whether it is a database search, snowballing, or a hybrid approach. Nevertheless, we are
confident that the 95 papers found are a representative set of papers for our inclusion criteria.

Regarding the quality of individual primary studies, we relied solely on inclusion criterion I4,
i.e., that the study was peer-reviewed. We did not perform any further quality assessment, as
sometimes suggested in guidelines for systematic literature reviews [24]. This decision is based on
our motivation to obtain the status quo of study designs accepted by the community. It is therefore
unavoidable (and even “desirable” for us) that some primary studies included may have design or
reporting flaws. After all, it is these weaknesses that we aim to systematically identify and discuss.

3https://zenodo.org/record/6657640
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Fig. 2. Number of publications per year and venue.

As for the process of data extraction and analysis, we would like to point out that in the sec-
ond snowballing iteration, data extractions were mostly performed by individual researchers. The
same applies to the analysis of extracted data. The categories of extracted data items were gener-
ally analyzed and proposed by a single researcher. In both cases, however, results were discussed
in detail, and the opinions of the other authors were regularly solicited. Each author also worked
with data points extracted from the other authors in the data analysis, which in a sense verified
extracted data points, since one had to occasionally look at the papers again for their context.

Additionally, a few papers describe several different experiments. In case of differences between
these experiment facets, we therefore either selected the dominant variant (e.g., for the experiment
factor design) or a suitable aggregated value (e.g., median number of snippets per participant)
during the synthesis. As described in Section 3.3, we make the entire process as transparent and
traceable as possible by publishing the data and analyses.

4 RESULTS

We present the results grouped by the categories introduced in Table 2. A critical discussion of
findings of particular interest follows separately in the subsequent Discussion section (5).

4.1 Included Papers

We included a total of 95 primary studies published from 1979 to 2019. Figure 2 shows the number
of published studies per year. A large proportion of the included studies were published between
2010 and 2019 (67.4%), and about half of all included studies were published from 2015 and onward
(51.6%). Forty-one papers were published in a journal, 45 in conference proceedings, and 9 in
workshop proceedings. The papers were published in 51 different venues, of which 39 appeared
only once in the dataset. The top four venues by number of included papers are EMSE (10),
IWPC/ICPC4 (9), TSE (8), and ICSE (6). From the 62 “Other” papers depicted in Figure 2, 39 appear
in venues from which we only included one paper each. The remaining 23 “Other” papers appear in
the following eight venues: ESEC/FSE (4), International Journal of Man-machine Studies (4), EMIP
(3), ETRA (3), International Journal of Human-Computer Studies (3), CHI (2), ICSME (2), PPIG (2).

4.2 Study Themes

As a general starting point for study themes, we were interested in the study distribution according
to the following three relationship types:

4The International Conference on Program Comprehension (ICPC) was a workshop (IWPC) until 2005. One included paper

was published at IWPC.
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— X⇒ code comprehension: The study analyzes how one or more other constructs (X) in-
fluence code comprehension, e.g., identifier naming length or developer experience.

— X⇔ code comprehension: The study analyzes the correlation between code comprehen-
sion and one or more other constructs (X), e.g., source code metrics or eye-tracking data.

— code comprehension ⇒ X: The study analyzes how code comprehension influences one
or more other constructs (X), e.g., developer motivation or happiness.

A study could be mapped to several of such instances, depending on its scope and research
questions. For example, Peitek et al. studied three instances in S1: fMRI data⇔ code comprehension

(RQ1), code complexity⇒ code comprehension (RQ2), and programming experience⇒ code compre-

hension (RQ3). Nonetheless, 78 of 95 studies in our sample were mapped to a single relationship
instance (82%), while only 13 and 4 studies were mapped to 2 and 3 instances, respectively.
No study in our sample produced more than three instances. To analyze the distribution of
relationship types, we assigned a primary type to the 17 studies with more than one type. Each
of these 17 papers was carefully analyzed to identify if one of the RQs might be the central focus
of the paper, with the remaining RQs being either preliminary or smaller side investigations. In
such cases, the relationship type of the central RQ was used. For example, S1 was categorized
as X ⇔ code comprehension, because RQ1 was the primary focus of their study (the correlation
between code comprehension and fMRI data). In the rare cases where no primary RQ could
be determined, we instead opted for the most frequent relationship type of all RQs of the
paper.

As a result, the majority of studies, namely, 67 of 95 (71%), belong to the X⇒ code comprehen-

sion relationship type, i.e., analyzing which constructs influence comprehension in which way is
the most popular type of research in our sample. The remaining 28 papers all belong to the re-
lationship type X⇔ code comprehension, i.e., they analyzed correlations between constructs and
code comprehension, mainly to evaluate suitable measurement proxies. Surprisingly, we did not
find a single study for the type code comprehension⇒ X. Potential explanations could be that such
research is perceived as either not industry-relevant or not suitable until further progress is made
in defining and measuring code comprehension as a construct.

In addition to these general relationship types, we assigned one or more thematic labels to each
paper based on the study purpose (between 1 and 10 labels, median of 1). Afterwards, these la-
bels were grouped into higher-level categories (see Table 3). In total, we created 43 labels assigned
to 11 categories. Categories consisted of between 1 and 10 labels (median of 3). The most popular
categories in our sample were semantic cues (e.g., identifier naming or comments), developer charac-

teristics (e.g., experience or age), psycho-physiological measures (e.g., eye tracking or EEG), and code

structure (e.g., control structures or procedure usage). Less-studied areas were code improvement,
test code, and mental models. Concerning individual labels, 15 of the 43 themes were assigned to at
least 4 papers (see Figure 3). Popular themes included identifier naming (16 studies), experience (15),
comments (10), and control structures (9). Additionally, three labels from the psycho-physiological

measures category are among the top 15: eye tracking (9), EEG (9), and fMRI (4).
When analyzing the evolution of the four largest thematic categories over the years (see

Figure 4), we see that studies on semantic cues such as identifier naming and code comments
were most popular early on but lost their relative market share in the last decade. The relative
popularity of studies on code structure and developer characteristics increased, even though both
are not comparable to the meteoric rise of psycho-physiological measures. Enabled by technological
advances and the increased affordability of relevant devices, the past 10 years saw an abundance
of studies evaluating data from, e.g., eye tracking, fMRI, EEG, NIRS, or HRV as proxies for
code comprehension. This signifies a shifting focus of the research community towards a more
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Table 3. Study Purpose Categories

Category # of Mentions # of Labels Description (“One study goal is to analyze. . . ”)

semantic cues 30 3 how semantic information in source files (e.g.,
identifiers or comments) influence comprehension.

developer
characteristics

30 5 characteristics of developers in the context of
comprehension (e.g., experience or code familiarity).

psycho-physiological
measures

29 7 the feasibility of psycho-physiological measures
collected from developers (e.g., fMRI or EEG) as
proxies for comprehension.

code structure 28 10 how structural attributes of source files (e.g., control
structures or code size) influence comprehension.

code evaluation 10 2 ways to evaluate code understandability (e.g., metrics
or self-assessment).

programming
paradigms

9 4 programming paradigms w.r.t. comprehension (e.g.,
object orientation or reactive programming).

comprehension
support

9 4 ways to better understand code without changing it
(e.g., code browsing techniques or diagrams).

visual characteristics 8 3 the influence of visual code characteristics on
comprehension (e.g., indentation or syntax
highlighting).

code improvement 4 3 ways to change existing code towards better
understandability (e.g., methods or tools).

test code 3 1 ways to improve test code w.r.t. comprehension.

mental models 3 1 how developers mentally represent code and how this
influences comprehension.

Fig. 3. Most popular study themes (assigned to at least four papers).

developer-centric and individual perspective of code comprehension. As an example, Couceiro
et al. even envision “biofeedback code highlighting techniques” in S51, i.e., reporting complex or
potentially buggy lines of code in real-time during development, using data from non-intrusive
techniques such as HRV, pupillography, and eye tracking.
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Fig. 4. Evolution of the four most popular study categories according to their number of occurrences.

Answer to RQ1: How can code comprehension experiments be classified in terms of

their relationship to code comprehension?

While the following result subsections provide a combined answer to research questions 2 and
3, we can already provide a synopsis of our first research question at this point. The majority of
studies in our sample investigated how a condition affects code comprehension (71%). The remain-
ing papers examined correlations between a condition and code comprehension. None of the 95
studies, however, looked at the consequences of code comprehension on any other construct.

Thematically, the studies most frequently investigate the influence of semantic cues, developer
characteristics, and code structure on code comprehension. Studies evaluating the feasibility of
psycho-physiological measures collected from developers as proxies for comprehension are par-
ticularly popular today.

4.3 Construct Naming

For each primary study, we extracted the name used for the central construct under investigation.
In total, we identified 10 different construct names (see Figure 5), which optionally could be
combined with “code” or “program.” The most frequently used name was by far “comprehension,”
with 72 of 95 studies (76%). Seven studies used “readability” as the construct name, even though
they measured comprehension, i.e., participants’ level of understanding and not their ability for
visual perception (see Section 2.1). Four studies focused on their concrete experiment tasks and
explicitly used “task difficulty” as a construct. The remaining seven constructs were all used by at
most two studies.

The majority of studies (73 of 95) also used constructs describing an activity such as “compre-
hension” or “reading.” Only 22 studies used an attribute such as “comprehensibility,” “complexity,”
or “cognitive load” as the construct. Last, nearly half of the studies (47 of 95) combined their con-
struct name with “program,” 24 studies combined it with “code,” with the remaining 24 studies
refraining from using such a modifier. As an example, 45 of the 72 studies using “comprehension”
as the construct phrase it as “program comprehension,” 18 as “code comprehension,” and 9 only
as “comprehension.” With “program comprehension” being a superset of “code comprehension,”
using the latter would be more precise, as many studies we excluded for not being concerned with
bottom-up source code comprehension used the older term “program comprehension.”
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Fig. 5. Names for the central construct in our primary studies.

4.4 Study Designs

Concerning the used research methods, 94 of 95 studies conducted some form of experiment. The
one exception was S42, a field study performed by Sedano to test a proposed code improvement
method. Since the used terminology on this may differ, we did not distinguish between different
types of experimentation, such as controlled experiments, experiments, or quasi-experiments [66].
Moreover, such a distinction would have provided little value for answering our RQs. We therefore
classified all studies that manipulated at least one independent variable while controlling for other
factors as an experiment. Nonetheless, the degree of manipulation and control differs between
studies. For example, Salvaneschi et al. used two explicit treatments in S8, namely, the object-
oriented Observer design pattern vs. reactive programming constructs. In comparison, Buse and
Weimer did not have such clear treatments in S6. Instead, their manipulation manifested in the
varying complexity of the many code snippets shown to participants.

To be able to analyze trends and differences in experiment designs, we extracted the following
properties that are loosely based on the methodological publications from Juristo and Moreno [23]
and Wohlin et al. [66]:

— Factor design: We extracted whether the experiment used a factorial design, i.e., several
factors were manipulated in parallel, or a one-at-a-time design, i.e., only a single factor was
manipulated in parallel.

— Allocation design: We extracted whether the experiment used a within-subject design (also
called repeated measures design), i.e., each participant received each treatment at least once,
or a between-subject design (also called independent measures design), i.e., each participant
only received a single treatment.

— Randomization or counterbalancing of tasks: This is important for within-subject de-
signs to combat familiarization and carryover effects, especially for the within-subject vari-
ant called crossover design [59]. We extracted whether this was applied (yes or no).

— Experience- or skill-based balancing: This is especially important for between-subject

designs, as they do not account for individual differences between participants, e.g.,
regarding expertise or motivation [59]. Consciously balancing your groups regarding
potential confounders can mitigate such effects. We extracted whether this was applied (yes

or no).

ACM Computing Surveys, Vol. 56, No. 4, Article 106. Publication date: November 2023.



106:16 M. Wyrich et al.

Fig. 6. Distribution of factor and allocation design.

Fig. 7. Evolution of factor and allocation design.

Concerning the factor design, 71 of the 94 experiments in our sample chose a one-at-a-time

design. Only 23 studies used a factorial design, which is generally considered to be both more
complex and powerful. Concerning allocation design, we see a similar imbalance, with 69 studies
choosing a within-subject design, which is considered to be more robust against participant
heterogeneity. Only 25 studies relied on a between-subject design, where skill differences between
groups can be a threat to the validity of the results. When combining factor and allocation design
(see Figure 6), within-subject is substantially more popular for one-at-a-time designs (85% of
studies), while between-subject is a bit more frequently chosen for factorial designs (61%).

A combined analysis with the publication year also reveals a shift in experiment design over
time (see Figure 7). Before 1990, most studies used factorial between-subject designs. A typical
example is S67, a 2 × 2 factorial experiment published by Tenny in 1985. He analyzed the effect
of internal procedures and code comments on comprehension by assigning each participant to
one of four groups: no procedures and no comments, no procedures and comments, procedures
and no comments, and procedures and comments. Over the years, one-at-a-time within-subject

designs started to rise in popularity, until they became the dominant form of code comprehension
experiments from 2010 and onwards. A typical example for this is S3, an experiment to analyze
the impact of identifier naming styles on code comprehension published by Hofmeister et al. in
2019. In their study, every participant received tasks for each of the three levels of naming styles:
single letters, abbreviations, and words.
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Fig. 8. Number of participants per study, grouped by venue type. Colors indicate the demographic composi-

tion of the sample.

Last, we analyzed the frequency of applying suitable precautions for the respective weak-
ness of the two types of allocation design, i.e., if within-subject designs used randomiza-
tion/counterbalancing and if between-subject designs used experience- or skill-based balancing
during group assignment. Of the 69 within-subject designs in our sample, 45 applied randomiza-
tion or counterbalancing of tasks (65%). This means that approximately one-third did not use this
proven technique to counteract potential familiarization effects. However, the numbers are much
worse for between-subject designs. Of the 25 experiments with this allocation design, only 6 bal-
anced their groups based on experience or skill (24%), i.e., 76% took insufficient or no precautions
in this area.

Summary. Most experiments in our sample preferred a one-at-a-time design over a factorial
design. In addition, most studies have opted for a within-subject design rather than a between-
subject design. However, we noted that preferences regarding factor and allocation design have
changed over time: Between-subject and one-at-a-time experiments characterized the majority of
experiments 30 to 40 years ago.

4.5 Participant Demographics

All included studies have in common that they used a sample of human participants to answer their
research question. The number of participants ranges from 5 to 277, with a median of 34. Figure 8
shows the distribution of sample size per paper. For papers that reported different numbers of
participants, for example, due to multiple reported sub-experiments, the mean of minimum and
maximum reported number of participants was used for that paper (this was the case for 13 papers).

About half of the 95 papers (53.7%) reported a sample that consisted entirely of students. For
9 papers (9.5%), only professionals were included in the sample. In 24.2% of the samples, the par-
ticipants were composed of students and professionals. Seven papers (7.4%) recruited a sample of
students and faculty members. For 4 papers (4.2%), we were either unable to find any information
at all or only very vague information on participant characteristics.

Looking at the number of participants and their demographic characteristics by type of venue
(journal/conference/workshop), substantial differences emerge. The number of participants for
journal articles with a median of 61 (mean: 77.5) is higher than the median of 26 for conferences
(mean: 58.2) and the median of 26 for workshops (mean: 33.1). Furthermore, a sample in a jour-
nal paper is least likely to be composed entirely of students (46.3% of papers compared to 55.6%
for conferences and 77.8% for workshops). None of the 9 included workshop papers sampled any
professionals. Two of the workshop papers recruited faculty members in addition to students.
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Fig. 9. Programming languages used in the experiments.

4.6 Setting and Materials

We also extracted and analyzed several aspects of the experiment settings and used materials, i.e.,
the code snippets.

4.6.1 Experimental Settings. Regarding the experiment location, 72 of the 95 studies were con-
ducted onsite (76%) and therefore had strong control of the study environment. In 14 cases, a
remote experiment was chosen, thereby trading off some control for more and a wider variety of
participants. Two studies adopted a mixed approach, with both onsite and remote participation.
For 7 studies, we could not reliably determine the study location from the paper. The earliest re-
mote study (S24 by Lawrie et al.) was already conducted in 2007 based on a browser-based Java
applet, but the median year was 2019. Due to the COVID-19 pandemic, we expect the percentage
of remote experiments published in 2020 and later to be substantially larger.

As the snippet medium, 67 studies presented the code on a screen (71%), while 21 studies used
code printed on paper. One study used both mediums. In 6 cases, we could not reliably determine
if a screen or paper was used. While we found studies published as recent as 2018 using paper (S34
by Ribeiro and Travassos), the median year was 1996, indicating that this becomes increasingly
rare. Unsurprisingly, location and medium are also interrelated to some degree, i.e., all 14 remote
experiments used a screen, while all 21 paper-based studies were conducted onsite.

4.6.2 Experimental Materials. Concerning the used programming languages for the snippets
(see Figure 9), we identified a total of 21 unique languages (plus pseudocode). The majority of
studies (84 of 95) only used a single language for their snippets, with 8 studies using two languages,
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Fig. 10. Sources for code snippets.

and a single study using three, four, and nine languages, respectively. The latter outlier is S42,
where Sedano let participants bring their own code snippets, resulting in a variety of languages.
With 45 papers (47%), Java is by far the most-used language in our sample. It is followed by C (14
studies), C++ (10), and Pascal (10). For 7 papers, we could not reliably extract the used programming
language from the paper (label n/a). A total of 13 languages were only used in a single study.
Studies using older languages such as Fortran, Cobol, Pascal, Algol, Basic, PL/I, or Modula-2 were
all published before 2000, with a median year of 1987.

We also extracted and analyzed the snippet pool size and number of snippets per participant for
each study. In four cases, we could not reliably determine these metrics from the paper. The re-
maining 91 studies had a median snippet pool size of 9, with a mean of 24.7 over the range from 1
to 389 snippets. We found that 34 studies (37%) had 5 or fewer snippets, and 18 studies (20%) had
between 6 and 10 snippets in the snippet pool. Apart from that, we see a decent variety of snippet
pool sizes, with some outliers in the lower hundreds, such as S89 by Asenov et al. with 298 and S41
by Sasaki et al. with 389 snippets. In 45 cases, participants worked on the complete snippet pool
(100% snippet percentage). The majority of these were within-subject designs, as treatments were
most often embedded into the snippets. In the remaining studies, participants worked on very dif-
ferent percentages of the snippets, with peaks at 50%, 33%, and 25%. These correspond to frequently
chosen numbers for groups or snippet versions, namely, two, three, and four. With larger snippet
pools (30 and more), the snippet percentage tended to be lower, even when no groups or snippet
versions were used, most likely to not exhaust participants. However, there were also several ex-
ceptions, e.g., both Buse and Weimer (S6, 100 snippets) and Sasaki et al. (S41, 389 snippets) let each
participant work on all snippets. In summary, the average study in our sample used 25 snippets
and let participants work on 70% of them (median: 9 snippets with 90% snippet participation).

We further analyzed where the used snippets originated from, i.e., the snippet source (see
Figure 10). For 14 studies, we could not reliably determine the source (n/a). The majority of
the remaining papers used a single source (68 studies), with 13 studies having two sources for
their snippets. The most popular source was that researchers created snippets themselves (38
studies). In 22 studies, parts of open-source software were used, sometimes slightly adapted, 21
papers simply reused snippets from previous studies, and 8 papers relied on textbooks, e.g., from
computer science education. Only 3 studies used closed-source code from industry. Last, 2 papers
sourced from programming contests. Overall, the majority of snippets were self-made or from
open-source software, with snippets from proprietary industry projects playing no major role.

4.6.3 Snippet Selection Criteria. Finally, we extracted the snippet criteria, i.e., the requirements
researchers had for the selection or creation of code snippets and how they motivated snippet
usage. In total, we identified 17 criteria (see Table 4). Studies were labeled with between 0 and
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Table 4. Criteria for the Creation or Selection of Experiment Code Snippets

Snippet Criterion # of Studies Description

balance between simplicity
and complexity

42 simple/small enough to be understood in a reasonable
time, but complex/large enough to require some effort
and to be realistic

homogeneity concerning
potential confounders

29 minimize the influence of unrelated factors such as
naming styles, LoC, line length, formatting, or
indentation

novice friendliness 25 common beginner programming tasks, typical
textbook problems or algorithms known to students
such as shell sort or binary search

taken/adapted from existing
studies

21 (partially) using/adapting snippets from existing
studies against the results can be compared

real-world code 19 taken/adapted from open-source or industry code

self-contained functionality 19 no additional context or external functions necessary,
e.g., a function, static method, main method, test class,
with a determinable purpose

heterogeneity concerning the
targeted constructs

18 differences in code metrics, control structures, method
chains, comments, and so on, to increase variance and
generalizability

requires bottom-up
comprehension

15 obfuscate identifiers, remove beacons and comments,
and so on, to force line-by-line understanding

thematic heterogeneity 13 a different algorithm, domain, and so on, per snippet
to avoid learning effects or to increase generalizability

no unnecessary cognitive load 12 small inputs, simple arithmetic, no recursion, no
non-deterministic or non-portable code, low
computational complexity, no advanced OO, and so
on.

no special domain knowledge
necessary for understanding

10 avoid specific domains to reduce bias due to
participant (in)experience, use familiar use cases like
Pacman

written in a popular/familiar
programming language

9 mainstream language or familiar to participants, e.g.,
Java, C, Python

n/a 6 not explicitly specified in the paper

small enough to avoid
extensive scrolling

5 code fits completely on screen, especially important
for, e.g., fMRI or eye-tracking studies

random sampling 5 snippets are randomly drafted from a pool

no extensive usage of (rare)
APIs

4 avoid specific APIs to reduce bias due to extensive
language experience

never seen before by
participants

3 self-created/adapted to be new to participants

code written by participants 1 participants needed to be familiar with the code and
should have written it themselves

8 criteria, with a median of 2 and a mean of 2.6. While 6 of the 95 studies did not specify any
criterion (n/a), 22 studies provided 4 or more rationales. As examples, Dolado et al. did not
provide any motivation why they used these snippets in S7, whereas Siegmund et al. used nearly
a full page to describe their snippet rationales with admirable details in the dedicated subsection
“Designing and Selecting Code Snippets” (S84, labeled with 8 criteria). Snippet criteria fell into one
of three categories: (a) related to experiment design, (b) related to generalizability, and (c) related to
participants:
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(a) Experiment design: By far the most-used criterion (42 of 95 studies) was that snippets needed
to fulfill a delicate balance between simplicity and complexity. They had to be simple and small
enough for participants to understand within a reasonable timeframe, yet large and complex
enough to retain realism and require minimal effort. What this meant in practice, however, could
be very different, depending on the studied constructs and the experiment design: Hansen et al.
(S39) only used snippets between 3 and 24 LoC, Scalabrino et al. (S5) aimed for between 30 and 70
LoC, while Castelhano et al. (S10) argued that between 50 and 100 LoC would be ideal for their
experiment. Another prominent dichotomy was that snippets should possess both homogeneity

concerning potential confounders (29) and heterogeneity concerning the targeted constructs (18). In
this sense, researchers normalized unrelated factors in their snippets, e.g., naming styles or format-
ting, but created differences within their studied constructs such as code metric ranges or control
structure usage to increase variance or generalizability. A special case to avoid confounders was
the conscious elimination of unnecessary cognitive load (12). Researchers removed or avoided, e.g.,
complex arithmetic, recursion, or high computational complexity to allow participants to focus on
the essential comprehension aspects of the study. In 19 studies, it was important for researchers
that snippets represented self-contained functionality with a determinable purpose. These were,
e.g., complete functions, static methods, or main methods. Additionally, 15 studies ensured that
a snippet requires bottom-up comprehension by obfuscating identifiers and removing beacons and
comments, thereby forcing line-by-line understanding. Last, five studies ensured that a snippet was
small enough to avoid extensive scrolling because some fMRI or eye-tracking experiments required
that snippets fit completely on screen.

(b) Generalizability: The most prominent criterion in this category was using snippets taken or

adapted from existing studies (21) to build on previous knowledge and to make results comparable.
Similarly, several papers required real-world code (19), i.e., that snippets were taken or adapted
from either open-source projects or proprietary industry projects to be realistic. A few studies
combined this with random sampling (5) from a large corpus of open-source projects. Furthermore,
13 studies prioritized the thematic heterogeneity of snippets and used, e.g., different algorithms or
application domains per snippet, mostly to increase generalizability, but sometimes also to avoid
learning effects.

(c) Participants: Since a large portion of the studies relied on students as participants, a promi-
nent snippet criterion was novice friendliness (25). Therefore, common programming tasks for
beginners and typical problems or algorithms from textbooks were selected. Similarly, some re-
searchers also ensured that no special domain knowledge was necessary for understanding (10) to
not be limited to participants from certain backgrounds. In some cases, popular use cases or appli-
cations were chosen, e.g., Yu et al. used the game Pacman in S20. To increase their sampling pool,
researchers also prioritized code written in a popular programming language (9) that was familiar
to their participants (e.g., Java, Python, or C) and avoided extensive usage of (rare) APIs (4). Last,
three studies ensured that their snippets were never seen before by participants and a single study
(S42 by Sedano) required code written by participants so they were very familiar with it.

4.6.4 Summary. Code comprehension experiments have primarily been conducted onsite, al-
though remote studies have emerged since 2007 and may be more prominent since 2019. Nowadays,
code displayed on a screen is the rule, with the dominant programming languages utilized being
Java, followed by C, C++, and Pascal. Researchers typically create code snippets themselves, but
they also draw from open-source projects or previous studies. The criteria for selecting code snip-
pets vary and are often not explicitly stated. However, when mentioned, researchers commonly
consider factors such as achieving a balance between simplicity and complexity, controlling for
potential confounders, and ensuring novice-friendly code.
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4.7 Comprehension Tasks and Measures

The core of any code comprehension study, at least from the participant’s point of view, is the
actual code comprehension task. Such a task, sometimes several in a single study, provides data
for the analysis of a participant’s code comprehension performance. The precise nature of this
analysis and the data collected for it are defined by comprehension measures. In this section, we
first look at the variety of designed comprehension tasks, then at the variety of comprehension
measures, and finally at how comprehension tasks and comprehension measures co-occur.

4.7.1 Comprehension Tasks. Table 5 shows the variety of comprehension tasks and how many
studies implemented which type of task. The classification is a refinement of the division used
by Oliveira et al. [34] to group comprehension and reading tasks in their study. All tasks could
be assigned to four overarching task categories (Tc): provide information about the code (Tc1),
provide personal opinion (Tc2), debug code (Tc3), and maintain code (Tc4).

We found 81% of all papers (77/95) to use at least one task that requires participants to provide
information about a code snippet to be understood (Tc1). Among these, 67.5% exclusively used
tasks from Tc1. Three tasks in particular stand out as most frequently used: answering compre-
hension questions (33), determining the output of a program (26), and summarizing code verbally
or textually (22).

A total of 27 (28.4%) of the papers were interested in a personal assessment of the participants
(Tc2), of which 7 exclusively used tasks of this category. Preferably queried was a rating for the
perceived code comprehensibility, in 2 cases for one’s own code comprehension, 4 times for the
confidence in one’s own comprehension, in 5 papers the difficulty of the task was to be assessed,
and in 4 papers code snippets were compared or ranked regarding the comprehensibility of other
code snippets in these studies. In 7 studies, subjective evaluations were requested, which differ
from all others and are therefore listed under “other subjective indications” (e.g., S46: provide
opinion of identifier type importance, or S78: identify most helpful code lines).

For 11 studies, a debug task (Tc3) was used to derive statements about code comprehension.
Five of them exclusively considered this task category. In 7 papers, and thus most frequently in
Tc3, participants had to find a bug. In three studies, a bug had to be fixed. One study required a
judgment about whether the code was correct or not.

We identified 8 papers that asked participants to complete a maintenance task (Tc4). In 3 cases,
a Cloze test was used, a test in which gaps in the code must be filled. In 3 studies, code had to
be extended, and in 2 studies, code had to be refactored. An example of the latter case is from
Bois et al. (S82), who investigated the differences in the comprehension effectiveness between
refactoring code and reading code.

While 66 of the 95 papers used exactly one task category, it was 3 for S4, S33, and S38. In 2
studies (S18 and S19), we could not find any information about the comprehension tasks in the
paper. Perhaps the most unusual comprehension task was reported by Gilmore and Green (S90),
who presented their comprehension questions as crimes that a detective had to solve based on
information from an informant. The peculiarity of this study was that the sample consisted of
non-programmers, and therefore an interesting scenario had to be created.

4.7.2 Comprehension Measures. Almost all studies have measured how well participants per-
form in comprehension tasks. The three studies S16, S17, and S54 were the exception; participants
had to understand code, but there was no attempt to quantify how well they understood it, since,
for example, the focus was on the observation of psycho-physiological responses only. In all other
cases, the comprehension measures used can be divided into six categories: correctness, time,
subjective rating, physiological, aggregation of the former, and others.
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Table 5. Comprehension Tasks that Participants Had to Work on

Comprehension Task Studies

Tc1: Provide information about the code

Answer comprehension questions S5, S8, S31, S32, S33, S34, S36, S37, S43, S44, S45,
S51, S52, S54, S56, S62, S63, S67, S68, S69, S71,
S76, S77, S80, S81, S82, S83, S86, S89, S90, S91,
S92, S93

Determine output of a program S1, S2, S5, S7, S9, S11, S12, S13, S14, S15, S16, S17,
S23, S25, S37, S39, S48, S50, S57, S59, S60, S68,
S70, S77, S84, S88

Summarize code verbally or textually S4, S11, S20, S24, S29, S35, S36, S37, S38, S42, S46,
S47, S49, S58, S61, S72, S75, S77, S79, S87, S94, S95

Recall (parts of) the code S29, S44, S61, S66, S72, S73, S74

Determine code trace S35

Match with diagram or similar code S77, S84, S85

Tc2: Provide personal opinion

Rate code comprehensibility S4, S6, S34, S36, S42, S49, S53, S69, S70, S75

Rate own code understanding S5, S31

Rate task difficulty or task load S12, S14, S23, S38, S51

Rate confidence in answer/
understanding

S23, S24, S33, S94

Compare or rank code snippets S21, S22, S40, S78

Other subjective indications S21, S22, S33, S41, S46, S78, S85

Tc3: Debug code

Find a bug S3, S10, S28, S38, S55, S64, S87

Fix a bug S26, S27, S77

Determine if code is correct S33

Tc4: Maintain code

Cloze test on code S4, S30, S74

Extend the code S21, S26, S27

Refactor code S65, S82

Figure 11 shows the percentage of comprehension measures to the number of papers in each
period. In all decades, the share of papers that measured at least correctness was highest. Before
2000, correctness was even measured in all published papers, but the share decreased to 65.6% in
2010–2019. The proportion of papers that asked for subjective self-assessments or measured time
increased over the years. Most notable, however, is the increase in the use of physiological mea-
sures, which were used in over a quarter of publications in 2010–2019. Furthermore, the diversity
of measures used has never been greater than it is today.
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Fig. 11. Comprehension measures used relative to number of papers.

Of the 95 papers, only 37 measure code comprehension in a single way. Thirty-six papers rely on
2, 15 papers rely on 3, and 4 papers rely on 4 measures from different categories. The measurement
of correctness and time was the most frequent combination of measures with 23 papers, if more
than 1 measure was collected. In the period 2010–2019, we also identified for the first time 4 papers
that not only measured multiple comprehension measures in their study, but even aggregated them.
This involved combining correctness and time in 3 studies (S9, S26, S27). Scalabrino et al. (S5)
aggregated correctness, time, and subjective ratings in different ways: by combining correctness
and time, but also correctness and subjective ratings, and time and subjective ratings.

At this level of granularity, it is possible to summarize very well which trends there have been
over the years and which way of measuring code comprehension seems to be the most popular. It is
also closest to the terminology used in the primary studies themselves for the various measures if
an abstraction of the specific calculation is used in the report (e.g., “The metrics used to investigate
these questions are time and correctness [. . . ]” [1]). A closer look, however, reveals that almost
every paper differs in the concrete implementation of the measures.

Consider correctness as an example. With 70 papers (73.7%), it is the most prominent com-
prehension measure in our dataset. Our primary studies often measured it via the relative or
absolute number of correct answers to comprehension questions or bug finding tasks. However,
we also found the usage of f-measures (e.g., S63, S65), number of correctly recalled identifiers or
statements (e.g., S29, S73), number of fails until a correct answer was given (e.g., S28), number
and severity of errors (e.g., S48), as binary variable (e.g., S61, S62), manually rated functional
equivalence of recalled code (e.g., S73), automatically or manually rated code changes (e.g., S20,
S26), and manually rated free-text or oral answers (e.g., S24, S29, S36, S39, S79, S94).

For the measurement of time and subjective ratings, there is a similarly large variance in
the concrete implementation. For more detailed insights, we refer the interested reader to our
dataset. At this point, we would rather elaborate on the measurement of code comprehension via
physiological measures, since these are still relatively novel in the field of code comprehension as a
whole.

The category of physiological (or psycho-physiological) measures includes the measurement of
code comprehension via responses of the human body or brain to performing code comprehension
tasks. In our dataset, we encountered the measurement of fMRI data (brain activation regions, con-
centration levels, brain activation strength, cognitive load, blood oxygen level dependent), fNIRS
data (regional brain activity), and eye-tracking data (visual/mental effort, e.g., on gaze behaviors
such as number of fixations and their duration).
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The primary studies that use such measures already provide initial findings on physiological
responses in code comprehension but are currently still largely to be understood as feasibility
studies. For example, they investigate correlations with conventional comprehension measures
(see, e.g., S1, S12–S19 and also Section 4.2). In the medium term, psycho-physiological measures
could provide objective information about the process and performance of an individual during
code comprehension [12] and, e.g., help to investigate “the role of specific cognitive subprocesses,
such as attention, memory, or language processing” [36].

Finally, we note that we could not assign measures to the categories described above in only five
cases. These measures ended up in the “other” category. S21 and S59 used code metrics to measure
code comprehension, S28 visual focus via a sliding window (not via physiological measures), S47
the number of animation runs of a code visualization tool, and S81 the number of times an algo-
rithm was brought into view. However, none of the five corresponding papers exclusively used
these measures, so they are also represented in at least one of the other measure categories.

4.7.3 Combinations of Tasks and Measures. Counterintuitively, comprehension tasks and com-
prehension measures were rarely mutually dependent in their selection. Almost all comprehension
measures, or at least the categories presented, can be applied to all types of comprehension tasks
that we identified in this mapping study. Nevertheless, some combinations occur significantly more
often than others. The combination of correctness and Tc1 (provide information about the code)
appears most frequently; about two-thirds (66.3%) of all papers use at least this combination of
measure and task, and 16.8% of all papers use this combination exclusively. If debugging tasks
(Tc4) are used, then at least correctness is measured in all cases. If, in contrast, tasks from Tc2
(provide personal opinion) are used, then correctness only occurs in 55.6% of these cases in the
paper. Tc2 tasks are mainly evaluated by subjective ratings (96.3% of all tasks in this task category
appeared in papers at least with subjective rating measures).

4.7.4 Summary. We observe a shift in the use of measures over time, both in terms of an in-
creasing variety and a decreasing dominance of individual measures. While correctness continues
to be the preferred measure of code comprehension, the use of psycho-physiological measures is
increasing rapidly. Further, the concrete design of comprehension tasks is in itself very diverse.
Most studies use tasks that ask for information about the code or report subjective assessments
of code understanding by the study participants themselves. On top of this variety of measures
and tasks, there are almost unlimited ways to combine tasks and measures, making almost every
paper unique in its way of measuring how well a participant understood source code. We discuss
the consequences of this observation in Section 5.

4.8 Reported Limitations

We extracted study design limitations described by the authors of the primary studies. Already in
the extraction of the limitations, we have only extracted those limitations that the authors them-
selves also considered as such and not aspects that the authors explicitly assume not to be threats
because, for example, they have been mitigated. The extracted threats were then analyzed qualita-
tively and quantitatively in several steps, which we describe below.

Each limitation was labeled, and the resulting label was assigned to a class of validity threats.
The classification is one that is usually used for reporting positivist empirical studies in software
engineering [22, 66]: internal, external, construct, conclusion, and other validity threats. If the
authors themselves have made use of this classification, then we have followed their distinctions
(which was the case for 30 papers). Otherwise, we have classified the labels ourselves by following
the descriptions provided by Jedlitschka et al. [22]:
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— “Internal validity refers to the extent to which the treatment or independent variable(s) were
actually responsible for the effects seen to the dependent variable.”

— “External validity refers to the degree to which the findings of the study can be generalized
to other participant populations or settings.”

— “Construct validity refers to the degree to which the operationalization of the measures in
a study actually represents the constructs in the real world.”

— “Conclusion validity refers to whether the conclusions reached in a study are correct.”
— “Other threats than those listed above may also need to be discussed, such as personal vested

interests or ethical issues regarding the selection of participants (in particular, experimenter-
subject dependencies).”

The individual labels are similar in part because different studies report similar limitations. We
therefore categorized the labels to better grasp the diversity of limitations. The work by Siegmund
and Schumann [52], who compiled a list of confounding parameters in program comprehension
studies, builds the basis for these categories.

Since Siegmund and Schumann focused on confounders, their categories and descriptions are
mainly focused on the consequences for internal (and construct) validity. We nevertheless tried
to stay close to this list to allow for comparability of results. To accomplish this, we have slightly
renamed a few categories and added missing categories as needed. Existing category descriptions
were rewritten so they answered the question of how the authors of a primary study think that an
aspect of validity of their study could be limited or threatened. All category descriptions are part
of our supplemental materials.

The specific aim of this review of reported limitations is to assist researchers in designing new
studies by providing them with a list of threats that other researchers have previously reflected on
for their design. We therefore considered it useful to group the categories according to different
design aspects. For example, when selecting code snippets, one can specifically look at the list of
threats found under “code snippet selection,” and when designing a comprehension task, consider
the threats under “task design.” In such a phase of the study design, all potential threats have to
be assessed anyway, regardless of how their consequences can be classified. Therefore, threats
to internal, external, construct, and conclusion validity can be equally represented behind the
respective categories.

Results. Of the 95 studies, 79 reported threats to validity. Interestingly, for the other 16 (16.8%),
no correlation with publication year or venue can be found. Nine papers were published up to
2006, so they tend to be older. However, the remaining 7 papers without threats to validity were
published since 2017, i.e., in the past five years. Moreover, 13 of them are either journal or confer-
ence articles. Only 3 are workshop papers, where one can assume that space limitations are the
reason for not reporting limitations.

The analysis resulted in 376 labels, which is equivalent to 376 individual, non-unique threats
to validity that have been reported. As can be seen in Figure 12, most of the labels are equally
distributed between internal (39.4%) and external (40.7%), followed by construct validity threats
(15.4%) and rare cases of conclusion validity threats (4.3%). One can assume that at least one internal
or one external threat is reported in a paper if threats to validity are reported. Nevertheless, at least
one construct validity threat is reported in 46.8% and at least one conclusion validity threat in 17.7%
of the papers that report any threats to validity.

The only label we assigned to the other class was a threat from study S17, which can be described
as a high data drop-out due to the chosen comprehension measures (fMRI and eye tracking) in a
proposed methodology. Since this class of other threats did not occur significantly often, we will
only discuss internal, external, construct, and conclusion threats in further reporting for simplicity.
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Fig. 12. Number of labels and papers within the threat classification.

Table 6 constitutes the main contribution of this section. It lists 52 threat categories, 33 of which
come from the study by Siegmund and Schumann [52]. For each category, the number of assigned
labels and the distribution of the labels among the threat classifications are provided. In the fol-
lowing, we highlight some interesting findings.

First, we did not assign labels to three categories that we adopted from Siegmund and Schu-
mann [52]: Color blindness, Reading time, and Treatment preference. This may be explained by our
restriction to bottom-up source code comprehension studies, which means that we only consider
a subset of the program comprehension papers that Siegmund and Schumann [52] analyzed and
that these threats happened to be discussed only in the other papers. Threats in these three cat-
egories also occurred comparatively rarely in the analysis by Siegmund and Schumann [52]. We
nevertheless left these categories in the table for ease of reference.

Second, many discussed threats are reported quite generically in our primary studies, i.e.,
without a clear description of what the actual threat is and without an explanation, why a certain
design property is a limitation. For example, with 43 label occurrences, the rather generic cate-
gory Sampling strategy is the largest threat category in our dataset. It contains, e.g., descriptive
statements of the resulting participant sample of a primary study, such as all participants being stu-
dents, and that it is unclear whether such a sample can be generalized to industrial professionals.
Labels in this category do not provide a rationale for why such a threat would exist, although we
identified 17 other participant-related categories that would allow for more nuanced assumptions.
Speaking of assumptions, it is furthermore striking that hardly any studies explicitly cite any
evidence at all for the suspected threats to validity. We address the issue of potential evidence gaps
and the need for more intensive reflection on the threats to one’s own study in more detail in our
discussion.

Third, in some cases, threat classes dominate individual aspects of a study design. For example,
the selection and design of the materials predominantly has a presumed influence on the external
validity of a study. Researchers often discuss that their code snippets are relatively short (size of

study object) and therefore the generalizability to longer snippets is unclear. By contrast, when it
comes to research design, procedure, and conduct, consequences for internal validity are discussed
almost exclusively: learning effects and general threats to ensure causal relationships (causal model)
are the categories with the most labels here.

At the same time, these are examples of threat categories that mutually affect each other. More
extensive code snippets would lead to more variance in the snippet features, and thus to more
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Table 6. Frequency of Reported Threat Categories
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Code environment

Code editor 7

Snippet context 2
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Supporting materials and
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1

For each category, a stacked bar chart indicates the share of threats assigned to one of the four classes (internal, external,

construct, conclusion).

potentially uncontrolled influences that make causal inferences difficult. The researcher must now
balance between strengthening internal validity and strengthening external validity.

Fourth and finally, measuring how well someone has understood code is apparently difficult.
It is not only the case that researchers in code comprehension studies have to deal with potential
threats to validity from over 50 categories. In the end, 39 labels were assigned to the instru-

mentation category and another 9 to the construct operationalization category, two categories
that both directly address the fundamental question of how the performance or process of code
comprehension is operationalized and measured. In the respective papers (e.g., S4, S9, S63, S69),
it is sometimes discussed quite openly that there is uncertainty about whether the chosen way
to operationalize the construct of understanding, e.g., via time and correctness, is adequate at
all, and that the used measurement instruments have validity issues. Such insights point to the
need for the research community to achieve more certainty in the design of code comprehension
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studies through discourse and research in the future, and strengthen our motivation for this work
to take a step in this direction with a synthesis of the state-of-the-art.

5 DISCUSSION

One of the motivations for our systematic mapping study was to provide researchers with confi-
dence in their study designs by highlighting what is considered acceptable by the research commu-
nity. This should not only serve as a helpful overview for newcomers to the field, but may also en-
rich the perspective of seasoned researchers on the topic, e.g., by providing insights into trends and
shortcomings. To summarize which design decisions have dominated the research field in the past,
we therefore start this section with a description of the typical code comprehension experiment.

Answer to RQ2: What are differences and similarities in the design characteristics of

code comprehension experiments?

On the one hand, there are certain design options that are taken more frequently than others.
For example, the majority of studies examine the impact of a construct on code comprehension,
using one-at-a-time within-subject designs. There are usually fewer than 50 participants sampled,
of which at least some are students. The used code snippets are often specifically created for the
study, Java is clearly the programming language of choice, and participants are shown the snippets
on a screen. When it comes to understanding the snippets, participants are required to provide
information about the code, e.g., by answering comprehension questions or determining the output
for a given input. The typical evaluation assumes that the faster participants provide the correct
answer, the better their understanding. Last but not least, researchers are aware that every study
design comes with limitations, which is why almost all papers discuss threats to validity.

On the other hand, it also became clear that “the typical code comprehension experiment” does
not exist. Each study in our dataset is unique. For example, there is an incredible variance in the
design of the concrete comprehension tasks and measures. Almost all studies come up with their
own individual task design, even though all of them “only” try to measure how well a participant
understood a certain code snippet. Why does every study develop its own code comprehension
tasks? Are existing study designs not convincing, or does every research question actually require
an individual approach?

We suspect that part of the variance is due to uncertainty. The most important driver in the de-
sign of code comprehension studies is currently the intuition of the researchers behind the studies.
There is a lack of theoretical foundations on which all code comprehension studies could be built.
Such foundations should offer (1) a common definition of code comprehension, (2) a mental model
describing how code is represented in a developer’s mind, and (3) a cognitive model that explains
the process of code comprehension. A strong theory with these three parts would greatly help
with anchoring new research designs and integrating empirical findings. Without such founda-
tions, you cannot help but rethink almost every design decision to answer a research question, as
it is simply not apparent from existing primary studies whether assumptions made and views held
about an underlying code comprehension model are consistent with your own. In other words, so
far, everyone has been doing it in a way they think is reasonable—after all, no one really knows
what is reasonable at the moment.

In the 1980s, several cognitive models were proposed for code comprehension. Important con-
tributions were the bottom-up comprehension strategy that describes the chunking of parts of
the code to higher-level abstractions [48], the differentiation of syntactic and semantic knowl-
edge [49], and types of mental models developed during comprehension such as a program model
and a situation model [38]. In contrast, Brooks [8] proposed that developers comprehend code in a
top-down manner by forming hypotheses and using beacons to verify these hypotheses. Soloway
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and Ehrlich [56] added the concepts of programming plans that represent typical, generic pro-
gramming scenarios and rules of discourse describing coding conventions. Von Mayrhauser and
Vans [61] integrated these and other theories into their metamodel of program comprehension
in the 1990s. Since then, only very few theories have been proposed, with little impact on the
comprehension research community (e.g., References [17, 32]).

We expected that these models, in particular the integrated model [61], would be the basis to
inform hypothesis development and experiment design for code comprehension studies. Yet, in
most experiments, this seems not to be the case. Regarding the hypotheses and study purposes of
the primary studies, we partly found concepts of comprehension theories, although often without
explicitly stating this connection. Semantic cues and mental models are important concepts in the
integrated model. Likewise, code structure and visual characteristics are relevant for the theory
of program model structures. Yet again, these concepts were most often not directly related to the
respective theory, and hence, do not act as rationales for the chosen design. The major exception
is S84, a study by Siegmund et al., who explicitly used the concepts bottom-up comprehension,
semantic comprehension, and programming plans to motivate their experiment design.

The study themes we identified in the primary studies are also only partly related to com-
prehension theories. Examples of theoretical concepts are beacons, while identifier naming or
control structures are at least related to theoretical concepts. Similarly, the often-used experience

is related to program-domain knowledge in the integrated model. Concerning the code snippets

used in the studies, grounding their properties in theoretical concepts seems especially important
for an empirical investigation. For example, the integrated model assumes rules of discourse
about how code is usually written, and that deviating from these rules will make comprehension
more difficult. Hence, we would expect an evaluation of this characteristic for the used snippets.
However, we rather saw discussions whether open-source code or artificially generated code is
used. This is related, but not the same concept. As a positive example, there was usually a clear ref-
erence to theory when researchers obfuscated identifiers or removed beacons to force bottom-up
comprehension.

In our opinion, the most pressing issue in this area is that the selection of tasks and measures

is not based on the integrated (or any other) theory. Measures like the correctness of answers to
comprehension questions are somewhat related to the mental model of the participant. Yet, in the
integrated model, we have top-down structures, program model structures, and situation model
structures. Are the questions covering all three of them, or only one? How does this impact the
results of the study? A study could, e.g., explicitly aim for understanding the impact of certain
semantic cues in the code only on the situation model. We found only Reference [47] evaluating
explicitly the developer behavior theory proposed in Reference [49] by using recall measures. All
other studies seem not to rely on a theoretical foundation for their tasks and measures.

Again, we consider diversity in study designs to be important for addressing research questions
from multiple perspectives. However, each study design in itself should be based on logically sound
design decisions. This is not currently possible, or at least difficult to evaluate, as basic research
on code comprehension has diminished significantly since the 2000s. The earlier drivers of such
research, e.g., on the distinction between bottom-up and top-down comprehension, have not pro-
gressed to the point where we could already support entire study designs with their models. We
will come back to this when we conclude our article in Section 6 with specific calls to action to
the research community. Before we do so, however, we will discuss a few other peculiarities that
we noticed when reviewing code comprehension experiments of the past 40 years. Note that the
following points all draw on our empirical findings, but we deliberately refrain from citing spe-
cific negative examples, because we do not consider this necessary. Instead, we highlight positive
examples where available.
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Answer to RQ3: What are differences and similarities in the reporting characteristics of

code comprehension experiments?

While we already described the existing heterogeneity of study designs as surprising, the variety
of ways in which these designs have been reported in the papers appeared even more substantial to
us. A few authors tried to strive for a more consistent reporting via tables with the most important
characteristics by following the experiment reporting guidelines by Jedlitschka et al. [22] or by
reporting threats to validity according to the categories by Wohlin et al. [66]. However, as partially
illustrated by the results in Section 4, there were strong differences between papers regarding
where and how the same aspects of the study designs were reported, and especially if rationales
for certain design decisions were provided. This did not only concern the used level of detail and the
location in the paper, but also if something was reported at all. Typical aspects of the study design
that were reported very differently were, e.g., the studied construct and its definition, participant
characteristics, sampling of participants, experiment setting, and threats to validity. We provide
more concrete insights into issues with these reporting differences below when discussing RQ4
and our proposed action items in Section 6.

Answer to RQ4: Which issues and opportunities for improvement are evident in the

design and reporting of code comprehension experiments?

Lack of studies investigating the impact of code comprehension on other constructs. In our sample,
not a single study investigated the effects of understanding code on something else. During study
selection, we also did not find such studies that we had to exclude, e.g., due to a lack of human
participants or a focus on top-down comprehension. Most may agree that high code comprehensi-
bility is a desirable goal in itself, but, for others, it may become even more tangible and important
if consequences of good or bad code comprehensibility were empirically supported. Examples are
how code comprehension impacts the motivation to work on the code, general job satisfaction, or
accuracy in the effort estimation for code modifications. This type of experiment seems extraor-
dinarily rare, even though some studies exist that analyze this for higher-level constructs that
(partly) include code comprehension, e.g., the impact of technical debt on developer morale [5].

No definitions for the studied construct(s). For the majority of our primary studies, the authors
do not provide a clear definition or description for the central construct(s) that they want to
measure. Rare shining examples are S1, where Peitek et al. clearly describe the differences
between bottom-up and top-down comprehension, and S5, where Scalabrino et al. do the same
for understandability and readability. As a consequence, some authors call their construct
“readability,” despite clearly measuring comprehension. Likewise, several studies use the older and
more general term “program comprehension,” even though they measure bottom-up source code
comprehension. That the program comprehension research field today encompasses much more
than comprehension of source code can be seen, for example, in the small number of papers in our
dataset that were published at the ICPC. Therefore, it would be much more explicit if researchers
used the term “code comprehension” instead of “program comprehension” whenever it applies.

This state of inconsistency in naming and defining the construct of interest makes it very hard
for primary studies to compare their findings with those of others. It further severely increases
the required effort for secondary studies. We spent countless hours figuring out whether studies
were actually measuring bottom-up comprehension.

No clear operationalization for the construct. In several studies, the researchers did not explic-
itly state how they collected a measure like “correctness.” Sometimes, they also collected multiple
measurements but did not explicitly state which of those measurements are used to operational-
ize the construct during the analysis. For a study that measures, e.g., the time to read code and
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the time to answer comprehension questions, it must become clear if only one of the measures or
a combination of both was used in the analysis. A good example is again provided in S5, where
Scalabrino et al. clearly describe their aggregations of correctness, time, and subjective ratings to
evaluate their construct.

Unsuitable comprehension tasks. While there is no consensus (yet) on optimal tasks for code
comprehension experiments, there are definitely some tasks that seem less suitable than others.
Several studies used a recall task, where participants had to recite the (exact) line-by-line code
snippet to judge their comprehension. Comprehending means to form a mental structure that
represents the meaning of code. From research on text comprehension, we know that “whatever
mental structure is incidentally generated in the process of comprehension also serves as a retrieval
structure” [25]. Shneiderman similarly hypothesizes that developers who perform better on a recall
task have a better understanding of the program [47]. However, this is not a sufficient criterion for
assessing comprehension. An evaluation with recall tasks must be designed very carefully, because
being able to recite something flawlessly from memory is not the same as truly comprehending
its meaning or purpose. Likewise, participants unable to remember the exact lines of code may
still have understood what the snippet accomplishes. In this sense, we share Feitelson’s sentiment
that “failure in recalling code verbatim from memory may identify totally wrong code or code that
does not abide by conventions, not necessarily hard to understand code” and that such a task is
far removed from what developers do in their daily work [13].

In addition, we found multiple studies that used tasks that do not measure comprehension in
isolation but include much more, e.g., fixing a bug, refactoring code, or extending code. This type of
problem-solving differs from mere comprehension in the way that problem-solving is a “controlled,
resource-demanding process involving the construction of problem spaces and specialized search
strategies,” whereas comprehension can be simplistically summarized as an automatic process [25].
In the extreme case of S73, Sheppard et al. even let their participants write functionally equivalent
code for a snippet. While these tasks certainly require a certain degree of comprehension, they
also introduce many more confounders and potential biases, and would be more suitable if the
studied constructs were maintenance or refactoring.

Lack of closed-source code snippets from industry. Only 3 of the 95 primary studies used code
snippets from proprietary industry projects. While open-source or constructed snippets may pro-
vide sufficient realism or industry relevance for many bottom-up code comprehension results, it
is still noteworthy that basically no findings in this field are validated with closed-source industry
code and that generalization is assumed. Today, many companies are involved in some projects
in open-source repositories. Still, given the known differences between proprietary industry and
open-source projects [35, 44], it would be highly unlikely that all findings are fully transferrable.
Even if it seems plausible for the majority of scenarios, we simply do not know the extent. We
are aware that it is difficult to obtain closed-source industry code that can also be used with min-
imal modifications in experiments. Additionally, this might make sharing the code snippets with
the publication impossible. For now, though, it would at least be desirable to find out more about
the influence of the differences between proprietary industry and open-source snippets on code
comprehension and thus contribute to a more informed discussion about generalizability.

Incomplete reporting of experiment design characteristics. Several studies omit important details
of their experiments in the reporting, sometimes information so basic or essential that its absence
was very surprising to us. For example, we could several times not reliably infer whether snippets
were self-made or taken from somewhere else (14 papers), which programming language was
used (7), whether the study was conducted remote or onsite (7), whether snippets were shown on
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screen or paper (6), why the respective snippets had been chosen (6), what type of participants
were used (4), or how many snippets were used in total and per participant (4). Many of these
details are important to judge the soundness of the design or to interpret the results, e.g.,
concerning generalizability.

Inconsistent usage of categories for threats to validity. While 79 of 95 studies included a descrip-
tion of threats to validity and many authors classified them into the typical categories, several
instances of incorrect classifications made our aggregation more difficult. For example, Bavota
et al. assigned potential confounding factors to construct validity instead of internal validity (S63),
and Saddler et al. associated the lacking representativeness of their code snippets with internal
validity instead of external validity (S68). This may be due to different definitions of the validity
categories, but, since most authors did not provide appropriate explanations or a reference for the
used classification, we cannot say for sure. At least, the inconsistent and partly incorrect catego-
rization of threats to validity does not seem to be an issue exclusive to code comprehension studies
(see, e.g., Reference [2]).

Implicit or shallow reporting of threats to validity. Many studies report both threats that were
consciously mitigated and threats that remain. This observation is in line with that of another
literature study by Sjøberg and Bergersen [54] on reporting construct validity threats in software
engineering. Sometimes, however, it was difficult to distinguish between these two types, because
the authors did not explicitly mark the threats accordingly. Therefore, interpreting the limitations
of such studies becomes difficult. Hofmeister et al. present a good solution to avoid this issue in S3:
They report how they consciously addressed common threats in their study design section, while
the remaining threats are discussed separately at the end. Moreover, a few papers reported very
generic threats that give the impression of simply pre-empting criticism from readers, or initially
from reviewers of the manuscript. For example, if the sample consists exclusively of students, then
it seems almost obligatory to mention this as a limitation (see Section 4.8). However, it is rarely ex-
plained in the specific study context which student characteristics could actually threaten validity
regarding the research questions. Authors of primary studies that predominantly sampled students
often cast doubt on the generalizability of their findings to the population of professional software
developers, but do not explain why. That such generalizability should not be questioned per se is
shown at least by the existence of controversial discussions concerning student samples [14]. How
it could be done instead is shown by the authors of S26 and S82, who discuss, e.g., that the students
in their sample may be influenced by the teaching assistant’s coding style requirements or may
not be representative because of their particular interest in the course.

To counteract some of these identified shortcomings, we propose several calls to action for the
research community in the final section below.

6 CONCLUSION

We conducted a systematic mapping study to structure the research from 95 primary studies on
source code comprehension published between 1979 and 2019. Through this review of the past 40
years, we arrived at some interesting findings that should motivate changes for the future. Below,
we have focused on what we believe are the five most important action items that we should
address as a code comprehension research community moving forward.

(1) Work on a definition for code comprehension and provide such a definition in ev-

ery primary study. Code comprehension is a complex construct, making it all the more
important to define what you intend to measure. While there are a few program compre-
hension models and a few vague definitions of what it means to understand a program, the
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landscape of definitions for code comprehension is unfortunately quite limited. A definition
of code comprehension must not only be clear in describing the construct itself. It should
also clearly distinguish code comprehension from other related constructs (see Section 2.1).
Without such a reusable definition, we burden each primary study with the task of defin-
ing and separating code comprehension from other constructs, which ultimately leads to
a situation in which hardly any primary study defines what it actually intends to measure.
Consequently, speculating based on the properties of the comprehension tasks is often the
only way to assess whether two experiments intended to study the same construct.

(2) Research the cognitive processes of code comprehension. In short, we need more the-
ory. Basic research on the cognitive processes involved in code comprehension, e.g., to dis-
cover different comprehension strategies and involved cognitive processes in the brain, is
necessary to theoretically motivate a study design. Almost none of our primary studies
linked their design to a comprehension theory that would justify, e.g., the used tasks and
measures. Basic research on program comprehension is currently gaining momentum; the
use of neuro-physiological measures to “develop a neuroscientific foundation of program
comprehension”5 is particularly promising.

(3) Conduct research on the comparability of different design characteristics. We have
seen that each of our 95 primary studies used a unique design to answer its research ques-
tions. We lack evidence on the consequences of particular design decisions, such as the
choice of particular comprehension measures or experimental materials. We can only mean-
ingfully compare primary studies and synthesize results in meta-studies if we know whether
and how different design decisions affect study outcomes differently.

(4) Gather evidence of commonly assumed consequences of discussed threats to valid-

ity. Related to the previous point, we also lack evidence in discussing limitations of study
designs. The catalog of potential threats to validity is too long to discuss in a primary study.
Accordingly, the focus should be on those threats to validity that actually affect the results
for a specific study design. However, to assess for which threats this is the case, we need more
research on the influence of assumed confounding factors and generalization issues. Existing
literature supporting the influence of specific design decisions on study results should then
be referenced appropriately in the discussion of primary studies on code comprehension.

(5) Agree on a set of design characteristics that must not be omitted when reporting a

primary study. Finally, we have a suggestion for improving the future reporting of code
comprehension studies. As much as we desire to grant everyone their creative freedom in
the organization of their papers, we nevertheless note that it was very cumbersome to ex-
tract the relevant design characteristics from some primary studies. Although we read all
the papers from start to end, the relevant information was scattered throughout the report,
sometimes ambiguous, not always where one would expect it to be, and sometimes missing
completely. We would like to highlight S3 and S27 as positive examples that present a tabular
overview of the “main factors” of the conducted study. This form of concise presentation is
not only interesting for those conducting meta-studies [65], but, in our opinion, also helps
every reader to better understand the study design. As a community, we can discuss which
specific design characteristics need to be included in such table. For a start, the primary stud-
ies mentioned above as well as most categories of our Table 2 provide a good starting point.

The research field is currently flourishing in terms of the number of new publications and num-
ber of researchers involved. We are pleased to see this, because we consider it an important field

5https://www.se.cs.uni-saarland.de/projects/BrainsOnCode/
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of research. This makes it all the more important for us to emphasize at this point that, in our
opinion, much of the design and reporting of code comprehension experiments is already of good
quality. The emphasis in the final pages of this article on what we could improve in the future is
not intended to slow down the growth in this field. On the contrary, the five concrete action items
are meant to encourage the community to use the momentum and engage even more deeply with
code comprehension studies at the meta-level.

Since parts of the field are already changing, e.g., in the aspect that psycho-physiological mea-
sures are increasingly used in code comprehension studies, we consider an extension of our study
to be interesting already in a few years. At best, some of the more recent publications might then
already reflect the influence of some of the proposed action items.
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